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ABSTRACT: A model for monolayer physisorption of a one-
component gas on the pore surface of a homogeneous macroporous
or mesoporous porous medium is presented. It originates from an
averaging over many pores of a macroporous medium filled with a one-
component fluid. The resulting model does not assume anything about
pore shape, but assumes that the pores are so large that capillary
condensation does not occur. Mathematically, the model gives coverage
as the solution of an ordinary, first-order, differential equation, where the
time derivative of coverage is proportional to the difference between the chemical potential of the adsorbate and the chemical
potential of the ambient gas. Coverage is determined by the ambient gas density, with temperature, adsorbate critical
temperature, and the Henry adsorption constant as parameters. The rest of this abstract describes what is deduced from the
equations of the model. Adsorbate phase transitions are built into the model by the use of van der Waals equations of state.
Equilibrium isotherms are derived from the equality of the chemical potentials. The differential equation for coverage makes it
possible to determine the mathematical stability of the equilibrium isotherms, and a number of properties of the isotherms are
derived, the most important being as follows: (i) an adsorbate phase transition is always accompanied by a well-defined
hysteresis loop, although “loop” is somewhat misleading as its vertical boundaries do not consist of equilibrium states; (ii) the
vertical boundaries are exactly located; (iii) the upper and lower boundaries consist of states that are mathematically stable,
while being either physically stable or metastable, and if physical metastability is the case, then the actual state of the adsorbate
(mono- or bi-phasic) will not be visible on the equilibrium isotherm. The shapes of the equilibrium isotherms are largely
determined by the value of the Henry constant, whether the isotherms are subcritical or supercritical. Expressions for the
location of an equilibrium isotherm’s region of fastest variation and for the locations of the vertical boundaries of its hysteresis
loop are found that also show the importance of Henry’s constant. Dynamical, that is, time-dependent isotherms are presented
for the case describing the variation of coverage resulting from forcing the ambient gas to undergo a compression−
decompression loop. Two subcases are considered: the subcritical and the supercritical adsorbate. It is shown that coverage in
terms of ambient pressure exhibits closed loops, even in supercritical isotherms. However, supercritical loops shrink when the
cycle time increases, reminiscent of rate-dependent hysteresis observed in piezoelectricity. The model is used to interpret two
experiments on the sorption of CO2 and CH4 on coal that showed hysteresis loops in isotherms of supercritical adsorbates and
that were originally interpreted as leading to different Henry constants for adsorption and for desorption. The interpretation set
forth here uses the inherent dynamics of the model and looks at the loop as just one isotherm evolving in time, thus leading to a
unique Henry constant.

1. INTRODUCTION
In experiments on gas physisorption, one often observes a
discontinuity in the equilibrium isotherms and a hysteresis
loop. See Morishige and Shikimi1 and references given there.
The step and the loop occur at temperatures well below the
critical temperature of the ambient gas, and at pressures well
below its saturation pressure.
It has been shown by Hill, in an article published in 1947,2

that hysteresis can be explained by assuming the existence of
metastable adsorbed states in monolayer physisorption, no
assumptions about the pores being necessary. Hill’s result is
generalized in the present article, where monolayer phys-
isorption is used to the exclusion of other processes. It must be
mentioned that monolayer physisorption in a mesoporous or
macroporous medium is, in a certain sense, in a class by itself,
possibly together with multilayer physisorption if the number
of layers is on the order of two or three. It has indeed been

shown3 that the size of the pore surface per unit volume of a
mesoporous or macroporous medium is such that the amount
adsorbed by monolayer physisorption is negligibly small when
compared to the amount that flows in the pores. On the other
hand, physisorption by capillary condensation and/or chem-
isorption deal with adsorbed amounts that differ by orders of
magnitude from those occurring in monolayer physisorption
and are essential to describe such processes as industrial
hydrocarbon recovery. Capillary condensation and chemisorp-
tion are not considered in any detail in this article.
The generalization of Hill’s result is done in the framework

of a sorption model, called M′ for convenience here. M′, a
special case of a model M to be described presently, expresses
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the rate of change of coverage in terms of the coverage itself, of
the ambient gas density, of temperature, of the critical
temperatures of adsorbate and ambient gas, and of Henry’s
adsorption constant. This is not the first appearance of an
equation for the rate of change of coverage (see Alfe ́ and
Gillan4), but it is, to the author’s knowledge, the first time such
an equation leads to an understanding of hysteresis loops in
adsorption, and to a reinterpretation of experimental results.
The three paragraphs below are short presentations of results
that are described in more detail in Sections 2, 3, and 4.
The first result concerns the placement of the vertical

boundaries of the hysteresis loop (Section 2.5). Ball and
Evans,5 in their article on the mechanism for hysteresis, noted
that the existence of physically metastable states will bring
about a transition to a physically stable state at some ambient
pressure and thus produce a vertical boundary for the
hysteresis loop at that pressure in adsorption as well as in
desorption. They also remarked that determining the transition
pressure is beyond the scope of an equilibrium theory, given
that there are infinitely many physically metastable states. Now
M′ describes the evolution of isotherms with time, and it also
determines the equilibrium isotherms. This implies that the
mathematical stability of any point on an equilibrium isotherm
can be found, and it turns out that physically metastable states
are mathematically stable, except for just two such points, one
for adsorption and one for desorption: these are mathemati-
cally unstable and determine the transition pressures.
The second result concerns the new possibility implied by

the ability of M′ to describe time-dependent isotherms. This
has a direct relevance to measurements where adsorption and
desorption follow different paths that join at a low and a high
coverage, thus exhibiting a loop7,6 with no vertical boundaries.
The explanation given by M′ is the one given by other
workers: a genuine hysteresis loop must have two vertical
boundaries, so their absence is explained by appealing to an
insufficient equilibration time6 or waiting time.8 There is,
however, a new possibility implied by the ability of M′ to
describe time-dependent isotherms: that of considering the
noncoinciding adsorption and desorption paths as being just
one isotherm evolving in time under the application of a
pressure-cycle consisting of compression followed by decom-
pression of the ambient gas. The isotherms resulting from such
a cycle are shown in Section 3, for the two cases of a
supercritical and a subcritical isotherm.
The third result concerns the interpretation of experiments

on sorption of methane (important as a source of energy) and
on sorption of carbon dioxide (an important product to
sequestrate). These two cases of sorption are exceptional in
that they cannot be described in the framework of capillary
condensation: the critical temperatures of the substances are
low compared to storage temperatures, so that capillary
condensation cannot occur. Wang et al.9 enumerate, and give
references for, the hypotheses that have been made to explain
the mechanism of methane and carbon dioxide sorption
hysteresis: residual moisture in coal samples, surface geometry
heterogeneity, chemical interaction, structural deformation,
experimental inaccuracies, and insufficient waiting time. They
conclude that the mechanism remains an open question. The
most straightforward way to describe CH4 and CO2 sorption
has been to use the Langmuir model: see Jessen et al.7 See also
Wang et al.9 who look at two additional isotherms, one from
the Dubinin−Radushkevich model and one from the dual
sorption model, the latter allowing the inclusion of the effect of

coal swelling. Section 4 of the present article gives an
alternative description, based on the second result above,
that leads to a unique value for the Henry constant instead of
the two obtained by fitting separate equilibrium isotherms, one
for adsorption and another for desorption.7

It is also worth mentioning that the mathematical expression
of M′ is simple enough to allow approximate expressions for a
number of useful quantities, such as the pressure at which the
isotherm is steepest and the width of the hysteresis loop.
A short description of model M′ and of the underlying

model M, follows.
M is a model for multiphase flow in a porous medium, based

on the diffuse interface assumption.10 It is the result of an
averaging over many pores of the equations describing
Navier−Stokes flow in the pores. The averaging leads to a
new set of equations involving averaged quantities such as
density, velocity components, temperature, internal energy,
and entropy. M, and thereby M′, are based on the following
assumptions: (a1) the fluid-containing pores are connected;
(a2) the smallest pore-throat diameter is large when compared
to the average distance between fluid molecules, and also when
compared to their mean free path; (a3) adsorption occurs by
physisorption; (a4) adsorption is monolayer; (a5) the heat
generally released by adsorption does not appreciably change
the temperature; (a6) the averaged fluid quantities obey the
same thermodynamical laws as the quantities of the original
fluid and, in particular, the averaged fluid has a well-defined
pressure obeying an equation of state that can be chosen
among the known ones.
M′ contains three additional assumptions: (a7) the averaged

adsorbed fluid is assumed to have the thermodynamics of a
two-dimensional fluid with, in particular, a spreading pressure
(the negative of the surface tension)11 obeying a van der Waals
equation of state; (a8) the ambient fluid is monophasic; (a9)
any externally applied changes, such as compressions or
decompressions, are done so slowly that the ambient fluid
velocity is negligibly small.
The consequences of these assumptions are discussed

presently, after the introduction of the basic equations of M′.
These are obtained directly from M (see eq 17 in
Papatzacos10), with a slight modification in notation

c μ̇ = −ΔΣ (1)

L( )fμ μ μΔ = −Σ (2)

The dot in the first equation denotes partial differentiation
with respect to time. A space dependence can also be included
for cΣ, but is ignored here, as it is shown below that the
assumptions of model M′ make it redundant. At the level of
model M, μf is the chemical potential of the ambient fluid,
modified by the addition of two terms: a term proportional to
the Laplacian of the ambient fluid density and a term
proportional to the squared modulus of the ambient fluid
velocity. The Laplacian originates in the diffuse interface
framework, where large gradients of density exist in the
interfaces between phases, if two phases coexist. The squared
velocity accounts for the kinetic energy exchanged between
ambient and adsorbed fluids. The two equations above are the
core of model M′. They lead, after some preliminaries
presented as background material in Section 5, to a differential
equation for the coverage, presented in Section 5.4.
The consequences of assumptions (a1) to (a9) are as

follows.

ACS Omega Article

DOI: 10.1021/acsomega.9b02956
ACS Omega 2020, 5, 430−447

431

http://dx.doi.org/10.1021/acsomega.9b02956


As a result of the averaging process, the individual
characteristics of the pores are lost, leaving only two
parameters to characterize the medium as a whole, which are
porosity and pore surface per unit volume.10

Assumptions (a1), (a2), and (a4) imply that adsorption
does not affect the basic description of the ambient fluid by the
equations of fluid mechanics expressing balance of mass,
momentum, energy, and entropy. They also imply that
adsorption induces negligible changes in the values of porosity
and pore surface per unit volume. In fact, assumption (a4)
implies, as stated above, that inside an arbitrary volume of
porous medium, the total mass adsorbed is negligibly small
when compared to the mass of fluid that can flow freely in the
pores.3 Assumption (a5) implies that the quantities character-
izing the ambient fluid, such as its density and temperature and
consequently its pressure and chemical potential, are not
modified by sorption. (On the other hand, the quantities
characterizing the adsorbed fluid are determined by the
ambient fluid.) Assumption (a7) implies that phase transitions
can occur in the adsorbate. Assumption (a8) implies that no
interfaces exist in the ambient fluid, so that the Laplacian of the
ambient density that modifies the chemical potential is
negligible. Assumption (a9) implies that the other term
modifying the chemical potential of the ambient fluid is
negligibly small. With these last two assumptions, μf is the
usual chemical potential of the ambient fluid. Another
consequence of (a8) and (a9) is that eqs 1 and 2 are space
independent.
It is here emphasized that, as already mentioned, isotherm

properties deduced in M′, like adsorbate phase transitions or
hysteresis loops, do not depend on assumptions about the
shape of the pores and, in particular, occur without the
occurrence of capillary condensation.
The thermodynamical description of the fluids is given as

background material in Section 5, where explicit expressions
for the pressure, spreading pressure, and chemical potentials
are given, and where Henry’s adsorption constant is
introduced. As already mentioned, the adsorbate is a van der
Waals fluid, whereas three alternatives are considered for the
ambient fluid: ideal with zero volume particles (called ideal
type 0), ideal with nonzero volume particles (called ideal type
1), and van der Waals. The Δμ of eqs 1 and 2 above is then
derived as a function of coverage, ambient density, and some
parameters that include temperature and Henry’s constant.
The concepts of physical stability, metastability, and instability,
known to occur in connection with the van der Waals equation
of state, are illustrated in figures in the same section, for easy
reference in the rest of the article.
The derivation of the basic differential equation defining M′

is given as background material in Section 5.4. Other basic
properties of M′, specifically the definitions of equilibrium
isotherms and of mathematical stability are given in Section 2.

2. RESULT AND DISCUSSION 1: THEORY OF
EQUILIBRIUM ISOTHERMS

Equilibrium isotherms are defined in Section 2.1. Mathematical
stability is defined in Section 2.2, and is followed by a section
on equilibrium isotherms given by analytical expressions, then
by two sections on equilibrium isotherms given by numerical
solutions.
2.1. Definition of an Equilibrium Isotherm. It is here

referred to Section 5.4, where the differential equation giving
the time rate of change of coverage is deduced, that is, eq 59.

The equilibrium isotherms follow from this equation: they are
the solutions that have zero rate of change. There are
additional requirements concerning stability and unicity: see
the last paragraph but one of this section.
An equilibrium solution is defined as follows. Given T̃, T̃Σc,

and ψ, an equilibrium solution of eq 59 is a set of points (re,
θe) in a Cartesian plane, satisfying 0 < re ≤ rg, 0 < θe < 1, and

r T T( , , , , ) 0e e cμ θ ψΔ ̃ ̃ ̃ =Σ (3)

An equivalent form of eq 3 is found as follows. The equation
is first rewritten as μ̃Σ,red − T̃ ln K̃H = μ̃f,red, by using eqs 56 and
57. Dividing both sides by T̃, exponentiating, and referring to
eq 45, one finds

f T K f r T( , , ) ( , )H fθ τ̃ ̃ = ̃ ̃ ̃
Σ (4)

This equation, with another definition for the proportion-
ality constant, is identical with eq 4 in the article by Hoory and
Prausnitz.12

Equations 3 and/or 4 give equilibrium isotherms provided
that (i) points that represent mathematically and/or physically
unstable states are discarded, and that (ii) non-unicity of θe for
any re agrees with observations of hysteresis.
Physical stability is considered in Section 5.1; mathematical

stability is defined in Section 2.2.
2.2. Mathematical Stability of Equilibrium Isotherms.

Mathematical stability, or m-stability, of equilibrium isotherms,
is defined as follows.13

For any given set {re, T̃, T̃Σc, ψ}, a solution θe of eq 3 or 4 is
said to be (asymptotically) m-stable if there is a neighborhood
of θe such that any θ inside this neighborhood approaches θe as
time increases.
It follows from the definition that a very simple criterion for

deciding whether any point on an equilibrium isotherm is m-
stable is as follows:
θe is an m-stable equilibrium solution if and only if Δμ̃

changes from negative to positive values when θ − θe does so.
Indeed, referring to Figure 1, and keeping eq 59 in mind,

one sees that, if the condition is satisfied, then any perturbation

of θe that takes place during time dt ̃ > 0, and that brings θ in
the interval (θe, θe + a), gives rise to Δμ̃ > 0. It follows that dθ
= −Δμ̃ dt ̃ < 0, so that θ is drawn back to θe. A similar
reasoning can be made for a perturbation that brings θ to the
left of θe, with the same conclusion that θ is drawn back to θe.
Necessity is also easily proven.

2.3. Analytical Equilibrium Isotherms and Their
Stability. Analytical solutions of eq 4 are considered here.

Figure 1. Figure used in defining m-stability in Section 2.2. If Δμ̃ vs θ
behaves as shown in the vicinity of θe, then θe is m-stable.
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More precisely, one seeks to express θe as a known function of
re or vice versa. Obviously, this is only possible if one knows
how to invert either fΣ̃ or ff̃. No inverse of fΣ̃, given by eq 46
(right), is known. Inverting ff̃, however, may be possible as
shown below. There are three acceptable approximations for
the ambient fluid fugacity, and two of them are invertible: the
ones obtained by assuming that the ambient fluid is ideal,
either of type zero (zero volume particles) or of type 1
(nonzero volume particles). The relevant expressions for ff̃ are
given in eq 47 (right) and 48 (right). In fact, most analytical
isotherms are expressions giving pressure as a function of
coverage, see for example, Table I-1 in the book by Ross and
Olivier.14 This can easily be done in the present case by writing
each invertible fugacity in terms of the corresponding pressure.
Referring to the left and center equations of the set (36), it is
easily seen that

i
k
jjjjj

y
{
zzzzzf P f P

P
T

, expf
id0 id0

f
id1 id1

id1
̃ = ̃ ̃ = ̃ ̃

̃

Assuming that the ambient gas can be approximated by an
ideal gas of type 0, eq 4 gives the known expression

i
k
jjjjj

y
{
zzzzzP

f

K
T

K 1
exp

1
27id0

H H

e

e

e

e

eθ
θ

θ
θ

θ
τ

̃ =
̃

̃ =
̃
̃ − −

−Σ

(5)

Assuming that the ambient gas can be approximated by an
ideal gas of type 1, eq 4 gives

i
k
jjjjj

y
{
zzzzz

f

K T
P
T

P
T

exp
H

id1 id1̃

̃ ̃ =
̃
̃

̃
̃

Σ

This equation is of the type Z exp Z = g and, g being
positive, is equivalent to Z = Wp(g), where Wp is the principal
part of the Lambert W-function.15 One thus obtains

i

k
jjjjjj

y

{
zzzzzz

i

k
jjjjj

i
k
jjjjj

y
{
zzzzz
y

{
zzzzz

P T
f

K T

T
K

Wp ,

Wp
1

1
exp

1
27

id1

H

H

e

e

e

e

eθ
θ

θ
θ

θ
τ

̃ = ̃
̃

̃ ̃

= ̃
̃ − −

−

Σ

(6)

To the author’s knowledge, this equation has not previously
appeared in the adsorption literature. A plot of θe versus P̃

id 0 is
usually quite close to a plot of θe versus P̃id 1, except for ψ-
values less than 1 and for θe-values close to 1.

One now turns to the restrictions mentioned in Section 2.1,
so as to establish whether the expressions above are acceptable.
Plots of eq 6, say, show continuous curves, monotonic

increasing when T̃ > T̃Σc (Figure 2, left-hand plot), but with a
region of three-valuedness when T̃ < T̃Σc (Figure 2, right
plot).a

The m-stability of the supercritical isotherm (left plot of
Figure 2) is established as follows. Letting θ move on a vertical
line, say upward from a low value, then θ − θe and Δμ̃ both go
from negative to positive values when the isotherm is crossed.
The necessary and sufficient condition stated in Section 2.2 is
satisfied, so that the supercritical isotherm is m-stable. It is also
physically stable (p-stable) because ambient gas and the
adsorbate behave nearly ideally. One thus recovers the known
result that the supercritical isotherms given by eq 5 are
physically correct.
Turning to the subcritical case (right plot of Figure 2), one

sees that the isotherm has three parts: a central part, whose
states are p-unstable (orange line), connecting a lower to an
upper part. The lower is here called the adsorption branch, and
the upper is called the desorption branch. Each of these
branches contains a set of p-stable states (black line) and a set
of p-metastable states (green line). The m-stabilities of the
three parts are established by the same argument as used in the
supercritical case. One easily finds that the central part (orange
line) consists of m-unstable states, so that there is no doubt in
discarding these points that already are p-unstable. However,
all points on the adsorption and desorption branches are, with
the exception of one point for each branch, m-stable, regardless
of the quality of their physical stability: the whole set of p-
stable points and almost the whole set of p-metastable points
are m-stable. The exception is, for each branch, the p-
metastable point having a vertical tangent, that is, the point on
the isotherm where θ = θm (desorption branch) or θ = θM
(adsorption branch): indeed, repeating the m-stability argu-
ment, and letting θ move on a vertical tangent, then Δμ̃ does
not change sign when m

M
θ θ− does. The m-instability of these

points is important in interpreting the region of two-valuedness
as a hysteresis loop with the following boundaries: its upper
and lower boundaries coincide with the desorption and
adsorption branches over a pressure interval [P̃1, P̃2]. P̃2 is
the abscissa of the point on the adsorption branch whose
ordinate is the left spinodal coverage, θM, whereas P̃1 is the
abscissa of the point on the desorption branch whose ordinate
is the right spinodal coverage, θm. Note that the left and right
boundaries of the hysteresis loop can only be the vertical lines

Figure 2. Plots of eq 6, for a supercritical (left) or subcritical (right) adsorbate for values of T̃, T̃Σc, and ψ, as indicated. The right plot uses the
notations of Figure 14 for the subscripted θ′s, as well as for the meanings of the colors. Concerning the vertical dashed lines in the right plot, see
Section 2.3.
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at P̃ = P̃1 and P̃ = P̃2 because (P̃1, θm) and (P̃2, θM) are the only
m-unstable points on the desorption and the adsorption
branches: the transition to a mathematically and physically
stable state can only take place from (P̃2, θM) during
adsorption, and from (P̃1, θm) during desorption. See Figure
2, right plot. Note also that the vertical boundaries of the
hysteresis loop are not places of equilibrium, as these are in
regions where Δμ̃ ≠ 0. They are drawn as dashed lines in
Figure 2 to emphasize this fact.
A further remark on the p-metastable states follows: by

definition, a p-metastable adsorbate state will, if perturbed,
transit to a p-stable state of lower energy. Referring to Figure
14 (right), such a transition brings the adsorbate from a point
on one of the green lines to the reconstructed dash-dotted line
at the same value of coverage. This implies that it is not
possible to say whether an equilibrium state represented by a
point situated on one of the green lines of Figure 2 (right plot)
is in a two-phase or in a one-phase adsorbate state: the two
states have the same coverage and also the same ambient
pressure. The equality of pressures is approximative and is due
to the assumptions that characterize M′, implying that changes
in the adsorbate are not “visible” in the ambient gas. As a
consequence, p-stable and p-metastable adsorbate states are
treated in the same way in Section 2.5 below.
Thus, for equilibrium isotherms that can be obtained from

analytical expressions, model M′ defines a subcritical
equilibrium isotherm plotted against pressure as follows: it
has an adsorption branch that spans all pressures up to a
pressure P̃2 at which the adsorbate is at its left spinodal
coverage, θM. It has a desorption branch that spans pressures
down to a pressure P̃1 at which the adsorbate is at its right
spinodal coverage θm. P̃1 < P̃2, hence, the interval (P̃1, P̃2)
defines the pressure range of the hysteresis loop. The vertical
boundaries of the loop at pressures P̃1 and P̃2 do not consist of
equilibrium points.
Sections 2.4 and 2.5 look at supercritical and at subcritical

isotherms in cases where no analytical solution is available, that
is, when μ̃f,red is given by eq 49 (left).
2.4. Numerical Equilibrium Isotherms for Super-

critical Adsorbates and Their Stability. Model M′ is
now considered for the general case of numerically solving eq 3
for T̃ ≥ T̃Σc.
According to eq 56, the Δμ̃ versus θ curve, at given re, T̃,

T̃Σc, and ψ, is the μ̃Σ,red versus θ curve with a vertical translation
induced by μ̃f,red(re,T̃) and by ψ(T̃). The μ̃Σ,red versus θ curve
has the shape of the monotonically increasing curve shown in
Figure 15 (right). One can immediately conclude that there
will always be a solution (as the curve spans the vertical axis
from −∞ to +∞), and that it is unique. Using mathematical
stability, as defined in Section 2.2, together with the plots of
Δμ̃ versus θ, one concludes that θe(re) is m-stable in addition
to being p-stable. For later reference, this equilibrium solution
is written as

r T T

T T

( , , , ) unique solution of eq 3,

( )
e e c

c

θ ψ̃ ̃ =
̃ ≥ ̃

Σ

Σ (7)

Its general shape is given in Figure 2 (left).
The interpretation of eq 3 as the intersection with the θ-axis

of a vertically translated μ̃Σ,red versus θ curve has some useful
consequences concerning the general shape of an equilibrium
supercritical isotherm, especially the location of its point of
inflection.

Knowing the set {T̃, T̃Σc, ψ}, it is possible to roughly predict
the position of the region where the isotherm is steepest,
assuming that the parameters in the set above are such that the
isotherm flattens out. This follows from the observation that
the μ̃Σ,red versus θ curve can be translated upward by an
arbitrary amount by letting re go arbitrarily close to 0. Letting
re increase from such a value, the μ̃Σ,red versus θ curve is
translated downward, and its intersection with the θ axis gives
values of θe that increase, the fastest increase taking place when
the inflection point of the μ̃Σ,red versus θ curve is close to the θ-
axis. This can only happen if ψ (the other quantity that is
subtracted from μ̃Σ,red in the expression of Δμ̃) is large enough.
It is then useful to define a function Ψu(T̃,T̃Σc) as follows: if ψ
= Ψu, then the inflection point of the Δμ̃ versus θ curve, at
given T̃, T̃Σc, and at r = rg(T̃), is on the θ-axis. The inflection
point, easily found by equating to zero the second derivative of
μ̃Σ,red with respect to θ, occurs at θ = 1/3, independently of T̃
and of T̃Σc, so that

T T T T r T T( , ) (1/3, , ) ( ( ), )u c ,red c f,red gμ μΨ ̃ ̃ = ̃ ̃ ̃ − ̃ ̃ ̃Σ Σ Σ (8)

See Figure 4 for the general behavior of Ψu. Note that Ψu
does not depend on the values in the set .
Figure 3, shows how the shape of the equilibrium isotherm

changes for values of ψ in the neighborhood of Ψu. Note that
the tendency toward flattening occurs when ψ > Ψu.

On an equilibrium isotherm plotted as θe versus re, one can
find the approximate position of its point of inflection. It is the
value of re, here denoted ri, that corresponds to θe = 1/3.
According to eq 4, it is given by

f r T f T( , ) e (1/3, , )i
T

f
/ τ̃ ̃ = ̃ ̃ψ− ̃

Σ (9)

One can obtain a good approximation for this ri if one can
assume that it is sufficiently close to 0 that ff̃ ≈ T̃ri (see eq 47
(right)). Then, using eq 46 (right), one gets

r
K

e
2

e
e

2i
T

1/2 9/4
/

1/2 9/4

H
= = ̃

τ
ψ

τ−
− ̃

−

(10)

In Figure 3, the values of T̃ri/P̃0 given by this expression for
ψ = 1.5Ψu and 2.0Ψu are indicated by the vertical segments.

Figure 3. Equilibrium supercritical isotherms, θe vs P̃/P̃0, where T̃Σc =
0.5 and T̃ = 0.6. Curves originate from eq 7. The value of ψ is
indicated for each curve (Ψu = 1.2188). The horizontal dashed line is
at θe = 1/3. Concerning the vertical segments, see the end of Section
2.4.
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2.5. Numerical Equilibrium Isotherms for Subcritical
Adsorbates and Their Stability. Returning to the
interpretation of eq 3 as the intersection with the θ-axis of a
vertically translated μ̃Σ,red versus θ curve, one now assumes T̃ <
T̃Σc, so that the μ̃Σ,red versus θ curve has a local maximum and a
local minimum as shown in Figure 15 (right). There can now
be one, two, or three values of θe, depending on the position of
the Δμ̃ versus θ curve in relation to the θ-axis. This position
depends, in turn, on the values of μ̃f,red and ψ.
The use of mathematical stability in this case leads to the

following. If there is just one value of θe, then it occurs as the
intersection with the θ-axis of that part of the translated μ̃Σ,red
versus θ curve that is either to the left of the local maximum or
to the right of the local minimum and is therefore m-stable. If
there are two distinct values of θe, then one of them is m-
stable, the other (being the abscissa of the local maximum or
minimum) is m-unstable and discarded. If there are three
values of θe, then: (i) the smallest and largest are m-stable,
whereas the middle one is m-unstable and discarded; (ii) the
smallest is in the interval (0, θM), and the largest is in the
interval (θm, 1).
For later reference, the m-stable equilibrium solutions are

written

r T T

T T

( , , , ) solution of eq 3 in (0, ),

( )
ea e c M

c

θ ψ θ̃ ̃ =
̃ < ̃

Σ

Σ (11)

r T T

T T

( , , , ) solution of eq 3 in ( , 1),

( )
ed e c m

c

θ ψ θ̃ ̃ =
̃ < ̃

Σ

Σ (12)

Because θM < θm, there are two separate branches as in
Section 2.3, an adsorption branch, θea, and a desorption
branch, θed, creating a double-valuedness for certain pressures.
As in the right plot of Figure 2, this is interpreted to mean that
there is a hysteresis loop and a phase transition for the
adsorbate.
The sizes of ψ and of rg being important, one is led to define

the following two functions of T̃ and T̃Σc

T T T T r T( , ) ( , , ) ( , )m c ,red m c f,red gμ θ μΨ ̃ ̃ = ̃ ̃ ̃ − ̃ ̃Σ Σ Σ (13)

T T T T r T( , ) ( , , ) ( , )M c ,red M c f,red gμ θ μΨ ̃ ̃ = ̃ ̃ ̃ − ̃ ̃Σ Σ Σ (14)

where θm and θM are as defined in Figures 14 and 15, and by eq
37. It is easily seen that Ψm < ΨM. Both functions depend on T̃
and T̃Σc and not on the set . Figure 4 shows the behavior of
Ψm, ΨM, and Ψu versus T̃ for T̃Σc = 0.5.
It is now clear that the shape of an isotherm critically

depends on the value of ψ. To make a more detailed
description, plots of Δμ̃(θ,r,T̃,T̃Σc,ψ) versus θ are shown in the
third row of Figure 5, where the parameters are chosen as
follows: T̃ = 0.4, T̃Σc = 0.5; r is given its maximum value, rg(T̃),
consistent with the assumption that the ambient fluid is a gas;
finally, ψ < Ψm (left-hand plot), Ψm < ψ < ΨM (center plot),
and ψ > ΨM (right-hand plot). Obviously, the value of ψ
determines the position of the curve relative to the θ-axis, given
that r = rg.
One can now draw θe versus re for the three ψ-cases given

above by gradually reducing re from rg to 0 and getting the
corresponding value(s) of θe. Graphically, this means trans-
lating the curves shown in the third row vertically upward, and
noting the values of θe at which the black lines cross the θ-axis:
the intersection of the black line to the left gives θea, whereas

the black line to the right gives θed. Numerically, by using eqs
11 and 12. Functions θea and θed plotted against re or,
equivalently against the pressure, are shown as solid lines in the
fourth row of Figure 5. It is graphically obvious that θed does
not exist for the case 0 < ψ < Ψm, and that both θea and θed
exist for larger ψ-values, albeit for a limited range for r or P̃
values. The dotted lines that connect the desorption and the
adsorption branches are the isotherms given by eq 6. See, for
comparison, the right plot in Figure 2, and note, in particular
that P̃(r1,T̃) = P̃1 and that P̃(r2,T̃) = P̃2.
One sees that the adsorption branches, shown in the fourth

row, only reach the value r = r2 < rg, if ψ is large enough that
the local maximum of the Δμ̃ versus θ curve is below the θ-axis
when r = rg, so that lifting the curve by reducing r brings the
local maximum on the θ-axis when r = r2: see the third column
of the fourth row. Note also that, when this occurs, the
adsorption branch stops being defined and that it seems to
have a vertical tangent at r = r2. Similar statements hold for the
desorption branch.
The statements that the adsorption branch stops at r2,

whereas the desorption branch stops at r1, both with vertical
tangents, are correct because an equilibrium isotherm is a curve
satisfying μ̃Σ,red(θe,T̃,T̃Σc) − μ̃f,red(re,T̃) − ψ = 0, whose
tangents are given by

r

rd
d

/

/
e

e

f,red e

,red e

θ μ

μ θ
=

∂ ̃ ∂

∂ ̃ ∂Σ

Thus, the local extrema of the μ̃Σ,red versus θ curve produce
vertical tangents on the isotherms, and there is agreement with
the case of the analytical equilibrium isotherms, Section 2.3.
The agreement goes, in fact, deeper because it is possible to
repeat the stability analysis of Section 2.3 for the isotherms,
and also for the points with vertical tangents, with the same
conclusions.
It is now possible to interpret the multivaluedness in the

equilibrium isotherms, by introducing a hysteresis loop.
Referring first to the plots of the third column, fourth and

fifth rows of Figure 5, one interprets the two-valuedness of
coverage as in Section 2.3: there is an adsorption curve
abcdβα, and a desorption curve αβγδba. As pointed out in

Figure 4. Special ψ′s versus dimensionless temperature, T̃. The upper
thick line is ΨM defined by eq 14, the lower thick line is Ψm defined by
eq 13, and the thin line is Ψu, defined by eq 8. The first two are
defined for 0 < T̃ < T̃Σc, whereas the last is defined for T̃ > 0. All
curves are drawn with T̃Σc = 0.5.
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Section 2.3, no solution of eq 11 or of eq 12 will be situated on
one of the vertical boundaries of the hysteresis loop bcdβγδ.
The ambient densities r1 and r2, identifying the left and right

boundaries of the hysteresis loop (see the fourth row in Figure
5) are functions of T̃, T̃Σc, and ψ, easily calculable by the
following expressions

r x r x T T(0, ) such that ( , , , , ) 0,

( )

1 g m c

m

θ ψ

ψ

= ∈ Δμ ̃ ̃ =

> Ψ

Σ

(15)

r x r x T T(0, ) such that ( , , , , ) 0,

( )

2 g M c

M

θ ψ

ψ

= ∈ Δμ ̃ ̃ =

> Ψ

Σ

(16)

Turning now to the plots of the second column, fourth and
fifth rows of Figure 5, it is seen that the upper solid line of the
plot in the fourth row must be discarded as a possible
equilibrium isotherm, at least if one assumes that desorption
occurs after adsorption, because adsorption stops before the
mathematically unstable point (where θ = θM) is reached, and
the adsorbate has not transited to the desorption branch.
Adsorption occurs along abc, stops at c because of the P̃ < P̃0
condition, and then desorption follows the adsorption branch
but in the reverse direction, that is, along cba.
An important conclusion follows: there are two main classes

for the values of ψ: the class ψ ≤ ΨM in which the isotherms
show low coverage and are structureless (fifth row, left-hand
and center plots in Figure 5) and the class ψ > ΨM in which the

Figure 5. Illustrating the numerical calculation of equilibrium isotherms for subcritical temperatures. All plots are done with T̃ = 0.4 and T̃Σc = 0.5.
The values of ψ are, column-wise: ψ < Ψm (left), Ψm < ψ < ΨM (center), and ψ > ΨM (right). For the plots of the third row, it is reminded that

T T r T T( , , ) ( , ) ( , ),red c f,redμ μ θ μ ψΔ ̃ = ̃ ̃ ̃ − ̃ ̃ − ̃
Σ Σ . See text in Section 2.5, after eq 14.
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isotherms show an adsorbate phase transition and a hysteresis
loop (fifth row, right-hand plot).
When ψ > ΨM, it is of some interest to predict the

approximate pressure of the center of the loop, and also the
pressures of its left and right vertical boundaries. The pressure
in the approximate middle of the loop is P̃(ri,T̃) where ri is the
previously found density at which the ambient chemical
potential has an inflection point, see eq 10. The pressures
approximating the left and right vertical boundaries are P̃(r1,T̃)
and P̃(r2,T̃) where approximate expressions can be found for r1
and r2 in a manner similar to the one that led to eq 10.
Equations 15, and 16 are equivalent to

f T K f r T

f T K f r T

( , , ) ( , ),

( , , ) ( , )

m H f 1

M H f 2

θ τ

θ τ

̃ ̃ = ̃ ̃ ̃

̃ ̃ = ̃ ̃ ̃
Σ

Σ

and assuming that r1 and r2 are small, one finds
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,
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where

i
k
jjjjj

y
{
zzzzzE

f T

T
( )

( , , )

1
exp

1
27
4m

m m

m

m

m

mτ
θ τ θ

θ
θ

θ
θ
τ

=
̃ ̃

̃ =
− −

−Σ

(18)

(EM being obtained from above by substituting M to m) and
where θm and θM are the functions of τ given by eq 37.
In the same approximation for which the above expressions

are valid (low values of r), one can write the width of the
hysteresis loop, in units of pressure, as w = 8PcT̃(r2 − r1) (see
eq 33, right), that is

w P T E E

P T E E
K

8 ( ) ( ) e

8 ( ) ( )

T
c M m

/

c M m

H

τ τ
τ τ

= ̃[ − ]

=
̃[ − ]

̃

ψ− ̃

(19)

EM − Em versus τ is shown in Figure 6. The three pressures
P̃(ri,T̃), P̃(r1,T̃), and P̃(r2,T̃) are indicated by vertical lines on
the plot of the fifth row and third column in Figure 5.

3. RESULT AND DISCUSSION 2: THEORY OF
TIME-DEPENDENT ISOTHERMS

Time-dependent solutions of eq 59 are now considered, that
simulate the thought experiment described in the next
paragraph below, leading to a description of dynamical
isotherms, and to their behavior in relation to equilibrium
isotherms and to hysteresis loops. Two subcases are
considered: the supercritical and the subcritical adsorbate. It
is believed that the actual values of T̃ and T̃Σc are of secondary
importance as compared to their relative sizes. T̃Σc = 0.5 has
been used repeatedly above, and is also used in what follows,
whereas T̃ = 0.6 and T̃ = 0.4 are used for the two cases.
The thought-experiment considered is as follows. An

amount of mesoporous or macroporous medium is placed in
a container filled with a one-component gas at low pressure P
and at uniform constant temperature T, which is less that the
critical temperature. After the gas in the pores has settled into a
state of zero velocity and uniform pressure Pi, which is less
than the saturation pressure P0, the pressure in the gas is slowly
increased to a pressure Pf ≤ P0, then slowly decreased back to
Pi. Recordings of the amounts adsorbed, and of the
corresponding ambient densities or pressures are assumed to
occur continuously. The duration of the cycle Pi → Pf → Pi is
assumed to be large enough for the ambient density to remain
nearly uniform, and for the ambient velocity to be nearly zero,
in the macroporous medium at all times. (See the description
of model M′ in the Introduction.)
The cycle of applied pressure forces the ambient density to

follow a similar cycle. In M′, r(t)̃ is needed as extra input to
solve eq 59. Mathematically, one can introduce a function P̃(t)̃
and find the resulting r(t)̃ by solving the equation of state. A
simplification is described in what follows, that avoids time-
consuming calculations by starting directly with a function r(t)̃
that goes through a cycle, starting from a low-value rϵ,
increasing to a high-value rt ≤ rg, then decreasing back to rϵ.
Such a function is shown in Figure 7, where the increasing and

decreasing parts are linear. The minimum rϵ is introduced so as
to avoid the singularity of the chemical potential at r = 0, and a
value rϵ = rt/10

3 is in general sufficient. The figure defines
r t( ; )̃, where is the set of three parameters {rϵ, rt, td̃}. The
time parameter, td̃ will be called the cycle duration.
Equation 59 is solvedb with an initial condition,

r T(0) ( ; 0) exp( / )θ ψ= ̃ . Concerning the arguments of Δμ̃,
r t( ; )̃ is substituted to r and, as already mentioned, T̃Σc = 0.5
and two values are considered for T̃, that is 0.4 and 0.6. The
central purpose of the calculations is to determine the
influence of the values of ψ and of the cycle duration td̃ on
the shapes of the time-dependent isotherms.

Figure 6. For τ = T̃/T̃Σc < 1, the width of the hysteresis loop is
proportional to EM − Em (see eq 19), a function of τ that vanishes at τ
= 0 and τ = 1. Its maximum, 0.03281 is attained when τ = 0.5917.

Figure 7. Function r t( ; )̃, where is the set of three parameters {rϵ,
rt, td̃}. The function simulates a compression−decompression cycle.
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The supercritical case is examined first, and T̃ = 0.6 is used.
Figure 8 shows the results obtained as three plots, with four

curves in each plot, and increasing values of ψ from left to right
(based on the case of the equilibrium isotherms of Section
2.4). In each plot, the thick-lined curve is the equilibrium
isotherm, and the other curves are dynamic isotherms with
increasing cycle times, td̃ as indicated in the caption. The
vertical thin lines are at the approximate positions of the
inflection points of the equilibrium isotherms, given by eq 10.
The most noticeable feature is exhibited by the dotted-line
isotherms (short cycle duration), where adsorption increases
long after the start of decompression. Also remarkable is the
tendency of the isotherms to exhibit loops that resemble
hysteresis loops found in magnetism, but that shrink when the
cycle duration increases. This type of hysteresis was apparently
first observed in piezoelectric measurements in 2003 and
denoted then as rate-dependent hysteresis.16

Both features above are experimentally observed in
adsorption, as shown in the review article by Wang et al.9

For further discussion, see Section 4.
The subcritical case is now examined, and T̃ = 0.4 is used,

with T̃Σc = 0.5.
According to the conclusion drawn in Section 2.5, one can

concentrate on cases where the equilibrium isotherms show
phase transition and hysteresis, that is, the cases ψ > ΨM. The
three plots in Figure 9 show equilibrium isotherms, vertical

hysteresis boundaries, and dynamic isotherms resulting from
various cycle durations, as indicated in the caption.
The dynamical isotherms in the left plot are calculated with

the same cycle durations, td̃, used for the dynamical isotherms
in Figure 8. They show, for small cycle durations, the same
increase in adsorption even after the start of decompression.
The center plot shows the tendency of the dynamical
isotherms to approach the equilibrium isotherms when the
cycle duration increases. In particular, the left and right
boundaries of the hysteresis loop seem to attract the parts of
the time-dependent isotherms that join low to high (or, for
decompression, high to low) density adsorbate. However, the
vertical hysteresis boundaries are not places of equilibrium, and
the reason for the behavior of the time-dependent isotherms is
that they are forced toward a vertical direction by being
attracted to the parts of the upper and lower boundaries that
rapidly curve from the near horizontal to the vertical.
The right plot, with ψ = 5, simulates conditions of high

adsorption (see Figure 16). The notable fact here is that the
phase transition and accompanying hysteresis loop happen at
very low pressures, the width of the loop also being quite small.
The center and right plots show that the placement and width
of the loop are well described by ri, r1, and r2, given by eqs 10
and 17.

Figure 8. Isotherms for a supercritical adsorbate: T̃Σc = 0.5, T̃ = 0.6. The values of ψ are, from the left to the right plot, equal to Ψu = 1.22, 1.5Ψu =
1.83, and 2.0Ψu = 2.44. The thick solid line is the equilibrium isotherm in each plot. For all plots, the values of the loop duration td̃ are: 1 for the
dotted lines, 5 for the dashed lines, and 100 for the solid lines. The vertical thin lines are at P(ri,T̃).

Figure 9. Isotherms for a subcritical adsorbate. For all three plots, T̃Σc = 0.5, T̃ = 0.4, the thick solid lines are the equilibrium isotherms, and the
thick dashed lines are the hysteresis boundaries. Left plot: ψ = 1.1ΨM = 1.595; dynamic isotherms calculated with rϵ = 0.01rg, rt = rg, td̃ = 1 (thin
dotted), 5 (thin dashed), 100 (thin solid). Center plot: ψ = 1.1ΨM = 1.595; rϵ = 0.01rg, rt = rg, td̃ = 100 (thin dotted), 300 (thin dashed), 600 (thin
solid). Right plot: ψ = 5; dynamic isotherm calculated with rϵ = 0.75r1, rt = 1.25r2, td̃ = 600 (thin solid). In the center and right plots, the vertical
thin lines are placed at r = r1, ri, r2.
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4. RESULT AND DISCUSSION 3: REINTERPRETING
THE SORPTION OF CO2 AND CH4 ON COAL

A number of publications (Zhao et al.6 and refs 15−28 given
there) report experiments of methane and carbon dioxide
sorption, showing isotherms with hysteresis loops at temper-
atures where capillary condensation cannot explain the
hysteresis.6,9 In fact, these isotherms have loops that bear a
strong resemblance to the one presented in Section 3,
especially in Figure 8. One of these experiments is examined
below in the framework of model M′.
The experiment in question is the one reported by Jessen et

al.7 It is here interpreted in a way that differs from the one
given by the authors. Shortly stated, the authors fit one static
isotherm to the adsorption data and another to the desorption
data (both are Langmuir isotherms), thus obtaining two
separate values for the Henry adsorption constant, one for
adsorption and one for desorption. In model M′, however, it is
possible to fit just one time-dependent isotherm to the set of
data consisting of adsorption and desorption, and thus obtain a
unique Henry constant. More precisely, M′ has two internal
parameters, T̃Σc and ψ. However, fitting an isotherm to the data
requires, as shown below, the introduction of three additional
parameters. The least squares principle is applied, whereby the
best values of the parameters are the ones that minimize the
sum of the squared differences between the measured and
calculated values.
The raw data reported by Jessen et al.7 concerning the

adsorption−desorption at Texp = 295.15 K of CO2 by
Wyoming coal, are shown plotted in Figure 10. Points are

numbered in increasing order for increasing (adsorption), and
then decreasing (desorption) coverage. The coordinates of
point i are denoted (Pexp,i, Aexp,i) where, for the adsorption
points, i = 1, ..., Na and for the desorption points, i = Na + 1, ...,
Na + Nd, and Na = Nd = 9. The amounts adsorbed are given in
SCF per ton of coal.
According to the NIST database, the critical temperature

and pressure for CO2 are

T P304.2 K, 7.38 10 Pa 0.1070 10

PSI
fc c

6 4= = × = ×
(20)

The dimensionless temperature attached to the raw data of
Figure 10 is thus T̃exp = Texp/Tfc = 295.2/304.2 = 0.9704.
The ambient CO2 is thus slightly subcritical. Assuming an

adsorbate critical temperature of about a half or less of the
above Tfc, one concludes that the adsorbate is supercritical.
According to model M′, if hysteresis is observed, it must be of
one of the types drawn with a thin dashed or thin solid line on
the right-hand plot in Figure 8. In other words, it can only be a
rate-dependent hysteretic isotherm with a large value of tr so
that its shrinking to the unique curve representing the
equilibrium isotherm is difficult to observe.
The experiment7 is described as follows. Adsorption is

driven by a series of compressions and relaxations, starting
from an initial low pressure Pexp,1 and leading to a maximum
pressure Pexp,9, which is less than saturation pressure (about
950 PSI at 295.15 K); desorption then follows, as a series of
decompressions and relaxations leading back to a low pressure
approximately equal to Pexp,18. The compression and
decompression times are not given explicitly, but it is indicated
that relaxation times are of at least 24 h.
In the framework of model M′, a simplified simulation of the

experiment consists of solving eq 59, with a function r(t)̃ that
is not the simple compression−decompression cycle of Figure
7 but a cycle that includes a series of compressions and
relaxations followed by a series of decompressions and
relaxations, as shown in Figure 11. One then obtains

theoretical coverage θ, as a dimensionless number between 0
and 1, in terms of dimensionless time t.̃ Parametric plots of θ
versus r, with parameter t,̃ can then be obtained. Recordings of
theoretical coverage and ambient density are made immedi-
ately after compression (in adsorption) or decompression (in
desorption), with the purpose of comparing them to the
experimental points (Pexp,i, Aexp,i). Two subsidiary problems
must obviously be solved: the first one is the same as
mentioned in the third paragraph of Section 3, of going from
pressure to density and back, and is solved by creating an array,
rexp,i, (i = 1, ..., Na + Nd), with elements satisfying P̃(rexp,i,T̃exp) =

Figure 10. Adsorption (circles) and desorption (squares) of CO2 by
Wyoming coal at 295.15 K, as reported by Jessen et al.7 The
horizontal axis gives pressure in PSI. The vertical axis gives the
amounts adsorbed, A, in SCF per ton of coal. For the numbering of
the points, see the text.

Figure 11. Function r(t)̃ that simulates a series of compressions (the
nearly vertical segments) and relaxations (the horizontal segments)
followed by a series of decompressions and relaxations that lead to the
measurement of the amounts of CO2 adsorbed in the experiment by
Jessen et al.7 (their Figure 2). See the text in Section 4 for the
construction of this function.
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P̃exp,i. The second is writing the experimental adsorptions Aexp,i
as dimensionless numbers θexp,i between 0 and 1. To solve this
second problem, one introduces a constant C, defined as

A C i N N/ , ( 1, ..., )i iexp, exp, a dθ = = + (21)

For the determination of C, see item 3 in the algorithm
below.
The simulation consists of several parts that are now

described in more detail.
The first part is the construction of the function r(t)̃ shown

in Figure 11. It is done as follows.
It is assumed that a recording of (Pexp,i, Aexp,i) for some value

of i is followed by a relaxation time that is large enough for the
adsorbate coverage to reach its equilibrium value. Relaxation is
followed by a compression (or a decompression) that brings
pressure Pexp,i to Pexp,i+1 (equivalently, rexp,i to rexp,i+1) and to the
recording of Aexp,i+1.
To minimize the number of parameters to be determined, it

is assumed that the same relaxation time is used for all i, so that
one relaxation time, , is introduced as a parameter to
determine. Note, incidentally, that in theory, it takes infinite
time to reach equilibrium so that must be such that
equilibrium is reached within a certain acceptable tolerance.
See item 4 in the algorithm below.
Another parameter to determine is introduced: a time

variable, , used to quantize the rate of compression/
decompression. Let be the estimated time that is necessary
to carry out the compression of the ambient gas from the
lowest pressure, Pexp,1, to the highest adsorption pressure, Pexp,9,
at a constant rate. Then, the rate of compression can be
obtained as

v r r( )/Nexp, exp,1a
= − (22)

and the assumption is made that this rate is used to compress
or decompress from any density to the next.
An array ti̅ is then constructed, where the first value, t1̅, is

taken as the origin, assumed to be the time of the first data
registration (labeled 1 in Figure 10); t2̅ is then the time at the
end of the first relaxation. Then, tk̅, where k = 3, ..., 18 are the
successive times at the ends of the compressions and

relaxations leading to the last adsorbed value (labeled 9 in
Figure 10)

t

t
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̅ = ̅ + =

− − −

−

Times tk̅ where k runs from 11 to 14 are shown in Figure 11.
Also shown is the time of the first desorption, t1̅9, at the end of
the first decompression. The last registered desorption (labeled
18 in Figure 10) is at t3̅6

t t r r v
n N
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( )/ ,
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N n N n N n N n
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a a a a
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̅ = ̅ + −
=

̅ = ̅ + =

+ − + − + − +
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It is then useful to construct an array r ̅

r r n N N

r r n N N

, ( 1, ..., ),

, ( 1, ..., )

n n

n n

2 1 a d

2 a d

̅ = = +

̅ = = +
−

so that the function r(t)̃ of Figure 11 is the function that joins
point (ti̅, ri̅) to point (ti̅+1, ri̅+1) by a straight line, for i = 1, ...,
2Na + 2Nd − 1.
According to the description given above of the simplified

simulation of the experiment, the amounts adsorbed are
recorded after compression (for adsorption) or after
decompression (for desorption), that is, at times t2̅k−1 with k
= 1, ..., Na + Nd.
The second important part of the simulation is to find a

solution of eq 59, where r(t)̃ is the function shown in Figure
11. It is advantageous for accuracy to find the solution of eq 59
as a succession of solutions, where the different rectilinear parts
of function r(t)̃ are considered in turn. For each of the 2Na +
2Nb − 1 rectilinear parts, one thus defines a time variable, τn
and a linear density function, ρn of τn, as follows

Figure 12. Interpretation of the experimental data shown in Figure 10. In both plots, the vertical axis gives dimensionless coverage; the horizontal
axis gives ambient pressure in PSI. Left-hand plot: The smooth black curve is the theoretical equilibrium isotherm given by eq 7. The blue and red
sawtooth curves, joined as shown in the inset, constitute the solution of eqs 23 and 24, the two colors referring to the colors in Figure 11. Asterisks
and crosses indicate values to be compared to the measurements, see the right-hand plot. Right-hand plot: Circles and squares are the experimental
data of Figure 10 for adsorption (circles) and desorption (squares) of CO2 by Wyoming coal at 295.15 K.7 Blue asterisks (adsorption) and red
crosses (desorption) result from model calculations as indicated by the left-hand plot.
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For each rectilinear part, a coverage, θn(τn) is then defined
iteratively as the solution of eq 59, rewritten in terms of the
new quantities just introduced

t t T T
d
d

( ) ( , ( ), , , )n

n
n n n n n1 c

θ
τ

μ θ ρ τ ψ= − ̅ − ̅ Δ ̃ ̃ ̃+ Σ
(23)

(0) (1)n n 1θ θ= − (24)

This is done for n = 1, ..., 2Na + 2Nd − 1, where, for n = 1,
one defines θ1(0) = θexp,1. This last is not an extra assumption
because one can replace θexp,1 by any other value in its vicinity,
if one, simultaneously, agrees not to include the first deviation
when minimizing the sum of the squared deviations (see item
5 in the algorithm below).
The final part of the simulation consists of finding the

solution of eqs 23 and 24 that best fits the data. It involves the
determination of the following set of parameters

C T, , , ,c ψ{ ̃ }Σ

in a way that minimizes the averaged sum of the squared
deviations (θ(t2̅n−1) − θexp,n)

2. This is done by the following
algorithm.

1 Values are chosen for T̃Σc and ψ, say 0.3 and 4,
respectively.

2 Using eq 7, the equilibrium isotherm θe(re,T̃exp,T̃Σc,ψ) is
drawn. See the smooth curve in black in the left-hand
plot in Figure 12.

3 The value of C (see eq 21) is calculated, that gives
θe(rexp,9,T̃exp,T̃Σc,ψ) = Aexp,9/C, and the data are replotted
with ordinates θexpi = Aexpi/C.

4 Values are chosen for and , say 1 and 0.1, and eqs 23
and 24 are solved for all n, as indicated. The value
chosen for is increased if relaxation, at any
experimental point, ends before the equilibrium
isotherm is reached (seen graphically as two lines
touching, see the left-hand plot of Figure 12.), and the
solutions are recalculated. The isotherm is plotted as a
blue sawtoothed curve for adsorption, a red sawtoothed
curve for desorption: see the left-hand plot on Figure 12.
The coverage calculated by the model at the end of each
compression is plotted as an asterisk, and the value
calculated at the end of each decompression is plotted as
a diagonal cross. (Not all asterisks and crosses are shown
in the left-hand plot of Figure 12.)

5 The averaged sum of the squared deviations
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is calculated.

6 The values of the parameters are those that minimize
D2.

Comments: (i) The value of C determined at the third step
above has been taken as the final one with the justification that

the experimental point number 9 is on the flat portion of the
isotherm and therefore very close to the equilibrium isotherm.
(ii) The value of , determined at the fourth step, need not be
increased: any larger value will serve the same purpose because
reducing the distance to the equilibrium isotherm below a
certain small value has no interest. (iii) The value of turns
out to have little influence on the final result: must be small
compared to , and small values (0.1, say) give almost
horizontal compression or decompression isotherm segments:
a smaller value (0.01, say) might be unrealistic (depending on
the value of tr) without noticeably changing the shape of the
isotherm segments.
The sawtoothed curves of the left-hand plot of Figure 12 are

joined at rexp,9 as shown by the inset, and can thus be seen as
just one isotherm, “anchored” to the experimental points at the
last adsorption measurement.
The minimum value of D2 is 0.00512, and is obtained with

0.7= , 0.1= , and

T 0.000,

3.83
c

ψ

̃ =

=
Σ

The right-hand plot of Figure 12 shows theoretical coverage
(asterisks and crosses) at pressure values where experimental
coverage is given (circles and squares).
Comments: (i) The smallness of T̃Σc indicates that an

adsorbate of CO2 on coal acts like an ideal gas of finite volume
molecules. (ii) Model M′, used as described in this section,
predicts unique values for T̃Σc and ψ. In Jessen et al.7 (see their
Table 2 and Figure 2), adsorption and desorption are assumed
to evolve along different equilibrium isotherms, so that two
values of ψ result: 3.66 for adsorption and 4.73 for desorption.
Turning now to the data reported7 concerning the

adsorption−desorption at 295.15 K of CH4 by Wyoming
coal, one notes first that, according to the NIST database, the
critical temperature for CH4 is Tfc = 190.6 K, so that the
ambient CH4 is supercritical. The adsorbate critical temper-
ature being most likely less than the above Tfc, the adsorbate is
also supercritical. The experiment is then inside the framework
of M′ because a phase transition for the ambient fluid is
excluded, and uniformity of density can be assumed. (See the
description of model M′ in the Introduction.) The situation is
thus similar to that of the CO2 experiment just gone through,
that is, that of a rate-dependent hysteresis isotherm. Following
the same procedure, one finds a minimum value of D2 equal to
0.0067, obtained with 0.7= , 0.1= , and

T 0.3,

5.8
c

ψ

̃ =

=
Σ

Figure 13 shows experimental coverage (circles and squares)
and theoretical coverage (asterisks and crosses) calculated at
the same pressures. Using data from Table 2,7 one finds that
the two Langmuir curves that fit the adsorption and desorption
CH4 curves of Figure 27 yield two values for ψ: 4.61 for
adsorption and 8.92 for desorption.

5. BACKGROUND MATERIAL
Material given here includes the explicit calculation of the
thermodynamic functions of the ambient and adsorbed fluids,
that is, pressure and spreading pressure (Section 5.1) and
chemical potentials and fugacities (Section 5.2); a subsection is
devoted to the introduction of Henry’s constant (Section 5.3).
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A final section (Section 5.4) contains the derivation of the
differential equation giving the rate of change of the coverage
originating from eq 1.
5.1. Pressure and Spreading Pressure. As stated in the

Introduction, it is assumed that the adsorbed fluid obeys a van
der Waals equation of state. The two-dimensional van der
Waals equation, used, for example, by Hoory and Prausnitz,12

is used here

N RT
N

N 2

2β
α

Π =
Σ −

−
Σ

Σ

Σ

Σ

(25)

What follows is consistent when a monolayer is assumed.
The maximum value of NΣ is Σ/β so that the coverage is NΣβ/
Σ. The particle concentration and coverage are thus

c N /= ΣΣ Σ (26)

cθ β= Σ (27)

The critical values, identified by a subscript c, are expressed
in terms of the constants α and β

RT
27

,
8

27c 2 c
α
β

α
β

Π = =Σ
(28)

Concerning the ambient fluid, three equations of state are
considered: that of an ideal gas of type 0 (noninteracting zero-
volume particles), that of an ideal gas of type 1 (noninteracting
nonzero-volume particles), and a plain van der Waals equation

P
N RT

V
P

N RT
V N b

P
N RT

V N b
aN
V

, ,id0 f id1 f

f

f

f

f
2

2

= =
−

=
−

−
(29)

Note that, in the type 0 and type 1 cases, one assumes that V
is so large that Pid 0 and Pid 1 are valid approximations inside
some pressure range, but that the van der Waals constants are
different from zero, so that it makes sense to speak of critical
pressure and temperature.
Ambient and adsorbed fluids are assumed to be at the same

temperature T. Similar to the two-dimensional case above, one
defines

c N V/f f= (30)

r bcf= (31)

The critical values, identified by a subscript c, are expressed
in terms of the constants a and b

P
a
b

RT
a
b27

,
8

27c 2 fc= =
(32)

The critical temperatures of the ambient and adsorbed fluids
have different notations because they are known to be
different.
One now introduces a dimensionless temperature T̃, a

dimensionless spreading pressure Π̃, and a dimensionless
ambient pressure P̃, by

T
T
T RT

P
bP

RT
P
P

, ,
8fc fc fc c

̃ = Π̃ = βΠ ̃ = =

(33)

Consistently with the definition of T̃, one defines
dimensionless critical temperatures for the ambient and
adsorbed fluids

T T
T
T a

b
1,fc c

c

fc

α
β

̃ = ̃ = =Σ
Σ

(34)

It follows that

T T
T

T( , , )
1

27
8c c

2θ θ
θ
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̃

−
− ̃Σ Σ (35)

Similarly, the dimensionless versions of eq 29, are
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(36)

The adsorbed and ambient molecules being chemically
identical, α and β are related to a and b. If the gas molecules
are spherical and isotropic before and after being adsorbed,
then formulas giving α and β in terms of a and b exist14 and
result in T̃Σc = 1/2. Otherwise α and β, and thereby T̃Σc, are
often determined by fitting theoretical results to experiments.
Some examples of experimentally determined values for T̃Σc are
given in Table 1. It is assumed in the sequel that T̃Σc < 1.

Figure 14 defines the symbols used in this article concerning
the ambient fluid (left) and the adsorbed fluid (right). In
particular, θm and θM, which often occur, are easily obtainable
as solutions of a cubic

Ä

Ç

ÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑ
2
3

1 cos
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3M
mθ τ π= − − ±

(37)

with

T
T

.
c

τ =
̃

Σ̃ (38)

Figure 13. Circles and squares are the experimental data for
adsorption (circles) and desorption (squares) of CH4 by Wyoming
coal at 295.15 K.7 Blue asterisks (adsorption) and red crosses
(desorption) result from model calculations. The horizontal axis gives
pressure in PSI. The vertical axis gives dimensionless coverage.

Table 1. Values of T̃Σc for the Indicated Adsorbates, on
Graphitea

N2 Ar C6H6 CHCl3 CFCl3

0.36 0.46 0.14 0.39 0.43
aFrom Hoory and Prausnitz.12
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They are only defined when τ ≤ 1, that is, for a subcritical
adsorbate. They satisfy θM ≤ θm (the equality occurring when τ
= 1) and are the abscissas of the intersections of the
Π̃(θ,T̃,T̃Σc) versus θ curve with its spinodal curve: elsewhere
in this article, θM and θm are referred to as the left and right
spinodal coverages.
Figure 14 includes the known concepts of physical stability

(black lines), physical metastability (green lines), and physical
instability (orange lines). Equations of state represented by the
black lines joined by the dash-dotted lines are called
reconstructed.17 A one-phase p-metastable state will eventually
transit, at constant r (or constant θ for the adsorbate), to a
two-phase p-stable state of lower energy on the reconstructed
straight line.
The figure also illustrates the functional relationship implied

by eq 35 and by the third of eq 36, namely: Π̃(x,T̃Σcy,T̃Σc) =
T̃ΣcP̃(x,y).
5.2. Chemical Potentials and Fugacities. The chemical

potentials can now be calculated, up to functions of
temperature. The starting point is

F S T P V Nd d d df fμ= − − +

One first obtains F by integrating at constant T and Nf; one
then obtains μf by differentiating F with respect to Nf
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The limit when V* → ∞ of the first term inside the
parenthesis on the right-hand side is the derivative with respect
to Nf of the Helmholtz free energy of the ideal gas.18 Using its
expression, one gets
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where has the dimension of molar volume. It can be
obtained by the methods of statistical mechanics,18 provided
one has specific information about the properties of the
molecules of the ambient fluid,19 such as moments of inertia
and vibrational frequencies. It is treated here as a function of T,
referring to Section 5.3 for a further determination that

involves Henry’s adsorption constant. Performing the integra-
tion in eq 39, one finds that terms that diverge when V* → ∞
cancel, and one gets

RT
T

b
r Tln

( )
( , )f f,redμ μ= +

(40)

The second term on the right-hand side, here named
reduced chemical potential, has three alternative expressions,
corresponding to the three alternative expressions for the
pressure in eq 29
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The chemical potential of the adsorbed fluid is obtained by a
similar method, μΣ being then given by a suitably modified
right-hand side of eq 39: V, , P, and Nf being changed to A,
, Π, and NΣ. One gets

RT
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Tln
( )

( , ),redμ
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μ θ= +Σ Σ (41)
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−
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(42)

The fugacities f f and fΣ of the ambient and adsorbed fluids
are now introduced, using the definition given by Hoory and
Prausnitz,12 written below in a form that is equivalent but
slightly different from theirs
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A similar formula applies for fΣ where, in the right-hand side
above, V, P, and Nf are changed to A, Π, and NΣ. It is then
easily shown that

Figure 14. Left: Pressure P̃(r,T̃), eq 36 (right), for two values of T̃, one above and one below the critical value, T̃fc = 1, vs r. Right: Spreading
pressure Π̃(θ,T̃,1/2), eq 35, for two values of T̃, one above and one below the critical value 1/2 vs θ. Concerning the similarity of the curves and
also concerning the color and style of lines, see the text at the end of Section 5.1.
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Comparing these equations with 40 and 41, one obtains
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f
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(43)

It is possible to show that one gets the expected result that Π
and fΣ become equal at the vanishing spreading pressure:
according to eqs 26 and 27, Σ = βNΣ/θ and letting Σ → ∞ in
eq 25, one gets Π ≈ RTθ/β. On the other hand, when θ → 0,
then eq 42 shows that μΣ,red ≈ RT ln θ which, combined with
eq 43, gives fΣ ≈ RTθ/β ≈ Π. It is similarly easy to show that P
≈ f f when V → ∞.
It is convenient to introduce dimensionless chemical

potentials and dimensionless fugacities to accompany the
dimensionless pressures introduced in Section 5.1. The
definitions are suggested by eqs 40−42 for the chemical
potentials and by eq 43 for the fugacities
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Equation 43 becomes
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One obtains, for the adsorbed fluid,
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Similar expressions for the ambient fluid follow, where the
particular cases of an ideal gas of type 0 or 1 are included:
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Functions 46 and 49 are shown in Figure 15.
The following remarks refer to Figures 14 and 15.

1. Comparing eq 46 and the van der Waals version in eq
49, one sees that T̃Σcμ̃f,red(x,y) = μ̃Σ,red(x,T̃Σcy,T̃Σc) and
Figure 15 illustrates this equality for T̃Σc = 1/2.

2. Figures 14 and 15 illustrate the following easily provable
equalities:

r
r r

P,,red f,redθ
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θ
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Π̃ ∂
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∂
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Σ

These show that the chemical potentials and the pressures,
when plotted against their first argument, have local extrema at
the same values of that argument. Also, the chemical potentials
can be reconstructed by localizing the points with abscissas rg
and rl (alternatively θg and θl), then replacing the loop between
them by the horizontal straight line segment joining them. See
Figure 15 where the lines have been drawn in the manner of
Figure 14, with the same meanings.
It is assumed that the ambient fluid is constrained to always

be in the same phase. There are no constraints on the adsorbed
fluid, however, so that it can undergo a phase transition.

5.3. Henry’s Adsorption Constant. Using eqs 40 and 41,
an expression for the Δμ of eq 2 can now be written as
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zzzzL RT
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/ ln
( )
( ) f,red ,redμ β μ μΔ = − − + Σ

(50)

The unknown function of T on the right-hand side is found
by using the method used by Hoory and Prausnitz.12 Using eq
43, eq 50 can be written as

Figure 15. Left: Chemical potential μ̃f,red(r,T̃), eq 49 (left), for two values of T̃, one above and one below the critical value, T̃fc = 1 vs r. Right:
Chemical potential μ̃Σ,red(θ,T̃,1/2), eq 46 (left), for two values of T̃, one above and one below the critical value, T̃Σc = 0.5 vs θ. For both plots, the
symbols on the axes and the colors of the lines are as defined in Figure 14. The dash-dotted lines are the reconstructed parts of the chemical
potentials, see Figure 14.
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This formula remains valid when ambient gas and adsorbate
are at equilibrium with each other at very low pressure: then,
Δμ = 0 and, according to the paragraph following eq 43, fΣ = Π
= RTcΣ and f f = P = RTcf. As the function of T does not
depend on the physical situation, one obtains

i
k
jjjj

y
{
zzzz

i
k
jjjjj

y
{
zzzzzRT

b
T
T

RT
b c

c
ln

( )
( )

ln fβ
β

= −
Σ (51)

The pressure being low, the concentrations are small and cΣ/
cf is Henry’s adsorption constant, KH. It is actually a function of
temperature and of molecular properties, as defined in the
literature that is used in this article.20 It is convenient to
introduce a dimensionless Henry constant, K̃H, and the
following expressions define the notation:

c K c K K b, /H f H Hβ= ̃ =Σ (52)

Then eq 51 gives

b
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K T
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( , )H
β = ̃ ̃

(53)

where is a set of constants that determine the interaction
between adsorbent and adsorbate, and thereby the sorption
properties.20 Note that, with the notation introduced in eqs 31
and 27,

K rHθ = ̃ (54)

when the pressure goes to zero.
Using eq 53 in eq 50 one obtains an expression for Δμ

where the unknown function of temperature is replaced by
Henry’s “constant”

L RT K T/ ln ( , )H f,red ,redμ μ μΔ = − ̃ ̃ − + Σ

Introducing dimensionless chemical potentials by using the
two first equations in the set 44, one obtains

LRT/( )fcμ μΔ ̃ = Δ (55)

T T r T T( , , ) ( , ) ( , ),red c f,redμ θ μ ψ= ̃ ̃ ̃ − ̃ ̃ − ̃
Σ Σ (56)

where

T K Tln ( , )Hψ = ̃ ̃ ̃ (57)

The dependence of ψ on a number of constants gathered in
the set implies that ψ can be seen as an experimental
quantity that determines, at a given temperature, the
adsorption properties of the combination of the fluid and
adsorbing surface. See Section 4.
Experimental and theoretical results are cited below so as to

establish an order of magnitude for the interval in which values
of ψ are found.
KH is usually written as KH = A0 exp(T0/T), where RT0 is

called the adsorption potential,14 and A0 is a function of T. An
explicit expression for A0(T), in terms of a set of constants, is
given in the framework of a model described by Dolgonosov.20

The set of constants is given by Dolgonosov20 for 40
adsorbate molecules on a graphite adsorbent, and curves of KH
versus T are shown, together with experimental values, for
selected temperature intervals. A selection of seven such curves
is shown in Figure 16 (thin solid lines), covering a wide range

of ψ-values. In addition, the five curves drawn with thick solid
lines originate from data given in Ross and Olivier,14 Finally,
the broken line curve originates from data given by Saha et
al.,21 and the long thick solid line is the plot of Ψu defined by
eq 8.
Figure 16 indicates that for temperatures and for adsorbate/

adsorbent pairs that are industrially interesting, ψ is an

approximately linear, slowly decreasing function of temper-
ature, with numerical values roughly inside the interval 3 to 8.
Values lower than 3 probably exist but characterize industrially
uninteresting low adsorbers.

5.4. Differential Equation for the Coverage. A
differential equation for the coverage θ is here written by
using eq 27 on the left-hand side of eq 1, eq 55 on its right-
hand side, and then by introducing dimensionless time, t,̃ by

t
t
t

t
L RT

, where
1

r
r

fcβ
̃ = =

(58)

One obtains

r T T( , , , , )cθ μ θ ψ̇ = −Δ ̃ ̃ Σ̃ (59)

where the dot on the left-hand side now denotes derivation
with respect to t.̃ In Δμ̃ (see eq 56), μ̃f,red is one of the three
alternative equations given on the left-hand column of the set
47 to 49. The medium being homogeneous, and density being
uniform, there is no space dependence, and eq 59 is to be
solved in time, with an initial condition giving θ at time zero.
The solution is sought for t ̃ > 0, and the coverage θ is in the
interval (0, 1).
Most of this article is concerned with the equilibrium and

the nonequilibrium solutions of eq 59, with the aim of
determining their general characteristics. One is thus led to
look at the solutions for different values of the parameters, so
that it is important to know the intervals in which, in particular,
tr, T̃Σc, and ψ are likely to be in actual applications. Concerning
T̃Σc and ψ, see Sections 5.1 and 5.3, respectively.
Reference time tr is unknown because of its dependence on

L, a constant that, by definition, must be determined by
dedicated experiments. As time-dependent results presented in
this article are expressed in terms of dimensionless time, it is
useful to have an order of magnitude for tr. According to an
article by Gleysteen and Deitz22 published in 1945 on the
sorption of nitrogen on carbon adsorbents, steady state is
attained in about 20 min, meaning that sorption does not

Figure 16. ψ vs T, from the sources indicated by the numbers in
parentheses. (1) are from Dolgonosov;20 (2) from Ross and Olivier,14

where P-33 refers to graphitized carbon and BN to boron nitride; (3)
from Saha et al.;21 and (4) is eq 8.
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measurably change for larger time values. More recently
(1984), in Ruthven’s book on adsorption,23,24 sorption
experiments of ethane on Linde 4A zeolite are cited, showing
about the same time to steady state. Somewhat more extensive
measurements were reported in 2010 by Battistutta et al.8 on
the sorption of methane, nitrogen, and carbon dioxide on dry
coal. These showed that, to measure an equilibrium isotherm,
the waiting time between pressure changes can vary between a
day and 10 days, depending on the gas adsorbed and on
temperature. It thus seems that values of tr should be expected
to be anything between a half hour and a week.

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: paul.papatzacos@uis.no.
ORCID
Paul Papatzacos: 0000-0002-5193-4597
Notes
The author declares no competing financial interest.

■ ACKNOWLEDGMENTS
The author thanks Professor Aksel Hiorth for a number of
clarifying discussions.

■ NOMENCLATURE

Latin Symbols
A, Aexp,i, coverage in SCF per ton, coverage of experimental
point i on a graph in SCF per ton. See Section 4; , function
of temperature and of molecular properties such as vibrational
frequencies. It has the dimension of area per mole. See eq 41;
a, b, van der Waals constants. See eq 29; cΣ, cf, number of
adsorbed molecules per unit area (see eq 26), number of
ambient molecules per unit volume (see eq 30); C, constant of
dimension SCF per ton. See eq 21; , in an adsorption
experiment, estimated time used to compress the ambient gas
from the lowest to the highest pressure, at a constant rate. See
eq 22; , set of constants determining the interaction between
adsorbate and adsorbent. See eq 53 and the statement
following it; Em, EM, functions of τ introduced to define the
vertical boundaries of the hysteresis loop. See eq 18; fΣ, f f,
fugacities of the adsorbate and of ambient fluid. See Section
5.2; fΣ̃, ff̃, dimensionless fugacities of the adsorbate and
ambient fluids. Defined in eq 44; ff̃

id 0, ff̃
id 1, dimensionless

fugacities of the ideal ambient fluid with zero volume particles
(superscript 0), or nonzero volume particles (superscript 1).
See eq 47 (right) and 48 (right); F, Helmholtz free energy. See
Section 5.2; KH, K̃H, dimensional and dimensionless Henry
constant of adsorption. See eq 52; L, phenomenological
constant. See eq 2; NΣ, Nf, number of adsorbed moles on Σ
(see eq 25), number of ambient moles in V (see eq 29); Pid 0,
Pid 1, P, ambient fluid pressure for ideal fluid with zero volume
molecules (superscript 0), with nonzero volume molecules
(superscript 1), and for a van der Waals fluid. See eq 29; Pc,
ambient fluid critical pressure. See eq 32 (left); Pexp,i, P̃exp,i,
pressure (PSI, dimensionless) of experimental point i. See
Figure 10; P̃id 0, P̃id 1, P̃, dimensionless versions of Pid 0, Pid 1, P.
See eq 33 (right); P̃0, dimensionless saturation pressure. See
Figure 14 (left); r, ratio of number of ambient molecules per
unit volume to its maximum value. See eqs 30 and 31; re,
equilibrium value of r, at a given ambient temperature and
pressure; rg, rl, r-values for the saturated gas and saturated
liquid, obtained through the Maxwell construction. See Figure

14; ri, r1, r2, r-values locating the center of the hysteresis loop,
its left- (subscript 1) and right-hand (subscript 2) vertical
boundaries. See eqs 10 and 17; rm, rM, r-values of the local
minimum or local maximum, of a van der Waals ambient fluid.
See Figure 14 (left); rϵ, rt, parameters characterizing a
compression-decompression cycle. See Figure 7; rexp,i, r-value
of experimental point number, i, such that P(rexp,i,Texp) = Pexp,i.
See Section 4 and Figure 10; rk̅, array of r-values. See Section 4,
following eq 22; R, gas constant; S, entropy. See Section 5.2; t,
t,̃ tr, time, dimensionless time, reference time. See eq 58; td̃,
cycle duration, in a compression−decompression cycle. See
Figure 7; tk̅, array of t-values. See Section 4, following eq 22; T,
T̃, dimensional, dimensionless temperature. See eq 33; Texp,
T̃exp, temperature at which a sorption measurement is carried
out, its dimensionless counterpart; TΣc, Tfc, T̃Σc, T̃fc, critical
temperature of adsorbate fluid, of ambient fluid, and their
dimensionless counterparts; v, rate of compression. See eq 22;
V, volume variable in a three dimensional equation of state. See
eq 29; , function of temperature and of molecular properties
such as vibrational frequencies. It has the dimension of volume
per mole. See eq 39

Greek Symbols
α, β, van der Waals constants. See eq 25; Δμ, Δμ̃, see eqs 1, 2,
59, and 56; θ, ratio of number of adsorbed molecules per unit
area to its maximum value (coverage). See eq 27; θe,
equilibrium value of θ, at a given ambient temperature and
pressure; θm, θM, θ-values of the local minimum, or local
maximum, of a van der Waals adsorbed fluid. See Figure 14
(right), and eq 37. θM and θm are also referred to as the left and
right spinodal coverages; θea, θed, values of equilibrium
coverage for a subcritical adsorbate. Subscript ea indicates
the adsorption value, subscript ed indicates the desorption
value. See eqs 11 and 12; μΣ, μf, chemical potential of the
adsorbate and of ambient fluid. See Section 5.2; μf,red

id 0 , μf,red
id 1 ,

μf,red, reduced chemical potential of the ideal ambient fluid with
zero volume molecules (superscript 0), with nonzero volume
molecules (superscript 1), and for a van der Waals fluid. See
the three equations following eq 40; μΣ,red, reduced chemical
potential of the adsorbate. See eq 42; μ̃Σ,red, dimensionless
reduced chemical potential of the adsorbate. See eq 46 (left);
μ̃f,red
id 0 , μ̃f,red

id 1 , μ̃f,red, dimensionless reduced chemical potential of
the ambient fluid for three cases: ideal fluid with zero volume
molecules (superscript id 0), ideal fluid with nonzero volume
molecules (superscript id 1), and van der Waals. See eqs 47−
49 (left); Π, Π̃, spreading pressure of the adsorbate,
dimensional (eq 25) and dimensionless (eq 35); Π̃0,
dimensionless saturation spreading pressure. See Figure 14
(right); Πc, adsorbate critical pressure. See eq 28 (left); Σ, area
variable in a two-dimensional equation of state. See eq 25; τ,
see eq 38; ψ, function of temperature and of the set . Related
to the Henry constant by eq 57; Ψu, Ψm, ΨM, functions of T̃
and T̃Σc, defined by eqs 8, 13, and 14. See also Figures 3 and 5

■ ADDITIONAL NOTES
aMAPLE’s implicitplot has been used.
bMaple has been used, and the method of solution is rfk45,
described as “Fehlberg fourth−fifth order Runge−Kutta”.
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