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5 ABSTRACT: A model for monolayer physisorption of a one-
6 component gas on the pore surface of a homogeneous macroporous
7 or mesoporous porous medium is presented. It originates from an
8 averaging over many pores of a macroporous medium filled with a one-
9 component fluid. The resulting model does not assume anything about
10 pore shape, but assumes that the pores are so large that capillary
11 condensation does not occur. Mathematically, the model gives coverage
12 as the solution of an ordinary, first-order, differential equation, where the
13 time derivative of coverage is proportional to the difference between the chemical potential of the adsorbate and the chemical
14 potential of the ambient gas. Coverage is determined by the ambient gas density, with temperature, adsorbate critical
15 temperature, and the Henry adsorption constant as parameters. The rest of this abstract describes what is deduced from the
16 equations of the model. Adsorbate phase transitions are built into the model by the use of van der Waals equations of state.
17 Equilibrium isotherms are derived from the equality of the chemical potentials. The differential equation for coverage makes it
18 possible to determine the mathematical stability of the equilibrium isotherms, and a number of properties of the isotherms are
19 derived, the most important being as follows: (i) an adsorbate phase transition is always accompanied by a well-defined
20 hysteresis loop, although “loop” is somewhat misleading as its vertical boundaries do not consist of equilibrium states; (ii) the
21 vertical boundaries are exactly located; (iii) the upper and lower boundaries consist of states that are mathematically stable,
22 while being either physically stable or metastable, and if physical metastability is the case, then the actual state of the adsorbate
23 (mono- or bi-phasic) will not be visible on the equilibrium isotherm. The shapes of the equilibrium isotherms are largely
24 determined by the value of the Henry constant, whether the isotherms are subcritical or supercritical. Expressions for the
25 location of an equilibrium isotherm’s region of fastest variation and for the locations of the vertical boundaries of its hysteresis
26 loop are found that also show the importance of Henry’s constant. Dynamical, that is, time-dependent isotherms are presented
27 for the case describing the variation of coverage resulting from forcing the ambient gas to undergo a compression−
28 decompression loop. Two subcases are considered: the subcritical and the supercritical adsorbate. It is shown that coverage in
29 terms of ambient pressure exhibits closed loops, even in supercritical isotherms. However, supercritical loops shrink when the
30 cycle time increases, reminiscent of rate-dependent hysteresis observed in piezoelectricity. The model is used to interpret two
31 experiments on the sorption of CO2 and CH4 on coal that showed hysteresis loops in isotherms of supercritical adsorbates and
32 that were originally interpreted as leading to different Henry constants for adsorption and for desorption. The interpretation set
33 forth here uses the inherent dynamics of the model and looks at the loop as just one isotherm evolving in time, thus leading to a
34 unique Henry constant.

1. INTRODUCTION
35 In experiments on gas physisorption, one often observes a
36 discontinuity in the equilibrium isotherms and a hysteresis
37 loop. See Morishige and Shikimi1 and references given there.
38 The step and the loop occur at temperatures well below the
39 critical temperature of the ambient gas, and at pressures well
40 below its saturation pressure.
41 It has been shown by Hill, in an article published in 1947,2

42 that hysteresis can be explained by assuming the existence of
43 metastable adsorbed states in monolayer physisorption, no
44 assumptions about the pores being necessary. Hill’s result is
45 generalized in the present article, where monolayer phys-
46 isorption is used to the exclusion of other processes. It must be
47 mentioned that monolayer physisorption in a mesoporous or
48 macroporous medium is, in a certain sense, in a class by itself,
49 possibly together with multilayer physisorption if the number
50 of layers is on the order of two or three. It has indeed been

51shown3 that the size of the pore surface per unit volume of a
52mesoporous or macroporous medium is such that the amount
53adsorbed by monolayer physisorption is negligibly small when
54compared to the amount that flows in the pores. On the other
55hand, physisorption by capillary condensation and/or chem-
56isorption deal with adsorbed amounts that differ by orders of
57magnitude from those occurring in monolayer physisorption
58and are essential to describe such processes as industrial
59hydrocarbon recovery. Capillary condensation and chemisorp-
60tion are not considered in any detail in this article.
61The generalization of Hill’s result is done in the framework
62of a sorption model, called M′ for convenience here. M′, a
63special case of a model M to be described presently, expresses
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64 the rate of change of coverage in terms of the coverage itself, of
65 the ambient gas density, of temperature, of the critical
66 temperatures of adsorbate and ambient gas, and of Henry’s
67 adsorption constant. This is not the first appearance of an
68 equation for the rate of change of coverage (see Alfe ́ and
69 Gillan4), but it is, to the author’s knowledge, the first time such
70 an equation leads to an understanding of hysteresis loops in
71 adsorption, and to a reinterpretation of experimental results.
72 The three paragraphs below are short presentations of results
73 that are described in more detail in Sections 2, 3, and 4.
74 The first result concerns the placement of the vertical
75 boundaries of the hysteresis loop (Section 2.5). Ball and
76 Evans,5 in their article on the mechanism for hysteresis, noted
77 that the existence of physically metastable states will bring
78 about a transition to a physically stable state at some ambient
79 pressure and thus produce a vertical boundary for the
80 hysteresis loop at that pressure in adsorption as well as in
81 desorption. They also remarked that determining the transition
82 pressure is beyond the scope of an equilibrium theory, given
83 that there are infinitely many physically metastable states. Now
84 M′ describes the evolution of isotherms with time, and it also
85 determines the equilibrium isotherms. This implies that the
86 mathematical stability of any point on an equilibrium isotherm
87 can be found, and it turns out that physically metastable states
88 are mathematically stable, except for just two such points, one
89 for adsorption and one for desorption: these are mathemati-
90 cally unstable and determine the transition pressures.
91 The second result concerns the new possibility implied by
92 the ability of M′ to describe time-dependent isotherms. This
93 has a direct relevance to measurements where adsorption and
94 desorption follow different paths that join at a low and a high
95 coverage, thus exhibiting a loop7,6 with no vertical boundaries.
96 The explanation given by M′ is the one given by other
97 workers: a genuine hysteresis loop must have two vertical
98 boundaries, so their absence is explained by appealing to an
99 insufficient equilibration time6 or waiting time.8 There is,
100 however, a new possibility implied by the ability of M′ to
101 describe time-dependent isotherms: that of considering the
102 noncoinciding adsorption and desorption paths as being just
103 one isotherm evolving in time under the application of a
104 pressure-cycle consisting of compression followed by decom-
105 pression of the ambient gas. The isotherms resulting from such
106 a cycle are shown in Section 3, for the two cases of a
107 supercritical and a subcritical isotherm.
108 The third result concerns the interpretation of experiments
109 on sorption of methane (important as a source of energy) and
110 on sorption of carbon dioxide (an important product to
111 sequestrate). These two cases of sorption are exceptional in
112 that they cannot be described in the framework of capillary
113 condensation: the critical temperatures of the substances are
114 low compared to storage temperatures, so that capillary
115 condensation cannot occur. Wang et al.9 enumerate, and give
116 references for, the hypotheses that have been made to explain
117 the mechanism of methane and carbon dioxide sorption
118 hysteresis: residual moisture in coal samples, surface geometry
119 heterogeneity, chemical interaction, structural deformation,
120 experimental inaccuracies, and insufficient waiting time. They
121 conclude that the mechanism remains an open question. The
122 most straightforward way to describe CH4 and CO2 sorption
123 has been to use the Langmuir model: see Jessen et al.7 See also
124 Wang et al.9 who look at two additional isotherms, one from
125 the Dubinin−Radushkevich model and one from the dual
126 sorption model, the latter allowing the inclusion of the effect of

127coal swelling. Section 4 of the present article gives an
128alternative description, based on the second result above,
129that leads to a unique value for the Henry constant instead of
130the two obtained by fitting separate equilibrium isotherms, one
131for adsorption and another for desorption.7

132It is also worth mentioning that the mathematical expression
133of M′ is simple enough to allow approximate expressions for a
134number of useful quantities, such as the pressure at which the
135isotherm is steepest and the width of the hysteresis loop.
136A short description of model M′ and of the underlying
137model M, follows.
138M is a model for multiphase flow in a porous medium, based
139on the diffuse interface assumption.10 It is the result of an
140averaging over many pores of the equations describing
141Navier−Stokes flow in the pores. The averaging leads to a
142new set of equations involving averaged quantities such as
143density, velocity components, temperature, internal energy,
144and entropy. M, and thereby M′, are based on the following
145assumptions: (a1) the fluid-containing pores are connected;
146(a2) the smallest pore-throat diameter is large when compared
147to the average distance between fluid molecules, and also when
148compared to their mean free path; (a3) adsorption occurs by
149physisorption; (a4) adsorption is monolayer; (a5) the heat
150generally released by adsorption does not appreciably change
151the temperature; (a6) the averaged fluid quantities obey the
152same thermodynamical laws as the quantities of the original
153fluid and, in particular, the averaged fluid has a well-defined
154pressure obeying an equation of state that can be chosen
155among the known ones.
156M′ contains three additional assumptions: (a7) the averaged
157adsorbed fluid is assumed to have the thermodynamics of a
158two-dimensional fluid with, in particular, a spreading pressure
159(the negative of the surface tension)11 obeying a van der Waals
160equation of state; (a8) the ambient fluid is monophasic; (a9)
161any externally applied changes, such as compressions or
162decompressions, are done so slowly that the ambient fluid
163velocity is negligibly small.
164The consequences of these assumptions are discussed
165presently, after the introduction of the basic equations of M′.
166These are obtained directly from M (see eq 17 in
167Papatzacos10), with a slight modification in notation

c μ̇ = −ΔΣ 168(1)

L( )fμ μ μΔ = −Σ 169(2)

170The dot in the first equation denotes partial differentiation
171with respect to time. A space dependence can also be included
172for cΣ, but is ignored here, as it is shown below that the
173assumptions of model M′ make it redundant. At the level of
174model M, μf is the chemical potential of the ambient fluid,
175modified by the addition of two terms: a term proportional to
176the Laplacian of the ambient fluid density and a term
177proportional to the squared modulus of the ambient fluid
178velocity. The Laplacian originates in the diffuse interface
179framework, where large gradients of density exist in the
180interfaces between phases, if two phases coexist. The squared
181velocity accounts for the kinetic energy exchanged between
182ambient and adsorbed fluids. The two equations above are the
183core of model M′. They lead, after some preliminaries
184presented as background material in Section 5, to a differential
185equation for the coverage, presented in Section 5.4.
186The consequences of assumptions (a1) to (a9) are as
187follows.
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188 As a result of the averaging process, the individual
189 characteristics of the pores are lost, leaving only two
190 parameters to characterize the medium as a whole, which are
191 porosity and pore surface per unit volume.10

192 Assumptions (a1), (a2), and (a4) imply that adsorption
193 does not affect the basic description of the ambient fluid by the
194 equations of fluid mechanics expressing balance of mass,
195 momentum, energy, and entropy. They also imply that
196 adsorption induces negligible changes in the values of porosity
197 and pore surface per unit volume. In fact, assumption (a4)
198 implies, as stated above, that inside an arbitrary volume of
199 porous medium, the total mass adsorbed is negligibly small
200 when compared to the mass of fluid that can flow freely in the
201 pores.3 Assumption (a5) implies that the quantities character-
202 izing the ambient fluid, such as its density and temperature and
203 consequently its pressure and chemical potential, are not
204 modified by sorption. (On the other hand, the quantities
205 characterizing the adsorbed fluid are determined by the
206 ambient fluid.) Assumption (a7) implies that phase transitions
207 can occur in the adsorbate. Assumption (a8) implies that no
208 interfaces exist in the ambient fluid, so that the Laplacian of the
209 ambient density that modifies the chemical potential is
210 negligible. Assumption (a9) implies that the other term
211 modifying the chemical potential of the ambient fluid is
212 negligibly small. With these last two assumptions, μf is the
213 usual chemical potential of the ambient fluid. Another
214 consequence of (a8) and (a9) is that eqs 1 and 2 are space
215 independent.
216 It is here emphasized that, as already mentioned, isotherm
217 properties deduced in M′, like adsorbate phase transitions or
218 hysteresis loops, do not depend on assumptions about the
219 shape of the pores and, in particular, occur without the
220 occurrence of capillary condensation.
221 The thermodynamical description of the fluids is given as
222 background material in Section 5, where explicit expressions
223 for the pressure, spreading pressure, and chemical potentials
224 are given, and where Henry’s adsorption constant is
225 introduced. As already mentioned, the adsorbate is a van der
226 Waals fluid, whereas three alternatives are considered for the
227 ambient fluid: ideal with zero volume particles (called ideal
228 type 0), ideal with nonzero volume particles (called ideal type
229 1), and van der Waals. The Δμ of eqs 1 and 2 above is then
230 derived as a function of coverage, ambient density, and some
231 parameters that include temperature and Henry’s constant.
232 The concepts of physical stability, metastability, and instability,
233 known to occur in connection with the van der Waals equation
234 of state, are illustrated in figures in the same section, for easy
235 reference in the rest of the article.
236 The derivation of the basic differential equation defining M′
237 is given as background material in Section 5.4. Other basic
238 properties of M′, specifically the definitions of equilibrium
239 isotherms and of mathematical stability are given in Section 2.

2. RESULT AND DISCUSSION 1: THEORY OF
240 EQUILIBRIUM ISOTHERMS
241 Equilibrium isotherms are defined in Section 2.1. Mathematical
242 stability is defined in Section 2.2, and is followed by a section
243 on equilibrium isotherms given by analytical expressions, then
244 by two sections on equilibrium isotherms given by numerical
245 solutions.
246 2.1. Definition of an Equilibrium Isotherm. It is here
247 referred to Section 5.4, where the differential equation giving
248 the time rate of change of coverage is deduced, that is, eq 59.

249The equilibrium isotherms follow from this equation: they are
250the solutions that have zero rate of change. There are
251additional requirements concerning stability and unicity: see
252the last paragraph but one of this section.
253An equilibrium solution is defined as follows. Given T̃, T̃Σc,
254and ψ, an equilibrium solution of eq 59 is a set of points (re,
255θe) in a Cartesian plane, satisfying 0 < re ≤ rg, 0 < θe < 1, and

r T T( , , , , ) 0e e cμ θ ψΔ ̃ ̃ ̃ =Σ 256(3)

257An equivalent form of eq 3 is found as follows. The equation
258is first rewritten as μ̃Σ,red − T̃ ln K̃H = μ̃f,red, by using eqs 56 and
25957. Dividing both sides by T̃, exponentiating, and referring to
260eq 45, one finds

f T K f r T( , , ) ( , )H fθ τ̃ ̃ = ̃ ̃ ̃
Σ 261(4)

262This equation, with another definition for the proportion-
263ality constant, is identical with eq 4 in the article by Hoory and
264Prausnitz.12

265Equations 3 and/or 4 give equilibrium isotherms provided
266that (i) points that represent mathematically and/or physically
267unstable states are discarded, and that (ii) non-unicity of θe for
268any re agrees with observations of hysteresis.
269Physical stability is considered in Section 5.1; mathematical
270stability is defined in Section 2.2.
2712.2. Mathematical Stability of Equilibrium Isotherms.
272Mathematical stability, or m-stability, of equilibrium isotherms,
273is defined as follows.13

274For any given set {re, T̃, T̃Σc, ψ}, a solution θe of eq 3 or 4 is
275said to be (asymptotically) m-stable if there is a neighborhood
276of θe such that any θ inside this neighborhood approaches θe as
277time increases.
278It follows from the definition that a very simple criterion for
279deciding whether any point on an equilibrium isotherm is m-
280stable is as follows:
281θe is an m-stable equilibrium solution if and only if Δμ̃
282changes from negative to positive values when θ − θe does so.
283 f1Indeed, referring to Figure 1, and keeping eq 59 in mind,
284one sees that, if the condition is satisfied, then any perturbation

285of θe that takes place during time dt ̃ > 0, and that brings θ in
286the interval (θe, θe + a), gives rise to Δμ̃ > 0. It follows that dθ
287= −Δμ̃ dt ̃ < 0, so that θ is drawn back to θe. A similar
288reasoning can be made for a perturbation that brings θ to the
289left of θe, with the same conclusion that θ is drawn back to θe.
290Necessity is also easily proven.
2912.3. Analytical Equilibrium Isotherms and Their
292Stability. Analytical solutions of eq 4 are considered here.

Figure 1. Figure used in defining m-stability in Section 2.2. If Δμ̃ vs θ
behaves as shown in the vicinity of θe, then θe is m-stable.
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293 More precisely, one seeks to express θe as a known function of
294 re or vice versa. Obviously, this is only possible if one knows
295 how to invert either fΣ̃ or ff̃. No inverse of fΣ̃, given by eq 46
296 (right), is known. Inverting ff̃, however, may be possible as
297 shown below. There are three acceptable approximations for
298 the ambient fluid fugacity, and two of them are invertible: the
299 ones obtained by assuming that the ambient fluid is ideal,
300 either of type zero (zero volume particles) or of type 1
301 (nonzero volume particles). The relevant expressions for ff̃ are
302 given in eq 47 (right) and 48 (right). In fact, most analytical
303 isotherms are expressions giving pressure as a function of
304 coverage, see for example, Table I-1 in the book by Ross and
305 Olivier.14 This can easily be done in the present case by writing
306 each invertible fugacity in terms of the corresponding pressure.
307 Referring to the left and center equations of the set (36), it is
308 easily seen that
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309 Assuming that the ambient gas can be approximated by an
310 ideal gas of type 0, eq 4 gives the known expression
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312 Assuming that the ambient gas can be approximated by an
313 ideal gas of type 1, eq 4 gives
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314 This equation is of the type Z exp Z = g and, g being
315 positive, is equivalent to Z = Wp(g), where Wp is the principal
316 part of the Lambert W-function.15 One thus obtains
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317 (6)

318 To the author’s knowledge, this equation has not previously
319 appeared in the adsorption literature. A plot of θe versus P̃

id 0 is
320 usually quite close to a plot of θe versus P̃id 1, except for ψ-
321 values less than 1 and for θe-values close to 1.

322One now turns to the restrictions mentioned in Section 2.1,
323so as to establish whether the expressions above are acceptable.
324Plots of eq 6, say, show continuous curves, monotonic
325 f2increasing when T̃ > T̃Σc (Figure 2, left-hand plot), but with a
326region of three-valuedness when T̃ < T̃Σc (Figure 2, right
327plot).a

328The m-stability of the supercritical isotherm (left plot of
329Figure 2) is established as follows. Letting θ move on a vertical
330line, say upward from a low value, then θ − θe and Δμ̃ both go
331from negative to positive values when the isotherm is crossed.
332The necessary and sufficient condition stated in Section 2.2 is
333satisfied, so that the supercritical isotherm is m-stable. It is also
334physically stable (p-stable) because ambient gas and the
335adsorbate behave nearly ideally. One thus recovers the known
336result that the supercritical isotherms given by eq 5 are
337physically correct.
338Turning to the subcritical case (right plot of Figure 2), one
339sees that the isotherm has three parts: a central part, whose
340states are p-unstable (orange line), connecting a lower to an
341upper part. The lower is here called the adsorption branch, and
342the upper is called the desorption branch. Each of these
343branches contains a set of p-stable states (black line) and a set
344of p-metastable states (green line). The m-stabilities of the
345three parts are established by the same argument as used in the
346supercritical case. One easily finds that the central part (orange
347line) consists of m-unstable states, so that there is no doubt in
348discarding these points that already are p-unstable. However,
349all points on the adsorption and desorption branches are, with
350the exception of one point for each branch, m-stable, regardless
351of the quality of their physical stability: the whole set of p-
352stable points and almost the whole set of p-metastable points
353are m-stable. The exception is, for each branch, the p-
354metastable point having a vertical tangent, that is, the point on
355the isotherm where θ = θm (desorption branch) or θ = θM
356(adsorption branch): indeed, repeating the m-stability argu-
357ment, and letting θ move on a vertical tangent, then Δμ̃ does

358
not change sign when m

M
θ θ− does. The m-instability of these

359points is important in interpreting the region of two-valuedness
360as a hysteresis loop with the following boundaries: its upper
361and lower boundaries coincide with the desorption and
362adsorption branches over a pressure interval [P̃1, P̃2]. P̃2 is
363the abscissa of the point on the adsorption branch whose
364ordinate is the left spinodal coverage, θM, whereas P̃1 is the
365abscissa of the point on the desorption branch whose ordinate
366is the right spinodal coverage, θm. Note that the left and right
367boundaries of the hysteresis loop can only be the vertical lines

Figure 2. Plots of eq 6, for a supercritical (left) or subcritical (right) adsorbate for values of T̃, T̃Σc, and ψ, as indicated. The right plot uses the
notations of Figure 14 for the subscripted θ′s, as well as for the meanings of the colors. Concerning the vertical dashed lines in the right plot, see
Section 2.3.
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368 at P̃ = P̃1 and P̃ = P̃2 because (P̃1, θm) and (P̃2, θM) are the only
369 m-unstable points on the desorption and the adsorption
370 branches: the transition to a mathematically and physically
371 stable state can only take place from (P̃2, θM) during
372 adsorption, and from (P̃1, θm) during desorption. See Figure
373 2, right plot. Note also that the vertical boundaries of the
374 hysteresis loop are not places of equilibrium, as these are in
375 regions where Δμ̃ ≠ 0. They are drawn as dashed lines in
376 Figure 2 to emphasize this fact.
377 A further remark on the p-metastable states follows: by
378 definition, a p-metastable adsorbate state will, if perturbed,
379 transit to a p-stable state of lower energy. Referring to Figure
380 14 (right), such a transition brings the adsorbate from a point
381 on one of the green lines to the reconstructed dash-dotted line
382 at the same value of coverage. This implies that it is not
383 possible to say whether an equilibrium state represented by a
384 point situated on one of the green lines of Figure 2 (right plot)
385 is in a two-phase or in a one-phase adsorbate state: the two
386 states have the same coverage and also the same ambient
387 pressure. The equality of pressures is approximative and is due
388 to the assumptions that characterize M′, implying that changes
389 in the adsorbate are not “visible” in the ambient gas. As a
390 consequence, p-stable and p-metastable adsorbate states are
391 treated in the same way in Section 2.5 below.
392 Thus, for equilibrium isotherms that can be obtained from
393 analytical expressions, model M′ defines a subcritical
394 equilibrium isotherm plotted against pressure as follows: it
395 has an adsorption branch that spans all pressures up to a
396 pressure P̃2 at which the adsorbate is at its left spinodal
397 coverage, θM. It has a desorption branch that spans pressures
398 down to a pressure P̃1 at which the adsorbate is at its right
399 spinodal coverage θm. P̃1 < P̃2, hence, the interval (P̃1, P̃2)
400 defines the pressure range of the hysteresis loop. The vertical
401 boundaries of the loop at pressures P̃1 and P̃2 do not consist of
402 equilibrium points.
403 Sections 2.4 and 2.5 look at supercritical and at subcritical
404 isotherms in cases where no analytical solution is available, that
405 is, when μ̃f,red is given by eq 49 (left).
406 2.4. Numerical Equilibrium Isotherms for Super-
407 critical Adsorbates and Their Stability. Model M′ is
408 now considered for the general case of numerically solving eq 3
409 for T̃ ≥ T̃Σc.
410 According to eq 56, the Δμ̃ versus θ curve, at given re, T̃,
411 T̃Σc, and ψ, is the μ̃Σ,red versus θ curve with a vertical translation
412 induced by μ̃f,red(re,T̃) and by ψ(T̃). The μ̃Σ,red versus θ curve
413 has the shape of the monotonically increasing curve shown in
414 Figure 15 (right). One can immediately conclude that there
415 will always be a solution (as the curve spans the vertical axis
416 from −∞ to +∞), and that it is unique. Using mathematical
417 stability, as defined in Section 2.2, together with the plots of
418 Δμ̃ versus θ, one concludes that θe(re) is m-stable in addition
419 to being p-stable. For later reference, this equilibrium solution
420 is written as

r T T

T T

( , , , ) unique solution of eq 3,

( )
e e c

c

θ ψ̃ ̃ =
̃ ≥ ̃

Σ

Σ421 (7)

422 Its general shape is given in Figure 2 (left).
423 The interpretation of eq 3 as the intersection with the θ-axis
424 of a vertically translated μ̃Σ,red versus θ curve has some useful
425 consequences concerning the general shape of an equilibrium
426 supercritical isotherm, especially the location of its point of
427 inflection.

428Knowing the set {T̃, T̃Σc, ψ}, it is possible to roughly predict
429the position of the region where the isotherm is steepest,
430assuming that the parameters in the set above are such that the
431isotherm flattens out. This follows from the observation that
432the μ̃Σ,red versus θ curve can be translated upward by an
433arbitrary amount by letting re go arbitrarily close to 0. Letting
434re increase from such a value, the μ̃Σ,red versus θ curve is
435translated downward, and its intersection with the θ axis gives
436values of θe that increase, the fastest increase taking place when
437the inflection point of the μ̃Σ,red versus θ curve is close to the θ-
438axis. This can only happen if ψ (the other quantity that is
439subtracted from μ̃Σ,red in the expression of Δμ̃) is large enough.
440It is then useful to define a function Ψu(T̃,T̃Σc) as follows: if ψ
441= Ψu, then the inflection point of the Δμ̃ versus θ curve, at
442given T̃, T̃Σc, and at r = rg(T̃), is on the θ-axis. The inflection
443point, easily found by equating to zero the second derivative of
444μ̃Σ,red with respect to θ, occurs at θ = 1/3, independently of T̃
445and of T̃Σc, so that

T T T T r T T( , ) (1/3, , ) ( ( ), )u c ,red c f,red gμ μΨ ̃ ̃ = ̃ ̃ ̃ − ̃ ̃ ̃Σ Σ Σ 446(8)

447See Figure 4 for the general behavior of Ψu. Note that Ψu
448does not depend on the values in the set .
449 f3Figure 3, shows how the shape of the equilibrium isotherm
450changes for values of ψ in the neighborhood of Ψu. Note that
451the tendency toward flattening occurs when ψ > Ψu.

452On an equilibrium isotherm plotted as θe versus re, one can
453find the approximate position of its point of inflection. It is the
454value of re, here denoted ri, that corresponds to θe = 1/3.
455According to eq 4, it is given by

f r T f T( , ) e (1/3, , )i
T

f
/ τ̃ ̃ = ̃ ̃ψ− ̃

Σ 456(9)

457One can obtain a good approximation for this ri if one can
458assume that it is sufficiently close to 0 that ff̃ ≈ T̃ri (see eq 47
459(right)). Then, using eq 46 (right), one gets

r
K

e
2

e
e

2i
T

1/2 9/4
/

1/2 9/4

H
= = ̃

τ
ψ

τ−
− ̃

−

460(10)

461In Figure 3, the values of T̃ri/P̃0 given by this expression for
462ψ = 1.5Ψu and 2.0Ψu are indicated by the vertical segments.

Figure 3. Equilibrium supercritical isotherms, θe vs P̃/P̃0, where T̃Σc =
0.5 and T̃ = 0.6. Curves originate from eq 7. The value of ψ is
indicated for each curve (Ψu = 1.2188). The horizontal dashed line is
at θe = 1/3. Concerning the vertical segments, see the end of Section
2.4.
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463 2.5. Numerical Equilibrium Isotherms for Subcritical
464 Adsorbates and Their Stability. Returning to the
465 interpretation of eq 3 as the intersection with the θ-axis of a
466 vertically translated μ̃Σ,red versus θ curve, one now assumes T̃ <
467 T̃Σc, so that the μ̃Σ,red versus θ curve has a local maximum and a
468 local minimum as shown in Figure 15 (right). There can now
469 be one, two, or three values of θe, depending on the position of
470 the Δμ̃ versus θ curve in relation to the θ-axis. This position
471 depends, in turn, on the values of μ̃f,red and ψ.
472 The use of mathematical stability in this case leads to the
473 following. If there is just one value of θe, then it occurs as the
474 intersection with the θ-axis of that part of the translated μ̃Σ,red
475 versus θ curve that is either to the left of the local maximum or
476 to the right of the local minimum and is therefore m-stable. If
477 there are two distinct values of θe, then one of them is m-
478 stable, the other (being the abscissa of the local maximum or
479 minimum) is m-unstable and discarded. If there are three
480 values of θe, then: (i) the smallest and largest are m-stable,
481 whereas the middle one is m-unstable and discarded; (ii) the
482 smallest is in the interval (0, θM), and the largest is in the
483 interval (θm, 1).
484 For later reference, the m-stable equilibrium solutions are
485 written

r T T

T T

( , , , ) solution of eq 3 in (0, ),

( )
ea e c M

c

θ ψ θ̃ ̃ =
̃ < ̃

Σ

Σ486 (11)

r T T

T T

( , , , ) solution of eq 3 in ( , 1),

( )
ed e c m

c

θ ψ θ̃ ̃ =
̃ < ̃

Σ

Σ487 (12)

488 Because θM < θm, there are two separate branches as in
489 Section 2.3, an adsorption branch, θea, and a desorption
490 branch, θed, creating a double-valuedness for certain pressures.
491 As in the right plot of Figure 2, this is interpreted to mean that
492 there is a hysteresis loop and a phase transition for the
493 adsorbate.
494 The sizes of ψ and of rg being important, one is led to define
495 the following two functions of T̃ and T̃Σc

T T T T r T( , ) ( , , ) ( , )m c ,red m c f,red gμ θ μΨ ̃ ̃ = ̃ ̃ ̃ − ̃ ̃Σ Σ Σ496 (13)

T T T T r T( , ) ( , , ) ( , )M c ,red M c f,red gμ θ μΨ ̃ ̃ = ̃ ̃ ̃ − ̃ ̃Σ Σ Σ497 (14)

498 where θm and θM are as defined in Figures 14 and 15, and by eq
499 37. It is easily seen that Ψm < ΨM. Both functions depend on T̃

f4 500 and T̃Σc and not on the set . Figure 4 shows the behavior of
501 Ψm, ΨM, and Ψu versus T̃ for T̃Σc = 0.5.
502 It is now clear that the shape of an isotherm critically
503 depends on the value of ψ. To make a more detailed
504 description, plots of Δμ̃(θ,r,T̃,T̃Σc,ψ) versus θ are shown in the

f5 505 third row of Figure 5, where the parameters are chosen as
506 follows: T̃ = 0.4, T̃Σc = 0.5; r is given its maximum value, rg(T̃),
507 consistent with the assumption that the ambient fluid is a gas;
508 finally, ψ < Ψm (left-hand plot), Ψm < ψ < ΨM (center plot),
509 and ψ > ΨM (right-hand plot). Obviously, the value of ψ
510 determines the position of the curve relative to the θ-axis, given
511 that r = rg.
512 One can now draw θe versus re for the three ψ-cases given
513 above by gradually reducing re from rg to 0 and getting the
514 corresponding value(s) of θe. Graphically, this means trans-
515 lating the curves shown in the third row vertically upward, and
516 noting the values of θe at which the black lines cross the θ-axis:
517 the intersection of the black line to the left gives θea, whereas

518the black line to the right gives θed. Numerically, by using eqs
51911 and 12. Functions θea and θed plotted against re or,
520equivalently against the pressure, are shown as solid lines in the
521fourth row of Figure 5. It is graphically obvious that θed does
522not exist for the case 0 < ψ < Ψm, and that both θea and θed
523exist for larger ψ-values, albeit for a limited range for r or P̃
524values. The dotted lines that connect the desorption and the
525adsorption branches are the isotherms given by eq 6. See, for
526comparison, the right plot in Figure 2, and note, in particular
527that P̃(r1,T̃) = P̃1 and that P̃(r2,T̃) = P̃2.
528One sees that the adsorption branches, shown in the fourth
529row, only reach the value r = r2 < rg, if ψ is large enough that
530the local maximum of the Δμ̃ versus θ curve is below the θ-axis
531when r = rg, so that lifting the curve by reducing r brings the
532local maximum on the θ-axis when r = r2: see the third column
533of the fourth row. Note also that, when this occurs, the
534adsorption branch stops being defined and that it seems to
535have a vertical tangent at r = r2. Similar statements hold for the
536desorption branch.
537The statements that the adsorption branch stops at r2,
538whereas the desorption branch stops at r1, both with vertical
539tangents, are correct because an equilibrium isotherm is a curve
540satisfying μ̃Σ,red(θe,T̃,T̃Σc) − μ̃f,red(re,T̃) − ψ = 0, whose
541tangents are given by

r

rd
d

/

/
e

e

f,red e

,red e

θ μ

μ θ
=

∂ ̃ ∂

∂ ̃ ∂Σ

542Thus, the local extrema of the μ̃Σ,red versus θ curve produce
543vertical tangents on the isotherms, and there is agreement with
544the case of the analytical equilibrium isotherms, Section 2.3.
545The agreement goes, in fact, deeper because it is possible to
546repeat the stability analysis of Section 2.3 for the isotherms,
547and also for the points with vertical tangents, with the same
548conclusions.
549It is now possible to interpret the multivaluedness in the
550equilibrium isotherms, by introducing a hysteresis loop.
551Referring first to the plots of the third column, fourth and
552fifth rows of Figure 5, one interprets the two-valuedness of
553coverage as in Section 2.3: there is an adsorption curve
554abcdβα, and a desorption curve αβγδba. As pointed out in

Figure 4. Special ψ′s versus dimensionless temperature, T̃. The upper
thick line is ΨM defined by eq 14, the lower thick line is Ψm defined by
eq 13, and the thin line is Ψu, defined by eq 8. The first two are
defined for 0 < T̃ < T̃Σc, whereas the last is defined for T̃ > 0. All
curves are drawn with T̃Σc = 0.5.
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555 Section 2.3, no solution of eq 11 or of eq 12 will be situated on
556 one of the vertical boundaries of the hysteresis loop bcdβγδ.
557 The ambient densities r1 and r2, identifying the left and right
558 boundaries of the hysteresis loop (see the fourth row in Figure
559 5) are functions of T̃, T̃Σc, and ψ, easily calculable by the
560 following expressions

r x r x T T(0, ) such that ( , , , , ) 0,

( )

1 g m c

m

θ ψ

ψ

= ∈ Δμ ̃ ̃ =

> Ψ

Σ

561 (15)

r x r x T T(0, ) such that ( , , , , ) 0,

( )

2 g M c

M

θ ψ

ψ

= ∈ Δμ ̃ ̃ =

> Ψ

Σ

562 (16)

563Turning now to the plots of the second column, fourth and
564fifth rows of Figure 5, it is seen that the upper solid line of the
565plot in the fourth row must be discarded as a possible
566equilibrium isotherm, at least if one assumes that desorption
567occurs after adsorption, because adsorption stops before the
568mathematically unstable point (where θ = θM) is reached, and
569the adsorbate has not transited to the desorption branch.
570Adsorption occurs along abc, stops at c because of the P̃ < P̃0
571condition, and then desorption follows the adsorption branch
572but in the reverse direction, that is, along cba.
573An important conclusion follows: there are two main classes
574for the values of ψ: the class ψ ≤ ΨM in which the isotherms
575show low coverage and are structureless (fifth row, left-hand
576and center plots in Figure 5) and the class ψ > ΨM in which the

Figure 5. Illustrating the numerical calculation of equilibrium isotherms for subcritical temperatures. All plots are done with T̃ = 0.4 and T̃Σc = 0.5.
The values of ψ are, column-wise: ψ < Ψm (left), Ψm < ψ < ΨM (center), and ψ > ΨM (right). For the plots of the third row, it is reminded that

T T r T T( , , ) ( , ) ( , ),red c f,redμ μ θ μ ψΔ ̃ = ̃ ̃ ̃ − ̃ ̃ − ̃
Σ Σ . See text in Section 2.5, after eq 14.
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577 isotherms show an adsorbate phase transition and a hysteresis
578 loop (fifth row, right-hand plot).
579 When ψ > ΨM, it is of some interest to predict the
580 approximate pressure of the center of the loop, and also the
581 pressures of its left and right vertical boundaries. The pressure
582 in the approximate middle of the loop is P̃(ri,T̃) where ri is the
583 previously found density at which the ambient chemical
584 potential has an inflection point, see eq 10. The pressures
585 approximating the left and right vertical boundaries are P̃(r1,T̃)
586 and P̃(r2,T̃) where approximate expressions can be found for r1
587 and r2 in a manner similar to the one that led to eq 10.
588 Equations 15, and 16 are equivalent to

f T K f r T

f T K f r T

( , , ) ( , ),

( , , ) ( , )

m H f 1

M H f 2

θ τ

θ τ

̃ ̃ = ̃ ̃ ̃

̃ ̃ = ̃ ̃ ̃
Σ

Σ

589 and assuming that r1 and r2 are small, one finds
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593 (EM being obtained from above by substituting M to m) and
594 where θm and θM are the functions of τ given by eq 37.
595 In the same approximation for which the above expressions
596 are valid (low values of r), one can write the width of the
597 hysteresis loop, in units of pressure, as w = 8PcT̃(r2 − r1) (see
598 eq 33, right), that is

w P T E E

P T E E
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8 ( ) ( ) e

8 ( ) ( )

T
c M m

/

c M m

H

τ τ
τ τ

= ̃[ − ]

=
̃[ − ]

̃

ψ− ̃

599 (19)

f6 600 EM − Em versus τ is shown in Figure 6. The three pressures
601 P̃(ri,T̃), P̃(r1,T̃), and P̃(r2,T̃) are indicated by vertical lines on
602 the plot of the fifth row and third column in Figure 5.

3. RESULT AND DISCUSSION 2: THEORY OF
603TIME-DEPENDENT ISOTHERMS
604Time-dependent solutions of eq 59 are now considered, that
605simulate the thought experiment described in the next
606paragraph below, leading to a description of dynamical
607isotherms, and to their behavior in relation to equilibrium
608isotherms and to hysteresis loops. Two subcases are
609considered: the supercritical and the subcritical adsorbate. It
610is believed that the actual values of T̃ and T̃Σc are of secondary
611importance as compared to their relative sizes. T̃Σc = 0.5 has
612been used repeatedly above, and is also used in what follows,
613whereas T̃ = 0.6 and T̃ = 0.4 are used for the two cases.
614The thought-experiment considered is as follows. An
615amount of mesoporous or macroporous medium is placed in
616a container filled with a one-component gas at low pressure P
617and at uniform constant temperature T, which is less that the
618critical temperature. After the gas in the pores has settled into a
619state of zero velocity and uniform pressure Pi, which is less
620than the saturation pressure P0, the pressure in the gas is slowly
621increased to a pressure Pf ≤ P0, then slowly decreased back to
622Pi. Recordings of the amounts adsorbed, and of the
623corresponding ambient densities or pressures are assumed to
624occur continuously. The duration of the cycle Pi → Pf → Pi is
625assumed to be large enough for the ambient density to remain
626nearly uniform, and for the ambient velocity to be nearly zero,
627in the macroporous medium at all times. (See the description
628of model M′ in the Introduction.)
629The cycle of applied pressure forces the ambient density to
630follow a similar cycle. In M′, r(t)̃ is needed as extra input to
631solve eq 59. Mathematically, one can introduce a function P̃(t)̃
632and find the resulting r(t)̃ by solving the equation of state. A
633simplification is described in what follows, that avoids time-
634consuming calculations by starting directly with a function r(t)̃
635that goes through a cycle, starting from a low-value rϵ,
636increasing to a high-value rt ≤ rg, then decreasing back to rϵ.
637 f7Such a function is shown in Figure 7, where the increasing and

638decreasing parts are linear. The minimum rϵ is introduced so as
639to avoid the singularity of the chemical potential at r = 0, and a
640value rϵ = rt/10

3 is in general sufficient. The figure defines
r t( ; )̃, where is the set of three parameters {rϵ, rt, td̃}. The

641time parameter, td̃ will be called the cycle duration.
642Equation 59 is solvedb with an initial condition,

r T(0) ( ; 0) exp( / )θ ψ= ̃ . Concerning the arguments of Δμ̃,
r t( ; )̃ is substituted to r and, as already mentioned, T̃Σc = 0.5

643and two values are considered for T̃, that is 0.4 and 0.6. The
644central purpose of the calculations is to determine the
645influence of the values of ψ and of the cycle duration td̃ on
646the shapes of the time-dependent isotherms.

Figure 6. For τ = T̃/T̃Σc < 1, the width of the hysteresis loop is
proportional to EM − Em (see eq 19), a function of τ that vanishes at τ
= 0 and τ = 1. Its maximum, 0.03281 is attained when τ = 0.5917.

Figure 7. Function r t( ; )̃, where is the set of three parameters {rϵ,
rt, td̃}. The function simulates a compression−decompression cycle.
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647 The supercritical case is examined first, and T̃ = 0.6 is used.
f8 648 Figure 8 shows the results obtained as three plots, with four

649 curves in each plot, and increasing values of ψ from left to right
650 (based on the case of the equilibrium isotherms of Section
651 2.4). In each plot, the thick-lined curve is the equilibrium
652 isotherm, and the other curves are dynamic isotherms with
653 increasing cycle times, td̃ as indicated in the caption. The
654 vertical thin lines are at the approximate positions of the
655 inflection points of the equilibrium isotherms, given by eq 10.
656 The most noticeable feature is exhibited by the dotted-line
657 isotherms (short cycle duration), where adsorption increases
658 long after the start of decompression. Also remarkable is the
659 tendency of the isotherms to exhibit loops that resemble
660 hysteresis loops found in magnetism, but that shrink when the
661 cycle duration increases. This type of hysteresis was apparently
662 first observed in piezoelectric measurements in 2003 and
663 denoted then as rate-dependent hysteresis.16

664 Both features above are experimentally observed in
665 adsorption, as shown in the review article by Wang et al.9

666 For further discussion, see Section 4.
667 The subcritical case is now examined, and T̃ = 0.4 is used,
668 with T̃Σc = 0.5.
669 According to the conclusion drawn in Section 2.5, one can
670 concentrate on cases where the equilibrium isotherms show
671 phase transition and hysteresis, that is, the cases ψ > ΨM. The

f9 672 three plots in Figure 9 show equilibrium isotherms, vertical

673hysteresis boundaries, and dynamic isotherms resulting from
674various cycle durations, as indicated in the caption.
675The dynamical isotherms in the left plot are calculated with
676the same cycle durations, td̃, used for the dynamical isotherms
677in Figure 8. They show, for small cycle durations, the same
678increase in adsorption even after the start of decompression.
679The center plot shows the tendency of the dynamical
680isotherms to approach the equilibrium isotherms when the
681cycle duration increases. In particular, the left and right
682boundaries of the hysteresis loop seem to attract the parts of
683the time-dependent isotherms that join low to high (or, for
684decompression, high to low) density adsorbate. However, the
685vertical hysteresis boundaries are not places of equilibrium, and
686the reason for the behavior of the time-dependent isotherms is
687that they are forced toward a vertical direction by being
688attracted to the parts of the upper and lower boundaries that
689rapidly curve from the near horizontal to the vertical.
690The right plot, with ψ = 5, simulates conditions of high
691adsorption (see Figure 16). The notable fact here is that the
692phase transition and accompanying hysteresis loop happen at
693very low pressures, the width of the loop also being quite small.
694The center and right plots show that the placement and width
695of the loop are well described by ri, r1, and r2, given by eqs 10
696and 17.

Figure 8. Isotherms for a supercritical adsorbate: T̃Σc = 0.5, T̃ = 0.6. The values of ψ are, from the left to the right plot, equal to Ψu = 1.22, 1.5Ψu =
1.83, and 2.0Ψu = 2.44. The thick solid line is the equilibrium isotherm in each plot. For all plots, the values of the loop duration td̃ are: 1 for the
dotted lines, 5 for the dashed lines, and 100 for the solid lines. The vertical thin lines are at P(ri,T̃).

Figure 9. Isotherms for a subcritical adsorbate. For all three plots, T̃Σc = 0.5, T̃ = 0.4, the thick solid lines are the equilibrium isotherms, and the
thick dashed lines are the hysteresis boundaries. Left plot: ψ = 1.1ΨM = 1.595; dynamic isotherms calculated with rϵ = 0.01rg, rt = rg, td̃ = 1 (thin
dotted), 5 (thin dashed), 100 (thin solid). Center plot: ψ = 1.1ΨM = 1.595; rϵ = 0.01rg, rt = rg, td̃ = 100 (thin dotted), 300 (thin dashed), 600 (thin
solid). Right plot: ψ = 5; dynamic isotherm calculated with rϵ = 0.75r1, rt = 1.25r2, td̃ = 600 (thin solid). In the center and right plots, the vertical
thin lines are placed at r = r1, ri, r2.
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4. RESULT AND DISCUSSION 3: REINTERPRETING
697 THE SORPTION OF CO2 AND CH4 ON COAL
698 A number of publications (Zhao et al.6 and refs 15−28 given
699 there) report experiments of methane and carbon dioxide
700 sorption, showing isotherms with hysteresis loops at temper-
701 atures where capillary condensation cannot explain the
702 hysteresis.6,9 In fact, these isotherms have loops that bear a
703 strong resemblance to the one presented in Section 3,
704 especially in Figure 8. One of these experiments is examined
705 below in the framework of model M′.
706 The experiment in question is the one reported by Jessen et
707 al.7 It is here interpreted in a way that differs from the one
708 given by the authors. Shortly stated, the authors fit one static
709 isotherm to the adsorption data and another to the desorption
710 data (both are Langmuir isotherms), thus obtaining two
711 separate values for the Henry adsorption constant, one for
712 adsorption and one for desorption. In model M′, however, it is
713 possible to fit just one time-dependent isotherm to the set of
714 data consisting of adsorption and desorption, and thus obtain a
715 unique Henry constant. More precisely, M′ has two internal
716 parameters, T̃Σc and ψ. However, fitting an isotherm to the data
717 requires, as shown below, the introduction of three additional
718 parameters. The least squares principle is applied, whereby the
719 best values of the parameters are the ones that minimize the
720 sum of the squared differences between the measured and
721 calculated values.
722 The raw data reported by Jessen et al.7 concerning the
723 adsorption−desorption at Texp = 295.15 K of CO2 by

f10 724 Wyoming coal, are shown plotted in Figure 10. Points are

725 numbered in increasing order for increasing (adsorption), and
726 then decreasing (desorption) coverage. The coordinates of
727 point i are denoted (Pexp,i, Aexp,i) where, for the adsorption
728 points, i = 1, ..., Na and for the desorption points, i = Na + 1, ...,
729 Na + Nd, and Na = Nd = 9. The amounts adsorbed are given in
730 SCF per ton of coal.
731 According to the NIST database, the critical temperature
732 and pressure for CO2 are

T P304.2 K, 7.38 10 Pa 0.1070 10

PSI
fc c

6 4= = × = ×

733(20)

734The dimensionless temperature attached to the raw data of
735Figure 10 is thus T̃exp = Texp/Tfc = 295.2/304.2 = 0.9704.
736The ambient CO2 is thus slightly subcritical. Assuming an
737adsorbate critical temperature of about a half or less of the
738above Tfc, one concludes that the adsorbate is supercritical.
739According to model M′, if hysteresis is observed, it must be of
740one of the types drawn with a thin dashed or thin solid line on
741the right-hand plot in Figure 8. In other words, it can only be a
742rate-dependent hysteretic isotherm with a large value of tr so
743that its shrinking to the unique curve representing the
744equilibrium isotherm is difficult to observe.
745The experiment7 is described as follows. Adsorption is
746driven by a series of compressions and relaxations, starting
747from an initial low pressure Pexp,1 and leading to a maximum
748pressure Pexp,9, which is less than saturation pressure (about
749950 PSI at 295.15 K); desorption then follows, as a series of
750decompressions and relaxations leading back to a low pressure
751approximately equal to Pexp,18. The compression and
752decompression times are not given explicitly, but it is indicated
753that relaxation times are of at least 24 h.
754In the framework of model M′, a simplified simulation of the
755experiment consists of solving eq 59, with a function r(t)̃ that
756is not the simple compression−decompression cycle of Figure
7577 but a cycle that includes a series of compressions and
758relaxations followed by a series of decompressions and
759 f11relaxations, as shown in Figure 11. One then obtains

760theoretical coverage θ, as a dimensionless number between 0
761and 1, in terms of dimensionless time t.̃ Parametric plots of θ
762versus r, with parameter t,̃ can then be obtained. Recordings of
763theoretical coverage and ambient density are made immedi-
764ately after compression (in adsorption) or decompression (in
765desorption), with the purpose of comparing them to the
766experimental points (Pexp,i, Aexp,i). Two subsidiary problems
767must obviously be solved: the first one is the same as
768mentioned in the third paragraph of Section 3, of going from
769pressure to density and back, and is solved by creating an array,
770rexp,i, (i = 1, ..., Na + Nd), with elements satisfying P̃(rexp,i,T̃exp) =

Figure 10. Adsorption (circles) and desorption (squares) of CO2 by
Wyoming coal at 295.15 K, as reported by Jessen et al.7 The
horizontal axis gives pressure in PSI. The vertical axis gives the
amounts adsorbed, A, in SCF per ton of coal. For the numbering of
the points, see the text.

Figure 11. Function r(t)̃ that simulates a series of compressions (the
nearly vertical segments) and relaxations (the horizontal segments)
followed by a series of decompressions and relaxations that lead to the
measurement of the amounts of CO2 adsorbed in the experiment by
Jessen et al.7 (their Figure 2). See the text in Section 4 for the
construction of this function.
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771 P̃exp,i. The second is writing the experimental adsorptions Aexp,i
772 as dimensionless numbers θexp,i between 0 and 1. To solve this
773 second problem, one introduces a constant C, defined as

A C i N N/ , ( 1, ..., )i iexp, exp, a dθ = = +
774 (21)

775 For the determination of C, see item 3 in the algorithm
776 below.
777 The simulation consists of several parts that are now
778 described in more detail.
779 The first part is the construction of the function r(t)̃ shown
780 in Figure 11. It is done as follows.
781 It is assumed that a recording of (Pexp,i, Aexp,i) for some value
782 of i is followed by a relaxation time that is large enough for the
783 adsorbate coverage to reach its equilibrium value. Relaxation is
784 followed by a compression (or a decompression) that brings
785 pressure Pexp,i to Pexp,i+1 (equivalently, rexp,i to rexp,i+1) and to the
786 recording of Aexp,i+1.
787 To minimize the number of parameters to be determined, it
788 is assumed that the same relaxation time is used for all i, so that
789 one relaxation time, , is introduced as a parameter to
790 determine. Note, incidentally, that in theory, it takes infinite
791 time to reach equilibrium so that must be such that
792 equilibrium is reached within a certain acceptable tolerance.
793 See item 4 in the algorithm below.
794 Another parameter to determine is introduced: a time
795 variable, , used to quantize the rate of compression/
796 decompression. Let be the estimated time that is necessary
797 to carry out the compression of the ambient gas from the
798 lowest pressure, Pexp,1, to the highest adsorption pressure, Pexp,9,
799 at a constant rate. Then, the rate of compression can be
800 obtained as

v r r( )/Nexp, exp,1a
= −

801 (22)

802 and the assumption is made that this rate is used to compress
803 or decompress from any density to the next.
804 An array ti̅ is then constructed, where the first value, t1̅, is
805 taken as the origin, assumed to be the time of the first data
806 registration (labeled 1 in Figure 10); t2̅ is then the time at the
807 end of the first relaxation. Then, tk̅, where k = 3, ..., 18 are the
808 successive times at the ends of the compressions and

809relaxations leading to the last adsorbed value (labeled 9 in
810Figure 10)
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811Times tk̅ where k runs from 11 to 14 are shown in Figure 11.
812Also shown is the time of the first desorption, t1̅9, at the end of
813the first decompression. The last registered desorption (labeled
81418 in Figure 10) is at t3̅6

t t r r v
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( 1, ..., ),
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N n N n
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a a a a
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̅ = ̅ + −
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̅ = ̅ + =

+ − + − + − +
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815It is then useful to construct an array r ̅

r r n N N

r r n N N

, ( 1, ..., ),

, ( 1, ..., )

n n

n n

2 1 a d

2 a d

̅ = = +

̅ = = +
−

816so that the function r(t)̃ of Figure 11 is the function that joins
817point (ti̅, ri̅) to point (ti̅+1, ri̅+1) by a straight line, for i = 1, ...,
8182Na + 2Nd − 1.
819According to the description given above of the simplified
820simulation of the experiment, the amounts adsorbed are
821recorded after compression (for adsorption) or after
822decompression (for desorption), that is, at times t2̅k−1 with k
823= 1, ..., Na + Nd.
824The second important part of the simulation is to find a
825solution of eq 59, where r(t)̃ is the function shown in Figure
82611. It is advantageous for accuracy to find the solution of eq 59
827as a succession of solutions, where the different rectilinear parts
828of function r(t)̃ are considered in turn. For each of the 2Na +
8292Nb − 1 rectilinear parts, one thus defines a time variable, τn
830and a linear density function, ρn of τn, as follows

Figure 12. Interpretation of the experimental data shown in Figure 10. In both plots, the vertical axis gives dimensionless coverage; the horizontal
axis gives ambient pressure in PSI. Left-hand plot: The smooth black curve is the theoretical equilibrium isotherm given by eq 7. The blue and red
sawtooth curves, joined as shown in the inset, constitute the solution of eqs 23 and 24, the two colors referring to the colors in Figure 11. Asterisks
and crosses indicate values to be compared to the measurements, see the right-hand plot. Right-hand plot: Circles and squares are the experimental
data of Figure 10 for adsorption (circles) and desorption (squares) of CO2 by Wyoming coal at 295.15 K.7 Blue asterisks (adsorption) and red
crosses (desorption) result from model calculations as indicated by the left-hand plot.
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831 For each rectilinear part, a coverage, θn(τn) is then defined
832 iteratively as the solution of eq 59, rewritten in terms of the
833 new quantities just introduced

t t T T
d
d

( ) ( , ( ), , , )n

n
n n n n n1 c

θ
τ

μ θ ρ τ ψ= − ̅ − ̅ Δ ̃ ̃ ̃+ Σ
834 (23)

(0) (1)n n 1θ θ= −835 (24)

836 This is done for n = 1, ..., 2Na + 2Nd − 1, where, for n = 1,
837 one defines θ1(0) = θexp,1. This last is not an extra assumption
838 because one can replace θexp,1 by any other value in its vicinity,
839 if one, simultaneously, agrees not to include the first deviation
840 when minimizing the sum of the squared deviations (see item
841 5 in the algorithm below).
842 The final part of the simulation consists of finding the
843 solution of eqs 23 and 24 that best fits the data. It involves the
844 determination of the following set of parameters

C T, , , ,c ψ{ ̃ }Σ

845 in a way that minimizes the averaged sum of the squared
846 deviations (θ(t2̅n−1) − θexp,n)

2. This is done by the following
847 algorithm.

848 1 Values are chosen for T̃Σc and ψ, say 0.3 and 4,
849 respectively.
850 2 Using eq 7, the equilibrium isotherm θe(re,T̃exp,T̃Σc,ψ) is
851 drawn. See the smooth curve in black in the left-hand

f12 852 plot in Figure 12.
853 3 The value of C (see eq 21) is calculated, that gives
854 θe(rexp,9,T̃exp,T̃Σc,ψ) = Aexp,9/C, and the data are replotted
855 with ordinates θexpi = Aexpi/C.
856 4 Values are chosen for and , say 1 and 0.1, and eqs 23
857 and 24 are solved for all n, as indicated. The value
858 chosen for is increased if relaxation, at any
859 experimental point, ends before the equilibrium
860 isotherm is reached (seen graphically as two lines
861 touching, see the left-hand plot of Figure 12.), and the
862 solutions are recalculated. The isotherm is plotted as a
863 blue sawtoothed curve for adsorption, a red sawtoothed
864 curve for desorption: see the left-hand plot on Figure 12.
865 The coverage calculated by the model at the end of each
866 compression is plotted as an asterisk, and the value
867 calculated at the end of each decompression is plotted as
868 a diagonal cross. (Not all asterisks and crosses are shown
869 in the left-hand plot of Figure 12.)
870 5 The averaged sum of the squared deviations
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871 is calculated.

872 6 The values of the parameters are those that minimize
873 D2.

874 Comments: (i) The value of C determined at the third step
875 above has been taken as the final one with the justification that

876the experimental point number 9 is on the flat portion of the
877isotherm and therefore very close to the equilibrium isotherm.
878(ii) The value of , determined at the fourth step, need not be
879increased: any larger value will serve the same purpose because
880reducing the distance to the equilibrium isotherm below a
881certain small value has no interest. (iii) The value of turns
882out to have little influence on the final result: must be small
883compared to , and small values (0.1, say) give almost
884horizontal compression or decompression isotherm segments:
885a smaller value (0.01, say) might be unrealistic (depending on
886the value of tr) without noticeably changing the shape of the
887isotherm segments.
888The sawtoothed curves of the left-hand plot of Figure 12 are
889joined at rexp,9 as shown by the inset, and can thus be seen as
890just one isotherm, “anchored” to the experimental points at the
891last adsorption measurement.
892The minimum value of D2 is 0.00512, and is obtained with

0.7= , 0.1= , and

T 0.000,

3.83
c

ψ

̃ =

=
Σ

893The right-hand plot of Figure 12 shows theoretical coverage
894(asterisks and crosses) at pressure values where experimental
895coverage is given (circles and squares).
896Comments: (i) The smallness of T̃Σc indicates that an
897adsorbate of CO2 on coal acts like an ideal gas of finite volume
898molecules. (ii) Model M′, used as described in this section,
899predicts unique values for T̃Σc and ψ. In Jessen et al.7 (see their
900Table 2 and Figure 2), adsorption and desorption are assumed
901to evolve along different equilibrium isotherms, so that two
902values of ψ result: 3.66 for adsorption and 4.73 for desorption.
903Turning now to the data reported7 concerning the
904adsorption−desorption at 295.15 K of CH4 by Wyoming
905coal, one notes first that, according to the NIST database, the
906critical temperature for CH4 is Tfc = 190.6 K, so that the
907ambient CH4 is supercritical. The adsorbate critical temper-
908ature being most likely less than the above Tfc, the adsorbate is
909also supercritical. The experiment is then inside the framework
910of M′ because a phase transition for the ambient fluid is
911excluded, and uniformity of density can be assumed. (See the
912description of model M′ in the Introduction.) The situation is
913thus similar to that of the CO2 experiment just gone through,
914that is, that of a rate-dependent hysteresis isotherm. Following
915the same procedure, one finds a minimum value of D2 equal to
9160.0067, obtained with 0.7= , 0.1= , and

T 0.3,

5.8
c

ψ

̃ =

=
Σ

917 f13Figure 13 shows experimental coverage (circles and squares)
918and theoretical coverage (asterisks and crosses) calculated at
919the same pressures. Using data from Table 2,7 one finds that
920the two Langmuir curves that fit the adsorption and desorption
921CH4 curves of Figure 27 yield two values for ψ: 4.61 for
922adsorption and 8.92 for desorption.

5. BACKGROUND MATERIAL
923Material given here includes the explicit calculation of the
924thermodynamic functions of the ambient and adsorbed fluids,
925that is, pressure and spreading pressure (Section 5.1) and
926chemical potentials and fugacities (Section 5.2); a subsection is
927devoted to the introduction of Henry’s constant (Section 5.3).
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928 A final section (Section 5.4) contains the derivation of the
929 differential equation giving the rate of change of the coverage
930 originating from eq 1.
931 5.1. Pressure and Spreading Pressure. As stated in the
932 Introduction, it is assumed that the adsorbed fluid obeys a van
933 der Waals equation of state. The two-dimensional van der
934 Waals equation, used, for example, by Hoory and Prausnitz,12

935 is used here

N RT
N

N 2

2β
α

Π =
Σ −

−
Σ

Σ

Σ

Σ

936 (25)

937 What follows is consistent when a monolayer is assumed.
938 The maximum value of NΣ is Σ/β so that the coverage is NΣβ/
939 Σ. The particle concentration and coverage are thus

c N /= ΣΣ Σ940 (26)

cθ β= Σ941 (27)

942 The critical values, identified by a subscript c, are expressed
943 in terms of the constants α and β

RT
27

,
8

27c 2 c
α
β

α
β

Π = =Σ
944 (28)

945 Concerning the ambient fluid, three equations of state are
946 considered: that of an ideal gas of type 0 (noninteracting zero-
947 volume particles), that of an ideal gas of type 1 (noninteracting
948 nonzero-volume particles), and a plain van der Waals equation

P
N RT

V
P

N RT
V N b

P
N RT

V N b
aN
V

, ,id0 f id1 f

f

f

f

f
2

2

= =
−

=
−

−
949 (29)

950 Note that, in the type 0 and type 1 cases, one assumes that V
951 is so large that Pid 0 and Pid 1 are valid approximations inside
952 some pressure range, but that the van der Waals constants are
953 different from zero, so that it makes sense to speak of critical
954 pressure and temperature.
955 Ambient and adsorbed fluids are assumed to be at the same
956 temperature T. Similar to the two-dimensional case above, one
957 defines

c N V/f f= 958(30)

r bcf= 959(31)

960The critical values, identified by a subscript c, are expressed
961in terms of the constants a and b

P
a
b

RT
a
b27

,
8

27c 2 fc= =
962(32)

963The critical temperatures of the ambient and adsorbed fluids
964have different notations because they are known to be
965different.
966One now introduces a dimensionless temperature T̃, a
967dimensionless spreading pressure Π̃, and a dimensionless
968ambient pressure P̃, by

T
T
T RT

P
bP

RT
P
P

, ,
8fc fc fc c

̃ = Π̃ = βΠ ̃ = =

969(33)

970Consistently with the definition of T̃, one defines
971dimensionless critical temperatures for the ambient and
972adsorbed fluids

T T
T
T a

b
1,fc c

c

fc

α
β

̃ = ̃ = =Σ
Σ

973(34)

974It follows that

T T
T

T( , , )
1

27
8c c

2θ θ
θ

θΠ̃ ̃ ̃ =
̃

−
− ̃Σ Σ

975(35)

976Similarly, the dimensionless versions of eq 29, are
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977(36)

978The adsorbed and ambient molecules being chemically
979identical, α and β are related to a and b. If the gas molecules
980are spherical and isotropic before and after being adsorbed,
981then formulas giving α and β in terms of a and b exist14 and
982result in T̃Σc = 1/2. Otherwise α and β, and thereby T̃Σc, are
983often determined by fitting theoretical results to experiments.
984Some examples of experimentally determined values for T̃Σc are
985 t1f14given in Table 1. It is assumed in the sequel that T̃Σc < 1.

986 f14Figure 14 defines the symbols used in this article concerning
987the ambient fluid (left) and the adsorbed fluid (right). In
988particular, θm and θM, which often occur, are easily obtainable
989as solutions of a cubic
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991with

T
T

.
c

τ =
̃

Σ̃ 992(38)

Figure 13. Circles and squares are the experimental data for
adsorption (circles) and desorption (squares) of CH4 by Wyoming
coal at 295.15 K.7 Blue asterisks (adsorption) and red crosses
(desorption) result from model calculations. The horizontal axis gives
pressure in PSI. The vertical axis gives dimensionless coverage.

Table 1. Values of T̃Σc for the Indicated Adsorbates, on
Graphitea

N2 Ar C6H6 CHCl3 CFCl3

0.36 0.46 0.14 0.39 0.43
aFrom Hoory and Prausnitz.12
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993 They are only defined when τ ≤ 1, that is, for a subcritical
994 adsorbate. They satisfy θM ≤ θm (the equality occurring when τ
995 = 1) and are the abscissas of the intersections of the
996 Π̃(θ,T̃,T̃Σc) versus θ curve with its spinodal curve: elsewhere
997 in this article, θM and θm are referred to as the left and right
998 spinodal coverages.
999 Figure 14 includes the known concepts of physical stability
1000 (black lines), physical metastability (green lines), and physical
1001 instability (orange lines). Equations of state represented by the
1002 black lines joined by the dash-dotted lines are called
1003 reconstructed.17 A one-phase p-metastable state will eventually
1004 transit, at constant r (or constant θ for the adsorbate), to a
1005 two-phase p-stable state of lower energy on the reconstructed
1006 straight line.
1007 The figure also illustrates the functional relationship implied
1008 by eq 35 and by the third of eq 36, namely: Π̃(x,T̃Σcy,T̃Σc) =
1009 T̃ΣcP̃(x,y).
1010 5.2. Chemical Potentials and Fugacities. The chemical
1011 potentials can now be calculated, up to functions of
1012 temperature. The starting point is

F S T P V Nd d d df fμ= − − +

1013 One first obtains F by integrating at constant T and Nf; one
1014 then obtains μf by differentiating F with respect to Nf
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1015 The limit when V* → ∞ of the first term inside the
1016 parenthesis on the right-hand side is the derivative with respect
1017 to Nf of the Helmholtz free energy of the ideal gas.18 Using its
1018 expression, one gets
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1020 where has the dimension of molar volume. It can be
1021 obtained by the methods of statistical mechanics,18 provided
1022 one has specific information about the properties of the
1023 molecules of the ambient fluid,19 such as moments of inertia
1024 and vibrational frequencies. It is treated here as a function of T,
1025 referring to Section 5.3 for a further determination that

1026involves Henry’s adsorption constant. Performing the integra-
1027tion in eq 39, one finds that terms that diverge when V* → ∞
1028cancel, and one gets

RT
T

b
r Tln

( )
( , )f f,redμ μ= +

1029(40)

1030The second term on the right-hand side, here named
1031reduced chemical potential, has three alternative expressions,
1032corresponding to the three alternative expressions for the
1033pressure in eq 29
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1034The chemical potential of the adsorbed fluid is obtained by a
1035similar method, μΣ being then given by a suitably modified
1036right-hand side of eq 39: V, , P, and Nf being changed to A,

, Π, and NΣ. One gets

RT
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Tln
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( , ),redμ
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μ θ= +Σ Σ
1037(41)
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−
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−
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1038(42)

1039The fugacities f f and fΣ of the ambient and adsorbed fluids
1040are now introduced, using the definition given by Hoory and
1041Prausnitz,12 written below in a form that is equivalent but
1042slightly different from theirs
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1043A similar formula applies for fΣ where, in the right-hand side
1044above, V, P, and Nf are changed to A, Π, and NΣ. It is then
1045easily shown that

Figure 14. Left: Pressure P̃(r,T̃), eq 36 (right), for two values of T̃, one above and one below the critical value, T̃fc = 1, vs r. Right: Spreading
pressure Π̃(θ,T̃,1/2), eq 35, for two values of T̃, one above and one below the critical value 1/2 vs θ. Concerning the similarity of the curves and
also concerning the color and style of lines, see the text at the end of Section 5.1.

ACS Omega Article

DOI: 10.1021/acsomega.9b02956
ACS Omega XXXX, XXX, XXX−XXX

N

http://dx.doi.org/10.1021/acsomega.9b02956


RT
T

b
RT

bf

RT

RT
T

RT
f

RT

ln
( )

ln ,

ln
( )

ln

f
fμ

μ
β

β

= +

= +Σ
Σ

1046 Comparing these equations with 40 and 41, one obtains
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= =Σ

Σ

1047 (43)

1048 It is possible to show that one gets the expected result that Π
1049 and fΣ become equal at the vanishing spreading pressure:
1050 according to eqs 26 and 27, Σ = βNΣ/θ and letting Σ → ∞ in
1051 eq 25, one gets Π ≈ RTθ/β. On the other hand, when θ → 0,
1052 then eq 42 shows that μΣ,red ≈ RT ln θ which, combined with
1053 eq 43, gives fΣ ≈ RTθ/β ≈ Π. It is similarly easy to show that P
1054 ≈ f f when V → ∞.
1055 It is convenient to introduce dimensionless chemical
1056 potentials and dimensionless fugacities to accompany the
1057 dimensionless pressures introduced in Section 5.1. The
1058 definitions are suggested by eqs 40−42 for the chemical
1059 potentials and by eq 43 for the fugacities
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1061 Equation 43 becomes
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1063 One obtains, for the adsorbed fluid,
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1065 Similar expressions for the ambient fluid follow, where the
1066 particular cases of an ideal gas of type 0 or 1 are included:
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1070 f15Functions 46 and 49 are shown in Figure 15.
1071The following remarks refer to Figures 14 and 15.

10721. Comparing eq 46 and the van der Waals version in eq
107349, one sees that T̃Σcμ̃f,red(x,y) = μ̃Σ,red(x,T̃Σcy,T̃Σc) and
1074Figure 15 illustrates this equality for T̃Σc = 1/2.
10752. Figures 14 and 15 illustrate the following easily provable
1076equalities:
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1077These show that the chemical potentials and the pressures,
1078when plotted against their first argument, have local extrema at
1079the same values of that argument. Also, the chemical potentials
1080can be reconstructed by localizing the points with abscissas rg
1081and rl (alternatively θg and θl), then replacing the loop between
1082them by the horizontal straight line segment joining them. See
1083Figure 15 where the lines have been drawn in the manner of
1084Figure 14, with the same meanings.
1085It is assumed that the ambient fluid is constrained to always
1086be in the same phase. There are no constraints on the adsorbed
1087fluid, however, so that it can undergo a phase transition.
10885.3. Henry’s Adsorption Constant. Using eqs 40 and 41,
1089an expression for the Δμ of eq 2 can now be written as

i
k
jjjj

y
{
zzzzL RT

b
T
T

/ ln
( )
( ) f,red ,redμ β μ μΔ = − − + Σ

1090(50)

1091The unknown function of T on the right-hand side is found
1092by using the method used by Hoory and Prausnitz.12 Using eq
109343, eq 50 can be written as

Figure 15. Left: Chemical potential μ̃f,red(r,T̃), eq 49 (left), for two values of T̃, one above and one below the critical value, T̃fc = 1 vs r. Right:
Chemical potential μ̃Σ,red(θ,T̃,1/2), eq 46 (left), for two values of T̃, one above and one below the critical value, T̃Σc = 0.5 vs θ. For both plots, the
symbols on the axes and the colors of the lines are as defined in Figure 14. The dash-dotted lines are the reconstructed parts of the chemical
potentials, see Figure 14.

ACS Omega Article

DOI: 10.1021/acsomega.9b02956
ACS Omega XXXX, XXX, XXX−XXX

O

http://dx.doi.org/10.1021/acsomega.9b02956


i
k
jjjj

y
{
zzzz

i

k
jjjjjj

y

{
zzzzzzL RT

b
T
T

RT
b f

f
/ ln

( )
( )

ln fμ β
β

Δ = − −
Σ

1094 This formula remains valid when ambient gas and adsorbate
1095 are at equilibrium with each other at very low pressure: then,
1096 Δμ = 0 and, according to the paragraph following eq 43, fΣ = Π
1097 = RTcΣ and f f = P = RTcf. As the function of T does not
1098 depend on the physical situation, one obtains
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Σ1099 (51)

1100 The pressure being low, the concentrations are small and cΣ/
1101 cf is Henry’s adsorption constant, KH. It is actually a function of
1102 temperature and of molecular properties, as defined in the
1103 literature that is used in this article.20 It is convenient to
1104 introduce a dimensionless Henry constant, K̃H, and the
1105 following expressions define the notation:

c K c K K b, /H f H Hβ= ̃ =Σ1106 (52)

1107 Then eq 51 gives

b
T
T

K T
( )
( )

( , )H
β = ̃ ̃

1108 (53)

1109 where is a set of constants that determine the interaction
1110 between adsorbent and adsorbate, and thereby the sorption
1111 properties.20 Note that, with the notation introduced in eqs 31
1112 and 27,

K rHθ = ̃
1113 (54)

1114 when the pressure goes to zero.
1115 Using eq 53 in eq 50 one obtains an expression for Δμ
1116 where the unknown function of temperature is replaced by
1117 Henry’s “constant”

L RT K T/ ln ( , )H f,red ,redμ μ μΔ = − ̃ ̃ − + Σ

1118 Introducing dimensionless chemical potentials by using the
1119 two first equations in the set 44, one obtains

LRT/( )fcμ μΔ ̃ = Δ1120 (55)

T T r T T( , , ) ( , ) ( , ),red c f,redμ θ μ ψ= ̃ ̃ ̃ − ̃ ̃ − ̃
Σ Σ1121 (56)

1122 where

T K Tln ( , )Hψ = ̃ ̃ ̃
1123 (57)

1124 The dependence of ψ on a number of constants gathered in
1125 the set implies that ψ can be seen as an experimental
1126 quantity that determines, at a given temperature, the
1127 adsorption properties of the combination of the fluid and
1128 adsorbing surface. See Section 4.
1129 Experimental and theoretical results are cited below so as to
1130 establish an order of magnitude for the interval in which values
1131 of ψ are found.
1132 KH is usually written as KH = A0 exp(T0/T), where RT0 is
1133 called the adsorption potential,14 and A0 is a function of T. An
1134 explicit expression for A0(T), in terms of a set of constants, is
1135 given in the framework of a model described by Dolgonosov.20

1136 The set of constants is given by Dolgonosov20 for 40
1137 adsorbate molecules on a graphite adsorbent, and curves of KH
1138 versus T are shown, together with experimental values, for
1139 selected temperature intervals. A selection of seven such curves
1140 is shown in Figure 16 (thin solid lines), covering a wide range

1141of ψ-values. In addition, the five curves drawn with thick solid
1142lines originate from data given in Ross and Olivier,14 Finally,
1143the broken line curve originates from data given by Saha et
1144al.,21 and the long thick solid line is the plot of Ψu defined by
1145eq 8.
1146 f16Figure 16 indicates that for temperatures and for adsorbate/
1147adsorbent pairs that are industrially interesting, ψ is an

1148approximately linear, slowly decreasing function of temper-
1149ature, with numerical values roughly inside the interval 3 to 8.
1150Values lower than 3 probably exist but characterize industrially
1151uninteresting low adsorbers.
11525.4. Differential Equation for the Coverage. A
1153differential equation for the coverage θ is here written by
1154using eq 27 on the left-hand side of eq 1, eq 55 on its right-
1155hand side, and then by introducing dimensionless time, t,̃ by

t
t
t

t
L RT

, where
1

r
r

fcβ
̃ = =

1156(58)

1157One obtains

r T T( , , , , )cθ μ θ ψ̇ = −Δ ̃ ̃ Σ̃ 1158(59)

1159where the dot on the left-hand side now denotes derivation
1160with respect to t.̃ In Δμ̃ (see eq 56), μ̃f,red is one of the three
1161alternative equations given on the left-hand column of the set
116247 to 49. The medium being homogeneous, and density being
1163uniform, there is no space dependence, and eq 59 is to be
1164solved in time, with an initial condition giving θ at time zero.
1165The solution is sought for t ̃ > 0, and the coverage θ is in the
1166interval (0, 1).
1167Most of this article is concerned with the equilibrium and
1168the nonequilibrium solutions of eq 59, with the aim of
1169determining their general characteristics. One is thus led to
1170look at the solutions for different values of the parameters, so
1171that it is important to know the intervals in which, in particular,
1172tr, T̃Σc, and ψ are likely to be in actual applications. Concerning
1173T̃Σc and ψ, see Sections 5.1 and 5.3, respectively.
1174Reference time tr is unknown because of its dependence on
1175L, a constant that, by definition, must be determined by
1176dedicated experiments. As time-dependent results presented in
1177this article are expressed in terms of dimensionless time, it is
1178useful to have an order of magnitude for tr. According to an
1179article by Gleysteen and Deitz22 published in 1945 on the
1180sorption of nitrogen on carbon adsorbents, steady state is
1181attained in about 20 min, meaning that sorption does not

Figure 16. ψ vs T, from the sources indicated by the numbers in
parentheses. (1) are from Dolgonosov;20 (2) from Ross and Olivier,14

where P-33 refers to graphitized carbon and BN to boron nitride; (3)
from Saha et al.;21 and (4) is eq 8.
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1182 measurably change for larger time values. More recently
1183 (1984), in Ruthven’s book on adsorption,23,24 sorption
1184 experiments of ethane on Linde 4A zeolite are cited, showing
1185 about the same time to steady state. Somewhat more extensive
1186 measurements were reported in 2010 by Battistutta et al.8 on
1187 the sorption of methane, nitrogen, and carbon dioxide on dry
1188 coal. These showed that, to measure an equilibrium isotherm,
1189 the waiting time between pressure changes can vary between a
1190 day and 10 days, depending on the gas adsorbed and on
1191 temperature. It thus seems that values of tr should be expected
1192 to be anything between a half hour and a week.
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1203 ■ NOMENCLATURE

1204 Latin Symbols
1205 A, Aexp,i, coverage in SCF per ton, coverage of experimental
1206 point i on a graph in SCF per ton. See Section 4; , function
1207 of temperature and of molecular properties such as vibrational
1208 frequencies. It has the dimension of area per mole. See eq 41;
1209 a, b, van der Waals constants. See eq 29; cΣ, cf, number of
1210 adsorbed molecules per unit area (see eq 26), number of
1211 ambient molecules per unit volume (see eq 30); C, constant of
1212 dimension SCF per ton. See eq 21; , in an adsorption
1213 experiment, estimated time used to compress the ambient gas
1214 from the lowest to the highest pressure, at a constant rate. See
1215 eq 22; , set of constants determining the interaction between
1216 adsorbate and adsorbent. See eq 53 and the statement
1217 following it; Em, EM, functions of τ introduced to define the
1218 vertical boundaries of the hysteresis loop. See eq 18; fΣ, f f,
1219 fugacities of the adsorbate and of ambient fluid. See Section
1220 5.2; fΣ̃, ff̃, dimensionless fugacities of the adsorbate and
1221 ambient fluids. Defined in eq 44; ff̃

id 0, ff̃
id 1, dimensionless

1222 fugacities of the ideal ambient fluid with zero volume particles
1223 (superscript 0), or nonzero volume particles (superscript 1).
1224 See eq 47 (right) and 48 (right); F, Helmholtz free energy. See
1225 Section 5.2; KH, K̃H, dimensional and dimensionless Henry
1226 constant of adsorption. See eq 52; L, phenomenological
1227 constant. See eq 2; NΣ, Nf, number of adsorbed moles on Σ
1228 (see eq 25), number of ambient moles in V (see eq 29); Pid 0,
1229 Pid 1, P, ambient fluid pressure for ideal fluid with zero volume
1230 molecules (superscript 0), with nonzero volume molecules
1231 (superscript 1), and for a van der Waals fluid. See eq 29; Pc,
1232 ambient fluid critical pressure. See eq 32 (left); Pexp,i, P̃exp,i,
1233 pressure (PSI, dimensionless) of experimental point i. See
1234 Figure 10; P̃id 0, P̃id 1, P̃, dimensionless versions of Pid 0, Pid 1, P.
1235 See eq 33 (right); P̃0, dimensionless saturation pressure. See
1236 Figure 14 (left); r, ratio of number of ambient molecules per
1237 unit volume to its maximum value. See eqs 30 and 31; re,
1238 equilibrium value of r, at a given ambient temperature and
1239 pressure; rg, rl, r-values for the saturated gas and saturated
1240 liquid, obtained through the Maxwell construction. See Figure

124114; ri, r1, r2, r-values locating the center of the hysteresis loop,
1242its left- (subscript 1) and right-hand (subscript 2) vertical
1243boundaries. See eqs 10 and 17; rm, rM, r-values of the local
1244minimum or local maximum, of a van der Waals ambient fluid.
1245See Figure 14 (left); rϵ, rt, parameters characterizing a
1246compression-decompression cycle. See Figure 7; rexp,i, r-value
1247of experimental point number, i, such that P(rexp,i,Texp) = Pexp,i.
1248See Section 4 and Figure 10; rk̅, array of r-values. See Section 4,
1249following eq 22; R, gas constant; S, entropy. See Section 5.2; t,
1250t,̃ tr, time, dimensionless time, reference time. See eq 58; td̃,
1251cycle duration, in a compression−decompression cycle. See
1252Figure 7; tk̅, array of t-values. See Section 4, following eq 22; T,
1253T̃, dimensional, dimensionless temperature. See eq 33; Texp,
1254T̃exp, temperature at which a sorption measurement is carried
1255out, its dimensionless counterpart; TΣc, Tfc, T̃Σc, T̃fc, critical
1256temperature of adsorbate fluid, of ambient fluid, and their
1257dimensionless counterparts; v, rate of compression. See eq 22;
1258V, volume variable in a three dimensional equation of state. See
1259eq 29; , function of temperature and of molecular properties
1260such as vibrational frequencies. It has the dimension of volume
1261per mole. See eq 39

1262Greek Symbols
1263α, β, van der Waals constants. See eq 25; Δμ, Δμ̃, see eqs 1, 2,
126459, and 56; θ, ratio of number of adsorbed molecules per unit
1265area to its maximum value (coverage). See eq 27; θe,
1266equilibrium value of θ, at a given ambient temperature and
1267pressure; θm, θM, θ-values of the local minimum, or local
1268maximum, of a van der Waals adsorbed fluid. See Figure 14
1269(right), and eq 37. θM and θm are also referred to as the left and
1270right spinodal coverages; θea, θed, values of equilibrium
1271coverage for a subcritical adsorbate. Subscript ea indicates
1272the adsorption value, subscript ed indicates the desorption
1273value. See eqs 11 and 12; μΣ, μf, chemical potential of the
1274adsorbate and of ambient fluid. See Section 5.2; μf,red

id 0 , μf,red
id 1 ,

1275μf,red, reduced chemical potential of the ideal ambient fluid with
1276zero volume molecules (superscript 0), with nonzero volume
1277molecules (superscript 1), and for a van der Waals fluid. See
1278the three equations following eq 40; μΣ,red, reduced chemical
1279potential of the adsorbate. See eq 42; μ̃Σ,red, dimensionless
1280reduced chemical potential of the adsorbate. See eq 46 (left);
1281μ̃f,red

id 0 , μ̃f,red
id 1 , μ̃f,red, dimensionless reduced chemical potential of

1282the ambient fluid for three cases: ideal fluid with zero volume
1283molecules (superscript id 0), ideal fluid with nonzero volume
1284molecules (superscript id 1), and van der Waals. See eqs 47−
128549 (left); Π, Π̃, spreading pressure of the adsorbate,
1286dimensional (eq 25) and dimensionless (eq 35); Π̃0,
1287dimensionless saturation spreading pressure. See Figure 14
1288(right); Πc, adsorbate critical pressure. See eq 28 (left); Σ, area
1289variable in a two-dimensional equation of state. See eq 25; τ,
1290see eq 38; ψ, function of temperature and of the set . Related
1291to the Henry constant by eq 57; Ψu, Ψm, ΨM, functions of T̃
1292and T̃Σc, defined by eqs 8, 13, and 14. See also Figures 3 and 5

1293■ ADDITIONAL NOTES
a

1294MAPLE’s implicitplot has been used.
b

1295Maple has been used, and the method of solution is rfk45,
1296described as “Fehlberg fourth−fifth order Runge−Kutta”.
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