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Chronic heart failure (CHF) is characterized by inflammation, and skeletal muscle myopathy including 

impaired fiber type distribution and reduced capillary density, reduced cytochrome oxidase activity 

and reduced mitochondrial density. The myopathy is associated with activation of the IL-6-CRP 

pathway and the prototypical inflammatory cytokine tumor necrosis factor (TNF) with alterations in 

the mRNA expression of enzymes essential in mitochondrial biogenesis. Central in this process are 

Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), nicotinamide 

phosphoribosyltransferase (NAMPT), nicotinamide adenine dinucleotide (NAD+) and mitochondrial 

transcription factor (TFAM). 

The covariance over time, between plasma levels of TNF and skeletal muscle mRNA expression of 

this pro inflammatory cytokine, and the correlation between TNF, and mRNA expression of enzymes 

essential in mitochondrial biogenesis and skeletal muscle pathology is previously not evaluated in in 

patients with CHF on stable medical treatment.  

 

 
The methods have been described previously1 and are briefly presented here.   

Patients. Fourteen out of 21 patients with stable CHF and left bundle branch block (LBBB) who were 

candidates for CRT, prospectively recruited from the outpatient HF clinic at the Stavanger University 

Hospital, had acceptable skeletal muscle biopsies suitable for mRNA analysis (Table 1). All tests were 

performed at baseline before insertion of a cardiac resynchronization treatment (CRT) device and after 

6 months of CRT. There was no change of medication during this period. 

CRT insertion. A cardiac resynchronization device was inserted with conventional technique. 

Functional capacity. The patients were evaluated on an upright, electrically braked ergometer bicycle 

(Model KEM III, Mijnhardt, S.V. Bunnik, The Netherlands) using a 15 Watt /min ramp protocol. Gas 

exchange data were collected continuously with an automated breath-by system 2001, (Medical 

Graphics Corporation, St. Paul, MN).  

Blood sampling protocol. After resting for 30 minutes, blood was drawn into pyrogen-free blood 

collection tubes with EDTA as anticoagulant. Plasma tubes were immediately immersed in melting 

ice, and centrifuged at 2500g for 10 minutes at 4°C within 20 minutes. All samples were stored at -

80°C. 

Plasma analysis. Plasma levels of TNF were measured using a multiplex cytokine immunoassay (Bio-

Plex Human Cytokine Plex Panel, Bio-Rad Laboratories, Hercules, CA) on a Multiplex Analyser (Bio-

Rad Laboratories).  

Muscle biopsies. Open muscle biopsies were harvested with surgical technique before implantation of 

the CRT device and after 6 months of CRT as previously described2. The second biopsy was harvested 

from the contra lateral quadriceps muscle.  
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Electron microscopy. Muscle biopsies were immediately fixed for minimum 24 hours in McDowells 

fixative. Post-fixation was performed in 1% aqueous OsO4. The specimens were dehydrated in series 

of graded ethanol and thereafter embedded in Epoxy resin. Semi-thin sections (2 µm) of 4 blocks from 

each biopsy were stained with 1% Toluidine blue. Ultra-thin sections (70 nm) from the selected blocks 

were placed on single hole copper grids covered with “formvar” film.  The ultra thin sections where 

contrasted with 5% uranyl acetate and subsequently with Reynolds lead citrate. The sections were 

examined in a JEOL 1010 electron microscope.  

Stereology Point-counting stereology on the electron micrographs was used for morphometric 

registration. The electron micrographs were covered by a 1x1 cm square lattice. Grid points lying in 

mitochondria were counted. For each section, the number of counted grid points from 10 micrographs 

were summarized and expressed as absolute values.  

Real-time quantitative RT-PCR. Total RNA was extracted from skeletal muscle using TRIzol 

(Invitrogen, San Diego, CA), DNase treated, cleaned up using RNeasy Mini Columns (Qiagen, 

Hilden, Germany), and stored at -80°C. cDNA was synthesized using High Capacity cDNA Archive 

Kit (Applied Biosystems, Foster City, CA). Quantification of gene expression was performed using the 

ABI Prism 7500 (Applied Biosystems), Power SYBR Green Master Mix (Applied Biosystems), and 

sequence-specific PCR primers designed using the Primer Express software, version 3.0 (Applied 

Biosystems).  

Ethics The study was approved by the regional ethics committee and conducted according to the 

Declaration of Helsinki. Informed consent for participation was received from all individuals.  

Statistics All data were analysed using SPSS 22.0 (IBM Corp., Armonk, NY). All differences and 

ratios were analysed for normality using the Kolmogorov Smirnov test with Lilliefors significance 

correction, Shapiro Wilk tests and normal plots. Non-parametric tests (Wilcoxon sign rank tests) were 

applied to test for changes over time if the data were not normally distributed. Otherwise t-tests were 

used. Data for changes in gene expression are expressed as ratios calculated by dividing the value at 6 

months with the value at baseline (6 month value/baseline value). Other changes are reported as 

differences. Pearson’s correlation tests were employed if the data were normally distributed and 

Spearman’s rho correlation test was employed if this was not the case. The value of significance was 

set to p<0.05. All muscle and plasma analysis were performed blinded for patient identity and 

sequence.  

 
As reported before, CRT during 6 months was associated with improved functional capacity, 

improvement in VE/VCO2 slope, increased capillary density in skeletal muscle and reduced left 

ventricular end diastolic diameter. There was a trend towards a decrease in plasma levels of TNF 

(pg/ml) (48.3±30.2 vs 41.3±26.0, p=NS), and a trend towards an increase in mitochondrial density 

(186±73 vs 205±74, p=NS)1. After careful quality analysis, RNA of sufficient quality was available 
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for gene expression analysis in 14 of the patients. One of the TNF samples was excluded because of 

being extreme outlier. Additionally 2 samples were excluded due to reduced quality and shortage of 

sample volume. There were no statistical significant changes in mRNA expression of TNF or enzymes 

essential in mitochondrial biogenesis. However, there was a statistical significant correlation between 

changes in plasma levels of TNF and changes (ratio) in muscular expression of mRNA levels of TNF 

(N=14, Figure 1A; R=0.56, p<0.05). There was also a highly statistical significant correlation between 

changes in plasma levels of TNF and changes (ratio) in muscular expression of mRNA levels of 

TFAM (Figure 1B; R=-0.81, p<0.001) and NAMPT (Figure 1C; R=-0.81, p<0.001).  

In addition there was a statistical significant correlation between changes in skeletal muscle 

mRNA levels of TNF and changes in mitochondrial density (Figure 1D R=-0.561, p=0.037).  

Moreover changes in plasma TNF were correlated with changes in number of intramuscular lipid 

droplets (R=0.52, p=0.02). “There was also a trend towards a statistically significant correlation 

between alterations in plasma levels of TNF and changes in fibre diameter.  

Moreover, alterations in plasma Interleukin-6 correlated with fibre diameter (r=-0.58, 

p=0.009)  

 

 
(i) TNF is produced by immune-competent cells such as macrophages and lymphocytes, but is 

also released from a number of other cells including cells within the myocardium3 and skeletal 

muscle4. In the current study we found that changes in intramuscular gene expression of TNF 

correlated with changes in plasma TNF suggesting that skeletal muscle TNF expression might be a 

factor for increased levels of plasma TNF in CHF patients.  

(ii) The changes in plasma levels of TNF were negatively correlated with changes in mRNA 

expression of key regulators of skeletal muscle mitochondrial biosynthesis (NAMPT and TFAM) 

suggesting that skeletal muscle wasting in CHF is partially mediated via activation of the prototypical 

inflammatory cytokine TNF. Indeed, chronic exposure to TNF has been shown to promote muscle 

weakness5. Activation of TFAM has been shown to be central in the regulation of mitochondrial 

biogenesis in regenerating skeletal muscle6. This activation is also seen in exercise training, which 

induces activation of PGC-1α 7. In addition exercise-induced NAMPT-activity, which indirectly 

activates PGC-1α, has been shown to correlate with mitochondrial cellular content8.  

(iii) Supporting the negative correlation between TNF and TFAM and NAMPT, we also found 

a statistically significant correlation between changes in intramuscular mRNA levels of TNF and 

changes in skeletal muscle mitochondrial density as well as parameters of skeletal muscle structure 

(i.e., lipid droplets). These findings in clinical CHF are in line with the findings in an experimental 

model of pacing-induced cardiac failure where mitochondrial dysfunction was associated with 

increased levels of TNF9. The chronically reduced skeletal muscle perfusion in inactive patients with 
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CHF results in hypoxia-induced production of reactive oxygen species, which in turn may enhance 

TNF expression.10 This pathogenic loop could contribute to skeletal muscle pathology in CHF, which 

again may contribute to the progression of CHF with TNF as a missing link. This is further 

supported by the findings of reversal of muscle abnormalities after exercise training 

programmes11. However, correlations in more general terms do not necessarily mean any causal 

relationship. On the other hand, the findings are in accordance with recent research, which indicates 

that levels of biomarkers that reflect pro-inflammatory and pro-fibrotic processes are associated with 

differential effect of exercise on functional capacity in patients with heart failure12.  
 

 

 
Plasma levels of TNF are closely related with skeletal muscle mitochondrial biosynthetic enzymes 

and moderately with skeletal muscle gene expression of TNF, which in turn co vary moderately with 

skeletal muscle mitochondrial density. The lack of significant variation in TNF levels over time, 

the small sample size and missing data are limitations of the study.  

Our findings may suggest that TNF could contribute to skeletal muscle myopathy via down 

regulation of mitochondrial biosynthesizing enzymes and thus reduced mitochondrial density.  
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Figure legend 
Figure 1.  

Correlations between changes in plasma levels and skeletal muscle gene expression of tumor necrosis 

factor (TNF), (A), correlations between changes in plasma levels of TNF and changes in gene 

expression of mitochondrial transcription factor A (TFAM) (B), correlation between changes in 

skeletal muscle gene expression of TNF and mitochondrial density (C), correlations between changes 

in plasma levels of TNF and nicotinamide phosphoribosyltransferase (NAMPT) (D).  
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Table 1. Baseline characteristics. 

 Heart failure patients (n=14) 

Male sex, n (%) 10 (70%) 

Age, years 72 [63.5, 76.3] 

Etiology (IHD/DCM), n 9/5 

NYHA: II/III, n 3/11 

LV ejection fraction, % 23.5 [20.0, 30.0] 

LVEDD, cm 6.8 [6.2, 7.2] 

BMI, kg/m2 27.5 [25.1, 29.2] 

Peak VO2, mL/kg/min 13.3 [11.7, 15.5] 

Medication (%)  

   ACE inhibitor/ARB 100 

   β-blocker 100 

   Diuretics 93 

   Aldosterone antagonist 43 

Values are presented as number (%) or median [interquartile range]. IHD, ischaemic heart 

disease; DCM, dilated cardiomyopathy; NYHA, New York Heart Association; LVEDD, left 

ventricle end-diastolic dimension; BMI, body mass index; ACE, angiotensin-converting 

enzyme; ARB, angiotensin II receptor blocker. 
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