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A HIERARCHY OF NON-EQUILIBRIUM
TWO-PHASE FLOW MODELS

GAUTE LINGAL2 AND TORE FLATTEN?

Abstract. We review and extend a hierarchy of relaxation models for two-phase flow. The models
are derived from the non-equilibrium Baer—Nunziato model, which is endowed with relaxation source
terms to drive it towards equilibrium. The source terms cause transfer of volume, heat, mass and
momentum due to differences between the phases in pressure, temperature, chemical potential and
velocity, respectively. In the context of two-phase flow models, the subcharacteristic condition implies
that the sound speed of an equilibrium system can never exceed that of the relaxation system. Here,
previous work by Flatten and Lund [Math. Models Methods Appl. Sci., 21 (12), 2011, 2379-2407] and
Lund [SIAM J. Appl. Math. 72,2012, 1713-1741] is extended to encompass two-fluid models, i.e. models
with separately governed velocities for the two phases. Each remaining model in the hierarchy is derived,
and analytical expressions for the sound speeds are presented. Given only physically fundamental
assumptions, the subcharacteristic condition is shown to be satisfied in the entire hierarchy, either in
a weak or in a strong sense.

Keywords Two-phase flow, relaxation systems, subcharacteristic condition
Classification 2010 MCS. 76T10, 35L60

1. INTRODUCTION

The concurrent flow of two fluid phases occurs in a wide range of industrially relevant settings, including
in nuclear reactors [11], petroleum production [1,9], heat exchangers [53], cavitating flows [58|, and within
carbon capture, transport and storage (CCS) [10, 40, 48]. However, for most simulation purposes, resolving
the full three-dimensional flow field may be too cumbersome, due to the complex interaction between the
phases. In particular, this encompasses calculating the temporal evolution of the interface between the phases,
and the transfer of mass, heat and momentum across it. Averaging methods (see e.g. Ishii and Hibiki [34] or
Drew and Passman [18]) may therefore be applied to avoid direct computation of the interface. The resulting
coarse-grained models may often be expressed as hyperbolic relaxation systems with source terms accounting
for the interactions between the phases, driving them asymptotically towards equilibrium at a finite rate. In a
quasi-linear form, one-dimensional versions of such systems may be written as

8,U + A(U)9,U = %Q(U), 1)
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wherein U(z,t) € G C RY is the (smooth) vector of unknowns and A(U) is a matrix which we shall call the
Jacobian of the system, in analogy to conservative systems.! Further, € is a characteristic time associated with
the relaxation process described by Q(U). For an extensive review of the existing literature on such systems,
see e.g. Natalini [50], or, for a more concise summary, consider the first few sections of Solem et al. [60] and the
references therein.

Two limits of the relaxation system (1) will be considered in this paper:

e The non-stiff limit, corresponding to the limit ¢ — co. In this case, we may write (1) as
o,U+ A(U)0,U = 0. (2)

We will refer to (2) as the homogeneous system.

e The formal equilibrium limit, which is characterized by Q(U) = 0. This defines an equilibrium manifold
[12] through M = {U € G : Q(U) = 0}. We now assume that the reduced vector of variables u(z,t) €
R™, where n < N, uniquely defines an equilibrium value U = £(u) € M. We may then express (1) as

du+B(u)d,u=0, U=¢&(u), (3)
where B(u) = P(u)A(E(u)

RN — R" satisfies P(u)dy
system.

)0u€(u) is the Jacobian of the reduced system. Herein, the operator P(u) :
E(u) = 1,, i.e. the identity matrix. We will refer to (3) as the equilibrium
We expect solutions of (1) to approach solutions of (3) as € — 0, i.e. in the stiff limit, where the relaxation
towards equilibrium is assumed to be instantaneous.

1.1. The subcharacteristic condition

An essential concept which arises in the study of relaxation systems and their stability, is the so-called
subcharacteristic condition. It was first introduced by Leray [38], subsequently independently found by Whitham
[68], and later developed by Liu [41] for conservative 2 x 2 systems. For a general N x N relaxation system,
such as (1), the condition may be formulated as follows.

Definition 1.1 (Subcharacteristic condition). Let the N eigenvalues of the matrix A of the homogeneous
system (2) be given by A;, sorted in ascending order as

Ay <. <A <Ay <. < Ay, (4)

Similarly, let \; be the n eigenvalues of the matrix B of the equilibrium system (3). Herein, the homogeneous
system (2) is applied to a local equilibrium state U = £(u), such that A; = A;(£(u)), and A; = A;(u). Now,
the equilibrium system (3) is said to satisfy the subcharacteristic condition with respect to the homogeneous
system (2) when (i) all \; are real, and (ii) if the \; are sorted in ascending order as

M <o <A <A << A, (5)
then the eigenvalues of the equilibrium system are interlaced with the eigenvalues of the homogeneous system,
in the sense that A\; € [Aj, Ajin_n].

For general N x N conservative relaxation systems, Chen et al. [12] showed that if mathematical entropy is
dissipated by the relaxation term, then the subcharacteristic condition follows, and the equilibrium system is
endowed with a strictly convex entropy pair. Hence the subcharacteristic condition is necessary for this notion of
entropy stability of the relaxation process. Note that the analysis of Chen et al. [12] cannot be straightforwardly

n systems which can be written on the conservative form 8;U + 8, F(U) = 0, we have that in the weak form (2), A = dyF is
the actual Jacobian of a flux F.
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applied to non-conservative systems, as it hinges on the symmetry of the Hessian of the relaxation system (1).
However, more general results can be obtained from linear analysis. Yong [70] proved that for n = N — 1, the
subcaracteristic condition is necessary for the linear stability of the equilibrium system. For strictly hyperbolic
systems, Solem et al. [60] proved that it is also sufficient. Hence, for strictly hyperbolic relaxation systems
where n = N — 1, the subcharacteristic condition is equivalent to linear stability.

The subcharacteristic condition has been shown to be an important trait of many physical models [6,7,23],
since the eigenvalues then have a direct physical interpretation as the characteristic wave speeds of the system.
In the context of relaxation models for two-phase flow, the fastest wave speeds are the speeds of pressure waves,
which involve the fluid-mechanical speeds of sound. The subcharacteristic condition then implies in particular
that the sound speeds of an equilibrium model can never exceed that of the relaxation model it is derived from.
This is precisely the observation, well known in the fluid mechanics community, that the “frozen” speed of sound
is higher than the equilibrium speed of sound [22, 28, 54].

1.2. The model hierarchy

In a general averaged two-phase flow model, the mixture will consist of two fluids which evolve independently.
We assume local thermodynamic equilibrium in each phase, i.e. each of the phases may be described by an
equation of state. Specifying two thermodynamic quantities then completely determines all thermodynamic
properties of that phase. Herein lies also the assumption that the thermodynamic quantities are unaffected by
the local velocity field. Each phase £ may then be thought of as having separate pressures pj, temperatures
T}, chemical potentials ux, and velocities vg. Since the two-phase mixture will move towards phase equilibrium
in each of the mentioned variables, we may model these interactions by employing relaxation source terms
corresponding to the following relazation processes:

p — wvolume transfer. Relaxation towards mechanical equilibrium due to pressure differences between the
phases, i.e. expansion or compression.

T — heat transfer. Relaxation towards thermal equilibrium, due to temperature differences between the
phases.

u — mass transfer. Relaxation towards chemical equilibrium due to differences between the phases in chem-
ical potential.?

v — momentum transfer. Relaxation towards velocity equilibrium, due to velocity differences between the
phases, i.e. interface friction.

The starting point of the forthcoming analysis will be the classical Baer—-Nunziato (BN) model [4], which is a
general formulation of a two-fluid model, in the sense that the phases are associated with separate velocity fields.
The BN model is endowed with appropriate relaxation terms corresponding to each of these processes presented
above. By considering the homogeneous and equilibrium limits of each relaxation process, i.e. assuming all
combinations of zero or more of them to be instantaneous, we obtain a hierarchy of models, each with partial
equilibrium in one or more of the aforementioned variables.

This hierarchy can be represented as a four-dimensional hypercube, as illustrated in Figure 1. Herein, each
model is symbolized by a circle, and corresponds to a “corner” of the hypercube. Parallel edges, in turn,
correspond to the same instantaneous relaxation assumption, in the direction of the arrow. The basic model,
denoted by “0” and shown in red as the leftmost circle of Figure 1, is thus reducible to all models in the hierarchy.
Many of the models in the hierarchy have already been derived, explicitly expressed and thoroughly analyzed,
and in this respect, the current paper builds heavily on previous work [2,8,15,25,35,37,58,59, 71].

The models shown in yellow circles in Figure 1 constitute the v-branch of the hierarchy, i.e. the homogeneous
flow models, wherein the phase velocities are equal. Such models are a subclass of the so-called drift-flux
models, where the phasic velocities are related by an algebraic expression. Herein, the v-model was derived
by [59], the vp-model is due to [35] (see also Refs. [2,49]), and the vpT-model was studied e.g. by [23]. The
vpT p-model is known as the homogeneous equilibrium model and has been studied by several authors, see e.g.

23ee also Remark 6.1.
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FIGURE 1. The 4-dimensional hypercube representing the model hierarchy. Parallel edges
correspond to the same relaxation processes, and each vertex signifies a unique model in the
hierarchy, assuming instantaneous relaxation in zero or more of the variables p (pressure), T
(temperature), p (chemical potential) and v (velocity). The leftmost, red circle denoted by
“0” represents the Baer—Nunziato model [4]. The colored edges represent relaxation processes
where a subcharacteristic condition has previously been explicitly established in the literature;
models described in [22] and [42] are shown in yellow, whereas models described by [21] are
shown in green. Subcharacteristic conditions were obtained in [46] for the model represented
by the blue circle.

Refs. [13,20,32,33,44,62,67]. Flatten and Lund [22] collected results on the v-, vp-, vpT-, and vpT p-models,
derived the vpu-model, and showed that the subcharacteristic condition was satisfied for all relaxation processes
within this branch of the hierarchy. Lund [42] completed the v-hierarchy by deriving the vT-, vu- and vT -
models, and established the subcharacteristic condition in the remainder of the v-branch, given only physically
fundamental assumptions.

With regards to the two-fluid models in the hierarchy, several of these models have been derived, employed
in simulation [9,11], and analyzed. Here, the p-model was analyzed e.g. in Refs. [14,62], and the pT-model was
studied e.g. in Refs. [21,29].

An important issue with p-relaxed (one-pressure) two-fluid models is that they develop complex eigenvalues
when the velocity difference between the phases exceeds a critical value, i.e. they become non-hyperbolic [17,
24,46,62,66]. This obviously entails a violation of the subcharacteristic condition, and may lead to the lack
of stable mathematical and numerical solutions. Nevertheless, these models are extensively used for practical
applications; and in numerical simulations they are often mitigated by specifying a regularizing interfacial
pressure (see [11,51,63]). Further, estimates of fluid-mechanical sound speeds is of practical importance for the
construction of efficient numerical schemes [29,55]. For relations between two-fluid models, we therefore find,
as in Ref. [21], the need to state a weaker formulation of the subcharacteristic condition.

Definition 1.2 (Weak subcharacteristic condition). When the subcharacteristic condition of Definition 1.1
holds with the additional equilibrium condition of equal phasic velocities, the weak subcharacteristic condition
is said to be satisfied.

Note that even in the case of equal phasic velocites, two-fluid models do not generally satisfy the strict
hyperbolicity needed for the proof of equivalence between the subcharacteristic condition and linear stability
presented in [60]. Hence, this weakening of the condition serves a mainly heuristic purpose.
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The p- and pT-models were analyzed by Martinez Ferrer et al. [21], who showed that the subcharacteristic
condition, in a weak or strong sense, is satisfied with respect to existing neighbouring models. Similarly, Morin
and Flatten [46] studied the pT u-model, and showed that subcharacteristic conditions were satisfied in relation
to existing neighbouring models. The highlighted edges in Figure 1 summarize the relations between models
where a subcharacteristic condition has already been shown to be satisfied.

1.3. Contributions of this paper

The objective of the current paper is to complete the study of the subcharacteristic condition in the full
hierarchy of two-phase flow models, proving the remaining subcharacteristic conditions. In this respect, a
generalization of the work by [22] and [42] is provided, extending the hierarchy to encompass also two-fluid
models, i.e. models with separate momentum equations for the two phases. Herein, the inclusion of the two-
fluid T-, p-, pu- and Tpu-models represent original contributions. A similar hierarchical derivation of two-phase
relaxation models was done in the thesis of Labois [37], who focused primarily on the stiffened gas equation-
of-state. In our current work, expressions for the sound speeds of the models are provided, valid for general
equations of state. Moreover, we show that the remaining 15 subcharactistic conditions are satisfied, i.e. that
the subcharacteristic condition is everywhere respected in the hierarchy, either in a strong or in a weak sense.
This is done by comparing the new expressions for the sound speeds to many known results from the literature,
and by using techniques involving writing the difference of wave velocities as sums of squares (cf. [22,42]). We
present each of the models for which we prove at least one subcharacteristic condition.

1.4. Outline

The organization of the current paper is as follows. In Section 2 we present the basic model with all possible
source terms, derive evolution equations for the primitive variables, and state a parameter set which suffices
to satisfy the laws of thermodynamics. In Sections 3 to 8, we present in turn the v-, p-, T-, -, pu- and T'u-
models. For each model we give explicit analytic expressions for the sound speeds, and prove the remaining
subcharacterisic conditions with respect to related models. In Section 9 we show plots of the sound speeds in the
different models, and briefly discuss physical and mathematical properties of models in the hierarchy. Finally,
in Section 10, we draw conclusions and suggest possible future work.

2. BASIC MODEL

In this section, we present the basic BN model [4]. In this model, which is hyperbolic, the two phases have
separate pressures, temperatures, chemical potentials and velocities. We state the model in a form reminiscent
of that proposed by Saurel and Abgrall [56], but with all four possible relaxation source terms accounting for
the interaction between the phases. From this, we determine the evolution equations of the primitive variables.
Based on the evolution equations, we derive a parameter set which suffices for the model to satisfy fundamental
physical laws.

2.1. Governing equations

In the following, we present the governing equations in the basic model, supplemented with physically appro-
priate relaxation terms. We let aj denote volume fraction, vy velocity, px density, px pressure, T} temperature,
pr, chemical potential, e), internal energy per mass, for each phase k € {g, £}, where g denotes gas and ¢ denotes
liquid.

2.1.1. Volume advection

We assume that apart from advection, the interface between the phases can only move due to pressure
differences. This is commonly formulated as

Ororg + 030,05 = I (pg — p1), (6)
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wherein v; is an interface velocity and .# is the pressure relaxation parameter. Hence, the volume fraction is
advected with the velocity v;. There are several discussions available on how to choose this interface velocity,
see e.g. [15,57]. In Section 2.3.2 we propose to model it using a temperature-dependent average of the phasic
velocites, derived from the second law of thermodynamics.

The local volume transfer must occur so that the phase with the lowest pressure is compressed, and the phase
with the highest pressure is expanded. This is enforced through .# > 0. Moreover, the volume fractions must
satisfy ag +ay = 1, where a;, € (0,1), and hence only one evolution equation for the volume fractions is needed.

2.1.2. Mass balance

The evolution of the mass of each phase is contained in the balance equations

Oragpg + Ongpgvg = H (e — fig), (7)
Oroupe + Ozoreppue = A (pg — fue), (8)

wherein % is the mass relaxation parameter, and the source terms on the right hand sides of (7) and (8)
account for mass transfer between the phases [26,27]. The mass transfer occurs from the phase with the highest
chemical potential towards the phase with the lowest, which is ensured through the assumption JZ° > 0. We
observe that conservation of total mass is contained by summing (7) and (8):

Oep + 0y (agpgvg + cupeve) = 0, 9)

wherein we have defined the mixture density p = agpg + agps.

2.1.3. Momentum balance

Similar balance laws apply for the momentum of each phase:

Oragpgvg + 3x(0égpg11§ + agpg) — Pi0zg = Vi (e — pig) + A (ve — vg), (10)
Dycuepeve + Oy (copevy + cupe) — pi0yoy = Vi (g — pue) + A (vg — V). (11)

Herein, p; is an interface pressure and . is the momentum relaxation parameter. In Section 2.3.2, we propose
a thermodynamically consistent expression for p;, given as a temperature-dependent average of the phasic
pressures.

Note that from the averaging procedure resulting in these models, the interface velocity v; in (10) and (11)
need not be the same as that in (6) (see e.g. Ref. [45]). However, we have chosen these to be equal to keep the
notation to a minimum, as this will not influence the main conclusions of this paper. The source terms associated
with v; on the right hand sides of (10) and (11) represent the momentum of the condensating or vaporizing
fluid, which is transferred to the other phase. The source terms associated with .# represent interfacial friction,
and are assumed to cause momentum transfer from the phase with highest velocity towards the one with lowest
velocity, which is ensured by requiring .# > 0. We observe that conservation of total momentum is ensured by
summing (10) and (11):

O (agpgg + aupeve) + Oy (agpgvé + apevi + agpg + agpe) = 0. (12)

2.1.4. Energy balance

The balance laws for the energy of each phase may be stated as

O01Eg + 01 (EgUg + QgUgPg) — PiviOp0g
= —pid (pg — pe) + (1 + 20i%) H (e — pg) + vidl (ve — vg) + H(Ty — Ty), (13)
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0t Ep + 05 (Egve + cyvepe) — piviOzre
= —piI (0 — pg) + (1 + 30i%) H (g — pe) + vidl (vg — ve) + H(Ty — Ty).  (14)

Herein, p; is an interface chemical potential, 5 is the temperature relaxation parameter, and we have introduced
the total phasic energy per volume Ej, = E™ + E}C‘m, where the phasic internal and kinetic energies are given
by, respectively,

E]icnt = Ok PKCL, (15)

Efn — Lagprui. (16)
On the right hand side of (13) and (14), the terms associated with .# represent energy transfer due to expansion—
compression work, the terms associated with J# represent the energy which the condensating or vaporizing fluid
brings into the other phase, the terms associated with .# represent energy transfer due to frictious momentum
transfer, and the terms associated with 7 represent pure heat flow. The latter should flow from the hotter
to the colder phase, which is ensured through the assumption % > 0. Moreover, we see that total energy is
conserved by summing (13) and (14),

OE + 0, (Egvg + Egvg + QgVUgPg + Oéfvﬁpé) =0, (17)

where we have introduced the mixed total energy per volume E = E, + E;. Note that the same observation
on the interfacial velocity as pointed out in Section 2.1.3 applies to (13) and (14). The interface velocity is for
simplicity of notation chosen to be the same v; in (13) and (14) as in (6) and (10) and (11), but the choice does
not have consequences for our main conclusions.

2.1.5. Phase independent form

With all possible relaxation terms, the BN model [4], as presented in (6) to (8), (10), (11), (13) and (14),
can be stated compactly as

Oray, + vi0 0 = I, (18)

O pr + Oz prvy = Ky, (19)

Ay prvi + On(ckprvy + agpr) — Pidsay = viKy + My, (20)
OBk + 0p (Eyur + anvipr) — pividpoe = —pili + (i + 30) Ki + vi My + H, (21)

for each phase k € {g, £}. Herein, the shorthand forms of the relaxation source terms, I, Ky, Hy and My, have
been defined such that I, = —Iy = S (py — pr), Ky = —K¢ = A (e — pg), Hy = —Hy = 7(T; — Ty), and
My = —My = M (v — vg).

2.2. Evolution of primitive variables

In order to systematically derive other models in the hierarchy, and to derive a physically valid parameter
set for the basic model, we now seek the evolution equations for primitive variables, such as phasic velocity vy,
density pg, pressure py, temperature T}, entropy si and chemical potential ug. To simplify the notation in the
forthcoming, we introduce the phasic material derivative, defined by

Di (1) = 0¢ () +vk0s () (22)

for each phase k € {g, (}.
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In the forthcoming calculations, the following relation will prove useful. For an arbitrary quantity f, we have
from (19) and (22) that

apprDif = Oragpr f + Ozapprvnf — fKp. (23)

2.2.1. Volume fraction

For clarity we state the evolution equation for the volume fraction. Using (18), we have that
Drag, = I, + (v — i) 0z, (24)

2.2.2. Velocity

We now seek the evolution equation for the phasic velocity. Using f = vy in (23), and (20), we obtain
Dyvr = (arpr) "' ((pi — pr) 0w — arOapi + (v — vk) Ky + M) . (25)
2.2.3. Density
The density evolution equation is found by combining (19) and (24),

1
Dyppr = _%(UI@ — 03)0p 0 — Pr0zV; — %:Ik + OTkKk- (26)

2.2.4. Kinetic energy

In order to obtain the evolution equation for the specific internal energy, we start by finding the evolution
equations for the kinetic energy. Using f = v7/2 in (23), and (16) and (25), we obtain

8tE,l€dn + &;E,};i“vk + akvkﬁmpk + vk(pk — pi)é)mak = (’U{Uk — %’Uﬁ) K + v My,. (27)

2.2.5. Internal energy

We obtain the evolution equation for the internal energy by subtracting (27) from (21), expanding and
collecting terms:

WEM™ + 0, B v + aprOyvk + piv — v3)0pok = —pily, + gu Kk + (vi — vg) My + H, (28)

where we have introduced a shorthand interface energy gp = u; + % (v — Uk)? Now, by using (15) and (28) and
f = ek in (23), we obtain

Dyer = 7O‘k1p’< ( —pilIl + (vk — vi)Oz ) — arPEOL VL + (g — k) Kk + (vi — vg) My, + Hk)~ (29)
2.2.6. Entropy

The fundamental thermodynamic differential reads
dey, = Tpdsk + prpy “dpr, (30)

where s, is the specific entropy of phase k. By writing (30) in terms of material derivatives, and inserting (26)
and (29), we obtain the evolution equation for the phasic entropy as

Dysi = (crprTr) ™" [(pk — pi) (I + (v — 01)0zaur) + (g — hi) Ky + (i — vg) My, + Hy]. (31)

Herein, the phasic specific enthalpy is defined as hy, = e + pi/pr. By using f = si in (23) along with the
identity pg = hx — TkSk, (31) may be written in the balance form

0 Sk + 0uSpv =T, ! [(pk = pi) U + (v — i) Opeur) + (gr — pue) K + (vi — v) My, + Hk} (32)
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where we have defined the phasic entropy per volume Sy = apgSk-

2.2.7. Pressure

The pressure differential in terms of the density and entropy differentials may be written as
dpr = Cidpk + TipiTrdsg, (33)

where we have introduced the phasic thermodynamic speed of sound and the first Griineisen coefficient, respec-
tively defined by

= (Opr/0pr),, and Ty = plzl (8pk/8ek)pk ) (34)
By writing (33) in terms of the phasic material derivative, and inserting (26) and (29), we arrive at

Dy, = SEEPIPR (1 (v, — 03) D) — picOuvi + Fk(gk_iwfﬁs + L (v — vp) My, + £ Hy. (35)

ag [e25

2.2.8. Temperature

We now seek the equation governing the phasic temperature evolution. The temperature differential may in
terms of the pressure and entropy differentials be written as

ATy, = Tk Trpy, ¢ *dpi + TiC, 1 dsk, (36)

where the specific isobaric heat capacity is defined by Cp = T (9s,/0T))
phasic material derivatives, and inserting (31) and (35), we obtain

- Now, writing (36) in terms of

120, 1Tk
1+ c? LTy
DiTy = | ———=—(r —pi) — (I + (vr — vi)Opag) — T Tr Oz vy,
arprCp
7, 1t FkCC%ka( he)| Ki + L chc%ka I( YMy, + H]. (37)
k= Nk Et ———— [(vi —vg) M k|-
Qg Pk akprChp k g arprCp k
2.2.9. Chemical potential
The natural differential of the phasic chemical potential reads
dpy, = py; 'dpr — s, dT. (38)

Therefore, writing (38) in terms of phasic material derivatives, and inserting (35) and (37), we obtain

2
Dypp = = [(Fk - & - F’“Tikgk) pe—p) _ a+ PkaSk] (I + (v — vi)Ozui)

ay c? Ok

2 S
— (¢ = DiTsk) Ouvr + 5o [Ci — D Thsy, + (Fk - - @> (gr — hk)] Ky

2
Ck

(T — g — S50 (v — vi) My + Hi] . (39)
prk/ 1

2
Ck

+

Xk Pk

2.3. Laws of thermodynamics

For the model to correctly represent physical phenomena, it should be verified that it satisfies fundamental
physical principles [22,23]. We have already verified that it conserves mass, momentum and energy, respectively
represented by (9), (12) and (17), where the latter is known as the first law of thermodynamics. We now
consider the second law of thermodynamics, which states that the total entropy should be non-decreasing. The
analysis in the following is reminiscent of that of various previous works [15,22].
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2.3.1. Total entropy evolution

The total entropy per volume is given by S = S; + S,. The evolution equation for the total entropy is
therefore found by summing (32) over k € {g,(}:

0¢S + 05 (Sgug + Sevy) = S+ L+ S + S =7, (40)

where we have defined the entropy source terms

T = (pgT;px pe— pl) I, + [(pg*pi%ivgfvi) _ (pl_Pi%iU[—Ui)} v, (41)
= ( (vi —vg) )Tgl - (ﬂi*WJr%(Ui *W)Q)Tz_1> Kg, (42)
Sy = |(vi —vg) T_ — (vy — vy) T[l} My, (43)
= (T, ' = T; ) H,. (44)

2.3.2. The second law of thermodynamics

We define the global entropy as

- / S(z,t) dx, (45)
€

where ¥ C R is some closed region. Note that this is the thermodynamic entropy, and not the mathematical
entropy discussed by Chen et al. [12]. These are in general not interchangable, although thermodynamic entropy
can in some cases play the role as a mathematical entropy. This relationship is highly relevant for the stability
analysis of our two-phase flow relaxation models, and we refer to [16] for some discussions. For our present
purpose, we limit our interest to the physical validity of our models, i.e. they should satisfy the second law of
thermodynamics, which for our models can be formulated as follows.

Definition 2.1. The second law of thermodynamics states that the global entropy is non-decreasing, i.e.,

dQ
_— > 4
% 0 Vt, (46)

in our context.
Proposition 2.2. Sufficient conditions for the relazation model given by (6) to (8), (10), (11), (13) and (14)
to satisfy the second law of thermodynamics (Definition 2.1) are
I K, M, >0, (47)
min{pg, pet < pi < max{pg, e}, (48)

o Tlpg+ Tgp@

pi= VI (49)
L \/Tg’ug+ Tgvz

Vi = \/EJ,»\/]T[ 5 (50)

given only the physically fundamental assumption Ty, > 0 for k € {g, ¢}.
Proof. By temporal differentiation of (45), in combination with (40) and (46), we obtain

/ dz #(2,1) > 0, (51)
€
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where we have assumed that the entropy flux of (40), Sgvg + Seve, vanishes at the boundary of €. For (51)

to be satisfied, clearly . > 0 is a sufficient criterion, for which statement to hold the non-negativity of all the

partial source terms .%}, .}, 7 and ., is in turn sufficient. We now show this for each of the terms under the
conditions of (47) to (50).

Firstly, the conditions (49) and (50) inserted into (41) yields

Sp = (pg — pé)z (TgTZ)_l/Q > 0. (52)

Now, (48) is equivalent to ; = Bupe + (1 — B,)pe, with 3, € [0, 1]. Hence, combination of (42) and (50) yields

Fo=H (e = pg)? (1= BT + BT > 0. (53)

Next, (50) inserted into (43) yields

Sy = M vy — vg) (T, Ty) Y% > 0. (54)
Finally, (44) becomes

Fp = (T — Tp)*(T,Ty) "' >0, (55)
and hence all the source terms are non-negative. O

Remark 2.3. The interface conditions (49) and (50) are sufficient, not necessary, and the square-root-of-
temperature weighted average between the phasic values differs from choices in the literature, e.g. the initial
choices by [4]. The reason for this particular weighting is that we enforced the interface velocities in (6), (10),
(11), (13) and (14) to be equal. Allowing these to differ would enable other linear combinations of the phasic
quantities, which could possibly be more suitable for numerical simulations [57]. These differences, however, do
not have implications for the main conclusions of this paper.

2.4. Wave velocities

We now consider the homogeneous limit of the BN model, where the source terms %, ¢, #,# — 0.
The resulting model has previously been extensively studied by several authors, see e.g. [56,71]. The model
has two fluid-mechanical sound speeds; one for each of the phases. The seven wave velocities are given by
Ao = {vi, Vg, V¢, Ug — Cg, Vg + Cg, Vg — Cp, V¢ + ¢} [56].

In typical applications, the flow is subsonic, i.e. |vy — v¢| < ¢g, ¢, may be a valid approximation. Evaluated
in the velocity equilibrium limit, taking v = vy = vy, the eigenvalues are, sorted in ascending order,

A(()O) = {'U —Cy,+,V —Cy,—,V,V,V,V + Co,—,V + CO,Jr} (56)

where we have defined ¢o = max{cg,ce} and ¢o— = min{cg, ¢/} as the higher and lower sound speeds,
respectively.

3. THE v-MODEL

We now study the model that arises upon imposing instantaneous equilibrium in velocity, i.e. letting the
velocity relaxation parameter .#Z — oo, which we expect corresponds to

Vg = Vg = . (57)
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Simultaneously, we require the term M, = .#(v¢ — vg) to remain finite. By noting that for a general function
f, the phasic material derivatives are equal for the two phases, i.e. Dpf = 0;f + v0,f = Df, then the system
that results from evaluating (25) for the two phases k € {g, ¢} can be solved to yield

Mg = (ngé + Ylpg - pi) azOég + agYZang - aZYgazpb (58)

where we have introduced the phasic mass fractions Y3 = agpr/p. The model that now results from inserting
(57) and (58) into the basic model of Section 2, was analyzed by Flatten and Lund [22,42], as it constitutes
the basic model of the v-branch of the hierarchy. The model is hyperbolic and has previously been studied by
many authors [35,52,59].

3.1. Wave velocities
The wave velocities of the velocity equilibrium model, in the homogeneous limit where %, %, 5 — 0, are
given by [22]
Ay =4{v —¢p,v,0,0,0,0+ ¢y} (59)
Herein, the sound speed of this model is defined by
o =Yy, +Yici. (60)
Proposition 3.1. The v-model satisfies the subcharacteristic condition with respect to the basic model, given

only the physically fundamental conditions py,ci >0, for k € {g, (}.

Proof. We observe that Y, +Y; = 1, and due to the given positivity conditions, we have that Y3 € (0,1).
Therefore, (60) implies that min{cg, ce} < ¢, < max{cg, ce}. It then follows trivially that the wave velocities of
the v-model are interlaced in the wave velocities (56) of the basic model evaluated in the velocity equilibrium
state (57). Hence, the associated subcharacteristic condition of Definition 1.1 is satisfied. (]

4. THE p-MODEL

In this section, we consider the mechanical equilibrium model, which arises when we assume instantaneous
mechanical equilibrium in the basic model of Section 2. We let the pressure relaxation parameter .¢ — o0,
which we expect to correspond to p; = p; = p. Simultaneously, the product I, = .#(p; — ps) should remain
finite. The mechanical equilibrium model is found by using (35) evaluated for each of the two phases. From this,
we may find an expression for I, without temporal derivatives, and insert it into the basic model of Section 2.
The resulting model has been extensively studied previously [21,56]. Like other one-pressure two-fluid models,
the model is not hyperbolic.

4.1. Wave velocities

We consider now the homogeneous limit, where 2, #,5¢ — 0. The eigenvalues to the lowest order in the
small parameter € = vy — vy, 1.e. evaluated in the equilibrium state defined by (57), are given by [21]

AZ()O) == {U —Cp7U7U7UaUa'U+Cp}’ (61>

where the sound speed in the p-model is given by

-1
2_ (og ) (o o
‘p = (p: + pe) (pgiﬁ - pec%) ) (62)
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Proposition 4.1. The p-model satisfies the weak subcharacteristic condition of Definition 1.2 with respect to
the basic model of Section 2, subject only to the physically fundamental conditions px,ci > 0, for k € {g, ¢}, in
the equilibrium state defined by (57).

Proof. We see from (62) that ¢ is a convex combination

-1
G=pul o, where g = () (2 4 0n) (63)

PrCE pgcz | puecy
since g + ¢ =1, and ¢, € (0,1), due to the given conditions. This implies that
min{cg, ¢/} < ¢p < max{cg, e}, (64)

and hence the weak subcharacteristic condition is fullfilled with respect to the basic model, whose local eigen-
values evaluated in the same state are given by (56). O

5. THE T-MODEL

In this section, we investigate the thermal-equilibrium model (7-model), which emerges from assuming
instantaneous thermal equilibrium in the basic model of Section 2. To this end, we let J# — oo herein, which
we expect corresponds to

Te=Ty=1T, (65)
in such a way that Hy = 5 (T; — T,) remains finite. In the following we present the governing equations.

5.1. Governing equations

The full T-model may be stated as the basic model of Section 2, in which (13) and (14) are replaced by (17)
and the thermal equilibrium condition (65).

In order to establish the impact of instantaneous thermal relaxation on the wave velocities, we need to express
the model in a quasi-linear form, and thus obtain the velocities as the eigenvalues of the associated Jacobian.
This is most easily done by exploiting the primitive variables, which is what we now turn to do.

Firstly, we have that the phasic pressure differential in terms of density and temperature may be written as

dpr = ¢, 'dpk + TrprCy iy 'dT. (66)

where we have introduced the ratio of specific heats ¢, = 1+ I'2C, ;T /c3, and used (65). With (66), (25)
becomes

Aipk : I Chp, A 1
Dy, = mik Opo, — p:;ﬁampk — %BIT + T?Kk + mkok, (67)
where we have defined the phasic mass per volume my = «aypg, the phasic interface pressure jump Ajpy = p; —pk,
and the phasic interface velocity difference Ajvy, = v; — vg. Furthermore, (37) becomes

DyT = — [k 4 BT ([ — Agwyd,an) — T4 T,

P,k

+ FkT-ﬁ-Cik(gk_hk) Kk+ Ck AiUkMk+ S Hk:v (68)

Mk Cp.k Cp .k Cp.k

where we have introduced the extensive heat capacity at constant pressure C,, x = m4C)p 5. We now define the
weighting factor 0 = C’p?kcgl/(prgCgl + Cp e, "), for which clearly 6, + 0, = 1 and ), € (0,1). Multiplying
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(68) by 0, and summing over the phases yields

AT + (Byvg + Opvg) 0,T = — [QgFgT v W“T] U5t 0 og — 0Ty TO,vg — 0T TOpv,

ag ayp
— 0.T.,T 0,I',T he —h 0., 7 0,['T
+~pg pf_gg_"_éé Ig+~€ ~g_’_gg_él Kg
Cpa Cp.e Qg Qy Cp.e Cp.e Mg my
Cg CZ Cg C(
+ "% A, (69)
Cp.g + Cp.e
Ce Ce

where have used the interface parameter definitions of (49) and (50) evaluated in thermal equilibrium (65) to
simplify.

5.2. Wave velocities

We now seek the wave velocities, i.e. eigenvalues, in the homogeneous limit, where the relaxation source terms
S, K, M — 0. From (24), it is then clear that o is a characteristic variable of the system, since the volume
fraction is advected with the velocity v; in the absence of relaxation source terms. By using (26), (67) and (69),
the remaining, reduced system may now be expressed in the quasi-linear form 0;ar + AT (ar) Ozar = 0, where
ur = [pg, pe, Vg, ve, T'], and the associated Jacobian is given by

Ug 0 Pe 0 0
0 Vy 0 Pe 0
X 2 IyCp e
Ar=|ae 0w 0 e (70)
< TeCp.e
0 Z¢ 0 ve e

0 0 HgFgT 0,1yT HgvngGgw

from which we can find the remaining five eigenvalues. The characteristic polynomial of the latter is a fifth-
degree polynomial, for which in general no closed-form solution can be obtained. We now note that we may

write A = A( )4 eAgpl) where € = vy — vp. The matrices are given by

v 0 Pg 0 0
0 @ 0 y 0
~ c2 — I'.C
R S I @
e = F'eCpye
0 peCe 0 v Czp
0 0 GgFgT 0,1yT v

and A(Tl) = diag (6¢, —0g, 0¢, —05,0) , where we have taken 0 = 040, +6,v,. Hence, we approximate the eigenval-
ues by means of a perturbation expansion in the small parameter €. To the lowest order in €, vy = v, = U = v,
and the eigenvalues of the T-model are given by

)\59) ={v—cr4,v—cr_,v,v,v+cp_,v+cr4} (72)

where the two distinct sound speeds of the model are given by

2 p.g

P
C =
T,+ 9 ra n ry 1 (1 B
mgcg mycy T \Cpyg Cp,e

cg-‘rc% 1 + 1 + 2 CZ + l—‘ec :|: cﬁ.—c? 1 + 1 . Fgc? + F?cg 2 +4 le"?
T C c’p,e mg c2 m(( T C. . C’p’e mgcg mch mgmy
+
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Proposition 5.1. The T-model satisfies the weak subcharacteristic condition with respect to the basic model of
Section 2, subject only to the physically fundamental conditions py, Cp i, T > 0, for k € {g,(}, in the equilibrium
state defined by (57).

Proof. We first show that the sound speeds are real. We note that on the given conditions, clearly c2T7 1+ €R,
and moreover, 02T7 + = 0. The product of the sound speeds may be written as

c;ic}? = ¢, +Co + 2% where 29 = , - - ’ (74)
€0,+0,- (ép,g Chp €>
Based on the given conditions, it is clear that Z2% > 0 and therefore
0< c%_FC%_ < 03,4_03,_, (75)

and hence also c%,_ > 0, and thus cr + are real, and by definition, positive. Now, using the definitions of cg +
and (73), it follows that

(b4 =t )(ch 4 — b )(ch - — cp ) — ) = =9, (76)

where

0 _ (2 o\2Iirf [ T3 1 \17?
QT - (Cg - cﬁ) mgmy |:mgc2 + mgc2 +7 (a + m)} . (77)
The given conditions ensure that Q% > 0. The only ordering of sound speeds compatible with (75) and (76) is
0<ecpr_ <cy— <ecr4+ <co4, and hence the subcharacteristic condition of Definition 1.1 is satisfied. O

Proposition 5.2. The vT-model of Lund [}2] satisfies the subcharacteristic condition with respect to the T-
model, given the physically fundamental assumptions py, Cp i, T > 0, for k € {g,¢}.

Proof. The sound speed of the vT-model is given by [42]

2
2 2 ( Ty Iy 1 1 1 2 2
1 Mgty (mg6§ tma) t1rle,; Ta7) et

2
Cor = 78
T L I ;(~1+1> (78)
mgc2 mec? T \Cpe Cp.e
Now, using (73), we can write the product of the differences as
T
(¢4 —cir) (ch- —cir) = —Qur, (79)
where
2
1 1 F c2 r2e? 1 1
: H (et o) (=) e+ o + (7 — ) Tl
T — Y, YYZ B T2 (80)
oy b ( 4 ;)
MgCy mecy Chpe Cp.e

With the given conditions, clearly Q% > 0. Hence exactly one of the factors on the left hand side of (79) is
negative, and combined with Proposition 5.1 we realize that ¢y, < ¢y < ¢ 4, and hence the subcharacteristic
condition is satisfied. O
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Proposition 5.3. The pT-model satisfies the weak subcharacteristic condition with respect to the T-model,
given the physically fundamental assumptions py, Cp i, T > 0 for k € {g, £} in the equilibrium state defined by
(57).

Proof. The sound speed of the pT-model is given by [21]

- (e +5) (2 + 2) o)

C’
g
CPT o « ay Iy 2
g T _
(pgcg * pecg) ( Chre 1)1’) ( pgcf)

We may now write
(s = cpr) (- = Gpr) = = (82)

where

oY 1 1 2 r;7 1(1 1
QgT: géT + = g5+ [24'? =t =
PgC2pecy Cpe  Cpu) |mecz  muc Cpg  Chpu
1 1 2 2 Py Iy Taci | Tecy
(& ray) (@) -7(s - as) (o + %)
2
a ay 1 1 r 'y
(pi; + ,,) (c * c) +T (pgiz - p)

Clearly QgT > 0, on the given conditions. Hence exactly one factor on the left hand side of (82) is negative,
yielding cr,— < cpr < cr 4, and the weak subcharacteristic condition is satisfied. O

2

(83)

6. THE p-MODEL

We now proceed to investigate the chemical-equilibrium model (the p-model), which arises when we assume
instantaneous chemical equilibrium, i.e. let the chemical relaxation parameter £ — oo, which we expect
corresponds to

fig = [ = p1. (84)

Simultaneously, we require the product K, = J# (1¢ — tg) to remain finite, and in the forthcoming we seek to
express this without any temporal derivatives.

Remark 6.1. In our framework J# must be set to zero when transition to one-phase flow occurs. Otherwise,
strictly enforcing (84) will lead to unphysical results [3,5,43] in the form of negative volumes. Consequently, we
strongly emphasize that all our results concerning nonzero phase transfer are meaningful only for the genuine
two-phase region where the flow variables reside on the saturation curve.

With Remark 6.1 in mind, we can write the chemical potential evolution equation (39) as
Dip = — [UeAipr + ooy '] (I — Aivrdoo) — Eu0pvi + Xi Kk + iAo My, + P Hy. (85)

where we have used (84), and defined the shorthands

& =2 —TpThsp, U = 28 — sy, = 5’“2 T’“S’“ + 3 (Aog) . (86)

mkck Cpi’ mcj,
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By using (85) evaluated for each of the phases, and subtracting these expressions from each other, we obtain
K, = /@;1 (€g0pvg — £40zv0 — (Vg + o) Hg) — A*Opag + (Vg — w)n;l@wu + %' Iy — K My (87)

where we have defined the shorthands

b= e Ty S S L (4 () + te(Are)?) (88)
[ ép,g ép,l mgcé mgc? 2 g 1Yg L ive ’

b = ;@;1 [<ngipg + %) Aivg + (ngipg + C%) Aﬂ]@} R (89)

K=k, [%Aipg + YeAipe + if + C%} s K =R (Vg Aivg + YeAjug) (90)

6.1. Governing equations

By using the expression (87) to insert for K, in the basic model of Section 2, the py-model can now be
summarized with the following set of equations:

e Volume advection: 0y + vi0y 5 = I,
e Conservation of mass: Oyp + Oy (gpg¥s + epeve) =0,
e Momentum balance:

Orag PV + Gm(agpgvg + agps) — (pi — v;2*) Oz — viggﬁ;;lamvg + vifmglﬁmw
— vi(vg — vg)/i;laga,u =0 KM + (1 —vikl') Mg — vi (g + 1) Ii;ng, (91)

e Energy balance:

N Eg + 0, (Egvg + agugpg) — [pivi — (1 + %012) "] Oyoy
- (,u + %UiQ) ’ﬂ;l [ggaarvg — &0zvg + (Ug - 'Ué)aa:,u]
= [(n+3v7) %' = p] L+ [oi = (o + 30%) &) My + [1 = (1 + 304%) (Vg + ), | He,  (92)
Momentum and energy equations for the liquid phase are found by phase symmetry; interchanging indices g
and /.
6.2. Evolution of primitive variables

In order to write the system in a quasi-linear form, and thereby find the wave speeds of the p-model, we use
the evolution equations for the primitive variables. We therefore now seek the evolution of some of the primitive
variables under the assumption of instantaneous chemical equilibrium.

We first define the weighting factor ¢ = X,Zl/(Xgl + le). Multiplying (85) by ¢ and summing over the
phases, we get for the chemical potential

815,“ + ((bgvg + ¢€'U€) amﬂ + Gggaxag + ¢g£garvg + (bégfazvé
= [~ 0u(iutimy + ooz ) + delwedipe + G0 )| Iy
+ (¢gngivg - Qj)ﬂWAiW) Mg + (%wg - (bﬂW) Hga (93>

where we have defined the shorthand coefficient

Go, = —%g (Vg Aipg + £gag1) Ajvg + ¢ (WAipe + fgagl) Ajvg. (94)
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For the phasic velocity vg, we find from (25) the evolution equation

atvng[vgfégAiwg}aTg+€zAvgaw+Avgﬂ%;mgaag+ L9, py — Sitsle=v) g )

Mgk, Mgk,

_ Aivg
Mg

Aivg 2
g + nTg (1 — Ajgxy') Mg — 7%%;”5’@ (95)

Mg

and vy is found by phase symmetry.
The phasic pressure evolution is found from (35). For the gas phase, it reads

O0iPg + VgOupg + Pg’fagamag + nggaxvg + Pg 0, OV + P Bmu
= agl [~ (PsAipg + pgcg) (fg + 3T(Aivg)?) K;] Iy
+ O‘g_l [FgAi“g - (§g + %Fg(Aivg)Q) Kaﬂ M,

+ agl [Fg - (gg + %Fg(Ai”g)z) (7/’% + 7/’4)“;1] Hg' (96)

wherein we have defined the coefficients

Plo, = ag ' [(& + 3Te(Aivg)?) 2" — (Pglipg + pycy) Aivg] (97)
Pg“,vg = ch - (fg + *F g(Aivg) )fg . 71 (98)
P, = (& + 3Te(Aivg)?) Soog 'y (99)
Pr, =~ (& + 5Te(Aivg)?) (vs — ve)ag 'y (100)

The corresponding expressions related to the evolution of p, are found by phase symmetry.

6.3. Wave velocities

We now wish to derive the wave velocities of the p-model in the homogeneous limit, where &, 3, # —
0. In this limit, the volume fraction «, is a characteristic variable with the associated eigenvalue vj. The
remaining, reduced model, i.e. (93), (95) and (96) for both phases, may then be expressed in the quasi-linear
form 0,u,, + Au(ﬁu)azﬁu = 0, where the reduced vector of unknowns is 0, = [, vg, V¢, Dg, p¢], and the reduced
Jacobian reads

¢gvg + Gove (bggg De&e 0 0
SR g - Sl SR g0
A Ajve(ve—vyp Ajvg  Ajvyg —
Ay =| S SR g S 0t (101)
Pg/; u nglvg Pg’:zv . Vg 0
PZ,,U, PZ,vg Pl,v[, 0 Ue
Again the eigenvalues A are given the roots of a fifth degree polynomial, for which in general no closed-form
solution exists. We therefore expand in the small parameter € = v, — v¢, ie. A, = ALO) + €A§}) + ..., and
A=A 4 XM 4 . Herein, the lowest-order system matrix reads, taking o = Vg + Gy,
v bele Pe&e 0 0
0 v 0 Py Lo
AO = |0 0 v 0 pt, (102)
0 0 —
0 pucy — &/ (o) Gef(om”) 00
0 Gelnl)  pd-gfam?) 0 o
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where we have used the lowest-order term of «,, as defined in (88):

&

mgc? .

RO = Tesa | Tesi | &

2
® Cpg Chp.e MgCy

+

(103)

To the lowest order in €, v = vy = ¥ = v, and thus the eigenvalue problem consists in finding the roots of

det(ALO) — AOT) = 0. Hence, the full vector of eigenvalues is given by
AELO) = {’U —Cu,+5V = Cp,—, U, 0,V + Cu,— U + c#7+} (104)

where the two sound speeds in the p-model are given by

2
(Tfsé n Tfs%) (& +e3) + Sick | Skt \/{(Tﬁsg . 7:[,5?) (@ —c)+ g _ g4, a8

2, = Cp.g Chpe mecy mgcy Chrg Cpe mecy mgcy Mgy (105)
it = [t e, @, @
Cpe Cpoe mgcs myc;

Proposition 6.2. The p-model satisfies the weak subcharacteristic condition with respect to the basic model of
Section 2, given only the physically fundamental conditions pi,Cp i, T > 0 for k € {g, ¢}, in the equilibrium
state defined by (57).

Proof. We first note that ciyi € R on the given conditions, and that ciﬁ 4 > 0. The product of the sound speeds
may be written as

3= &
-2 -2 _ -2 -3 0 0 _ —9 —omsc | mec}
CM7+CM,_ = C07+C07_ + Z/“ Where ZM = Cg 7 m. (106)
ép,g ép,f
Given the conditions we have that ZB > 0, and hence
0< ciﬁ_ci’_ < 0(2)7_’_0(2),_. (107)
Therefore also 0(2)’7 is positive, and thus we have that co 4+ are real and, by choice, positive.
Now, the product of the differences of the sound speeds may be written as
2 2 2 2 2 2 2 2 0
(CO,Jr - C;L,+)(CO,+ - c,u,f)(cO,f - CILL,+)(CO,7 - cp‘,f) = _Q,u,? (108)
where
0 _ (.2 2\2 £3&0 [Tes2 | Tusp & g 172
Qi=(¢—a) som |6t otz tma| (109)

Clearly, with the given conditions, Qg > 0, and hence the only ordering of sound speeds compatible with
(107) and (108) is 0 < ¢,,— < co,— < ¢u4+ < €0+, which means that the weak subcharacteristic condition is
satisfied. 0

Proposition 6.3. The vu-model satisfies the subcharacteristic condition with respect to the p-model, subject
only to the physically fundamental conditions py, Cp , T, > 0, for k € {g, (}.

Proof. The sound speed in the vp-model is given by [42]

2 T, 52 T,82
Ve (g + i) + (8% + 57 (mact +mecd)

gC2 myc C Che

12)H _ g . = pf p12 (110)
p Teta | 2% e B
Cpe Cp,e mgcy mecy
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We now consider the product of the differences in the sound speeds of the two models, which may be written as
2 2 2
(C,LL,+ - cv,u)(cu,— - ) - va? (111)

where

2

Tys, Tys} 9 5 &c; et
(mgcpﬁg + meChp e (Cg B Cf) mgca + myc? s+ mi 7ng fggﬁ

noo_
Qv/“ B ngY'Z Tys2 Tys? &2 (112)
C'ng + C'p,z + mg 02 + mgc%

Clearly Qf, > 0. Hence, exactly one of the factors on the left hand side of (111) must be negative, which gives
cu,— < cyu < ey 4, ie. the subcharacteristic condition is satisfied. O

7. THE pu-MODEL

We now consider the model which arises when we impose instantaneous mechanical-chemical equilibrium,
i.e. we let the relaxation parameters .#,.# — oo, which we expect corresponds to

pg=pe=p and pg = = p. (113)

Simultaneously, I, = . (py — pr) and Ky = J# (pp — pg) should remain finite. We now seek explicit expressions
for these terms in order to find the governing equations of the model.

In the following analysis we use the parameter set stated in Section 2 and therefore let the interfacial pressure
jump Aijp = p; —p = 0. From (35) and (85) we have

1
€k+§Fk(Aivk)
ak

Dyp = -2 il (IkJra akvk) + Ky + kAUkMk + ka? (114)

Dpp = —07’; (Ik + 5xcvkvk> + [ S Tks'“ +3 (Aivk)2¢k] Ky + YrpAjvp My, + 9y Hy,. (115)

mkc

where we have defined Ij, = I, — v;0,0 = Oyu.

Egs. (114) and (115) evaluated for each phase now constitute a 4 x 4 system which is straightforward to solve
for the four unknowns dp/dt, du/ot, I ¢, and K, in terms of spatial derivatives and the remaining source terms.
The final expressions for the latter two are

fg = —Tg“(vg — vp)Oup — gg”(vg —00)Oppt — PgOpargg + PpOyavy + IPH My + 17V Hy, (116)
Ky = =2 (vg — v0)0zp — gﬁ“(vg — ) Oyt — V00 + K Mg + % ' Hg, (117)

where the coefficients are given in Appendix A.

7.1. Governing equations
Inserting the expressions (116) and (117) into the basic model of Section 2, we are now in a position to state
the full model. The mechanical-chemical equilibrium model may thus be formulated as follows.

e Conservation of mass: 0yp + 05 (mgvg + myve) = 0,
e Momentum balance:

Oymgvg + 5‘mmgv§ + (ag + virpﬁﬂ(vg - Ug)) Ozp + vigﬁ“(vg — )0t + viwﬁiax@
= (1+’Ui ?H)Mg+’l}i7€1€ Hg, (118)
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e Energy balance:

01 Bg + 05 Egvg + [agug + (1 + %Uiz) P = pr_pgﬂ) (vg — ve)] Bup
+ (14 30%) G = pGp"] (vg = ve) Do+ [(+ 305%) Vi +pPe] 000
= [oi+ (0 + 5ui®) & = pif] My + [1+ (n+ 30:°) 8" — pip?] Hy. (119)
The momentum and energy equations for the liquid phase are found by phase symmetry. Note that, like other

p-relaxed models, the pu-model is expected to be non-hyperbolic for nonzero difference in the velocity unless a
regularising interfacial pressure p; is defined.

7.2. Wave velocities

We now wish to write the system in a quasilinear form, in order to find the wave speeds of the system, in the
homogeneous limit where we let the relaxation terms .#, 5 — 0. To this end, we will express the model in the
vector of unknowns uyp, = [p, i1, U, v, v¢]. We therefore seek the evolution equations for the elements of u,,.

For the volume evolution, we find, using (24) and (116), that

Orag + P (vg — vg)0pp + GHH (Vg — V) Ot + POz agvg — PrOrapve = 0, (120)

For the volume-averaged velocity v we find, using (25), (116), (117) and (120), that

0 + (agpg_l + aépz_l + Pg“gQ)awp + Gig/‘gan,u, + Oégan’Ug
— oedyvp + (q)gvg + ®vp — V{gs) 9,v=0, (121)

where we have defined the shorthand coefficients P}, GP¥, Vi’ (for which expressions are given in Appendix

A), used ¢ = vg — vy, and inserted By = 1 — By = /T¢/(y/Tg + /1¢). Now, for the pressure and chemical
potentials, we get from (114) and (115) that

O + (Whvg + Whve) O + Gll“edups + V0,0 = 0, (122)
Oupa+ P, + (Wi + Wive ) Dap+ V70,0 = 0. (123)
Again, the coeflicients are given in Appendix A.

The homogeneous system in a quasilinear form thus reads dyu,, + A, (0p,) Ozu,, = 0, where the system
Jacobian is given by

p p D P
\Ilgvg + \I/evé Gp € ‘/P O 0
i I 7 Dp
Plte Vhvg + Wy vp Vi 0 0
a ag P _2 DU _2 b
A = |t T Gye Dgvg + Qeve — Vo age —aue (124)
PR 1 Be#P o Begh* o Bevih,
1 b o _ b — = e v 0
Pg m%u ﬂm m 8 'rr;z;% °
1 BT _BsGu" 2 OeVue
> e € e € 0 Vg

Obtaining the assocated eigenvalues exactly by analytic means is again unfeasible, as the problem consists in

finding the roots of a fifth-degree polynomial. We therefore expand in e: A, = Az(,%) + 5A]([,L) + 52A1(72u) +...

where it is assumed that the matrices Aéﬁl are independent of €. To the lowest order, where ¢ — 0, taking
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v = vy = vy, we get the matrix

v 0 VPI)H7(O) 00
0o v v o o
0) _ | %= 4 X
Ayl = et 0 v 00, (125)
o 0 0 v 0
L 0 0 0 v
[
where the superscript “(0)” on the coefficients signifies the zeroth-order expansion in ¢, such that
Tgsg Tgs%
VP (0) — Crse Cp.e . 196
p (ag + Ou{)(TgSg_FTLs%)_i_(Eig_ f@ )2 ( )
PsCs pecy Cp.g éP«E PsCy pecy
The eigenvalues in the pu-model are, to the lowest order in ¢,
)‘;(B ={v— cpu, U, 0,0,V + cpu }, (127)

where we have identified the sound speed c,,, of the model, given by

o Tys? Tzsz
() (-2
CZ _ Pg Pe prg prg (128)

P Tys2 Tys? 2°
Qg Qay g £ fg _ &e
(et + o) (224 50) + (5 - wia)
Proposition 7.1. The pu-model satisfies the weak subcharacteristic condition with respect to the p-model, given

only the physically fundamental conditions py,Cpr, Tk > 0, for k € {g, ¢}, in the equilibrium state defined by
(57).

Proof. From (62) and (128), we observe that we may write

(129)

-2 _ =2 14 P
Cop = Cp -+ 20, where zp, =

Qg | X

( Pg + Pe )
Due to the given physical conditions, ZF, > 0, and hence 0 < ¢;,, < ¢, i.e. the weak subcharacteristic condition
is satisfied. O

Proposition 7.2. The pu-model satisfies the weak subcharacteristic condition with respect to the p-model, under
the physically fundamental conditions py, Cpx, Ty, > 0, for k € {g, £}, in the equilibrium state defined by (57).

Proof. Using the expressions (105) and (128) for the sound speeds in the two models, we may write

(Ci& - Cfm)(ci— - Cfm) = - (130)

2
iy (5 2) (B 20 (5 0) - o ) (2 59)
paczpec; \Cpg = Cpu Cpe ' Cpu g L PsCs  pecy g o

2
2 2 2 2
Ttk g oy Sy S (o g o) (T T (G
(& Cp.e MgCy mecy PegCy pecy Cp.g Cp.e PgCy pecy

Clearly, on the given conditions, Qf, > 0. Therefore, exactly one factor on the left hand side of (130) is
negative, and hence ¢, _ < ¢, < ¢, 4, so the weak subcharacteristic condition is satisfied. O

where

Q= (131)
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Proposition 7.3. The vpu-model satisfies the subcharacteristic condition with respect to the pu-model, given
the physically fundamental conditions py, Cp i, Tk > 0.

Proof. The sound speed in the vpu-model is given by [22,42]

Tgsé Tgsr;f
2 -1 “re  Cpt (132)
vpr P o + oy Z:gsé + ,11231?) + e & )2
pgcz | pecy ) \Cps ' Cpu Peci  pec;
Now, we may write
-2 _ -2 I PP gl _ 2 -2
Copp = Cpp + 20000 where 2= 2 (Pe = Pg)” cppu's (133)

which is clearly positive, due to the given conditions. Thus, 0 < ¢, < ¢y, i.e. the subcharacteristic condition
is satisfied. O

Remark 7.4. By direct comparison of (128) and (132), we find the ratio
o _ [, (O‘g n O‘f). (134)
Copp I

This is exactly the same ratio as has been shown to hold for other models associated with v-relaxation in the
p-branch of the hierarchy [21,46]. We can thus extend the relation

S _ ST _ STu _ S (135)

b)
Cup CopT CopTu Coppu

by the newly obtained ratio (134) between the sound speeds of the vpu- and pu-models.

Proposition 7.5. The pTu-model satisfies the weak subcharacteristic condition with respect to the pu-model,
given the physically fundamental conditions py, Cp i, T > 0, in the equilibrium state defined by (57).

Proof. In the equilibrium state defined by the pT'u-model, we have T, = T; = T. The sound velocity in the
pTp-model is given in [46], and may be rewritten as

Qg 4 X

+
P, = Ps__ Pt (136)

2 27
Qg e Sy ol [ S S S & Ty @ ol I S (0 W U R Ly
Pgca + pect + Cp;g |:Ah (Pe Pg) + ché:| + Cp,f Ah \ pg Pe pect

where we have introduced the enthalpy difference Ah = hy — hy.
We may reorganize the last equality in (135) to yield

Sen . Cone (137)

CpTp  CopTp

Flatten and Lund [22] showed that the subcharacteristic condition is satisfied between the models on the right
hand side, i.e. that 0 < cypry < copp. The same must hold for the models on the left hand side of (137),
i.e. 0 < cprp < cpu, and hence the weak subcharacteristic condition is satisfied. In particular, we may write the
sound speed as

—2

-2
CpT/,L = Cp;t + Zﬁf,p (138)
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where
[1(1 1) sg+sz)+Fg 52+F2 Sg 2
~ ~ Ah pieig C", éﬁ({ pgczé,g PZC?C',
Z3, = CpgCpuT TN I = (139)
(ng pg) (ép,g épf)
Clearly, Z77., > 0 based on the given conditions. O

8. THE T'~-MODEL

We now investigate the model which arises when we assume instantaneous thermal-chemical equilibrium,
i.e. let the relaxation parameters ¢, 7 — oo, which expectedly corresponds to

Te=T, =T and pg=p = p. (140)

The products Hy = (T — Tg) and K, = J¢ (j1¢ — pig) remain finite, and may be expressed in terms of spatial
derivatives and remaining source terms. In the forthcoming, we seek explicit expressions for these terms to
insert into the basic model of Section 2.

The equilibrium conditions are contained in (68) and (85). These may be combined to yield
K, = —ﬂi“@wag — gg“zs@g;,u — ‘TNT“E&CT — q/,fgawagvg + fl/if@wawg + %T”fg + %T#EMg (141)
where the coefficients are given in Appendix B.

8.1. Governing equations

We are now in a position to state the Tu-model in its entirety, by inserting (141) into the basic model of
Section 2. The model can be expressed by the following equation set:

e Volume advection: 0y, + vi0yp = I,
e Conservation of mass: 0;p + 0y (gpgtg + opevs) = 0,
e Conservation of momentum:

OragpeVg + 8z(agpgv§ + aPpg)
+0i[6TH (vg — v0)Opp + T (vg — v0)0:T + VIEO agug — ¥V, 0
i G, " (vg — v2)Os L (vg — ) Oy Z,g Qg Vg 3715 OV

+ (o (VI 977) = ) Bug = o I (1 ek (o — w0)) My, (142

e Conservation of energy: 0;E + 0, (Egvg + Eove + agvgpg + avgpe) = 0.
8.2. Wave velocities

We now seek the wave velocities of the model in the homogeneous limit, where %, .# — 0. As usual, we
are interested in the zeroth-order expansion in &€ = vy — v4.°> We may therefore directly evaluate the evolution
equations in this limit, and take vy = v, = v if they are outside the differential operator.

After some tedious, but fairly straightforward algebra, we find that to the lowest order in ¢, the wave velocities
of the T'u-model are given by

)\E,EB ={v—crp4,v — Crp,—, 0,0+ Crp—, U+ Crp 4} (143)

3Strictly speaking, exact eigenvalues may be found analytically in this model, since noting that ag is a characteristic variable
reduces the eigenvalue problem to finding the solutions of a fourth-degree polynomial, which is analytically tractable.
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Herein, ¢y + are the sound speeds of this model, which may be expressed by

2 2
Ty r
me+m <1+—Ah> < ——gAh>
02 1 A?Qm%mg(c§+c?) n g~ 2 n 7ng-‘rme~ o2 "
Tyt 2 Cp,gCP,ETZC;%C% CpgT CpeT

2 1
— g 2 Ty ry 243
Ahzmgmg(cgfc[ me—mg (1 ) + Mg —my (1*¥Ah> + 4 1+ C% Ah 17%Ah
CpuCp i T2c2c2 c,. gT CpT MgMe| =77 CpT
r -1
2 T TR (1t 2Ah Te L1 “EAn
« | AR meme + % +Cg o\ < +<&—F—g—FF2Ah> (144)
Cp,gCp,eT2c2c} Cre CpT & ca cz

Proposition 8.1. The Tu-model satisfies the weak subcharacteristic condition with respect to the T-model,
given the physically fundamental conditions py, Cp i, T > 0, in the equilibrium state defined by (57).

Proof. We may write

(C%Hr - C2T;t,+) (C%Hr - CzT;tﬁ) (C2T,f - C2T;A,+) (C%,f - C%u,f) = _qu’ (145)

where

—2 —2
T 1 1+T¢c, “Ah 1 1-Tge, “Ah T, (T, Ty I'yly 2
QTH = Mgy <C’ + = ép‘gT + , +—\|\=— = == Ah Cg

T Cp.eT CpT me \ ¢ g 5t
2
o —2
1 1-Tgec, “Ah 1 14+Tc, “Ah T T T, . 2
—<~ + —= — + ——=— — iz -3 - FZAr) ) g
CpgT Cp.eT Cp.eT Cp,gT s \ € 5 CgCe
AhZmeme 1 me m Ty 2 1 m me T 2
g mg e mg M _ s
|\ eaim (g () )+ o (B (- )
5 —2
Do Ty _ Dgly 1 1 ¥ s
+ (C§ g 6205 Ah ép,gT + ép,ZT + myc? + mgcs . (146>
Moreover, we may write
2 2 2 2 _ =T
(CT7+ + CT7—) - (CT;L,—i- + CTM,—) = ZTM (147)
where
_Lg
o7 U GO W= ST VI 6 VD VRS v VN N
Tr = |\ CpeT Cp.eT me \ ¢} c2 c2c2 c?
T
1+=5 Ah
1 i Iy (I'y Ty Igly Ah) ) el
Cp.eT CpeT mg \ ¢} <z cacq <
ey me <1+—2Ah> mg e <1—ngh>2
« Ah“mgmyg + ‘% Cé C% + Cg C% g + 'y Ty Tl Ah
Cp.sCpeT2c2c2 CpeT Cp. T g 2 2c7
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Clearly, Z%# >0 and Q%L > 0 on grounds of the given conditions. The only possible ordering of sound speeds
is thus 0 < c¢ppy,— < cr,— < cpp+ < cr 4, ie. the weak subcharacteristic condition is satisfied. O

Proposition 8.2. The Tu-model satisfies the weak subcharacteristic condition with respect to the p-model,
given the physically fundamental conditions py, Cp i, T > 0, in the equilibrium state defined by (57).

Proof. We note that we may write

2 2 2 2 2 2 2 2 _ 1Y
(Cu,+ - cT/t,-&-) (Cu7+ - CT/L,—) (C/L,— - CTu,—&-) (Cu,— - CT/L,—) =% (149)
where
Iy T
s 1+*Ah> (17f‘%Ah)
=mgmy || =— + g< i . +Se _“ — (L Lelepp) L) 2
T“ eI\ G, . Cp.g Cp.g Cp.e <t & cach me )78
r ¢ 2
1——5Ah s (1+ Ah)
B 5 sz( ~cé ) 50 " g _cl? n (& Ty Dl Ah) e c2
Crg Cp.e Cp.e Chrg 5 cz caci g ¢
2
AhZmgmy 1 me Ty 1 _ I
x [(Cp ng 0T2c2 cL; + CpeT ( c? + 2 (1 + Cf Ah) > ép’gT < + (1 c2 Ah) )
-2
e Ty Dele Ts; & &
+ (% 5 -3 Ah) ) ( L4 o)L (150)

: 2 20 (2 2 — zh
Now, we may also write (0#7_,_ + c%_) (CTWJr + CTM_) = Zr,,, where

—1
2 2 2 2
1 r Iy r ',y Tsﬁ 13 &
+&ts ( +me ( - Tgm) > + (— - % - 55 Ah) ) (a,,g R m)] . (151)

Clearly, Q%u > 0 and Z%L > 0 for the given conditions. The only possible ordering of the sound speeds is
therefore 0 < ¢y~ < cu— < crp+ < €y, ie. the eigenvalues of the relaxed model are interlaced between the
eigenvalues of the parent model, and the weak subcharacteristic condition is satisfied. O

Proposition 8.3. The vT u-model satisfies the subcharacteristic condition with respect to the T'u-model, given
the physically fundamental conditions py, Cp 1, T > 0.

Proof. The sound speed in the vTp-model is given by [42]

2 2
Ah —mele

_ Ah?mgmgc?, + (erWig ‘% ) + (p nﬂi[' Cé Ah)

9 Cp,eCpeT2c2c3p peT Cp,eT

CvT,u, = 2 (152)
my ’NLg mg my T'g
EPE (PN KUY (R
Ah*mgmy <t 4B i + e Te Teleap
Cp,gCp,eT? 0202 CpeT Cp,eT B 5 céc%
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We may now write the product of the differences between the sound speeds as

2 2 2 2 . Tu
(CTM,+ - CUTM) (CT;,L,— - C'L)Tu) - _QUTﬂv (153)
where
2
Athgmg(czfc%) T Ah T, T'.Ah T

— + = (m/er (1+—‘Ah>)+ —& (m +m (lf—gAh>)

QTH vy Cp,ng,gT2c§c§ Cp,gTc £ g c? CpeTc & L 2
oTp — Tgtt me  mg T, 2 me  my Ty 2
2 =tz (1+zZ AR =tz |\1-z Ak 2
_AhTmgmy + 2 & _ ¢ + &  _ g + 'y Ty Igly Ah
Cprgcp,ﬂﬁcécg CpgT CpT < cg cécf

(154)
Due to the given conditions, it is clear that Q;F# . = 0, and thus exactly one of the factors on the left hand side of
(153) is negative. Hence, the sound speeds must be ordered as crp,— < curp < €1y 4, i.e. the subcharacteristic
condition is satisfied. O

Proposition 8.4. The pTu-model satisfies the weak subcharacteristic condition with respect to the T p-model,
subject to the physically fundamental conditions py,Cp i, T > 0, in the equilibrium state defined by (57).

Proof. The sound speed in the pTu-model is stated in (136). We note that we may write
T
(C%uﬁ- - CiTu) (C%”u,— - CIZFTM) = 7Qp7‘fu’ (155)
where

QTM — ép,gépy@Tz
pTp = Ah2p2p7

r
r 14
1-—5Ah 1+-—5Ah
Ah?mgmy 2 2 PgpL 1 2 Ty PgpL 1 i Iy
% lép,gép,mc;cg (cg —ci) + L= 2 Ah 5 1+agzAh

g Cp T \ pe Pe CoaT | Ps e 2
m Mo T 2 . T 2 —1
AR2 C%+7§(1+7§Ah) %+72<177§Ah) 2
X _ 4 Mgy + 0 e 0 + g £ g + Q _ & _ FgF[ Ah
Cp»gcp,ljﬂcécg CpsT CpT i i cacl

r 2 T, 24 —2
G T 177§Ah & T I+—z Ah
Qg + (7} 4 p,g 1 ‘g + p,L 1 ¢ . (156)
pgcz ' peci AhZ | pe P ARZ | pg pe

Due to the given conditions, it is clear that Qgﬁu > 0. Hence, exactly one of the factors on the left hand side
of (155) must be negative, and therefore c¢r, - < cpry < crp+, i-e. the weak subcharacteristic condition is
satisfied. O

9. COMPARISON AND DISCUSSION OF MODELS

In this section, we compare the models in the hierarchy. We first show plots for relevant cases, and then
briefly discuss physical and numerical aspects of the different models.

9.1. Comparison of sound speeds

We now present plots of the sound speeds in all the models in the hierarchy, for different physically relevant
conditions, in order to illustrate the effect of different equilibrium assumptions. Plots with the same physical
parameters were presented by Lund [42] for the v-branch of the hierarchy, building on plots by [22]. [21] and [46]
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presented similar plots for the p-branch of the hierarchy. In the following, results for the complete hierarchy are
shown.

The main panel of Figure 2 shows the fluid-mechanical sound speeds of all the models in the hierarchy for a
water-steam mixture at atmospheric conditions. The thermophysical parameters are shown in Table 1. Apart
from the fact that the subcharacteristic condition is always respected, we notice that there are mainly two
equilibrium assumptions that affect the propagation speeds, namely those of p- and v-relaxation, respectively.
First, imposing instantaneous equilibrium in pressure attracts the sound velocities to the lower bound of the
parent models, which can be seen in the insets of Figure 2. Further imposing velocity equilibrium, the sound
velocity is reduced by a factor (see Remark 7.4)

p (ag + af) ~  Jaga. (157)
Pg Pt Pg

The approximation made is valid when py < pg, which is the case here. Hence, these equilibrium assumptions
seem to have severe impact on the wave velocities, in particular when the density difference between the phases
is large.
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FIGURE 2. Sound velocities in a water-steam mixture at atmospheric conditions. The insets
show close-ups of parts of the plots in the main panel.

In Figure 3, the sound speeds in the entire hierarchy are plotted for a COs mixture at 50 bar, whose thermo-
physical properties are given in Table 2. By close inspection, it can be seen that the subcharacteristic condition
is everywhere respected. In particular, the sound speeds of an equilibrium system are always interlaced between
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TABLE 1. Parameters for a water-steam mixture at atmospheric pressure.

Quantity Symbol  Unit Gas Liquid
Pressure P MPa 0.1 0.1

Temperature T K 372.76  372.76
Density p kgm 3 0.59031 958.64
Speed of sound c ms~! 472.05 15434
Heat capacity Cp Jkg™'K™1  2075.9 4216.1
Entropy s m?s ?K™! 73588 1302.6
Griineisen coefficient T’ () 0.33699 0.4
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FIGURE 3. Sound speeds in a two-phase COs mixture at 50 bar.

the sound speeds in the parent models. Again, the pressure relaxation has the most prominent effect on the
sound speed, but also combining thermal and chemical equilibrium seems to have a strong effect.

9.2. Discontinuous sound speeds

All the models considered in the present paper are only strictly valid when the gas fraction a, € (0,1). One
would expect the sound speeds of the models to be continuous at the phase boundary, i.e. at the transition
between single and two-phase flow, in the sense that the two-phase speed of sound should reduce to the single-
phase speed of sound in the limit where one phase disappears:

al;r_r}l cx — Ck (158)
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for a given model X in the hierarchy. However, some of the models have wave speeds that are discontinuous at the
phase boundary. In particular, this concerns the pTu- and vpT u-models, whose sound speeds are discontinuous
in both limits o — 1, which can be seen directly by evaluating the analytic expressions in these limits (see
Refs. [42,46]).

The T- and p-models have “half-continuous” sound speeds, in the sense that for the “+” sound waves, only
one of them is continuous in the limit ay — 1. For the p-model, taking ay — 1 in (105) yields

T 52 262 T 82 2C2
g g(c2 + 62) + Eng 4 |22 (02 _ C2) _ ggzz
. 2 Cpeg '8 ‘ Cg Cpreg ' 8 ¢ Cg
lim ¢, , = 5 s , (159)
ag—1 M ) Tesy + S
Ch.g Cg
which is equivalent to
. Cg . . Cg
lim ¢,y =max | ————=,¢ |, and lim ¢, =min | ————,c/ | . (160)
ag—1 77 &2 o ap—1 " e o
1 + 28 p,g 1 + 28 p,g
cz Tys2 c2 Tys2

Clearly, only one of these approach the appropriate phasic value c¢7. The result limits for a; — 1 are found by
phase symmetry. Similarly, we find for the T-model, from (73), that

. . c . .
lim ery =min | ——=%——=,¢/|, and lim c¢r_ =min | —2——,¢/ |, (161)
et | 4 DiCraT et TiChuT

2

c2 c2
to which the same observation applies.
The remaining sound speeds are continuous at the phase boundary; for the Tu-model in the sense that

limg, 1 erp+ = ¢ and lim,, 1 ¢7y,— = 0, which can be deduced from the analytic expression (144).

TABLE 2. Parameters for a two-phase COy mixture at 50 bar.

Quantity Symbol Unit Gas Liquid
Pressure P MPa 5.0 5.0

Temperature T K 287.43  287.43
Density p kgm™3 156.71  827.21
Speed of sound c ms~! 201.54  398.89
Heat capacity Cp Jkg7!'K~! 3138.0 3356.9
Entropy s m?s72K~! 1753.9 11288
Griineisen coefficient T (-) 0.30949 0.63175

9.3. Physical considerations

It is commonly argued that pressure relaxation is a much faster process than the other relaxation processes
[58,71]. Temperature relaxation, or heat flow, is associated with diffusion, which is an intrinsically slow process.
Chemical potential relaxation, i.e. mass transfer, is also slow compared to pressure relaxation. Zein et al. [71]
provide interesting discussions on the topic and argue that temperature relaxation is faster than chemical
relaxation. Generally, the magnitudes of the different relaxation times may be strongly problem-dependent.
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Such considerations may have implications, e.g., for the mass flow through a nozzle, which has been shown to
be linked to the subcharacteristic condition [39].

Apart from this, effects not captured by the coarse-grained flow models may come into play, and which
model is more accurate may depend heavily on the flow regime under consideration. The effects that arise
from having independent phasic pressures may be of importance for the wave dynamics of the system, and
thus models with different pressures may be sensible, even though the associated relaxation time is commonly
thought to be comparatively short. With regards to evaluating the physical relevance of the models presented
herein, experimental data on sound speeds in two-phase flow can be found for various systems [36,61,64,69].

9.4. Numerical considerations

A well-known problem with p-relaxed (one-pressure) two-fluid models is that they develop complex eigen-
values when vy # v,. This is commonly resolved e.g. by adding a regularising pressure which enforces hyperbol-
icity [11,14,19,51,65]. It is worth noting that the two-fluid models with independent phasic pressures, i.e. the
T-, p- and T'p-models, are locally hyperbolic even for small perturbations away from velocity equilibrium, due
to the following argument: An eigenvalue of a matriz with real coefficients may only be complex if its complex
conjugate is also an eigenvalue. Since the eigenvalues of the individual phasic pressure models are real and
distinct when € = vg —vg = 0, they must remain so for sufficiently small €, as the eigenvalues may only become
complex in a continuous way. In order to determine how large € may be before hyperbolicity is lost, we must
find the higher-order corrections in € to the eigenvalues, which is beyond the scope of this work.

10. CONCLUSIONS AND FURTHER WORK

In this paper, we have presented and completed a hierarchy of relaxation models for two-phase flow, which
arises when we impose instantaneous equilibrium in different combinations of velocity, pressure, temperature
and chemical potential. The starting point of the analysis has been the classic seven-equation Baer—Nunziato
model [4] equipped with relaxation source terms. We have in the present work provided the T-, u-, pu-, and
T p-models, which represent original contributions to the hierarchy. Explicit expressions for the sound speeds
of these models have been derived. Using the new expressions and results from the literature, we have shown
analytically that the subcharacteristic condition is always satisfied in the hierarchy, given velocity equilibrium
between the phases.

To this end, we have contributed with 15 new subcharacteristic conditions, stated in propositions 3.1-8.4.
Out of these, five have been shown in a strong sense, and ten hold in a weak sense, i.e. given equilibrium in
velocity.

Due to resonance, non-conservative terms and lack of strictly convex entropy it is not clear to which extent
these results could be derived from general principles. This should be addressed in further works. Also,
the hierarchy could be extended to multi-component or multi-phase flow, as already initiated by [30, 31, 47].
Moreover, the different models could be implemented and studied numerically for relevant cases (cf. [57]). Upon
comparison with experimental data, one may then unravel under which conditions the different models are
admissible.
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A. COEFFICIENTS IN THE pu-MODEL

The coefficients in the pp-model are given by
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The coefficients related to the quasi-linear form are given by
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B. COEFFICIENTS IN THE 7'1-MODEL

The coefficients in the T'u-model are given by
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