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Abstract
Kundt waves belong to the class of spacetimes which are not distinguished 
by their scalar curvature invariants. We address the equivalence problem for 
the metrics in this class via scalar differential invariants with respect to the 
equivalence pseudo-group of the problem. We compute and finitely represent 
the algebra of those on the generic stratum and also specify the behavior 
for vacuum Kundt waves. The results are then compared to the invariants 
computed by the Cartan–Karlhede algorithm.

Keywords: Lorentzian metric, scalar curvature invariant, Cartan invariant, 
differential invariant, invariant derivation, Poincaré function

Introduction

The Kundt waves can be written in local coordinates as follows

g = dx2 + dy2 − du
(

dv − 2v
x

dx +
(
8xh − v2

4x2

)
du
)

,� (1)

where h = h(x, y, u) is an arbitrary function. In order for g to be vacuum, h must be harmonic 
in x, y. These metrics were originally defined by Kundt [1] in 1961, as a special class of pure 
radiation spacetimes of Petrov type III or higher, admitting a non-twisting, non-expanding 
shear-free null congruence � [2]: g(�, �) = 0, Trg(∇�) = 0, ‖∇�‖2

g = 0.
All Weyl curvature invariants [3], i.e. scalars constructed from tensor products of covari-

ant derivatives of the Riemann curvature tensor by complete contractions, vanish for these 
spacetimes. Thus, these plane-fronted metrics belong to the collection of VSI spacetimes, 
where all polynomial scalar curvature invariants vanish [4]. These spaces have been exten-
sively explored in the literature [5, 6].

Since it is impossible to distinguish Kundt waves from Minkowski spacetime by Weyl 
curvature invariants, other methods have been applied. In [7] Cartan invariants have been 
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computed for vacuum Kundt waves and the maximum iteration steps in Cartan–Karlhede 
algorithm was determined. Cartan invariants allow to distinguish all metrics, but initially they 
are functions on the Cartan bundle, also known as the orthonormal frame bundle, not on the 
original spacetime.

Cartan invariants are polynomials in structure functions of the canonical frame (Cartan 
connection) and their derivatives along the frame [8]. Thus they are obtained from the comp
onents of the Riemann curvature tensor and its covariant derivatives without complete con-
tractions. Absolute invariants are chosen among those that are invariant with respect to the 
structure group of the Cartan bundle. This is usually achieved by a normalization of the group 
parameters [8, 9].

When the frame is fixed (the structure group becomes trivial) the Cartan invariants descend 
to the base of the Cartan bundle, i.e. the spacetime (in some cases, which we do not consider, 
the frame cannot be completely fixed but then the form of the curvature tensor and its covari-
ant derivatives are unaffected by the frame freedom). The Cartan–Karlhede algorithm [2, 10] 
specifies when the normalization terminates and how many derivatives of the curvature along 
the frame are involved in the final list of invariants.

In this paper we propose another approach, which originates from the works of Sophus 
Lie. Namely we distinguish spacetimes by scalar differential invariants of their metrics. The 
setup is different: we first determine the equivalence group of the problem that is the group 
preserving the class of metrics under consideration. It is indeed infinite-dimensional and local, 
so it is more proper to talk of a Lie pseudogroup, or its Lie algebra sheaf. Then we compute 
invariants of this pseudogroup and its prolonged action. The invariants live on the base of the 
Cartan bundle, i.e. the spacetime, but they are allowed to be rational rather than polynomial in 
jet-variables (derivatives of the metric components). We recall the setup in section 1.

Recently [12] it was established that the whole infinite-dimensional algebra of invariants 
can be finitely generated in Lie–Tresse sense. This opens up an algebraic approach to the clas-
sification, and that is what we implement here. We compute explicitly the generating differ
ential invariants and invariant derivations, organize their count in Poincaré series, and resolve 
the equivalence problem for generic metrics within the class. We also specify how this restricts 
to vacuum Kundt waves. This is done in sections 2 and 3. More singular spaces can be treated 
in a manner analogous to our computations.

Since vacuum Kundt waves have already been investigated via the Cartan method [7], we 
include a discussion on the correspondence of the invariants in this case. This correspondence 
does not preserve the order of invariants, because the approaches differ, and we include a gen-
eral comparison of the two methods. This is done in section 4.

1.  Setup of the problem: actions and invariants

Metrics of the form (1) are defined on an open subset of the manifold M = (R \ {0})× R3 ⊂ R4. 
Thus a metric g can be identified as a (local) section of the bundle π : M × R → M  with the 
coordinates x, y, u, v, h. We denote the total space of the bundle by E. The Kundt waves then 
satisfy the condition hv = 0. This partial differential equation (PDE) determines a hypersur-
face E1 in J1π.

Here Jkπ denotes the kth order jet bundle. This space is diffeomorphic to M × RN , where 

N =
(k+4

4

)
, and we will use the standard coordinates h, hx, hy, ..., huvk−1 , hvk  on RN . Function 

h = h(x, y, u, v) determines the section j kh of Jkπ in which those standard coordinates are the 
usual partial derivatives of h.
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The space Jkπ comes equipped with a distribution (a sub-bundle of the tangent bundle), 
called the Cartan distribution. A PDE of order k is considered as a submanifold of Jkπ, and 
its solutions correspond to maximal integral manifolds of the Cartan distribution restricted 
to the PDE. For a detailed review of jets, we refer to [9, 11]. The prolongation Ek ⊂ Jkπ is 
the locus of differential corollaries of the defining equation of E1 up to order k. We also let 
E0 = J0π = E .

The vanishing of the Ricci tensor is equivalent to the condition hxx + hyy = 0. This yields 
a sub-equation R2 ⊂ E2 ⊂ J2π, whose prolongations we denote by Rk ⊂ Jkπ. Since this case 
of vacuum Kundt waves was considered thoroughly in [7] we will focus here mostly on gen-
eral Kundt waves. However, after finding the differential invariants in the general case it is 
not difficult to describe the differential invariants in the vacuum case. This will be done in 
section 3.

1.1.  Lie pseudogroup

The Lie pseudogroup of transformations preserving the shape (i.e. form of the metric) can be 
found by pulling back g from (1) through a general transformation (x̃, ỹ, ũ, ṽ) �→ (x, y, u, v), 
and then requiring that the obtained metric is of the same shape:

dx̃2 + dỹ2 − dũ
(

dṽ − 2ṽ
x̃

dx̃ +
(
8x̃h̃ − ṽ2

4x̃2

)
dũ
)

.

This requirement can be given in terms of differential equations  on x, y, u, v as functions 
of x̃, ỹ, ũ, ṽ, with the (invertible) solutions described below. The obtained differential equa-
tions are independent of whether the Kundt wave is Ricci-flat or not, so the shape-preserving 
Lie pseudogroup is the same for both general and Ricci-flat Kundt waves.

A pseudogroup preserving shape (1) contains transformations of the form (we also indicate 
their lift to J0π = E)

x �→ x, y �→ y + C, u �→ F(u), v �→ v
F′(u)

− 2
F′′(u)
F′(u)2 x2,� (2)

h �→ h
F′(u)2 +

2F′′′(u)F′(u)− 3F′′(u)2

8F′(u)4 x,� (3)

where F is a local diffeomorphism of the real line, i.e. F′(u) �= 0 . This Lie pseudogroup was 
already described in [4], formula (A.37).

Transformations (2) and (3) form the Zariski connected component G0 of the entire Lie 
pseudogroup G  of shape-preserving transformations. (Note that G0 differs from the topologi-
cally connected component of unity given by F′(u) > 0 .) The pseudogroup G  is generated, in 
addition to transformations (2) and (3), by the maps y �→ −y and (x, h) �→ (−x,−h) preserv-
ing shape (1). Note that G/G0 = Z2 × Z2.

The Lie algebra sheaf g of vector fields corresponding to G  (and G0) is spanned by the 
vector fields

X = ∂y, Y( f ) = 4f∂u − (4vf ′ + 8x2f ′′)∂v + (xf ′′′ − 8hf ′)∂h� (4)

where f = f (u) ∈ C∞
loc(R) is an arbitrary function.

When looking for differential invariants, it is important to distinguish between G  and G0. 
Firstly, differential G0-invariants need not be G -invariant. Secondly, a set of differential invari-
ants that separates G -orbits as a rule will not separate G0-orbits. We will restrict our attention 
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to the G -action while outlining the changes needed to be made for the other choices of the Lie 
pseudogroup.

1.2.  Differential invariants and the global Lie–Tresse theorem

A differential invariant of order k is a function on Ek which is constant on orbits of G . In accor-
dance with [12] we consider only invariants that are rational in the fibers of πk : Ek → E for 
every k. Since the class of metrics we consider is given by an algebraic equation, its symmetry 
pseudogroup is also algebraic, see [13]; this also follows from explicit computation from the 
previous subsection and justifies usage of rational invariants.

The global Lie–Tresse theorem states that for algebraic transitive Lie pseudogroups, 
rational differential invariants separate orbits in general position in E∞ (i.e. orbits in the com-
plement of a Zariski-closed subset), and the field of rational differential invariants is generated 
by a finite number of differential invariants and invariant derivations. In fact it suffices to con-
sider the (sub)algebra of invariants that are rational on fibers of π� : E� → E and polynomial 
on fibers of πk,� : Ek → E� for some �. In the case of Kundt waves we will show that � = 2. For 
simplicity we will mostly discuss the field of rational invariants in what follows.

We refer to [12] for the details of the theory which holds for transitive Lie pseudogroups. 
The Lie pseudogroup we consider is not transitive: the G -orbit foliation of E is {x = const}. 
Let us justify validity of a version of the Lie–Tresse theorem for our Lie pseudogroup action.

For every a ∈ E the action of the stabilizer of a in G0 is algebraic on the fiber π−1
∞,0(a), and 

so for every k and a we have an algebraic action of a Lie group on the algebraic manifold of 
π−1

k,0 (a). By Rosenlicht’s theorem rational invariants separate orbits in general position. It is 
important that the dependence of the action on a is algebraic.

From the description of the G0 action on E it is clear that orbits in general position intersect 
with the fiber over a(x) = (x, 0, 0, 0, 1) for a unique x ∈ R \ {0}. A G -orbit in E∞ intersecting 
with the fiber of a(x) intersects a(−x) as well. Thus we can separate orbits with scalar differ
ential invariants, in addition to the invariant x or x2, for G0 or G  respectively. It is not difficult to 
see, following [12], that in our case the field of differential invariants is still finitely generated. 
We skip the details because this will be apparent from our explicit description of the genera-
tors of this field in what follows.

1.3. The Hilbert and Poincaré functions

The transcendence degree of the field of rational differential invariants of order k (that is the 
minimal number of generators of this field, possibly up to algebraic extensions) is equal to 
the codimension of the g-orbits in general position in Ek. The results in this section are valid 
for both G0 and G  and all intermediate Lie pseudogroups (there are three of them since the 
quotient G/G0 is the Klein four-group).

For k � 0, the dimension of Jkπ is given by

dim Jkπ = 4 +

(
k + 4

4

)
.

The number of independent equations defining Ek is 
(k+3

4

)
 which yields

dim Ek = dim Jkπ −
(

k + 3
4

)
= 4 +

(
k + 3

3

)
, k � 0.

B Kruglikov et alClass. Quantum Grav. 36 (2019) 155011
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For small k, the dimension of a g-orbit in Jkπ in general position may be found by comput-
ing the dimension of the span of g|θk ⊂ Tθk J

kπ  for a general point θk ∈ Jkπ. It turns out that 
the equation Ek intersects with regular orbits, so we get the same results by choosing θk ∈ Ek .

Theorem 1.  The dimension of a g-orbit in general position in Ek is 4 for k  =  0 and it is 
equal to k  +  5 for k  >  0.

Proof.  We need to compute the dimension of the span of X(k) and Y(f )(k) at a point in general 
position in Ek. The kth prolongation of the vector field Y( f ) is given by

Y( f )(k) = 4fD(k+1)
u − (4vf ′ + 8x2f ′′)D(k+1)

v +
∑
|σ|�k

Dσ(φ)∂hσ� (5)

where σ = (i1, . . . , it) is a multi-index of length |σ| = t (ij  corresponds to one of the base co-
ordinates x, y, u, v), Dσ = Di1 · · · Dit is the iterated total derivative, Dk+1

i  is the truncated total 
derivative as a derivation on Jkπ, and

φ =Y( f )� (dh − hxdx − hydy − hudu − hvdv)

=xf ′′′ − 8hf ′ − 4f hu + (4vf ′ + 8x2f ′′) hv

is the generating function for Y( f ); we refer to section 1.5 in [11]. We see that the kth prolon-
gation depends on f , f ′, ..., f (k+3).

We can without loss of generality assume that the u-coordinate of our point in general 
position is 0, since ∂u is contained in g. At u  =  0 the vector field Y(f )(k) depends only on the 
(k + 3)-degree Taylor polynomial of f  at u  =  0, which implies that there are at most k  +  4 
independent vector fields among these. Adding the vector field X(k) to them gives k  +  5 as an 
upper bound of the dimension of an orbit.

Let θk ∈ Ek  be the point defined by x = 1, h = 1, with all other jet-variables set to 0 and let 
Zm = Y(um). It is clear from (5) that the kth prolongations of X, Z0, ..., Zk+3 span a (k + 5)-di-
mensional subspace of TθkEk , implying that k  +  5 is also a lower bound for the dimension of 
an orbit in general position and verifying the claim of the theorem.� □ 

Let sEk  denote the codimension of an orbit in general position inside of Ek, i.e. the number 
of independent differential invariants of order k. It is given by

sE0 = 1 and sEk =
k
6
(k + 5)(k + 1) for k � 1.

The Hilbert function HE
k = sEk − sEk−1 is given by

HE
0 = HE

1 = 1 and HE
k =

k(k + 3)
2

for k � 2.

This counts the number of independent differential invariants of ‘pure’ order k. For small k the 
results are summed up in the following table.

k 0 1 2 3 4 5 6
dim Jkπ 5 9 19 39 74 130 214
dim Ek 5 8 14 24 39 60 88
dimOk 4 6 7 8 9 10 11

sEk 1 2 7 16 30 50 77
HE

k 1 1 5 9 14 20 27

B Kruglikov et alClass. Quantum Grav. 36 (2019) 155011
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The corresponding Poincaré function PE(z) =
∑∞

k=0 HE
k zk is given by

PE(z) =
1 − 2z + 5z2 − 4z3 + z4

(1 − z)3 .

2.  Differential invariants of Kundt waves

We give a complete description of the field of rational differential invariants. We will focus on 
the action of the entire Lie pseudogroup G  (with four Zariski connected components), while 
also describing what to do if one wants to consider only one (or two) connected components.

2.1.  Generators

The second order differential invariants of the G -action are generated by the following seven 
functions

I0 = x2, I1 =
(xhx − h)2

h2
y

, I2a =
hxx

xhx − h
,

I2b =
xhxy

hy
, I2c =

hyy

xhx − h
, I2d =

(x2hyu − vhy)
2

x(xhx − h)3 ,

I2e =
(x3hxu − vxhx − x2hu + vh)(xhx − h)

(x2hyu − vhy)hy

and these invariants separate orbits of general position in E2. They are independent as func-
tions on E2, and one verifies that the number of invariants agrees with the Hilbert function HE

k  
for k = 0, 1, 2.

Note that 
√

I0 = x and 
√

I1 = xhx−h
hy

 are not invariant under the discrete transformations 

(x, h) �→ (−x,−h) and y �→ −y. They are however invariant under the Zariski connected 

pseudogroup G0 and should be used for generating the field of differential G0-invariants, since 
the invariants above do not separate G0-orbits on E2.

Remark 1.  If A2 denotes the field of second order differential G -invariants and B2 the field 
of second order differential G0-invariants, then B2 is an algebraic field extension of A2 of de-
gree 4 and its Galois group is G/G0 = Z2 × Z2. Intermediate pseudogroups lying between G0 
and G  are in one-to-one correspondence with subgroups of Z2 × Z2 that, by Galois theory, are 
in one-to-one correspondence with algebraic field extensions of A2 that are contained in B2.

Including B2 there are four such nontrivial algebraic extensions of A2, and they are the 
splitting fields of the polynomials t2 − I0, t2 − I1, t2 − I0I1 and (t2 − I0)(t2 − I1) over A2, 
respectively.

Higher-order invariants are generated by second-order invariants and invariant derivations, 
so the field of all differential invariants depends solely on the chosen field extension of A2.

In order to generate higher-order differential invariants we use invariant derivations, i.e. 
derivations on E∞ commuting with the G -action. It is not difficult to check that the following 
derivations are invariant.

B Kruglikov et alClass. Quantum Grav. 36 (2019) 155011
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∇1 = xDx + 2vDv, ∇2 =
xhx − h

hy
Dy, ∇4 =

x2hyu − vhy

hy
Dv,

∇3 =
hy

x2hyu − vhy

(
Du −

(
8x2hx −

v2

4x2

)
Dv

)
.

Theorem 2.  The field of rational scalar differential invariants of G  is generated by the 
second-order invariants I0, I1, I2a, I2b, I2c, I2d, I2e together with the invariant derivations 
∇1,∇2,∇3,∇4.

The algebra of rational differential invariants, which are polynomial starting from the jet-
level � = 2, over A2, B2 or an intermediate field, depending on the choice of Lie pseudogroup, 
is generated by the above seven second-order invariants (with possible passage from I0 to 

√
I0  

and from I1 to 
√

I1) and the above four invariant derivations.

Proof.  We shall prove that the field generated by the indicated differential invariants and 

invariant derivations for every k  >  2 contains HE
k = k(k+3)

2  functionally independent invari-
ants, and moreover that their symbols are quasilinear and independent. This together with the 
fact that the indicated invariants generate all differential invariants of order � 2 implies the 
statement of the theorem.

We demonstrate by induction in k a more general claim that there are HE
k  quasilinear differ

ential invariants of order k with the symbols at generic θk−1 ∈ Jk−1π proportional to hxiy jul , 
where i  +  j   +  l  =  k and 0 � l < k. The number of such k-jets is indeed equal to the value of 
the Hilbert function HE

k .
The base k  =  3 follows by direct computation of the symbols of  ∇1I2a,∇1I2b,∇1I2c,∇1I2d, 

∇1I2e,∇2I2c,∇2I2d,∇3I2d,∇3I2e. Assuming the kth claim, application of ∇1 gives k(k + 3)/2 
differential invariants of order k  +  1, and ∇2 adds k additional differential invariants, cover-
ing the symbols hxiy jul  with i  +  j   +  l  =  k  +  1 and 0 � l < k. Further application of ∇3 gives 
2 more differential invariants with symbols hxuk, hyuk. Thus the invariants are independent and 
the calculation

k(k + 3)
2

+ k + 2 =
(k + 1)(k + 4)

2

completes the induction step.
For the algebra of invariants it is enough to note that our generating set produces invariants 

that are quasi-linear in jets of order � = 2 or higher, and so any differential invariant can be 
modified by elimination to an element in the base field A2, B2 or an intermediate field.� □ 

Remark 2.  As follows from the proof it suffices to have only derivations ∇1,∇2,∇3. Yet 
∇4 is obtained from those by commutators.

It is possible to give a more concise description of the field/algebra of differential invariants 
than that of theorem 2. Let αi denote the horizontal coframe dual to the derivations ∇i, i.e.

B Kruglikov et alClass. Quantum Grav. 36 (2019) 155011
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α1 =
1
x

dx, α2 =
hy

xhx − h
dy, α3 =

x2hyu − vhy

hy
du,

α4 =
hy

x2hyu − vhy

(
dv − 2v

x
dx +

(
8x2hx −

v2

4x2

)
du
)

.

Then we have:

α1 ∧ α2 ∧ α3 ∧ α4 = (I0I1)
−1/2dx ∧ dy ∧ du ∧ dv.

Metric (1) written in terms of this coframe has coefficients gij = g(∇i,∇j) and therefore has 
the form

g = I0α
2
1 + I1α

2
2 + 8(I1I2d)

−1α2
3 − α3α4.

This suggests that ∇i and I0, I1, I2d  generate the field of differential invariants. This is indeed 
true, and can be demonstrated as follows.

The differential invariants appearing as nonzero coefficients in the commutation relations 
[∇i,∇j] = Kk

ij∇k  are given by

K2
12 = (I0I2a − I2b), K3

13 = −(I0∇3(I2b) + 2), K4
13 = −8I0I2a

I1I2d
,

K2
23 = −∇3(I1)

2I1
, K3

23 = I2c(I1 − I2e)− I0I1∇3(I2c) = −K4
24, K3

34 = −1,

K4
14 = I0∇3(I2b), K4

23 = − 8I2b

I1I2d
, K4

34 =
I2e

2I0I1
− I1I2d

2
∇3

( 1
I1I2d

)
.

In particular we can get the differential invariants I2a, I2b, I2c, I2e from K4
13,∇1(I1),∇2(I1),∇3(I1) 

thereby verifying that I0, I1, I2d  are in fact sufficient to be a generating set of differential 
invariants.

Remark 3.  For the G0-action, the invariant derivations Dx +
2v
x Dv and Dy  should be used 

instead of ∇1,∇2 (they are not invariant under the reflections). In this case only one coeffi-
cient of g is nonconstant, suggesting that one differential invariant and four invariant deriva-
tions are sufficient for generating the field of differential invariants.

2.2.  Syzygies

Differential relations among the generators of the algebra of differential invariants are called 
differential syzygies. They enter the quotient equation, describing the equivalence classes 
E∞/G.

To simplify notations let us rename the generators a = I0, b = I1, c = I1I2d and use the iter-
ated derivatives fi1...ir = (∇ir ◦ · · · ◦ ∇i1)( f ) for f = a, b, c . We can generate all differential 
invariants of order k by using only these and ∇k−2

1 (K4
13). The syzygies coming from the com-

mutation relations of ∇i have been described in the previous section. Thus it is sufficient to 
only consider iterated derivatives that satisfy i1 � · · · � ir.

These are generated by some simple syzygies

a1 = 2a, a2 = 0, a3 = 0, a4 = 0, b4 = 0, c4 = −2c

and by two more complicated syzygies that involve differentiation of b, c with respect to ∇1, 
∇2, ∇3 up to order three:

B Kruglikov et alClass. Quantum Grav. 36 (2019) 155011
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0 = 2a2c2(2b2b3b233 − 2b2b23b33 − 3bb2
3b23 + 3b2b3

3)− ab(4b2b3cc13

− 4b2b3cc23 − 4b2b3c1c3 + 4b2b3c2c3 + 8b2b33c2 − 4b2b33cc1

+ 4b2b33cc2 − 2bb1b33c2 − 4bb2
3c2 + 2bb2

3cc1 − 4bb2
3cc2 + 2bb3b13c2

+ 2bb3b23c2 − b1b2
3c2 − 3b2b2

3c2)− b2b3c(4bc − 2bc1 + 2bc2 − b1c),

0 = 8ab2c2(b3b123 − b3b223 − b13b23 + b2
23)

+ 4abc2(b2b3b13 − b2b3b23 − 2b2
3b12 + 4b2

3b22)

+ ac2(4b1b2b2
3 − 12b2

2b2
3) + 16b3c2(b23 − b13 − b3)

+ 8b3c((2c1 − 2c2 − c11 + 2c12 − c22)b3 + (b13 − b23)(c1 − c2))

+ b3(4b3c2
1 − 8b3c1c2 + 4b3c2

2) + bc2(b2
1b3 + 2b1b2b3)

+ b2c2(16b1b3 + 4b1b13 − 4b1b23 − 24b2b3 − 4b3b11 + 4b3b12)

+ b2c(−8b1b3c1 + 12b1b3c2 + 12b2b3c1 − 12b2b3c2).

2.3.  Comparing Kundt waves

In order to compare two Kundt waves of the form (1) choose four independent differential 
invariants J1, ..., J4 of order k such that d̂J1 ∧ d̂J2 ∧ d̂J3 ∧ d̂J4 �= 0, where d̂  is the horizontal 
differential defined by (d̂f ) ◦ jkh = d( f ◦ jkh) for a function f  on Ek. Then rewrite the metric 
in terms of the obtained invariant coframe, similar to what we did in section 2.1:

g = Gijd̂Jid̂Jj

where Gij are differential invariants of order k  +  1. For a given Kundt wave metric g the ten 
invariants Gij, expressed as functions of Ji, determine its equivalence class.

In practice one can proceed as follows. Let ∂̂i be the horizontal frame dual to the cof-
rame d̂Jj. These are commuting invariant derivations, called Tresse derivatives. In terms of 
them Gij = g(∂̂i, ∂̂j). Together the 14 functions (Ja, Gij) determine a map σg : M4 → R14 (for 
a Zariski dense set of g) whose image, called the signature manifold, is the complete invariant 
of a generic Kundt wave g.

In particular, we can take the four second-order differential invariants I0, I1, I2d, I2e that are 
independent for generic Kundt waves. Then Gij are differential invariants of third order, imply-
ing that third order differential invariants are sufficient for classifying generic Kundt waves.

Remark 4.  The four-dimensional (4D) submanifold σg(M4) ⊂ R14 is not arbitrary. Indeed, 
the differential syzygies of the generators (Ja, Gij) can be interpreted as a system of PDE (the 
quotient equation) with independent Ja and dependent Gij. The signature manifolds, encoding 
the equivalence classes of Kundt waves, are solutions to this system.

2.4.  Example

Consider the class of Kundt waves parametrized by two functions of two variables:

h = E(u)− 1
4 S

(
F(u)

)
x + F′′(u)2(x3 ± y),� (6)
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where S(F) = F′′′

F′ − 3
2

(F′′

F′

)
2 is the Schwartz derivative. This class is G -invariant and using 

the action (2) and (3) the pseudogroup is almost fully normalized in passing from this class to

h(x, y, u) = A(u) + x3 + y.� (7)

The metric g corresponding to this h was found by Skea in [15] as an example of class of 
spacetimes whose invariant classification requires the fifth covariant derivative of the Riemann 
tensor (so up to order seven in the metric coefficients gij equivalently given by j 7h). However 
with our approach they can be classified via third order differential invariants, and we will 
demonstrate how to do it for this simple example.

The transformations from G0 preserving (7) form the two-dimensional (2D) non-connected 
group G′

0: (x, y, u, A) �→ (x, y + c,±u + b, A − c), and those of G  form the group G′ extending 
G′

0 by the map (x, y, u, A) �→ (−x,−y, u,−A). Distinguishing the Kundt waves given by (6) 
with respect to pseudogroup G  (or G0) is equivalent to distinguishing the Kundt waves given 
by (7) with respect to group G′ (or G′

0).
The differential invariants from section 2.1 can be used for this purpose. However the nor-

malization of (6) to (7) allows for a reduction from 4D signature manifolds to signature curves 
as follows. The metrics with Auu ≡ 0 are easy to classify, so assume Auu �= 0.

The invariants 
√

I0 = x, 
√

I1 = xhx−h
hy

, I2d, I2e are basic for the action of G0, and their 

combination gives simpler invariants J1  =  x, J2  =  A  +  y , J3 = v2, J4 = Au/v with 
d̂J1∧d̂J2∧d̂J3∧d̂J4

dx∧dy∧du∧dv = −2Auu. The nonzero coefficients Gij are given by

G11 = 1 = G22, G13 =
J4

2J1Auu
, G14 =

J3

J1Auu
, G23 = − J2

4

2Auu
,

G33 = −J4(32J6
1J4 − 4J2

1J3J3
4 + 32J3

1J2J4 + 4J2
1Auu − J3J4)

16J3A2
uuJ2

1
,

G34 =
−32J6

1J4 − 32J4J2J3
1 + (4J3J3

4 − 2Auu)J2
1 + J4J3

8A2
uuJ2

1
,

G24 = −J3J4

Auu
, G44 =

−32J6
1J3 + 4J2

1J2
3J2

4 − 32J3
1J2J3 + J2

3

4A2
uuJ2

1
.

There are five functionally independent invariants, and they are expressed by J1, J2, J3, J4, 
Auu. Restricted to the specific Kundt wave (7), only four of them are independent yielding one 
dependence. This can be interpreted as a relation between the invariants A2

u and Auu, giving 
a curve in the plane due to constraints Ax = Ay = Av = 0, and completely determining the 
equivalence class. In addition, A  +  y  is a G0-invariant of order 0.

Consequently, two Skea metrics given by (7) are G0-equivalent if their signatures 
{(Au(u)2, Auu(u))} ⊂ R2 coincide as unparametrized curves. Indeed, let Auu = f (A2

u) be a 
signature curve (no restrictions but, for simplicity, we consider the one that projects injec-
tively to the first components). Viewed as an ODE on A = A(u) it has a solution uniquely 
given by the initial data (A(0),Au(0)). This can be arbitrarily changed using the freedom 
(u, y) �→ (u + b, y + c) of G′

0 whence the data encoding g is restored uniquely.
For the G -action, we combine the invariants I0, I1I2a, I2d, I2e to construct a simpler 

base J1 = x2, J2 = (A + y)x, J3 = v2, J4 = xAu/v of invariants. In this case we again get 
d̂J1∧d̂J2∧d̂J3∧d̂J4

dx∧dy∧du∧dv = −4x3Auu �= 0, and basic order 0, 1 and 2 differential invariants for the dimen-

sion reduction are (A  +  y )2, A2
u, Auu/(A  +  y ). Proceeding as before we obtain a signature curve 

{(Au(u)2, Auu(u)2)} ⊂ R2 that, as an unparametrized curve, is a complete G -invariant of the 
Kundt waves of Skea type (7).
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3.  Specification to the vacuum case

It was argued in section 1.1 that the Lie pseudogroup preserving vacuum Kundt waves of the 
form (1) is the same as the one preserving general Kundt waves of the same form. The PDE 
Rk = {hxx + hyy = 0}(k−2) ∪ Ek defining vacuum Kundt waves contains some orbits in Ek of 
maximal dimension. This follows from the proof of theorem 1, since the point θk ∈ Ek  chosen 
there belongs also to Rk.

This implies that orbits in general position in Rk are also orbits in general position in Ek. 
Generic vacuum Kundt waves are separated by the invariants found in section 2, and all previ-
ous results are easily adapted to the vacuum case.

3.1.  Hilbert and Poincaré function

For vacuum Kundt waves we have additional 
(k+1

3

)
 independent differential equations of order 

k defining Rk ⊂ Ek, so the dimension of Rk is 4  +  (k  +  1)2 for k � 0. The codimension of 
orbits in general position in Rk is thus given by

sR0 = 1 and sRk = k(k + 1) for k � 1.

Consequently the Hilbert function HR
k = sRk − sRk−1 is given by

HR
0 = HR

1 = 1 and HR
k = 2k for k � 2.

The corresponding Poincaré function PR(z) =
∑∞

k=0 HR
k zk is equal to

PR(z) =
1 − z + 3z2 − z3

(1 − z)2 .

3.2.  Differential invariants

The differential invariants of second order from section  2.1 are still differential invariants 
in the vacuum case. The only difference is that two second order invariants I2a, I2c become 
dependent since the vacuum condition implies I2a + I2c = 0; in higher order we add differ
ential corollaries of this relation. It follows that we can generate all G -invariants of higher 
order by using the differential invariants I0, I1, I2d  and invariant derivations ∇i above.

The differential syzygies found in section 2.2 will still hold, but we get some new ones 
obtained by ∇i differentiations of the Ricci-flat condition I2a + I2c = 0. In terms of the differ
ential invariants a, b, c, K4

13 from section 2.2, the syzygy on R2 takes the form

K4
13bc(a + b) + 4a(2b + b1 + b2) = 0.

The case of G0-invariants is treated similarly.

3.3.  Comparing vacuum Kundt waves

For the basis of differential invariants we can take the same second-order invariants as for the 
general Kundt waves: I0, I1, I2d, I2e. Then we express the metric coefficients Gij in terms of this 
basis of invariants.
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The corresponding 4D signature manifold σg(M4) is restricted by differential syzygies of 
the general case plus the vacuum constraint. Considered as an unparametrized submanifold in 
R14 it completely classifies the metric g.

4. The Cartan–Karlhede algorithm

Next, we would like to compare the Lie–Tresse approach to differential invariants with 
Cartan’s equivalence method. We outline the Cartan–Karlhede algorithm for finding differ
ential invariants. The general description of the algorithm can be found in [10]. Its application 
to vacuum Kundt waves has been recently treated in [7].

4.1. The algorithm for vacuum Kundt waves

Consider the following null-coframe in which metric (1) has the form g = 2m � m̄ − 2�� n 
(as before hv = 0 = hxx + hyy):

� = du, n =
1
2

dv − v
x

dx +
(

4xh − v2

8x2

)
du,

m = 1√
2
(dx + idy),

m̄ = 1√
2
(dx − idy).

Let ∆, D, δ, δ̄  be the frame dual to coframe �, n, m, m̄:

∆ = ∂u −
(

8xh − v2

4x2

)
∂v, D = 2∂v,

δ = 1√
2
(∂x − i∂y) +

v
√

2
x ∂v,

δ̄ = 1√
2
(∂x + i∂y) +

v
√

2
x ∂v.

There is a freedom in choosing the (co)frame, encoded as the Cartan bundle. The general 
orthonormal frame bundle ρ̃ : P̃ → M  is a principal bundle with the structure group O(1, 3). 
For Kundt waves the non-twisting non-expanding shear-free null congruence � is up to scale 
unique, and this reduces the structure group to the stabilizer H ⊂ O(1, 3) of the line direction 
R · �, yielding the reduced frame bundle ρ : P → M , which is a principal H-subbundle of P̃ .

This so-called parabolic subgroup H has dimension four and the H-action on our null 
(co)frame is given by boosts (�, n) �→ (B�, B−1n), spins m �→ eiθm and null rotations 
(n, m) �→ (n + cm + c̄m̄ + |c|2�, m + c̄�) about �, where parameters B, θ are real and the 
parameter c is complex.

Let ∇ denote the Levi-Civita connection of g, and let R be the Riemann curvature tensor. 
Written in terms of the frame, the components of R and its covariant derivatives are invariant 
functions on P , but they are not invariants on M. The structure group H acts on them and their 
H-invariant combinations are absolute differential invariants.

In practice H is used to set as many components of ∇kR as possible to constants, as this is a 
coordinate independent condition for the parameters of H. In the Newman–Penrose formalism 
[14], the Ricci (Φ) and Weyl (Ψ) spinors for the Kundt waves are given by

Φ22 = 2x(hxx + hyy), Ψ4 = 2x(hxx − hyy − 2ihxy).

A boost and spin transform Ψ4 to B−2e−2iθΨ4. Thus if Ψ4 �= 0 it can be made equal to 1 by 

choosing B2 = 4x
√

h2
xx + h2

xy  and e2iθ =
hxx−ihxy√

h2
xx+h2

xy
.

This reduces the frame bundle and the new structure group H is 2D. In the next step of the 
Cartan–Karlhede algorithm we use the null-rotations to normalize components of the first 
covariant derivative of the Weyl spinor. The benefit of setting Ψ4 = 1 is that components of 
the Weyl spinor and its covariant derivatives can be written in terms of the spin-coefficients 
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and their derivatives. For example, the nonzero components of the first derivative of the Weyl 
spinor are

(DΨ)50 = 4α, (DΨ)51 = 4γ, (DΨ)41 = τ .

The null-rotations, with complex parameter c, sends γ  to γ + cα+ 5
4 c̄τ , but leaves α and τ  

unchanged. Assuming that |α| �= 5
4 |τ | it is possible to set γ = 0, and this fixes the frame. In 

this case there will be four Cartan invariants of first order in curvature components, namely 
the real and imaginary parts of α and τ . They can be expressed in terms of differential invari-
ants as follows:

α =
−
√

2i
8
√

I0

J1/4
−

J5/4
+

(
i
√

I0I1(2I0I2
2a − I2a + 2∇1I2a) + 2I2

2b − 3I2b + 2∇1I2b

)

τ =
1√
2iI0

J1/4
+

J1/4
−

, where J± = I2b ± i
√

I0I1I2a.

These give four independent invariant functions on R∞, but when restricted to a vacuum 
Kundt wave metric (to the section  j∞M g ⊂ R∞) at most three of them are independent:

d̂(α+ ᾱ) ∧ d̂(α− ᾱ) ∧ d̂(τ + τ̄) ∧ d̂(τ − τ̄) = 0.

The generic stratum of this case corresponds to the invariant branch (0,3,4,4) of the Cartan–
Karlhede algorithm in [7].

At the next step of this algorithm the derivatives of the three Cartan invariants from the last 
step are computed, resulting in the invariants ∆|τ |, δ̄α,µ, ν  (the latter again complex-valued). 
One more derivative gives the invariant ∆(∆|τ |) as a component of the third covariant deriva-
tive of the curvature tensor. Further invariants (when restricted to j∞M g) will depend on those 
already constructed, so only 12 real-valued Cartan invariants are required to classify vacuum 
Kundt waves.

Remark 5.  In section 2.3 it was stated that 14 differential invariants (Ja, Gij) are sufficient 
for classifying Kundt waves, but choosing J1 = I0, J2 = I1, J3 = I2d, J4 = I2e it turns out that 
we get precisely 12 functionally independent differential invariants among them.

4.2.  Cartan invariants versus absolute differential invariants

Let us take a closer look at the relationship between the Cartan invariants and the differential 
invariants from section 2.

Differential invariants are functions on J∞π, or on a PDE therein, which are constant on 
orbits of the Lie pseudogroup G . Cartan invariants, on the other hand, are components of the 
curvature tensor and its covariant derivatives. These components are dependent on the point 
in M and the frame.

If we normalize the group parameters and hence fix the frame, i.e. a section of the Cartan 
bundle, then the Cartan invariants restricted to this section are invariant functions on J∞π. 
The following commutative diagram explains the situation.
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Initially the Cartan invariants are functions on

π∗
∞P = {(ω, g∞) ∈ P × E∞ | ρ(ω) = π∞(g∞)}

and they suffice to solve the equivalence problem because P  is equipped with an absolute 
parallelism Ω (Cartan connection) whose structure functions generate all invariants on the 
Cartan bundle. Indeed, an equivalence of two Lorentzian spaces (M1, g1) and (M2, g2) lifts to 
an equivalence between (P1,Ω1) and (P2,Ω2) and vise versa the equivalence upstairs projects 
to an equivalence downstairs.

Projecting the algebra of invariants on the Cartan bundle to the base we obtain the algebra 
of absolute differential invariants consisting of G -invariant functions on E∞. This is achieved 
by invariantization of the invariants on P  with respect to the structure group.

This is done in steps by normalizing the group parameters, effecting in further reduction 
of the structure group. When the frame is fully normalized (or normalized to a group acting 
trivially on invariants) the Cartan bundle is reduced to a section of P , restriction to which of 
the ∇kR components gives scalar differential invariants on M. Often these functions and their 
algebraic combinations that are absolute differential invariants, evaluated on the metric, are 
called Cartan invariants.

4.3.  A comparison of the two methods

The definite advantage of Cartan’s invariants is their universality. A basic set of invariants can 
be chosen for almost the entire class of metrics simultaneously. The syzygies are also fully 
determined by the commutator relations, the Bianchi and Ricci identities in the Newman–
Penrose formalism [14]. Yet this basic set is large and algebraically dependent invariants 
should be removed, resulting in splitting of the class into different branches of the Cartan–
Karlhede algorithm. See the invariant-count tree for the class of vacuum Kundt waves in [7].

The normalization of group parameters however usually introduces algebraic extensions 
into the algebra of invariants. The underlying assumption at the first normalization step in sec-
tion 4.1 is that Ψ4 is nonzero. This means that also for Cartan invariants we must restrict to the 
complement of a Zariski-closed set in Ek.

Setting Ψ4 to 1 introduces radicals into the expressions of Cartan invariants. A sufficient 
care with this is to be taken in the real domain, because the square root is not everywhere 
defined and is multi-valued. At this stage it is the choice of the ± sign, but the multi-valued-
ness becomes more restrictive with further invariants. For instance, the expressions for α and 
τ  contain radicals of J± depending on 

√
I0I1.

Recall that even though the invariant I0 and I1 are squares, the extraction of the square root 
cannot be made G -equivariantly and is related to a choice of domain for the pseudogroup G0. 
Changing the sign of 

√
I0I1 results in interchange J− ↔ J+ modifying the formula for α and 

τ  (which, as presented, is also subject to some sign choices). The complex radicals carry more 
multi-valued issues: choosing branch-cuts and restricting to simply connected domains.

Thus Cartan’s invariants computed via the normalization technique are only locally 
defined. In addition, the domains where they are defined are not Zariski open, in particular 
they are not dense.

In contrast, elements of the algebra of rational-polynomial differential invariants described 
in section 2 are defined almost everywhere, on a Zariski-open dense set. The above radicals 
are avoidable because we know from section 1.2 that generic Kundt waves, as well as vacuum 
Kundt waves, can be separated by rational invariants.

Another aspects of comparison is coordinate independence. The class of metrics (1) is 
given in specific Kundt coordinates, from which we derived the pseudogroup G . Changing 
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the coordinates does not change the pseudogroup, but only its coordinate expression. In other 
words, this is equivalent to a conjugation of G  in the pseudogroup Diffloc(M).

The Cartan–Karlhede algorithm is manifestly coordinate independent, i.e. the invariants 
are computed independently of the form in which a Kundt wave is written. However a nor-
malization of parameters is required to get a canonical frame. It is a simple integration to 
derive from this Kundt coordinates. It is also possible to skip integration with the differential 
invariants approach as abstractly jets are coordinate independent objects. This would give an 
equivalent output.

5.  Conclusion

In this paper we discussed Kundt waves, a class of metrics that are not distinguished by Weyl’s 
scalar curvature invariants. We computed the algebra of scalar differential invariants that sepa-
rate generic metrics in the class and showed that this algebra is finitely generated in Lie–Tresse 
sense globally. These invariants also separate the important sub-class of vacuum Kundt waves.

The latter class of metrics was previously investigated via Cartan’s curvature invariants 
in [7] and we compared the two approaches. In particular, we pointed out that normaliza-
tion in the Cartan–Karlhede algorithm leads to multi-valuedness of invariants. Moreover, the 
obtained Cartan’s invariants are local even in jets-variables (derivatives of the metric comp
onents). This leads to restriction of domains of definitions, which in general may not be even 
invariant with respect to the equivalence group, see [12].

With the differential invariant approach the signature manifold can be reduced in dimen-
sion, as we saw in section 2.4. For the general class of Kundt waves where hv = 0, the v-vari-
able can be removed from consideration and furthermore it is not difficult to remove the 
y -variable too. This dimension reduction leads to a much simpler setup and the classification 
algorithm. We left additional independent variables to match the traditional approach via cur-
vature invariants.

The two considered approaches are not in direct correspondence and each method has 
its own specifications. For instance, the invariant-count tree in the Cartan–Karlhede algo-
rithm ideologically has a counter-part in the Poincaré function for the Lie–Tresse approach. 
However orders of the invariants in the two methods are not related, obstructing to align the 
filtrations on the algebras of invariants.

For simplicity in this paper we restricted to generic metrics in the class of Kundt waves. 
This manifests in a choice of four functionally independent differential invariants, which 
is not always possible. For instance, metrics admitting a Killing vector never admit four 
independent invariants. With the Cartan–Karlhede approach this corresponds to invariant 
branches like (0,1,3,3) ending not with 4, and for the vacuum case all such possibilities were 
classified in [7].

With the differential invariants approach we treated metrics specified by explicit inequali-
ties: hy �= 0, I0I1 �= 0, …, such that the basic invariants and derivations are defined. It is pos-
sible to restrict to the singular strata, and find the algebra of differential invariants with respect 
to the restricted pseudogroup. Thus differential invariants also allow to distinguish more spe-
cial metrics in the class of Kundt waves.

To summarize, the classical Lie–Tresse method of differential invariants is a powerful 
alternative to the Cartan equivalence method traditionally used in relativity applications.
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