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A B S T R A C T   

The present work aims at applying Machine Learning approaches to predict CO2 viscosity at different thermo-
dynamical conditions. Various data-driven techniques including multilayer perceptron (MLP), gene expression 
programming (GEP) and group method of data handling (GMDH) were implemented using 1124 experimental 
points covering temperature from 220 to 673 K and pressure from 0.1 to 7960 MPa. Viscosity was modelled as 
function of temperature and density measured at the stated conditions. Four backpropagation-based techniques 
were considered in the MLP training phase; Levenberg-Marquardt (LM), bayesian regularization (BR), scaled 
conjugate gradient (SCG) and resilient backpropagation (RB). MLP-LM was the most fit of the proposed models 
with an overall root mean square error (RMSE) of 0.0012 mPa s and coefficient of determination (R2) of 0.9999. 
A comparison showed that our MLP-LM model outperformed the best preexisting Machine Learning CO2 viscosity 
models, and that our GEP correlation was superior to preexisting explicit correlations.   

1. Introduction 

Carbone dioxide (CO2) is the main contributor to greenhouse gas 
(GHG) emissions with up to 72% of the total GHG emissions recorded in 
2010. Its effects on the climate and environment has become a great 
concern for both industry and academia (Norhasyima and Mahlia, 2018; 
Gambhir et al., 2017). Major efforts have been undertaken in the last 
decade to reduce CO2 emissions, especially from industrial processes. 
Two key strategies have been developed and adopted; carbon capture 
and storage (CCS) and carbon capture and utilization (CCU) (Cu�ellar--
Franca and Azapagic, 2015). As per CCS, the CO2 is stored in under-
ground geological formations including saline aquifers, depleted oil/gas 
reservoirs, and other geological options (Aminu et al., 2017). Storage in 

deep ocean water (Khatiwala et al., 2013; Adams and Caldeira, 2008) 
and CO2 mineral carbonation (Gerdemann et al., 2007; Oelkers et al., 
2008) are also considered good alternatives for underground storage. 
However, the most promising alternative nowadays is to reuse captured 
CO2 for other industrial purposes (Abas and Khan, 2014). CO2 is widely 
used in enhanced oil and gas recovery (EOR and EGR) (Gong and Gu, 
2015; Al-Bayati et al., 2018; Yu et al., 2015; Pu et al., 2016) and 
enhanced coalbed methane recovery (ECBM) (Mazzotti et al., 2009; Liu 
et al., 2019). Developments of the last decade have also indicated that 
CO2 injection can be a viable option for enhanced oil and gas recovery in 
tight shale reservoirs (Yu et al., 2014; Sheng, 2015; Eshkalak et al., 
2014; Hoffman and others, 2012; Jin et al., 2017). In particular, studies 
(Nuttal, 2010; Busch et al., 2008; Klewiah et al., 2020) have 
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demonstrated that CO2 has greater adsorption affinity than methane in 
shales and can both be stored effectively and lead to more efficient shale 
gas production. Alternative industrial applications include the use of 
CO2 as a refrigerant in heating and refrigerating processes (Sawalha 
et al., 2017; Li et al., 2016), as feedstock in the production of chemicals 
(Ampelli et al., 2015; Chen et al., 2016) and carbon source for micro-
algae to produce biofuels (Taher et al., 2015; Aslam et al., 2018). 

Designing and optimizing the above processes requires a thorough 
understanding of the thermo-physical properties of CO2 which include 
PVT relations, enthalpy, thermal conductivity, viscosity, and diffusion 
coefficient to name some (Islam and Carlson, 2012). More precisely, the 
viscosity of CO2 is one of the most crucial parameters for successful 
implementation and forecasting of numerous applications. In CO2-EOR 
projects, the viscosity of CO2 is in a direct relationship with its mobility 
inside the reservoir (Eshraghi et al., 2016). For CO2 flooding, low 
volumetric sweep efficiencies were always associated with the high 
viscosity contrast between CO2 and other reservoir fluids (Yu et al., 
2015). Likewise, the viscosity determines indirectly the energy and cost 
efficiency of CO2 transportation by pipeline (Zhang et al., 2006), as is 
the case for CCS projects in USA and Canada (Cole and Itani, 2013). In 
fact, the viscosity is indirectly related through the Reynolds number 
with the pressure drop during flow in pipelines, which in turn affects the 
power consumption of pumps and compressors. It was reported that a 
viscosity underestimation of 30%, will lead to a 30% underestimation of 
the pump/compressor power consumption (Li et al., 2011). 

Great attention was paid historically to study the viscosity of CO2 
experimentally and theoretically by developing models and correlations 
able to predict its variation at different fluid states, mixtures, and 
operating conditions. The available experimental data on the viscosity of 
CO2 were thoroughly reviewed and compiled by Li et al. (2011) and 
more recently by Laesecke and Muzney (Laesecke and Muzny, 2017). As 
for the theoretical part, the CO2 viscosity can be calculated using 
equations of state (EoS) or models based on EoS (Fan and Wang, 2006; 
Guo et al., 1997). Particularly, the Span and Wagner EoS (Span and 
Wagner, 1996) was dedicated for CO2 property predictions. Empirical 
correlations were also developed. One of the first predictive correlations 
was reported by Chung et al. (1988). Their generalized correlation 
allowed the estimation of viscosity of polar, nonpolar, and associating 
pure fluids (including CO2) and mixtures over a wide range of fluid 
states. However, this method was shown to be consistent with mea-
surements only in the case of low-pressurized gases. Fenghour et al. 
(1998) improved a prior correlation established by Vesovic et al. (1990) 
which had suffered some deficiencies in the liquid region due to in-
consistencies in some of the considered experimental data they 
employed when developing their model. The new correlation covered a 
wider range of temperatures (200–1500K) and pressures (from 0.1 up to 
300 MPa). To date, the most complete correlation was established 
recently in 2017 by Laesecke and Muzney (Laesecke and Muzny, 2017). 
The authors employed all available viscosity data to develop this cor-
relation in conjunction with the Span and Wagner EoS. The final cor-
relation covered temperatures from 100 to 2000 K for gaseous CO2 and 
from 220 to 700 K for compressed and supercritical liquid states. 
Considering the work by Laesecke and Myzney to be the state of the art, 
we will later compare our results to their correlation. 

With the emergence of artificial intelligence, the trend in this 
research area now consists of using heuristic algorithms in modeling and 
predicting CO2 properties based on the large existing set of experimental 
data. Zhang et al. (2018) used general regression neural network 
(GRNN) and back-propagation neural network (BPNN) algorithms in the 
prediction of CO2 solubility, solution density and viscosity in potassium 
lysintae (which has a primary amine group such as monoethanolamine 
(MEA) solution due to a carbon-nitrogen bond (Kumar et al., 2003)) 
with various operating conditions and liquid concentrations. Besides, 
the structure–property relationships between ionic liquids, with 
different molecular structures, and their CO2 solubilities were investi-
gated by Venkatraman et al. (Venkatraman and Alsberg, 2017) using 

random forests (RF), conditional inference trees (CTREE), and partial 
least squares regression (PLSR); and by Ouaer et al. (2020) by applying 
machine learning algorithms such as multilayer perceptron (MLP) and 
gene expression programming. Recently, Abdolbaghi et al. (2019) re-
ported the application of four computer-based models namely particle 
swarm optimization (PSO), multilayer perceptron (MLP), 
hybrid-adaptive neuro fuzzy inference system (hybrid-ANFIS) and 
coupled simulated annealing-least square support vector machine 
(CSA-LSSVM) in the prediction of CO2 viscosity at high temperatures 
and pressures. Many studies have shown high ability of machine 
learning algorithms to offer faster and more robust computational 
schemes than the classical empirical correlations and methods and can 
thus save time and costs related to designing or performing future 
experimental studies (Javadian et al., 2018; Hemmati-Sarapardeh et al., 
2013; Nait Amar et al., 2019a; Ayegba et al., 2017; Ahmadi et al., 2018; 
Raja et al., 2017; Shokir et al., 2017; Benamara et al., 2019a). 

The main purpose of this study is to advance the research on 
development of high exactness and simple-to-use machine learning ap-
proaches that can predict the viscosity of CO2. This will be done by 
modeling CO2 viscosity as function of temperature and density based on 
an extensive database encompassing wide ranges of pressure and tem-
perature conditions. To do so, three advanced data-driven techniques, 
namely multilayer perceptron (MLP), group method of data handling 
(GMDH) and gene expression programming (GEP) were implemented. 
Both the GMDH and GEP methods produce the output as an explicit 
function of the input parameters, where GMDH applies a polynomial 
form while for GEP the type of mathematical operations is user specified. 
Numerous statistical and graphical assessment criteria were considered 
in the evaluation of the newly proposed models. A comparison of the 
performance of our results with the best available prior Machine 
Learning models and with well performing explicit correlations was 
performed. A trend analysis was conducted to observe variations of CO2 
viscosity with respect to density and temperature. Further, outlier 
detection was performed to quantify potential experimental points 
deviating from main trends in the database. 

There are some important differences between this work and existing 
studies where ML has been applied to model CO2 viscosity: (1) more 
widespread temperature (220–673 K) and pressure (0.1–7960 MPa) 
range conditions were considered in the training of the models, (2) four 
backpropagation based learning algorithms were evaluated in the 
training of the MLP based CO2 viscosity model, (3) this study is not 
limited to black box ML models, but also two distinct explicit correla-
tions for CO2 viscosity based on GMDH or GEP were derived, (4) The 
database of experimental points and the best of the developed ML 
models are provided in Excel files to the benefit of the readers. 

The rest of the paper follows this structure: Section 2 describes the 
database and main assumptions utilized in this study to develop the 
models and explicit correlations. Section 3 summarizes the implemented 
data-driven techniques. Results are presented and discussed in Section 5. 
The study is summarized in Section 6. 

2. Data gathering and preparation 

Consistent models need to be developed from a reliable database that 
contains a large number of experimental measurements. The viscosity of 
CO2 has been investigated experimentally in several studies, where the 
effects of variables such as temperature and pressure on this parameter 
were in focus. Among such works, Laesecke and Muzney (Laesecke and 
Muzny, 2017) gathered the largest known database on CO2 viscosity as 
function of temperature and pressure. 

In this work, a widespread experimental database including 1124 
samples for CO2 viscosity with corresponding values of temperature, 
density and pressure was utilized for developing the proposed models. 
These experimental measurements were collected from several litera-
ture sources (Laesecke and Muzny, 2017; Van Der Gulik, 1997; Haepp, 
1976; Vogel and Barkow, 1986; Golubʹev, 1970; Estrada-Alexanders and 
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Hurly, 2008; Abramson, 2009; Kestin and Whitelaw, 1963; Vogel, 2016; 
Michels et al., 1957; Sch€afer et al., 2015; Hendl et al., 1993). The 
database was randomly divided into a training set (80% of the database) 
and a test set (20% of the database). Table 1 represents the ranges of 
variables applied in this study. Our models (either using MLP, GMDH or 
GEP) assumed that the viscosity of CO2 could be modelled as function of 
temperature and density, in line with the literature (Laesecke and 
Muzny, 2017; Abdolbaghi et al., 2019) where it has been claimed that 
more accuracy can be obtained using density rather than pressure as the 
second input parameter. Hence, the models and correlations take the 
following form: 

μCO2
¼ f ðT; ρÞ (1) 

When performing the modeling task using MLP, the data points were 
normalized between � 1 and 1: 

xnorm¼
2ðxi � xminÞ

ðxmax � xminÞ
� 1 (2)  

where xnorm is the normalized value of xi, xmin and xmax are the minimum 
and maximum values of the variable x (corresponding to viscosity, 
temperature and density), respectively. The data were not normalized 
when applying the GMDH or GEP methods. Mean square error (MSE) 
was considered as the assessment function during the training phase of 
the different models. MSE is defined as follows: 

MSE¼
1
N
XN

i¼1
ðμexp

i � μpre
i Þ

2 (3)  

where μ is the viscosity of CO2, N is the number of samples in the dataset 
and the superscript exp and pre indicate experimental and predicted 
values, respectively. 

3. Modeling techniques 

3.1. Multilayer perceptron (MLP) 

Artificial neural network (ANN) is one of the most robust data-driven 
methods. This approach is characterized with a high ability to recognize 
and identify relationships between input and output parameters in 
complex systems (Hemmati-Sarapardeh et al., 2018a). The learning 
strategy and the manner of processing information in ANN were inspired 
by the human brain (Hemmati-Sarapardeh et al., 2018b). Multilayer 
perceptron (MLP) is one of the most frequently utilized types of ANN for 
modeling purposes (Nait Amar et al., 2019a, 2019b) and is the first 
Machine Learning approach we apply here. 

The MLP model consists mainly of two principal elements: neurons 
and layers. The neurons are considered the basic component of any 
ANN. In the case of MLP, the neurons are distributed beneath 3 different 
kinds of layers, namely the input, hidden and output layers. The input 
layer is where the inputs (density and temperature data in this case, i.e. 
two neurons) are given to the model. The output layer is where the 
output (CO2 viscosity, i.e. one neuron) are returned. For a given neuron j 
in layer i (not in the input layer), the input xij consists of a linearly 
weighted sum of the outputs from the neurons of the previous layer yi� 1;j 

plus a bias term bij. The output yij of the given neuron is the evaluation of 
this input by an activation function fi (which can vary from layer to 

layer): 

xij¼ bij þ
XNi� 1

j
wi� 1;jyi� 1;j

�
j¼ 1 : Nj

�
(4)  

yij¼ fi
�
xij
�

(5) 

An MLP model contains at least one hidden layer. Generally, one 
hidden layer allows to identify the relationships in simple to moderately 
complex systems, while more than one hidden layer is mandatory in 
highly complex systems (Haykin, 2001). Indeed, the role of hidden 
layers is to map the inputs into higher features by means of activation 
functions. These latter are generally of a non-linear type such as Logsig 
and Tansig: 

Logsig: gðxÞ¼
1

ex þ 1
(6)  

Tansig: gðxÞ¼
ex � e� x

ex þ e� x (7) 

Pureline is generally the proper transfer function for the output layer. 

Pureline: f ðxÞ¼ x (8) 

A trial and error method is frequently considered when looking for 
the best number of hidden layers, their numbers of neurons as well as the 
proper activation and transfer functions. 

3.1.1. Training 
The training phase of the MLP model aims to find appropriate values 

for the weights and bias terms in order to minimize the gap between the 
predictions and the real values. Back-propagation (BP) learning ap-
proaches are suitable for this purpose and we applied four such alter-
natives to train the MLP method: Levenberg-Marquardt (LM) algorithm, 
bayesian regularization (BR), scaled conjugate gradient (SCG), and 
resilient backpropagation (RB). For more information about these al-
gorithms, the readers are referred to some previous works (Hemmati--
Sarapardeh et al., 2018b; Nait Amar et al., 2019b; Benamara et al., 
2019b; Nait Amar and Zeraibi, 2019). The four resulting models are 
denoted MLP-LM, MLP-BR, MLP-SCG and MLP-RB. 

3.2. Group method of data handling (GMDH) 

Group Method of Data Handling (GMDH) is another neural network 
method which provides the output as an explicit mathematical corre-
lation of the input parameters (Dargahi-Zarandi et al., 2017). It is also 
called polynomial neural network (PNN) as its structure consists of 
nodes organized in one or more intermediate layers and its generated 
expression is given in a polynomial form such as the quadratic form, 
introduced to GMDH by Ivakhnenko (1971). The relation between in-
puts xi; xj;…; xk to a node and the output Y from the node is expressed as 
follows: 

Y ¼ aþ
XD

i¼1
bixi þ

XD

i¼1

XD

j¼1
cijxixj þ

XD

i¼1

XD

j¼1
…
XD

k¼1
dij…kxixjxk (9)  

a; bi; cij and dij…k are the coefficients of the polynomial and D is the 
number of inputs to the node. In this work, two nodes were applied, each 
as a third degree polynomial function of two input parameters (with D ¼
2 and terms up to third order in Eq. (9)). The first nodes output was a 
polynomial function of the inputs density and temperature, while the 
node 2 output (giving viscosity) was a polynomial function of density 
and the output from node 1. Generally, the number of nodes and order of 
the polynomial can be tuned. The coefficients of the polynomials (as in 
Eq. (9)) were optimized by applying the least square errors method 
formulated as: 

Table 1 
Ranges of the parameters in the gathered database used for the model 
development.  

Variables Temperature (K) Pressure (MPa) Density  
(kg/m3) 

Viscosity  
(mPa s) 

Minimum 220 0.1 0.208 0.011189 
Maximum 685.07 7960 2126.4 4.836  
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min
XN

i¼1

�
yGMDH

i � yi
�2 (10) 

In this equation, yi is the experimental value of viscosity, yGMDH
i the 

value suggested by the polynomial formula and N is the number of 
training samples. To achieve the final trained GMDH model, the problem 
in Eq. (10) is resolved first by a transformation of y into matrix form 
(Dargahi-Zarandi et al., 2017; Hemmati-Sarapardeh and Mohagheghian, 
2017): 

y¼AT X (11)  

and the solution is then given as: 

AT ¼ yXT � XXT�� 1 (12)  

where X is the matrix composed of vectors of input products for each 
data point appearing in the combined polynomial term and A is the 
corresponding vector of coefficients. In the present work we note that 
hybrid GMDH was employed which allows (1) interactions between 
nodes from different layers and (2) the combination of more than two 
independent variables at a time. These two advantages raise more 
flexibility when dealing with complicated modeling cases (Rostami 
et al., 2019). The final correlation gained from the hybrid version of 
GMDH is presented below: 

Yi¼ aþ
XD

i¼1

XD

j¼1
…
XD

k¼1
θij…kxn

i xn
j …xn

k n ¼ 1; 2;…; 2L (13)  

where θij…k mean the coefficients of the polynomial and L is the number 
of layers. 

3.3. Gene expression programming (GEP) 

Gene expression programming (GEP) is, similar to GMDH, a data- 
driven technique generating explicit (mathematical) expressions. It 
was proposed by Ferreira (2001) as an ameliorated version of the 
so-called genetic programming (GP) introduced by Koza (1992). GEP is 
regarded as an evolutionary technique, and hence, for the searching 
process to find the most fit explicit correlation, it applies the funda-
mental genetic operators (e.g. selection, crossover, mutation) and some 
other specific demarches that did not exist in the earliest version of 
evolutionary algorithms. 

The GEP search process begins with creating a set of possible solu-
tions (termed ‘chromosomes’). In this case, the possible solutions 
represent different explicit correlations. The chromosomes are made up 
of ‘genes’ which are fixed length terms involving variables (such as fx1;

x2;x3g) and operators (such as f þ ;=; � ; � ;tanh; lng) (Teodorescu and 
Sherwood, 2008). Fig. 1 illustrates a scheme of a chromosome including 
two genes and its converted expression. The main steps performed in 
GEP for reaching the accurate correlation are given as follows:  

- Setting the GEP control parameters: population size (the number of 
chromosomes/correlations in each generation), the number of genes 
(i.e. the maximum numbers of terms, also called the length), the 

considered operators and the mutation rate.  
- Create an initial population of chromosomes (possible correlation 

form).  

- Each solution is optimized to fit the data by determining the involved 
coefficients using the Least Square approach.  

- Each chromosome in the population is evaluated based on a fitness 
function indicating its performance. In our case, mean square error 
(MSE) was used.  

- The next generation of solutions is generated using:  
- Elitism: the most fit element in the current population is saved for 

the following generation.  
- Selection and recombination: individuals are picked which will be 

recombined to give new offspring. 
- Mutation: modify elements within a genome according to a mu-

tation rate.  
- Transposition, inversion and insertion of sequences: this is done by 

adding or inverting parts of the genome in the chromosome to 
improve the prediction ability of the correlations (Ferreira, 2001).  

- The new population is then evaluated and the calculation steps from 
elitism operators are repeated until a stopping criterion is satisfied. 

4. Results and discussion 

In the MLP approach, trial and error was considered for selecting the 
proper number of layers and nodes and the control parameters of the 
various employed learning algorithms. The best-found structure in the 
four proposed MLP paradigms was three hidden layers covering 11, 11 
and 9 neurons, respectively. Tansig was the optimal activation function 
in all the hidden layers, while Pureline was the optimal transfer function 
for the output layer. The main control parameters applied in the GEP 
algorithm are stated in Table 2. Two nodes with third order polynomials 
were applied in GMDH. 

The obtained correlations after using GMDH and GEP techniques are 
expressed as follows:  

� GMDH  

where T and ρ are temperature and density, respectively, and the node 
N1 is given below: 

Fig. 1. A scheme of a chromosome with two genes (length of 2) and 
its expression. 

μCO2
¼
�
� 18:88275518 þ 87:5583665� N1 � 0:0201583� ρ þ 0:06274136� ρ� N1 � 132:1632815� N2

1 � 7:75167912� 10� 6 � ρ2 

� 0:048814178� ρ� N2
1 þ 1:22248704� 10� 5 � ρ2 � N1 þ 67:216781� N3

1 � 1:02923375� 10� 9 � ρ3�
10  
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N1 ¼ 0:59588907 þ 0:00016937� ρ þ 0:00022378� T � 2:48160084

� 10� 7 � T � ρ þ 2:87964698� 10� 8 � ρ2 � 7:69580232� 10� 8 � T2

� 9:93679405� 10� 11 � T � ρ2 þ 2:427651934� 10� 10 � T2 � ρ
þ 4:234529146� 10� 11 � ρ3 � 1:883695528� 10� 11 � T3

(15)    

� GEP 

μCO2
¼
h
0:5703þ 0:01033

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T � 11:69
p

� 0:0001304 

�Aþ 0:134� Bþ 10� 5 �
� ffiffiffiρp

�
� C

i10
(16) 

In this equation, T and ρ are temperature and density, respectively, 
and A, B and C are defined as shown below: 

A¼ ρþ T þ lnðρÞ (17)  

B¼ tanh
�

T
ρ

�

� 0:271194� tanh
�ρ

T

�
� 0:063664� tanhðT � ρÞ (18)  

C¼ 1:624�ðT þ ρÞ � 2:363�
ffiffiffiffiffiffiffiffiffiffiffiffi
T � ρ

p
� 480:8 (19) 

In the above explicit correlations (14) to (19), T and ρ should be 
given in units of K and kg/m3 respectively to obtain viscosity μCO2 in 

Fig. 2. Cross plots of the proposed predictive models.  

Table 2 
GEP setting parameters used in the study.  

Parameters Value/setting 

Chromosome 250 
Gene 8 
Mutation rate 0.4 
Inversion rate 0.08 
Operators EXP, TANH, þ, � , 

� ,/, X2, INV, Ln, ffiffi
:
p
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units of mPa s. 

4.1. Performance evaluation 

To evaluate the performance and robustness of the proposed models, 
statistical indicators, namely root mean square error (RMSE) and coef-
ficient of determination (R2) are used in the evaluation. The mathe-
matical expressions of the latter are specified as follows: 

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N
XN

i¼1

�
μexp

i � μpred
i
�2

v
u
u
t (20)  

R2¼ 1 �
PN

i¼1

�
μexp

i � μpred
i
�2

PN
i¼1

�
μexp

i � μpred
i
�2 (21) 

Fig. 2 illustrates the obtained cross plots for the different models 
showing predicted CO2 viscosity versus the experimental data. The 
reference unit slope corresponds to perfect match. It is seen that all the 
models exhibit very satisfactory distributions of predictions near the 
unit slope line for both training and testing datasets, demonstrating high 
reliability in estimating the viscosity of CO2. By close inspection, the 
MLP-LM and MLP-BR models have the least scatter around the unit slope 
line, while more scatter is seen for the MLP-SCG and MLP-RB and even 
more for GMDH and GEP models. The goodness of the match is illus-
trated more directly in Fig. 3 which shows comparative bar plots of 
RMSE and R2 values for the proposed models evaluated on the overall 
dataset. As seen, all models have R2 values almost identical to 1, indi-
cating very good prediction, although the RMSE values clearly distin-
guish between the models in terms of their matching ability. Especially, 
these values demonstrate the same quality trend as seen visually in 
Fig. 2. The statistical parameters of the calibrated models evaluated for 
the training, test and overall datasets are listed in Table 3. Evaluation of 

the statistical parameters reported in Table 3 and Fig. 3, shows that the 
MLP model optimized using LM is the most accurate model. It has the 
highest coefficient of determination during training, testing and overall 
(R2 ¼ 0.9999 in each), and lowest RMSE values, namely 0.0012, 0.0011 
and 0.0012, respectively. It can also be noticed from Table 3 and Fig. 3 
that the reliability of the developed models takes the following order: 
MLP-LM > MLP-BR > MLP-SCG > MLP-RB > GEP > GMDH. Further-
more, regarding the models providing explicit correlations, the GEP- 
based correlation outperforms that obtained with GMDH. Accordingly, 
the MLP-LM model will be considered for further evaluations and 
comparison with prior machine learning models from the literature, and 
the GEP-based correlation is compared with existing explicit correla-
tions from the literature for predicting the viscosity of CO2. 

Fig. 4 shows a comparison between the MLP-LM predicted CO2 vis-
cosity values and the experimental values for training and test sets. This 
figure reveals that the majority of the predictions during the training 
and testing phases are in line with the measurements. Fig. 5 presents the 
relative error distribution of the MLP-ML model in a contour map 
plotted against temperature and density. Very small relative errors are 
achieved. 

Fig. 3. Performances comparison of the proposed smart models: (a) RMSE, and 
(b) R.2. 

Table 3 
Statistical parameters for the developed models for prediction of CO2 viscosity as 
evaluated on the indicated datasets.   

Training data Test data Overall 

RMSE R2 RMSE R2 RMSE R2 

MLP-LM 0.0012 0.9999 0.0011 0.9999 0.0012 0.9999 
MLP-BR 0.0015 0.9999 0.0013 0.9999 0.0015 0.9999 
MLP-SCG 0.0041 0.9992 0.0033 0.9994 0.0039 0.9992 
MLP-RB 0.0042 0.9992 0.0029 0.9995 0.0039 0.9992 
GMDH 0.0251 0.9974 0.0221 0.9990 0.0245 0.9977 
GEP 0.0156 0.9991 0.0180 0.9995 0.0161 0.9992  

Fig. 4. Measured vs. predicted CO2 viscosity (MLP-LM): (a) training data; (b) 
test data. 
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4.2. Comparison with the existing models 

To compare performance of the proposed MLP-LM model and the 
GEP model correlation in estimation of CO2 viscosity, two prior ap-
proaches were selected; the best established paradigm by Abdolbaghi 
et al. (2019), which consists of a radial basis function neural network 
optimized by PSO (RBF-PSO) and the correlation of Laesecke and 
Muzney (Laesecke and Muzny, 2017). The four stated models were 
applied to the collected CO2 viscosity database. The performance results 
of the models by Abdolbaghi et al. (2019) and Laesecke and Muzney 
(Laesecke and Muzny, 2017) are stated and compared with our newly 
proposed models (MLP-LM and GEP) in Table 4 and Fig. 6. As demon-
strated, our best implemented smart model (MLP-LM) outperforms the 
best prior model proposed by Abdolbaghi et al. (2019), with an RMSE of 
0.0012 compared to 0.0018. In addition, the newly developed explicit 
correlation using GEP shows better match for predicting the viscosity of 
CO2 compared to that of Laesecke and Muzney (Laesecke and Muzny, 

Fig. 5. Relative error distribution with respect to density and temperature.  

Table 4 
Comparison of performance with prior models.   

RMSE 

MLP-LM (this study) 0.0012 
GEP (this study) 0.0161 
RBF-PSO (Abdolbaghi et al.) 0.0018 
Laesecke and Muzney correlation 0.020  

Fig. 6. RMSE comparison of our best models with the best models known from 
the literature. RMSE was evaluated using the entire experimental dataset. 

Fig. 7. Variation of CO2 viscosity with respect to density for fixed tempera-
tures. The predicted values are obtained by the calibrated MLP-LM model. 
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2017) with an RMSE of 0.016 compared to 0.020. The correlations have 
notably higher RMSE than the machine learning models, but overall, 
they all have very high performance. 

It is worth noting that the proposed GEP-based explicit correlation 
can be applied more directly than less transparent intelligent schemes 
and hence, it can more easily be integrated into different software while 
studying and simulating tasks related to CO2 utilization. With some 
programming, intelligent schemes can however also easily be imple-
mented and applied. Hence, there is no practical limitation to the use of 
our best-established paradigm in this study, namely the MLP-LM model. 
For illustration, we have developed an Excel macro to allow its appli-
cation and utilization. The procedure of using this Excel macro is 
described in Appendix A. 

4.3. Trend analysis and relevancy factor 

The impact of the input parameters, namely density and temperature 
on CO2 viscosity in the developed MLP-LM model is investigated. The 
variation of CO2 viscosity with density for several constant temperatures 
(313.15, 363.15 and 423.15 K) is reported in Fig. 7 together with 
experimental points. The stable smooth trends passing through the 

experimental points indicate the robustness of the newly proposed MLP- 
LM models in terms of physical interpretation. Fig. 8 also shows CO2 
viscosity versus temperature for constant densities (0.208, 1.442 and 
2.732 kg/m3) with experimental points. The implemented MLP-LM 
model is able to correctly follow the experimental variations of CO2 
viscosity with temperature. 

To quantify the impact of various input parameters on model out-
puts, the relevancy factor (Pearson correlation coefficient) is normally 
used. The closer the absolute value of this parameter is to 1, the more the 
specific input parameter impacts the output (although a linear relation is 
assumed). The relevancy factor r is defined as follows: 

r
�
Ij; O

�
¼

Pn
i¼1

�
Ij;i � Ij

�
ðOi � OÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

�
Ij;i � Ij

�2Pn
i¼1ðOi � OÞ2

q (22)  

where Ij indicates the jth model input (here j ¼ 2, and include tem-
perature and density). Ij;i is the ith value of input j and Ij denotes the 
average of these values. Oi is the output corresponding to input Ij;i, and O 
is the average of the output values. As depicted in Fig. 9, the viscosity of 
CO2 correlates positively with both input parameters, as given by rele-
vancy factors of 0.26 for temperature and 0.64 for density. Hence, 
increasing density or temperature is expected to result in rising CO2 
viscosity. Furthermore, as density exhibits higher relevancy factor than 
temperature, it has more influence on the calculated CO2 viscosity 
values. 

4.4. Outlier detection 

The statistical validity of the developed model in predicting CO2 
viscosity is analyzed using the Leverage statistical approach: the stan-
dardized residuals which represent the difference between the fore-
casted results and the experimental data, and statistical Hat matrix 
Leverage values are depicted in the Williams plot (standardized 

Fig. 8. Variation of CO2 viscosity with respect to temperature for fixed den-
sities. The predicted values are obtained by the calibrated MLP-LM model. 

Fig. 9. Relevancy factor.  

Fig. 10. Williams plot of the best proposed model.  
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residuals versus Leverage indices) to detect possible outliers. The Hat 
matrix is calculated using the formula below (Kamari et al., 2015; 
Jaworska et al., 2005): 

H¼XðXtXÞ� 1Xt (23)  

with X represents an (n � d) matrix, n and d denote the dimension and 
the data points number, respectively, and Xt is the transpose matrix of X. 
In the Williams plot, a limit Leverage value (H*), which is a constant, has 
been computed as though 3(d þ 1)/n. The data points are selected in the 
range of �3 of standard deviations from the mean, where the cut-off 
value of 3 covers 99% of the distributed data. To obtain a valid model 
which leads to predictions in the applicable domain, the majority of data 
points must be situated in the intervals 0 � H � H* and � 3 � R � 3. 

The Williams plot of the MLP-LM model is shown in Fig. 10. The 
majority of data points are in the ranges of � 3 � R � 3 and 0 � H �
0.008 and only 1.96% of data points are located outside the applicability 
domain of the model. It means that most of the data is sufficiently pre-
dicted and the validity of the model is confirmed. Therefore, it can be 
stated that the developed model predicts CO2 viscosity with high 
accuracy. 

5. Conclusions 

In this paper, several machine learning techniques were applied to 
establish robust and simple-to-use models to accurately predict the 
viscosity of CO2 under wide ranges of pressure and temperature condi-
tions, using density and temperature as input parameters. A dataset of 
1128 experimental points was used to calibrate and validate the models. 
Multilayer Perceptron optimized with four distinct back-propagation 
algorithms, including LM, BR, SCG and RB, and two robust ‘white- 
box’ techniques yielding explicit correlations, namely GMDH and GEP, 
were the applied data-driven methods. 

The analysis revealed that MLP optimized with LM (MLP-LM) 
resulted in the best paradigm for predicting the viscosity of CO2 with 
very low RMSE values: 0.0012 during the training, 0.0011 for the test 
data and 0.0012 as overall value. In addition, the best of the newly 
proposed models outperformed prior paradigms; The MLP-LM model 
performed better than the previous best performing intelligent model by 
Abdolbaghi et al. (2019); also, the best explicit correlation we obtained, 
from GEP, outperformed the best available explicit correlation, by 
Laesecke and Muzney (Laesecke and Muzny, 2017). Trend analysis of 
the MLP-LM model demonstrated that increasing temperature or density 
causes the viscosity of CO2 to increase, in line with experimental trends. 
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