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Preface
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support which made this project possible.
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Atle Oglend and Roy Endré Dahl. Writing this PhD thesis has
been challenging and rewarding in several areas – personally and
professionally. I wish to extend a special thanks to all of my
resourceful colleagues and friends at the University of Stavanger for
providing memorable and enjoyable three years. For my supervisors,
Atle Oglend and Roy Endré Dahl, I am deeply thankful for their
patience, allowing me to focus on the fields of economics closes to my
interest, and always providing insightful, critical, and friendly advice
for guiding me throughout this project.
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Summary
This thesis is concerned with evaluating the temporal and spectral
connectedness and spillover dynamics of commodity prices. The
industries of interest are crude oil, agricultural commodities,
aquaculture, and Norwegian salmon as the primary datasets. World
agricultural and energy commodity indexes as well as the aquaculture
sector and salmon price index have experienced exceptionally volatile
periods throughout the last decade. Therefore, the objective of
this thesis is to detect and quantify the temporal and spectral
connectedness and spillover dynamics in the prices of these assets.

This thesis falls in line with a large collection of research papers
evaluating the dynamics of commodity markets. More specifically, the
first two papers examine the connectedness structure between crude
oil and agricultural commodities and between various aquaculture
species by utilizing wavelet-based copula approach. By combining
the methodologies from physics and econometrics, we evaluate how
the dependence structures among the underlying assets varies across
different frequencies and in the tails of the distributions. The third
paper evaluates the static and temporal return and volatility spillover
dynamics between crude oil and agricultural commodities. The
last paper examines the firm-level cointegration relation and return
spillover dynamics between Fish Pool Index (FPI) and major salmon
producers. Incorporating methodologies from physics, economics,
and finance is relevant when examining spectral relationship and
providing an alternative angle to examine the commodity markets.

The findings of this thesis indicate that the connectedness between
oil and agricultural commodities increased during post-2006 across
all considered frequencies of return movements. Specifically, the
wavelet decomposition reveal that the interconnectedness structure
is negative during the pre-2006, but it turns positive over the post-
2006 subsample. Furthermore, the findings indicate persistence in
dependence variation is higher over the long-run return movements. In
terms of spillover analysis, the findings indicate minuscule information
transmission between crude oil and agricultural commodities over
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the pre-2006 subsample, but crude oil tends to be a net receiver
of volatility over the post-2006 subsample. Furthermore, we report
asymmetric and bidirectional information transmission between crude
oil and agriculture during periods of financial and economic turmoil.
In terms of connectedness in different aquaculture species, the findings
indicate limited dependence in the short-run horizon, however, the
price linkage among various species significantly increased over the
medium- and long-run horizon, suggesting market integration over
the long-run. In regard to cointegration and spillover among FPI
and major salmon producers, we report that the prices of exchange
traded salmon stocks reflect the flow of salmon market information
earlier than the price index. Furthermore, our findings indicate that
the FPI and small producers are net receiver of spillover from major
salmon producers.
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1 Introduction
The increased financialization and globalization of commodity
markets are the primary components for the strengthened
connectedness and transmission shocks among and between financial
and commodity markets. Financialization of commodity futures
markets and the flow of speculative investments significantly adds
to the connection of different commodity markets, which are
predominantly impelled due to the participation of institutional
investors through the periods of high liquidity and turmoil (Gorton
and Rouwenhorst, 2006; Bhardwaj et al., 2015). Due to lack of
substantial potential to achieve diversification and risk management
benefits, market participants has been constantly pursuing alternative
investment prospects to diversify their portfolios and hedge their
investments. Commodity markets, in this regard, has been a
prime target for the market participants due to its heterogeneous
business cycle relative to the financial markets. Over the years,
the commodity markets have acted as safe-havens to hedge against
investments in financial markets. Also, lower trade barriers and
greater international flow of financial capital and physical products
has connected otherwise localized commodity markets. This has
made different markets dependent on common global supply and
demand conditions, and by extension connecting the prices in
different commodity markets. This provide further thrust to the
interconnectedness among the commodity markets. Therefore, it is
essential to quantify connectedness and spillover between and within
the commodities and their changes over time.

The four papers in this thesis can be divided into two main parts. The
first part comprises of papers [I] and [II] and deals with evaluating the
temporal and spectral connectedness and volatility spillover dynamics,
respectively, in the crude oil and agricultural markets. The second
part consists of papers [III] and [IV] and focuses on examination
of temporal and spectral connectedness among various aquaculture
species and firm-level cointegration and spillover dynamics between
Fish Pool Index (FPI) and major salmon producers in Norway. In
the following subsections, the introduction of each part is presented,
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which is followed by the abstracts of the four papers.

1.1 The relationship between energy and
agricultural commodities

World agricultural and energy commodity prices have undergone
remarkably volatile phases during the course of the last decade.
The increased interdependence of global financial and commodity
markets are the principal components of increased connectedness and
transmission shocks between assets. Understanding the temporal
and spectral interconnectedness have numerous essential implications
for investment allocation, asset valuation, risk management, and
monetary policy making (Karyotis and Alijani, 2016; Andreasson
et al., 2016; Belousova and Dorfleitner, 2012). Although, there is
a large strand of literature contributed to assessing the variances
and covariance of different assets, examination of connectedness
dynamics and volatility transmission mechanisms among commodity
markets have received relatively less attention. Historically, the large
changes in crude oil prices were often resulted in an increase in other
commodity prices (Nazlioglu et al., 2013), raising question of whether
the variations in the price of crude oil changes the temporal and
frequential dynamics of other commodities.

Due to the widely acknowledged importance of crude oil, studies
within commodities context is predominantly restrained to assessing
dependence between crude oil and a narrow set of agricultural
commodities and precious metals. In addition, crude oil is the most
traded commodity in the world, providing further thrust to the
dominance of crude oil. Several studies demonstrate that crude
oil often act exogenously and transfer shocks to other energy and
non-energy commodities (see e.g. Baffes, 2007; Harri and Hudson,
2009; Alghalith, 2010; Serra, 2011, among others). In contrast,
several studies discard this notion of connectedness and reports
either negative or no linkage among crude oil to other commodities
(see e.g. Kaltalioglu et al., 2011; Lombardi et al., 2012; Zhang et al.,
2010; Nazlioglu, 2011; Sari et al., 2010, among others). In a more

2



recent study, Kang et al. (2017) demonstrates that crude oil is a
net receiver of return and volatility spillover, which add questions
to the importance of crude oil as an influential commodity. As this
literature indicates, the dependence dynamics between crude oil and
other commodities is ambiguous, and therefore necessitates further
elucidation by utilizing different methodologies and by broadening
the total number of commodities.

Due to the upsurge in agricultural prices during 2005, several studies
have contributed to the prevailing knowledge of connectedness and
spillover dynamics by estimating the association between crude oil
and agricultural commodities. The prices of various agricultural
commodities – wheat, soybeans, soybean oil, corn, sugar, and
canola – substantially increased from early-2005 to mid-2008. Several
researchers attributed the spillover from crude oil as a primary reason
of the global food crisis of 2007/2008 (Reboredo, 2012; Cabrera and
Schulz, 2016). Furthermore, the increased codependence between the
agricultural commodities and crude oil was also noted with the swift
decline in crude oil to a low of around $32 barrel in December 2008.
The dependence structure among the assets persisted with the steady
increase in crude oil prices during post-2008 and persisted until mid-
2013. Figure 1.1 presents an overview of the advancement of futures
prices and return series’ of crude oil and some major agricultural
commodities. In general, it can be seen that the increase (decrease)
in crude oil price is followed by an increase (decrease) in prices of the
agricultural commodities. The prices of nearly all the agricultural
commodities rose between 1995 and 1996, which is followed by a
drop between 1998 and 1999. In addition, a gradually rising trend
is evident for almost all the agricultural commodities during 2005.
The price of crude oil and for almost all the agricultural commodities
hit the highest point during 2008, which is followed by a sudden
drop during the global financial crisis of 2008. This may be due
to higher uncertainty perceived by the market participants in these
assets and a preference to hold assets with less uncertainty. The
periods of financial and economic turmoil further strengthen this
relationship, which is commonly referred to as contagion (Kang et al.,
2017; Ewing and Malik, 2016; Sensoy et al., 2015; Silvennoinen and
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Thorp, 2013). This substantially increases concerns and uncertainty
for nations strongly reliant on the import of agricultural commodities
and among numerous stakeholders with wide exposure to the changes
in commodity markets.
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Figure 1.1: Development in futures prices and returns

The figure shows the development of daily futures prices and returns
of crude oil and agricultural commodities. All the price series
displays an upward trend post-2005 and after 2009. In addition,
visual inspection for all series indicate that all the commodities are
non-stationary in levels and stationary at first difference.

(a) Crude oil (CL) (b) Wheat (W) (c) Sugar (SB)

(d) Soybeans (S-) (e) Soybean oil (BO) (f) Cotton (CT)

(g) Corn (C) (h) Coffee (KC) (i) Cocoa (CC)

(j) Canola (WC) (k) Soybeans meal (SM)
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There are several reasons for the association between crude oil with
food prices. First is through the biofuel channel. The surge in
crude oil prices increase the demand for soybean- and corn-based
biofuels, resulting in higher prices of feedstock (Pal and Mitra,
2017). Consequently, farmers tends to assign more resources and
land for the production of fuel crops thereby escalating the prices
other food commodities. In addition, an upward shift in crude
oil price results in an increased cost of agricultural commodities
due to channels such as increased prices of fertilizers, chemicals,
outbound and inbound transportation, and processing cost (Hanson
et al., 1993). Furthermore, the rapid growth and prosperity in the
population of the world requires additional feedstock, and the rapid
economic development in emerging and developing nations leads to
increased consumption, resulting in demand and supply gap among
the prices of agricultural commodities. Finally, the outflow and inflow
of speculative investment may further impact price linkage structure
between crude oil and agricultural commodities (Bekiros et al., 2017;
Gorton and Rouwenhorst, 2006; Bhardwaj et al., 2015).

Unlike financial markets, the commodity markets are heterogeneous
and complex systems of numerous interacting agents with distinctive
term objectives. The actors in commodity markets, for instance
financial and institutional investors, industrial organizations, and
general population, have idiosyncratic term objectives and operates
at distinct frequencies. Therefore, it is of significant importance
to evaluate how the connectedness and spillover dynamics varies
within the commodity markets. I focus on using wavelet transform
analysis to decompose the return series into a set of subsequent
wavelets corresponding to evaluate the connectedness dynamics
between crude oil and agricultural commodities over short-, medium-
, and long-run. In addition, I utilize the spillover framework to
examine the transmission mechanism among crude oil and agricultural
commodities.
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1.2 Fisheries and aquaculture
Aquaculture is a subset of agriculture concerning the production
of farmed fish and other seafood. Fisheries and aquaculture are
the two primary production technologies for seafood, which is an
important source of protein and livelihood for waterway and coastal
communities (Smith et al., 2010). The significance of aquaculture
production to global seafood supply is well established, and the Food
and Agricultural Organization (FAO, 2018) demonstrates the growing
magnitude of aquaculture production. Harvesting or production of
aquaculture is inherently risky due to unavoidable effect of biological
production process (Asche et al., 2015; Dahl, 2017). Based on
the scale of demand and supply elasticities, production shocks
instantaneously translate in the price volatility facing producing
companies and consumers in the market. Price volatility of seafood
markets has a substantial impact on the prices and valuations in
aquaculture industry Dahl and Oglend (2014). For seafood producers
and investors, understanding the price variations and connectedness
dynamics are crucial as it causes significant variability in revenues
and free cash flows of the firm.

The rapid growth in salmon production has attracted significant
attention from the financial community to utilize salmon shares
together with other asset classes in order to diversify the uncertainty
of their portfolios. The salmon price volatility follows an upward
trend since the mid-2000s (Oglend, 2013; Bloznelis, 2016). In addition,
the price volatility of salmon has more than doubled since 2010 and
is now considerably higher than the comparable commodities, thus
making it an above-average volatile commodity (Asche et al., 2019;
Dahl and Oglend, 2014). On average, the annualized growth in
production between 2001 and 2016 was 5.8% with the highest growth
recorded in Asia and Africa. Aquaculture gains from more control of
production and quality, and horizontal and vertical integration has
enhanced efficiency in terms of logistics. Consequently, aquaculture
production is deemed to decrease risk in total seafood supply (Dahl
and Oglend, 2014). In value, global seafood trade produces above 9%
of total agricultural trade globally, and is presently undergoing the
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highest growth of food production, due to the increase in intensity
seen in aquaculture production (FAO, 2018).

The evidence of market connectedness, in both price levels and
volatility, is of significant importance for traders and producers
using future and forward contracts to control price risk. These
contracts allow seller and buyer the prospect to settle the price for
future delivery, indicating quality and quantity on the fish delivered.
Although current future markets are imperfect for seafood compared
to other agricultural markets, the growth and innovation seen in
aquaculture offers better opportunity to meet the demands set by
Brorsen and Fofana (2001) for agricultural commodities futures
markets with respect to commodity homogeneity and logistics. Today,
futures of salmon are traded at Fish Pool, a Norwegian futures market
formed in 2005, trading between 60 000 and 100 000 tonnes salmon
per year. Several recent papers (Solibakke, 2012; Asche et al., 2015,
2016b,a) examined the attributes of salmon futures market.

To sum up, the price volatility of aquaculture species has significantly
increased over time and remains considerably high compared to
financial assets and commodities Asche et al. (2019). Despite
numerous papers evaluating aquaculture and fisheries price volatility,
knowledge about connectedness and spillover dynamics between
different fish species and between fish prices and salmon producers
is still missing. Therefore, studies related these topics are essential
in order to identify and evaluate the connectedness and spillover
dynamics faced by these industries.
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1.3 Methodology
In this subsection, I briefly discuss the methodologies utilized in this
paper to evaluate connectedness and spillovers. First, the temporal
and frequential domain connectedness among the commodities are
estimated by decomposition of return series into a set of subsequent
wavelets corresponding to short-, medium-, and long-run trends and
utilizing a time-varying DCC-Student-t copula framework. The novel
characteristic of wavelet analysis is that it allows to decompose
a unidimensional time series data into bivariate time-frequencies
scales. Specifically, we employ maximal overlap discrete wavelet
transform (MODWT) to decompose the series. Using the decomposed
series, we estimate the connectedness structure among the assets by
employing the GARCH-based DCC-copula frameworks. The wavelet
decomposition is advantageous as it allow us to reveal information
that are not apparent on “scale aggregated” data. This allows us to
separately examine the short-, medium-, and long-run connectedness
among the assets.

Secondly, the spillover effects among the markets are determined by
utilizing Diebold and Yilmaz (2009, 2012) (DY) spillover frameworks
on returns and EGARCH filtered volatilities. The studies in the
spillover strand primarily utilize different specifications of multivariate
generalized autoregressive conditional heteroscedasticity (MGARCH)
models to analyze cross-dynamics of spillover transmission between
assets. However, the primary issue with the MGARCH lies in its
inability to provide direction of spillover. The DY frameworks relies
on the vector autoregressive (VAR) framework and decomposition of
variance from VAR framework. We extend the Diebold and Yilmaz
(2009, 2012) frameworks by integrating an EGARCH specification
to extract the conditional volatility. The conditional volatility from
the EGARCH framework is then utilized in the DY frameworks to
estimate the static and temporal volatility spillover. The structural
variation is taken into account by dividing the sample into two
subsamples, i.e. the calm period (pre-2006 subsample) and turmoil
period (post-2006 subsample).

Finally, the cointegration approach together with the DY framework is
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utilized to evaluate market integration and spillover dynamics among
the FPI and major salmon producers. The cointegration approach
enables us to examine whether the underlying series are cointegrated
and provide an estimate of short- and long-run relationship among the
assets. Specifically, the Johansen’s multivariate approach (Johansen,
1988; Johansen and Juselius, 1990; Johansen, 1991) is employed to
examine the cointegration relationship among prices. The Johansen
procedure relies on the vector autoregressive error correction model
(VECM) to provide an estimate of short- and long-run relations
among the assets.

1.4 Essays of the thesis
The aim of this PhD thesis is to investigate temporal and spectral
connectedness and spillover dynamics of the commodity markets.
This PhD dissertation comprises of four papers: 1) Temporal and
spectral dependence between crude oil and agricultural commodities:
A wavelet-based copula approach, 2) Price volatility dynamics in
aquaculture fish markets, 3) Dynamics of volatility spillover in
commodity markets: Linking crude oil to agriculture, and 4) Stock
market valuation revealing salmon price information.

1.4.1 Paper I: “Temporal and spectral dependence between
crude oil and agricultural commodities: A wavelet-
based copula approach” (with Atle Oglend and Roy
Endré Dahl)

This paper investigates the temporal and frequency domain
connectedness between the price of crude oil and ten major
agricultural commodities. We decompose returns into short-, medium-
and long-run movements using the MODWT and investigate cross-
commodities dependence structures in the decomposed returns
using a DCC-student-t copula. The method allows us to analyze
variation in dependencies across time as well as frequencies of
return movements. Structural variation is considered through
subsample analysis. Consistent with previous research, we find that
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connectedness between oil and agricultural products increases post-
2006 across all considered frequencies of return movements. However,
the rate of increase is higher for longer investment horizons. The
wavelet decomposition reveals that interconnectedness as a function
of investment horizon is negative during the pre-2006, but positive
during the post-2006 subsample. These findings support stronger
connectedness primarily due to stronger connection between long-run
return movements. Analysis of connectedness dynamics shows no
strong pre- and post-2006 differences, suggesting that the recent
higher connectedness is primarily a correlation level effect. We do
find that persistence of connectedness variation is higher for long-run
return movements. Overall, we document a more connected crude
oil and agricultural commodities complex after 2006, with lower
commodities diversification benefits in general, and higher correlation
risk for longer investment horizons.

1.4.2 Paper II: “Dynamics of volatility spillover in
commodity markets: Linking crude oil to agriculture”
(with Atle Oglend and Roy Endré Dahl)

This paper examines spillover effects among markets of crude oil and
ten major agricultural commodities by employing the Diebold and
Yilmaz (2009, 2012) spillover frameworks to returns and EGARCH
filtered volatilities. We account for structural variations in data
by dividing the data into two subsamples: from July 1986 to
December 2005 (pre-2006 subsample) and from January 2006 to
June 2016 (post-2006 subsample). Our findings indicate that there is
minuscule information transmission among crude oil and agricultural
commodities over the pre-2006 subsample, however, crude oil becomes
the net receiver of information over the post-2006 subsample. Second,
our findings indicate asymmetric and bidirectional flow of information
among crude oil and agricultural commodities that intensifies during
periods of financial and economic turmoil. Last, net volatility spillover
increases in periods of large declines in the crude oil price, such as in
2008 and later in 2014. Overall, we document a more detailed insight
into channels of connectedness among the underlying commodities,
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which may assist developing policy recommendation, portfolio designs,
and risk management decisions.

1.4.3 Paper III: “Price volatility dynamics in aquaculture
fish markets” (with Roy Endré Dahl)

In this paper, a time-varying student-t copula is used to capture
information on price volatility dependence in the short-, medium-,
and long-run horizon in the US market for frozen and fresh salmon,
trout, tilapia and catfish. Using monthly data from July 1992 to
March 2017, the volatility dynamics for these aquaculture species are
assessed. The analysis allows indicating significant differences in the
volatility relationships, depending on time-frequency. While short-
run volatility has limited dependency, there is significant dependency
in both the medium- and long-run, indicating that market integration
is stronger in the long-run. The information is particularly important
to buyers and producers utilizing the futures markets, as contracts
are typically traded using a set of frequencies, and may help them
manage and reduce price risk.

1.4.4 Paper IV: “Stock Market Valuation Revealing
Salmon Price Information” (with Atle Oglend and
Roy Endré Dahl)

This paper investigates the relationship between one of the primary
price indices of farmed salmon (the Fish Pool index, FPI) and
the stock prices of major publically traded salmon companies. We
document that prices of exchange traded salmon stocks reflect the flow
of salmon market information earlier than the price index. Forward
looking stock prices are predictive of the backward looking price
index. Furthermore, the predictive value is greater for the larger
companies. The price discovery role of stock prices introduces a
potential bias in the salmon futures design utilizing the price index
to settle futures contracts as well as reducing hedging efficiency due
to lagged reflection of company relevant market information in the
price index.
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A B S T R A C T

This paper investigates the temporal and frequency domain connectedness between the price of crude oil
and ten major agricultural commodities. We decompose returns into short-, medium- and long-run move-
ments using the MODWT and investigate cross-commodities dependence structures in the decomposed
returns using a DCC-Student-t copula. The method allows us to analyze variation in dependencies across
time as well as frequencies of return movements. Structural variation is considered through subsample anal-
ysis. Consistent with previous research, we find that connectedness between oil and agricultural products
increases post-2006 across all considered frequencies of return movements. However, the rate of increase
is higher for longer investment horizons. The wavelet decomposition reveals that interconnectedness as a
function of investment horizon is negative during the pre-2006, but positive during the post-2006 subsam-
ple. These findings support stronger connectedness primarily due to stronger connection between long-run
return movements. Analysis of connectedness dynamics shows no strong pre- and post-2006 differences,
suggesting that the recent higher connectedness is primarily a correlation level effect. We do find that
persistence of connectedness variation is higher for long-run return movements. Overall, we document
a more connected crude oil and agricultural commodities complex after 2006, with lower commodities
diversification benefits in general, and higher correlation risk for longer investment horizons.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

World agricultural and energy commodity indexes have expe-
rienced exceptionally volatile periods throughout the last decade.
The prices of some key agricultural commodities – wheat, soybeans,
soybean oil, corn, sugar, and canola – significantly increased from
early-2005 to mid-2008. Several studies provide evidence of shock
and volatility transmission from crude oil as a dominant cause of the
2007/2008 “global food crisis” (Reboredo, 2012; Cabrera and Schulz,
2016). Co-movement between crude oil and agricultural commodi-
ties was also observed when crude oil prices swiftly dropped to a low
of around $32 barrel in December 2008. The connectedness persisted
as crude oil prices steadily increased post-2008 and continued until
mid-2013. This raises uncertainty and concern for countries heavily
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dependent on agricultural imports and for stakeholders in general
with a wide commodities exposure.

There are several reasons why crude oil is connected to food
prices. The first, and perhaps most obvious, is the biofuels channel.
Higher crude oil prices raise the demand for corn- and soybeans-
based biofuels, which results in increased prices of feedstock (Pal and
Mitra, 2017). This leads farmers to allocate more land and resources
towards production of fuel crops, leading to an increase in food
prices. Furthermore, an increase in crude oil price results in higher
production cost of agricultural commodities, such as increased cost
of fertilizers, chemicals, inbound and outbound transportation, and
processing of food items, resulting in higher food prices (Hanson et
al., 1993). The prosperity and growth in world population necessi-
tates an increase in production of feedstock, and the rapid economic
expansion in many developing and emerging countries leads to an
increase in consumption and thereby driving up the demand and
price of agricultural commodities. Lastly, the inflow and outflow of
speculative investment in commodity markets can also contribute to
connecting crude oil and agricultural commodity prices (Bekiros et
al., 2017; Gorton and Rouwenhorst, 2006; Bhardwaj et al., 2015).
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In terms of empirical analysis, several studies have shown that
large swings in crude oil prices are often followed by changes in
prices of agricultural commodities (Nazlioglu et al., 2013; Wang
and McPhail, 2014). However, there are dissenting studies that
show no linkage (see e.g. Cabrera and Schulz, 2016; Nazlioglu and
Soytas, 2011; Myers et al., 2014). Commodity markets are complex
systems of several interacting agents with distinctive term objec-
tives. Actors in commodity markets, such as industrial organizations,
financial investors, and general population, have distinctive time-
horizon objectives and operates at different frequencies. Hence, the
resulting time series of market prices are formed by a combination
of information from components operating at different frequencies.
Accordingly, standard time series econometric methods that aggre-
gate frequency components usually result in loss of information.

The aim of this paper is to contribute to this literature by
investigating both the temporal and frequency domain connect-
edness between the price of crude oil and ten major agricultural
commodities1. To do so, we decompose price returns into short-
, medium- and long-run movements using the MODWT wavelet
filter and investigate cross-commodities dependence structures in
the decomposed returns using DCC-Student-t copula. This method
allows us to analyze variation in dependencies across time as well as
frequencies of return movements. Structural variation is considered
through sub-sample analysis.

The objective is to detect and quantify the temporal and spectral
connectedness in the prices of crude oil and agricultural commodi-
ties. The analysis aims to answer the following questions. First, what
is the temporal and spectral contribution of oil price shock on the
prices of agricultural commodities? Second, do periods of financial
and economic turmoil change the dependence between crude oil and
agricultural commodity prices? Third, has the recent decline in crude
oil price changes the dependence structure with agricultural com-
modities? Finally, does connectedness dynamics between agricul-
tural commodities and crude oil exhibit extreme tail co-movement
across short-, medium-, and long-term investment horizons?

Meeting the objective requires specific attention to the frequency
of price movements. The dependence between short run returns
might differ substantially from dependence under longer investment
horizons. We add to the study of Pal and Mitra (2017), Mensi et
al. (2017), Wang and McPhail (2014) and Koirala et al. (2015) by
analyzing the dependence structure of decomposed return series
across different investment horizons, and by modeling the static and
dynamic connectedness between using static and time-varying cop-
ula. The novel feature of wavelet analysis is that it allows decompos-
ing a unidimensional time series data into bivariate time-frequencies
scales. This allows us to separately evaluate the short-, medium-,
and long-term connectedness between the commodities using cop-
ulas. To the best of our knowledge, this is the first study to estimate
temporal and frequential dependence between a broad set of agricul-
tural commodities and crude oil prices using a discrete-type wavelet
decomposition and time-varying copulas. The paper complements
and augments the findings of previous studies on the oil-food nexus
by highlighting temporal and spectral connectedness across time.

Consistent with previous research, our results reveal that con-
nectedness between oil and agricultural products increases post-
2006 across all frequencies of return movements. However, the
rate of increase is higher for longer investment horizon. The fre-
quency decomposition reveals declining correlation in investment
horizon pre-2006 but increasing correlation post-2006. This sup-
ports stronger dependence between crude oil and food commodities
primarily due to a stronger connection between long-run return

1 The agricultural commodities in our sample comprise wheat (W), sugar (SB),
soybean (S), soybean oil (BO), cotton (CT), corn (C), coffee (KC), cocoa (CC), canola
(WC), and soybeans meal (SM).

movements. Analysis of connectedness dynamics shows no strong
pre- and post-2006 differences, suggesting that the recent higher
dependence is primarily a level effect. We do find that persistence
of correlation variation is higher for long-run return movements.
Overall, we document a more connected crude oil and agricultural
commodities complex after 2006, with lower commodities diversi-
fication benefits in general, and higher correlation risk for longer
investment horizons. The findings of this study have important
implications for policy risk management and portfolio optimization.
We show and discuss the implications of our findings in terms of
portfolio weights, hedge ratios and VaR outcomes.

The remainder of this article is structured as follows. Section 2
presents the literature review. The empirical methodology is pre-
sented in Section 3. The data and preliminary statistics are presented
in Section 4. Section 5 reports and discusses the empirical findings
along with policy and portfolio risk implications. Section 6 concludes
the paper.

2. Literature review

Studies on the connectedness between crude oil and agricultural
commodities has increased significantly over the recent years. In
an early study, Hanson et al. (1993) employ a computable general
equilibrium (CGE) model and reports that agricultural commodities
affected by oil price shock not just through direct and indirect cost
but also through foreign borrowing and exchange rate.

Successive literature in the field further elucidate the connected-
ness dynamics by employing different econometric methodologies
such as different versions of GARCH, VAR, and VECM models. In
addition, several tests are utilized to evaluate linkage such as non-
parametric causality tests, causality in variance test, and impulse
response functions. However, these studies provide divergent evi-
dence of linkage. Some studies demonstrate a significant relationship
between crude oil and agricultural commodities. For example, Du
and McPhail (2012) employ a GARCH model using daily data between
2005 and 2011, and reports significant volatility transmission from
crude oil to agricultural commodities. In a later study, Wang and
McPhail (2014) employ a VAR model using annual data from 1948 to
2011 and report mixed evidence of spillover from energy prices to
agricultural prices. Koirala et al. (2015) use copulas method to study
dependence between energy and two agricultural commodities (corn
and soybeans). Their findings indicate strongly positive and signifi-
cant correlation between energy and the two agricultural commodity
prices.

In contrast, several studies document non-significant linkage
between oil and agricultural nexus. For example, Kaltalioglu et al.
(2011) use a VAR model using monthly data from 1980 to 2008 and
report insignificant linkage between crude oil and agricultural com-
modities. Reboredo (2012) also reports weak connectedness and tail
dependence between oil and three agricultural commodities (corn,
soybean, and wheat). In a later study, Nazlioglu et al. (2013) report
no evidence of volatility spillover during the period of 1986 to 2005.
However, they show significant transmission between crude oil and
agricultural commodities between 2006 and 2011. Liu (2014) shows
that the cross-correlations are significant but weak for the smaller
time scales between oil, corn, and soybeans returns. Whereas, the
cross-correlations are not significant for the larger scales. Cabrera
and Schulz (2016) study the relation between crude oil, rapeseed,
and biodiesel prices. Their findings indicate that the production of
biodiesel does not explain price linkage between agricultural feed-
stock and crude oil. In a recent study, Fowowe (2016) evaluates the
linkage between oil and agricultural commodities prices using struc-
tural breaks co-integration and nonlinear causality tests. His findings
indicate that the prices of agricultural commodities are neutral to oil
price change.
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Table 1
Literature on connectedness between crude oil and other commodities.

Study Assets/Markets Data Method Results

Hanson et al. (1993) Crude oil and agricultural commodities 1986–1991 (Annual) CGE Significant
Du and McPhail (2012) Energy and agricultural 2005–2011 (Daily) GARCH SVAR Significant
Wang and McPhail (2014) Energy price shocks, agricultural prices 1948–2011 (Annual) VAR Mixed
Koirala et al. (2015) Energy commodities, corn, cattle, and soybeans futures 2011–2012 (Daily) Copula Significant
Kaltalioglu et al. (2011) Oil price, agricultural commodities and food items 1980–2008 (Monthly) VAR Insignificant
Reboredo (2012) Oil, corn, soybean, and wheat 1998–2011 (Weekly) Copula Insignificant
Nazlioglu et al. (2013) Crude oil, wheat, sugar soybeans, and corn 1986–2011 (Daily) CIV test Mixed
Liu (2014) Oil, soybean, oat, wheat, and corn 1994–2012 (Daily) DCCA Insignificant
Cabrera and Schulz (2016) crude oil, rapeseed, and biodiesel 2003–2012 (Weekly) AGARCH MVM Insignificant
Fowowe (2016) Oil, maize, soybeans, and sunflower 2003–2014 (Weekly) JC NPCT Insignificant
Vacha and Barunik (2012) Energy commodities 1993–2010 (Daily) CWT significant
Kristoufek et al. (2016) Crude oil, ethanol, sugar, and corn 2004–2014 (Weekly) CWT significant
Mensi et al. (2017) Implied volatility indexes Crude oil, wheat, and corn 2012–2016 (Daily) WBCP significant
Pal and Mitra (2017) Crude oil, dairy, cereals, vegetable oil, sugar indexes 1990–2016 (Monthly) JC, TY CWT significant

Notes. Computable General Equilibrium model (CGE), Structural Vector Autoregressive (SVAR), Detrended cross-correlation analysis (DCCA), Asymmetric dynamic conditional
correlation GARCH (AGARCH), Multiplicative volatility model (MVM), Johansen co-integration (JC), Continuous wavelet transform (CWT), Wavelet-based copula (WBCP), Toda-
Yamamoto (TY), Diks–Panchenko non-parametric causality test (NPCT), and Causality in variance test (CIV). Significant indicates that a study reports crude oil has positive effect
on the price dynamics of agricultural commodities, and vice versa for insignificant. Mixed reflects bidirectional connectedness between crude oil and the underlying agricultural
commodities.

These studies provide estimates of connectedness based on
standard time-series techniques. However, a key limitation of such
methodologies lies in their inability to account for information per-
taining in the frequency domain (Huang et al., 2016; Pal and Mitra,
2017). Huang et al. (2015) show that the information pertaining in
the frequency domain is one of the leading cause of nonlinearity in
assessment of time-series data. Vacha and Barunik (2012) were the
first to employ a continuous type wavelet analysis to explore the
connectedness between energy commodities in the time-frequency
domain. The novel feature of this approach is the decomposition
of univariate time series data into bi-dimensional time-frequency
sphere (Pal and Mitra, 2017). Kristoufek et al. (2016) investigate
the relation between ethanol prices to the price of corn and sugar
by employing a continuous wavelet coherence analysis. They report
that ethanol prices are affected by the prices of feedstock. In their
study, Berger and Uddin (2016) provide evidence of weak depen-
dence over short-term and strong dependence over the long-run
between equity market and commodities by employing a discrete-
type wavelet-based copulas. In a recent study, Mensi et al. (2017)
examine the dependence structure between implied volatility
indexes of crude oil, wheat, and corn by employing a wavelet-based
copula approach. Their findings support evidence of time-varying
asymmetric tail dependence between the commodities. Pal and
Mitra (2017) examine connectedness dynamics using a continuous-
type wavelet transform and reported co-movement over short-
and long-run between crude oil and five food related indexes. Our
paper complements the study of Pal and Mitra (2017), Mensi et
al. (2017), Wang and McPhail (2014) and Koirala et al. (2015) as
we utilized futures prices of crude oil and 10 different agricultural
commodities and by utilizing discrete-type wavelet transform
analysis, which is a natural extension to continuous wavelet
transform. In this regard, our study provides a more
comprehensive analysis of dependence between crude oil and
agricultural commodities.

To summarize, regardless of theoretical underpinnings, the
empirical findings of previous literature provide mixed evidence
regarding temporal connectedness between crude oil and agricul-
tural commodities (Table 1). In addition, the studies evaluating
time-spectral linkage structure between crude oil and agricultural
commodities are limited. Furthermore, the recent decline in crude
oil price necessitates a strong urge to reevaluate the connected-
ness dynamics using a broader set of agricultural commodities and
improved methodology.

3. Methodology

Previous literature on connectedness dynamics mainly relies on
standard time series models to evaluate linkage structure. One
major shortcoming of these approaches is that they do not fully
consider how dependence might vary over the frequency of price
variation. In this study, we first employ a discrete-type wavelet
transform (DWT), which enables us to decompose the underlying
return series into discrete wavelets reflecting information pertaining
to the frequency domain. Secondly, we employ univariate EGARCH
models on individual frequencies to standardize the series. Finally,
we estimate the dependence dynamics in each frequency com-
ponent using a static and time-varying Student-t copula. In the
proceeding subsection, we briefly present basic idea of wavelets
before introducing the employed methodologies. We refer inter-
ested readers to Gençay et al. (2001), Percival and Walden (2000)
and Gallegati and Semmler (2014) for detailed overview of wavelet
analysis. We follow the diligence outlined by Berger and Uddin
(2016) to implement the wavelet-based copula through the follow-
ing stages:

1. Decomposition of returns series using maximal overlap dis-
crete wavelet transform (MODWT)

2. Standardization of both returns and decomposed series using
marginal distribution models

3. Dependence dynamics in each frequency using static and time-
varying copula

3.1. The wavelet

A wavelet can be expressed as a wave-like oscilla-
tion, which begins at zero, increases over time and then
revert to zero. Wavelets allow us to determine the dom-
inant modes of variability and to study each component
with a resolution that matches to its scales (Torrence and
Webster, 1999; Graps, 1995). As such, wavelets last through a
certain periods of space or time and have defined number of oscilla-
tions at each scale (Crowley, 2007). Wavelets help to simultaneously
evaluate information contained in the frequency and the time
domain of a time series.
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3.2. Maximal overlap discrete wavelet transform (MODWT)

The first step is the employment of wavelet transform on the
underlying returns series to decompose it into discrete signals.
Percival and Walden (2000) and Gençay et al. (2001) introduced dis-
crete wavelet transform to decompose the returns series into a set
of underlying trends and triggered a growing field of literature deal-
ing with the decomposition of returns2 series into short-run and
long-run seasonalities.3 Wavelet transform analysis enable us to pro-
vide a multi-resolution decomposition of the underlying time series.
The output of wavelet transform reveal relationships that are not
apparent on “scale aggregated” data (Gallegati and Semmler, 2014).
There are two types of wavelet transforms: discrete and continuous.
Based on the purpose of our research, feature extraction, we use the
prior in this study. Discrete wavelet transform (DWT) allows for the
decomposition of a time series vector into a set of different frequen-
cies reflecting information from low to high frequency fluctuations
of prices. The DWT decomposes the underlying time series based
on two types of filters called the scaling filter and the wavelet fil-
ter. Following Percival and Walden (2000) and Percival and Mofjeld
(1997), let {gl : l = 0, . . . , L − 1} represent the scaling filter and
{hl : l = 0, . . . , L − 1} the wavelet filter. By definition, a real-
valued wavelet filter {hl} of length L ∈ N satisfies the following three
properties:

L−1∑

l=0

hl = 0,
L−1∑

l=0

h2
l = 1, and

L−1∑

l=0

hl, hl+2n = 0, ∀ n ∈ N.

(1)

These properties ensures that for any length L ∈ N the filter has
zero mean, produces unit energy, and is orthogonal to its even shifts
(Percival and Walden, 2000; Gençay et al., 2001). The low- and high-
pass filters are defined as quadrature mirror filters (QMfs) satisfying:

hl = (−1)lgL−1−l, or gl = (−1)l+1hL−1−l, l = 0, . . . , L − 1.

(2)

Similar to wavelet filter, the scaling filter satisfies the following
conditions:

L−1∑

l=0

gl =
√

2,
L−1∑

l=0

g2
l = 1, and

L−1∑

l=0

gl, gl+2n = 0, ∀ n ∈ N.

(3)

The wavelet and scaling coefficients, Wj,t and Vj,t, of DWT at the
jth level {j = 1, . . . , J} are defined as:

Wj,t =
L−1∑

l=0

hlXt−1 and Vj,t =
L−1∑

l=0

glXt−1, (4)

2 The wavelet decomposition of return series brings about a decomposition of both
the risk of the underlying asset (conditional variance component) and the diversi-
fication effect between the assets (covariance component). Since we are interested
in evaluating the co-movement (covariance component) based on the conditional
variance between crude oil and agricultural, it would be appropriate to carry out
decomposition at raw returns data instead of applying wavelets to the filtered data.

3 Several of the recent studies in the field of wavelet analysis utilize wavelet decom-
position on returns series data, see for example, Gallegati (2012), In and Kim (2013),
Dewandaru et al. (2015), Berger (2015), Berger and Uddin (2016), and Berger and
Gençay (2018), among others.

where Xt : t = 0, . . . , N − 1 is the underlying time series. We
apply the modified version of discrete wavelet transform namely
maximal overlap discrete wavelet transform (MODWT) as intro-
duced by Percival and Walden (2000) to decompose the underlying
returns series. The MODWT is an extension of DWT and it does not
suffer from the pitfalls facing DWT.4 We refer interested readers to
Percival and Walden (2000) and Gençay et al. (2001) for a detailed
discussion of the choice of wavelet transform.

We chose Daubechies (1992) least asymmetric wavelet filters in
MODWT to obtain the wavelet and scaling coefficients due to their
better ability to capture the time and scale variations in a time series.
Furthermore, Daubechies least asymmetric (LA(8)) wavelet filter is
most favored in the financial literature due to approximate linear
phase and near symmetric properties (Percival and Walden, 2000).
Phase linearity reflects that the events and the sinusoidal compo-
nents in the scaling and wavelet coefficients can be aligned, at all
levels, with the original time series. This alignment of coefficients in
the MODWT is achieved by circularly shifting the wavelet and scal-
ing coefficients by an amount estimated by the phase delay property
of basic filter (Percival and Mofjeld, 1997; Cornish et al., 2006).
The LA(8) do not have a closed form and have been tabulated by
Daubechies (1992, Sec. 6.2) and Percival and Walden (2000, Sec. 4.8).

Let Xt be a time series t = 0, . . . , N − 1 with length N. The wavelet
transform leads to a decomposition of time series into different fre-
quency bands by successive low- and high-pass filtering of the signal.
More specifically, the original return series is decomposed into a set
of wavelet coefficients (W̃j,t) and low-pass filtered versions (Ṽj,t) of
the signal. As we incorporate the MODWT, we utilize the rescaled
scaling and wavelet filters obtained directly from DWT as follows:

h̃j,l =
hj,l

2j/2
and g̃j,l =

gj,l

2j/2
, j = 0, . . . , J, (5)

where J is the total number of levels. Following Mallat (1989),
we obtained W̃j,t and Ṽj,t by applying the pyramid algorithm to log
returns series of each commodity. We require three inputs for each
iteration of the MODWT pyramid algorithm, i.e., the data vector Xt,
the scaling filter g̃, and the wavelet filter h̃. The first iteration begins
by convolving (filtering) the data with wavelet and scaling filters to
obtain the following wavelet and scaling coefficients as follows:

W̃1,t =
L−1∑

l=0

h̃lXt−l and Ṽ1,t =
L−1∑

l=0

g̃lXt−l, (6)

where t = 0, . . . , N − 1. In the second step of MODWT pyramid
algorithm, the scaling coefficients from the first iteration becomes
the input data vector and we apply filtering operations to obtain the
second level wavelet and scaling coefficients as follows:

W̃2,t =
L−1∑

l=0

h̃lṼ1,t−l mod N and Ṽ2,t =
L−1∑

l=0

g̃lṼ1,t−l mod N.

(7)

where t = 0, . . . , N − 1. Similarly, the jth level MODWT wavelet
and scaling coefficients of a time series Xt : t = 0, . . . , N − 1 are
defined as:

W̃j,t =
L−1∑

l=0

h̃lXt−1 mod N and Ṽj,t =
L−1∑

l=0

g̃lXt−1 mod N. (8)

4 The discussion on advantages and drawbacks between DWT and MODWT is
beyond the subject of this study.
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W̃j,t is the decomposed signals that are utilized for further
analysis to evaluate dependence over varying frequencies. Following
Gençay et al. (2001) and Percival and Walden (2000), we determine
the level J = 8 for the MODWT decomposition level, which is given
by, J ≤ log2

(
T

L−1 + 1
)

, where L and T are the length of the filter
and the time series. We refer to Percival and Walden (2000), Burrus
et al. (1997) and Gençay et al. (2001) for further description of the
employed framework.5

3.3. Marginal distribution models

The marginal distribution models are fundamental to estimate
copulas. We estimate the marginal distribution models for each
returns and decomposed series and determine the well-suited
marginal model from various GARCH-type specifications (GARCH,
GJR-GARCH, and EGARCH) to capture the dynamics in crude oil and
agricultural commodities. Based on Log-likelihood and AIC criterion,
our results indicate that an ARMA(1,0)-EGARCH(1,1) specification
as the most suitable marginal model for the underlying return
and decomposed series. Furthermore, the EGARCH model assumes
the asymmetric effects of positive and negative shocks on condi-
tional volatility (Nelson, 1991). The general form of EGARCH(P,Q)
conditional variance process, s2

t , is represented by the following
expression:

logs2
t = j+

P∑

i=1

bi logs2
t−i+

Q∑

j=1

aj

[ ∣∣et−j
∣∣

st−j
− E

{ ∣∣et−j
∣∣

st−j

}]
+

Q∑

j=1

nj

(
et−j

st−j

)

(9)

where j is variance intercept parameter, aj and bi are the param-
eters of ARCH and GARCH volatility components, respectively, and
nj captures the leverage effect. For nj < 0, the future conditional
variance will increase relatively more following a negative shock
than following a positive shock of the equal magnitude. The EGARCH
models are appropriate when positive and negative shocks od same
magnitude do not contribute equally to the volatility (Tsay, 2005).

3.4. Time-varying copula

To evaluate the time-varying dependence between crude oil
and agricultural commodities, we employ bivariate DCC-Student-
t copula. Copula models are found to be effective and flexible in
characterizing and modeling dependence (Bekiros et al., 2017). Fur-
thermore, it decouples the choice of marginal return distribution
from dependence modeling, which provides further flexibility and
accuracy in selection of marginal models and copula functions (Sklar,
1959). We employ time-varying DCC-Student-t copula as it take into
account joint extreme movements, which are observed in financial
and commodity returns data. The Student t-copula can be seen as the
representation of the dependence structure implicit in a multivariate
t-distribution (Demarta and McNeil, 2005).

Let Xt and Yt denotes the crude oil and agricultural commodi-
ties futures returns series, respectively. Furthermore, let FX(x) and
FY(y) be the marginal distribution functions for the series and a joint
distribution FXY(x, y). The foundation of copula theory is the Sklar
(1959) theorem (Patton, 2006), which states that the joint distribu-
tion function, FXY(x, y), of two continuous random variables X and Y

5 We carried out all the calculations of wavelet decomposition in MATLAB R2018a
(The MathWorks Inc.). We utilize the WMTSA wavelet toolkit for MATLAB available at
http://www.atmos.washington.edu/wmtsa/ for wavelet decomposition.

can be presented in terms of marginal distribution functions of the
variables, FX(x) and FY(y), and a copula function as:

FXY (x, y) = C(FX(x), FY ( y)), (10)

where C(u, v) with u = FX(x) and v = FY(y) is a bivariate copula
function. Therefore, a copula is a multivariate function with uniform
marginals, which represents the connectedness structure between
two continuous random variables (Cherubini et al., 2004). In terms
of construction, a copula connects the marginals to a multivariate
distribution function, which then can be decomposed into univari-
ate marginal distributions and a copula capturing the connectedness
structure. The joint probability density, fXY(x, y), can be obtained
from the product between the copula density, c(u, v) = ∂2C(u,v)

∂u∂v , and
the univariate marginal distributions of crude oil and agricultural
commodities futures returns, fX(x) and fY(y) as:

fXY (x, y) = c(u, v)fX(x)fY ( y), (11)

where fX(x) and fY(y) represent the marginal densities of variables
X and Y, respectively. Therefore, in order to portray the joint prob-
ability density of two random variables, we require information on
marginal densities and the copula density.

We apply the Student-t copula to account for extreme tail depen-
dence in returns series. The Student-t copula generalizes the Gaus-
sian copula by allowing for increased probability of joint extreme
events. The Student-t copula for the bivariate case is defined as:

Cd,q(u, v) = td,q

(
t−1
d (u), t−1

d (v)
)

, (12)

where q is the correlation coefficient and d is degrees of freedom
parameter. The general multivariate case of Student-t copula can be
expressed as:

Cd,q(u1, . . . , un) = td,R

(
t−1
d (u1), . . . , t−1

d (un)
)

(13)

=

t−1
d (u1)∫

−∞
, . . . ,

t−1
d (un)∫

−∞

C
(

d+n
2

)
|q|− 1

2

C
(

d
2

)
(pv)

n
2

(
1 +

1
d

zTq−1z
)− d+n

2
dz1, . . . , dzn,

(14)

where d refers to degrees of freedom, t−1
d represents the inverse

of univariate t distribution and the symmetric tail dependency influ-
enced by d, td,q characterizes the multivariate t distribution with
q as the correlation matrix. Following Berger and Uddin (2016),
we capture the time-varying dependence between commodities by
substituting the linear correlation coefficients q by the dynamic
conditional correlation (DCC) model of Engle (2002), which can be
expressed as:

Rt = diag
(

Q̃t

)−1
Qt diag

(
Q̃t

)−1
, (15)

Qt = (1 − a − b)R̄ + a4t−14
′
t−1 + bQt−1, (16)

where Q̄ represents the sample covariance of 4t, Q̃t is p × p square
matrix with diagonal elements as square root of Qt and zeros as
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off-diagonal elements, and 4t refers to the volatility adjusted returns
originating from univariate ARMA(1,0)-EGARCH(1,1) model.

3.5. Estimation

Following Joe and Xu (1996) and Joe (1997), we estimate the
copula parameters using a two-step maximum likelihood procedure
called the inference functions for margins (IFM). The first step com-
prises of estimating the GARCH margins’ parameters ĥ1 by estimation
of univariate marginal distributions as:

ĥ1 = arg max
h1

T∑

t=1

n∑

j=1

ln fj
(
ujt; h1

)
. (17)

In the second step, given ĥ1, we estimate DCC-Student-t copula
parameters ĥ2 using:

ĥ2 = arg max
h2

T∑

t=1

ln c
(

F1(u1t), F2(u2t), . . . , Fn(unt); h2, ĥ1

)
. (18)

We refer interested readers to Patton (2009), Cherubini et al.
(2004), and Joe (1997) for detailed description and application of
copulas.

4. Data and descriptive statistics

4.1. Data selection

Our study utilizes daily data on futures prices of crude oil and ten
agricultural commodities over the period of July 1986 to June 2016,
which exhibits a total number of 7593 observations for each com-
modity. The chosen data is extracted from the Commodity Research
Bureau (CRB), which is an industry leader due to its comprehen-
sive database in commodity markets’ price history. Agricultural
commodities are selected based on their high trading volume and
liquidity. Overall, crude oil and agricultural commodities represents
a significant proportion of the S&P GSCI and S&P GSCI agricultural
commodity index, which are widely accepted instruments to mea-
sure the investment performance in commodity and agricultural
markets, and as economic indicators.

The investigated time span covers several periods of financial and
economic turmoil, which enable us to evaluate the impact of these
episodes on the linkage between crude oil and agricultural commodi-
ties. Particularly, our selected period includes: the “Black Monday”
of 1987, the Gulf war 1990–1991, the Asian financial crisis during
1997–1998, the dot–com bubble burst in 2001, the Gulf War dur-
ing in 2003, the world food price crisis of 2006–2008, the 2007
U.S. sub-prime mortgage crisis, the global financial crisis of 2008,
the European debt crisis of 2010–2012, and the decline in crude oil
prices since 2014. The choice of daily data would enable us to bet-
ter capture the connectedness dynamics, which are often too low or
high when undertaking weekly or monthly observations. In addition,
using daily data would enable us to capture the price and volatility
day-of-the-week effect prevalent in many time series.

The commodities in our sample comprises of crude oil (CL), wheat
(W), sugar (SB), soybean (S), soybean oil (BO), cotton (CT), corn (C),
coffee (KC), cocoa (CC), canola (WC), and soybeans meal (SM). Crude
oil trades on New York Mercantile Exchange (NYMEX), while the
agricultural commodities trades on the Intercontinental Exchange
(Sugar, Cotton, Coffee, Cocoa, and Canola) and Chicago Board of
Trade (Wheat, Soybeans, Soybean oil, Corn, and Soybean meal). The
development in daily futures prices and continuously compounded

returns for the underlying commodities are presented in Fig. 1. Inter-
estingly, nearly all the agricultural prices increase during 1995 and
1996, which is followed by a decline between 1998 and 1999. In
addition, an increasingly upward trend is apparent for nearly all the
agricultural commodities during 2005. The price of crude oil and for
nearly all the underlying agricultural commodities peaked during
2008, which is followed by a sharp decline due to the global financial
crisis of 2008. This might be due to higher risk perceived by the mar-
ket participants in these assets and prefer to hold securities with less
risk, a phenomenon refers as the flight-to-quality. Visual inspection
of Fig. 1 indicates that the commodities are non-stationary in levels,
but the log-returns of the series are stationary. In addition, all the
return series exhibits volatility clustering with periods of tranquility
and turmoil. Following Nazlioglu et al. (2013), Du et al. (2011), Wang
et al. (2014) and Baumeister and Kilian (2014), we divide the full
sample into two subsamples to account for the impact of food price
crisis. Furthermore, a higher price of crude oil, together with federal
support policies lead to a rapid growth in corn-based ethanol produc-
tion during mid-2006. In addition, an increased demand of feedstock
lead to increase in prices of corn and other agricultural commodi-
ties thus leading to a structural change or fundamental shift in the
market for major agricultural commodities (Du et al., 2011). There-
fore, the first subsample is for the period from July 1986 to December
2005 and the second subsample covers the period from January 2006
to June 2016. The second subsample now contains the recent turmoil
periods associated with the financial crisis, the food price crisis and
the oil price drop in 2014. Relative to these large market innovations,
the first sub-sample period is a less turmoil period. Splitting the
sample allows us to investigate structural changes in connectedness.

4.2. Descriptive statistics

The continuously compounded return for each commodity is esti-
mated as the logarithmic difference of two consecutive prices at
time t and t − 1: ri,t = ln(Pi,t/Pi,t−1). Table 2 provides the descrip-
tive statistics of full-sample, pre-2006, and post-2006 sample.6 The
results of full-sample statistics in Panel A of Table 2 shows that
the average annualized return of agricultural commodities ranges
between −1.0 % for coffee and 3.6% for sugar, respectively, and
the standard deviation varies from 20.4% for canola to 37.2% for
coffee, respectively. Whereas, the mean annualized return and stan-
dard deviation of crude oil is 4.5% and 35.0%, respectively. In terms
of reward-to-risk, soybean meal provides the highest return pro-
portionate to risk of 0.057 and coffee provides the lowest Sharpe
(1994) ratio of −0.08 and the reward-to-risk estimate for crude oil
is 0.073.7 The returns distribution for more than half of the underly-
ing commodities exhibits negative skewness. Moreover, the value of
kurtosis is larger than 3 for all the commodities. Overall, our findings
indicate that all the return series exhibit skewed and leptokurtic dis-
tributions, which indicates that the distributions are asymmetrical
and have fatter tails than normal distribution. A formal Jarque-Bera
test affirms this non-Gaussian pattern and strongly reject the null-
hypotheses of normality for all the commodities. The test-statistics
of Ljung-Box test on returns and squared returns with 20 lags are
significant, thus rejecting the null-hypothesis of independence at
1% threshold level, which indicates that both series are serially

6 Mean and standard deviation is annualized by multiplying each with 252 and√
252, respectively.
7 The risk-free rate in the Sharpe ratio is T-bill rate collected from CRSP database.

The daily average risk-free rate for full-sample and pre-2006 subsample is estimated
to be 2% and the risk-free rate for post-2006 subsample is 1%.
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Fig. 1. Development in futures prices and returns: The figure portrays the development in nearby daily futures prices and continuously compounded returns for crude oil
and agricultural commodities. All the price series exhibit an increasingly upward trend post-2006 and after 2009. Furthermore, visual inspection for all series suggest that all
commodities are non-stationary in levels and stationary at first difference.

correlated. The ARCH test (Engle, 1982) with 20 lags rejects the null-
hypothesis of homoscedasticity for all commodities, thus advocating
the employment of GARCH-type model to capture the stylized facts,
for instance, temporal dynamics and volatility clustering.

The results of pre- and post-2006 are presented in Panels B and
C of Table 2. Although the annualized standard deviation of individ-
ual commodity does not differ significantly in both subsamples, the
annualized mean changes dramatically in both subsamples. During
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Table 2
Descriptive statistics.

Mean (%) SD SR Max Min Skew Kurt J–B Q(20) Q2(20) ARCH (20)

Panel A: Full sample statistics
Crude oil 4.570 0.350 0.073 0.13 −0.38 −0.81 18.23 0.00 46.91∗ 599.35∗ 344.47∗

Wheat 2.392 0.285 0.014 0.13 −0.16 0.07 6.87 0.00 33.87∗ 977.18∗ 400.26∗

Sugar 3.602 0.339 0.047 0.17 −0.18 −0.07 7.53 0.00 36.72∗ 482.39∗ 248.96∗

Soybean 2.696 0.235 0.030 0.08 −0.14 −0.67 8.90 0.00 33.87∗ 1068.32∗ 417.22∗

Soybean oil 2.246 0.230 0.011 0.09 −0.07 0.16 5.15 0.00 34.55∗ 2152.13∗ 694.21∗

Cotton 2.225 0.283 0.008 0.17 −0.30 −1.01 24.25 0.00 33.84∗ 58.41∗ 43.62∗

Corn 2.754 0.265 0.028 0.10 −0.25 −0.50 15.37 0.00 59.41∗ 210.09∗ 130.31∗

Coffee −0.991 0.372 −0.080 0.24 −0.15 0.22 9.60 0.00 41.46∗ 1119.02∗ 639.65∗

Cocoa 1.718 0.299 −0.009 0.13 −0.13 0.04 6.20 0.00 39.68∗ 371.71∗ 200.95∗

Canola 2.215 0.204 0.011 0.08 −0.13 −0.27 8.25 0.00 76.90∗ 1370.64∗ 529.41∗

Soybeans meal 3.522 0.268 0.057 0.09 −0.25 −1.02 14.94 0.00 44.34∗ 240.08∗ 142.77∗

Panel B: Pre-2006 sample statistics
Crude oil 8.081 0.344 0.177 0.12 −0.38 −1.33 26.06 0.00 45.40∗ 217.14∗ 165.28∗

Wheat 1.732 0.246 −0.011 0.09 −0.16 0.04 8.61 0.00 35.47∗ 129.60∗ 84.38∗

Sugar 4.267 0.336 0.067 0.17 −0.18 −0.15 7.92 0.00 42.21∗ 367.02∗ 189.74∗

Soybean 0.942 0.220 −0.048 0.08 −0.12 −0.54 8.39 0.00 31.86∗ 1107.80∗ 394.60∗

Soybean oil 1.344 0.225 −0.029 0.08 −0.07 0.19 4.96 0.00 40.69∗ 886.63∗ 356.47∗

Cotton 2.569 0.270 0.021 0.17 −0.30 −0.86 27.16 0.00 30.62∗ 8.25 7.37
Corn 0.877 0.231 −0.049 0.10 −0.22 −0.21 16.26 0.00 71.23∗ 211.79∗ 133.81∗

Coffee −2.377 0.399 −0.110 0.24 −0.15 0.25 10.10 0.00 36.01∗ 713.21∗ 429.05∗

Cocoa −0.902 0.307 −0.095 0.13 −0.12 0.24 5.96 0.00 31.67∗ 182.93∗ 109.30∗

Canola −0.661 0.194 −0.137 0.07 −0.08 0.00 5.91 0.00 50.54∗ 764.01∗ 322.53∗

Soybeans meal 1.649 0.242 −0.015 0.09 −0.15 −0.56 9.40 0.00 43.10∗ 466.01∗ 216.83∗

Panel C: Post-2006 sample statistics
Crude oil −2.071 0.362 −0.085 0.13 −0.11 0.04 6.14 0.00 39.27∗ 2483.24∗ 550.80∗

Wheat 3.641 0.347 0.076 0.13 −0.10 0.08 4.93 0.00 30.13∗ 390.13∗ 160.14∗

Sugar 2.346 0.345 0.039 0.15 −0.12 0.07 6.85 0.00 18.90∗ 139.50∗ 83.32∗

Soybean 6.014 0.262 0.192 0.06 −0.14 −0.82 8.90 0.00 23.54∗ 192.83∗ 96.82∗

Soybean oil 3.954 0.240 0.123 0.09 −0.07 0.10 5.37 0.00 22.19∗ 1255.69∗ 405.85∗

Cotton 1.573 0.306 0.019 0.10 −0.27 −1.20 20.13 0.00 24.95∗ 70.60∗ 44.48∗

Corn 6.304 0.320 0.166 0.09 −0.25 −0.69 12.62 0.00 29.15∗ 21.41∗ 15.89∗

Coffee 1.631 0.316 0.020 0.12 −0.11 0.11 4.95 0.00 34.84∗ 211.50∗ 125.44∗

Cocoa 6.674 0.284 0.200 0.08 −0.13 −0.45 6.74 0.00 28.95∗ 240.68∗ 133.89∗

Canola 7.656 0.220 0.302 0.08 −0.13 −0.62 10.70 0.00 81.04∗ 513.56∗ 222.18∗

Soybeans meal 7.065 0.311 0.195 0.08 −0.25 −1.40 17.24 0.00 24.42∗ 36.52∗ 28.00∗

Notes. Annualized figures of mean and standard deviation are presented. SR refers to the Sharpe ratio and J–B provides the p-values from Jarque-Bera normality test. Q(20)
and Q2(20) correspond to the Ljung-Box test statistics for serial autocorrelation on returns and squared returns with 20 lags. ARCH(20) provides the statistics of Engle (1982)
test for conditional heteroscedasticity with 20 lags. The notation ∗ , ∗∗ , and ∗∗∗ indicate the rejection of the null hypothesis of normality, no autocorrelation, and conditional
homoscedasticity at the 1%, 5%, and 10% threshold levels.

pre-2006 subsample, the average annualized reward-to-risk mea-
sure for agricultural commodities ranges between −0.14 and 0.07
for canola and sugar, respectively. Whereas, during post-2006, the
Sharpe ratio ranges between 0.02 and 0.3 for cotton and canola, cor-
respondingly. Interestingly, canola exhibits the lowest and highest
reward-to-volatility measure during pre- and post-2006 subsam-
ples, respectively. The average Sharpe ratio for crude oil is 0.18 and
−0.08 during pre- and post-2006 subsamples, respectively. More
than half of the agricultural commodities are negatively skewed
and exhibiting leptokurtic distributions during both subsamples
indicating deviations from the normal distribution. The Jarque-Bera
test of normality affirms this non-Gaussian pattern as the null
hypothesis is strongly rejected in all series. The Ljung-Box portman-
teau test with 20 lags is significant for returns and squared returns
thus exhibiting the presence of serial correlation. This illustrates that
information contains in the previous returns is crucial for future
forecasting. Additionally, the ARCH effect with 20 lags rejects the
homoscedasticity null-hypothesis for all the commodities in both
subsamples.8

8 The estimates from Dickey-Fuller (ADF) (Dickey and Fuller, 1979) and Phillips-
Perron (PP) (Phillips and Perron, 1988) unit-root tests indicate that return series follow
an I(1) process in both subsamples. For the sake of brevity, we chose not to report
these estimates. These results are available from authors upon request.

Table 3 shows the unconditional correlation between crude oil
and agricultural commodities according to Pearson, Kendall, and
Spearman tests (so that we have correlation results from parametric
and non-parametric tests) for full-sample, pre- and post-2006 sub-
samples. All the agricultural commodities shows strong dependence
with crude oil during post-2006 subsample, for instance, soybeans
oil and corn exhibits linear dependence of 48.9% and 28.0%, respec-
tively. Whereas, for the full-sample analysis, most of the agricultural
commodities are characterized by moderately positive linkage with
crude oil, for instance, soybean oil and corn show positive rela-
tion of 18.8% and 14.8%. In contrast, during pre-2006 subsample,
all the agricultural commodities exhibit minimal linear dependence
with crude oil. As an example, the correlation between crude oil
and soybeans oil is 1.0% and that of corn is 4.9%. The estimates are
consistent across all three correlation tests. Furthermore, we evalu-
ate whether the correlation coefficients during pre- and post-2006
subsamples are significantly different from each other by employ-
ing Fisher (1921) r to z transformation. The sign ‡ indicates that
correlation coefficient between the two subsamples are statisti-
cally different from each other. This supports our hypothesis that
in comparison to the pre-2006 period, the post-2006 subsample is
characterized by strong positive dependence between crude oil and
agricultural commodities. Furthermore, this reflects that the poten-
tial to attain diversification benefits has significantly reduced over
the post-2006 subsample.
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Table 3
Correlation analysis based on undecomposed returns series.

Commodity Full sample Pre-2006 Post-2006

Pearson Kendall Spearman Pearson Kendall Spearman Pearson Kendall Spearman

Wheat 12.864 6.711 9.949 3.833‡ 2.611‡ 3.882‡ 24.690‡ 13.626‡ 20.019‡

Sugar 10.251 6.675 9.877 3.125‡ 2.139‡ 3.144‡ 22.719‡ 14.873‡ 21.984‡

Soybean 15.745 9.373 13.875 3.185‡ 2.427‡ 3.630‡ 34.819‡ 21.712‡ 31.745‡

Soybean oil 18.812 10.778 15.889 1.016‡ 0.093‡ 0.145‡ 48.869‡ 30.784‡ 44.144‡

Cotton 11.480 7.367 10.992 3.771‡ 2.996‡ 4.503‡ 23.739‡ 15.145‡ 22.446‡

Corn 14.831 8.837 13.069 4.917‡ 3.302‡ 4.889‡ 28.012‡ 17.889‡ 26.306‡

Coffee 7.242 6.116 9.101 −0.190‡ 0.846‡ 1.257‡ 24.342‡ 16.501‡ 24.407‡

Cocoa 8.652 5.725 8.488 1.166‡ 1.417‡ 2.088‡ 23.249‡ 14.033‡ 20.673‡

Canola 10.510 5.757 8.593 1.226‡ 1.036‡ 1.539‡ 25.251‡ 14.517‡ 21.476‡

Soybeans 10.620 6.734 10.004 3.576‡ 3.280‡ 4.877‡ 20.578‡ 12.732‡ 18.874‡

Notes. The table presents correlation coefficients from Pearson, Kendall, and Spearmann for the undecomposed returns series between crude oil and agricultural commodities.
We test whether the correlation coefficients are statistically different between pre-2006 and post-2006 subsamples by utilizing Fisher (1921) r to z transformation. ‡ indicates
that the correlation coefficients are significantly different between pre- and post-2006 subsamples at 1% significance level.

Fig. 2. Original and decomposed return series of crude oil. Notes. The figure presents the decomposition of underlying returns series into subsequent wavelets corresponding to
the short-, medium-, and long-run trends.

5. Empirical analysis

We first examine the multi-scale dependence between crude oil
and agricultural commodities by employing unconditional correla-
tion measures on the decomposed returns series from the wavelet
analysis (Panels B, C, and D of Table 5). We then employ time-varying
copulas on the decomposed series to evaluate the dependence struc-
ture in short-, medium-, and long-run trends.

5.1. Multi-scale unconditional correlation analysis

In addition to the unconditional correlation analysis of original
(undecomposed) return series, we examine multi-scale dependence
dynamics by employing unconditional connectedness measures on

decomposed returns series: short-, medium-, and long-run trends
(Fig. 2). Table 4 provides a definition behind the applied setup.
Specifically, short-run series reflects the variations over short-term
horizon due to shocks occurring between 2 and 4 succeeding days
(daily effects), medium-run captures dependence dynamics between
32 and 64 days (approximately one to two-month effects), and long-
run trend characterized to show variations in connectedness struc-
ture between 256 and 512 succeeding days (approximately one to
two year effects). Panels B, C, and D of Table 5 provide the estimates
of multi-scale connectedness.9 In general, the short-run dependence

9 The correlation estimates for all frequencies are available upon request.
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Table 4
Decomposed returns series.

Component Time-horizon Definition

Scale 1 2–4 days Short-run
Scale 2 4–8 days Short-run
Scale 3 8–16 days Short-run
Scale 4 16–32 days Medium-run
Scale 5 32–64 days Medium-run
Scale 6 64–128 days Long-run
Scale 7 128–256 days Long-run
Scale 8 256–512 days Long-run

Notes. The table provides intuition behind the applied setup.
Scale 1 – Scale 3 represents the variations over daily, weekly,
and fortnight which can then be represented as low scales.
Scale 4 and 5 captures the changes between one and two
months and can be interpreted as intermediate scales. Scale 7
and 8 represents variations over one and two year period and
characterize as high scale data.

dynamics presented in Panel B closely follows the similar pattern as
of original returns series during full-sample and both subsamples.

The dependence structure of medium-run variations provides
evidence of relatively weaker connectedness than short-run and
undecomposed returns series during full-sample and post-2006 sub-
sample. Although, the pre-2006 linkage structure of undecomposed
return series is characterize by weak level of connectedness, it is
noteworthy that nearly all agricultural commodities exhibit negative
correlation with crude oil in the medium-run trend.10 This reflects
that during pre-2006, addition of these agricultural commodities
with crude oil over the middle-run investment horizon would enable
market participants to minimize the risk of their portfolio.

The long-run estimates in Panel D indicate stronger dependence
structure between crude oil and most of the agricultural commodi-
ties. The linkage structure between crude oil and all of the agri-
cultural commodities during pre-2006 subsample exhibits negative
dependence with crude oil.11 Specifically, wheat, corn, canola, cot-
ton, and soybean oil exhibit largest degree of negative correlation
during pre-2006 subsample (q= −27.9%, −24.3%, −12.5%, −7.5 %,
and −6.7 %, respectively) and the linkage structure changes signifi-
cantly during post-2006 subsample (q = 24.9%, 43.9%, 57.9%, 61.9%,
and 74.5%, respectively). Likewise, the correlation with sugar, soy-
bean, coffee, cocoa, and soybean meal changes from (q= −2.2%,
−4.1%, −6.4 %, 21.9% and 0.2%) during pre-2006 to (q= 55.4%, 58.3%,
37.1%, 59.0%, and 48.3%) during post-2006 subsample. In general,
the long-run estimates of pre-2006 subsample indicate that the
linkage structure is strongly negative for nearly all the commodi-
ties. Whereas, the full-sample and post-2006 subsample dependence
estimates indicate strong and positive connectedness between crude
oil and agricultural commodities over long-run.12

We evaluate whether the correlation coefficients are significantly
different in the undecomposed and decomposed returns series by
employing Fisher (1921) r to z transformation. As expected, our esti-
mates indicate that the dependence structure of original returns and
short-run trend are not significantly different from each other in
all the samples. This is because short-run trend closely follows the
original returns series. For the medium-run trend, the dependence
structure is significantly different from the original series for nearly
all the commodities over the three samples. Whereas, for the long-
run horizon, the dependence dynamics for all the commodities are
significantly different from the linkage structure in original return
series. Similarly, we employ Fisher (1921) r to z transform to eval-
uate whether the dependence dynamics are significantly different

10 With exception of wheat and soybeans meal, which exhibit weak positive linkage.
11 With exception of cocoa and soybeans meal, which exhibit positive dependence

with crude oil.
12 Except for wheat, which exhibits close to zero correlation over the full-sample.

between pre- and post-2006 subsamples. Our findings indicate that
the correlation coefficients are significantly different between the
two subsamples in all the decomposed series.

5.2. Marginal distribution models

We follow two-step procedure to estimate the time-varying
copula parameters. The first step comprise of parameter estima-
tions of univariate marginal model for returns and decomposed
series. Table 6 provides the estimated parameters of the ARMA(1,0)-
EGARCH(1,1) specification for the returns series.13,14 The lagged
autoregressive coefficients, AR(1), of the mean equation are insignif-
icant for nearly half of the commodities during pre-2006 and for
nearly all the commodities over the post-2006 subsample. This indi-
cates that the past information (past returns) is not instantaneously
embodied in the current returns thus showing lack of one-step ahead
predictability for these commodities. The ARCH component (a) is sig-
nificant at 1% threshold level for all the underlying series during pre-
and post-2006 subsamples thus indicating that the current condi-
tional volatility is affected by the one-period lagged squared shocks.
The coefficients on lagged conditional variance (b) is significant for
all the commodities over both subsamples indicating persistence in
conditional volatility for all series.

The parameter capturing the leverage effect (h) on conditional
volatility is significant for nearly half of the underlying commodities,
indicating that good and bad news have asymmetric effect on condi-
tional volatility of these underlying commodities. Furthermore, the
tail dependence parameter ( Student-df) is strongly significant at 1%
threshold level in both subsamples with values exceeding two for all
the commodities showing that fat tails characterize the distribution
and potential for co-movement in the tails of the joint distribution.
This advocates the importance and relevance of employing Student-
t error distribution to estimate the parameters for crude oil and
agricultural commodities. In addition, the results of diagnostic tests
also indicate that the ARMA(1,0)-EGARCH(1,1) specification with
Student-t errors distribution is appropriate to capture the dynamics
in returns of crude oil and agricultural commodities. The estimated
residuals exhibit no autocorrelation and no remaining ARCH effects
for nearly all the commodities over the pre- and post-2006 subsam-
ples, suggesting the stability of our marginal distribution models.

5.3. Estimation results of copula functions

Based on filtered returns from the EGARCH framework, we assess
the dependence structure between crude oil and agricultural com-
modities using static and time-varying Student-t copula. Panels A
and B of Table 7 presents the static and time-varying copula esti-
mates based on original (undecomposed) returns series for the pre-
2006 subsample. The dependence parameter is low and significant
for most of the underlying commodities for both static and time-
varying copula functions. The parameter b is significant at 1% thresh-
old level for more than half of the commodities thus implying that
the dependence is time-varying for these commodities. However, the
AIC values are lower for the time-invariant Student-t copula thereby
suggesting to utilize the static model to capture the underlying
dependence structure between crude oil and agricultural commodi-
ties over the pre-2006 subsample. The level of connectedness (q)
are almost same for both functions. For the static model, the depen-
dence ranges from 0.4% (soybean oil) to 4.5% (cotton). Whereas, in
the case of time-varying Student-t model, the level of dependence

13 We determine the well-suited marginal model from various GARCH-type spec-
ifications (GARCH, GJR-GARCH, and EGARCH) to model crude oil and agricultural
commodities returns.
14 For the sake of brevity, we report the EGARCH parameters of returns series. The

marginal estimates for all the decomposed series are available upon request.
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Table 5
Multi-scale correlation analysis between crude oil and agricultural commodities.

Short-
run

Full sample Pre-2006 Post-2006

Pearson Kendall Spearman Pearson Kendall Spearman Pearson Kendall Spearman

Panel A: Dependence of decomposed series S1
Wheat 15.453 7.346 10.924 3.781‡ 1.712‡ 2.568‡ 29.885‡ 16.775‡ 24.668‡

Sugar 9.706 6.991 10.397 1.755‡ 2.276‡ 3.403‡ 23.081‡ 15.795‡ 23.216‡

Soybean 17.902 10.447 15.481 4.912‡ 3.188‡ 4.760‡ 36.936‡ 23.340‡ 34.016‡

Soybean oil 20.559 11.568 17.063 2.391‡ 0.726‡ 1.093‡ 49.776‡ 31.994‡ 45.771‡

Cotton 12.756 7.777 11.569 3.674‡ 2.510‡ 3.769‡ 26.948‡ 17.228‡ 25.489‡

Corn 18.334 9.995 14.861 7.730‡ 4.377‡ 6.546‡ 31.479‡ 19.324‡ 28.368‡

Coffee 6.001 4.368 6.559 −1.625‡ −1.259‡ −1.859‡ 22.521‡ 15.445‡ 23.022‡

Cocoa 8.460 5.090 7.557 0.623‡ 0.963‡ 1.443‡ 23.206‡ 13.258‡ 19.577‡

Canola 11.912 6.564 9.811 2.764‡ 1.454‡ 2.181‡ 26.069‡ 15.944‡ 23.600‡

Soybeans meal 12.759 7.624 11.339 5.704‡ 3.942‡ 5.868‡ 22.359‡ 13.909‡ 20.595‡

Medium-
run

Full sample Pre-2006 Post-2006

Pearson Kendall Spearman Pearson Kendall Spearman Pearson Kendall Spearman

Panel B: Dependence of decomposed series S5
Wheat 15.002 10.051† 14.966† 7.398‡ 6.292‡ 9.584†,‡ 24.780‡ 15.717‡ 23.262‡

Sugar 9.960 6.104 9.170 −4.602†,‡ −4.399†,‡ −6.509†,‡ 36.846†,‡ 25.007†,‡ 37.458†,‡

Soybean 18.044 12.814† 18.911† −2.001†,‡ 2.317‡ 3.554‡ 48.228†,‡ 30.636†,‡ 44.460†,‡

Soybean oil 11.802† 9.149 13.630 −10.366†,‡ −4.179†,‡ −6.209†,‡ 48.017‡ 32.225‡ 47.152‡

Cotton 3.973† 2.722† 4.050† −1.724†,‡ −1.737†,‡ −2.630†,‡ 12.173†,‡ 10.123‡ 14.825†,‡

Corn 11.138† 5.152† 7.693† −6.950†,‡ −4.175†,‡ −6.231†,‡ 33.628†,‡ 19.680‡ 29.256‡

Coffee 2.357† 2.165† 3.229† −11.595†,‡ −7.083†,‡ −10.701†,‡ 31.550†,‡ 20.700‡ 30.436†,‡

Cocoa 9.794 7.865 11.505 −6.817†,‡ −1.814‡ −2.605†,‡ 38.203†,‡ 25.305†,‡ 36.608†,‡

Canola 4.216† 2.483† 3.797† −7.270†,‡ −3.040†,‡ −4.427†,‡ 24.299‡ 12.419‡ 18.591‡

Soybeans meal 16.777† 11.416† 16.957† 3.001‡ 3.730‡ 5.638‡ 37.258†,‡ 24.303†,‡ 35.650†,‡

Long-
run

Full sample Pre-2006 Post-2006

Pearson Kendall Spearman Pearson Kendall Spearman Pearson Kendall Spearman

Panel C: Dependence of decomposed series S8
Wheat 3.852† −3.774† −5.226† −27.997†,‡ −22.220†,‡ −32.418†,‡ 24.952‡ 17.515‡ 27.496†,‡

Sugar 33.211† 16.537† 24.404† −2.237†,‡ 0.854‡ 1.123‡ 55.461†,‡ 39.456†,‡ 56.518†,‡

Soybean 31.530† 12.382 18.507† −4.117†,‡ −5.270†,‡ −7.996†,‡ 58.318†,‡ 34.848†,‡ 50.675†,‡

Soybean oil 40.187† 15.929† 23.439† −6.692†,‡ −4.699†,‡ −7.008†,‡ 74.556†,‡ 45.951†,‡ 64.553†,‡

Cotton 35.344† 21.801† 31.959† −7.519†,‡ −0.651‡ −0.809†,‡ 61.957†,‡ 49.772†,‡ 70.815†,‡

Corn 18.473† 2.100† 3.300† −24.269†,‡ −14.801†,‡ −22.067†,‡ 43.891†,‡ 23.823†,‡ 35.177†,‡

Coffee 12.307† 4.810 7.488 −6.401†,‡ −8.038†,‡ −11.064†,‡ 37.092†,‡ 25.597†,‡ 38.522†,‡

Cocoa 40.778† 20.431† 30.029† 21.988†,‡ 11.034†,‡ 16.890†,‡ 59.040†,‡ 34.150†,‡ 49.571†,‡

Canola 28.484† 9.791† 14.935† −12.482†,‡ −10.283†,‡ −15.518†,‡ 57.924†,‡ 36.046†,‡ 52.680†,‡

Soybeans meal 28.253† 13.142† 19.516† 0.224‡ −1.104†,‡ −2.063†,‡ 48.275†,‡ 30.833†,‡ 45.300†,‡

Notes. The table presents correlation coefficients from Pearson, Kendall, and Spearmann for the decomposed series. Panels A, B, and C presents the coefficients of dependence from
the short-, medium-, and long-run trends, respectively. We tested whether the correlation coefficients in the decomposed returns are statistically different from correlations in
undecomposed returns by utilizing Fisher (1921) r to z transformation. In addition, we employ Fisher (1921) r to z transformation to evaluate whether the coefficients in pre- and
post-2006 subsamples are statistically different from each other. † indicates that the dependence coefficients in the decomposed series are significantly different from coefficients
in the undecomposed returns at 5% threshold level. Whereas, ‡ indicates that the correlation coefficients are significantly different between pre- and post-2006 subsamples at 1%
significance level.

varies from −0.5 % (coffee) to 4.4% (cotton). The low magnitude of the
dependence parameters supports the hypothesis that adding agri-
cultural commodities with crude oil helps in attaining diversification
benefits during the pre-2006 subsample. Furthermore, the degrees
of freedom (DoF) parameters are low and significant for more than
half of the commodities reflecting tail dependence and joint extreme
movements of these commodities with crude oil.

Table 8 provides the copula parameters of original (undecom-
posed) returns for the post-2006 subsample. In contrast to the
pre-2006 estimates, the post-2006 subsample is characterized by
strong dependence as indicated by statistically significant and pos-
itive values of q. By comparing the static and time-varying copula
specifications, the estimates Table 8 indicates strong evidence that
the time-varying Student-t copula offer the best fit for crude oil and

agricultural commodities. Soybean oil (44.2%), soybeans (32.1%), and
corn (25.8%) exhibits strongest level of dependence with crude oil,
which is due to increased diversion of these commodities towards
production of biofuels over the post-2006 subsample. The param-
eter b is significant at 1% threshold level for all the commodities
thus supporting evidence of time-varying dependence structure. Fur-
thermore, the degrees of freedom are low and significant at 1% and
5% threshold level for most of the commodities thereby indicating
joint extreme movements and strong tail dependence behavior over
the post-2006 subsample. The positivity and higher magnitude of
dependence parameters during post-2006 subsample provide evi-
dence of information transmission from crude oil significantly effects
the price dynamics of agricultural commodities. In addition, Fig. 3
shows the time-varying dependence parameter of the DCC-Student-t
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Table 6
EGARCH parameters for crude oil and agricultural commodities.

Pre-2006 Crude oil Wheat Sugar Soybeans Soybeans oil Cotton Corn Coffee Cocoa Canola Soybeans meal

Panel A: Pre-2006 EGARCH estimates
Mean equation estimates
Const. (%) 0.018 −0.020 0.028 0.022 −0.014 0.000 −0.030‡ 0.011 −0.036 −0.013 −0.009

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
AR(1) −0.032‡ 0.028‡ −0.065† −0.033‡ 0.027 −0.010 0.034‡ −0.021 −0.022 0.037† 0.010

(0.014) (0.013) (0.013) (0.014) (0.014) (0.013) (0.013) (0.013) (0.014) (0.014) (0.013)
GARCH process estimates
Const. (Y) −0.086† −0.109† −0.034‡ −0.096† −0.199† −0.059† −0.148† −0.173† −0.052† −0.218† −0.092†

(0.023) (0.034) (0.013) (0.026) (0.046) (0.018) (0.038) (0.035) (0.018) (0.049) (0.023)
GARCH (b) 0.989† 0.987† 0.996† 0.989† 0.977† 0.993† 0.983† 0.977† 0.993† 0.976† 0.989†

(0.003) (0.004) (0.002) (0.003) (0.005) (0.002) (0.004) (0.005) (0.002) (0.005) (0.003)
ARCH (a) 0.128† 0.084† 0.082† 0.141† 0.125† 0.073† 0.157† 0.163† 0.073† 0.170† 0.126†

(0.014) (0.012) (0.010) (0.013) (0.015) (0.010) (0.017) (0.016) (0.010) (0.017) (0.013)
Leverage (h) −0.019‡ 0.013 −0.001 0.045† 0.035† −0.002 0.006 0.051† 0.014‡ 0.002 0.044†

(0.008) (0.008) (0.006) (0.008) (0.009) (0.006) (0.010) (0.011) (0.007) (0.009) (0.008)
Student-df 5.793† 5.990† 4.295† 5.927† 6.654† 4.955† 4.340† 4.074† 5.392† 6.213† 4.854†

(0.452) (0.378) (0.279) (0.471) (0.660) (0.319) (0.247) (0.274) (0.412) (0.471) (0.331)
Log(L) 12,708 14,017 12,671 14,857 14,385 13,735 14,679 11,891 12,918 15,261 14,402
AIC −25,402 −28,021 −25,328 −29,700 −28,755 −27,457 −29,343 −23,768 −25,822 −30,508 −28,790
BIC −25,357 −27,975 −25,282 −29,654 −28,710 −27,411 −29,298 −23,722 −25,776 −30,462 −28,745
Skewness −0.348 −0.208 −0.208 −0.135 0.262 −0.923 0.847 0.158 0.281 0.196 0.029
Kurtosis 6.406 11.074 7.254 5.793 4.483 24.829 11.083 6.771 5.647 6.335 8.883
Q (15) 16.6 25.1** 25.5** 20.5 28.3** 32.3** 20.7 24.4 23.9 18.9 19.7
Q2(15) 31.1** 4.8 13.0 10.6 15.2 2.0 12.4 30.2** 9.6 15.1 5.1
ARCH (15) 32.3** 4.9 13.4 10.8 15.8 2.0 12.8 31.3** 9.9 15.6 5.3

Post-2006 Crude oil Wheat Sugar Soybeans Soybeans oil Cotton Corn Coffee Cocoa Canola Soybeans meal

Panel B: Post-2006 EGARCH parameters
Mean equation estimates
Const. (%) 0.000 0.000 −0.001‡ 0.001† 0.000 0.000 0.000 0.000 0.001 0.001† 0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
AR(1) −0.038‡ −0.007 −0.026 −0.010 0.018 0.028 0.022 −0.047‡ −0.005 0.037‡ 0.000

(0.019) (0.020) (0.019) (0.019) (0.020) (0.019) (0.018) (0.019) (0.018) (0.018) (0.019)
GARCH process estimates
Const. (Y) −0.046† −0.079† −0.032 −0.082‡ −0.062‡ −0.107† −0.088† −0.119‡ −0.029 −0.244† −0.106†

(0.017) (0.027) (0.017) (0.035) (0.028) (0.036) (0.034) (0.047) (0.016) (0.071) (0.041)
GARCH (b) 0.994† 0.990† 0.996† 0.990† 0.993† 0.987† 0.989† 0.985† 0.996† 0.972† 0.987†

(0.002) (0.004) (0.002) (0.004) (0.003) (0.004) (0.004) (0.006) (0.002) (0.008) (0.005)
ARCH (a) 0.096† 0.102† 0.077† 0.117† 0.098† 0.132† 0.118† 0.067† 0.067† 0.147† 0.113†

(0.015) (0.017) (0.013) (0.018) (0.015) (0.018) (0.018) (0.016) (0.013) (0.023) (0.018)
Leverage (h) −0.055† 0.033† 0.010 0.014 −0.010 0.003 −0.002 0.039† −0.004 −0.009 0.034†

(0.009) (0.010) (0.008) (0.011) (0.008) (0.012) (0.011) (0.009) (0.009) (0.013) (0.011)
Student-df 11.946† 8.675† 5.572† 5.149† 12.091† 5.760† 5.988† 6.246† 5.744† 4.452† 5.514†

(2.044) (1.248) (0.545) (0.483) (2.475) (0.571) (0.524) (0.880) (0.663) (0.363) (0.546)
Log(L) 6631 6498 6598 7357 7489 7021 6774 6667 7086 7883 6905
AIC −13,249 −12,982 −13,181 −14,701 −14,963 −14,028 −13,534 −13,320 −14,159 −15,753 −13,795
BIC −13,208 −12,941 −13,140 −14,660 −14,922 −13,987 −13,492 −13,279 −14,118 −15,712 −13,754
Skewness −0.214 0.178 0.537 −0.706 0.208 −0.491 −1.077 0.048 −0.436 −0.598 −0.540
Kurtosis 4.103 4.594 8.197 8.858 3.813 9.266 18.985 4.311 5.717 11.963 7.470
Q (15) 5.4 17.5 10.9 12.0 10.3 13.9 18.2 13.0 19.6 28.0** 12.1
Q2(15) 20.3 12.2 3.8 4.9 8.6 5.9 2.3 20.4 19.5 2.0 7.3
ARCH (15) 19.9 12.5 3.8 4.9 11.4 5.9 2.3 18.5 18.6 1.8 7.1

Notes: This table presents the estimates of EGARCH model for each return series. Standard errors are presented in parenthesis. Q(15), Q2(15), and ARCH(15) are empirical statistics
of Ljung-Box test for autocorrelation with 15 lags in residuals and squared residuals, and the ARCH effects test by Engle (1982) with 15 lags, respectively.
+ indicates the significance at 10% threshold level.
‡ indicates the significance at 5% threshold level.
† indicates the significance at 1% threshold level.
∗ The rejection of null hypothesis of independence and conditional homoscedasticity at 10% threshold level.
∗∗ The rejection of null hypothesis of independence and conditional homoscedasticity at 5% threshold level.
∗∗∗ The rejection of null hypothesis of independence and conditional homoscedasticity at 1% threshold level.

copula for the pre- and post-2006 subsamples. 15 Notably, in com-
parison with the DCC parameter for pre-2006 subsample, the graphs
for post-2006 subsample indicates strong time-varying dependence

15 For the sake of brevity, we report the DCC-Student-t copula parameters for wheat,
soybean oil, and corn. The estimates for crude oil and other agricultural commodities
are available from authors upon request.

structure between crude oil and the studied agricultural commodi-
ties. Furthermore, it is noteworthy that the financial and economic
turmoil significantly influence the relationship in oil-fuel nexus. For
instance, the dependence parameter for all commodities peaked
around 2008–09, which is the period associated to the global finan-
cial crisis. Moreover, similar structure can be observed during the
period of European debt crisis of 2010–12. This is indicative that the
conditional dependence between crude oil and the agricultural com-
modities are higher during bearish and lower during bullish periods.
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Table 7
Copula estimates of undecomposed series for pre-2006 subsample.

Wheat Sugar Soybeans Soybeans oil Cotton Corn Coffee Cocoa Canola Soybeans meal

Panel A: Static Student-t copula parameters
q 0.035‡ 0.035‡ 0.033‡ 0.004 0.045† 0.043† 0.008 0.021 0.017 0.043†

(−0.016) (−0.016) (−0.016) (0.004) (−0.015) (−0.015) (0.045) (−0.019) (−0.023) (−0.015)
DoF 17.460† 25.628∗ 21.783† 31.295 24.793† 11.675† 21.909† 31.222 45.349 18.721†

(5.152) (14.254) (7.328) (38.306) (8.507) (2.180) (7.362) (49.494) (34.729) (6.848)
Log(L) 11.26 8.01 6.93 2.43 9.13 20.45 4.67 2.84 1.45 9.61
AIC −20.52 −14.02 −11.85 −2.86 −16.25 −38.91 −7.34 −3.68 −0.90 −17.22

Panel B: DCC-Student-t copula parameters
q 0.035† 0.044† 0.030† −0.001 0.044† 0.042† −0.005† 0.013† 0.013† 0.036†

(0.000) (0.000) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
DoF 17.592† 25.949‡ 22.690† 31.693 24.843† 11.689† 23.118† 31.997‡ 45.902 18.987‡

(4.301) (10.883) (7.402) (60.515) (9.467) (2.055) (8.374) (14.661) (5349.250) (6.314)
a 0.009 0.018 0.010 0.005 0.000 0.000 0.003 0.003 0.000 0.000†

(0.015) (0.016) (0.008) (0.002) (0.012) (0.011) (0.005) (0.002) (60.939) (0.000)
b 0.030 0.000 0.865† 0.990† 0.305† 0.339† 0.989† 0.989† 0.380 0.079†

(0.900) (0.596) (0.055) (0.007) (0.013) (0.038) (0.026) (0.007) (171.465) (0.006)
Log(L) 11.44 8.81 7.91 7.06 9.12 20.42 6.34 4.31 1.48 9.61
AIC −16.89 −11.62 −9.83 −8.12 −12.24 −34.85 −6.67 −2.63 3.04 −13.21

Notes: This table reports the estimates of static and DCC-Student-t copula for the pre-2006 subsample based on original returns series. The standard errors are presented in
parenthesis.
∗ indicates the significance at 10% threshold level.
‡ indicates the significance at 5% threshold level.
† indicates the significance at 1% threshold level.

In general, all the agricultural commodities follow similar depen-
dence structure. Furthermore, the decline in crude oil price from the
last quarter of 2014 leads to a slight increase in dependence soybean
oil and corn. The co-movement between crude oil and wheat over
this period is rather neutral varying between 0 and 10%. Whereas,
in the case of soybean oil and corn, the decline in crude oil price
lead to an increase in connectedness for these commodities. These
findings indicate that the positive co-movement between the agri-
cultural commodities is also apparent in the case of decline in crude
oil price especially for the crops being utilized to produce biofuel.

We explore the temporal and spectral dependence dynamics by
employing MODWT and least asymmetric wavelet filter (LA(8)) pro-
posed by Daubechies (1992) to decompose the original returns series
into a set of subsequent wavelets. Table 9 provides the pre-2006
static and time-varying copula estimates based on the decomposed

series capturing the short-run trend, i.e. variations over 2 and 4
consecutive days. These estimates closely follow the dependence
parameters of original returns series for both copula functions. This
evidence is consistent with the idea that, over the pre-2006 sub-
sample, the effect of crude oil price shocks diminishes rapidly and
does not transmit information to agricultural commodity prices over
shorter horizons. Based on the AIC values, the time-varying copula
function offers the best fit for all the underlying pairs. The con-
nectedness measure q is significant at 1% level for nearly all the
commodities and ranges from −1.7 % (coffee) to 5.7% (soybeans
meal) during pre-2006 subsample. The tail dependence parameter
is high thus reflecting the lack of joint extreme movement during
pre-2006 subsample. The parameter a is significant for nearly all
the underlying commodities indicating asymmetric impact of shocks
on conditional dependence. However, the coefficient b is low and

Table 8
Copula estimates of undecomposed series for post-2006 subsample.

Wheat Sugar Soybeans Soybeans oil Cotton Corn Coffee Cocoa Canola Soybeans meal

Panel A: Static Student-t copula parameters
q 0.181† 0.211† 0.313† 0.432† 0.225† 0.256† 0.242† 0.193† 0.208† 0.187†

(0.019) (0.019) (0.019) (0.018) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019)
DoF 9.786† 18.216† 14.116† 14.191† 56.897‡ 17.176† 13.096† 30.387‡ 12.888† 14.188†

(2.203) (6.880) (4.729) (4.300) (25.100) (6.345) (3.647) (13.031) (3.671) (4.837)
Log(L) 61.76 66.47 154.60 300.29 73.24 98.60 87.17 55.24 77.01 58.46
AIC −121.52 −130.95 −307.20 −598.59 −144.47 −195.19 −172.34 −108.47 −152.01 −114.91

Panel B: DCC-Student-t copula parameters
q 0.187† 0.214† 0.321† 0.442† 0.234† 0.258† 0.238† 0.200† 0.227† 0.195†

(0.003) (0.002) (0.002) (0.002) (0.001) (0.002) (0.002) (0.001) (0.002) (0.001)
DoF 12.679† 21.559∗ 16.353† 15.900† 76.828 19.768‡ 17.634† 32.053 16.697† 15.763†

(3.756) (11.978) (5.782) (5.929) (98.767) (8.578) (6.649) (19.075) (6.338) (5.834)
a 0.018 0.029 0.008† 0.008† 0.005∗ 0.011 0.011† 0.005∗ 0.008∗ 0.006†

(0.011) (0.034) (0.003) (0.003) (0.003) (0.020) (0.003) (0.003) (0.004) (0.003)
b 0.976† 0.913† 0.989† 0.990† 0.990† 0.984† 0.985† 0.990† 0.990† 0.988†

(0.017) (0.171) (0.005) (0.004) (0.007) (0.039) (0.005) (0.006) (0.008) (0.005)
Log(L) 90.22 73.80 169.88 323.98 77.56 114.37 105.05 58.56 96.46 64.14
AIC −174.44 −141.61 −333.76 −641.96 −149.11 −222.74 −204.11 −111.11 −186.92 −122.27

Notes: This table reports the estimates of static and DCC-Student-t copula for the post-2006 subsample based on original returns series. The standard errors are presented in
parenthesis.
∗ indicates the significance at 10% threshold level.
‡ indicates the significance at 5% threshold level.
† indicates the significance at 1% threshold level.
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Fig. 3. Time-varying copula dependence parameter for pre- and post-2006 subsample. Notes. The figure presents an overview of change in dependence dynamics between crude
oil and three agricultural commodities for the pre- and post-2006 subsamples. The time period presented on x-axis and y-axis shows the temporal variation in dependence
coefficient. The graphs for all the agricultural commodities can be obtained from authors upon request.

insignificant reflecting the lack of persistence. The short-run esti-
mates of static and time-varying copula functions for the post-2006
subsample are presented in Table 10. Similar to pre-2006 subsample,

the copula estimates for short-run trend over the post-2006 subsam-
ple follows dependence dynamics of undecomposed returns series.
The connectedness parameter ranges from 18.6% (cocoa) to 43.2%
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Table 9
Copula estimates of short-run trend for pre-2006.

Wheat Sugar Soybeans Soybeans oil Cotton Corn Coffee Cocoa Canola Soybeans meal

Panel A: Static Student-t copula parameters
q 0.024 0.038‡ 0.043† 0.012 0.039‡ 0.060† -0.015 0.012 0.026 0.055†

(−0.018) (−0.016) (−0.015) (−0.043) (−0.016) (−0.015) (0.027) (−0.053) (−0.017) (−0.015)
DoF 44.502† 199.999† 172.848† 85.514 127.219† 199.999‡ 93.562 27.904‡ 199.999 73.239

(60.587) (1.435) (1.771) (105.550) (15.337) (92.075) (128.225) (14.077) (142.329) (50.766)
Log(L) 3.07 3.12 4.75 0.69 4.13 10.30 1.07 2.80 1.31 9.15
AIC −4.13 −4.25 −7.50 0.63 −6.26 −18.59 −0.13 −3.60 −0.63 −16.29

Panel B: DCC-Student-t copula parameters
q 0.027† 0.036† 0.043† 0.012† 0.039† 0.062† −0.017† 0.008‡ 0.026† 0.057†

(0.003) (0.003) (0.003) (0.003) (0.003) (0.004) (0.003) (0.004) (0.003) (0.003)
DoF 199.710† 199.987† 199.988† 199.988† 199.986 199.999† 199.949† 199.647 199.776† 199.970

(9.807) (5.865) (5.041) (20.801) (133.494) (3.137) (17.727) (918.655) (2.746) (648.798)
a 0.317† 0.331† 0.330† 0.330† 0.300† 0.336† 0.329† 0.338 0.326† 0.325

(0.016) (0.016) (0.016) (0.016) (0.024) (0.016) (0.016) (0.203) (0.017) (0.537)
b 0.005 0.000 0.000 0.000 0.000 0.086‡ 0.070 0.010 0.024 0.000

(0.080) (0.024) (0.214) (0.039) (0.057) (0.042) (0.042) (0.886) (0.047) (10.773)
Log(L) 208.99 208.68 228.37 214.13 185.66 220.64 210.83 236.84 194.96 219.79
AIC −411.98 −411.35 −450.73 −422.26 −365.31 −435.28 −415.66 −467.68 −383.92 −433.57

Notes: This table reports the estimates of static and DCC-Student-t copula based on decomposed return series characterizing the short-run investment horizon for the pre-2006
subsample. Also, see notes of Table 7.

Table 10
Copula estimates of short-run trend for post-2006.

Wheat Sugar Soybeans Soybeans oil Cotton Corn Coffee Cocoa Canola Soybeans meal

Panel A: Static t-copula post-2006
q 0.226† 0.216† 0.323† 0.433† 0.251† 0.266† 0.217† 0.185† 0.220† 0.203†

(0.019) (0.019) (0.019) (0.018) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019)
DoF 20.938‡ 11.517† 10.485† 12.819† 81.698† 15.263† 38.251 27.996 19.947‡ 10.614†

(8.963) (2.872) (2.284) (3.274) (23.093) (5.404) (32.301) (21.191) (8.730) (2.585)
Log(L) 79.59 73.84 162.21 292.77 87.49 108.28 64.50 50.38 70.86 69.78
AIC −157.18 −145.67 −322.43 −583.53 −172.97 −214.55 −126.99 −98.76 −139.71 −137.55

Panel B: DCC t-copula post-2006
q 0.231† 0.212† 0.321† 0.432† 0.248† 0.267† 0.213† 0.186† 0.219† 0.203†

(0.005) (0.005) (0.005) (0.004) (0.005) (0.005) (0.005) (0.005) (0.005) (0.006)
DoF 30.471 27.023 26.691‡ 72.810 199.968† 29.910 199.983† 199.918† 106.889 22.183‡

(18.847) (31.373) (11.034) (95.046) (3.791) (25.427) (57.856) (6.005) (126.803) (10.767)
a 0.355† 0.360† 0.365† 0.341† 0.341† 0.367† 0.375† 0.363† 0.348† 0.410†

(0.025) (0.023) (0.022) (0.025) (0.021) (0.025) (0.021) (0.022) (0.025) (0.023)
b 0.000 0.064 0.065 0.057 0.000 0.048 0.072 0.000 0.034 0.067

(0.076) (0.061) (0.055) (0.063) (0.097) (0.047) (0.050) (0.023) (0.076) (0.040)
Log(L) 209.17 212.24 305.32 431.23 211.04 242.05 212.41 190.25 201.70 230.95
AIC −412.33 −418.49 −604.64 −856.45 −416.07 −478.10 −418.83 −374.51 −397.40 −455.90

Notes: The table reports the estimates of static and DCC-Student-t copula based on decomposed return series characterizing the short-run investment horizon for the post-2006
subsample. Also, see notes of Table 7.

(soybean oil). However, unlike the estimates from undecomposed
series, the short-run estimates are not characterized by tail depen-
dence behavior.

Tables 11 and 12 provide static and time-varying copula esti-
mates characterizing the middle-run trend ( 32–64 days) for pre-
and post-2006 subsamples. The magnitude and direction of depen-
dence follows the middle-run linear correlation parameters pre-
sented in Table 5 over both subsamples. Similar to the estimates
of short-run trend, the AIC values indicate that the time-varying
Student-t copula specifications offer the best fit between crude
oil and agricultural commodities. The dependence parameter q is
negative and significant at 1% threshold level for more than half
of the commodities. In addition, the magnitude of the parameter
tends to be stronger over the medium-run trend thereby support-
ing the hypothesis of adding agricultural commodities with crude
oil over the middle-term investment horizon helps in attaining
diversification benefits. The degrees of freedom parameter is large
indicating that the middle-run trend is not characterized by tail-
dependence over both subsamples.16 It is interesting to note that the

16 With exception of wheat, soybeans, soybean oil, and soybeans meal over the post-
2006 subsample.

dependence between crude oil and wheat exhibits significant and
relatively strong linkage over the middle-run investment horizon
as oppose to short-run frequency during pre-2006. Consistent with
post-2006 estimates of original returns and short-run investment
horizon, the medium-run is characterized by significant and strongly
positive dependence structure. Furthermore, the time-varying com-
ponent of DCC-copula functions b indicate that the dependence
measure is time-varying over both subsamples. The magnitude
and direction of connectedness over the medium-run change from
weakly negative to moderately positive from pre-2006 to post-2006
subsample.

The static and time-varying copula estimates representing the
long-run trend ( 256–512 days) of return series for pre- and post-
2006 subsamples are presented in Tables 13 and 14, respectively.
Similar to previous copula functions, the time-varying Student-t cop-
ula specification offers the best fit between crude oil and agricultural
commodities over both subsamples. Unlike the linkage parameters
of original and short-run trend, the direction and magnitude of
connectedness in some of the agricultural commodities is negative
and comparatively strong during pre-2006 subsample thus suggest-
ing stronger negative dependence over long-run trend for these
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Table 11
Copula estimates of medium-run trend for pre-2006.

Wheat Sugar Soybeans Soybeans oil Cotton Corn Coffee Cocoa Canola Soybeans meal

Panel A: Static t-copula post-2006
q 0.104† −0.075† 0.015 −0.054† −0.028 −0.090† −0.077† 0.004 −0.047† 0.015

(−0.014) (0.015) (−0.028) (0.015) (0.017) (0.014) (0.014) (0.005) (0.015) (−0.028)
DoF 49.109‡ 199.999† 199.989† 199.999† 21.268‡ 199.999† 199.999† 32.225† 200.000† 199.999†

(21.164) (43.909) (36.669) (44.030) (8.338) (28.801) (14.537) (8.980) (1.649) (20.025)
Log(L) 18.25 13.89 −0.31 8.33 6.82 22.69 14.39 2.25 9.19 −1.20
AIC −34.51 −25.77 2.61 −14.66 −11.64 −43.38 −26.77 −2.49 −16.38 4.40

Panel B: DCC t-copula post-2006
q 0.092† −0.068† 0.009 −0.053† −0.027† −0.089† −0.071† 0.006 −0.048† 0.007

(0.007) (0.006) (0.007) (0.007) (0.007) (0.006) (0.006) (0.008) (0.007) (0.007)
DoF 199.998† 199.988† 200.000† 199.989† 199.996† 200.000† 200.000† 23.928‡ 199.987† 199.998†

(1.693) (7.069) (10.013) (4.640) (26.035) (12.535) (9.474) (9.682) (2.306) (20.744)
a 0.500† 0.500† 0.500† 0.500† 0.500† 0.500† 0.500† 0.160† 0.500† 0.500†

(0.021) (0.019) (0.025) (0.019) (0.026) (0.012) (0.014) (0.011) (0.028) (0.023)
b 0.289† 0.265† 0.295† 0.274† 0.320† 0.252† 0.281† 0.824† 0.277† 0.287†

(0.033) (0.032) (0.042) (0.032) (0.042) (0.029) (0.026) (0.015) (0.051) (0.038)
Log(L) 1174.31 1105.82 1148.59 1087.70 1263.79 1076.07 1045.88 1174.52 1095.97 1098.30
AIC −2342.61 −2205.64 −2291.18 −2169.40 −2521.58 −2146.14 −2085.77 −2343.03 −2185.95 −2190.61

Notes: This table reports the parameters of static and DCC-Student-t copula based on decomposed return series characterizing the medium-run investment horizon for the
pre-2006 subsample. Also, see notes of Table 7.

commodities. Notably, the dependence between crude oil and wheat
increases from 3.5% in the case of undecomposed series to −33.8
%. This indicates that adding these agricultural commodities with
crude oil over the long-term investment horizon helps in attaining
diversification benefits during pre-2006 subsample. Furthermore,
the parameters a and b are significant at 1% threshold level indi-
cating asymmetric impact of shocks and persistence in conditional
dependence. The DoF parameter is significant for nearly half of
the agricultural commodities thus reflecting extreme co-movement
between these commodities and crude oil. As oppose to negative
dependence structure during pre-2006, the post-2006 subsample is
characterized by strongly positive and significant dependence struc-
ture. Specifically, cotton, soybean oil, canola, corn, and sugar exhibit
the largest degrees of dependence with crude oil. The copula esti-
mates of long-run trend support the hypothesis that crude oil prices
significantly changes the price dynamics of agricultural commodi-
ties over the long-term investment horizon. The positive dependence
structure during post-2006 subsample might be a result of increased
employment of agricultural commodities towards production of bio-
fuels.

5.4. Discussion and implications

In this paper, we study the temporal and spectral dependence
dynamics between crude oil and some of the key agricultural com-
modities. We divide our data into two subsets to account for struc-
tural change and fundamental shift in market for major agricul-
tural commodities during 2006. Our findings of linear correlation
analysis indicate that the increase in investment horizon results
in stronger dependence structure over both subsamples. Further-
more, the parameters from static and time-varying Student-t copula
functions provide further validation to these findings. In addition,
our analysis indicates that the diversification and hedging bene-
fits diminishes with the increase in frequency horizon over the
post-2006 subsample.

The results of this study add to the findings of Pal and Mitra
(2017), Mensi et al. (2017), Wang and McPhail (2014) and Koirala
et al. (2015) as the application of wavelet-based copulas pro-
vides key insights into fuel-food dependence dynamics. Specifi-
cally, with regard to temporal and spectral contribution of oil price
shock on agricultural commodities, our analysis indicate that the

Table 12
Copula estimates of medium-run trend for post-2006.

Wheat Sugar Soybeans Soybeans oil Cotton Corn Coffee Cocoa Canola Soybeans meal

Panel A: Static t-copula post-2006
q 0.197† 0.336† 0.399† 0.443† 0.141† 0.275† 0.282† 0.314† 0.135† 0.297†

(0.019) (0.019) (0.019) (0.018) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019)
DoF 8.536 200.000† 10.288† 199.999† 22.415 23.770† 126.754† 27.947† 28.301† 30.270†

(1.781) (160.550) (2.220) (8.484) (8.882) (11.999) (263.925) (12.300) (20.092) (92.367)
Log(L) 59.99 117.37 233.49 252.74 21.88 100.49 87.57 107.49 27.14 119.13
AIC −117.98 −232.74 −464.98 −503.49 −41.76 −198.97 −173.14 −212.98 −52.28 −236.26

Panel B: DCC t-copula post-2006
q 0.178† 0.303† 0.369† 0.414† 0.135† 0.254† 0.255† 0.285† 0.133† 0.259†

(0.011) (0.007) (0.010) (0.009) (0.012) (0.010) (0.008) (0.008) (0.009) (0.011)
DoF 15.321† 200.000† 24.480‡ 13.758† 162.885 28.923 199.996† 199.996† 200.000† 26.241‡

(4.183) (2.393) (11.540) (3.939) (244.187) (17.359) (49.490) (4.050) (3.955) (10.995)
a 0.205† 0.500† 0.116† 0.128† 0.152† 0.167† 0.500† 0.500† 0.500† 0.123†

(0.016) (0.034) (0.006) (0.013) (0.005) (0.019) (0.044) (0.051) (0.053) (0.008)
b 0.775† 0.191† 0.868† 0.857† 0.836† 0.809† 0.264† 0.205‡ 0.280† 0.866†

(0.020) (0.061) (0.008) (0.016) (0.007) (0.027) (0.086) (0.098) (0.095) (0.009)
Log(L) 751.78 566.10 762.14 673.87 687.84 660.55 639.80 621.84 648.05 653.51
AIC −1497.57 −1126.20 −1518.29 −1341.73 −1369.69 −1315.09 −1273.60 −1237.68 −1290.10 −1301.01

Notes: This table reports the parameters of static and DCC-Student-t copula based on decomposed return series characterizing the medium-run investment horizon for the
post-2006 subsample. Also, see notes of Table 7.
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Table 13
Copula estimates of long-run trend for pre-2006.

Wheat Sugar Soybeans Soybeans oil Cotton Corn Coffee Cocoa Canola Soybeans meal

Panel A: Static t-copula post-2006
q −0.346† −0.054† −0.022 −0.038† 0.077† −0.048† −0.083† 0.139† −0.158† 0.026∗

(−0.014) (−0.014) (−0.014) (−0.013) (0.014) (−0.013) (−0.014) (0.014) (−0.014) (0.014)
DoF 29.781 199.930† 8.741† 10.546† 7.377† 18.690† 5.168† 200.000† 27.768∗ 11.394†

(22.699) (48.070) (1.353) (1.678) (0.943) (5.565) (0.480) (2.878) (15.513) (2.000)
Log(L) 314.19 13.16 23.77 19.00 47.79 7.82 85.37 47.95 72.04 15.03
AIC −626.38 −24.32 −45.54 −36.01 −93.58 −13.65 −168.74 −93.89 −142.07 −28.05

Panel B: DCC t-copula post-2006
q −0.338† −0.029† −0.034† −0.055† 0.030† −0.039† −0.089† 0.133† −0.170† 0.026†

(0.007) (0.008) (0.009) (0.008) (0.009) (0.007) (0.010) (0.006) (0.009) (0.007)
DoF 199.988 199.966† 8.037† 199.985† 29.276† 198.175† 9.387† 200.000 60.522‡ 198.482†

(179.662) (49.160) (0.928) (19.892) (10.596) (18.854) (1.006) − (27.301) (35.766)
a 0.026† 0.034† 0.030† 0.019† 0.023† 0.069† 0.036† 0.296 0.035† 0.142†

(0.005) (0.002) (0.001) (0.001) (0.001) (0.013) (0.001) − (0.001) (0.018)
b 0.971† 0.963† 0.970† 0.980† 0.975† 0.909† 0.963† 0.576 0.963† 0.800†

(0.007) (0.002) (0.001) (0.001) (0.001) (0.019) (0.001) − (0.002) (0.027)
Log(L) 1513.15 1266.53 1415.91 1261.03 1397.93 1271.81 1681.88 987.83 1572.87 1286.17
AIC −3020.31 −2527.05 −2825.82 −2516.06 −2789.87 −2537.62 −3357.76 −1969.65 −3139.75 −2566.33

Notes: This table reports the parameters of static and DCC-Student-t copula based on decomposed return series characterizing the long-run investment horizon for the pre-2006
subsample. In the case of cocoa, the numerical Hessian which is used in calculation of standard errors is not positive definite resulting in too large standard errors. Also, see notes
of Table 7.

connectedness between oil and agricultural commodities increases
over the post-2006 subsample across all frequencies of return move-
ments. However, the rate of increase is higher for longer investment
horizon. The wavelet decomposition reveals declining correlation
over short-, medium-, and long-run horizons during pre-2006 sub-
sample but increasing dependence during post-2006.

The temporal dependence parameter indicate that all agricultural
commodities exhibits significantly higher co-movement with crude
oil over the period of global financial crisis in 2008–09 and European
debt crisis of 2010–12. Whereas, the level of dependence is relatively
low and stable during periods of economic prosperity. Furthermore,
the recent decline in crude oil price lead to an increase in dependence
crude oil and agricultural commodities. However, the rate of increase
is more pronounced for the agricultural commodities being utilized
to produce biofuel. With regard to extreme tail co-movement in
underlying undecomposed and decomposed series, our analysis indi-
cates the tail dependence tends to diminish with the increase of

investment horizon. Specifically, the large values of DoF parameter
over the medium- and long-run trend indicates that the Student-t
distribution gets closer to the standard normal distribution.

5.4.1. Policy implications
Due to environment-friendly energy policies and increased prices

of energy commodities, the linkage structure between crude oil and
agricultural commodities tend to be stronger. Therefore, designing
sound energy and agricultural policies requires identification of con-
nectedness structure over short-, medium-, and long-run horizons.
The findings of this study clearly indicate that evaluation of temporal
and spectral connectedness between crude oil and agricultural com-
modities is crucial for policymakers, regulatory agencies, producers,
and market participants to design and implement strategies.

The favorable environment-friendly policies and increased prices
of agricultural commodities utilized in biofuel production led
producers to divert their resources by increasing production of these

Table 14
Copula estimates of long-run trend for post-2006.

Wheat Sugar Soybeans Soybeans oil Cotton Corn Coffee Cocoa Canola Soybeans meal

Panel A: Static t-copula post-2006
q 0.205† 0.345† 0.285† 0.563† 0.774† 0.269† 0.167† 0.256† 0.467† 0.238†

(0.019) (0.019) (0.019) (0.018) (0.000) (0.019) (0.019) (0.019) (0.018) (0.019)
DoF 144.175 22.236† 11.775† 199.999† 199.999 19.264† 44.619† 9.577† 199.999† 199.999†

(288.438) (6.552) (2.093) (4.409) (154.261) (5.183) (16.853) (1.809) (13.048) (3.213)
Log(L) 32.77 141.62 92.90 414.69 840.99 87.21 18.70 77.26 234.67 44.14
AIC −63.54 −281.23 −183.81 −827.38 −1679.97 −172.41 −35.40 −152.52 −467.35 −86.29

Panel B: DCC t-copula post-2006
q 0.178† 0.310† 0.268† 0.526† 0.708† 0.248† 0.156† 0.211† 0.423† 0.211†

(0.009) (0.008) (0.008) (0.005) (0.002) (0.009) (0.009) (0.011) (0.006) (0.008)
DoF 199.996† 198.111† 199.997† 199.687† 199.986† 200.000† 199.997† 199.960† 199.998† 199.989†

(2.991) (10.126) (10.422) (17.400) (2.758) (1.689) (3.395) (13.622) (11.441) (19.057)
a 0.500† 0.104† 0.402† 0.192‡ 0.345† 0.226† 0.162† 0.022† 0.247† 0.500†

(0.058) (0.022) (0.065) (0.088) (0.016) (0.050) (0.018) (0.001) (0.061) (0.108)
b 0.270† 0.847† 0.408† 0.619† 0.000 0.669† 0.779† 0.976† 0.573† 0.273

(0.087) (0.034) (0.095) (0.184) (0.008) (0.071) (0.024) (0.001) (0.104) (0.159)
Log(L) 583.83 724.47 681.19 789.40 1077.77 716.32 666.15 741.45 582.12 462.50
AIC −1161.67 −1442.94 −1356.37 −1572.80 −2149.54 −1426.65 −1326.30 −1476.89 −1158.24 −919.01

Notes: This table reports the parameters of static and DCC-Student-t copula based on decomposed return series characterizing the long-run investment horizon for the pre-2006
subsample. Also, see notes of Table 7.
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commodities. Consequently, this leads to reduction in cultivation and
production of other agricultural commodities that helps in meet-
ing the needs of growing population. The higher price variability
of food items would harm the poor as a greater fraction of their
income would be spent on food. Therefore, it is important to design
and implement short- and medium-run policies by offering food
subsidies to the poor that would help in reducing price shocks
from agricultural commodities. To reduce volatility and attain stabil-
ity, governments should offer subsidies and price control tariffs to
producers to invest more in food commodities.

The agricultural sector accounts for an important part of employ-
ment and total production in underdeveloped and developing coun-
tries. The prices of agricultural commodities play a significant role
in land allocation for agricultural production. The increased demand
of agricultural commodities can be attributed to increased produc-
tion of biofuels. Concurrently, the prices of agricultural commodities
utilized in biofuel production will be a crucial determinant towards
land allocation of agricultural commodities, influencing the produc-
tion and supply of other crops. These nations should design inte-
grated energy and agricultural policies to account for the increased
connectedness structure between these markets.

5.4.2. Portfolio designs
Assessment of temporal and spectral dependence dynamics is

essential for portfolio allocation and risk management decisions.
To study the implications of our copula estimates, we estimate
and quantify portfolio weights and hedge ratios for investment in
crude oil and agricultural markets. To estimate the portfolio weights,
we follow the diligence provided by Kroner and Ng (1998) as it
minimizes risk without lowering expected returns. Given the fre-
quent fluctuations and substantial volatility in the prices of crude oil
and agricultural commodities, we suppose an investor who wishes
to minimize his investment risk by holding long/short positions
in the futures market of crude oil and agricultural commodities.

The portfolio weights of the holdings of agricultural commodities
(AC)/crude oil (CO) is given by:

wAC,CO
t =

hCO
t − hAC,CO

t

hAC
t − 2hAC,CO

t + hCO
t

(19)

wAC,CO
t =

⎧
⎪⎨
⎪⎩

0 if wAC,CO
t < 0

wAC,CO
t if 0 ≤ wAC,CO

t ≤ 1
1 if wAC,CO

t > 1

where wAC,CO
t is the proportion of one dollar to be invested in two

underlying assets (agricultural commodities, crude oil) at time t,
hCO

t and hAC
t is the conditional variance of crude oil and agricul-

tural commodities, and hAC,CO
t is the conditional covariance at time t

between agricultural commodities and crude oil. The weight of crude
oil in the underlying portfolio is 1 − wAC,CO

t . Table 15 provides sum-
mary statistics for the bivariate portfolio weights computed from
ARMA(1,0)-EGARCH(1,1) and DCC-Student-t copula. Specifically, the
time-varying dependence parameter from the Student-t copula func-
tion is utilized along with the conditional variance measures to
estimate weights.

The data indicate that the average portfolio weight for
wheat/crude oil is 0.621 for the pre-2006 period, indicating that for
a $1 portfolio, 62.1 cents should be invested in wheat, and 37.9 (
1–0.621) cents should be invested in crude oil. Whereas, the aver-
age portfolio weight of wheat/crude oil for the post-2006 subsample
is 0.467, indicating that for a $1 portfolio, 46.7 cents should be
invested in wheat, and 53.3 ( 1-0.467) cents should be invested in
crude oil. The portfolio weights for the short-run trend closely fol-
lows the weights in undecomposed series. However, the medium-
and long-run trend shows changes in portfolio weights from the
original returns and short-run trend for the pre- and post-2006 sub-
samples. For instance, the average portfolio weight of wheat/crude
oil over the long-run increases from 0.467 to 0.625 during the post-
2006 subsample, indicating that for a $1 portfolio, 62.5 cents should

Table 15
Summary statistics for the portfolio weights and hedge ratios.

Commodity Returns Short-run

wAC,CO
t,pre bAC,CO

t,pre wAC,CO
t,post bAC,CO

t,post wAC,CO
t,pre bAC,CO

t,pre wAC,CO
t,post bAC,CO

t,post

Wheat 0.621 0.028 0.467 0.207 0.626 0.022 0.477 0.269
Sugar 0.481 0.049 0.476 0.236 0.477 0.041 0.479 0.249
Soybean 0.684 0.021 0.644 0.265 0.683 0.032 0.647 0.271
Soybean oil 0.649 −0.001 0.744 0.327 0.654 0.011 0.725 0.323
Cotton 0.586 0.039 0.564 0.223 0.591 0.036 0.582 0.238
Corn 0.659 0.031 0.516 0.258 0.684 0.047 0.528 0.283
Coffee 0.407 −0.007 0.508 0.236 0.427 −0.025 0.504 0.232
Cocoa 0.515 0.012 0.573 0.184 0.512 0.012 0.578 0.176
Canola 0.715 0.009 0.721 0.151 0.719 0.017 0.733 0.151
Soybeans meal 0.642 0.028 0.536 0.193 0.652 0.047 0.558 0.201

Commodity Medium-run Long-run

wAC,CO
t,pre bAC,CO

t,pre wAC,CO
t,post bAC,CO

t,post wAC,CO
t,pre bAC,CO

t,pre wAC,CO
t,post bAC,CO

t,post

Wheat 0.523 0.122 0.439 0.281 0.510 −0.778 0.625 0.275
Sugar 0.474 −0.232 0.519 0.497 0.422 −0.460 0.609 2.049
Soybean 0.587 −0.062 0.568 0.454 0.543 −0.010 0.546 0.128
Soybean oil 0.562 −0.144 0.570 0.511 0.538 0.615 0.666 1.185
Cotton 0.541 −0.012 0.503 0.263 0.465 0.464 0.527 3.904
Corn 0.562 −0.138 0.470 0.393 0.425 0.192 0.559 −0.340
Coffee 0.377 −0.201 0.453 0.464 0.349 −1.382 0.622 −0.012
Cocoa 0.452 −0.049 0.489 0.512 0.536 0.812 0.599 −2.264
Canola 0.599 −0.112 0.644 0.131 0.498 0.281 0.645 2.068
Soybeans meal 0.544 −0.055 0.530 0.373 0.586 −0.139 0.553 −1.431

Notes. The table reports average weights and hedge ratios for investment in crude oil and agricultural markets. wAC,CO
t is the proportion of one dollar to be invested in two

underlying assets (agricultural commodities (AC), crude oil (CO)) at time t, bAC,CO
t is the risk-minimizing hedge ratios for investment in CO and AC.
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be invested in wheat, and 37.5 cents should be invested in crude oil.
Similar variations in portfolio weights can be observed for pre- and
post-2006 subsamples for the medium- and long-run trends. These
results indicate how our employed framework could be utilized by
the market participants in the financial and commodity markets for
making optimal portfolio allocation decisions.

5.4.3. Hedge ratios
In addition to optimal portfolio weights, we follow Kroner and

Sultan (1993) to estimate risk-minimizing hedge ratios for a port-
folio of two assets, i.e. crude oil and agricultural commodities. To
minimize the risk of the underlying portfolio that is $1 long in agri-
cultural commodities, the investor should short $b of crude oil. We
can estimate the risk-minimizing hedge ratios as follows:

bAC,CO
t =

hAC,CO
t

hCO
t

(20)

where hAC,CO
t is the conditional covariance between agricultural com-

modities and crude oil, and hCO
t is the conditional variance of crude

oil at time t. Table 15 provides summary statistics for the hedge ratio,
bAC,CO

t,pre and bAC,CO
t,post , for returns and decomposed series. It is notewor-

thy that the hedge ratios for the pre-2006 subsample are relatively
low thus indicating the hedging effectiveness of involving crude oil
and agricultural commodities is quite good. This is consistent with
our hypothesis that the inclusion of agricultural commodities along
with crude oil in a diversified portfolio over the pre-2006 subsample
increases the risk-adjusted performance of the portfolio. Whereas,
the values of hedge ratio over the post-2006 subsample are signif-
icantly higher indicating that the hedging becomes expensive over
the post-2006 subsample.

The values of hedge ratio for the pre-2006 subsample ranges from
−0.007(coffee/crude oil portfolio) to 0.049 (sugar/crude oil). These
results indicate that a $1 long position in wheat can be hedged with a
2.8 cents short position in the crude oil. Likewise, in the case of soy-
bean oil/crude oil portfolio, a $1 long position in soybean oil can be
hedged with a 0.1 cent long position in crude oil. On the contrary,
the estimates of hedge ratio are significantly higher for the post-
2006 subsample thus indicating that the hedging would be expensive
over post-2006 period. For instance, a long position of $1 in soy-
bean oil can be hedged with a 32.7 cents short position in crude oil.
The estimates of hedge ratio over the short-run trend closely follow
the hedge ratio of undecomposed series. However, the medium- and
long-run trend indicate significant increase in hedge ratio over both
subsamples thus reflecting additional cost to hedge the position due
to increased dependence structure over these periods. Overall, the
increased connectedness between crude oil and agricultural com-
modities over the post-2006 subsample lead to an increase in the
estimates of hedge ratios, indicating that the hedging cost increase
with the increase of investment horizon.

Risk management, using e.g. Value-at-Risk (VaR), is concerned
with measuring variation and deviations from expected trends. The
increasing hedge ratio indicates higher risk post-2006, and con-
sequently VaR in this period is higher. More specifically, when
assessing the same portfolio pre- and post-2006, VaR would increase
post-2006. In addition, the increased dependence structure, in par-
ticular for the medium- and long-run trends, further emphasizes the
consequences for VaR and risk management in this period.

6. Conclusion

This paper investigates the dependence dynamics between crude
oil and the agricultural commodities using wavelet analysis and cop-
ula approach. The core objective of this work is to evaluate how
the connectedness varies over time and across different spectral

horizons. Hence, we combine a multi-resolution wavelet transform
analysis and DCC-Student-t copula model to evaluate the underlying
phenomenon. Specifically, a bivariate ARMA(1,0)-EGARCH(1,1)-DCC-
Student-t copula model is employed with MODWT and least asym-
metric LA(8) as wavelet filter to capture the dependence dynamics
across various investment horizons. Furthermore, we incorporate
daily data spanning from July 1986 to June 2016. To account for
structural changes, we divide the sample into two subsamples span-
ning from July 1986 to December 2005 (pre-2006 subsample) and
from January 2006 to June 2016 (post-2006 subsample). This paper
aims to reveal the development in temporal and spectral con-
nectedness between crude oil and agricultural commodities during
pre-2006 and post-2006 subsamples.

Our empirical results are as follows. First, we find evidence of tem-
poral and spectral dependence between crude oil and agricultural
commoditiesoverboth subsamples. In addition, the empirical findings
from Student-t copula indicate that the short-run horizon is charac-
terized by tail-dependence behavior. This indicate that the tendency
of joint extreme movements is highly probable over the short-run
than over the medium- and long-run investment horizon. Second,
the dependence estimates from the frequency-domain analysis are
significantly different and more distinct than the estimates from
the undecomposed time-domain analysis thus suggesting the need
to consider timespan before policy recommendations and invest-
ment allocation decisions. Furthermore, the results from parametric
and nonparametric correlation analysis indicate that the dependence
structure of the decomposed series are statistically different from the
original returns. Third, the time-varying DCC parameter indicate that
the connectedness between crude oil and the agricultural commodi-
ties intensify during the periods of financial and economic turmoil.
Specifically, the dependence parameter spikes during the period of
global financial crisis of 2008 and thereafter during the period of
European debt crisis. This indicate that the temporal dependence in
the oil-food nexus is less pronounced during the periods of economic
prosperity. Lastly, our findings indicate that the dependence between
crude oil and agricultural commodities is close to zero during the
pre-2006 subsample over the short-run horizon. Furthermore, the
connectedness increases negatively with the increase in investment
horizon. However, the post-2006 subsample is characterized by mod-
erately positive dependence over the undecomposed series and the
linkage increases positively with the increase in frequency. This indi-
cate that the tendency to attain hedging and portfolio diversification
has diminished over the post-2006 subsample.

The findings of this study are of promising interest to policy-
makers, producers, portfolio managers, and international investors.
The dynamic temporal and spectral dependence structure between
crude oil and agricultural commodities requires policymakers to
formulate strategies that decouples the impact of information con-
nectedness between these markets. Policymakers may devise a ‘road
map’ of systematic risk and asymmetric tail dependence between
crude oil and agricultural commodities to assist them in formulat-
ing strategies that can foster market stability and serve as protection
mechanism against contagion risk. Therefore, an informed depen-
dence structure would lead policymakers and regulatory agencies to
formulate food subsidies and price control strategies to assist the
poor. Furthermore, these measures would facilitate in evading the
long-run effect of oil price and volatility shocks on the prices of
agricultural commodities. Regarding portfolio managers and inter-
national investors, an assessment of dependence structure is crucial
for formulating and implement investment allocation and hedging
decisions. Therefore, it is important to consider tail-dependence and
extreme co-movement as well as the temporal and spectral inter-
connectedness in oil-food nexus for devising risk management, asset
pricing and allocation decisions.

In this study, we utilize bivariate analysis to evaluate the depen-
dence dynamics between crude oil and agricultural commodities. A
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key drawback of bivariate analysis lies in their inability to accommo-
date relations among more than two commodities. Furthermore, it is
noteworthy that the relationship among more than two commodities
are complex and hard to interpret. While crude oil is a global com-
modity, some of the agricultural commodities are dominated by a
small number of producing countries, which can impact the oil-food
nexus. Therefore, in the future research, we propose to assimilate a
multivariate approach to understand the relationship between crude
oil and agricultural commodities at both global and domestic level. It
would be interesting to evaluate whether crude oil directly impacts
the local agricultural commodity prices or indirectly through global
agricultural commodity prices.17

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.eneco.2019.01.011.
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A B S T R A C T

This paper examines spillover effects among markets of crude oil and ten major agricultural
commodities by employing the Diebold and Yılmaz (2009, 2012) spillover frameworks to returns
and EGARCH filtered volatilities. We account for structural variations in data by dividing the data
into two subsamples: from July 1986 to December 2005 (pre-2006 subsample) and from January
2006 to June 2016 (post-2006 subsample). Our findings indicate that there is minuscule infor-
mation transmission among crude oil and agricultural commodities over the pre-2006 subsample,
however, crude oil becomes the net receiver of information over the post-2006 subsample. Second,
our findings indicate asymmetric and bidirectional flow of information among crude oil and
agricultural commodities that intensifies during periods of financial and economic turmoil. Last,
net volatility spillover increases in periods of large declines in the crude oil price, such as in 2008
and later in 2014. Overall, we document a more detailed insight into channels of connectedness
among the underlying commodities, which may assist developing policy recommendation, port-
folio designs, and risk management decisions.

1. Introduction

Understanding the price and volatility dynamics of crude oil and agricultural commodities has received considerable attention
following the surge in energy and food prices since 2006. The prices of these commodities have experienced sharp fluctuations and large
swings over the last decade due to economic turmoil and financial crises, changes in macroeconomic uncertainties, and introduction of
new regulations to combat climate change. The decline in crude oil price in 2014 has renewed interest in examining the evolution of
connectedness between the markets of crude oil and agricultural commodities. Understanding the time-varying connectedness across
these markets has several important implications for investment allocations, asset valuation, risk management, policy recommenda-
tions, and implementation. Although, there is a large strand of literature dedicated to estimating the variances and covariance of
different assets, research on volatility spillover has received comparatively less attention (Nazlioglu et al., 2013).

Financial interdependence and increased connectedness of global markets are the main elements of volatility transmission between
assets and markets (Aloui et al., 2011; Mensi et al., 2013). The recent upsurge in prices of agricultural commodities can be explained by
several mechanisms. First, the crude oil and agricultural commodities became increasingly entwined due to increased production of
biofuels. An increase in prices of energy commodities raises the demand for soybean- and corn-based biofuels (Pal and Mitra, 2017).
Subsequently, this led farmers to allocate more resources and land towards production of fuel crops resulting in higher prices for other
agricultural commodities. Second, due to the energy intensive nature of agriculture sector, an increase in crude oil price would result in
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higher cost of inputs for these commodities. Third, adverse weather conditions would affect the total production of agricultural com-
modities, which will eventually result in higher price and volatility for agricultural products. Finally, the financialization of commodity
futures markets and flow of speculative investments can also contribute to higher prices of agricultural commodities and crude oil,
which are primarily driven due to involvement of institutional investors during periods of high liquidity1 (Gorton and Rouwenhorst,
2006; Bhardwaj et al., 2015; Basak and Pavlova, 2016; Ordu et al., 2018).

Several studies provide empirical evidence that crude oil often behaves as exogenous and transmit volatility to agricultural markets
(see e.g. Serra, 2011; Du and McPhail, 2012; Nazlioglu et al., 2013). On the contrary, a number of studies appear to reject this notion of
volatility transmission, and finds either negative or no spillover from crude oil to agriculture (see e.g. Kaltalioglu and Soytas, 2011; Du
et al., 2011; Nazlioglu and Soytas, 2011; Gardebroek and Hernandez, 2013; Kang et al., 2017). As this literature indicates, the dynamics
of volatility spillover between crude oil and agricultural commodities is opaque, and therefore further elucidation by employing
different approaches and a broader set of data is needed. Understanding risk transmission is crucial in designing and selecting
appropriate portfolio management and risk management techniques, in which negative or low dependence among the asset returns are
essential for insuring large losses. Furthermore, it provides a reference for regulators and policymakers in deriving and implementing
appropriate strategies for optimal risk management.

Although the theoretical underpinnings of previous studies are different, the empirical methodology converges to a common
framework. The studies in the strand of spillover analysis mainly employs different specification of Multivariate Generalized Autore-
gressive Conditional Heteroscedasticity (MGARCH) models to analyze the dynamics and cross-dynamics of volatility transmission be-
tween assets. However, the main issue with the MGARCH is its inability to provide the direction of spillover.

The aim of this study is to provide amore comprehensive analysis of static and temporal volatility spillover between crude oil and ten
agricultural commodities. We contribute to the existing literature by integrating an EGARCH specification with Diebold and Yılmaz
(2009, 2012, 2014, 2015) (hereafter: DY) frameworks to examine conditional spillover between the underlying commodities. Specif-
ically, we utilize an ARMA(1,0)-EGARCH(1,1) specification on returns series to extract the conditional volatility, which is used in the DY
frameworks to estimate static and temporal spillover. Similar to return series in financial markets, commodity markets’ return series
exhibit volatility clustering, serial correlation, heteroscedasticity, leverage effects, and fat tails, which can be captured using an EGARCH
framework. More specifically, the EGARCH model is an extension of standard GARCH model and assumes the asymmetric impact of
positive or negative shocks on conditional volatility, which are embedded in the financial and commodity returns. To account for
structural variation, we divide our sample into two subsamples, i.e. the calm period (pre-2006subsample) and turmoil period (post-2006
subsample).

The objective of this study is to empirically investigate the claim of volatility transmission from crude oil, being the dominant
commodity, to the changes in volatility dynamics of agricultural commodities under different market conditions. We seek to answer
whether the crude oil price really matters, and to what degree does the changes in price dynamics of crude oil shift the equilibrium in
other commodity prices. Secondly, we seek to elucidate the spillover dynamics within agricultural sector and examine how the within
sector relationship might influence the price dynamics of food commodities. Thirdly, we decompose the temporal volatility spillover
index into bidirectional (‘to’ and ‘from’) spillovers to estimate the net volatility spillover index between the underlying commodity
markets. The net spillover index provides an overview of the underlying assets that are net contributors and receivers of spillovers.
Lastly, our selected timespan covers several periods of financial and economic turmoil, which would enable us to further elucidate the
development in spillover dynamics during these periods and thus the discrepancy of mixed evidence of volatility spillover in previous
literature.

Consistent with previous research, our results on static volatility spillover supports the neutrality hypothesis indicating no inter-
connectedness between crude oil and agricultural commodities over the pre-2006 subsample. Our analysis of post-2006 subsample
shows negative spillover to crude oil, which rejects a hypothesis of significant volatility spillover from crude oil to agricultural com-
modities in this period. Furthermore, our findings indicate that the increased prices of agricultural commodities over periods of eco-
nomic prosperity and turmoil are mainly due to within sector variations, not due to shifts in crude oil prices.

The remainder of this article is structured as follows. In section 2 we present previous literature relevant for volatility spillover in the
commodity market. The empirical methodology and the dataset is presented in section 3 and 4, respectively. The obtained empirical
results are presented and discussed in section 5. Section 6 concludes.

2. Literature review

Since the global financial crisis (GFC) during 2007–2008, an emerging strand of literature focuses on the connectedness dynamics
between crude oil and agricultural commodities by employing different datasets and various econometric frameworks. Spillover can be
defined as a shock in one asset that changes the price dynamics in other asset(s). Previous studies on the spillover dynamics has mainly
evaluated the price level interdependence. Whereas, the volatility and transmission of volatility between markets has received less
attention (Cabrera and Schulz, 2016).

Table 1 provides a review of relevant literature on spillover between crude oil and agricultural commodities. Serra (2011) employs a
GARCH-type specification to evaluate the relationship between crude oil, ethanol, and sugar prices in Brazil using weekly data. They
find significant information transmission between crude oil and the underlying commodities. Wang et al. (2014) examine the variations
in agricultural commodity prices due to shocks in oil price using monthly data in a structural VAR analysis. Their findings indicate that

1 We thank an anonymous referee for pointing this out.
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the oil shocks can explain minor friction of variations in agricultural commodity prices before the food crisis of 2006–2008. However,
the explanatory ability become much higher over the post-crisis period. Liu (2014) investigates the cross-correlation between crude oil
and agricultural commodity markets by employing a detrended cross-correlation analysis (DCCA). Their findings indicate that the
cross-correlations are multi-fractal and high oil prices partly contributes to the food crisis during 2006 to mid-2008. In their study,
Koirala et al. (2015) investigate the dependence between energy futures prices and agricultural futures prices using various copula
functions. Their findings highlight that an increase in energy price increases the price of agricultural commodities. Silvennoinen and
Thorp (2016) evaluate the connectedness between crude oil and agricultural commodities by incorporating dynamic smooth transition
conditional correlation (DSTCC-GARCH) model. Their findings indicate that the high correlation between crude oil and biofuel feed-
stock is more probable when the price levels for food and oil are high. Furthermore, they report limited contagion from energy to
non-biofuel feedstock markets. In their study, Lucotte (2016) analyzes the dynamics of co-movement between food and crude oil prices
using the correlations of VAR. They divide the sample into two subsamples. Their findings reveal strong positive co-movements between
the underlying commodities in the aftermath of commodity boom (post-2007 subsample). Whereas, they report no significant
co-movements over the pre-boom period. Al-Maadid et al. (2017) examine the linkage between food and energy prices by utilizing a
bivariate VAR-GARCH(1,1) model. Their findings suggest significant linkage between food, oil, and ethanol prices. Furthermore, their
results indicate significant shifts in volatility spillover between the underlying price series. In a recent study, Shahzad et al. (2018)
evaluate the asymmetric risk spillovers between oil and agricultural commodities. Their findings indicate symmetry in tail dependence
and asymmetry in the spillover dynamics from oil to the agricultural markets, which intensifies during periods of financial turmoil.

In contrast, several studies provide evidence of neutral interconnectedness structure between crude oil and agricultural commod-
ities. Kaltalioglu and Soytas (2011) employ a VAR model using monthly data from 1980 to 2008 and found insignificant transmission of
volatility between crude oil and agricultural and food items. Gardebroek and Hernandez (2013) evaluate the volatility transmission
between oil, ethanol, and corn prices using a multivariate GARCH approach. Their findings indicate that energy markets do not in-
fluence the volatility in corn market. In a later study, Wang and McPhail (2014) employ the VAR model on annual data between 1948
and 2011 and report mixed evidence of volatility spillover between energy prices and agricultural prices. Similarly, Fowowe (2016)
examines whether oil drive the agricultural commodity prices in South Africa by utilizing structural break cointegration and nonlinear
causality tests. They report no evidence of long-run relationship between oil and agricultural commodity prices in South Africa.

Table 1
Literature on spillover between crude oil and agricultural commodities.

Study Assets/Markets Data Method Results

Serra (2011) Crude oil, ethanol, and sugar prices in Brazil 2000–2009
(Weekly)

GARCH Significant

Nazlioglu et al. (2013) Oil and agricultural commodities 1986–2011
(Daily)

CIV
IRF

Significant

Wang et al. (2014) Crude oil and agricultural commodities 1980–2012
(Monthly)

SVAR Significant

Liu (2014) Crude Oil price and agricultural commodities 1984–2012
(Daily)

DCCA Significant

Koirala et al. (2015) Energy and agriculture futures 2011–2012
(Daily)

Copulas Significant

Silvennoinen and Thorp (2016) Crude oil and agriculture commodities 2011–2012
(Daily)

DSTCC-
GARCH

Mixed

Lucotte (2016) Crude oil and food 1990–2015
(Monthly)

VAR Significant

Al-Maadid et al. (2017) Energy and food prices 2003–2015
(Daily)

VAR-
GARCH

Significant

Shahzad et al. (2018) Oil and agri- cultural commodities 2000–2017
(Daily)

Copulas Significant

Kaltalioglu and Soytas. (2011) Oil, agricultural comm- odities and food items 1980–2008
(Monthly)

VAR Insignificant

Wang and McPhail (2014) Energy price shocks and agricultural prices 1948–2011
(Annual)

VAR Mixed

Fowowe (2016) Oil and agricultural prices 2003–2014
(Weekly)

Non-linear causality tests Insignificant

Cabera and Schulz (2016) Energy and agricultural markets 2003–2012
(Weekly)

DCC
MVM

Insignificant

Gardebroek and Hernandez (2013) Crude oil, ethanol, and corn prices 1997–2011
(Weekly)

MGARCH Insignificant

Awartani et al. (2016) Oil, equities, exchange rate, metals, agricultural commodities 2012–2015
(Daily)

DY (09, 12) Insignificant

Kang et al. (2017) Crude oil, gold, silver, corn, wheat, and rice 2002–2012
(Weekly)

DY (09, 12) Insignificant

Notes. Generalized autoregressive conditional heteroscedasticity (GARCH), Causality in variance (CIV), Impulse response functions (IRF), Structural
vector autoregressive (SVAR), Dynamic conditional correlation analysis (DCCA), Dynamic smooth transition conditional correlation (DSCTCC-
GARCH), Multivariate GARCH (MGARCH), Dynamic conditional correlation (DCC), Multiplicative volatility model (MVM), Diebold and Yılmaz (2009,
2012) DY(09, 12). Significant indicates if a study finds crude oil changes the price dynamics of agricultural commodities, and vice versa for the
insignificant. Mixed reflects that crude oil and agricultural commodities are characterize by bidirectional volatility spillover.

R.E. Dahl et al. Journal of Commodity Markets xxx (xxxx) xxx

43



Furthermore, the analysis of nonlinear causality tests also reflects no evidence of causal relationship between the underlying com-
modities. Cabrera and Schulz (2016) investigate the price and volatility risk linkage between the energy and agricultural markets in
Germany by employing an asymmetric dynamic correlation GARCH model and multiplicative volatility model. Their findings indicate
that in the long-run prices tend to move together and develop equilibrium with positive correlations during persistent market shocks.
Furthermore, their results reveal that the biodiesel does not cause the high volatility in agricultural prices. Awartani et al. (2016) utilize
the implied volatility indexes to examine the directional risk transmission from oil to US equities, Euro/Dollar exchange rates, precious
metals, and agricultural commodities using the spillover index. Their findings indicate moderate level of risk transfer from oil to equity
markets, precious metals, and Euro/Dollar exchange rate. Whereas, they find limited connectedness between crude oil and agricultural
commodities. In a later study, Kang et al. (2017) examine the volatility spillover between six commodity futures markets (gold, silver,
crude oil, corn, wheat, and rice) by employing a multivariate DECO-GARCHmodel and the spillover index using weekly data from 2002
to 2016. Their findings indicate bidirectional spillovers between commodity futures markets and crude oil as net receiver of volatility.

To summarize, regardless of theoretical underpinnings, the empirical findings of these studies provide mixed evidence regarding the
importance of crude oil as a dominant asset in volatility transmission. The intensity and direction of volatility spillover between crude oil
and commodity prices is opaque and suggests further investigation. Therefore, in this paper, we fill the gap by considering the temporal
dynamics of conditional volatility spillover between crude oil and other commodities, by explicitly modeling the intensity and direction
of transmission.

3. Methodology

This section describes the empirical methods employ in this study. We start with the univariate marginal distribution model, which
measures the conditional volatility of crude oil and agricultural commodities. We estimate the static and dynamic spillover effects
between the underlying commodities by employing the frameworks proposed by Diebold and Yılmaz (2009, 2012, 2014, 2015). To
estimate optimal portfolio weights and hedge ratios, we estimate time-varying student-t copula specification.

3.1. Marginal model

Unlike the traditional body of literature, we follow Engle (2001) and estimate conditional volatility, which is then utilized as an
input in the Diebold and Yılmaz (2009, 2012, 2014, 2015) (hereafter: DY) frameworks.2 This is of particular interest, because the asset
returns may exhibit properties (serial correlation, volatility clustering, heteroscedasticity, leverage effects, and fat tails) that are better
able to capture using a GARCH-type specification (Cont, 2001). We determine the best-suited GARCH-type specification from GARCH,
GJR-GARCH, and EGARCHmodels. Based on AIC and log-likelihood, the ARMA(1,0)-EGARCH(1,1) specification of Nelson (1991) is the
most suitable marginal model to capture the stylized facts embedded in the underlying returns series. In addition, the EGARCHmodel is
more flexible than the standard GARCH model and assumes that negative and positive shocks have asymmetric effects on conditional
volatility. The specification of the marginal model for the returns rt is:

rt ¼ Ωþ
Xm
i¼1

φirt�i þ
Xn

j¼1

θjϵt�j þ ϵt; (1)

where φi and θj represents the AR and MA components with m and n lags, respectively. We assume the white noise process ϵt follows a
student-t distribution with degrees of freedom υ specified as:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
υ

σ2t ðυ� 2Þ
r

ϵtei:i:d:tϵ; (2)

and with a conditional variance, σ2t , with time dynamics specified using the following expression:

log σ2
t ¼ ωþ

XP
i¼1

βilog σ2
t�i þ

XQ
j¼1

αj

�jjϵt�j

σt�j
� E

�jjϵt�j

σt�j

��
þ
XQ
j¼1

ξj

�
ϵt�j

σt�j

�
(3)

where ω is the intercept of variance, βi and αj are the parameters of the GARCH and ARCH components of volatility, and ξj captures the
leverage effects. For ξj< 0, the conditional volatility will increase proportionally less to a positive shock than following a negative shock
of equal magnitude. The conditional volatility from the marginal distributionmodel is used as an input in the DY frameworks to estimate
static and temporal volatility spillover between crude oil and agricultural commodities.

3.2. Spillover index frameworks

Following the work of Diebold and Yılmaz (2009, 2012, 2014, 2015), we briefly present the methodology for quantifying static and
temporal directional volatility spillover in generalized VARmodels. The primary advantage of applying DY frameworks compared to the

2 The traditional literature estimate the daily variance by utilizing the daily high and low prices as: eσ2it ¼ 0:361½lnðPmax
it Þ � lnðPmin

it Þ�2.

R.E. Dahl et al. Journal of Commodity Markets xxx (xxxx) xxx

44



more common approach of using impulse response functions with Cholesky factor decomposition is the elimination of order dependence
in the obtained results.

To conduct a variance error decomposition, consider a generalized vector autoregressive (VAR) model as proposed by Koop et al.
(1996) and Pesaran and Shin (1998) (KPPS). Let a set of data of N variables which is covariance stationary be represented by a VAR(p)
model of the following specification:

xt ¼
Xp

i¼1

φixt�i þ ϵt whereϵeð0; σÞ: (4)

Further, let the moving average representation be given as xt ¼ P∞
i¼0Aiϵt�i. Here, the N�N coefficient matrix is recursively specified,

Ai¼ φ1Ai�1 þ φ2Ai�2 þ⋯ þ φpAi�p with Ai¼ 0 8 i< 0. The next step constitutes of decomposing the variance of residual obtained from
VAR model. Let the KPPS H-step-ahead generalized forecast error variance decompositions (FEVD) be given as:

θgijðHÞ ¼
σ�1
jj

PH�1

h¼0
ðe0iΘh

P
ejÞ2

PH�1

h¼0
ðe0iΘh

P
Θ0

heiÞ
; (5)

where θgijðHÞ is generalized form of forecast error variance decomposition, Θh is the coefficient matrix multiplying the h�lagged shock
vector in the infinite moving-average representation of the non-orthogonalized VAR,

P
is the covariance matrix of the shock vector in

the non-orthogonalized VAR model, σjj is the jth diagonal element of covariance matrix, and ej is the selection vector with jth element
unity and zeros elsewhere. Equation (5) provides a spillover index of N�N matrix, θgijðHÞ, where each element represents the contri-
bution from asset j to the forecast error variance asset i. The diagonal elements of the spillover matrix provide own-variable contribution,
whereas, the off-diagonal elements represents cross-variable contribution. Since the cross- and own-variable shares of variance
contribution do not sum to 1 under the generalized decomposition, we normalize each entry of the variance decomposition matrix by its
row sum as:

eθgijðHÞ ¼ θgijðHÞPN
j¼1

θgijðHÞ
; (6)

with
PN

j¼1
eθgijðHÞ ¼ 1 and

PN
i;j¼1

eθgijðHÞ ¼ N by construction. The total volatility spillover index (TVI) can be constructed using the
volatility contributions from KPPS variance decomposition:

SgðHÞ ¼

PN
i;j¼1

i 6¼j

eθg

ij

ðHÞ

PN
i;j¼1

eθg
ij

ðHÞ
� 100 ¼

PN
i;j¼1

i 6¼j

eθg

ij

ðHÞ

N
� 100: (7)

The TVI measures the contribution of spillovers of volatility shocks across all markets to the total forecast error variance. Similarly, the
directional volatility spillovers received by market i from all other markets j, and directional volatility spillovers transmitted by market i
to all other markets j, respectively, as:

Sgi←jðHÞ ¼

PN
j¼1

j6¼i

eθg

ij

ðHÞ

PN
i;j¼1

eθg
ij

ðHÞ
� 100 ¼

PN
j¼1

j6¼i

eθg

ij

ðHÞ

N
� 100; (8)

and

Sgi→jðHÞ ¼

PN
j¼1

j6¼i

eθg

ji

ðHÞ

PN
i;j¼1

eθg
ji

ðHÞ
� 100 ¼

PN
j¼1

j6¼i

eθg

ji

ðHÞ

N
� 100: (9)

The net volatility spillover is the difference between the shocks transmitted to and those received from other markets. The net spillover

R.E. Dahl et al. Journal of Commodity Markets xxx (xxxx) xxx

45



from asset i to all other assets j as:

Sgi ðHÞ ¼ Sgi→jðHÞ � Sgi←jðHÞ: (10)

The net volatility spillover analysis determine whether a market is source or recipient of spillovers.

4. Data and descriptive statistics

We consider daily closing futures prices of crude oil and ten agricultural commodities. The study span ranges from July 02, 1986 to
June 03, 2016. The data is obtained from the Commodity Research Bureau (CRB). The selected agricultural commodities consist of
wheat (W), sugar (SB), soybean (S), soybean oil (BO), cotton (CT), corn (C) coffee (KC), cocoa (CC), canola (WC), and soybeans meal
(SM). We selected these agricultural commodities based on their high liquidity and trading volume. Overall, these agricultural com-
modities represent a significant proportion of S&P GSCI agricultural commodity index, which is a widely accepted instrument to
measure the investment performance in agricultural markets and as an economic indicator (Yahya et al., 2019). The selected time frame
allows us to evaluate the impacts of major economic and financial turmoil that occurred over the last three decades: the Gulf war
1990-1991, the dot-com bubble of 2001, the 2007 U.S. sub-prime mortgage crisis, the global financial crisis in 2008, the European debt
crisis 2010–12, and the recent decline in crude oil prices. We choose to evaluate daily data as it better captures the dynamics of volatility
transmission, which are often too high or low when using weekly or monthly observations. Further, stylized facts indicate that there
tends to be both price and volatility day-of-the-week effect prevalent in many financial and commodity prices, which would be neglected
when using weekly or monthly frequency.

Fig. 1 shows the development in daily futures prices and continuously compounded returns for crude oil and agricultural com-
modities. All the price and return series display important behaviors. The price series exhibits an increasingly upward trend during post-
2006 for all the commodities. The figure portrays a spectacular increase in crude oil and several agricultural commodity prices in 2008,
which is followed by a decline due to the global financial crisis in 2008 (GFC).

The continuously compounded daily futures returns is calculated as the logarithmic difference in two consecutive prices at time t and
t � 1 as: ri,t¼ ln(Pi,t/Pi,t�1). Visual inspection appears to suggest that all commodities are non-stationary in levels and stationary at first-
difference. Furthermore, the return series appears to reflect stylized facts (e.g., volatility clustering) for both the crude oil and agri-
cultural commodities. The price of crude oil and agricultural commodities experienced sharp increase over the period from 2006 to mid-
2008, which led researchers to suspect that the food crisis in 2006–2008 was due to increase in crude oil price (Harri and Hudson, 2009;
Ji and Fan, 2012; Wang et al., 2014; Nazlioglu et al., 2013; Du et al., 2011). Therefore, following Nazlioglu et al. (2013); Du et al. (2011)
and Wang and McPhail (2014), we divide our data into two subsamples. Furthermore, the introduction of federal support policies in
2006, together with high crude oil prices lead to a rapid growth in biofuel, which lead to an increase in prices of agricultural products.
The prime explanation is attributed to the latter, that is, the substitutive effect between fossil fuel and biofuels. The upsurge in crude oil
prices lead to the development of alternative energy sources. The biodiesel and biofuel extracted from soybean and corn, respectively,
are considered as the suitable substitute of crude oil. Thus, an increase in crude oil price can lead to an upsurge in price of soybean and
corn, which may eventually lead to the increase in prices of other agricultural commodities due to limited planting acreage in a certain
period of time (Wang et al., 2014). Therefore, to account for this structural change or fundamental shift, we split our data into two
subsamples: pre-2006 subsample (July 1986 to December 2005) and post-2006 subsample (January 2006 to June 2016).

Table 2 shows descriptive statistics for the pre-2006 and post-2006 subsamples for crude oil and agricultural commodities.3 Panel A
and B of Table 2 reports the estimates for the pre- and post-2006 subsamples. The annualized mean significantly differs over both
subsamples. The average return for crude oil changes from 8.1% to�2.1% from pre-to post-2006 subsample. Whereas, the mean returns
for agricultural commodities increased significantly over the post-2006 subsample. The reward-to-risk measure (SR) (Sharpe, 1994) for
the pre-2006 subsample is negative for nearly all the agricultural commodities, however, the post-2006 subsample indicate significant
increase in reward-to-risk measure of agricultural commodities.4 Notably, the SR for canola changes from �0.14 to 0.3 from pre-to
post-2006 subsample. Whereas, the SR for crude oil changes from 0.177 to �0.085 from pre-to post-2006 subsample. The skewness
values are negative and positive over both subsamples and the values of kurtosis are over three times the values of normal distribution.
These findings indicate that the returns over both subsamples exhibits skewed and leptokurtic distributions, suggesting that the dis-
tribution is asymmetric and have fatter tails than normal distribution. The estimates from the Jarque-Bera test affirms the non-normality
of the return distribution indicating the non-Gaussian distribution. The Ljung-box test with is significant at 1% threshold level for
returns and squared returns for both pre- and post-2006 subsample exhibiting presence of serial correlation. Furthermore, the ARCH test
(Engle, 1982) with 20 lags rejects the null-hypothesis of homoscedasticity for the underlying commodities over both subsamples
suggesting the employment of a GARCH-type model to capture the underlying stylized facts.5

Table 3 reports the test statistics from unit root tests for level and logarithmic returns by applying Augmented Dickey-Fuller (ADF)
(Dickey and Fuller, 1979), Phillips-Perron (PP) (Phillips and Perron, 1988), and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) (Kwiat-
kowski et al., 1992) unit-root tests. The estimates of ADF and PP are insignificant at levels for both subsamples thus unable to reject the
null hypothesis of unit root. Similarly, the estimates of KPSS are significant at levels over both subsamples thus rejecting the null

3 Mean and standard deviation is annualized by multiplying each with 250 and
ffiffiffiffiffiffiffiffiffi
250

p
, respectively.

4 The average risk-free rate is estimated to be 2% for pre-2006 subsample, and 1% for the post-2006 subsample.
5 The Ljung-Box estimate for cotton are insignificant for squared returns and ARCH.
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Fig. 1. Development in futures prices and returns: Notes. The figure portrays the development in nearby daily futures prices and continuously
compounded returns for crude oil and agricultural commodities. All the price series exhibits an increasingly upward trend post-2006 and after 2009.
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hypothesis of stationarity to alternative of unit root. However, the estimates of ADF and PP are significant for the returns suggesting that
the first-difference of underlying commodities follows a stationary process. Likewise, the estimates of KPSS test are insignificant over
both subsamples suggesting that the returns series follows a trend-stationary process.

5. Empirical analysis

5.1. Marginal distribution model

In order to examine the volatility spillover dynamics between crude oil and agricultural commodities, we first estimate univariate
marginal distribution model for each of the underlying series. Table 4 presents the estimation results for the well-suited marginal

Table 2
Descriptive statistics.

Mean (%) SD SR Max Min Skew Kurt J–B Q(20) Q2(20) ARCH (20)

Panel A: Pre-2006 sample statistics
Crude oil 8.081 0.344 0.177 0.12 �0.38 �1.33 26.06 0.00 45.40* 217.14* 165.28*
Wheat 1.732 0.246 �0.011 0.09 �0.16 0.04 8.61 0.00 35.47* 129.60* 84.38*
Sugar 4.267 0.336 0.067 0.17 �0.18 �0.15 7.92 0.00 42.21* 367.02* 189.74*
Soybean 0.942 0.220 �0.048 0.08 �0.12 �0.54 8.39 0.00 31.86* 1107.80* 394.60*
Soybean oil 1.344 0.225 �0.029 0.08 �0.07 0.19 4.96 0.00 40.69* 886.63* 356.47*
Cotton 2.569 0.270 0.021 0.17 �0.30 �0.86 27.16 0.00 30.62* 8.25 7.37
Corn 0.877 0.231 �0.049 0.10 �0.22 �0.21 16.26 0.00 71.23* 211.79* 133.81*
Coffee �2.377 0.399 �0.110 0.24 �0.15 0.25 10.10 0.00 36.01* 713.21* 429.05*
Cocoa �0.902 0.307 �0.095 0.13 �0.12 0.24 5.96 0.00 31.67* 182.93* 109.30*
Canola �0.661 0.194 �0.137 0.07 �0.08 0.00 5.91 0.00 50.54* 764.01* 322.53*
Soybeans meal 1.649 0.242 �0.015 0.09 �0.15 �0.56 9.40 0.00 43.10* 466.01* 216.83*

Panel B: Post-2006 sample statistics
Crude oil �2.071 0.362 �0.085 0.13 �0.11 0.04 6.14 0.00 39.27* 2483.24* 550.80*
Wheat 3.641 0.347 0.076 0.13 �0.10 0.08 4.93 0.00 30.13* 390.13* 160.14*
Sugar 2.346 0.345 0.039 0.15 �0.12 0.07 6.85 0.00 18.90* 139.50* 83.32*
Soybean 6.014 0.262 0.192 0.06 �0.14 �0.82 8.90 0.00 23.54* 192.83* 96.82*
Soybean oil 3.954 0.240 0.123 0.09 �0.07 0.10 5.37 0.00 22.19* 1255.69* 405.85*
Cotton 1.573 0.306 0.019 0.10 �0.27 �1.20 20.13 0.00 24.95* 70.60* 44.48*
Corn 6.304 0.320 0.166 0.09 �0.25 �0.69 12.62 0.00 29.15* 21.41* 15.89*
Coffee 1.631 0.316 0.020 0.12 �0.11 0.11 4.95 0.00 34.84* 211.50* 125.44*
Cocoa 6.674 0.284 0.200 0.08 �0.13 �0.45 6.74 0.00 28.95* 240.68* 133.89*
Canola 7.656 0.220 0.302 0.08 �0.13 �0.62 10.70 0.00 81.04* 513.56* 222.18*
Soybeans meal 7.065 0.311 0.195 0.08 �0.25 �1.40 17.24 0.00 24.42* 36.52* 28.00*

Notes. Annualized figures of mean and standard deviation are presented. SR refers to the Sharpe ratio and J–B provides the p-values from Jarque-Bera
normality test. Q(20) and Q2(20) correspond to the Ljung-Box test statistics for serial autocorrelation on returns and squared returns with 20 lags.
ARCH(20) provides the statistics of Engle (1982) test for conditional heteroscedasticity with 20 lags. The notation *, **, and *** indicates the rejection
of the null hypothesis of normality, no autocorrelation, and conditional homoscedasticity at the 1%, 5%, and 10% threshold level.

Table 3
Unit root tests for crude oil and agricultural commodities.

Crude oil Wheat Sugar Soybeans Soybeans oil Cotton Corn Coffee Cocoa Canola Soybeans meal

Panel A: Pre-2006 Unit-root tests in level
ADF 0.91 �0.39 0.00 �0.42 �0.38 �0.44 �0.53 �1.33 �0.86 �0.54 �0.39
PP 0.88 �0.37 �0.03 �0.41 �0.36 �0.43 �0.49 �1.38 �0.86 �0.52 �0.37
KPSS 30.53* 12.40* 14.91* 7.43* 15.67* 20.98* 16.58* 14.54* 18.28* 21.60* 5.51*
Panel B: Post-2006 Unit-root tests in level
ADF �0.62 �0.50 �0.37 �0.06 �0.24 �0.60 �0.31 �0.43 0.10 0.14 �0.01
PP �0.60 �0.48 �0.40 �0.03 �0.19 �0.56 �0.29 �0.43 0.11 0.20 0.01
KPSS 11.86* 9.19* 20.51* 17.06* 17.62* 14.80* 17.60* 15.29* 13.44* 12.30* 13.21*
Panel C: Pre-2006 Unit-root tests in first differences
ADF �51.38* �50.70* �52.34* �49.38* �50.76* �51.14* �48.66* �51.55* �51.33* �49.60* �49.09*
PP �70.78* �68.09* �72.52* �69.27* �67.33* �69.11* �65.55* �70.09* �70.29* �66.52* �67.70*
KPSS 0.04 0.04 0.08 0.04 0.04 0.06 0.03 0.05 0.03 0.04 0.04
Panel D: Post-2006 Unit-root tests in first differences
ADF �36.63* �36.91* �37.20* �36.44* �35.39* �35.42* �36.71* �36.48* �35.87* �37.27* �35.77*
PP �53.85* �51.39* �52.73* �50.41* �50.20* �48.48* �49.97* �52.96* �51.09* �48.67* �49.93*
KPSS 0.05 0.04 0.08 0.05 0.06 0.06 0.05 0.04 0.03 0.08 0.03

Notes: This table presents test statistics of unit root test by applying Augmented Dickey-Fuller (ADF) (Dickey and Fuller, 1979), Phillips-Perron (PP)
(Phillips and Perron, 1988), and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) (Kwiatkowski et al., 1992) unit-root tests. The estimates indicate that the
returns series follows a stationary process.
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Table 4
EGARCH parameters for crude oil and agricultural commodities.

Pre-2006 Crude oil Wheat Sugar Soybeans Soybeans oil Cotton Corn Coffee Cocoa Canola Soybeans meal

Panel A: Pre-2006 EGARCH estimates
Mean equation estimates
Const. (%) 0.018

(0.000)
�0.020
(0.000)

0.028
(0.000)

0.022
(0.000)

�0.014
(0.000)

0.000
(0.000)

�0.030a

(0.000)
0.011
(0.000)

�0.036
(0.000)

�0.013
(0.000)

�0.009
(0.000)

AR(1) �0.032a

(0.014)
0.028a

(0.013)
�0.065b

(0.013)
�0.033a

(0.014)
0.027
(0.014)

�0.010
(0.013)

0.034a

(0.013)
�0.021
(0.013)

�0.022
(0.014)

0.037b

(0.014)
0.010
(0.013)

GARCH process estimates
Const. (Ω) �0.086b

(0.023)
�0.109b

(0.034)
�0.034a

(0.013)
�0.096b

(0.026)
�0.199b

(0.046)
�0.059b

(0.018)
�0.148b

(0.038)
�0.173b

(0.035)
�0.052b

(0.018)
�0.218b

(0.049)
�0.092b

(0.023)
GARCH (β) 0.989b

(0.003)
0.987b

(0.004)
0.996b

(0.002)
0.989b

(0.003)
0.977b

(0.005)
0.993b

(0.002)
0.983b

(0.004)
0.977b

(0.005)
0.993b

(0.002)
0.976b

(0.005)
0.989b

(0.003)
ARCH (α) 0.128b

(0.014)
0.084b

(0.012)
0.082b

(0.010)
0.141b

(0.013)
0.125b

(0.015)
0.073b

(0.010)
0.157b

(0.017)
0.163b

(0.016)
0.073b

(0.010)
0.170b

(0.017)
0.126b

(0.013)
Leverage (ξ) �0.019a

(0.008)
0.013
(0.008)

�0.001
(0.006)

0.045b

(0.008)
0.035b

(0.009)
�0.002
(0.006)

0.006
(0.010)

0.051b

(0.011)
0.014a

(0.007)
0.002
(0.009)

0.044b

(0.008)
Student-df 5.793b

(0.452)
5.990b

(0.378)
4.295b

(0.279)
5.927b

(0.471)
6.654b

(0.660)
4.955b

(0.319)
4.340b

(0.247)
4.074b

(0.274)
5.392b

(0.412)
6.213b

(0.471)
4.854b

(0.331)
Log(L) 12708.1 14017.5 12671.0 14856.8 14384.7 13735.4 14678.7 11890.8 12917.9 15261.0 14402.0
AIC �25402 �28021 �25328 �29700 �28755 �27457 �29343 �23768 �25822 �30508 �28790
BIC �25357 �27975 �25282 �29654 �28710 �27411 �29298 �23722 �25776 �30462 �28745
Skewness �0.348 �0.208 �0.208 �0.135 0.262 �0.923 0.847 0.158 0.281 0.196 0.029
Kurtosis 6.406 11.074 7.254 5.793 4.483 24.829 11.083 6.771 5.647 6.335 8.883
Q (15) 16.6 25.1** 25.5** 20.5 28.3** 32.3** 20.7 24.4 23.9 18.9 19.7
Q2(15) 31.1** 4.8 13.0 10.6 15.2 2.0 12.4 30.2** 9.6 15.1 5.1
ARCH (15) 32.3** 4.9 13.4 10.8 15.8 2.0 12.8 31.3** 9.9 15.6 5.3

Post-2006 Crude oil Wheat Sugar Soybeans Soybeans oil Cotton Corn Coffee Cocoa Canola Soybeans meal

Panel B: Post-2006 EGARCH parameters
Mean equation estimates
Const. (%) 0.000

(0.000)
0.000
(0.000)

�0.001a

(0.000)
0.001b

(0.000)
0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

0.001
(0.000)

0.001b

(0.000)
0.000
(0.000)

AR(1) �0.038a

(0.019)
�0.007
(0.020)

�0.026
(0.019)

�0.010
(0.019)

0.018
(0.020)

0.028
(0.019)

0.022
(0.018)

�0.047a

(0.019)
�0.005
(0.018)

0.037a

(0.018)
0.000
(0.019)

GARCH process estimates
Const. (Ω) �0.046b

(0.017)
�0.079b

(0.027)
�0.032
(0.017)

�0.082a

(0.035)
�0.062a

(0.028)
�0.107b

(0.036)
�0.088b

(0.034)
�0.119a

(0.047)
�0.029
(0.016)

�0.244b

(0.071)
�0.106b

(0.041)
GARCH (β) 0.994b

(0.002)
0.990b

(0.004)
0.996b

(0.002)
0.990b

(0.004)
0.993b

(0.003)
0.987b

(0.004)
0.989b

(0.004)
0.985b

(0.006)
0.996b

(0.002)
0.972b

(0.008)
0.987b

(0.005)
ARCH (α)

(continued on next page)
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Table 4 (continued )

Pre-2006 Crude oil Wheat Sugar Soybeans Soybeans oil Cotton Corn Coffee Cocoa Canola Soybeans meal

0.096b

(0.015)
0.102b

(0.017)
0.077b

(0.013)
0.117b

(0.018)
0.098b

(0.015)
0.132b

(0.018)
0.118b

(0.018)
0.067b

(0.016)
0.067b

(0.013)
0.147b

(0.023)
0.113b

(0.018)
Leverage (ξ) �0.055b

(0.009)
0.033b

(0.010)
0.010
(0.008)

0.014
(0.011)

�0.010
(0.008)

0.003
(0.012)

�0.002
(0.011)

0.039b

(0.009)
�0.004
(0.009)

�0.009
(0.013)

0.034b

(0.011)
Student-df 11.946b

(2.044)
8.675b

(1.248)
5.572b

(0.545)
5.149b

(0.483)
12.091b

(2.475)
5.760b

(0.571)
5.988b

(0.524)
6.246b

(0.880)
5.744b

(0.663)
4.452b

(0.363)
5.514b

(0.546)
Log(L) 6631.4 6497.9 6597.7 7357.5 7488.6 7021.1 6773.8 6667.2 7086.3 7883.4 6904.6
AIC �13249 �12982 �13181 �14701 �14963 �14028 �13534 �13320 �14159 �15753 �13795
BIC �13208 �12941 �13140 �14660 �14922 �13987 �13492 �13279 �14118 �15712 �13754
Skewness �0.214 0.178 0.537 �0.706 0.208 �0.491 �1.077 0.048 �0.436 �0.598 �0.540
Kurtosis 4.103 4.594 8.197 8.858 3.813 9.266 18.985 4.311 5.717 11.963 7.470
Q (15) 5.4 17.5 10.9 12.0 10.3 13.9 18.2 13.0 19.6 28.0** 12.1
Q2(15) 20.3 12.2 3.8 4.9 8.6 5.9 2.3 20.4 19.5 2.0 7.3
ARCH (15) 19.9 12.5 3.8 4.9 11.4 5.9 2.3 18.5 18.6 1.8 7.1

Notes: This table presents the estimates of EGARCH model for each return series. Standard errors are presented in parenthesis. Q(15), Q2(15), and ARCH(15) are empirical statistics of Ljung-Box test for
autocorrelation with 15 lags in residuals and squared residuals, and the ARCH effects test by Engle (1982) with 15 lags, respectively.
* The rejection of null hypothesis of independence and conditional homoscedasticity at 10% threshold level.
** The rejection of null hypothesis of independence and conditional homoscedasticity at 5% threshold level.
*** The rejection of null hypothesis of independence and conditional homoscedasticity at 1% threshold level.
þ indicates the significance at 10% threshold level.

a Indicates the significance at 5% threshold level.
b Indicates the significance at 1% threshold level.
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distribution model for crude oil and agricultural commodities. The optimal model is selected that produces the lowest AIC and highest
log-likelihood values from GARCH, GJR-GARCH, and EGARCH model.6 Based on our estimates, the ARMA(1,0)-EGARCH(1,1) speci-
fication is best-suited to capture the dynamics for all the underlying series. Panel A and B of Table 4 reports the estimates of ARMA(1,0)-
EGARCH(1,1) for the pre- and post-2006 subsamples.

The lagged autoregressive parameter, AR(1), is insignificant for nearly half of the underlying commodities over the pre-2006
subsample, and for nearly all the commodities over the post-2006 subsample, indicating that the past returns (past information) is
not embodied in current returns. This suggests the lack of one-step ahead predictability for these commodities. The GARCH (β) and
ARCH (α) components of the variance equation are significant at 1% threshold level for all the commodities. This indicates that the
current conditional volatility is significantly affected by the lagged squared shocks of the previous period and also the persistence in
conditional volatility for all the underlying series. The leverage effect (ξ) is significant for more than half of the commodities over the
pre-2006 subsample, while it is significant for four of the commodities over the post-2006 subsample, indicating asymmetric impact of
bad and good news on conditional volatilities for these commodities. For storable commodities, an increase in price might reflect
scarcity in commodity availability depletion, which results in increased volatility (Stigler, 2011). In the prices of agricultural com-
modities, the conditional volatility reacts stronger to an increase in prices (bad news) than to a decrease in prices (good news).

Table 5
Static return spillover between crude oil and agricultural commodities.

To/From Crude oil Wheat Sugar Soybean Soybean oil Cotton Corn Coffee Cocoa Canola Soybeans meal

Panel A: Pre-2006 static spillovers
Crude oil 99.02 0.15 0.10 0.11 0.02 0.16 0.26 0.00 0.02 0.02 0.14
Wheat 0.08 55.71 0.55 8.69 6.75 0.60 15.62 0.34 0.20 5.13 6.33
Sugar 0.18 0.98 93.25 1.08 0.86 0.28 1.26 0.49 0.46 0.58 0.59
Soybean 0.06 4.93 0.35 31.51 15.80 0.51 11.44 0.17 0.19 11.68 23.35
Soybean oil 0.03 4.95 0.28 20.41 40.79 0.62 10.10 0.10 0.20 14.55 7.96
Cotton 0.16 0.99 0.22 1.46 1.41 92.04 1.26 0.13 0.08 1.18 1.06
Corn 0.16 11.71 0.47 15.06 10.34 0.57 41.38 0.41 0.14 8.79 10.97
Coffee 0.01 0.67 0.39 0.53 0.27 0.15 0.91 95.16 1.26 0.17 0.49
Cocoa 0.03 0.37 0.56 0.62 0.44 0.10 0.39 1.26 95.52 0.36 0.34
Canola 0.02 4.02 0.30 16.42 15.79 0.55 9.27 0.07 0.19 43.63 9.74
Soybeans 0.08 4.45 0.25 28.90 7.63 0.45 10.31 0.18 0.11 8.59 39.05
To others 0.81 33.21 3.47 93.26 59.31 4.01 60.82 3.15 2.86 51.06 60.97
From others 0.98 44.29 6.75 68.49 59.21 7.96 58.62 4.84 4.48 56.37 60.95
Net spillover �0.17 �11.08 �3.28 24.77 0.10 �3.95 2.20 �1.70 �1.62 �5.31 0.02
Total spillover index: 33.902%

To/From Crude oil Wheat Sugar Soybean Soybean oil Cotton Corn Coffee Cocoa Canola Soybeans meal

Panel B: Post-2006 static spillovers
Crude oil 54.82 3.31 2.83 6.55 13.00 3.14 4.28 3.35 2.98 3.44 2.30
Wheat 2.83 43.72 2.49 8.51 8.42 2.28 17.17 2.30 0.85 6.09 5.34
Sugar 3.41 3.73 65.49 3.41 4.21 2.86 4.11 5.72 2.69 2.82 1.53
Soybean 3.44 5.54 1.46 28.44 13.65 1.98 10.28 1.34 0.97 10.70 22.20
Soybean oil 7.95 6.40 2.18 16.05 33.45 3.44 8.18 2.44 1.46 12.68 5.76
Cotton 3.69 3.39 2.88 4.42 6.50 64.65 4.32 2.73 2.00 3.03 2.40
Corn 2.91 14.51 2.32 13.39 9.05 2.48 37.01 1.69 0.77 6.44 9.44
Coffee 3.99 3.56 5.78 3.20 4.93 2.82 3.03 66.17 3.40 1.70 1.43
Cocoa 4.04 1.70 3.20 2.70 3.37 2.39 1.87 3.92 74.47 0.84 1.51
Canola 2.52 5.57 1.72 15.08 15.10 1.92 7.12 0.99 0.45 40.09 9.44
Soybeans 1.58 4.57 0.83 28.81 6.37 1.37 9.40 0.80 0.71 8.61 36.95
To others 36.36 52.27 25.69 102.12 84.59 24.69 69.76 25.29 16.27 56.35 61.33
From others 45.18 56.28 34.51 71.56 66.55 35.35 62.99 33.83 25.53 59.91 63.05
Net spillover �8.82 �4.01 �8.82 30.56 18.05 �10.67 6.77 �8.54 �9.25 �3.56 �1.71
Total spillover index: 50.429%

Notes: This table shows all the possible bivariate relations of directional static spillover between crude oil and the agricultural commodities. The
underlying variance decomposition is based on VAR of order 1 (as determined by log-likelihood and AIC) and 70-steps-ahead forecasts of error
variance decomposition. Each diagonal entry (SgiiðHÞ) of the table shows the self-caused variation within the given market. The element “From others”
represents the gross directional spillover received by commodity i (Sgi←jðHÞ) from all other markets. The element “To others” indicates the gross

directional spillover transmitted by commodity i to all other markets (Sgi→jðHÞ). The net spillover (Sgi ðHÞ) is the difference between spillover transmitted

and spillover received, which is informative of whether the underlying commodity is a net receiver or transmitter of spillover. The average spillover
between the commodities, the total volatility index (Sg(H)), can be approximated as the ratio of “To others” and the total number of assets.

6 Although, we have not utilized the range estimate of volatility, we utilize several GARCH models (GARCH, GJR-GARCH-, and EGARCH) with
different specifications to measure volatility and used these as inputs in the DY frameworks. The results of spillover index are qualitatively similar
with minor fluctuation in magnitude of spillover. We thank an anonymous referee for suggestion to include different volatility inputs to provide
robustness in empirical results. For the sake of brevity, we report only the estimates from the best-suited GARCH-framework. The estimates of other
frameworks can be obtained from the authors upon request.
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Furthermore, the degrees of freedom (Student-df) parameters of student-t distribution is strongly significant at 1% threshold level over
both subsamples. This suggest that fat tails characterize the distributions of all the return series and potential for tail dependence in the
joint distribution. Furthermore, the estimates from diagnostic tests show that Ljung-Box test for residuals and squared residuals do not
allow for rejection of null hypothesis of no serial correlation in the underlying series. In addition, the residuals show no remaining ARCH
effects, indicating that the marginal distribution model is correctly specified.

5.2. Total spillover index

Table 5 and Table 6 present the total spillover index of returns and volatilities for crude oil and the agricultural commodity futures
market, respectively.7 All results are based on the vector autoregression of order 1 (determined by AIC and Log-likelihood) and
generalized variance decomposition of 70-steps-ahead forecast errors.

Before discussing the results of the spillover index, we briefly describe the elements of the index. Application of DY frameworks yield
a N�N matrix8 of directional spillover (θgijðHÞ). The diagonal elements (i¼ j) of the spillover index reflects the own-variable spillovers
due to self-caused variations within a given market. Whereas, the off-diagonal elements i6¼j measures the spillovers caused by the
variations in different markets. Specifically, each entry (i, j) in the spillover index is the estimated contribution of innovations in market j
to the FEVD of market i. Based on the matrices of directional spillover, we derive four additional statistics. The gross directional spillover

Table 6
Static volatility spillover between crude oil and agricultural commodities.

To/From Crude oil Wheat Sugar Soybean Soybean oil Cotton Corn Coffee Cocoa Canola Soybeans meal

Panel A: Pre-2006 static spillovers
Crude oil 95.41 0.66 0.15 0.15 0.01 0.16 0.37 0.03 1.64 0.82 0.60
Wheat 0.48 49.47 0.26 12.56 6.13 2.42 11.69 0.32 0.27 3.76 12.64
Sugar 2.80 2.93 86.17 0.47 3.06 0.36 1.35 1.22 0.12 1.32 0.18
Soybean 0.05 5.39 0.25 37.09 10.45 0.22 9.36 0.22 0.32 8.33 28.31
Soybean oil 0.03 3.97 0.77 21.16 41.02 2.14 7.85 0.97 0.34 11.28 10.46
Cotton 0.48 2.62 1.55 1.18 2.90 87.59 0.66 0.75 0.92 0.83 0.51
Corn 0.12 11.69 0.94 18.15 6.06 0.67 40.75 0.61 0.35 7.14 13.53
Coffee 0.15 2.04 0.49 1.26 0.11 0.51 1.78 89.30 0.45 3.61 0.31
Cocoa 0.07 1.79 2.08 3.39 3.27 0.29 0.51 2.18 84.64 0.52 1.27
Canola 0.30 2.09 1.22 13.16 12.22 0.70 6.02 0.65 0.28 56.40 6.95
Soybeans 0.06 5.35 0.35 29.25 4.80 0.08 7.49 0.29 0.06 5.99 46.28
To others 4.54 38.51 8.07 100.73 49.01 7.54 47.08 7.26 4.76 43.60 74.76
From others 4.59 50.53 13.83 62.91 58.98 12.41 59.25 10.70 15.36 43.60 53.72
Net spillover �0.05 �12.01 �5.76 37.82 �9.97 �4.87 �12.16 �3.44 �10.59 �0.01 21.04
Volatility spillover index: 35.080%

To/From Crude oil Wheat Sugar Soybean Soybean oil Cotton Corn Coffee Cocoa Canola Soybeans meal

Panel B: Post-2006 static spillovers
Crude oil 60.72 0.87 0.55 3.36 19.58 2.15 4.51 0.65 0.31 6.26 1.04
Wheat 0.07 65.06 3.19 2.83 4.77 7.45 10.22 0.86 0.29 2.36 2.92
Sugar 0.30 4.30 83.83 1.22 4.00 3.46 0.28 0.54 0.24 0.50 1.33
Soybean 0.22 5.33 0.55 28.62 15.27 2.38 9.62 0.32 0.78 14.26 22.64
Soybean oil 4.61 5.66 1.86 16.50 37.73 2.47 3.74 0.26 0.50 20.59 6.10
Cotton 0.21 5.29 3.28 1.98 4.61 76.80 5.60 0.16 0.20 0.47 1.40
Corn 0.21 8.80 1.92 10.97 7.17 7.11 48.28 0.56 0.62 6.08 8.28
Coffee 0.22 1.49 1.90 0.49 0.33 2.93 0.80 88.73 0.85 0.52 1.74
Cocoa 2.85 4.26 2.06 2.22 10.69 6.99 0.91 1.59 60.24 7.68 0.52
Canola 0.76 6.98 0.23 11.15 12.25 3.82 6.10 1.44 0.19 48.36 8.73
Soybeans 0.25 3.11 0.12 24.52 8.33 1.63 8.12 0.30 0.99 7.65 44.96
To others 9.69 46.08 15.65 75.24 87.00 40.39 49.90 6.68 4.97 66.38 54.70
From others 39.28 34.94 16.17 71.38 62.27 23.20 51.72 11.27 39.76 51.64 55.04
Net spillover �29.59 11.14 �0.51 3.85 24.73 17.19 �1.82 �4.59 �34.79 14.74 �0.35
Volatility spillover index: 41.516%

Notes: This table shows all the possible bivariate relations of directional static volatility spillover between crude oil and the agricultural commodities.
The underlying variance decomposition is based on VAR of order 1 (as determined by AIC) and 70-steps-ahead forecasts of error variance decom-
position. Each diagonal entry (SgiiðHÞ) of the table shows the self-caused volatility within the given market. The element “From others” represents the
gross directional volatility spillover received by commodity i (Sgi←jðHÞ) from all other markets. The element “To others” indicates the gross directional

volatility spillover transmitted by commodity i to all other markets (Sgi→jðHÞ). The net spillover (Sgi ðHÞ) is the difference between volatility transmitted

and volatility received, which is informative of whether the underlying commodity is a net receiver or transmitter of volatility. The average spillover
between the commodities, the total volatility index (Sg(H)), can be approximated as the ratio of “To others” and the total number of assets.

7 We thank an anonymous referee for pointing out to include the return spillover in the analysis.
8 Since there are a total number of 11 assets in our analysis it would produce (11� 11) matrix.
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to commodity i (termed ‘From others’, Eq. (8)) is the row sums excluding the main diagonal elements. The gross directional spillover
from commodity i (termed ‘To others’, Eq. (9)) is the column sums excluding the main diagonal elements. The net spillover for com-
modity i (termed ‘Net spillover’, Eq. (10)) is the difference between the spillover transmitted to others and spillover received from
others. Finally, the total spillover index (termed ‘Total spillover index’, Eq. (7)) is roughly equals to the total off-diagonal elements sum
of spillover index relative to the total sum of the index.

Panel A and B of Table 6 summarize the total static spillover index among the return series of crude oil and agricultural commodities,
and decompose the matrix further into receivers and transmitters of return spillovers. In addition, it also provide estimate of net return
spillovers, which indicate whether an underlying asset is a net receiver or transmitter of spillover. As shown in Panel A and Panel B, the
total return spillover index indicates that an average of 33.90% and 50.43% of the return forecast error variance derives from other
assets in the pre-2006 and post-2006 subsample, respectively. With respect to bidirectional net spillover effect among crude oil and
agricultural commodity futures market, soybean is the greatest contributor to other underlying commodity futures over both sub-
samples, contributing 93.26% and 102.12% to other commodity futures while receiving 68.49% and 71.56% over the pre-2006 and
post-2006 subsamples, respectively. Among the largest net receivers of spillover are wheat, canola, cotton, and sugar, which in net terms
receives an average of 11.08%, 5.31%, 3.95%, and 3.28%, respectively, over the pre-2006 subsample. It is interesting to note that, over
the post-2006 subsample, soybean, soybean oil, and corn are primarily net contributors of spillover while the rest of the commodities are
net receivers of spillover. Among the largest net receivers are cotton (10.67%), cocoa (9.25%), sugar (8.82%), and crude oil (8.82%)
because they transmit less spillover to other commodities than they receive.

Based on the conditional volatility estimates from the marginal distribution model, we estimate the volatility spillover between
crude oil and agricultural commodities. Specifically, the conditional volatility from the ARMA(1,0)-EGARCH(1,1) specification is
employed in the DY frameworks to estimate spillover between crude oil and agricultural commodities. Panel A and B of Table 6 presents
the estimates from total volatility spillover index for the pre- and post-2006 subsample, respectively. These estimates are based on vector
autoregressions of order 1 (VAR(1)) and generalized variance decomposition of 70-days-ahead forecast errors. The order of vector
autoregressive model is determined based on the lowest values of Akaike information criterion (AIC).

Table 6 summarizes all the possible bivariate relations of directional spillover between the futures markets of crude oil and agri-
cultural commodities, and classifies the transmitters and receivers of conditional volatility spillovers. Furthermore, it also measures
whether an underlying asset is net receiver or transmitter. The estimate of pre-2006 subsample indicates that an average of 35.08% of
volatility forecast error variance is caused by other markets. The self-caused volatility for crude oil is 95.41%, indicating that a sig-
nificant proportion of variation in crude oil prices are caused by own-shocks.9 With respect to bidirectional spillover effect over the pre-
2006 subsample, soybean is the greatest contributor and receiver of volatility to and from other markets. On average, soybean transmits
100.73% of volatility spillover to other market, while receiving 62.91% of volatility from others. Whereas, the average transmission
from crude oil to agricultural commodities is 4.54% while receiving 4.59% from the agricultural sector. Hence, in net terms, the
aggregate spillover between crude oil to agriculture is economically insignificant, �0.05%, over the pre-2006 subsample. This supports
the neutrality hypothesis, indicating that the variations in crude oil prices does not contribute to the shifts in agricultural commodity
prices over the pre-2006 subsample. Our estimates indicate that the within sector connectedness in agricultural commodities plays a
significant role in changing price equilibrium. Among the agricultural commodities, soybean is the largest contributor of volatility to
other underlying commodities, contributing 37.82% more volatility to other commodities than received. The second largest net
contributor is soybeans meal, which transmits an average of 74.76% and receiving 53.72% volatility, resulting in a net spillover of
21.04%. The rest of the agricultural commodities are net receivers of volatility. Among the largest net receivers are corn, wheat, and
cocoa, which in net terms receives an average of 12.16%, 12.01%, and 10.59% because they are transmitting less volatility to other
underlying commodities than they are receiving.

The conditional volatility spillover matrix of crude oil and agricultural commodities for the post-2006 subsample is presented in
panel B of Table 6. The estimate of total volatility spillover index indicates that 41.52% of the volatility forecast error variance is due to
cross-commodity variations. Notably, the self-caused volatility of crude oil significantly reduced from 95.33% (pre-2006) to 60.72%
(post-2006). In terms of average directional spillover, soybean oil is the largest contributor of spillover to the futures prices of other
underlying commodities (87.00%), followed by soybean (75.24%) and canola (66.38%). Whereas, the average contribution of crude oil
to agricultural commodities is 9.69% while it receives 39.28% of volatility from the agricultural sector, indicating it as the average net
receiver of volatility (�29.59%). It is interesting to note that agricultural commodities being utilized for biofuel production (soybean oil
(19.40%) and corn (4.89%)) are among the largest contributors of spillover to crude oil.10 In terms of average net spillover among
agricultural sector, soybean oil is the largest contributor of volatility (24.73%) and cocoa is largest net receiver (�34.79%).

Overall, the estimates of static spillover analysis of pre-2006 subsample provide evidence of minuscule information transmission
between crude oil to agricultural commodities. Furthermore, the volatility caused by spillover in agricultural commodities predomi-
nantly originates due to within sector variations. Our analysis of pre-2006 subsample is in-line with the empirical results from Wang
et al. (2014) and Liu et al. (2017). However, the analysis of post-2006 subsample indicate that crude oil is a net receiver of volatility from
the agricultural sector. The findings of post-2006 subsample are in-line with the empirical findings of Kaltalioglu and Soytas (2011);
Awartani et al. (2016); Kang et al. (2017) and Shahzad et al. (2018).

9 This can be characterized as the demand and supply shocks with the crude oil market, which significantly influence the crude oil prices.
10 It is noteworthy that one should be careful in interpreting the results from static spillover since they are susceptible to the ad hoc choice of sample
and it is hard to make inference based on static estimation. We thank an anonymous referee for pointing this out.
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5.3. Temporal spillover analysis

The static total spillover analysis provides an overview of overall connectedness dynamics between the underlying assets and it is
well-established that the uncertainty in market can significantly influence the dependence structure over time. More specifically, the
estimates of static volatility spillover index might ignore the stylized facts (e.g. aggregational Gaussianity, price and volatility jumps)
typically attributed to the financial and commodity markets due to periods of turmoil (e.g. the 2006–2008 food crisis, the global
financial crisis of 2007–2009, the European debt crisis of 2009–2012, and the significant decline in crude oil prices 2014). These events
occur over the selected timespan and may have influenced the intensity and direction of connectedness between the futures markets of
crude oil and agricultural commodities. Consequently, we evaluate the temporal return and volatility spillover index to examine the
development of average connectedness in crude oil and agricultural commodities.

Fig. 2 illustrates the dynamic development of return and conditional volatility spillover index among crude oil and agricultural
commodities over the full sample period using a 200-days rolling window sample. In terms of return spillover, we observe the total
volatility index primarily fluctuates between 30% and 45% over the period of 1986 to the mid-2005. The spillover index increases
slightly during mid-2005 and stabilizes around 50% threshold level until the outbreak of global financial crisis in 2008, which result in a
sharp increase in total spillover index over the period of mid-2008 to mid-2009. Later on, the spillover index increase over the period of
European debt crisis of 2009–2012. The spillover index gradually decline over the period of 2012 to the mid-2014, which is considered
as the period of economic prosperity and development. From the mid-2014, the spillover index exhibits an upward trend, which may be
attributed to the decline in crude oil price that may have contributed to a decline in demand for soybean and corn, and eventually
leading to increased spillover among crude oil and agricultural commodities.

Panel 2b of Fig. 2 illustrates the development of temporal conditional volatility spillover index using a 200-days rolling window

Fig. 2. Total spillover index. Notes. The figure portrays the development of temporal total volatility spillover index calculated from the forecast error
variance decomposition of 10-step-ahead forecast horizon and different rolling windows samples to provide variations in results due to change in
different window sizes.
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sample. The pre- and post-2006 period exhibits relatively different development in spillover. The movements in pre-2006 period
fluctuates around the estimate of average static spillover with simultaneous periods of rise and fall in connectedness structure. Notably,
between the period of 1987–1998, the spillover in crude oil and agricultural commodities mainly lies between 40% and 60% range. The
index gradually rise in 1998 and remains stable around 50% level till the end of 2001 (the period characterized as the Asian financial
crisis and the dot-com bubble). The connectedness measure decreases gradually in 2001 and remain relatively low till the mid of 2004
and increases moderately towards the end of pre-2006 period. For the post-2006 period, the temporal spillover index shows a stable
level of connectedness in the underlying commodities varying between 40% and 45% from the last quarter of 2006 to the end of 2007.
The spillover index gradually increases in the beginning of 2008 (during the subprime mortgage crisis) and spiked during September
2008 with the onset of global financial crisis. The spillover index persisted till the mid of 2009 while eventually reverting to the pre-
crisis level of around 40%. However, the commencement of European debt crisis of 2009–2012 gives rise to the connectedness
structure. The spillovers remain persistently high between 2011 and 2013, whichmay be due to persistence in crude oil prices. Whereas,
the index gradually decreases in 2013 and remains persistently low till the first quarter of 2015, which may be interpreted as the period
of economic prosperity. Over this period, we observe a downward trend in both return and volatility spillovers, which may be attributed
to global economic recovery. It is noteworthy that the financial and economic turmoil intensify the spillovers among the agricultural
commodity markets and crude oil. Several studies provide similar findings between oil and stock markets (Awartani et al., 2016; Zhang
and Wang, 2014), across stock markets (Diebold and Yılmaz, 2012, 2009), and across crude oil and commodity markets Kang et al.
(2017). Towards the end of sample period, the index increases steadily with the decrease in futures prices of crude oil, which might
result in lower prices of agricultural commodities, resulting in higher measure of connectedness between the underlying commodities. It
is noteworthy that the temporal spillover index provides an overview of development in connectedness structure and therefore it does
not indicate that whether the spillover is caused by variations in crude oil prices or changes within the agricultural sector. To evaluate
the sensitivity of our findings, we utilize alternative m�week rolling windows.11 The development of spillover indexes appear to have
similar patterns for both return and conditional volatility spillovers, indicating that the total spillover index plot is not sensitive to the
choice of window size.

5.4. Net spillovers

The total spillover index provides information about the overall connectedness structure between the underlying commodities,
which does not indicate whether an asset is net transmitter or receiver of volatility. Therefore, to examine the role of crude oil in
changing equilibrium of agricultural commodities, we estimate net conditional volatility spillover, which provides information about
directional volatility spillovers between the underlying assets. Specifically, we estimate two directional spillovers by decomposing the
total volatility spillover as: 1) the transmitters of volatility spillovers, termed as ‘to others’, and the receivers of volatility spillover,
termed as ‘from others’. We estimate the temporal net conditional volatility spillover by deducting directional ‘to others’ spillover from
directional ‘from others’ spillovers.12 The positive and negative estimates indicate whether an underlying asset is net transmitter or net
receiver of conditional volatility spillover, respectively.

Figs. 3 and 4 illustrates the development of time-varying net spillover among the underlying commodities. Specifically, the positive
and negative values from each asset indicate that the underlying asset is a net transmitter or receiver. Our findings confirm that the
conditional volatility spillovers among crude oil and agricultural commodity futures market are asymmetric and bidirectional because
each of the underlying commodity exhibit asymmetric magnitude of temporal positive and negative shocks over both subsamples. Panel
A shows the temporal net volatility spillover from crude oil to agricultural commodities, which confirms that the conditional volatility
spillover in fuel-food nexus is characterized by asymmetric and bidirectional spillover. Predominantly, the net spillover is negative for
crude oil over both subsamples, indicating that crude oil is net receiver of volatility in fuel-food nexus. However, occasional positive
spikes can be observed in the net connectedness of crude oil over the post-2006 subsample during the GFC 2008 and with the decline in
crude oil price in 2008 and again in 2014, suggesting that abrupt variations in oil market can result in increased volatility spillover
effect. Whereas, over the period of 2010 to mid-2014, the price of crude oil remained high and persistent, providing avenue for
increased biodiesel and biofuel production and thus the spillover to crude oil from the agricultural commodities. These findings are
consistent with the results of Pal and Mitra (2017); Silvennoinen and Thorp (2016), as they report higher correlation among the food
and oil when the price levels for these assets are high. Soybean, corn, and soybean oil are mainly the net transmitters of volatility, while
the remaining agricultural commodities and crude oil are net receivers of volatility. This may be attributed to the high crude oil price
that lead to a rapid growth in production of biodiesel and biofuel, which are primarily extracted from soybean and corn, respectively,
and are considered as the most suitable substitute of crude oil. Therefore, due to limited planting acreage in a certain period of time, an
upsurge in crude oil price might result in an increase in price of soybean and corn, which eventually contributes to increase in prices of

Fig. 3. Dynamic net spillover over the pre-2006 subsample. Notes. This figure portrays the development of net volatility spillovers in crude oil and
agricultural commodities over the pre-2006 subsample with a 200-days rolling window and 10-step-ahead forecast horizon. Positive (negative)
values in each graph indicate that the underlying asset is a net transmitter (receiver) of volatility.

11 We thank an anonymous referee for pointing this out.
12 For the sake of brevity, we report only the net directional spillovers as it provides an estimate of both ‘to others’ and ‘from others’. The estimates
of ‘to others’ and ‘from others’ can be obtained from the authors upon request.
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other agricultural commodities. These findings are consistent with the empirical results of Wang et al. (2014). Overall, the net spillovers
indicate bidirectional (positive and negative) spillover within agricultural sector intensifies after the recent global financial crisis.

6. Conclusion

This paper examines the return and volatility spillover effects in the futures markets of crude oil and ten major agricultural com-
modities by employing an ARMA(1,0)–EGARCH(1,1) specification and Diebold and Yılmaz (2009, 2012, 2014, 2015) spillover index.
Specifically, we evaluate the static and time-varying return and volatility spillover indexes to examine the direction and intensity of
spillovers across the futures markets. We consider the structural variation in data through subsample analysis. We divide the data into
two subsamples: from July 1986 to December 2005 (pre-2006 subsample) and from January 2006 to June 2016 (post-2006 subsample).

Our empirical results are as follows. First, our findings of static spillover indicate minuscule information transmission among crude
oil and agricultural commodities over the pre-2006 subsample. Whereas, the analysis of post-2006 subsample indicates that crude oil is a
net receiver of information from agricultural commodities. Second, we find evidence of bidirectional spillover among the futures
markets of crude oil and agricultural commodities, which intensifies during the periods of financial and economic turmoil. These trends
are more pronounced, over the post-2006 subsample, due to aftermath of recent financial crisis. Furthermore, our findings indicate that
the total spillover declines during period of economic prosperity and development. Last, we find that the abrupt variations in crude oil
price can result in increased total spillover index. The spillover index increases with the decrease in futures prices of crude oil, which
result in lower demand for soybean and corn to produce biodiesel and biofuel that becomes uneconomical under lower crude oil prices.
In other words, due to limited planting acreage in a certain period of time, an upsurge in crude oil price might result in an increase in
price of soybean and corn, which eventually contributes to increase in prices of other agricultural commodities.

The findings of this study are of potential interest to various economic agents, for instance, policymakers and regulators, interna-
tional investors, farmers, and portfolio managers. Understanding the temporal dynamics of volatility spillover among the futures
markets of crude oil and agricultural commodities provide these actors with the opportunity to develop optimal risk hedging strategies
or to develop and implement appropriate policies that accommodate the variations due to financial and economic turmoil. For instance,
investors might be interested in determining the linkage between assets in order to diversify their investment and minimize the risk.
Transmission of volatility to agricultural commodities affects farmers in terms of more volatile crop prices and risk management, which
can alter their investment and hedging decisions. This might create hindrance in production of crops, which might result in increasingly
volatile food prices. The regulatory agencies and policy makers would benefit from this by designing and reformulating the strategies in
terms of connectedness of different assets in commodity markets.

The DY frameworks provide estimates of spillover by utilizing information pertaining in the time-domain and thus ignore the in-
formation related to the frequency-domain of the data. Whereas, the commodity markets are complex systems with agents having
distinctive term objectives and operate at different frequencies and thus the resulting time series pertains information from both time
and spectral domain. Therefore, one avenue for future research could be to investigate the time-frequency spillover between crude oil
and agricultural commodities that would provide new insight into development of spillovers over various frequencies. The DY ap-
proaches are limited to evaluating the overall connectedness and thus ignoring the information in the tails of the distribution. Therefore,
another avenue for further research could involve in investigating the causal relationship across various quantiles of the distribution
between crude oil and agricultural commodities.
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Abstract 

 

This paper investigates the relationship between one of the primary price indices of farmed salmon 

(the Fish Pool index, FPI) and the stock prices of major publically traded salmon companies. We 

document that prices of exchange traded salmon stocks reflect the flow of salmon market 

information earlier than the price index. Forward looking stock prices are predictive of the 

backward looking price index. Furthermore, the predictive value is greater for the larger 

companies. The price discovery role of stock prices introduces a potential bias in the salmon 

futures design utilizing the price index to settle futures contracts as well as reducing hedging 

efficiency due to lagged reflection of company relevant market information in the price index. 
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Introduction 

Inelastic short run supply and demand exposes farmed salmon production and marketing to 

considerable price risk (Oglend 2013; Bloznelis 2016; Oglend et al. 2019; Asche et al. 2019; Dahl 

2017). Price volatility, reflecting such price risk, has increased over time (Oglend 2013; Bloznelis 

2016; Dahl and Yahya 2019), and remains high compared to other commodities and assets (Asche 

et al. 2019; Dahl and Oglend 2014). Producers hedge this price risk using a combination of bilateral 

forward contracting (Larsen and Asche 2011; Oglend and Straume 2019a) and futures contracts 

(Misund and Asche 2016). Previous research on firm level pricing has shown that salmon pricing 

is competitive and that individual prices are well represented by a price index (Oglend and 

Straume, 2019 a,b). While efficient risk management can be achieved using market-based hedging 

measures such as buying and selling standardized futures contract, participation in the salmon 

futures exchange has generally been low, with low trade volumes in many contracts (Misund and 

Asche, 2016). Salmon produces appear to prefer forward contracting to futures contracts when 

dealing with price risk. The market seems to approve of this as there appears to be little discounting 

of price risk in valuations of salmon companies. Salmon stocks at Oslo Stock Exchange have 

exhibited a sharp increase in market capitalization. The Seafood Stock Index has appreciated by 

38% per year during the last six years (Misund and Nygård 2018).  

In this paper, we investigate the relationship between the Fish Pool salmon price index (FPI) and 

the stock market valuation of the major salmon producers in Norway. Several salmon producers 

in Norway are listed and traded on organized exchanges, allowing companies access to equity from 

the public (Asche and Bjorndal 2011; Asche and Sikveland 2015). Furthermore, while individual 

company transaction prices are private information, the FPI is a publically available measure of 

the common salmon price in the market. The Fish Pool futures exchange has created the index 
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with the stated aim of providing an unbiased and representative measure of the salmon price. The 

index functions as the settlement price of salmon futures contracts (there is no physical delivery 

on the contracts) and consists of a weighted average of salmon prices along the salmon supply 

chain. While research of salmon and other seafood price volatility is extensive, knowledge about 

the connection between the publicly available salmon price index and the market value of salmon 

companies is still lacking.  

The empirical analysis in this paper utilizes the cointegration procedure by Johansen (1988, 1991) 

and Diebold and Yilmaz (2009, 2012, 2014, 2015) to explore the connectedness dynamics and the 

spillover transmission mechanism between the FPI and the stock prices. First, we utilize the 

Johansen cointegration approach to evaluate the price linkage among the FPI and stock prices of 

salmon producers. The Johansen cointegration procedure has been widely utilized in the 

aquaculture market to examine the price leadership and interdependence structure among different 

species and markets (see, for example, Asche et al. 2018; Asche and Oglend 2016; Ankamah-

Yeboah et al. 2017; Bjørndal and Guillen 2017; Landazuri-Tveteraas et al. 2018, among others). 

Despite significant literature evaluating the market- and species-level integration structure, 

examination of firm-level interlinkage structure between major salmon producers and FPI remains 

uncharted. Secondly, we utilize the Diebold and Yilmaz frameworks to evaluate the directionality 

and magnitude of connectedness among FPI and salmon producers. The Diebold and Yilmaz 

frameworks has been primarily utilized in financial and commodity markets to evaluate the 

spillover dynamics (see, for example, Ferrer et al. 2018; Huang et al. 2016; Yahya et al. 2019, and 

the references therein). Only recent research has given attention to the interconnected dynamics 

and volatility spillover in seafood and aquaculture markets (see, for example, Dahl and Jonsson 

2018a,b). Despite significant literature on understanding the price and volatility dynamics of 

87



salmon, the firm-level impact of spillover has remained unexplored. In this paper, the methods are 

applied to shed light on how price relevant market information is revealed in company valuations 

and the price index used to manage price risk in the market. Understanding the magnitude and 

direction of transmission will enable market participants to make better asset allocation and risk 

management decisions.  

Our results show that the stock prices of the publicly traded companies share a common stochastic 

trend with the salmon price index over the sample period (April 2011 to December 2018). This 

has been a period of increasing salmon prices and market values of salmon companies. Results 

reveal that only the salmon price index adjusts to equilibrium deviations between the price index 

and the company market values. This result is corroborated by the spillover index estimates using 

the Diebold and Yılmaz (2009, 2012, 2014, 2015) framework. The price index is a net-receiver of 

price return shocks in the joint dynamic system of price and company returns. This implies that 

information on salmon market conditions is revealed in exchange traded company prices earlier 

than in the public price index, making exchange traded stock prices predictive of the price index. 

Furthermore, the market value of the largest salmon companies are more informative on the future 

salmon price index. The largest producers are the largest net transmitters of spillovers to the fish 

pool index and other small- to medium-sized salmon producers. Mowi and Leroy are the largest 

net contributor of price return spillover to the price index and other salmon producers.  

Prices of exchange traded stocks are forward looking assessments of future flows of company 

profits, of which the salmon price is a major determinant. As long as the mapping between salmon 

price and company profits remains monotonic, changes in expected salmon prices will cause 

changes to current stock prices. The FPI on the other hand is backward looking. It is constructed 

from recorded bilateral transactions prices along the salmon value chain and is aimed at 
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representing the current supply and demand for salmon. Since the index is only published weekly, 

and collecting and processing information takes some time, the index will in any given week 

contain some “dated” market information. In such a context, exchange traded stock prices can add 

information about current period price as well as future price developments in the salmon market. 

Given the competitive nature of the market, the differential predictability of the price index by 

company size does not reflect the use of market power. Previous research has shown that company 

transaction prices for larger salmon exporters (such as the companies analyzed in this paper) 

correlate more strongly with the salmon price index. This is due to the improved “averaging out” 

of idiosyncratic pricing in larger companies trading with many partners (Oglend and Straume, 

2019b). Since the salmon index represents common pricing there will then be a stronger mapping 

between the index price and the internal salmon price of larger companies, making the market 

value of larger companies a better signal of the salmon index price. The improved price discovery 

role of larger firms might also reflect greater trading activity and liquidity in larger companies 

stocks. That being said, the differential predictive effect by company size might threaten the 

perceived unbiasedness of the price index used to settle futures contracts, which again might 

dissuade smaller companies from participating in the futures market. Furthermore, if the futures 

settlement price reflects outdated market information, the hedging efficiency of the contracts is 

reduced. This might help explain the lack of interest in the use of salmon futures, as well as the 

prevalence of bilateral contracting as the main hedging instrument for farmed salmon from 

Norway. Beyond salmon, our results shows that forward looking at prices of exchange traded 

seafood assets can provide information on the state and future developments of seafood products. 
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The remainder of this article is structured as follows. Section 2 and 3 presents the empirical 

methodology and the dataset, respectively. The empirical results are presented and discussed in 

section 4. Section 5 concludes.  

Methodology 

Cointegration framework 

To examine whether the underlying time series are cointegrated, we follow the Johansen 

cointegration procedure Johansen (1988, 1991). The empirical analysis of market integration is 

based on postulating a linear long-run relationship, 

𝑙𝑙𝑙𝑙𝑃𝑃𝑖𝑖,𝑡𝑡 = α + β𝑃𝑃𝑗𝑗,𝑡𝑡 + 𝑒𝑒𝑡𝑡 (1) 

where P represents prices in market i and j, respectively, and 𝑒𝑒𝑡𝑡 reflects stochastic deviations from 

the implied long-run relationship. Equation 1 refers to a long-run level relationship. To investigate 

dynamic adjustments, we utilize a vector autoregressive framework containing prices of both FPI 

and stock prices. We employ the Johansen’s multivariate technique (Johansen 1988, 1991; 

Johansen and Juselius 1990) to evaluate the cointegration relationship among the prices. The 

Johansen test relies on a vector autoregressive error correction model (VECM) with vector 𝑃𝑃𝑡𝑡 

containing the N price series and the system can then be specified as: 

Δ𝑃𝑃𝑡𝑡 = �Γ𝑖𝑖Δ𝑃𝑃𝑡𝑡−𝑖𝑖

𝑘𝑘−1

𝑖𝑖=1

+ Π𝑃𝑃𝑡𝑡−𝑘𝑘 + 𝜇𝜇 + 𝑒𝑒𝑡𝑡. (2) 

The 𝛱𝛱 matrix provides the estimated parameters in the long-term context and it is factorized as: 

𝛱𝛱 = 𝛼𝛼 .𝛽𝛽′ to obtain the full rank. The 𝛼𝛼 and 𝛽𝛽 represents the adjustment parameters and 

cointegration vectors, respectively. 
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Static and temporal spillover framework 

To examine the spillovers among stock prices and fish pool index (FPI) we use the generalized 

version of the Diebold and Yılmaz (2012, 2014, 2015) (hereafter: DY) spillover index, proposed 

originally by Diebold and Yılmaz (2009). The DY framework provide estimates of spillover by 

utilizing vector autoregressive (VAR) models and decomposition of variance from the VAR 

framework. The generalized version of DY framework overcomes the shortcomings due to 

Cholesky factor orthogonalization in Diebold and Yılmaz (2009), which results in order-dependent 

estimates. Moreover, the generalized version of DY framework provides rolling window estimates, 

which helps in providing the temporal evolution of spillover effects using spillover plots. 

Following the work of Diebold and Yılmaz (2009, 2012, 2014, 2015), we briefly present the static 

and temporal directional spillover frameworks employed in this paper.  

Following Koop et al. (1996) and Pesaran and Shin (1998), we carry out the variance 

decomposition by considering a generalized vector autoregressive (VAR) model. Let the data of 

N covariance stationary variables be represented by a VAR(p) model of following specification: 

𝑥𝑥𝑡𝑡 = �ϕ𝑖𝑖𝑥𝑥𝑡𝑡−𝑖𝑖

𝑝𝑝

𝑖𝑖=1

+ ε𝑡𝑡   where  ε ∼ (0,σ). (3) 

Furthermore, let 𝑥𝑥𝑡𝑡 = ∑ 𝐴𝐴𝑖𝑖𝜀𝜀𝑡𝑡−𝑖𝑖∞
𝑖𝑖=0  be the moving average representation of VAR model. Here, the 

𝑁𝑁 ×  𝑁𝑁 coefficient matrix is recursively specified, 𝐴𝐴𝑖𝑖 = ϕ1𝐴𝐴𝑖𝑖−1 + ϕ2𝐴𝐴𝑖𝑖−2 + ⋯+

ϕ𝑝𝑝𝐴𝐴𝑖𝑖−𝑝𝑝 with 𝐴𝐴𝑖𝑖 = 0 ∀ 𝑖𝑖 < 0. The next step comprises of residual variance decomposition 

obtained from the VAR model. Let the KPPS H-step-ahead generalized forecast error variance 

decompositions (FEVD) be given as: 
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θ𝑖𝑖𝑗𝑗
𝑔𝑔 (𝐻𝐻) =

σ𝑗𝑗𝑗𝑗−1 ∑ �𝑒𝑒𝑖𝑖′Θℎ ∑ 𝑒𝑒𝑗𝑗�
2𝐻𝐻−1

ℎ=0

∑ (𝑒𝑒𝑖𝑖′Θℎ ∑Θℎ′ 𝑒𝑒𝑖𝑖)𝐻𝐻−1
ℎ=0

, (4) 

where θ𝑖𝑖𝑗𝑗
𝑔𝑔 (𝐻𝐻) is the generalized form of FEVD, Θℎ is the coefficient matrix multiplying the 

ℎ −lagged shock vector in the infinite moving average representation of non-orthogonalized VAR, 

∑ represents the covariance matrix of shock vector in the non-orthogonalized VAR model, σ𝑗𝑗𝑗𝑗 

corresponds to the 𝑗𝑗𝑡𝑡ℎ  diagonal element of covariance matrix, and 𝑒𝑒𝑗𝑗 represents the selection vector 

with 𝑗𝑗𝑡𝑡ℎ  element unity and zeros elsewhere. The 𝑁𝑁 ×𝑁𝑁 spillover index , θ𝑖𝑖𝑗𝑗
𝑔𝑔 (𝐻𝐻), is estimated by 

Equation 4, where each element in the matrix represents the contribution of asset 𝑗𝑗 to the forecast 

error variance of asset 𝑖𝑖. Each of the diagonal elements of spillover index represents own-variable 

contribution, whereas, the off-diagonal elements indicates the cross-variable contribution. Since 

the own- and cross-variable shares of variance contribution do not sum to unity under the 

generalized decomposition, we normalize each entry of decomposed variance matrix by its row 

sum as:  

𝜃𝜃𝚤𝚤𝚤𝚤
𝑔𝑔�(𝐻𝐻) =

𝜃𝜃𝑖𝑖𝑗𝑗
𝑔𝑔(𝐻𝐻)

∑ 𝜃𝜃𝑖𝑖𝑗𝑗
𝑔𝑔(𝐻𝐻)𝑁𝑁

𝑗𝑗=1
, (5) 

where ∑ θ𝚤𝚤𝚤𝚤
𝑔𝑔�(𝐻𝐻)𝑁𝑁

𝑗𝑗=1 = 1 and ∑ θ𝚤𝚤𝚤𝚤
𝑔𝑔�(𝐻𝐻)𝑁𝑁

𝑖𝑖,𝑗𝑗=1 = 𝑁𝑁 by construction. The total spillover index (TVI) 

can be constructed using the contributions of return variations from the KPPS variance 

decomposition as: 

𝑠𝑠𝑔𝑔(𝐻𝐻) =  
∑ 𝜃𝜃�𝑖𝑖𝑗𝑗

𝑔𝑔(𝐻𝐻)𝑁𝑁
𝑖𝑖,𝑗𝑗=1
𝑖𝑖≠𝑗𝑗

∑ 𝜃𝜃�𝑖𝑖𝑗𝑗
𝑔𝑔(𝐻𝐻)𝑁𝑁

𝑖𝑖,𝑗𝑗=1
× 100 =   

∑ 𝜃𝜃�𝑖𝑖𝑗𝑗
𝑔𝑔(𝐻𝐻)𝑁𝑁

𝑖𝑖,𝑗𝑗=1
𝑖𝑖≠𝑗𝑗

𝑁𝑁 × 100 (6) 

The TVI reports the contribution of return spillover shocks across all markets to the total forecast 

error variance. Likewise, the directional return spillover received by market 𝑖𝑖 from all other 
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markets 𝑗𝑗, and directional return spillovers transmitted by market 𝑖𝑖 to all other markets 𝑗𝑗, 

respectively, as: 

𝑠𝑠𝑖𝑖←𝑗𝑗
𝑔𝑔 (𝐻𝐻) =  

∑ 𝜃𝜃�𝑖𝑖𝑗𝑗
𝑔𝑔(𝐻𝐻)𝑁𝑁

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

∑ 𝜃𝜃�𝑖𝑖𝑗𝑗
𝑔𝑔(𝐻𝐻)𝑁𝑁

𝑖𝑖,𝑗𝑗=1
× 100 =   

∑ 𝜃𝜃�𝑖𝑖𝑗𝑗
𝑔𝑔(𝐻𝐻)𝑁𝑁

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

𝑁𝑁 × 100, (7) 

and  

𝑠𝑠𝑖𝑖→𝑗𝑗
𝑔𝑔 (𝐻𝐻) =  

∑ 𝜃𝜃�𝑗𝑗𝑖𝑖
𝑔𝑔(𝐻𝐻)𝑁𝑁

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

∑ 𝜃𝜃�𝑗𝑗𝑖𝑖
𝑔𝑔(𝐻𝐻)𝑁𝑁

𝑖𝑖,𝑗𝑗=1
× 100 =   

∑ 𝜃𝜃�𝑗𝑗𝑖𝑖
𝑔𝑔(𝐻𝐻)𝑁𝑁

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

𝑁𝑁 × 100. (8) 

In addition, we estimate the net spillover which is the difference between the shocks “transmitted 

to” and those “received from” other markets. The net spillover from asset 𝑖𝑖 to all other assets 𝑗𝑗 as: 

𝑆𝑆𝑖𝑖
𝑔𝑔(𝐻𝐻) = 𝑆𝑆𝑖𝑖→𝑗𝑗

𝑔𝑔 (𝐻𝐻) − 𝑆𝑆𝑖𝑖←𝑗𝑗
𝑔𝑔 (𝐻𝐻). (9) 

The net spillover analysis determines whether an asset is the transmitter or recipient of spillovers. 

Cointegration analysis and the spillover framework are both utilized to investigate the dynamic 

relationship between the FPI and stock prices. 

Data and descriptive statistics 

Our study utilizes weekly data of the fish pool index (FPI) and the seven major salmon producers 

in Norway. Our data spans from April 2011 to December 2018 with a total 401 weekly 

observations for each of the underlying series. The stock price data is obtained from Datastream.  

The FPI is constructed by the Fish Pool exchange as a weighted average of different bilateral 

salmon transactions prices. The weights have changed over time, tending towards fewer sampling 

points along the supply chain. The primary current sampling point is export prices from Norway. 

The current index weights 95% into an export price index provided by Nasdaq and 5% into a 
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Statistics Norway index based on customs declarations in Oslo. There is currently no buyer 

sampling in the index construction. The stated objective of the price index is to give a correct 

reflection of the current salmon market price, be possible to re-examine/verify, and remain 

transparent and neutral to all parties. The index is updated and released weekly. The FPI is the 

settlement price for the Fish Pool futures contracts.  

The selected salmon producers are the following: Mowi ASA1, Salmar, Leroy seafood group, 

Bakkafrost, Grieg seafood, Norway royal salmon, and the Scottish salmon. 

 

 

 

 

 

 

 

 

 

 

 

 
1 Mowi is previously known as Marine Harvest. 
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Figure 1. Development in prices and returns 

(a) Fish Pool Index (FPI) (b) Mowi ASA (c) Salmar 

   

(d) Leroy seafood (e) Bakkafrost (f) Grieg seafood 

   

(g) Norway royal salmon (h) The Scottish salmon  

  

 

Notes. The figure provides the development of prices and continuously compounded returns for FPI and the major 
salmon producers in Norway. All the price series are characterized by an increasingly upward trend post-2012. 
Furthermore, visual inspection suggest that all of the underlying series are non-stationary in levels and stationary 
at first difference. 

Figure 1 presents the development of prices and continuously compounded returns for FPI and 

major salmon producers in the sample. The price series of all s producers exhibit an upward trend 

from mid-2012. The prices of nearly all stocks peaked towards the end of 2018. The FPI price 
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peaked at 80.22 Norwegian Krone during the mid of 2018. The high salmon price can be attributed 

to strong demand for salmon and relatively stable supply due to regulatory production growth 

restrictions (Asche et al., 2019).  

The continuously compounded return for each series is calculated as the logarithmic difference of 

two consecutive prices at time 𝑡𝑡 and 𝑡𝑡 −  1: 𝑟𝑟𝑖𝑖,𝑡𝑡 = 𝑙𝑙𝑙𝑙 � 𝑃𝑃𝑖𝑖,𝑡𝑡
𝑃𝑃𝑖𝑖,𝑡𝑡−1

�. Descriptive statistics of our data are 

presented in Table 1. The average annualized mean return and standard deviation for the FPI is 

2.86% and 45.1%, respectively. The annualized mean return for salmon producers ranges from 

13.97% (Mowi) to 29.23% (NRS) and the standard deviation varies from 30.7% (Mowi) to 47.0% 

(TSS). In terms of Sharpe ratio (SR), known as reward-to-risk measure, Bakkafrost provides the 

highest reward (0.774) relative to risk and TSS provides the lowest SR of 0.287.  

Table 1. Descriptive statistics 

  FPI Mowi Salmar Leroy Bakkafrost Grieg NRS TSS 
Mean 2.862 13.968 25.679 18.781 27.210 22.557 29.230 15.509 
SD 0.451 0.307 0.369 0.311 0.326 0.443 0.409 0.470 
SR 0.019 0.390 0.641 0.540 0.774 0.464 0.667 0.287 
Max 0.205 0.128 0.164 0.156 0.166 0.266 0.291 0.391 
Min -0.186 -0.170 -0.218 -0.189 -0.158 -0.333 -0.319 -0.233 
Skew 0.070 -0.398 -0.620 -0.434 -0.198 -0.373 -0.409 0.442 
Kurt 3.223 4.413 5.372 4.620 4.472 7.513 7.470 7.210 
JB STAT 1.151 43.850* 119.442* 56.308* 38.705* 348.684* 344.161* 308.432* 
Q Stat 23.352* 23.882* 34.403* 28.083* 27.453* 27.514* 27.427* 25.093* 
Q Stat1 18.719* 302.137* 195.706* 70.562* 55.819* 78.611* 52.031* 29.143* 
ARCH 14.244* 119.547* 83.018* 62.070* 49.829* 57.855* 37.587* 25.044* 

         
Panel A         
ADF -0.536 2.283 3.363 2.640 1.693 2.226 1.147 1.729 
PP -0.485 2.186 3.507 2.660 1.684 2.209 1.208 1.653 

         
ADF -16.478* -13.903* -15.107* -14.252* -15.151* -13.962* -12.896* -15.653* 
PP -19.821* -21.292* -21.683* -21.475* -22.516* -20.421* -20.375* -23.575* 
Notes. Annualized figures of mean and standard deviation are presented. SR represents the Sharpe ratio and J–B 
provides the t-statistics from the Jarque-Bera test of normality. Q(15) and Q2(15) represents the Ljung-Box test-
statistics for serial autocorrelation with 15 lags of returns and squared returns. ARCH(15) provides the test-statistics 
of Engle (1982) test with 15 lags for conditional heteroscedasticity. The notation ∗, ∗∗, and ∗∗∗ indicates the rejection 
of null-hypothesis of normality, no autocorrelation, and conditional homoscedasticity at the 1%, 5%, and 10% 
threshold level. 
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The distribution of returns for nearly all assets exhibits negative skewness with exception of FPI 

and TSS, which are positively skewed. Furthermore, the values of kurtosis are above 3 for all 

assets. These findings indicate that returns are predominantly negatively skewed and exhibit 

leptokurtic distributions. The t-statistics from a formal Jarque-Bera test strongly rejects the null-

hypothesis of normality for all the assets and affirms the non-Gaussian distribution. The test-

statistics from Ljung-Box portmanteau test with 15 lags of returns and squared returns are 

significant rejecting the null-hypothesis of independence. The ARCH test Engle (1982) with 15 

lags are significant at 1% threshold level thus rejecting the null-hypothesis of homoscedasticity.  

Panel A and B of Table 1 provide estimates of Augmented Dickey-Fuller (ADF) and Phillips-

Perron (PP) unit root tests on prices and returns for all the assets. Both the ADF and PP tests fail 

to reject the null-hypothesis of unit root, but first differences support stationarity.  

Empirical Results 

We first examine the cointegration relation among the FPI and the salmon producers. We then 

employ the static and temporal spillovers to evaluate the dynamics of connectedness among the 

assets.  

Cointegration analysis 

The output from the bivariate cointegration analysis is presented in Table 2. The first four columns 

present test statistics and p-values for the Maximum Eigenvalue and Trace test of the null-

hypothesis of zero and one cointegrating rank, respectively. The next two columns report test 

statistics for the null that the respective series do not adjust to deviations from long-run 

equilibrium. The final column reports the obtained long-run relationship parameter 𝛽𝛽 for the 

respective salmon producer. 
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Both cointegration tests reject the null of no cointegrating vectors in the relationships between the  

FPI and the salmon producers at the 5% significance level, except for the Scottish Salmon that 

produce higher p-values and ultimately does not reject the null-hypothesis. The tests do not reject 

the null of one cointegration vector at the 5% significance level. Therefore, all underlying price 

series are cointegrated and follow the same stochastic trend over the sample period.  

The speed of adjustment parameter (𝛼𝛼) for company stock prices fail to reject the null-hypothesis 

of no-adjustment, or long-run weak exogeneity.2 However, the null-hypothesis for the FPI is 

rejected in all cases. As such, the FPI is long-run endogenous, adjusting to deviations from the 

long-run relationship between salmon stock prices and the price index. For instance, an increase 

in company valuation relative to the current price index predicts an increase in the next week price 

index. The long-run relationship parameter suggests a positive relationship between the stock 

market value of salmon companies and the FPI at the 1% significance level.  

 

 

 

 

 

 

 

 
2 With exception of The Scottish salmon, which rejects the null-hypothesis complete price transmission. Whereas, 
the test-statistics for that of Norway Royal salmon is marginally insignificant. 
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Table 2. Bivariate Johansen cointegration tests 

Fish Pool 
Index 

Cointegrating vectors = 0   Cointegrating vectors = 1 Speed of adjustment (α) Long-run 
relationship Max Eigen Trace   Max Eigen Trace FPI Producers 

Mowi 22.485*** 22.487***  0.001 0.001 -0.094*** -0.008 0.545*** 
 (0.003) (0.004)  (0.973) (0.973) (0.000) (0.571) (0.000) 

Salmar 15.771*** 16.041***  0.27 0.27 -0.077*** 0.013 0.368*** 
 (0.029) (0.041)  (0.722) (0.722) (0.000) (0.405) (0.000) 

Leroy 18.039*** 18.143***  0.104 0.104 -0.085*** 0.001 0.501*** 
 (0.012) (0.020)  (0.785) (0.785) (0.000) (0.921) (0.000) 

Bakkafrost 19.124*** 19.271***  0.147 0.147 -0.079*** -0.015 0.35*** 
 (0.008) (0.013)  (0.769) (0.769) (0.000) (0.240) (0.000) 

Grieg 16.172*** 16.191***  0.019 0.019 -0.074*** 0.0283 0.33*** 
 (0.025) (0.039)  (0.890) (0.890) (0.000) (0.157) (0.000) 

NRS 20.015*** 20.04***  0.024 0.024 -0.081*** 0.037* 0.287*** 
 (0.006) (0.010)  (0.876) (0.876) (0.000) (0.051) (0.000) 

TSS 12.298 12.864  0.567 0.567 -0.035** 0.042** 0.499*** 
  (0.100) (0.120)   (0.609) (0.609) (0.034) (0.015) (0.000) 
Notes. This table presents the estimates of bivariate Johansen cointegration between Fish Pool Index (FPI) and each of the 
salmon producers. ***, **, and ** represent the significance at 1%, 5%, and 10% threshold level, respectively. p−values 
are presented in parenthesis. We assume the presence of intercept in the cointegrating vector and there are linear 
deterministic trends in the levels of underlying data series. 

Total spillover index 

Table 3 present the total spillover index of returns among the FPI and major salmon producers. 

Based on the lowest values of Akaike-Information-Criterion (AIC) and highest values of 

Loglikelihood (LogL), the vector autoregression (VAR) of order 1 is determined to better capture 

the return dynamics. Therefore, the static spillovers are based on VAR(1) and 15-weeks-ahead 

forecasts error variance decomposition. 

Before discussing the outcomes of spillover index, we briefly describe the elements of the index. 

Application of DY frameworks yields a 𝑁𝑁 ×  𝑁𝑁 matrix of directional connectedness �𝜃𝜃𝑖𝑖𝑗𝑗
𝑔𝑔(𝐻𝐻)�. 

The off-diagonal entries, 𝑖𝑖 ≠ 𝑗𝑗, represents the spillovers caused due to variations in other markets. 

The diagonal entries, 𝑖𝑖 =  𝑗𝑗, represents the self-caused variations within a market. Each entry (𝑖𝑖, 𝑗𝑗) 

of the spillover index corresponds to the estimated contribution of innovation in market 𝑗𝑗 to the 

FEVD of market 𝑖𝑖. Based on the spillover index, we estimate four additional statistics: “From 
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others” (Eq. 7), “To others” (Eq. 8), “Net spillovers” (Eq. 9), and “Volatility spillover index” (Eq. 

4). 

The return spillover index among the underlying series is presented in Table 3, which is 

decomposed further into transmitters and receivers of spillover. Furthermore, it also provides 

estimate of net spillover, which is estimated as the difference between information transmitted and 

information received. The total return spillover index indicates that an average of 52.56% of return 

forecast error variance derives from other assets in the sample. With respect to bidirectional net 

return spillover, the three largest salmon producers are the main transmitters of information to the 

FPI and other salmon producers, contributing 14.99%, 13.41%, and 10.77% to the returns of the 

other assets, respectively. Among the largest net receivers are FPI, TSS, and NRS, which in net 

terms receive an average of 30.66%, 9.71%, and 3.34% spillover from other assets in the sample. 

These estimations of spillovers are based on static full sample analysis.  

Table 3. Static spillover index 

  FPI Mowi Salmar Leroy Bakkafrost Grieg NRS TSS 
FPI 66.947 5.376 5.616 7.571 4.112 5.076 2.939 2.363 
Mowi 0.009 38.285 13.623 15.024 7.435 13.424 7.318 4.881 
Salmar 0.238 13.764 39.256 17.067 11.240 8.483 6.323 3.629 
Leroy 0.024 15.300 16.739 38.285 9.187 9.551 6.664 4.251 
Bakkafrost 0.758 9.032 13.311 11.193 46.688 6.491 7.355 5.172 
Grieg 0.034 15.052 8.945 10.685 5.945 41.567 11.922 5.852 
NRS 0.292 9.697 7.772 8.489 7.679 13.660 48.398 4.015 
TSS 1.041 6.905 5.510 6.675 5.662 8.342 5.741 60.125 

         
To others 2.395 75.126 71.515 76.704 51.258 65.027 48.260 30.163 
From others 33.053 61.715 60.744 61.715 53.312 58.433 51.602 39.875 

         
Net spillover -30.657 13.411 10.771 14.990 -2.053 6.594 -3.342 -9.712 

         
Volatility spillover index:             52.556 
Notes. This table presents all the possible bivariate relations of directional spillover between FPI and the salmon 
producers. 
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Temporal spillover analysis 

The total spillover index provides an overview of the time variation in connectedness among the 

assets. It is well documented in the literature that the temporal uncertainty can significantly 

influence the connectedness structure. Satic spillover estimates might ignore stylized facts (e.g. 

price and volatility jumps, aggregational Gaussianity, and volatility clustering), which may be due 

to systematic (Chile’s algae blooms in 2016) or idiosyncratic (production inefficiencies) events. 

Such events influence the intensity and direction of connectedness between FPI and salmon 

producers.  

Figure 2 present the time-varying development of return connectedness over the sample period 

based on 52-week rolling window and 10-step-ahead forecast horizons. We observe an upward 

trend in total connectedness over the period from 2012 to mid-2017, while it gradually declines to 

below 60% level during 2018. The general increase in connectedenss implies a greater importrance 

of common information on pricing among salmon companies and a tighter connection to the FPI. 

Sea lice infestation in Norway and algae blooms in Chile have contributed to stagnating production 

while demand form salmon has remained strong, contributing to rising prices. It is noteworthy that 

while the static total return spillover index is 53%, the time-varying spillover fluctuates from 45% 

to 75%.  
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Figure 2. Total spillover index 

 

Notes. The figure provides the temporal development of total return spillover index estimated from the forecast 
error variance decomposition of 52-week rolling window and 10-step ahead forecast horizon. 
 

Net spillovers 

The time-varying total spillover index provides an estimate of the overall development of 

connectedness among the FPI and the salmon company stock prices. However, it hides information 

on whether the spillover is caused primarily by the FPI or the returns of salmon producers. To 

examine whether an underlying asset is a net transmitter or receiver of shocks, we estimate net 

return spillovers.3  

 

 

 
3 For the sake of brevity, we only report the net directional return spillovers as it provides an estimate of both ‘to 
others’ and ‘from others’. The estimates of ‘to others’ and ‘from others’ are available from authors upon request. 
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Figure 3. Dynamic return spillover 

(a) Fish Pool Index (FPI) (b) Mowi ASA (c) Salmar 

   

(d) Leroy seafood (e) Bakkafrost (f) Grieg seafood 

   

(g) Norway royal salmon (h) The Scottish salmon  

  

 

Notes. The figure provides the development of net return spillovers among FPI and major salmon producers with a 
52-weeks rolling window and 10-step-ahead forecast horizon. Positive (negative) values in each graph indicate that 
the underlying asset is net transmitter (receiver) of information. 

Figure 3 illustrates the temporal development of net return spillover for each of the asset in the 

sample. The net spillover is estimated as the difference between information transmitted and 

information received (Eq. 9). The positive or negative values of each asset indicate that the 
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underlying asset is a net transmitter or receiver of shocks, respectively. The FPI is consistently a 

net receiver of information as it receives more than it transmits to stock prices. Similar to total 

spillover index, the net spillover to FPI declines during 2014 due to relatively stable demand and 

supply. The net spillover to FPI gradually increases and peaks in the mid-2017.  

The largest salmon producers are the primary sources of information spillover to the FPI and 

smaller producers. These findings are in-line with the results of the cointegration analysis. 

Concluding Remarks 

This paper investigates the cointegration and return spillover dynamics among the fish pool index 

and stock prices of major salmon producers over the period between April 2011 and December 

2018. To the best of our knowledge, this is the first empirical paper to study market integration 

and spillover dynamics using firm-level stock price data from major salmon producers and the 

FPI. 

The empirical results show that the FPI and all stock prices of major salmon producers are 

cointegrated and share a common stochastic trend over the sample period. Furthermore, we find 

that stock prices provide predictive information on the FPI. Stock prices contain information on 

the markets assessment of future salmon prices. The FPI on the other hand is constructed from 

actual bilateral salmon transaction prices along the salmon supply chain. As salmon is a 

consumption price, the index reflect current supply and demand conditions. As such, our results 

reveal how asset prices reflecting forward looking assessments of the market for the underlying 

seafood product can provide information on the dynamics of seafood product when the product 

itself to a lesser degree reflects forward looking market conditions.   
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Our findings also show that spillovers are asymmetrical and bidirectional in the case of small- to 

medium-sized firms. The FPI and small- to medium-size salmon firms are primarily the net 

receivers of spillovers from the largest salmon companies. Since the larger companies appear to 

provide better predictive information on future index prices, this might threaten the perceived 

unbiasedness of the price index used to settle futures contracts. Indeed, most salmon producers 

appear to favor bilateral contracting to deal with price risk, and participation in the futures 

exchange has been relatively weak. Furthermore, if the futures settlement price reflects outdated 

market information, i.e. lagged transaction prices, the hedging efficiency of the contracts will be 

lower. 
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