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Abstract

Helped by cheaper data computation, companies make more use of
sophisticated statistical analysis in decision making and economic
management. In the dissertation I evaluate and develop statistical
methods and apply them for economic applications, e.g. credit risk
evaluation and commodity pricing.

Recent developments in modern Monte Carlo methods have made
statistical inference possible for complex non-linear and non-Gaussian
latent variable models. It is typically computationally expensive to fit
data to such dynamic models, due to a large number of unobserved
parameters. However, the flexibility of the models has ensured a wide
range of applications.

This thesis mainly considers non-linear cases of a latent variable
model class called state-space models. The main objective is Bayesian
inference for all model parameters, based on the information in the
observed data. The presented work considers the existing methods for
dealing with latent variables, and propose modifications to some of the
most promising methods. The performance of the proposed methods is
investigated through applications on economic time series data.

The thesis also includes research of a more applied nature, where an
existing economic model for commodity prices is extended with a
stochastic trend, to obtain a state-space model. It also contains applied
economic research outside the latent variable domain, where different
risk measures are compared in the context of credit risk
regulation.

v



vi



List of papers

Paper I

Osmundsen, Kjartan Kloster (2018). Using expected shortfall for credit
risk regulation. Journal of International Financial Markets, Institutions
and Money 57, 80-93.

Paper II

Osmundsen, Kjartan Kloster, Tore Selland Kleppe, and Atle Oglend
(2019). MCMC for Markov-switching models - Gibbs sampling vs.
marginalized likelihood. Communications in Statistics - Simulation and
Computation, 1-22.

Paper III

Osmundsen, Kjartan Kloster, Tore Selland Kleppe, and Roman Liesen-
feld (2019). Importance Sampling-based Transport Map Hamiltonian
Monte Carlo for Bayesian Hierarchical Models. Submitted for publica-
tion in Journal of Computational and Graphical Statistics.

Paper IV

Osmundsen, Kjartan Kloster, Tore Selland Kleppe, Roman Liesenfeld,
and Atle Oglend (2020). Estimating the Competitive Storage Model
with Stochastic Trends in Commodity Prices. Submitted for publication
in Journal of Applied Econometrics.

vii



viii



Table of Contents

Preface................................................................................... iii

Abstract ................................................................................. iv

List of papers ...........................................................................vi

1 Introduction ........................................................................ 1

2 Bayesian inference ................................................................ 3

3 Hamiltonian Monte Carlo ........................................................ 5

4 State-space models ................................................................ 7

5 Particle filters ...................................................................... 9

6 Credit risk ..........................................................................11

7 Summary of the papers ...........................................................13

References ..............................................................................15

Appendix

Using expected shortfall for credit risk regulation ................................19

MCMC forMarkov-switching models - Gibbs sampling vs. marginalized
likelihood...........................................................................35

Importance Sampling-based Transport Map Hamiltonian Monte Carlo
for Bayesian Hierarchical Models ..............................................61

Estimating the Competitive Storage Model with Stochastic Trends in
Commodity Prices ................................................................98

ix



x



Introduction

1 Introduction

To an increasing extent, more sophisticated statistical methods are ap-
plied in economic decision making and management. A clear indication
of this is the observation that companies now recruit data analysts. A
crucial cause of this change in business methods is technical develop-
ments that have made data computations less expensive. In the disser-
tation I evaluate and develop existing statistical methods and use them
for economic applications, e.g. credit risk evaluation and commodity
pricing.

The following sections give a basic and informal introduction of the
statistical concepts and methods relevant for the papers of this the-
sis.

More specifically, Section 2 introduces Bayesian inference and Markov
chain Monte Carlo. Hamiltonian Monte Carlo, which plays a key part
in papers II and III, is introduced in Section 3. Then, Section 4
presents state-space models, which are employed in papers II-IV. Paper
III estimates the parameters of the state-space model using particle
filters and particle Markov chain Monte Carlo, methods which are
presented Section 5. Section 6 introduces credit risk, which is the topic
of Paper IV, while Section 7 summarizes the papers of the thesis.
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2 Bayesian inference

In Bayesian inference, the unknown model parameters \ are given a
prior distribution ?(\), which represents the believed distribution of
the parameters before any data enters the analysis. The chosen prior
distribution may be based on expert knowledge, or it can simply be
chosen on the basis of appealing computational properties (conjugate
prior). A vague prior is chosen if one wants the prior to play a minimal
role in the resulting posterior distribution (Gelman et al., 2014).

Given = data observations H = .1, . . . , .= and a statistical model ?(H |\)
that reflects the beliefs about the data given the model parameters, the
posterior distribution ?(\ |H) is obtained by Bayes’ theorem:

?(\ |H) = ?(H |\)?(\)
?(H) .

That is, the posterior distribution is the updated believed distribution
for the model parameters, given the observed data.

One is typically interested in finding the posterior mean of the param-
eters. This can be achieved through integration:

� [\ |H] =
∫

\?(\ |H) 3\ =
∫

\
?(H |\) · ?(\)∫
?(H |\) · ?(\) 3\

3\. (2.1)

Note that the analytic form of the normalizing constant ?(H) is not
necessarily known, thus expressed as an integral in Eq. (2.1). For
high dimensions and/or non-Gaussian distributions, it quickly becomes
infeasible to solve Eq. (2.1) analytically.

2.1 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) is an algorithm constructed to sim-
ulate from complex and high-dimensional probability distributions. The
idea of MCMC is to construct a Markov chain that has the desired dis-
tribution as its equilibrium distribution. A discrete-time Markov chain

3
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is a sequence of random variables, -1, -2, . . . , -=, with the Markov
property, meaning that the probability distribution of the next random
variable depends only on the present variable:

?(-= |-=−1, -=−2, . . . , -0) = ?(-= |-=−1). (2.2)

To estimate an integral on the form
∫
ℎ(G) 5 (G)3G, we need to construct

a Markov chain whose stationary distribution is 5 (G). Starting at a cho-
sen initial state -0, the Markov chain -8, 8 ∈ (2, 3, . . . , #) is generated
according to Eq. (2.2). Following from the law of large numbers for
Markov chains, we have that

1
#

#∑
8=1

ℎ(-8)
%→ � [ℎ(-)] =

∫
ℎ(G) 5 (G)3G.

2.2 Metropolis-Hastings algorithm

The Metropolis-Hastings (MH) algorithm (Metropolis et al., 1953; Hast-
ings, 1970) is the most common MCMC algorithm. It has two very
appealing properties: First, it is not needed to sample from a Markov
chain with the exactly correct equilibrium distribution, as the algorithm
makes the adjustments needed. Second, the normalizing constant is not
needed, as only probability ratios are considered.

Given the arbitrarily starting state -0, the remaining Markov chain is
constructed as follows for each time step 8:

1. Generate a value from the proposal distribution: . ∼ &(H |-8−1)

2. Evaluate the acceptance probability:

U(., -8−1) = min
{
1,

5 (. )
5 (-8−1)

&(-8−1 |. )
&(. |-8−1)

}
.

3. Determine the next state of the Markov chain:

-8 =

{
., with probabilityU
-8−1, with probabilityU − 1.

4
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3 Hamiltonian Monte Carlo

Over the past decade, Hamiltonian Monte Carlo (HMC) introduced by
Duane et al. (1987) has been extensively used as a general-purpose
MCMC method, often applied for simulating from posterior distribu-
tions arising in Bayesian models (Neal, 2011). HMC offers the advan-
tage of producing close to perfectly mixing MCMC chains by using the
dynamics of a synthetic Hamiltonian system as proposal mechanism.
The method has its origins from physics, and the total energy of the
Hamiltonian dynamical system is described by a ‘position coordinate’
@ and a ‘momentum variable’ ?:

� (@, ?) = − log c(@) + 1
2
?)"−1?, (3.1)

where " is a ‘mass matrix’ representing an HMC tuning parameter.
When using HMC to sample from an analytically intractable target
distribution c(@), the variable of interest (@) is taken as the position
coordinate, while the momentum is treated as an auxiliary variable,
typically assumed to be independently Gaussian distributed.

Hamilton’s equations describe how @ and ? change over time:

3

3C
?(C) = −∇@� (@(C), ?(C)) = ∇@ log c(@),

3

3C
@(C) = ∇?� (@(C), ?(C)) = "−1?.

(3.2)

It can be shown that the dynamics associated with Hamilton’s equations
are time-reversible, and that it keeps the Hamiltonian (Eq. (3.1)) invari-
ant. However, for all but very simple scenarios, the transition dynamics
according to Eq. (3.2) does not admit a closed-form solution, making
it necessary to approximate the dynamics using a numerical integrator.
The approximation error can be exactly corrected by introducing an
accept-reject step (see, e.g., Neal, 2011).

More specifically, each iteration of the HMC algorithm involves the
following steps:
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1. Refresh the momentum ? (:) ∼ # (0, ").

2. Propagate approximately the dynamics (3.2) from (@(0), ?(0)) =
(@ (:) , ? (:)) to obtain (@∗, ?∗) ≈ (@(!Y), ?(!Y)) using ! integrator
steps with step size Y.

3. Set @ (:+1) = @∗ with probability

min
{
1, exp

(
� (@ (:) , ? (:)) − � (@∗, ?∗)

)}
and @ (:+1) = @ (:) with remaining probability.

It is critical that the selection of the time-discretizing step size ac-
counts for the inherent trade-off between the computing time required
for generating accept-reject proposals and their quality, reflected by
their corresponding acceptance rates. However, the energy preserva-
tion properties of the numeric integrator also rely on the nature of the
target distribution (for any given step size). High-dimensional, highly
non-Gaussian targets typically require small step sizes, whereas high-
dimensional near-Gaussian targets can be sampled efficiently with rather
large step sizes (Neal, 2011).
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4 State-space models

Over the last decades, state-space models (SSMs) have gained interest
in the field of time series analysis. It is an extremely flexible model
class, with a hierarchical probabilistic structure. SSMs include the
widely used and less flexible ARIMA models as special cases.

SSMs are based on the assumption of an unobservable state process,
which in turn generates an observed time series. The observations are
typically a noisy function of this underlying process, which may have
a physical interpretation, but can also simply be an auxiliary random
process to facilitate a more flexible model specification. The general
SSM may be expressed as:

HC = 6C (·|GC , \, 4C),
GC = ℎC (·|GC−1, \, [C),

(4.1)

where HC and GC are the observed value and unobservable state at time
C, respectively, \ is a constant parameter vector, while 4C and [C are
two independent noise sequences. The term state-space model is used
when the state variables are continuous. For discrete state variables, one
usually use the term Markov-switching model, or hidden Markov model.
The model specification in Eq. (4.1) results in the dependence structure
shown in Figure 4.1. We see that HC is conditionally independent
from past observations, given the value of GC . This means that the
unobservable state always contains the full information of the past
observations, making the process (GC , HC) Markovian. Thus, the joint

x0 x1 x2 ... xt-1 xt xt+1 ...

y1 y2 yt-1 yt yt+1

Figure 4.1: SSM dependence structure.

7



State-space models

likelihood of H1:) and G1:) can easily be expressed recursively:

?(G1:) , H1:) |\) = ?(G1)
)∏
C=1

5 (HC |GC , \)?(GC |GC−1, \)

= ?(G1)
)∏
C=1

6C (·|GC , \, 4C)ℎC (·|GC−1, \, [C),
(4.2)

where ) is the number of available observations and G1:) denotes the
vector (G1, . . . , G) ). If the flexible functions 6C and ℎC in Eq. (4.1) are
both linear and Gaussian, the marginal likelihood of H1:C is available in
closed form. This is not the general case, and recent developments in
modern Monte Carlo methods have made statistical inference possible
for more complex non-linear and non-Gaussian models. It is typically
computationally expensive to fit data to an SSM (Shephard and Pitt,
1997; Durbin and Koopman, 1997; Andrieu et al., 2010), due to the
naturally large number of latent parameters. The increased computation
power available in recent years have made complex SSMs a field of
interest, and the flexibility of the models have ensured a wide range of
applications.
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5 Particle filters

For state-space models and similar dynamic models, sequential Monte
Carlo methods/particle filters can be used to produce unbiased esti-
mates of the joint likelihood, while being relatively straightforward to
implement. Particle filters are a set of flexible and powerful simulation-
based methods, which approximates the marginal likelihood ?(H1:C) by
generating samples that targets the state distribution ?(G1:C |H1:C).

5.1 Sequential importance sampling

Importance sampling is a general estimation method particularly useful
for cases where it is infeasible to sample from the distribution of inter-
est. It consists of replacing the original sampler ?(G) by an auxiliary
sampler @(G):

� [G] =
∫

G · F(G) · @(G) 3G, F(G) = ?(G)
@(G) ,

where F(G) is the weight function.

Sequential importance sampling (SIS) is a computationally effective
algorithm for distributions on the form of Eq. (4.2), which entails
choosing an importance density with a recursive structure:

@) (G1:) ) = @1(G1)
)∏
C=2

@C (GC |G1:C−1).

This results in the overall importance weight F1:) being the product of
all the incremental importance weights:

F1:) = F1

)∏
C=2

FC =
?(G1, H1)
@1(G1)

)∏
C=2

?(GC , HC |GC−1, HC−1)
@C (GC |G1:C−1)

, GC ∼ @C .

Thus, the density in Eq. (4.2) can be approximated by drawing G (8)1:) , 8 =

1, . . . , # from the importance density @) (G1:) ), and calculate the corre-
sponding importance weights. In particular, an estimate of the marginal
likelihood is given by ?̂(H1:) ) =

∏)
C=1

{
1
#

∑#
8=1 F

(8)
1:C

}
.
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SIS is known to fail in the long run, as the weights become highly de-
generate (see, e.g., Cappé et al., 2007; Doucet and Johansen, 2009). The
sampling importance resampling particle filter of Gordon et al. (1993)
mitigates this effect by adding a resampling step, where the importance
samples G (8)C are sampled with probability F (8)C , with replacement.

5.2 Particle Markov chain Monte Carlo

When employing a particle filter to estimate the marginal likelihood
?(H1:) ), the particle marginal Metropolis-Hastings (PMMH) approach
developed by Andrieu et al. (2010) is well suited for Bayesian inference.
The PMMH uses unbiased Monte Carlo (MC) estimates of the marginal
likelihood inside a standard MH algorithm, targeting the posterior for
the parameters ?(\ |H1:) ). The MC estimation error of the likelihood
estimate does not affect the invariant distribution of the MH, so that
the PMMH allows for exact inference.

The PMMH produces an MCMC sample {\8}(8=1 from the target dis-
tribution by the following MH updating scheme: given the previously
sampled \8−1 and the corresponding likelihood estimate ?̂\8−1 (?1:) ), a
candidate value \∗ is drawn from a proposal density &(\ |\8−1), and the
estimate of the associated likelihood is ?̂\∗ (?1:) ) computed. Then the
candidate \∗ is accepted as the next simulated \8 with probability

U(\∗, \C−1) = min
{
1,

?̂\∗ (?1:) )?(\∗)
?̂\8−1 (?1:) )?(\8−1)

&(\8−1 |\∗)
&(\∗ |\8−1)

}
,

otherwise \8 is set equal to \8−1. Under weak regularity conditions, the
resulting sequence {\8}(8=1 converges to samples from the target density
?(\ |H1:) ) as ( →∞ (Andrieu et al., 2010, Theorem 4).
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6 Credit risk

Credit risk models encompass all of the policies, procedures and prac-
tices used by a bank in estimating a credit portfolio’s probability density
function of future credit losses. Such models enable banks to identify,
measure and manage risk. As credit risk models have gained a large
role in banks’ internal risk management processes, they are now also
utilized for supervisory and regulatory purposes (Bank for International
Settlements, 1999).

The three main parameters of credit risk are probability of default (PD),
exposure at default (EAD) and loss given default (LGD). The PD is the
probability of a borrower not meeting the debt obligations, typically
defined for a time horizon of one year. EAD is the total value a bank
is exposed to when a loan defaults, while LGD is the proportion of the
EAD the bank is likely to lose in case of default.

Multiplying these three risk parameters, one obtains the expected loss
(EL):

�! = %� · ��� · !��, (6.1)

which is the bank’s expected credit loss over the chosen time hori-
zon, typically covered by provisioning and pricing policies (Bank for
International Settlements, 2005).

Banks typically use the unexpected loss (UL) to express the risk of a
portfolio, which is the amount by which the incurred credit loss exceeds
the expected loss. The economic capital held to support a bank’s credit
risk exposure is usually determined by a target insolvency rate. The
potential unexpected loss for which it is judged too expensive to allocate
capital is called stress loss, and leads to insolvency. This is illustrated
in Figure 6.1. The estimated probability density function of future
credit losses is the basis for calculating the unexpected loss, and the
target insolvency rate is normally chosen so that the resulting economic
capital will cover all but the most extreme events.
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Expected loss Unexpected loss Stress loss

Potential credit losses
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s

Figure 6.1: The three different types of loss in credit risk modelling.
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7 Summary of the papers

The first paper of the thesis, "Using expected shortfall for credit risk
regulation", considers the consequences of employing a different risk
measure as the basis for the Basel Committee’s minimum capital re-
quirement function for banks’ credit risk exposures. The currently used
risk measure, value at risk, is compared to expected shortfall, which
is already replacing value at risk for market risk regulation. For both
risk measures, the paper examines in detail the sensitivity to the tail
of the loss distribution. It also compares confidence levels, estimation
uncertainty, model validation and parameter sensitivity. The empirical
analysis is carried out by both theoretical simulations and real data from
a Norwegian savings bank group’s corporate credit portfolio. The find-
ings indicate that a transition to a correctly calibrated expected shortfall
results in similar capital requirement levels, with slightly increased lev-
els for exposures with very low default probability. The estimation
precision is not inferior to value at risk, even at very high confidence
levels.

In the second paper, "MCMC for Markov-switching models - Gibbs
sampling vs. marginalized likelihood", written in collaboration with
the professors Tore Selland Kleppe and Atle Øglend, we propose a
method for estimating Markov-switching vector autoregressive models
that combines (integrated over latent states) marginal likelihood and
Hamiltonian Monte Carlo. The method is compared to commonly used
implementations of Gibbs sampling. The proposed method is found to
be numerically robust, flexible with respect to model specification, and
easy to implement using the Stan software package. The methodology
is illustrated on a real data application, exploring time-varying cointe-
gration relationships in a data set consisting of crude oil and natural
gas prices.

The third paper, "Importance Sampling-based Transport Map Hamilto-
nian Monte Carlo for Bayesian Hierarchical Models", written in collab-
oration with the professors Tore Selland Kleppe and Roman Liesenfeld,

13
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proposes an importance sampling (IS)-based transport map Hamiltonian
Monte Carlo procedure for performing full Bayesian analysis in general
non-linear high-dimensional hierarchical models. Using IS techniques
to construct a transport map, the proposed method transforms the typi-
cally highly challenging target distribution of a hierarchical model into
a target which is easily sampled using standard Hamiltonian Monte
Carlo. Conventional applications of high-dimensional IS, where infi-
nite variance of IS weights can be a serious problem, require compu-
tationally costly high-fidelity IS distributions. An appealing property
of our method is that the IS distributions employed can be of rather
low fidelity, making it computationally cheap. We illustrate our algo-
rithm in applications to challenging dynamic state-space models, where
it exhibits very high simulation efficiency compared to relevant bench-
marks, even for variants of the proposed method implemented using a
few dozen lines of code in the Stan software package.

In the fourth paper, "Estimating the Competitive Storage Model with
Stochastic Trends in Commodity Prices", written in collaboration with
the professors Tore Selland Kleppe, Atle Øglend and Roman Liesen-
feld, we propose a state-space model (SSM) for commodity prices.
The model decomposes the observed price into a component explained
by the competitive storage model and a stochastic trend component,
and use a particle filter to jointly estimate the structural parameters of
the storage model and the trend parameters. Our storage SSM with
stochastic trend fits into the economic rationality of storage decisions,
and expands the range of commodity markets for which storage models
can be empirically applied. The storage SMM is applied to cotton,
aluminium, coffee and natural gas markets, and is compared to re-
duced form stochastic trend models without a structural storage price
component, as well as the deterministic trend approach of Gouel and
Legrand (2017). Results suggest that the storage component in the SSM
adds empirically relevant non-linear price behaviour to reduced form
stochastic trend representations and leads to estimates for storage costs
and price elasticities of demand which are larger than those obtained
under storage models with deterministic trends.

14
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a b s t r a c t

The Basel Committee’s minimum capital requirement function for banks’ credit risk is
based on value at risk. This paper performs a statistical analysis that examines the conse-
quences of instead basing it on expected shortfall, a switch that has already been set in
motion for market risk regulation. The ability to capture tail risk as well as diversification
is examined in detail for the two risk measures. In addition, the article compares confi-
dence levels, estimation uncertainty, model validation and parameter sensitivity. The
empirical analysis is carried out by both theoretical simulations and real data from a
Norwegian savings bank group’s corporate portfolio. The findings indicate that the use of
correctly calibrated expected shortfall results in similar capital requirement levels, with
slightly increased levels for exposures with very low default probability. The estimation
precision is not inferior to value at risk, even at very high confidence levels.

� 2018 Elsevier B.V. All rights reserved.

1. Introduction

Since Artzner et al. (1997) showed that value at risk (VaR) is not sub-additive in general, and thus not always reflecting
the positive effect of diversification, several sub-additive risk measures have been proposed. Among these, Expected Shortfall
(ES) (Acerbi and Tasche, 2002) has gained most interest. A comprehensive literature compares the properties and relative
performance of these two risk measures, see e.g. Yamai and Yoshiba (2005) and Emmer et al. (2015). There are also several
comparisons of VaR and ES in a regulatory context specific to market risk, see e.g. Basel Committee on Banking Supervision
(2011), Kinateder (2016), Chang et al. (2016), while Frey and McNeil (2002) compare the two risk measures for optimization
of credit risk portfolios. Guegan and Hassani (2018) point out the importance of taking into account the distribution and con-
fidence levels when comparing VaR and ES. The present paper compares VaR and ES in a regulatory context specific to credit
risk, which, to the best of the author’s knowledge, is not yet present in the literature.

The Basel Committee on Banking Supervision aims to enhance financial stability worldwide, partly by setting minimum
standards for the regulation and supervision of banks (Basel Committee on Banking Supervision, 2014). In 2004, the intro-
duction of the Committee’s second international regulatory accord, Basel II (Basel Committee on Banking Supervision, 2004),
opened the possibility for banks to calculate their minimum capital requirements using risk parameters estimated by
internal models, instead of using given standard rates (the standardised approach). The minimum capital requirement func-
tion is portfolio-invariant, so that a single loan’s marginal contribution to the total credit risk of a portfolio can be calculated

https://doi.org/10.1016/j.intfin.2018.07.001
1042-4431/� 2018 Elsevier B.V. All rights reserved.
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independently from the rest of the portfolio. It is designed to limit each financial institution’s isolated risk, while systematic
risk is limited by requiring systematically important institutions to hold additional capital.

In January 2016, the Basel Committee published revised standards for calculation of minimum capital requirements for
market risk (Basel Committee on Banking Supervision, 2016a), which include a shift from VaR to ES as the underlying risk
measure. The Committee stated that the former reliance on VaR largely stems from historical precedent and common indus-
try practice. This has been reinforced over time by the requirement to use VaR for regulatory capital purposes. The Commit-
tee recognizes that a number of weaknesses have been identified with VaR, including its inability to capture tail risk. They
believe the new ES model will provide a broadly similar level of risk capture as the existing VaR model, while providing a
number of benefits, including generally more stable model output and often less sensitivity to extreme outlier observations
(Basel Committee on Banking Supervision, 2013b).

A transition from VaR to ES for measuring credit risk has so far not been considered. In fact, default risk in the trading
book (market risk) is still to be calculated using VaR, as for the banking book (credit risk), to mitigate the risk of regulatory
arbitrage. The Committee has also argued that ES might be too unstable at such high confidence levels (Basel Committee on
Banking Supervision, 2013b). In 2013, ES was proposed for the securitisation framework (Basel Committee on Banking
Supervision, 2013a), but VaR was retained to keep consistency with the credit risk framework (Basel Committee on
Banking Supervision, 2013c). The Committee has also introduced more objective rules for determining whether instruments
should be assigned to the trading book or the banking book, and imposed strict constraints on switching between books.1

However, regulatory arbitrage is still present in the form of internal risk-weight model manipulation (Mariathasan and
Merrouche, 2014; Ferri and Pesic, 2017).

The development of credit risk models lies a few years behind the market risk models,2 due to challenges related to the
infrequent nature of default events and the long time horizons involved, making it difficult to collect enough relevant data. This
makes it plausible that ES might be considered for credit risk in a not so distant future, and this paper sets out to explore the
potential effects.

The paper is structured as follows. Section 2 introduces VaR and ES and compares general theoretical properties, estima-
tion uncertainty, confidence level calibration and model validation. Section 3 introduces the risk parameters used for credit
risk modelling, and shows how the Basel Committee has derived a capital requirement function with VaR as the underlying
risk measure, and how the same can be done for ES. Section 4 compares VaR and ES within the Basel Committee’s minimum
capital requirement framework, focusing on confidence level calibration and parameter sensitivity. Lastly, the VaR and ES
version of the capital requirement function are compared for cases where the Basel Committee’s assumption of normally
distributed losses does not hold, using real risk parameter estimates from a Norwegian savings bank group’s corporate port-
folio. The final conclusions are given in Section 5.

2. Value at risk versus expected shortfall

Throughout this paper it is assumed that losses are expressed as positive numbers, thus focusing on the upper quantile of
the profit-loss distribution. For a given confidence level a, VaR is simply defined as the a-quantile of the profit-loss distri-
bution. This implies that the probability of losses exceeding VaRa equals ð1� aÞ. This conceptual simplicity, together with
its easy implementation, has made VaR a very popular risk measure.

The simple nature of VaR is also the reason for its shortcomings. By definition, VaR gives no information about the mag-
nitude of losses beyond the VaR level. Consequently, VaR calculations are not affected by the shape of the loss distribution
beyond the a-quantile. This is commonly referred to as tail risk, and can be particularly problematic if the loss distribution is
heavy-tailed. Assets with higher potential for large losses may appear less risky than assets with lower potential for large
losses. For assets with a probability of loss less than a, this leads to VaR disregarding the increase of potential loss due to
portfolio concentration, see e.g. Example 2 in Yamai and Yoshiba (2002b). As a consequence, Pillar 2 of the Basel Committee’s
regulatory framework contain complementary measures to reduce credit concentration (Basel Committee on Banking
Supervision, 2004).

Based on similar argumentation, Artzner et al. (1997) proved that VaR is not sub-additive3 in general, i.e. not always
reflecting the positive effect of diversification. More precisely, VaR only satisfies sub-additivity when the loss distribution
belongs to the elliptical distribution family and has finite variance (Embrechts et al., 2002). For these distributions, VaR becomes
a scalar multiple of the distribution’s standard deviation, which satisfies sub-additivity. This includes the normal distribution,
Student’s t distribution (for m > 2) and Pareto distribution (for a > 2).

Daníelsson et al. (2013) investigate the sub-additivity of VaR for fat-tailed distributions, and theoretically show that VaR
is sub-additive except for the fattest tails. However, they still find that VaR estimated from historical simulations (HS) may
lead to violations of sub-additivity, due to what they call the tail coarseness problem: ‘‘When only using a handful of obser-
vations in the estimation of HS, where the estimate is equal to one of the most extreme quantiles, the uncertainty about the
location of a specific quantile is considerable, and one could easily get draws whereby a particular loss quantile of a relatively

1 See Basel Committee on Banking Supervision (2013b), page 52, for more information about the imposed constraints.
2 Banks have been allowed to use internal models as a basis for calculating their market risk capital requirements since 1997 (Basel Committee on Banking

Supervision, 2014), i.e. seven years before the same applied for credit risk.
3 A risk measure is sub-additive when the risk of a portfolio is less than or equal to the sum of the risk of the individual assets.
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fat distribution is lower than the same quantile from a thinner distribution”. Through an empirical Monte Carlo study, they
show that the sub-additivity of VaR fails most frequently in practice for high confidence levels and fat distribution tails. This
can be problematic for credit risk regulation, as it involves particularly high confidence levels.

VaR has become a common industry practice for internal risk calculations, e.g. portfolio optimization. This has been rein-
forced over time by the requirement to use it for regulatory capital purposes. If VaR is used as a constraint when optimizing
the (expected) return on a portfolio, the resulting portfolio is likely to exploit the tail risk of VaR. If the risk capital is deter-
mined using VaR, portfolio managers have incentives to choose their portfolios as if operating directly under an uncon-
strained optimization, by investing in assets where the risk lies beyond the VaR level (Frey and McNeil, 2002). Similarly,
the profit–loss distribution can be manipulated so that VaR becomes small while the tail becomes fat (Yamai and
Yoshiba, 2005).

As an alternative to VaR, Artzner et al. (1997) proposed a risk measure called tailed conditional expectation (TCE). ES was
proposed by Acerbi and Tasche (2002) as an extended version of TCE, that is sub-additive also for non-continuous probability
distributions.

Given a confidence level a 2 ð0;1Þ, the ES of a position L is defined as

ESaðLÞ ¼ 1
1� a

Z 1

u¼a
VaRuðLÞdu: ð1Þ

Another useful representation illustrates how ES differs from TCE:

ESaðLÞ ¼ E LjL P VaRaðLÞ½ � þ E LjL P VaRaðLÞ½ � � VaRaðLÞð Þ P L P VaRaðLÞ½ �
1� a

� 1
� �

: ð2Þ

When P L P VaRaðLÞ½ � ¼ 1� a, as is the case for continuous distributions, the last term in Eq. (2) vanishes, and ES equals TCE.
From Eqs. (1) and (2) it is clear that ES does not have the same degree of tail risk as VaR. Unlike VaR, ES can distinguish

between two distributions of future net worth that have the same quantile but differ otherwise. ES is also more consistent
with expected utility maximization (Yamai and Yoshiba, 2005), and is not easily manipulated like VaR (Danielsson and Zhou,
2016).

A critique of ES is the fact that tail behaviour is taken into account through an averaging procedure. Koch-Medina and
Munari (2016) claim that averages are poor indicators of risk, and show that surplus outcomes in the tail can compensate
for outcomes with large losses and high default probabilities. Comparing different capital positions, this can in some cases
cause inconsistency between default behaviour and capital requirement. Thus making VaR a less ‘‘deceiving” risk measure,
‘‘because it does not purport to contain any information about the tail risk”. However, they emphasize that their results do
not invalidate ES as a risk measure, but highlights the need for cautious implementation. Note that the above is not an issue if
the tail only contains loss outcomes, which is the case for credit risk regulation.4

2.1. Estimation methods and backtesting

The reason that VaR remains the most widely used risk measure, seems to be that its practical advantages are perceived to
outweigh its theoretical shortcomings. VaR has been considered to have smaller data requirements, easier backtesting
(model validation) and in some cases easier calculation than alternative risk measures (Yamai and Yoshiba, 2002a;
Kerkhof and Melenberg, 2004; Daníelsson et al., 2013).

There exist multiple promising parametric estimation methods for both VaR and ES. For example, Daníelsson et al. (2013)
show that VaR estimated with semi-parametric extreme value techniques tends to violate sub-additivity less frequently than
VaR estimated using HS. However, HS is still the preferred method in practice. In addition to its easier implementation, there
is also some scepticism towards parametric methods. Danielsson and Zhou (2016) claim that the good performance of a
specific parametric model is usually driven by the fact that the model is close to the data generating process (DGP), and that
it is not possible to find a parametric model that performs consistently well across all DGPs.

HS uses previous loss data L1; L2; . . . ; Ln for estimation. Let Lð1Þ;6 Lð2Þ; . . . ;6 LðnÞ denote the corresponding order statistics.
Then, VaR and ES can be estimated as

dVaRaðLÞ ¼ Lðbn�acÞ; cESaðLÞ ¼ Xn
i¼bn�ac

LðiÞ

 !,
ðn� bn � ac þ 1Þ; ð3Þ

where bxc denotes the largest integer not greater than x.
Gneiting (2011) proved in 2010 that ES is not elicitable, as opposed to VaR. This discovery led many to erroneously

conclude that ES would not be backtestable, see for instance Carver (2013).
A statistic of a random variable is said to be elicitable if there exists a scoring function (error measure) that is strictly

consistent for this statistic, meaning that the statistic strictly minimizes the expected value of the scoring function. The mean
and the median represent popular examples, minimizing the mean square error and absolute error, respectively (Gneiting,

4 This is due to the combination of bounded profits and very high confidence levels.
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2011). The qth quantile (VaR) is elicitable with the scoring function Sðx; yÞ ¼ ð1 xPyf g � qÞðx� yÞ, where x is the forecast, y is the
corresponding realization and 1fg is the indicator function (Acerbi and Szekely, 2014).

It turns out that even if ES is not elicitable, it is still conditionally elicitable, meaning it can be split up in two elicitable
components, as both the quantiles and the mean are elicitable (Acerbi and Szekely, 2014). Yet, Danielsson (2013) claims that
it is more difficult to backtest ES than VaR, because, when using ES, model predictions cannot be directly compared with
observed outcomes. The model predictions are actually compared with model outcomes, a practice that is likely to increase
the underlying model risk.

A popular backtesting method for VaR is based on the following violation process:

ItðaÞ ¼ 1 LðtÞ > VaRaðLðtÞÞf g;

where 1fg denotes the indicator function and t denotes the time period.
Following the definition of VaR, the violations are iid Bernoulli random variables with success probability 1� a. Thus,

backtesting VaR involves checking if the observed violation process behaves as expected, by satisfying the unconditional cov-
erage hypothesis, E½ItðaÞ� ¼ 1� a, in addition to the independence condition (Christoffersen, 1998).

Backtesting ES does not have to be more complicated than backtesting VaR. Emmer et al. (2015) propose a backtesting
method for ES that is an extension of the VaR violation method, based on the following approximation:

ESaðLÞ ¼ 1
1� a

Z 1

u¼a
VaRuðLÞdu � 1

4
VaRaðLÞ þ VaR0:75aþ0:25ðLÞ þ VaR0:5aþ0:5ðLÞ þ VaR0:25aþ0:75ðLÞ½ �: ð4Þ

If the four different VaR values in Eq. (4) are successfully backtested, then also the estimate of ESaðLÞ can be considered
reliable subject to careful manual inspection of the observations exceeding VaR0:25aþ0:75ðLÞ. These tail observations must at
any rate be manually inspected in order to separate data outliers from genuine fair tail observations. For market risk, the
Basel Committee uses a similar backtesting approach for 97.5% ES, which is based on testing VaR violations for the 97.5%
and 99% confidence levels (Basel Committee on Banking Supervision, 2016a).

The literature on backtesting for ES is still increasing, see e.g. Kerkhof and Melenberg (2004), Acerbi and Szekely (2014)
and Du and Escanciano (2016) for other promising methods.

2.2. Confidence level

Several comparisons of VaR and ES in the literature use the same confidence level for both risk measures. For example,
Yamai and Yoshiba (2002a) conclude that the estimation error of ES is larger than that of VaR when the underlying loss dis-
tribution is fat-tailed, by comparing 95% and 99% ES to 95% and 99% VaR. Danielsson and Zhou (2016) also compare 99% VaR
to 99% ES as part of a simulation experiment, claiming that ‘‘ES is always estimated more inaccurately than VaR”. Kerkhof
and Melenberg (2004) emphasize that, for capital reserve determination, it makes more sense to compare VaR and ES for
confidence levels resulting in the same level of capital requirement. Given the definition of ES in Eq. (1), this means that
the ES confidence level must be lower than the VaR confidence level.

For a normally distributed profit-loss function, 99.9% VaR results in the same level of capital requirement as 99.738% ES.5

For 99% VaR, the corresponding confidence level for ES is 97.423%. For market risk regulation, the Basel Committee replaced 99%
VaR with 97.5% ES, i.e. the exact confidence level for ES was rounded up.6 Based on this, the rest of this paper will consider a
rounded up confidence level of 99.75% for credit risk regulation using ES. In practice, one usually encounter distributions with
heavier tails than the standard normal distribution (Mandelbrot, 1963; Fama, 1965; Jansen and De Vries, 1991), so this can be
seen as an upper bound on the ES confidence level (Kerkhof and Melenberg, 2004). For example, the equivalent ES confidence
levels for Student-t(5) and Student-t(2.5) distributions are 99.70% and 99.64%, respectively.

The simulation experiment of Danielsson and Zhou (2016) estimates VaR and ES using simulated values drawn from
Student-t distributions with different degrees of freedom. This distribution is very sensible for this kind of experiment, as
the degrees of freedom equals the tail index7 of the distribution. Instead of using the same confidence intervals for VaR and
ES, Table 1 shows the results of using comparable confidence levels for their simulation experiment. Compared to the original
results, the difference in standard deviations between VaR and ES are significantly reduced. Aside from the case combining the
least number of observations and the most heavy-tailed distribution, the accuracy of the VaR and ES estimates is approximately
equal. Table 1 also illustrates that higher confidence levels need more observations to get precise estimations, regardless of the
chosen risk measure.

Actually, Danielsson and Zhou (2016) also include a comparison of 99% Var to 97.5% ES, using a different empirical
approach, where the main result is that the lower bounds of the VaR estimates are significantly higher than that of ES across
all sample sizes. This finding matches to some degree the results of Table 1 for m ¼ 2:5, but not for m ¼ 5.

5 99:9%VaR ¼ U�1ð0:999Þ ¼ 3:09; 99:738%ES ¼ / U�1ð0:99738Þ
� �

=ð1� 0:99738Þ ¼ 3:09, where / and U denote the density and distribution function of the
standard normal distribution, respectively.

6 99%VaR ¼ 2:3263 � 97:5%ES ¼ 2:3378.
7 In Extreme Value Theory, the tail index b describes how heavy the tail of the distribution is (Haan, 1975). It is defined as regular variation in the tail of the

distribution function F: limt!1
1�FðtxÞ
1�FðtÞ ¼ x�b .
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3. Credit risk modelling

The introduction of Basel II in 2004 opened the possibility for banks to calculate the assets’ risk weights using parameter
estimates from internal models. To be able to use this internal ratings based (IRB) approach, the bank’s risk models have to be
approved by the national supervisory authorities (Basel Committee on Banking Supervision, 2004).

This section introduces the risk parameters involved, and describes the model choices made by the Basel Committee
when deriving the mathematical function for calculating regulatory capital under the IRB approach.

3.1. Risk parameters

The expected loss (EL) is the credit loss a bank can expect on its credit portfolio over the chosen time horizon, typically one
year. EL is calculated as the mean of the loss distribution, and is typically covered by provisioning and pricing policies (Basel
Committee on Banking Supervision, 2005). The expected loss of a single loan can be calculated as follows:

EL ¼ PD � LGD � EAD; ð5Þ

where probability of default (PD) is the probability that a borrower will be unable to meet the debt obligations within the
given time horizon. The exposure at default (EAD) is the bank’s outstanding exposure to the borrower in case of default, while
the loss given default (LGD) is the bank’s likely loss in case of default, usually stated as a percentage of EAD.

Banks typically express the risk of a portfolio with the unexpected loss (UL), which is the amount by which the actual
credit loss exceeds the expected loss. The economic capital held to support a bank’s credit risk exposure is usually deter-
mined so that the estimated probability of UL exceeding economic capital is less than a target insolvency rate. The potential
UL which is judged too expensive to hold capital against is called stress loss, and leads to insolvency. The assumed probability
density function of future credit losses is the basis for calculating the unexpected loss, and the target insolvency rate is cho-
sen so that the resulting economic capital will cover all but the most extreme events.

3.2. The Basel Committee’s capital requirement function

The Basel Committee’s capital requirement function for credit risk is based on Gordy’s Asymptotic Single Risk Factor (ASRF)
model (Gordy, 2003), which models risk using a systematic risk factor, which may be interpreted as reflecting the state of the
global economy. The model is constructed to be portfolio-invariant, so that the marginal capital requirement for a loan does
not depend on the properties of the portfolio in which it is held.

The probability of default conditional on the systematic risk factor is calculated by Vasicek’s adaptation of the Merton
model (Vasicek, 2002), which assumes a normal distribution for the systematic risk factor X:

PDðXÞ ¼ U
U�1ðPDÞ � X

ffiffiffi
R

pffiffiffiffiffiffiffiffiffiffiffiffi
1� R

p
 !

; ð6Þ

where U is the distribution function of the standard normal distribution and R is the loan’s correlation with the systematic
risk factor, i.e. the degree of the bank’s exposure to the systematic risk. The unconditional PD on the right-hand side reflects
the expected default rate under normal business conditions, and is estimated by the bank.

Table 1
Finite sample performance of VaR and ES, following the same Monte Carlo method as the results from Table 1 in Danielsson and Zhou (2016). N observations are
sampled from a Student-t distribution with m degrees of freedom. For this group of samples, VaR and ES are estimated using Eq. (3) (Danielsson and Zhou (2016)
uses slightly different estimators) and divided by the theoretical value. The resulting ratio is regarded as the relative estimation error, which is simulated
2� 107 times for each combination of N; m and a. The table shows the standard deviations and 99% confidence intervals of these ratios.

VaR ES

N m a sd 99% conf.int. a sd 99% conf.int.

300 2.5 99% 0.23 [0.56 ,1.86] 97.5% 0.31 [0.52,2.2]
300 2.5 99.9% 0.22 [0.26 ,1.53] 99.75% 0.45 [0.25,2.66]
300 5 99% 0.15 [0.68 ,1.45] 97.5% 0.14 [0.67 ,1.4]
300 5 99.9% 0.15 [0.44 ,1.26] 99.75% 0.2 [0.45 ,1.61]

1000 2.5 99% 0.13 [0.72 ,1.42] 97.5% 0.19 [0.68 ,1.73]
1000 2.5 99.9% 0.35 [0.44,2.49] 99.75% 0.39 [0.39,2.53]
1000 5 99% 0.08 [0.8 ,1.24] 97.5% 0.08 [0.81 ,1.24]
1000 5 99.9% 0.18 [0.62 ,1.63] 99.75% 0.16 [0.6 ,1.49]

12500 2.5 99% 0.04 [0.91 ,1.1] 97.5% 0.06 [0.88 ,1.19]
12500 2.5 99.9% 0.11 [0.75 ,1.32] 99.75% 0.17 [0.71 ,1.61]
12500 5 99% 0.02 [0.94 ,1.06] 97.5% 0.02 [0.94 ,1.06]
12500 5 99.9% 0.06 [0.85 ,1.17] 99.75% 0.06 [0.85 ,1.18]
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The ASRF model uses VaR as the underlying risk measure, meaning that the required capital is calculated so that the loss
probability does not exceed a set target a. This is achieved by holding capital that covers the ath quantile of the assumed loss
distribution, i.e. letting the systematic risk factor equal the ath quantile, qaðXÞ ¼ U�1ð1� aÞ:

PDðU�1ð1� aÞÞ ¼ PDð�U�1ðaÞÞ ¼ U
U�1ðPDÞ þU�1ðaÞ

ffiffiffi
R

pffiffiffiffiffiffiffiffiffiffiffiffi
1� R

p
 !

: ð7Þ

The expected loss is calculated using Eq. (5) without the EAD-factor, thus being expressed as a percentage of the exposure
at default. Inserting Eq. (7) for PD gives the ath quantile of the expected loss conditional on the systematic risk factor X, i.e. the
VaR (Gordy, 2003):

qaðE½LjX�Þ ¼ E½LjqaðXÞ� ¼ PDðqaðXÞÞ � LGD: ð8Þ
The LGD value in Eq. (8) must reflect economic downturn conditions in circumstances where loss severities are expected

to be higher during cyclical downturns than during typical business conditions (Basel Committee on Banking Supervision,
2005). This so-called ‘‘downturn” LGD value is not computed with a mapping function similar to Eq. (7). Instead, the Basel
Committee has decided to let the banks provide downturn LGD values based on their internal assessments. The reason for
this is the evolving nature of bank practices in the area of LGD quantification.

The Basel Committee’s capital requirement function only considers the unexpected loss. As the ASRF model delivers the
entire VaR, the expected loss PD � LGD has to be subtracted from Eq. (8):

K ¼ LGD �U U�1ðPDÞ þU�1ð0:999Þ �
ffiffiffi
R

pffiffiffiffiffiffiffiffiffiffiffiffi
1� R

p
 !

� PD � LGD; ð9Þ

where K denotes the capital requirement, as a percentage of total exposure (EAD). The Committee has chosen the confidence
level a ¼ 0:999, which means that unexpected losses on a loan should exceed the capital requirement only once in a thou-
sand years. The reason why the confidence level is set so high is partly to protect against inevitable estimation error in the
banks’ internal models (Basel Committee on Banking Supervision, 2005).

Fig. 1 shows how Eqs. (8) and (9) depend on the PD parameter. The total loss is strictly increasing for larger PD values,
while the unexpected loss is a concave function of PD.

As mentioned above, R is the loan’s correlation with the systematic risk factor, and it is determined from information
about the borrower. For loans to states, institutions and large enterprises (annual revenues above 50 million euros) (Basel
Committee on Banking Supervision, 2005) the following formula applies:

R ¼ 0:24� 0:12
1� e�50�PD

1� e�50

� �
: ð10Þ

Because Eq. (9) is expressed as a percentage of total exposure, one must multiply by EAD to get the capital requirement
stated as a money amount. The total money amount shall constitute at least 8% of the risk-weighted assets:

Xn
i¼1

Ki � EADi P 0:08 �
Xn
i¼1

RWi � EADi:

Thus, the marginal risk-weight of a single asset is calculated as RWi ¼ Ki=0:08 ¼ 12:5Ki.

Fig. 1. Total loss (left) and unexpected loss (right) of the Basel Committee’s capital requirement function, plotted as a function of the probability of default.
Calculated for LGD = 1, with confidence level 99.9%.
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The ASRF model is also applicable for ES, with the resulting capital charges being portfolio invariant under the same
assumptions as VaR-based capital charges (Gordy, 2003), making it possible to derive a version of Eq. (9) that is based on
ES (Hibbeln, 2010):

KES ¼ LGD
1� a

U2 U�1ðPDÞ;�U�1ðaÞ;
ffiffiffi
R

p� �
� PD � LGD; ð11Þ

where U2ð�Þ is the bivariate cumulative normal distribution function.
For market risk regulation, the Committee has decided that the ES calculations should be calibrated as if the relevant risk

factors were experiencing a period of stress (Basel Committee on Banking Supervision, 2016a). This will also be the case for
Eq. (11) as it depends on downturn LGD values and contains a mapping function for the PD values, similar to the existing VaR
version.

4. VaR versus ES for credit risk

This section examines how the Basel Committee’s capital requirement function is affected by the choice of its underlying
risk measure, as a practical counterpart to the theoretical comparison of VaR and ES in Section 2.

4.1. Confidence level

Although the derived ES version of the capital requirement function in Eq. (11) is based on the same assumptions as the
VaR version in Eq. (9), the difference between the two risk measures is significant enough that the two functions behave
quite differently. As already mentioned, 99.75% is the ES confidence level that matches 99.9% VaR. However, as Eqs. (9)
and (11) are parametric functions, the difference between the functions depends on the PD value.8

Conducting a least squares fit over the interval PD 2 ð0;1Þ, a confidence level of 99.742% is found to make the ES capital
requirement most similar to the 99.9% VaR version, making it reasonable to continue using the 99.75% confidence level for
ES. There are however notable differences, as shown in Fig. 2. Compared to the VaR version, the ES version increases
capital charges for loans with a low probability of default, and very slightly decreases capital charges for loans with a
probability of default exceeding 45% (the maximum reduction is 0.13%, for PD ¼ 82%). As the Basel Committee has
proposed to apply lower bounds on the PD estimates (Basel Committee on Banking Supervision, 2016b), the significant
increase for the very lowest PD values may be desirable from a regulation perspective. However, the proposed floor is only
PD ¼ 0:0005, so the increased capital charges for 0:0005 < PD < 0:45 may not be desirable. The increase exceeds 1% for
PD < 0:07 and exceeds 2% for PD < 0:02. At the same time, this could slightly reduce the incentive to purposely report
artificially small PD estimates.

The ES capital requirement shares the properties of VaR illustrated in Fig. 1, with the total loss strictly increasing for
larger PD values, so banks are not directly incentivised to shift their exposure to higher risk. However, compared to the
existing 99.9% VaR regulation, the relative capital charge will increase for less risky loans and decrease for more risky
loans. One might argue that a switch to ES could promote slightly more risk-taking from the banking institutions,
potentially threatening the financial stability. The validity of such an argument depends on whether the current credit
risk regulation is optimal, from a socioeconomic point of view. There is also the possibility that the current regulation is
slightly too much shifted towards the less risky loans, leading to some socially beneficial projects not being granted
loans.

4.2. Parameter sensitivity

The parameter sensitivity of the capital requirement function is also of great interest, i.e. how the uncertainty of the PD
and LGD estimates affects the function output. This is examined by applying a simulation experiment. In addition to deter-
mine how a change from VaR to ES will influence the parameter sensitivity, it is also explored which parameter the capital
requirement function is most sensitive to.

Varying degrees of estimation uncertainty are represented by the variance of the distribution function the parameter val-
ues are simulated from. This is achieved by simply sampling random values from a normal distribution with expected value
1 and standard deviation r, and then multiply these values with the true parameter value, so the distribution is centred
around the correct value:

cPD ¼ PD � d; d � Nð1;rPDÞdLGD ¼ LGD � d; d � Nð1;rLGDÞ:
ð12Þ

Using Eq. (12), N values of cPD and dLGD are generated for five different r values (0.05,0.10,0.15,0.20,0.25), indicating five
different degrees of estimation uncertainty. Fig. 3 illustrates the resulting parameter distributions for three of the r values.

8 The LGD parameter is not of interest in this capacity, as it has a linear relationship with both versions of the capital requirement function.

86 K.K. Osmundsen / J. Int. Financ. Markets Inst. Money 57 (2018) 80–93

Paper I

27



The simulated dLGD and cPD values are used as input parameters for Eqs. (9) and (11) to calculate the capital requirements,
where the correlation factor R is calculated using Eq. (10). The capital requirement levels Ki; i 2 ð1;2; . . . ;NÞ are calculated
for all 25 possible combinations of rLGD and rPD. For each combination, the relative standard deviation of the capital require-
ment levels are calculated, for both risk measures:

rK rel ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 Ki � K
� �2
N � 1

s ,
K:

This simulation process is repeated for different values of PD, to see how this impacts the results. Different LGD values will
only result in a linear scaling of the capital requirement, so a constant value of 0.45 is used. In fact, because the capital
requirement’s uncertainty is expressed as its relative standard deviation, the results are independent of the chosen value
for LGD.

4.2.1. Results
Fig. 4 shows the results for the 99.9% VaR capital requirement. As one would expect, the capital requirement’s relative

uncertainty increases with increasing parameter uncertainty.
More interesting, the parameter uncertainties have different relative impact depending on the PD value. For small PD val-

ues, the PD estimation uncertainty is almost as influential as the LGD uncertainty. For medium PD values, precise estimation
is less important, as the LGD uncertainty is the main contributor to variations in the calculated capital requirement. For
PD ¼ 0:35, the impact of PD estimation uncertainty is practically non-existent, as indicated by the solid-colour columns in
Fig. 4. The reason for this is proximity to the vertex (PD ¼ 0:31) of the concave capital requirement function, as shown in
Fig. 1. For larger PD values, the estimation uncertainty steadily increases towards PD ¼ 1. Fig. 5 shows the results for
PD ¼ 0:8, where the PD uncertainty is clearly dominant, as indicated by solid-colour rows. Note that the magnitude of the

Fig. 2. The percentage difference between the calculated capital requirement from the ES version with confidence level 99.75% and the standard 99.9% VaR
version. Positive values mean that the ES version results in a higher capital charge. The left graph gives a detailed view for small PD values, while the right
graph shows the whole (0,1) interval.

Fig. 3. The distributions of N ¼ 10;000 simulated dLGD and cPD values, for three degrees of estimation uncertainty, r. True parameter values are LGD ¼ 0:45
and PD ¼ 0:1.
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capital requirement uncertainty is considerably larger than for the lower PD values, as the LGD contribution to uncertainty is
constant.

Looking at Eqs. (9) and (10) it is clear that e�50�PD is the part of the capital requirement function that explains the influence
of the PD values’ uncertainty for small PD values, as it is very sensitive for PD values close to zero. This sensitivity gradually
becomes smaller for larger PD values, and for PD > 0:1 this part of the function is approximately constant. The function part
U�1ðPDÞ is particularly sensitive for PD values in the far ends of the ð0;1Þ interval. The major impact of large PD values on the
capital requirement’s uncertainty is due to the last term in Eq. (9). For large PD values, this term is no longer small compared
to the first term.

Fig. 4. Relative standard deviation of the 99.9% VaR capital requirement, given rLGD and rPD . Calculated for six different PD values, with LGD ¼ 0:45. Using
N ¼ 10;000 simulations for each calculation.

Fig. 5. Relative standard deviation of 99.9% VaR capital requirement, given rLGD and rPD . Calculated for PD ¼ 0:8 and LGD ¼ 0:45, using N ¼ 10;000
simulations for each calculation.
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The relative standard deviations of the simulated 99.75% ES capital requirements behave quite similar as for the 99.9%
VaR, with the largest deviations for small PD values, consistent with the results in Fig. 2. As shown in Fig. 6, these deviations
are all favourable of ES, resulting in relative uncertainty reductions of almost 3% in some cases. The relative reduction is lar-
gest when the LGD uncertainty is low and the PD uncertainty is high.

There could be both advantages and disadvantages with a capital requirement function that is less sensitive to the PD
parameter at the lowest end of the scale. One could argue that this to some degree reduces the banks’ incentive to estimate
artificially low PD values. At the same time it might be viewed as counter-productive, since the fundamental idea behind the
IRB approach is a more risk-sensitive capital requirement.

4.3. Loss distributions

The capital requirement function is derived on the assumption of a normal distributed systematic risk factor. As men-
tioned in Section 2, asset returns are usually distributed with heavier tails than the normal distribution. This section uses
real risk parameter values from a Norwegian savings bank group’s corporate portfolio to examine the behaviour of the cap-
ital requirement function for such loss distributions.

Loss realizations distributed with different tail weights are generated by simulating values for the systematic risk factor X
from the Student-t distribution, a natural choice as its degrees of freedom parameter m coincides with the tail index of the
resulting distribution. 2.5, 5 and 10 degrees of freedom are used. The standard normal distribution (equivalent to m! 1) is
used as a baseline.

The real risk parameter data set consists of PD; LGD;R and EAD values for J loans. Using the simulated X values, conditional
PD values are calculated from Eq. (6) for all the loans in the data set9 To simulate losses, loan j is considered defaulted if a
uniformly distributed random number Uj 2 ½0;1� is smaller than or equal to the conditional PD. For the defaulted loans, the con-
ditional PD is multiplied with the associated risk parameter values to obtain the money amount lost:

LðXÞ ¼
XJ

j¼1

1 U
U�1ðPDjÞ � X

ffiffiffiffi
Rj

pffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Rj

p !
P Uj

( )
� LGDj � EADj; ð13Þ

where 1fg is the indicator function.
For each value of m, the loss simulation shown in Eq. (13) is repeated for N different X values, so that the resulting N loss

values constitute a representation of the loss distribution for the given tail weight. The unexpected losses are then obtained
by subtracting

PJ
j¼1PDj � LGDj � EADj from Eq. (13), and lastly VaR and ES estimates for the unexpected losses are calculated

using Eq. (3). Confidence levels of 99% and 99.9% are used for the VaR estimates, while 97.5% and 99.75% are used for the ES
estimates. The entire simulation process is repeated M times to enable the calculation of the mean and relative standard
deviation of the VaR and ES estimates.

The simulation code is written in R (R Core Team, 2014). The size of the data set makes this process quite time consuming,
so multicore computer processing is enabled to speed up the process, using the packages foreach, parallel and
doParallel.

Fig. 6. Percentage reduction of the relative standard deviation of the capital requirement by switching from 99.9% VaR to 99.75% ES, given rLGD and rPD .
Calculated for three different PD values, with LGD ¼ 0:45. Using N ¼ 10;000 simulations for each calculation.

9 The results using the ES equivalent U2ðU�1ðPDÞ;X;
ffiffiffi
R

p
Þ=UðXÞ are similar, and thus not reported.

K.K. Osmundsen / J. Int. Financ. Markets Inst. Money 57 (2018) 80–93 89

Paper I

30



4.3.1. Results
The data set consists of real risk parameter values for corporate loans issued by a Norwegian savings bank group from

March 2015 to January 2016. The data set contains about a fifth of the group’s total corporate portfolio from this period,
picked randomly. This amounts to a total of J ¼ 109;045 loans.

Fig. 7 provides some insight about the data set, by displaying density plots of the LGD and PD values. Most of the loans
have low risk, with 90.8% of the loans having been assigned a probability of default of 0.05 or less. Only 2.1% of the loans have

Fig. 7. The distribution of PD and LGD estimates from a Norwegian savings bank group’s corporate portfolio, for loans issued between March 2015 and
January 2016. The PD values exceeding 0.15 are not included in this figure (2.1% of the loans).

Fig. 8. Unexpected losses given different probability distributions for the systematic risk factor. From the top: Standard normal distribution, Student-t
distribution with 10, 5 and 2.5 degrees of freedom. M ¼ 100 sets of N ¼ 10;000 loss values are simulated for each distribution. The figure shows the
distribution of the set means. Two different y-axis are used to make the tail events more visible.
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a PD value greater than 0.15. The majority of the LGD values are also at the low end of the scale, with 68% of the loans having
a LGD value of 0.25 or less. There are however also a substantial number of loans that have high LGD values.

Fig. 8 shows the mean distribution for M ¼ 100 sets of N ¼ 10;000 (unexpected) loss values simulated using the method
described above. As Eq. (6) is derived on the assumption that X follows a normal distribution, the simulations using the more
heavy-tailed distributions naturally produce larger maximal estimates for PDðXÞ, thus producing larger maximum losses. The
tail of the Student-t(2.5) distribution is so extreme compared to the normal distribution, that the tail simulations result in
PDðXÞ ¼ 1 for almost all the loans. For the given data set, this corresponds to UL ¼ 116:6 billion NOK. For comparison, the
expected loss is only 2.8 billion NOK.

Table 2 shows the means and relative standard deviations of the M ¼ 100 VaR and ES estimates calculated from the
simulated loss values. The VaR and ES estimates are most dependent on the confidence level for the most heavy-tailed loss
distributions. The difference between the 99% VaR and the 97.5% ES increase for the more heavy-tailed distributions, while
the high confidence level of the 99.9% VaRmakes it behave closer to its ES equivalent, as it takes into account a greater part of
the loss distribution function. The relative standard deviations are fairly similar for the VaR and ES estimates. The sum of the
capital requirements for all loans in the data set, calculated using Eqs. (9) and (11) respectively, result in a total capital
charge of 15.37 billion NOK using 99.9% VaR and 15.70 billion NOK using 99.75% ES, which correspond well with the
simulation results for the normal distributed risk factor.

Table 3 in the appendix shows how the number of simulations affects the relative standard deviations of the VaR and ES
estimates. A graphic representation of a selection of these results is shown in Fig. 9 in the appendix. As one would expect, the
relative SD decreases when you increase the number of simulations. The size of this reduction appears to be approximately
equal for the VaR and ES estimates.

To examine the practical implications of real losses being more heavy-tailed than the assumed normal distribution, a ver-
sion of Eq. (6) assuming a Student-t distributed systematic risk factor is emulated by transforming the simulated X values10

so that X values simulated from a Student-t(m) distribution result in the same VaR and ES estimates as for the normal distributed
X values. Using this transformation for m ¼ 10;5 and 2:5 on normal distributed X values, both VaR and ES estimates decrease by
34%, 50% and 65%, respectively. Compared to the 99.9% VaR, this implies VaR confidence levels of 99.4%, 98.7% and 96.8%, mean-
ing that the true confidence level of the capital requirement function is lower than 99.9% if the loss distribution is more heavy-
tailed than the assumed normal distribution.

5. Conclusion

The Basel Committee’s minimum capital requirement function for banks’ credit risk is based on VaR. The paper performs
an analysis of the consequences of replacing VaR with ES, a switch that has already been set in motion for market risk.

ES has some well known conceptual advantages over VaR, primarily a better ability to accurately capture tail risk. ES is
also sub-additive in general, always reflecting the positive effect of diversification. Additionally, it is more consistent with
expected utility maximization, and cannot easily be manipulated like VaR. Nevertheless, VaR is still favoured for its concep-
tual simplicity, and is considered to have superior estimation precision and model validation methods.

However, the theoretical shortcomings of VaR have no practical impact on the present capital requirement function, as it
is a closed-form expression that assumes a normally distributed systematic risk factor. This paper finds that by correctly cal-
ibrating the confidence level, an ES of the present capital requirement function will produce approximately the same capital
requirement, with the largest differences occurring for low default probabilities, where the capital requirement is slightly
higher and the parameter sensitivity is slightly lower. The paper also finds that the use of ES results in a capital requirement
function with satisfactory estimation precision, and points out that VaR may be wrongly perceived to have superior estima-
tion precision if non-comparable confidence levels are used.

The Basel Committee’s revised standards for calculation of minimum capital requirements for market risk include a shift
from VaR to ES as the underlying risk measure for most risk classes. Default risk is the only risk class of the trading book
(market risk) that is still to be calculated using VaR, as for the banking book (credit risk), to mitigate the risk of regulatory

Table 2
The mean and relative standard deviation of M ¼ 100 VaR and ES estimates, for the confidence levels corresponding to market risk and credit risk regulation.
Each of the M estimates are calculated using N ¼ 10;000 loss values, simulated using the probability distribution indicated in the leftmost column for the
systematic risk factor.

Mean (billion NOK) Relative SD

99% VaR 97.5% ES 99.9% VaR 99.75% ES 99% VaR 97.5% ES 99.9% VaR 99.75% ES

Normal(0,1) 8.592 8.897 15.392 15.655 0.037 0.034 0.07 0.064
Student-t(10) 12.224 13.565 29.358 31.125 0.038 0.041 0.1 0.085
Student-t(5) 18.542 22.136 59.66 61.146 0.054 0.053 0.14 0.107
Student-t(2.5) 50.683 53.296 116.095 114.426 0.092 0.057 0.012 0.016

10 Xt ¼ U�1 FðX; mÞð Þ, where U and F are the cumulative distribution function of the standard normal distribution and the Student-t(m) distribution,
respectively.
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arbitrage. This decision is based on the argument that ES might be too unstable at such high confidence levels. As the findings
of this paper indicate that this might not be the case, it could be worth to evaluate adapting the existing credit risk regulation
to the risk measure used for most of the new market risk regulation.

If this were to be implemented, all possible implications of the increased relative capital charge for low default probabil-
ities must be accounted for. In addition, one must also address how a transition to ES can be adapted to the supervisory
review and market discipline pillars of credit risk regulation. As the switch to ES has already been set in motion for market
risk, banks are going to have practical experience with ES before this switch potentially would happen for credit risk. In addi-
tion, ES is closely related to VaR, so the new implementations will in some cases require only minor adjustments, thus lim-
iting the transition cost.

Appendix A

See Table 3 and Fig. 9.
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Abstract

This paper proposes a method to estimate Markov-switching vector autoregressive models that com-

bines (integrated over latent states) marginal likelihood and Hamiltonian Monte Carlo. The method

is compared to commonly used implementations of Gibbs sampling. The proposed method is found

to be numerically robust, �exible with respect to model speci�cation and easy to implement using the

Stan software package. The methodology is illustrated on a real data application exploring time-varying

cointegration relationships in a data set consisting of crude oil and natural gas prices.

Keywords: Markov-switching, Marginalized likelihood, Hamiltonian Monte Carlo

1 Introduction

A Markov-switching (MS) model (also called hidden Markov model) is a mixture model governed by a

(hidden) �nite state Markov chain. It has a wide range of applications, and has successfully been used in

�elds like speech recognition (Baker, 1975), image analysis (Yamato et al., 1992) and network security (Scott,

2001). In economics, MS models have also been widely applied as parsimonious speci�cations of non-linear

time series dynamics since the seminal paper by Hamilton (1989). Hamilton realized that the changing

nature of contractions and expansions in economic activity can be modeled as an MS model where the

growth rate of the economy is determined by a time-varying latent state. Other business cycle applications

can be found in Ang and Bekaert (2002) and Bansal et al. (2004). In addition to business cycles, MS models

have also been applied to model interest rate dynamics (Garcia and Perron, 1996; Gray, 1996; Bansal and

Zhou, 2002), electricity pricing (Mount et al., 2006; Kanamura and 	Ohashi, 2008) and oil and natural gas

∗We would like to express gratitude to an anonymous referee for many useful comments that considerably improved the

paper.
†Corresponding author. Email: kjartan.osmundsen@gmail.com
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pricing (Brigida, 2014; Asche et al., 2017). The reason for the popularity of MS models in economics is the

parsimonious yet �exible nature of the models, and the relative ease of providing an economic interpretation

of the underlying states or regimes implied by the model.

Sims and Zha (2006) applies a Markov-switching vector autoregressive (MS-VAR) model to investigate

structural breaks in monetary policies, and in a highly cited paper, Bloom (2009) uses an MS speci�cation to

model shocks of uncertainty in a model of economic activity. The success of the MS framework in economics

has spurred interest in the estimation of the models. Related to this paper, Sims et al. (2008) discuss methods

for inference in large multiple-equation MS models. Also, Lanne et al. (2010) investigate structural MS-VAR

models, while Bianchi (2016) develops methods to analyze multivariate MS models, speci�cally formulas for

the evolution of �rst and second moments.

This paper contributes to the growing literature on estimating MS-VAR models by comparing a pro-

posed marginalized likelihood Markov chain Monte Carlo (MCMC) estimator to commonly applied Gibbs

sampling. The two methods are distinguished by whether the hidden regime variables (discrete) are sampled

or marginalized out from the likelihood function, with the former currently being the preferred method.

However, the marginalized method lowers the dimension of the target distribution, enabling most general

purpose MCMC procedures, such as Metropolis-Hastings (Robert and Casella, 2013). The marginalized

method also generates a continuous target distribution, enabling Hamiltonian Monte Carlo (HMC) (Neal,

2011). By applying HMC with the no-U-turn sampler of Ho�man and Gelman (2014), fast exploration of

the posterior distribution is achieved, resulting in close to iid samples. This can be seen as an MS analogue

to the currently popular pseudo-marginal methods (see e.g. Andrieu et al., 2010) for state-space models and

other models where latent states take continuous values.

The paper compares the e�ciency of the two methods numerically, using both simulated data and real

data sets. The MCMC e�ciency is measured as the e�ective sample size (Geyer, 1992; Girolami and Calder-

head, 2011) per second (ESS/s). The experiments are conducted using appropriate statistical software pack-

ages for the two methods, and also using tailor-made Gibbs samplers. Using statistical software packages,

the marginalization approach produces more e�cient samples than Gibbs sampling. The tailor-made Gibbs

sampler implementations are very fast, but require greater coding e�orts and are less �exible to changes of

the model such as parameter restrictions. The marginalization approach also gives stable performance across

parameters, unlike the Gibbs implementations.

The paper is organized as follows. Section 2 describes the MS-VAR model and introduces the notation

used throughout the paper. Moreover, the two di�erent sampling methods and their implementations are

discussed in detail. Section 3 compares the proposed methodology to relevant alternatives. Section 4 applies

the sampling methods to estimate an MS-VAR model on the joint dynamics of crude oil and natural gas
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prices, extending the modeling approach in Asche et al. (2017) to a fully �exible bivariate MS-VAR. Final

conclusions are given in Section 5.

2 Methodology

The methods presented in this section will be used for estimating MS-VAR models. The methods are not

limited to the following model, but due to the challenges faced by estimating these types of models and the

recent popularity of the models in econometric time series modeling, the generic MS-VAR model is used as

a basis for comparing the di�erent estimation methods.

2.1 Markov-switching vector autoregressive models

A Markov-switching vector autoregressive model with one lag may be expressed as

Y t = φ(St)Y t−1 + µ(St) + εt, εt ∼ N
(
0,Σ(St)

)
, Y t ∈ Rd, (1)

S ∈ (1, 2, . . . ,m), t ∈ (2, 3, . . . , n),

where Y t, t ∈ (1, 2, 3, . . . , n) are d-dimensional observations, n is the number of such observations, φ(S), S ∈

(1, 2, . . . ,m) are the autoregressive coe�cient matrices, m is the number of states and µ(S), S ∈ (1, 2, . . . ,m)

are the mean vectors. St ∈ (1, 2, . . . ,m), t ∈ (2, 3, . . . , n) are the latent state variables, which follow a

�rst-order time homogeneous Markov Chain characterized by a transition probability matrix:

Q =




p11 . . . p1m
...

...
...

pm1 . . . pmm



, pij = p(St = j|St−1 = i).

Here it is assumed that {St}t is irreducible and aperiodic, and thus admit a stationary distribution δ. The

�rst observation is treated as known and hence is not modeled. For notational convenience, only one lag is

considered in the discussion in this section, but extensions to several lags are straightforward.

For the collection of parameters Θ =
(
Q,φ(1),φ(2), . . . ,φ(m),µ(1),µ(2), . . . ,µ(m),Σ(1),Σ(2), . . . ,Σ(m)

)
,

the likelihood function, conditional on Y 1, is given by

l(Θ) = p(Y 2:n|Θ,Y 1) = δP (Y 2)QP (Y 3)QP (Y 4) · · ·QP (Y n)1>, (2)

P (Y t) = diag
(
{p (Y t|Y t−1,Θ−Q, St = j)}

m

j=1

)
,
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where Y 1:n = (Y 1,Y 2, . . . ,Y n), 1> is a row vector of length m where all elements equal 1 and Θ−Q denotes

the parameter collection excluding the latent Markov chain transition probability matrix.

2.2 Sampling methods for Θ

Given a prior distribution for the collection of parameters Θ, say p(Θ), the posterior distribution for Θ has

the following form:

p(Θ|Y 1:n) ∝ l(Θ)p(Θ) =

[∫
p(Y 2:n|S2:n,Θ,Y 1)p(S2:n|Θ)dS2:n

]
p(Θ). (3)

The primary objective of this paper is MCMC sampling of the posterior distribution of Θ. Two approaches are

considered to this end. First, a marginalized (over the latent states S2:n) approach which targets (3) directly.

This approach is not new per se (see e.g. Scott, 2002, Section 2 for a discussion), but here the marginalized

approach is combined with the no-U-turn sampler of Ho�man and Gelman (2014), which can produce close

to iid samples while making the user responsible for very modest coding e�orts. Second, variants of Gibbs

sampling, which is the currently preferred method for Bayesian analysis of Markov-switching models (Scott,

2002), are used as references for the marginalized approach. The Gibbs sampling variants directly target the

latter representation of the posterior in (3) by sampling both Θ and S2:n, and implement the marginalization

by simply disregarding the samples produced for S2:n.

It has been argued (see e.g. Andrieu et al., 2010; Scharth and Kohn, 2016) that MCMC methods for

state space models that target the, typically relatively low-dimensional, collection of parameters directly

can lead to better mixing properties of the parameter chains than for Gibbs sampling with parameters and

latent states in di�erent blocks. This is a consequence of the typically strong and non-linear dependence

between latent states and parameters. Even if the latent vector is not partitioned into smaller blocks, a Gibbs

sampler may require a considerable amount of iterations to traverse the joint parameters and latent space.

Whether this also holds true for Markov-switching models, where both marginal likelihoods and sampling of

p(S2:n|θ,Y 1:n) are relatively cheap, is the main question this paper sets out to answer. The remainder of

this section describes the speci�c MCMC methodology used to this end.

2.2.1 MCMC based on marginal likelihood

Unlike pseudo-marginal methods for latent variable models, which must rely on computationally expensive

unbiased Monte Carlo estimates of the marginal likelihood, the (integrated over latent states) marginal

likelihood of a Markov-switching model can be computed analytically. The forward algorithm, detailed in

Algorithm 1, is used to calculate pointwise in Θ the marginal log-likelihood l(Θ) = log p(Y 2:n|Θ,Y 1), with
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complexity O(m2n).

Algorithm 1 Marginal log-likelihood

1: for 1 ≤ i ≤ m do

2: α2,i = log δi + log p(Y t|Y t−1,Θ−Q, St = i)
3: end for

4: for 3 ≤ t ≤ n do

5: for 1 ≤ i ≤ m do

6: αt,i = log

(∑m
j=1 exp

(
αt−1,i + logQj,i + log p(Y t|Y t−1,Θ−Q, St = i)

))

7: end for

8: end for

9: return l(Θ) = log p(Y 2:n|Θ,Y 1) = log
∑m

i=1 exp (αn,i)

Based on the ability to compute the posterior log kernel log p(Y 2:n|Θ,Y 1) + log p(Θ), most general

purpose MCMC methods, such as random walk Metropolis-Hastings and Metropolis-adjusted Langevin al-

gorithms (Robert and Casella, 2013), can in principle be applied. As the dimension of Θ is often rather

large (e.g. 20 for an unrestricted model with m = d = 2), it suits Hamiltonian Monte Carlo (HMC) (Neal,

2011), which exploits gradient information from the posterior log kernel to generate proposals that admit

fast exploration of the posterior. Speci�cally, HMC is used together with the no-U-turn sampler of Ho�man

and Gelman (2014); an extension to HMC that eliminates the need for user-speci�ed integration parameters.

Marginalizing over the latent states result in no inference for the states themselves, but this can be obtained

subsequently using the Viterbi algorithm (Viterbi, 1967), which calculates the most likely state sequence

given the observations and the parameter estimates.

2.2.2 Gibbs sampling

The tailor-made Gibbs samplers considered here relies on Gibbs blocks:

• Block 1: φ(1),φ(2), . . . ,φ(m),µ(1),µ(2), . . . ,µ(m),Σ(1),Σ(2), . . . ,Σ(m)|Y 1:n,S2:n. For an unrestricted

model (1) with conjugate priors (Gaussian for φ(S) and µ(S), and Inverse-Wishart for Σ(S)), this

step can be carried out using Bayesian regression software by treating observations and parameters

corresponding to the di�erent regimes separately.

• Block 2: Q|S2:n. Based on Dirichlet conjugate priors, this step requires minimal e�ort.

• Block 3: S2:n|Θ,Y 1:n.

Scott (2002) describes two di�erent ways of implementing Block 3; (1) direct Gibbs (DG) sampler, which

samples each individual state St given the most recent draws of the preceding state St−1 and proceeding

state St+1, and (2) the forward-backward (FB) Gibbs sampler, which uses recursive algorithms to sample

the whole state vector S2:n from its joint conditional posterior.
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The DG sampler is the simpler of the two methods, drawing each state from its marginal conditional

distribution (Albert and Chib, 1993):

p (St|S−t,Y 1:n) ∝





δS2
p (Y 2|Y 1, S2) p (S3|S2) t = 2,

p (St|St−1) p (Y t|Y t−1, St) p (St+1|St) t = 3, 4, 5, . . . , n− 1,

p (Sn|Sn−1) p (Y n|Y n−1, Sn) t = n,

where S−t = {Si : i 6= t}. The more sophisticated FB sampler reduces the number of highly correlated

variables in the Gibbs Markov chain by sampling the complete state vector S2:n in one operation, resulting

in faster convergence. This is accomplished by adopting the following stochastic backward recursion (Chib,

1996; Krolzig, 1997):

p (S2:n|Y 1:n) = p (Sn|Y 1:n)

n−2∏

t=1

p (Sn−t|Sn−t+1,Y 1:n) .

The factor p (Sn|Y 1:n) is e�ciently calculated using the forward algorithm. As the distribution of p (Sn−t|Sn−t+1,Y 1:n)

is equal to p (Sn−t|Sn−t+1,Y 1:n−t) (Kim, 1994), it follows that

p (S2:n|Y 1:n) ∝ p (Sn|Y 1:n)
n−2∏

t=1

p (Sn−t+1|Sn−t) p (Sn−t|Y 1:n−t) ,

where p (Sn−t|Y 1:n−t) , t ∈ (2, 3, . . . , n− 1) are by-products from the calculation of p (Sn|Y 1:n).

2.3 Implementation

Simulations are conducted using both methods described in Section 2.2. The marginalized approach is

implemented using Stan (Stan Development Team, 2016); a programming language in which the user can

code their models in familiar notation, that is transformed to e�cient C++ code and compiled into an

executable program. In particular, Stan has automatic routines for tuning the HMC sampler and uses

automatic di�erentiation (Griewank and Walther, 2008) to compute the gradient of the log-target. Thus,

the �ne details of implementing HMC is hidden for the user, who is only responsible for providing prior

speci�cations and specifying the relevant model via the marginal log-likelihood. In this case, the marginal

log-likelihood is calculated using Algorithm 1, and is added to Stan using the log probability increment

statement �target +=�. The Viterbi algorithm may be e�ciently implemented in Stan's generated quantities

block (Stan Development Team, 2016, Section 9.6).

Gibbs sampling is implemented using a statistical software package called JAGS; Just Another Gibbs

Sampler (Plummer, 2013). JAGS uses Gibbs sampling in the form of univariate slice sampling updates to
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produce MCMC output, given a model speci�ed in the BUGS language. Notice in particular that JAGS does

not exploit conjugacy, and can therefore handle a wide range of models. Moreover, as JAGS uses univariate

updates, it is a DG sampler. Both Stan and JAGS are coded in C++, and can both be used through R (R

Core Team, 2016) interfaces.

The e�ciency of the Stan and JAGS implementations are also compared to tailor-made Gibbs samplers

according to Blocks 1-3 above, where Block 3 is implemented both as DG and FB. To get comparable

run times, the tailor-made Gibbs samplers are implemented using the R package Rcpp by Eddelbuettel and

François (2011), which makes it possible to run compiled C++ code in R (The R interface for Stan is also

made using this package). Aside from the mentioned di�erence in how the latent states are sampled, the DG

and FB samplers are identical. The multivariate regressions in Block 1 are carried out using the R package

bayesm by Rossi (2015).

At this point, it is worth mentioning that in many applications, restrictions on the parameters may

severely complicate Block 1 of the Gibbs sampler. Such restrictions are routinely imposed, e.g in order to

reduce the number of parameters or to carry out hypothesis tests. In the model considered in Section 3.3, the

mean structure of (1) is shared by all regimes. Subsequently, the (weighted) regressions required to sample

φ,µ become non-standard and must be coded from scratch. In addition, relaxing the Gaussian assumption

on εt may also complicate Step 1, as parameter conjugacy is typically lost. It is worth noticing that these

complications only applies to Gibbs samplers of the type indicated in Blocks 1-3 above, whereas for Stan

and JAGS, changing speci�cation either by parameter restrictions or distributional assumptions does not

lead to substantial changes to the code.

2.4 Label switching

Unsupervised Markov-switching models typically result in multimodal posteriors due to label switching;

see, e.g., Stephens (2000); Frühwirth-Schnatter (2001); Jasra et al. (2005). If identical priors are chosen

for the parameters belonging to each state, the posterior likelihood is invariant to relabelling of the states.

This means that each state needs to be identi�able in some way to get meaningful results. A common

approach is to apply one or more identi�ability constraints, usually by ordering on one of the parameters,

for example µ(1),1 < µ(2),1... < µ(m),1. Such orderings are often imposed using auxiliary variables, e.g:

µ(2),1 = λ1µ(1),1, µ(3),1 = λ2µ(2),1, ... µ(m),1 = λm−1µ(m−1),1, λi > 1 ∀i.

In the frequentist approach, arti�cial identi�ability constraints can be used to break the symmetry in

the likelihood (Jasra et al., 2005). In the Bayesian context, constraints that ignore the geometry of the

posterior does generally not induce a unique labelling (Frühwirth-Schnatter, 2001), so the constraints should
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be chosen carefully. There has been some scepticism in the literature regarding the e�ects that identi�ability

constraints may have on MCMC samplers; see, e.g., Stephens (1997); Celeux et al. (2000). It is argued that

the identi�ability constraints should be imposed after the MCMC run has �nished, removing any risk of

undesired e�ects on the sampler. In fact, applying constraints post-simulation is equivalent to changing the

prior distribution (Stephens, 1997). Another bene�t of this method is the possibility to check the e�ects of

di�erent identi�ability constraints without re-running the MCMC sampler.

In the following numerical comparisons, identi�ability constraints are imposed post-simulation, using the

R package label.switching (Papastamoulis, 2016). This approach is in particular chosen as it does not

interfere with exploiting conjugacy in the tailor-made Gibbs samplers. For the approach based on Stan, it

is likely that implementations based on well-chosen identi�ability constraints would lead to more e�cient

sampling by removing multimodality in the target distribution, while requiring minimal coding e�orts.

3 Numerical comparison

In this section, the proposed methodology is compared to the relevant alternatives using two models:

• An unrestricted two-dimensional, two-state case of (1).

• A model used in an economic study with quarterly observations by Lanne et al. (2010), namely a

restricted three-dimensional, two-state case of (1), with an additional three autoregressive lags:

Y t = φ1Y t−1 + φ2Y t−2 + φ3Y t−3 + φ4Y t−4 + µ+ εt, εt ∼ N
(
0,Σ(St)

)
, Y t ∈ R3, (4)

where the Markov-switching is con�ned to the covariance structure. MS-VAR models with this re-

striction has proven successful in several applications (Sims and Zha, 2006; Sims et al., 2008; Bloom,

2009).

For both models, the numerical comparisons will focus on data sets with transitions between states of low and

high volatility, thereby making ordering of the variances a natural identi�ability constraint. For simplicity,

this ordering is only applied to the �rst component of the variance, making Σ(1),11 < Σ(2),11 the identi�ability

constraint.

To ensure robustness, di�erent sets of initial values are used for each MCMC chain. Each set of initial

values is a random draw from the respective prior distributions, and the same sets are used for each method.

However, the main purpose is to compare the e�ciency for the stationary part of the MCMC simulations, so

a su�cient amount of burn-in is applied to ensure stationarity. 1500 iterations are used for the simulations,
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of which the �rst 500 are considered as burn-in iterations. Eight MCMC chains are used, i.e. the same

simulation is repeated eight times for each simulation method, resulting in a total of 8000 samples after

warm-up. All the simulation methods are implemented with multi-core support and run on a computer with

a quad-core processor (Intel Core i5-6500), meaning that eight chains are simulated in about double the

computational time of a single chain.

3.1 Prior distributions

Conjugate priors are chosen to simplify the implementation of the tailor-made Gibbs samplers. A Dirich-

let(1,1) prior is used for the rows of the transition probability matrix, a N (0, 0.22) prior for each component

of the mean vector and a N (0, 1) prior for each of the elements of the autoregressive coe�cient matrix. An

Inverse-Wishart (Id,d+ 1) prior (Id is the d× d identity matrix) is used for the covariance matrices. JAGS

only operates with precision matrix, so Wishart priors are used for those, before they �nally are inverted

to get the covariance matrix. It appears that the Wishart sampler in JAGS is quite limited, so instead

of sampling directly from the Wishart distributions, Wishart samples are constructed using the Bartlett

decomposition (Kshirsagar, 1959).

Stan supports the Inverse-Wishart prior, but the Bartlett decomposition proved to be more e�cient.

Stan also o�ers the possibility to use a Cholesky LKJ prior (Stan Development Team, 2016, Section 59.2)

for the correlation matrices, combined with separate priors for the standard deviations. This prior results in

roughly 20 % less computational time for Stan. To ensure that the results of Stan and JAGS are comparable,

the Bartlett decomposition is used for both implementations. However, the reader should keep in mind that

the Stan code could have run a bit faster just by changing the covariance prior.

3.2 Unrestricted model

In order to obtain a robust comparison of the methods presented in Section 2, both real and simulated data

with diverse characteristics are considered. The simulated data set consists of 2500 observations generated

using chosen values for all the parameters in (1). Both regimes are chosen to be highly persistent, with

Q11 = 0.97 and Q22 = 0.9, with the variance of regime 1 chosen to be lower than the variance of regime

2. The complete set of chosen parameter values is included in Table 1. The real data sets contain exchange

rates, interest rates and crude oil prices, and are shown in Figure 1 together with the simulated data set.

For the real data sets, log returns of the raw data are used, scaled by 100. The exchange rate data set

ranges from January 2010 to November 2016, and includes 1725 observations of the exchange rate for US

dollars in Norwegian kroner (NOK) and Swedish kronor (SEK). The interest rate data set includes 1469
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Figure 1: Plots of a simulated data set and three real data sets, all having two components. For the real
data sets, log returns of the raw data are used, scaled by 100.
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n = 750 n = 1500 n = 2500
ML-HMC JAGS FB DG ML-HMC JAGS FB DG ML-HMC JAGS FB DG

t(s) 513 243 3 2.3 598 568 4.4 2.8 863 975 6.3 3.9
Q11 16 2 176 119 12 1.4 123 91 8.1 0.8 70 46
Q22 16 0.2 235 130 13 1 205 117 8.2 1.1 139 53
µ(1),1 16 6.1 1317 613 13 3.3 1364 1038 9.3 2.6 870 660
µ(1),2 16 9.2 1666 596 13 4.4 1259 846 9.3 2.7 893 605
µ(2),1 16 6.6 1400 958 13 5.4 1271 887 9.3 2.1 840 604
µ(2),2 16 2.9 1124 395 13 4 1059 635 9.3 1.6 732 363
Σ(1),11 16 0.3 906 346 12 1.5 569 144 9.3 1 399 180
Σ(1),12 16 4.4 1626 399 13 1.9 917 167 9.3 1.5 863 550
Σ(1),22 16 0.6 1337 424 13 1.7 883 175 9.3 1.2 593 169
Σ(2),11 16 1 639 182 13 1.6 531 148 9.3 1.6 531 139
Σ(2),12 16 19 1408 524 13 3.4 1456 663 8.4 2.2 995 854
Σ(2),22 16 5 672 215 13 1.9 726 162 8.8 1.7 441 212
φ(1),11 12 0.4 873 279 8.3 0.4 692 236 6.1 0.2 617 200
φ(1),12 12 0.4 859 284 8.4 0.4 700 239 5.6 0.3 613 227
φ(1),21 10 0.4 1133 348 8.2 0.5 911 679 5.5 0.4 813 574
φ(1),22 10 0.4 1090 319 9 0.4 866 591 6 0.4 776 548
φ(2),11 14 0.5 1622 672 9 2.3 1262 359 6.6 1.5 945 513
φ(2),12 14 7.4 1441 648 9.2 1.8 932 322 6.3 1.5 884 497
φ(2),21 14 2.5 1786 717 9.6 2.6 1510 1511 7.2 1.9 1064 902
φ(2),22 14 0.3 1262 425 8.8 1.5 946 570 6.4 1.4 1010 734

Table 1: The parameter estimates' e�ective sample size per second, for simulated data sets with three
di�erent observation sizes. The results are calculated from a collection of 8 chains with 1000 (500 warm-up)
iterations each, treated as a single chain.

observations of the 3-Month Treasury Bill and the 3-Month London Interbank O�ered Rate (LIBOR), and

ranges from January 2001 to December 2006. The oil price data set consists of 1999 observations of 1 and 5

months NYMEX WTI Crude Oil futures, from January 1984 to March 1992.

The simulated data set is treated as three di�erent data sets with di�erent observation size, namely the

�rst 750, 1500 and 2500 observations of the simulated data set. The estimates of all parameters in Θ are

approximately the same for all four methods mentioned in Section 2.3, and can be found in Table 9 for

the three di�erent observation sizes. Increasing the observation sample size results in less variation for the

parameter estimates, as should be expected. Table 1 shows the ESS/s for these estimates. HMC applied

to marginal likelihood (ML-HMC) clearly gives better ESS/s than JAGS, and also stands out regarding

stable ESS/s values across the di�erent parameters. The other methods display considerable variation in

ESS/s levels for the di�erent parameter types, with the autoregressive coe�cients proving hardest to sample.

Table 1 also shows that the tailor-made Gibbs samplers are extremely fast compared to the general software

packages. This big di�erence in computational time is also re�ected in the ESS/s results. However, the

greater performance of the tailor-made Gibbs samplers has to be weighed against the greater coding e�orts

required, in addition to less �exibility with respect to modelling changes.

Figure 2 shows how the computational time of ML-HMC and JAGS depends on the observation size. It

appears to increase linearly for both ML-HMC and JAGS, with a steeper slope for JAGS. It is also quite
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Figure 2: ML-HMC and JAGS median run time for 8 chains of 1000 (500 warm-up) iterations each, obtained
from simulated data sets with di�erent observation sizes, n. Vertical lines span from minimum to maximum
run time.

clear that ML-HMC has a higher variance in computational time for the di�erent MCMC chains, which is

due to independent tuning of the integrator step size for each chain. Table 1 shows that ML-HMC produces

the best ESS/s, even for the smallest data sets where JAGS runs much faster. This is because the di�erence

in computational time is outweighed by a massive ESS advantage of ML-HMC. Figure 3 illustrates how

the observation size a�ects the median e�ective sample sizes for two of the parameters in Θ. The ML-

HMC samples are close to being perfect samples (ESS equal to the full chain sample size of 1000), and

clearly superior to the JAGS samples. There are some variations in the ESS for both parameters with both

methods, but it appears to be nearly independent of observation size. This means that larger datasets will

further increase the e�ciency gap between ML-HMC and JAGS.

For the three real data sets shown in Figure 1, the estimates of all parameters in Θ can be found in

Table 10. The parameter estimates are still approximately the same for the di�erent simulation methods, as

for the simulated data set. Table 2 shows the ESS/s values for these estimates, showing that the sampling

e�ciency is not just dependent on the simulation method used and the observation size; the data set itself
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Figure 3: Median e�ective sample size for the estimates of parameters Q11 and φ(1),22 for 8 chains of 1000
(500 warm-up) iterations each, obtained from simulated data sets of di�erent observation sizes, n, using both
ML-HMC and JAGS. Vertical lines span from minimum to maximum ESS.

Exchange rate, n = 1725 Interest rate, n = 1469 Oil, n = 1999
ML-HMC JAGS FB DG ML-HMC JAGS FB DG ML-HMC JAGS FB DG

t(s) 605 654 4.7 2.9 187 537 4.2 2.7 1563 772 5 3.1
Q11 8.2 0.2 29 27 34 2.2 221 426 5.1 1.3 218 204
Q22 9.8 0.2 29 27 39 2.7 349 415 5.1 0.9 281 112
µ(1),1 12 1.5 858 319 35 8.1 1178 1726 5.1 0.7 1023 1278
µ(1),2 11 1.4 811 229 43 6.8 1183 1488 5.1 0.7 1165 1318
µ(2),1 10 1.4 137 51 39 12 1442 2384 5.1 1.6 1414 1866
µ(2),2 11 1.6 161 81 43 12 1441 2216 5.1 1.6 1410 1929
Σ(1),11 10 0.3 36 16 34 1.9 270 273 5.1 0.7 196 73
Σ(1),12 12 0.3 38 22 43 4.3 909 1352 5.1 0.7 215 79
Σ(1),22 11 0.3 35 20 29 0.9 130 130 5.1 0.5 219 84
Σ(2),11 10 0.3 82 15 33 2.1 341 282 5.1 0.6 230 83
Σ(2),12 13 0.6 123 27 43 6.5 730 1199 5.1 0.7 268 90
Σ(2),22 12 0.5 110 24 37 1.9 284 307 5 0.7 213 87
φ(1),11 7.8 0.3 645 252 43 7.6 1218 1578 2.9 0.05 854 695
φ(1),12 7.8 0.4 648 468 43 6.1 940 1166 2.8 0.04 861 681
φ(1),21 8 0.4 709 266 43 4.7 684 664 2.9 0.04 857 745
φ(1),22 8.2 0.4 513 287 37 3 533 687 2.8 0.04 860 692
φ(2),11 8.1 0.7 1163 1123 36 11 1802 3008 2.8 0.1 1584 2423
φ(2),12 9.9 0.7 1186 1182 40 10 1882 2898 2.9 0.1 1584 2572
φ(2),21 8.8 0.7 1151 1003 37 5.4 1015 949 2.8 0.1 1488 2572
φ(2),22 9 0.7 1034 987 36 11 1715 2880 2.8 0.1 1429 2572

Table 2: The parameter estimates' e�ective sample size per second, for three real data sets. The results are
calculated from a collection of 8 chains with 1000 (500 warm-up) iterations each, treated as a single chain.
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also has a considerable impact. Computational time varies substantially for ML-HMC for the three di�erent

data sets, even though they have similar observation sizes.

Anyhow, the overall performance of the four di�erent methods matches the �ndings for the simulated data

set: Using statistical software packages, the marginalization approach produces more e�cient samples than

Gibbs sampling, with stable performance across parameters. The tailor-made Gibbs sampler implementations

are very fast, but have the same issue with unstable performance across parameters, in addition to greater

coding e�orts and less �exibility.

3.3 Restricted model

Following Lanne et al. (2010), (4) is �t to a quarterly US macro data set, consisting of in�ation, unemployment

and an interest rate (3-Month Treasury Bill). A completely unrestricted model would result in too many

parameters to be determined by the relatively few observations available, and therefore the mean-structure

of the model is restricted to be invariant of the state. Still, the model has 53 parameters. As mentioned

in Section 2.3, the restriction of (4) complicates the implementation of the tailor-made Gibbs samplers

relative to the previous model, while only minor code changes are needed for the software packages. Table

3 shows the resulting parameter estimates and their ESS, using quarterly data from Q1 1960 to Q4 2017

(n = 232). JAGS was converging slowly for this model �t, requiring the burn-in to be increased from 500

to 20000 iterations, but the resulting ESS was still very low. Stan produces almost perfect samples, except

the autoregressive parameters. The computational time of the tailor-made Gibbs samplers is still superior,

and the FB version is performing quite stable across the parameters. Based on these observations, we see

that most of the observations made earlier also carries over to this situation with fewer observations and

substantially more parameters.

4 The joint dynamics of natural gas and oil prices

This section applies the sampling methods from Section 2.2 to estimate parameters for a model of the joint

dynamics of UK natural gas and Brent oil prices, extending the modelling approach in Asche et al. (2017).

The model used by Asche et al. (2017) is a one-dimensional, two-regime Markov-Switching Vector Error

Correction (MS-VECM) model with one autoregressive lag. The model is closely related to the MS-VAR

model, with the di�erence being an added error correction term. The latent state variables indicate the

connection between the natural gas and oil prices at each given time, with state 1 indicating decoupled

prices and state 2 indicating integrated prices. The use of only one dimension means that the natural gas

prices' in�uence on oil prices has to be modelled separately from the oil prices' in�uence on natural gas
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ML-HMC JAGS FB DG
Mean SD ESS/s Mean SD ESS/s Mean SD ESS/s Mean SD ESS/s

t[s] 3910 2021 5 5
Q11 0.9677 0.0146 2 0.9680 0.0145 1.4 0.9678 0.0144 1034 0.9680 0.0143 865
Q22 0.8955 0.0470 2 0.8908 0.0486 0.5 0.8943 0.0456 1056 0.8943 0.0469 504
µ1 0.1691 0.1319 2 0.1558 0.1316 0.1 0.1634 0.1342 1502 0.1647 0.1325 1046
µ2 0.0897 0.0679 2 0.0926 0.0688 0.1 0.0912 0.0691 1398 0.0930 0.0688 903
µ3 0.1126 0.0764 2 0.1229 0.0732 0.1 0.1119 0.0764 1594 0.1107 0.0757 1436
φ1,11 1.1521 0.0844 1.1 1.1537 0.0858 0.01 1.1533 0.0848 796 1.1540 0.0845 534
φ1,21 -0.0516 0.0268 1.1 -0.0524 0.0247 0.03 -0.0513 0.0270 1145 -0.0515 0.0269 947
φ1,31 0.0288 0.0315 1.3 0.0207 0.0283 0.03 0.0292 0.0312 1247 0.0293 0.0318 1030
φ1,12 -0.2614 0.1778 1.1 -0.2838 0.1615 0 -0.2599 0.1803 1223 -0.2648 0.1785 995
φ1,22 1.4312 0.0766 1 1.4390 0.0732 0 1.4302 0.0775 1214 1.4313 0.0776 871
φ1,32 -0.1249 0.0884 1.1 -0.1508 0.0587 0.01 -0.1251 0.0870 1212 -0.1242 0.0878 1025
φ1,13 0.0133 0.1610 1.1 0.0425 0.1910 0.01 0.0145 0.1613 998 0.0096 0.1609 812
φ1,23 0.1138 0.0630 1.2 0.0939 0.0739 0.01 0.1136 0.0639 1540 0.1134 0.0624 1389
φ1,33 1.3679 0.0739 1.4 1.3852 0.0594 0.01 1.3686 0.0732 1505 1.3701 0.0744 1076
φ2,11 -0.2031 0.1121 1.1 -0.1996 0.1232 0.01 -0.2018 0.1130 1075 -0.2023 0.1125 723
φ2,21 0.0458 0.0338 1.1 0.0452 0.0327 0.02 0.0451 0.0337 1399 0.0452 0.0337 1118
φ2,31 -0.0086 0.0406 1.2 -0.0044 0.0383 0.02 -0.0091 0.0396 1338 -0.0083 0.0402 1171
φ2,12 0.0701 0.2955 1 0.1569 0.2686 0 0.0632 0.2957 1439 0.0704 0.2951 1211
φ2,22 -0.3686 0.1313 1 -0.3834 0.1253 0 -0.3669 0.1317 1461 -0.3679 0.1314 1108
φ2,32 0.1801 0.1542 0.9 0.2181 0.1186 0 0.1808 0.1521 1216 0.1782 0.1539 982
φ2,13 -0.0352 0.2516 1.1 -0.0628 0.2607 0 -0.0379 0.2534 1248 -0.0321 0.2518 1124
φ2,23 -0.1145 0.1078 1 -0.0896 0.1058 0.01 -0.1139 0.1075 1338 -0.1143 0.1058 1369
φ2,33 -0.2255 0.1243 1 -0.2362 0.0948 0.01 -0.2249 0.1228 1470 -0.2287 0.1254 1010
φ3,11 0.1266 0.1108 1.1 0.1000 0.1097 0.01 0.1222 0.1113 846 0.1218 0.1132 611
φ3,21 -0.0256 0.0329 1.1 -0.0226 0.0369 0.01 -0.0249 0.0336 1249 -0.0252 0.0336 942
φ3,31 -0.0063 0.0436 1 -0.0009 0.0366 0.02 -0.0068 0.0423 806 -0.0079 0.0425 453
φ3,12 0.1810 0.2962 1 0.0308 0.2093 0 0.1829 0.2907 1318 0.1810 0.2957 1046
φ3,22 -0.1265 0.1277 1 -0.1254 0.1152 0 -0.1253 0.1270 1537 -0.1272 0.1271 1192
φ3,32 -0.0687 0.1503 0.8 -0.0753 0.0944 0 -0.0700 0.1459 1396 -0.0684 0.1486 1155
φ3,13 0.1814 0.2499 1 0.1540 0.1903 0.01 0.1809 0.2462 1224 0.1830 0.2445 927
φ3,23 0.0170 0.1042 1 0.0181 0.0770 0.01 0.0164 0.1035 1516 0.0162 0.1038 1427
φ3,33 -0.3157 0.1227 1 -0.3418 0.1033 0.01 -0.3173 0.1211 1288 -0.3149 0.1217 943
φ4,11 -0.1274 0.0748 1.2 -0.1034 0.0701 0.02 -0.1244 0.0744 957 -0.1245 0.0754 621
φ4,21 0.0398 0.0245 1.3 0.0379 0.0233 0.03 0.0396 0.0244 1305 0.0395 0.0242 1068
φ4,31 -0.0121 0.0316 1.1 -0.0135 0.0244 0.03 -0.0111 0.0306 794 -0.0109 0.0310 404
φ4,12 -0.0185 0.1683 1.1 0.0695 0.1355 0.01 -0.0143 0.1671 1024 -0.0151 0.1681 791
φ4,22 0.0327 0.0693 1.1 0.0381 0.0589 0 0.0304 0.0697 1356 0.0319 0.0692 941
φ4,32 -0.0014 0.0831 1.1 -0.0087 0.0400 0.01 -0.0005 0.0804 1143 -0.0002 0.0812 798
φ4,13 -0.0826 0.1449 1.1 -0.0613 0.1350 0.01 -0.0823 0.1413 1267 -0.0844 0.1400 716
φ4,23 -0.0049 0.0593 1.3 -0.0107 0.0519 0.01 -0.0045 0.0590 1576 -0.0032 0.0591 1432
φ4,33 0.1611 0.0686 1.3 0.1801 0.0591 0.01 0.1610 0.0689 1338 0.1609 0.0681 1157
Σ(1),11 0.1536 0.0202 2 0.1567 0.0198 0.4 0.1565 0.0209 806 0.1564 0.0211 450
Σ(1),12 -0.0219 0.0066 2 -0.0220 0.0067 0.3 -0.0225 0.0067 757 -0.0224 0.0066 513
Σ(1),22 0.0327 0.0038 2 0.0328 0.0038 0.4 0.0328 0.0039 1133 0.0328 0.0039 629
Σ(1),13 0.0183 0.0068 2 0.0188 0.0069 0.9 0.0187 0.0070 1042 0.0185 0.0069 955
Σ(1),23 -0.0033 0.0030 2 -0.0033 0.0030 1 -0.0033 0.0030 1247 -0.0033 0.0030 1018
Σ(1),33 0.0415 0.0051 2 0.0411 0.0050 0.4 0.0411 0.0051 881 0.0411 0.0050 536
Σ(2),11 3.7647 0.8162 1.7 4.0257 0.9612 0.1 3.9467 0.9032 1024 3.9492 0.9357 544
Σ(2),12 -0.3421 0.1380 1.9 -0.3705 0.1595 0.1 -0.3576 0.1455 1025 -0.3572 0.1475 759
Σ(2),22 0.1806 0.0388 1.9 0.1865 0.0425 0.2 0.1827 0.0409 1080 0.1830 0.0413 790
Σ(2),13 0.2853 0.1582 2 0.2973 0.1693 0.2 0.3020 0.1681 1135 0.3042 0.1691 954
Σ(2),23 0.0049 0.0326 2 0.0061 0.0345 0.2 0.0038 0.0339 1337 0.0038 0.0335 1247
Σ(2),33 0.2729 0.0606 2 0.2644 0.0587 0.1 0.2659 0.0585 1204 0.2655 0.0593 821

Table 3: The parameter estimates and their e�ective sample size per second, for the US macro data set. The
results are calculated from a collection of 8 chains with 1000 (excluding warm-up) iterations each, treated
as a single chain.
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method Q11 Q22 µ(1),1 µ(1),2 µ(2),1 µ(2),2 Σ(1),11 Σ(1),12 Σ(1),22 Σ(2),11 Σ(2),12 Σ(2),22

ML-HMC 0.9533 0.9357 -0.0303 0.0206 -0.0088 -0.0048 0.0013 0.0001 0.0011 0.0086 0.0002 0.0028
( 0.0156) ( 0.0234) ( 0.0067) ( 0.0058) ( 0.0073) ( 0.0042) ( 0.0001) ( 0.0001) ( 0.0001) ( 0.0008) ( 0.0003) ( 0.0002)

JAGS 0.9384 0.9351 -0.0224 0.0244 -0.0123 -0.0037 0.0010 0.0001 0.0009 0.0078 0.0001 0.0026
( 0.0197) ( 0.0245) ( 0.0098) ( 0.0071) ( 0.0070) ( 0.0039) ( 0.0001) ( 0.0001) ( 0.0001) ( 0.0007) ( 0.0002) ( 0.0002)

FB 0.9388 0.9432 -0.0169 0.0045 -0.0222 0.0111 0.0058 0.0002 0.0022 0.0040 0.0002 0.0017
( 0.0335) ( 0.0284) ( 0.0122) ( 0.0131) ( 0.0119) ( 0.0132) ( 0.0036) ( 0.0002) ( 0.0009) ( 0.0035) ( 0.0002) ( 0.0009)

DG 0.9428 0.9443 -0.0188 0.0086 -0.0203 0.0081 0.0049 0.0002 0.0019 0.0048 0.0002 0.0019
( 0.0265) ( 0.0310) ( 0.0120) ( 0.0142) ( 0.0122) ( 0.0136) ( 0.0037) ( 0.0002) ( 0.0009) ( 0.0036) ( 0.0002) ( 0.0009)

φ(1),11 φ(1),12 φ(1),21 φ(1),22 φ(2),11 φ(2),12 φ(2),21 φ(2),22 α(1),1 α(1),2 α(2),1 α(2),2

0.2221 -0.0458 0.0566 0.2001 0.0991 -0.0144 0.0099 0.2022 -0.0473 0.0260 -0.0398 -0.0042
( 0.0459) ( 0.0516) ( 0.0407) ( 0.0488) ( 0.0533) ( 0.0940) ( 0.0310) ( 0.0545) ( 0.0105) ( 0.0089) ( 0.0129) ( 0.0073)
0.2116 -0.0381 0.0692 0.1954 0.1151 -0.0268 0.0071 0.2031 -0.0350 0.0319 -0.0410 -0.0036

( 0.0536) ( 0.0521) ( 0.0484) ( 0.0504) ( 0.0505) ( 0.0858) ( 0.0292) ( 0.0501) ( 0.0154) ( 0.0111) ( 0.0118) ( 0.0066)
0.1452 -0.0245 0.0282 0.2001 0.1766 -0.0358 0.0386 0.2012 -0.0430 0.0068 -0.0445 0.0147

( 0.0747) ( 0.0672) ( 0.0384) ( 0.0437) ( 0.0740) ( 0.0580) ( 0.0392) ( 0.0406) ( 0.0112) ( 0.0162) ( 0.0102) ( 0.0164)
0.1615 -0.0289 0.0340 0.2006 0.1631 -0.0333 0.0342 0.2012 -0.0426 0.0120 -0.0438 0.0109

( 0.0757) ( 0.0652) ( 0.0399) ( 0.0428) ( 0.0753) ( 0.0629) ( 0.0386) ( 0.0426) ( 0.0112) ( 0.0180) ( 0.0112) ( 0.0171)

Table 4: Parameter estimates, with their respective standard deviation in parenthesis, for the data set with
oil and natural gas prices. Normal distributed error terms. The results are calculated from a collection of 8
chains with 1000 (500 warm-up) iterations each, treated as a single chain.

prices. Asche et al. (2017) study mainly the oil prices' in�uence on natural gas prices, as the oil price is

considered to be largely exogenous to the natural gas market.

The parameters for the joint dynamics of natural gas and oil prices are estimated using a two-dimensional,

two-regime Markov-Switching Vector Error Correction (MS-VECM) model with one autoregressive lag:




∆Y t,1

∆Y t,2


 =



φ(St),11 φ(St),12

φ(St),21 φ(St),22







∆Y t−1,1

∆Y t−1,2


+



µ(St),1

µ(St),2


+



α(St),1

α(St),2


 zt−1 +



εt,1

εt,2


 , (5)



εt,1

εt,2


 ∼ N

(
0,Σ(St)

)
, Y t ∈ R2, St ∈ (1, 2, . . . ,m), t ∈ (2, 3, 4, . . . , n),

where ∆Y t = Y t−Y t−1 and zt−1 = Y t,1−Y t,2. Here Y is a n×2 matrix, where the �rst column contains

natural gas prices and the second column contains oil prices. As the error correction term is the only

deviation from (1), (5) can be treated as an MS-VAR with a varying mean term µ∗
(St) = µ(St) +α(St)zt−1,

only requiring a slight adjustment of the implementations used in Section 3.2.

The parameters are estimated using the log prices for natural gas and oil, thus modelling the log returns

shown in Figure 4. The resulting values are not too far from unit scale, so no further scaling of the data is

needed. However, smaller variance estimates are expected for this data set, so an Inverse-Wishart( 1
30I2,3)

prior is used on the covariance matrices. Asche et al. (2017) �nd that state 2 has eight times higher variance

than state 1, meaning that it is reasonable using the identi�ability constraint from Section 3. The resulting

parameter estimates for (5) are given in Table 4. The ESS/s values are shown in Table 5.

To illustrate one of the main bene�ts of the software packages compared to tailor-made Gibbs samplers,
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Figure 4: Plot of the log returns of oil and natural gas prices. The data set consists of 904 weekly observations,
from March 1997 to April 2014.

method t(s) Q11 Q22 µ(1),1 µ(1),2 µ(2),1 µ(2),2 Σ(1),11 Σ(1),12 Σ(1),22 Σ(2),11 Σ(2),12

ML-HMC 627 11 11 12 12 13 13 13 13 13 13 13
JAGS 335 0.7 0.4 0.1 0.5 1.1 4.6 0.3 4.2 1.1 0.4 9.3
FB 3 107 79 4.8 3.7 5.1 3.3 2.7 1831 2.3 2.5 673
DG 2 54 52 7.7 4.1 7.3 4.9 2.9 560 2.7 3 878

Σ(2),22 φ(1),11 φ(1),12 φ(1),21 φ(1),22 φ(2),11 φ(2),12 φ(2),21 φ(2),22 α(1),1 α(1),2 α(2),1 α(2),2

13 13 13 13 13 13 13 13 13 12 12 13 13
0.4 1.6 3.3 1.7 4 4.9 12 7.3 15 0.1 0.4 2.1 5.2
2.3 6.2 221 25 605 6.2 207 27 449 147 4.3 144 4.8
3.1 8.1 362 25 491 9.5 310 22 483 64 5.5 72 4.6

Table 5: The parameter's e�ective sample size per second, for the data set with oil and natural gas prices.
Normal distributed error terms. The results are calculated from a collection of 8 chains with 1000 (500
warm-up) iterations each, treated as one single chain.
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Q11 Q22 µ(1),1 µ(1),2 µ(2),1 µ(2),2 Σ(1),11 Σ(1),12 Σ(1),22 Σ(2),11 Σ(2),12 Σ(2),22 φ(1),11
ML-HMC 0.9591 0.9731 -0.0174 0.0341 -0.0164 -0.0012 0.0008 0.0001 0.0008 0.0045 0.0001 0.0016 0.1897

( 0.0143) ( 0.0113) ( 0.0090) ( 0.0086) ( 0.0055) ( 0.0035) ( 0.0001) ( 0.0001) ( 0.0001) ( 0.0006) ( 0.0001) ( 0.0002) ( 0.0610)
JAGS 0.9572 0.9711 -0.0167 0.0343 -0.0163 -0.0015 0.0008 0.0001 0.0008 0.0046 0.0001 0.0017 0.1926

( 0.0146) ( 0.0122) ( 0.0083) ( 0.0085) ( 0.0055) ( 0.0035) ( 0.0001) ( 0.0001) ( 0.0001) ( 0.0006) ( 0.0001) ( 0.0002) ( 0.0616)

φ(1),12 φ(1),21 φ(1),22 φ(2),11 φ(2),12 φ(2),21 φ(2),22 α(1),1 α(1),2 α(2),1 α(2),2 ν(1) ν(2)
-0.0245 0.0945 0.2022 0.1435 -0.0296 0.0027 0.2197 -0.0275 0.0479 -0.0353 -0.0036 19.7326 6.7546
( 0.0535) ( 0.0648) ( 0.0555) ( 0.0403) ( 0.0704) ( 0.0240) ( 0.0424) ( 0.0142) ( 0.0137) ( 0.0090) ( 0.0056) (11.3163) ( 1.5143)
-0.0238 0.0877 0.1983 0.1414 -0.0279 0.0037 0.2188 -0.0262 0.0481 -0.0356 -0.0041 19.7323 6.7905
( 0.0516) ( 0.0656) ( 0.0555) ( 0.0400) ( 0.0708) ( 0.0244) ( 0.0434) ( 0.0130) ( 0.0133) ( 0.0090) ( 0.0055) (11.9735) ( 1.5004)

Table 6: Parameter estimates, with their respective standard deviation in parenthesis, for the data set with
oil and natural gas prices. Student-t distributed error terms. The results are calculated from a collection of
8 chains with 1000 (500 warm-up) iterations each, treated as one single chain.

method t(s) Q11 Q22 µ(1),1 µ(1),2 µ(2),1 µ(2),2 Σ(1),11 Σ(1),12 Σ(1),22 Σ(2),11 Σ(2),12 Σ(2),22

ML-HMC 1654 4.8 3.4 2.9 3.2 4.2 4.8 3.1 4.8 4.1 2.1 4.8 3
JAGS 875 0.4 0.1 0.1 0.1 0.9 0.7 0.2 0.5 0.6 0.1 5.4 0.3

φ(1),11 φ(1),12 φ(1),21 φ(1),22 φ(2),11 φ(2),12 φ(2),21 φ(2),22 α(1),1 α(1),2 α(2),1 α(2),2 ν(1) ν(2)
4.8 4.8 4.5 4.8 4.8 4.8 4.8 4.8 2.9 3.3 4.7 4.8 4.2 2.7
0.5 0.9 0.4 0.9 1.6 3.6 2.3 4.6 0.1 0.1 1.4 0.8 0.3 0.7

Table 7: The parameter's e�ective sample size per second, for the data set with oil and natural gas prices.
Student-t distributed error terms. The results are calculated from a collection of 8 chains with 1000 (500
warm-up) iterations each, treated as one single chain..

(5) is also estimated using student-t distributed errors, with ν(s) degrees of freedom. For JAGS and ML-

HMC, this model adjustment simply involves re-specifying the distribution of the error terms, which is done

in under a minute. For the Gibbs samplers, such a model adjustment would require almost a complete re-

writing of the code. The parameter estimates for (5) with student-t distributed errors are given in Table 6.

The estimated degrees of freedom are quite low (especially for the integrated regime), implying that student-t

distributed errors give a better model �t. The ESS/s values are shown in Table 7. Increased computational

time results in lower values than for the normal distributed errors.

Table 8 shows how the parameter estimates for (5) compare to the original estimates of Asche et al.

(2017). The inclusion of the natural gas prices' in�uence on oil prices gives similar results for the regime of

decoupled prices (state 1), while the parameter estimates for the integrated prices (state 2) are quite di�erent,

with the assumption of an exogenous oil price only holding in state 1 (as measured by the signi�cance of

the adjustment coe�cient α(S),2 on oil). The di�erence in the estimate of Q22 shows that (5) identi�es

longer-lasting integrated regimes, a�ecting the estimation of the other parameters.

5 Discussion

Two di�erent ways of implementing MCMC estimation of the parameters in Markov switching/hidden

Markov models with emphasis on MS-VAR models have been presented. E�ciency varies for di�erent

data sets and di�erent observation sizes for both methods, and suitable priors and identi�ability constraints
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Asche et al. (2017) Normal Student t
Q11 0.94 0.953 0.959
Q22 0.732 0.936 0.973
µ(1),1 -0.03 -0.030 -0.017
µ(1),2 - 0.021 0.034
µ(2),1 0.042 -0.009 -0.016
µ(2),2 - -0.005 -0.001
Σ(1),11 0.001 0.001 0.001
Σ(1),12 - 0.000 0.000
Σ(1),22 - 0.001 0.001
Σ(2),11 0.008 0.009 0.005
Σ(2),12 - 0.000 0.000
Σ(2),22 - 0.003 0.002
φ(1),11 0.237 0.222 0.190
φ(1),12 -0.053 -0.046 -0.024
φ(1),21 - 0.057 0.095
φ(1),22 - 0.200 0.202
φ(2),11 0.093 0.099 0.144
φ(2),12 0.026 -0.014 -0.030
φ(2),21 - 0.010 0.003
φ(2),22 - 0.202 0.220
α(1),1 -0.047 -0.047 -0.028
α(1),2 - 0.026 0.048
α(2),1 -0.022 -0.040 -0.035
α(2),2 - -0.004 -0.004
ν(1) - - 19.733
ν(2) - - 6.755

Table 8: The parameter estimates for the one-dimensional MS-VECM of Asche et al. (2017) compared to
the estimates for the two-dimensional model, using both normal and student-t distributed errors.

are crucial to get good results. Overall, the marginalization approach gives robust results with reasonable

e�ciency, and was quickly implemented using the statistical software package Stan. The Gibbs sampling

method was quickly implemented using the statistical software package JAGS, but is quite ine�cient. The

conjugacy-exploiting tailor-made Gibbs implementations are very e�cient, but require substantially greater

coding e�orts, and are not easily adaptable to modelling changes, parameter restrictions or explicit ordering

of regimes according to some form of interpretation. The marginalization approach has approximately equal

e�ciency for all parameters, unlike the Gibbs implementations.

The empirical part of this paper focuses on a two-dimensional, two-state model, but the methodology

extends easily to more complex models. Larger models will favour the general software packages, as increased

model dimension complicates the implementation of tailor-made solutions. The marginalized approach com-

bined with the NUTS sampler is likely to produce e�ective samples also for larger models, while increased

dimensionality may cause slower mixing for Gibbs samplers.

The latter observation is particularly relevant for larger models such as Markov switching variants of

structural form VARs, where the posterior distribution of the parameters is highly non-Gaussian (Waggoner

et al., 2016). Application of marginalized approach and Stan to such situations holds scope for future

research.
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A Appendix

n = 750 n = 1500 n = 2500
ML-HMC JAGS FB DG ML-HMC JAGS FB DG ML-HMC JAGS FB DG

Q11 0.9690 0.9696 0.9660 0.9662 0.9704 0.9706 0.9699 0.9695 0.9754 0.9751 0.9754 0.9749
( 0.0102) ( 0.0109) ( 0.0144) ( 0.0147) ( 0.0066) ( 0.0067) ( 0.0076) ( 0.0085) ( 0.0047) ( 0.0048) ( 0.0052) ( 0.0060)

Q22 0.8773 0.8681 0.8723 0.8787 0.8998 0.8995 0.8994 0.9002 0.9116 0.9111 0.9117 0.9103
( 0.0388) ( 0.0797) ( 0.0489) ( 0.0441) ( 0.0217) ( 0.0219) ( 0.0233) ( 0.0241) ( 0.0157) ( 0.0159) ( 0.0171) ( 0.0186)

µ(1),1 0.0060 0.0061 0.0057 0.0052 0.0041 0.0042 0.0041 0.0042 0.0048 0.0047 0.0048 0.0047
( 0.0073) ( 0.0073) ( 0.0072) ( 0.0073) ( 0.0048) ( 0.0048) ( 0.0048) ( 0.0048) ( 0.0037) ( 0.0037) ( 0.0037) ( 0.0036)

µ(1),2 0.0010 0.0012 0.0007 0.0005 0.0012 0.0012 0.0011 0.0012 0.0007 0.0005 0.0006 0.0006
( 0.0073) ( 0.0072) ( 0.0072) ( 0.0074) ( 0.0046) ( 0.0047) ( 0.0046) ( 0.0046) ( 0.0036) ( 0.0035) ( 0.0035) ( 0.0036)

µ(2),1 0.0306 0.0298 0.0308 0.0306 0.0090 0.0091 0.0089 0.0086 0.0072 0.0080 0.0071 0.0078
( 0.0246) ( 0.0360) ( 0.0228) ( 0.0230) ( 0.0160) ( 0.0163) ( 0.0154) ( 0.0158) ( 0.0138) ( 0.0136) ( 0.0132) ( 0.0133)

µ(2),2 0.0172 0.0155 0.0172 0.0171 -0.0050 -0.0052 -0.0045 -0.0050 -0.0106 -0.0104 -0.0105 -0.0107
( 0.0257) ( 0.0364) ( 0.0242) ( 0.0246) ( 0.0150) ( 0.0153) ( 0.0148) ( 0.0146) ( 0.0123) ( 0.0124) ( 0.0120) ( 0.0121)

Σ(1),11 0.0248 0.0251 0.0246 0.0245 0.0230 0.0231 0.0229 0.0229 0.0228 0.0228 0.0228 0.0228
( 0.0017) ( 0.0023) ( 0.0017) ( 0.0017) ( 0.0011) ( 0.0011) ( 0.0011) ( 0.0012) ( 0.0008) ( 0.0008) ( 0.0008) ( 0.0008)

Σ(1),12 0.0061 0.0062 0.0061 0.0060 0.0049 0.0049 0.0049 0.0049 0.0044 0.0044 0.0044 0.0044
( 0.0012) ( 0.0012) ( 0.0012) ( 0.0012) ( 0.0008) ( 0.0008) ( 0.0008) ( 0.0008) ( 0.0006) ( 0.0006) ( 0.0006) ( 0.0006)

Σ(1),22 0.0250 0.0251 0.0248 0.0246 0.0217 0.0217 0.0216 0.0216 0.0214 0.0213 0.0214 0.0213
( 0.0016) ( 0.0019) ( 0.0017) ( 0.0017) ( 0.0011) ( 0.0011) ( 0.0010) ( 0.0011) ( 0.0008) ( 0.0008) ( 0.0008) ( 0.0008)

Σ(2),11 0.0720 0.0905 0.0701 0.0693 0.0764 0.0766 0.0756 0.0756 0.0797 0.0797 0.0793 0.0794
( 0.0098) ( 0.3278) ( 0.0097) ( 0.0100) ( 0.0065) ( 0.0066) ( 0.0066) ( 0.0068) ( 0.0053) ( 0.0053) ( 0.0054) ( 0.0055)

Σ(2),12 0.0016 0.0046 0.0017 0.0021 0.0075 0.0076 0.0075 0.0077 0.0065 0.0064 0.0064 0.0065
( 0.0065) ( 0.1989) ( 0.0063) ( 0.0061) ( 0.0040) ( 0.0041) ( 0.0040) ( 0.0040) ( 0.0032) ( 0.0032) ( 0.0032) ( 0.0032)

Σ(2),22 0.0695 0.0942 0.0666 0.0659 0.0629 0.0630 0.0620 0.0619 0.0628 0.0629 0.0623 0.0625
( 0.0095) ( 0.8798) ( 0.0093) ( 0.0096) ( 0.0055) ( 0.0054) ( 0.0055) ( 0.0056) ( 0.0042) ( 0.0043) ( 0.0042) ( 0.0042)

φ(1),11 0.5870 0.5892 0.5847 0.5819 0.5780 0.5772 0.5766 0.5759 0.5773 0.5773 0.5775 0.5767
( 0.0309) ( 0.0426) ( 0.0317) ( 0.0328) ( 0.0226) ( 0.0234) ( 0.0230) ( 0.0236) ( 0.0171) ( 0.0174) ( 0.0170) ( 0.0175)

φ(1),12 0.3057 0.3040 0.3076 0.3095 0.3118 0.3124 0.3129 0.3134 0.3151 0.3151 0.3151 0.3156
( 0.0231) ( 0.0318) ( 0.0237) ( 0.0245) ( 0.0171) ( 0.0177) ( 0.0172) ( 0.0177) ( 0.0131) ( 0.0132) ( 0.0131) ( 0.0134)

φ(1),21 -0.0675 -0.0684 -0.0700 -0.0718 -0.0267 -0.0270 -0.0272 -0.0266 -0.0073 -0.0079 -0.0075 -0.0074
( 0.0302) ( 0.0329) ( 0.0310) ( 0.0323) ( 0.0210) ( 0.0204) ( 0.0213) ( 0.0211) ( 0.0153) ( 0.0157) ( 0.0154) ( 0.0153)

φ(1),22 1.0418 1.0422 1.0436 1.0450 1.0077 1.0081 1.0082 1.0076 0.9885 0.9891 0.9887 0.9884
( 0.0230) ( 0.0251) ( 0.0236) ( 0.0247) ( 0.0163) ( 0.0158) ( 0.0164) ( 0.0163) ( 0.0120) ( 0.0123) ( 0.0120) ( 0.0119)

φ(2),11 0.9269 0.9180 0.9275 0.9262 0.9563 0.9580 0.9565 0.9555 0.9486 0.9476 0.9490 0.9489
( 0.0453) ( 0.1456) ( 0.0460) ( 0.0460) ( 0.0275) ( 0.0277) ( 0.0272) ( 0.0277) ( 0.0208) ( 0.0205) ( 0.0209) ( 0.0210)

φ(2),12 0.0396 0.0397 0.0397 0.0408 0.0130 0.0120 0.0134 0.0143 0.0247 0.0253 0.0243 0.0245
( 0.0404) ( 0.1073) ( 0.0407) ( 0.0404) ( 0.0257) ( 0.0257) ( 0.0253) ( 0.0260) ( 0.0171) ( 0.0169) ( 0.0171) ( 0.0171)

φ(2),21 0.0843 0.0894 0.0854 0.0837 0.0667 0.0672 0.0661 0.0652 0.0558 0.0552 0.0553 0.0551
( 0.0460) ( 0.1171) ( 0.0445) ( 0.0448) ( 0.0236) ( 0.0236) ( 0.0235) ( 0.0239) ( 0.0176) ( 0.0179) ( 0.0180) ( 0.0180)

φ(2),22 0.9027 0.8894 0.9033 0.9038 0.9261 0.9253 0.9269 0.9280 0.9524 0.9523 0.9526 0.9533
( 0.0428) ( 0.1532) ( 0.0417) ( 0.0421) ( 0.0233) ( 0.0233) ( 0.0237) ( 0.0233) ( 0.0146) ( 0.0150) ( 0.0147) ( 0.0149)

Table 9: Parameter estimates, with their respective standard deviation in parenthesis, for simulated data
sets with three di�erent observation sizes. The results are calculated from a collection of 8 chains with 1000
(500 warm-up) iterations each, treated as a single chain.
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Exchange rate, n = 1725 Interest rate, n = 1469 Oil, n = 1999
ML-HMC JAGS FB DG ML-HMC JAGS FB DG ML-HMC JAGS FB DG

Q11 0.9540 0.9516 0.9392 0.9378 0.9099 0.9101 0.9080 0.9088 0.9481 0.9481 0.9476 0.9480
( 0.0156) ( 0.0174) ( 0.0450) ( 0.0385) ( 0.0121) ( 0.0125) ( 0.0130) ( 0.0130) ( 0.0079) ( 0.0080) ( 0.0085) ( 0.0086)

Q22 0.8641 0.8597 0.8465 0.8617 0.7821 0.7838 0.7818 0.7819 0.8736 0.8743 0.8741 0.8751
( 0.0418) ( 0.0431) ( 0.0744) ( 0.0594) ( 0.0275) ( 0.0281) ( 0.0295) ( 0.0305) ( 0.0201) ( 0.0207) ( 0.0208) ( 0.0221)

µ(1),1 -0.0167 -0.0169 -0.0159 -0.0153 0.0335 0.0339 0.0342 0.0344 0.0236 0.0240 0.0260 0.0251
( 0.0187) ( 0.0194) ( 0.0199) ( 0.0207) ( 0.0301) ( 0.0307) ( 0.0309) ( 0.0311) ( 0.0329) ( 0.0327) ( 0.0337) ( 0.0333)

µ(1),2 -0.0143 -0.0149 -0.0136 -0.0119 0.0495 0.0496 0.0497 0.0498 0.0088 0.0095 0.0108 0.0101
( 0.0187) ( 0.0195) ( 0.0199) ( 0.0211) ( 0.0082) ( 0.0084) ( 0.0083) ( 0.0082) ( 0.0283) ( 0.0280) ( 0.0290) ( 0.0287)

µ(2),1 0.1298 0.1273 0.1383 0.1252 -0.0459 -0.0478 -0.0711 -0.0736 -0.0552 -0.0536 -0.1092 -0.1071
( 0.0574) ( 0.0574) ( 0.0658) ( 0.0693) ( 0.1111) ( 0.1141) ( 0.1352) ( 0.1352) ( 0.1156) ( 0.1195) ( 0.1665) ( 0.1684)

µ(2),2 0.0895 0.0881 0.0979 0.0859 -0.0841 -0.0839 -0.0938 -0.0949 -0.0301 -0.0279 -0.0710 -0.0709
( 0.0524) ( 0.0513) ( 0.0579) ( 0.0604) ( 0.0626) ( 0.0618) ( 0.0657) ( 0.0656) ( 0.0943) ( 0.0973) ( 0.1322) ( 0.1340)

Σ(1),11 0.3834 0.3826 0.3736 0.3617 0.8041 0.8030 0.7956 0.8001 1.4043 1.4011 1.3915 1.3919
( 0.0226) ( 0.0236) ( 0.0359) ( 0.0445) ( 0.0480) ( 0.0492) ( 0.0504) ( 0.0516) ( 0.0761) ( 0.0769) ( 0.0809) ( 0.0913)

Σ(1),12 0.3150 0.3148 0.3065 0.2968 0.0022 0.0022 0.0016 0.0022 1.1275 1.1256 1.1177 1.1175
( 0.0209) ( 0.0216) ( 0.0315) ( 0.0384) ( 0.0076) ( 0.0077) ( 0.0077) ( 0.0077) ( 0.0625) ( 0.0631) ( 0.0660) ( 0.0740)

Σ(1),22 0.3826 0.3815 0.3719 0.3612 0.0557 0.0554 0.0544 0.0548 1.0517 1.0500 1.0426 1.0427
( 0.0241) ( 0.0251) ( 0.0375) ( 0.0445) ( 0.0046) ( 0.0049) ( 0.0051) ( 0.0054) ( 0.0565) ( 0.0569) ( 0.0594) ( 0.0663)

Σ(2),11 1.1914 1.1898 1.1690 1.1238 7.8381 7.8178 7.7435 7.7594 16.5159 16.4563 16.3451 16.3829
( 0.1118) ( 0.1092) ( 0.1343) ( 0.1661) ( 0.5888) ( 0.6101) ( 0.6185) ( 0.6402) ( 1.1421) ( 1.1298) ( 1.1851) ( 1.3036)

Σ(2),12 0.8108 0.8104 0.7993 0.7749 1.0651 1.0594 1.0503 1.0519 12.1196 12.0776 11.9979 12.0242
( 0.0828) ( 0.0810) ( 0.0904) ( 0.1042) ( 0.1946) ( 0.1967) ( 0.1960) ( 0.1962) ( 0.8628) ( 0.8452) ( 0.8918) ( 0.9711)

Σ(2),22 0.9430 0.9410 0.9292 0.9015 1.8325 1.8271 1.8039 1.8084 10.4835 10.4461 10.3761 10.3945
( 0.0869) ( 0.0835) ( 0.0946) ( 0.1111) ( 0.1425) ( 0.1460) ( 0.1462) ( 0.1523) ( 0.7217) ( 0.7069) ( 0.7456) ( 0.8124)

φ(1),11 -0.0159 -0.0140 -0.0184 -0.0145 -0.0757 -0.0759 -0.0755 -0.0750 -0.0564 -0.0648 -0.0585 -0.0564
( 0.0524) ( 0.0544) ( 0.0573) ( 0.0610) ( 0.0274) ( 0.0276) ( 0.0277) ( 0.0276) ( 0.0722) ( 0.0743) ( 0.0711) ( 0.0703)

φ(1),12 -0.0027 -0.0063 -0.0053 -0.0076 0.2077 0.2072 0.2084 0.2091 0.0282 0.0369 0.0300 0.0268
( 0.0525) ( 0.0532) ( 0.0565) ( 0.0590) ( 0.0875) ( 0.0887) ( 0.0894) ( 0.0901) ( 0.0843) ( 0.0892) ( 0.0836) ( 0.0828)

φ(1),21 -0.0049 -0.0035 -0.0067 -0.0045 0.0546 0.0547 0.0542 0.0543 -0.1550 -0.1626 -0.1565 -0.1553
( 0.0509) ( 0.0533) ( 0.0551) ( 0.0584) ( 0.0079) ( 0.0079) ( 0.0081) ( 0.0080) ( 0.0620) ( 0.0632) ( 0.0611) ( 0.0606)

φ(1),22 -0.0245 -0.0273 -0.0276 -0.0261 0.3205 0.3202 0.3213 0.3208 0.1414 0.1493 0.1426 0.1407
( 0.0515) ( 0.0527) ( 0.0565) ( 0.0582) ( 0.0265) ( 0.0270) ( 0.0271) ( 0.0272) ( 0.0727) ( 0.0755) ( 0.0721) ( 0.0716)

φ(2),11 0.0066 0.0020 0.0071 0.0037 0.0445 0.0436 0.0427 0.0422 -0.1153 -0.1118 -0.1242 -0.1213
( 0.0825) ( 0.0874) ( 0.0868) ( 0.0822) ( 0.0536) ( 0.0554) ( 0.0546) ( 0.0551) ( 0.1091) ( 0.1030) ( 0.1106) ( 0.1105)

φ(2),12 -0.0066 -0.0005 -0.0021 -0.0016 0.1864 0.1884 0.1872 0.1884 0.1968 0.1898 0.2059 0.2032
( 0.0935) ( 0.0976) ( 0.0954) ( 0.0900) ( 0.0849) ( 0.0883) ( 0.0857) ( 0.0882) ( 0.1364) ( 0.1287) ( 0.1389) ( 0.1392)

φ(2),21 0.0437 0.0413 0.0430 0.0395 0.3608 0.3600 0.3596 0.3597 -0.0468 -0.0428 -0.0547 -0.0519
( 0.0735) ( 0.0772) ( 0.0769) ( 0.0739) ( 0.0275) ( 0.0281) ( 0.0280) ( 0.0278) ( 0.0874) ( 0.0816) ( 0.0886) ( 0.0879)

φ(2),22 -0.0596 -0.0559 -0.0543 -0.0542 0.0910 0.0903 0.0907 0.0904 0.1040 0.0972 0.1123 0.1096
( 0.0839) ( 0.0875) ( 0.0866) ( 0.0819) ( 0.0422) ( 0.0422) ( 0.0417) ( 0.0428) ( 0.1094) ( 0.1022) ( 0.1108) ( 0.1109)

Table 10: Parameter estimates, with their respective standard deviation in parenthesis, for three real data
sets. The results are calculated from a collection of 8 chains with 1000 (500 warm-up) iterations each, treated
as a single chain.
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Abstract

We propose an importance sampling (IS)-based transport map Hamiltonian Monte Carlo procedure

for performing full Bayesian analysis in general nonlinear high-dimensional hierarchical models. Using

IS techniques to construct a transport map, the proposed method transforms the typically highly chal-

lenging target distribution of a hierarchical model into a target which is easily sampled using standard

Hamiltonian Monte Carlo. Conventional applications of high-dimensional IS, where infinite variance of

IS weights can be a serious problem, require computationally costly high-fidelity IS distributions. An

appealing property of our method is that the IS distributions employed can be of rather low fidelity,

making it computationally cheap. We illustrate our algorithm in applications to challenging dynamic

state-space models, where it exhibits very high simulation efficiency compared to relevant benchmarks,

even for variants of the proposed method implemented using a few dozen lines of code in the Stan

statistical software.

Keywords: Hamiltonian Monte Carlo; Importance Sampling; Transport Map; Bayesian hierarchical models;

State-space models; Stan

1 Introduction

Computational methods for Bayesian nonlinear/non-Gaussian hierarchical models is an active field of re-

search, and advances in such computational methods allow researchers to build and fit progressively more

complex models. Existing Markov chain Monte Carlo (MCMC) methods for such models fall broadly into

four categories. Firstly, Gibbs sampling is widely used, in part due to its simple implementation (see e.g.

Robert and Casella, 2004). However, a naive implementation updating latent variables in one block and
∗Corresponding author. Email: kjartan.osmundsen@gmail.com
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model parameters in another block can suffer from a very slow exploration (see e.g. Jacquier et al., 1994)

of the target distribution if this joint distribution implies a strong, typically nonlinear dependence structure

of the variables in the two blocks. Secondly, methods that update latent variables and parameters jointly

avoid the nonlinear dependence problem of Gibbs sampling. One such approach for joint updates is to use

Riemann manifold Hamiltonian Monte Carlo (RMHMC) methods (see e.g. Girolami and Calderhead, 2011;

Zhang and Sutton, 2014; Kleppe, 2018). However, they critically require update proposals which are prop-

erly aligned with the (typically rather variable) local geometry of the target, the generation of which can

be computationally demanding for complex high-dimensional joint posteriors of the parameters and latent

variables.

The third category is pseudo-marginal methods (see e.g. Andrieu et al., 2010; Pitt et al., 2012, and ref-

erences therein), which bypasses the problematic parameters and latent variables dependency by targeting

directly the marginal posterior of the parameters. Pseudo-marginal methods require, however, a low vari-

ance, unbiased Monte Carlo (MC) estimate of said posterior, which can often be extremely computationally

demanding for high-dimensional models (see e.g. Flury and Shephard, 2011). Moreover, for models with

many parameters, it can be difficult to select an efficient proposal distribution for updating the parameters if

the MC estimates for the marginal posterior are noisy and/or contain many discontinuities, which is typically

the case if the MC estimator is implemented using particle filtering techniques.

Finally, the fourth category is transport map/dynamic rescaling methods (see e.g. Parno and Marzouk,

2018; Hoffman et al., 2019), which rely on introducing a modified parameterization related to the original

parameterization via the nonlinear transport map. The transport map is chosen so that the target distri-

bution in the modified parameterization is more well behaved and allows MCMC sampling using standard

techniques. The Dynamically rescaled Hamiltonian Monte Carlo (DRHMC) approach of Kleppe (2019) in-

volves a recipe for constructing transport maps suitable for a large class of Bayesian hierarchical models, and

where the models are fitted using the (fixed scale) No-U-Turn Sampler (NUTS) Hamiltonian Monte Carlo

(HMC) algorithm (Hoffman and Gelman, 2014) implemented in Stan (Stan Development Team, 2019b).

The present paper also considers a transport map approach for Bayesian hierarchical models, and sample

from the modified target using HMC methods. However, the strategy for constructing the transport map

considered here is different from that of DRHMC. Specifically, DRHMC involves deriving the transport maps

from the model specification itself, and in particular it requires the availability of closed-form expressions

for certain precision- and Fisher information matrices associated with the model. Moreover, the DRHMC

approach is in practice limited to models containing only a certain class of nonlinearities which lead to

so-called constant information parameterizations.

Here, on the other hand, we consider transport maps derived from well-known importance sampling
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(IS) methods for the latent variables only. This approach relies only on the ability to evaluate the log-

target density (and potentially it’s derivatives) pointwise, and therefore bypasses the substantial analytic

tractability requirement of DRHMC. The proposed approach is consequently more automatic in nature, and

in particular applicable to a wider range of nonlinear models than DRHMC. Still, some analytical insight

into the model is beneficial in terms of computational speed when choosing the initial iterates of the involved

iterative processes.

A fortunate property of the proposed methodology, relative to conventional applications of high-dimensional

importance sampling (see e.g. Koopman et al., 2009), is that the importance densities applied within the

present framework may be of relatively low fidelity as long as they reflect the location and scale of the distri-

bution of the latent state conditioned both on data and parameters. Since parameters and latent variables

are updated simultaneously, the slow exploration of the target associated with Gibbs sampling is avoided.

Moreover, being transport map-based, rather than say RMHMC-based, the proposed methodology allows

for the application of standard HMC and in particular can be implemented with minimal effort in Stan.

The application of IS methods to construct transport maps also allows the proposed methodology to be

interpreted as a pseudo-marginal method, namely a special case (with simulation sample size n = 1) of the

pseudo-marginal HMC method of Lindsten and Doucet (2016). However, our focus on models with high-

dimensional latent variables generally precludes the application of ‘brute force’ IS estimators that do not

reflect information from the data (see, e.g., Danielsson, 1994). This is the case even for increased simulation

sample size of the IS estimate, as is possible in the general setup of Lindsten and Doucet (2016).

The rest of the paper is laid out as follows: Section 2 provides some background and Section 3 introduces

IS-based transport maps. Section 4 discusses specific choices of IS-based transport maps and Section 5

provides a simulation experiment where the fidelity vs computational cost tradeoff of the different transport

maps is explored numerically. Finally, Section 6 presents a realistic application and Section 7 provides some

discussion. The paper is accompanied by supplementary material giving further details in several regards,

and the code used for the computations is available at https://github.com/kjartako/TMHMC.

2 Background

This section outlines some background on HMC and why the application of HMC in default formulations

of hierarchical models is problematic. In what follows, we use N (x|µ,Σ) to denote the probability density

function of a N(µ,Σ) random vector evaluated at x, while ∇z and ∇2
z are used, respectively, for the

gradient/Jacobian and Hessian operator with respect to the vector z.
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2.1 HMC

Over the past decade, HMC introduced by Duane et al. (1987) has been extensively used as a general-purpose

MCMC method, often applied for simulating from posterior distributions arising in Bayesian models (Neal,

2011). HMC offers the advantage of producing close to perfectly mixing MCMC chains by using the dynamics

of a synthetic Hamiltonian system as proposal mechanism. The popular Bayesian modelling software Stan

(Stan Development Team, 2019b) is an easy to use HMC implementation based on the NUTS HMC algorithm

of Hoffman and Gelman (2014).

Suppose one seeks to sample from an analytically intractable target distribution with density kernel

π̃(q), q ∈ Ω ⊆ Rs. To this end, HMC takes the variable of interest q as the ‘position coordinate’ of a Hamil-

tonian system, which is complemented by an (artificial) ‘momentum variable’ p ∈ Rs. The corresponding

Hamiltonian function specifying the total energy of the dynamical system is given by

H(q,p) = − log π̃(q) +
1

2
p′M−1p, (1)

where M ∈ Rs×s is a symmetric, positive definite ‘mass matrix’ representing an HMC tuning parameter.

For near-Gaussian target distributions, for instance, setting M close to the precision matrix of the target

ensures the best performance. The law of motions under the dynamic system specified by the Hamiltonian

H is determined by Hamilton’s equations given by

d

dt
p(t) = −∇qH (q(t),p(t)) = ∇q log π̃(q),

d

dt
q(t) = ∇pH (q(t),p(t)) = M−1p. (2)

It can be shown that the dynamics associated with Hamilton’s equations preserves both the Hamiltonian (i.e.

dH (q(t),p(t)) /dt = 0) and the Boltzmann distribution π(q,p) ∝ exp{−H(q,p)} ∝ π̃(q) N (p|0s,M), in the

sense that if [q(t),p(t)] ∼ π(q,p), then [q(t+τ),p(t+τ)] ∼ π(q,p) for any (scalar) time increment τ . Based

on the latter property, a valid MCMC scheme for generating {q(k)}k ∼ π̃(q) would be to alternate between

the following two steps: (i) Sample a new momentum p(k) ∼ N(0s,M) from the p-marginal of the Boltzmann

distribution; and (ii) use the Hamiltonian’s equations (2) to propagate [q(0),p(0)] = [q(k),p(k)] for some

increment τ to obtain [q(τ),p(τ)] = [q(k+1),p∗] and discard p∗. However, for all but very simple scenarios

(like those with a Gaussian target π̃(q)) the transition dynamics according to (2) does not admit closed-

form solution, in which case it is necessary to rely on numerical integrators for an approximative solution.

Provided that the numerical integrator used for that purpose is symplectic, the numerical approximation

error can be exactly corrected by introducing an accept-reject (AR) step, which uses the Hamiltonian to

compare the total energy of the new proposal for the pair (q,p) with that of the old pair inherited from the
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previous MCMC step (see, e.g., Neal, 2011). More specifically each iteration of the HMC algorithm involves

the following steps

• Refresh the momentum p(k) ∼ N(0s,M).

• Propagate approximately the dynamics (2) from (q(0),p(0)) = (q(k),p(k)) to obtain (q∗,p*) ≈

(q(Lε),p(Lε)) using L symplectic integrator steps with time-step size ε.

• Set q(k+1) = q∗ with probability min(1, exp(H(q(k),p(k))−H(q∗,p∗)) and q(k+1) = q(k) with remain-

ing probability.

The most commonly used symplectic integrator is the Störmer-Verlet or leapfrog integrator (see, e.g.,

Leimkuhler and Reich, 2004; Neal, 2011). When implementing numerical integrators with AR-corrections it

is critical that the selection of the step size accounts for the inherent trade-off between the computing time

required for generating AR proposals and their quality reflected by their corresponding acceptance rates.

(q,p)-proposals generated by using small (big) step sizes tend to be computationally expensive (cheap) but

imply a high (low) level of energy preservation and thus high (low) acceptance rates. Finally, the energy

preservation properties of the symplectic integrator for any given step size critically relies on the nature of

the target distribution. It is taken as a rule of thumb for the remainder of the text that high-dimensional,

highly non-Gaussian targets typically require small step sizes and many steps, whereas high-dimensional

near-Gaussian targets can be sampled efficiently with rather large step sizes and few steps.

2.2 Hierarchical models and HMC

Consider a stochastic model for a collection of observed data y involving a collection of latent variables x

and a vector of parameters θ ∈ Rd with prior density p(θ). The conditional likelihood for observations y

given a value of the latent variable x ∈ RD is denoted by p(y|x,θ) and the prior for x by p(x|θ). This latent

variable model is assumed to be nonlinear and/or non-Gaussian so that both the joint posterior for (x,θ) as

well as the marginal posterior for θ are analytically intractable.

The joint posterior for (x,θ) under such a latent variable model, given by p(x,θ|y) ∝ p(y|x,θ)p(x|θ)p(θ),

can have a complex dependence structure. In particular, when the scale of x|θ,y varies substantially as a

function of θ in the typical range of p(θ|y), the joint posterior will be “funnel-shaped” (see Kleppe, 2019,

Figure 1 for an illustration). In this case, the HMC algorithm, as described in Section 2.1, for q = (xT ,θT )T

must be tuned for the most extremely scaled parts of the target distribution to ensure exploration of the

complete target distribution. This, in turn lead to a computationally wasteful exploration of the more

moderately scaled parts of the target, as the tuning parameters cannot themselves depend on q (under
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regular HMC). In addition, automated tuning of integrator step sizes (and mass matrices) crucially relies

on the most extremely scaled parts being visited during the initial tuning phase. If not, they may not be

explored at all.

3 Transport maps based on IS densities

To counteract such undesired extreme tuning, while avoiding computationally costly q-dependent tuning

such as RMHMC, the approach taken here involves “preconditioning” the original target so that the resulting

modified target is close to Gaussian and thus suitable for statically tuned HMC. Such preconditioning with

the aim of producing more tractable target distributions for MCMC methods have a long tradition, and

prominent examples are the affine re-parameterizations common for Gibbs sampling applied to regression

models (see, e.g., Gelman et al., 2014, Chapter 12). More recent approaches with such ends involve semi-

parametric transport map approach of Parno and Marzouk (2018), and, neural transport as described by

Hoffman et al. (2019). The approach taken here share many similarities with the dynamically rescaled HMC

approach of Kleppe (2019), but the strategy for constructing the transport map considered here is very

different and is applicable to more general models.

In a nutshell, a transport map, say T , is a smooth bijective mapping relating the original parameterization

q ∼ πq(q) and some modified parameterization q′ via q = T (q′). If q′ is some random draw ∼ πq′(q
′) =

πq(T (q′))|∇q′T (q′)|, then a draw distributed according to πq is achieved by simply applying the transport

map to q′. The aim of introducing this construction, is that T can be chosen so that πq′ is loosely speaking

"more suitable for MCMC sampling". In practice, this rather vague aim is replaced by making πq′ close to

a Gaussian distribution with independent components, which can be sampled very efficiently using HMC.

3.1 Transport maps for Bayesian hierarchical models

In the current situation involving a Bayesian hierarchical model, a transport map T that is non-trivial for

the latent variables only,

q =



θ

x


 = T (q′) =




θ

γθ(u)


 , q′ =



θ

u


 ,

is considered. The transport map specific to the latent variables, γθ : RD → RD is assumed to be a

smooth bijective mapping for each θ. As we have ∇uθ = 0 in the above transport map, it follows that

|∇q′T (q′)| = |∇uγθ(u)|, and thus the modified target distribution has the form:

π̃(θ,u|y) ∝ |∇uγθ(u)|p(θ) [p(y|x,θ)p(x|θ)]x=γθ(u) . (3)
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Notice in particular that the original parameterization of the latent variables is computed in each evaluation

of (3), and thus obtaining MCMC samples in the (θ,x) = (θ, γθ(u)) parameterization comes at no additional

cost when MCMC samples targeting (3) are available.

Further, let m(x|θ) denote the density of γθ(u) when u ∼ N(0D, ID). In particular, m(x|θ) is implicitly

related to the underlying standard Gaussian distribution via the change of variable formula: N (u|0D, ID) =

|∇uγθ(u)| [m(x|θ)]x=γθ(u). Consequently, eliminating the Jacobian determinant in (3) results in

π̃(θ,u|y) ∝ N (u|0D, ID)p(θ)ωθ(u), ωθ(u) =

[
p(y|x,θ)p(x|θ)

m(x|θ)

]

x=γθ(u)

. (4)

Representation (4) reveal that ifm(x|θ) = p(x|y,θ) (i.e. γθ(u) ∼ x|y,θ), the parameters and latent variables

exactly “decouples” and (3) and (4) reduces to N (u|0D, ID)p(θ|y) (see also Lindsten and Doucet, 2016, for

a similar discussion). Such a situation will be well suited for HMC sampling (provided of course that the

marginal likelihood p(θ|y) is reasonably well-behaved). Of course, such an ideal situation is in practice

unattainable when the model in question is nonlinear/non-Gaussian as neither p(θ|y) nor p(x|y,θ) will have

analytical forms. The strategy pursued here is therefore to take m(x|θ) as an approximation to p(x|y,θ)

in order to obtain an approximate decoupling effect, i.e. so that ωθ(u) is fairly flat across the region where

N (u|0D, ID) has significant probability mass.

3.2 Relation to importance sampling and pseudo-marginal methods

The ωθ(u) of (4) is recognized to be an importance weight targeting the marginal likelihood p(y|θ) (i.e.

Eu(ωθ(u)) = p(y|θ)) when u ∼ N(0D, ID). This observation is important for at least three reasons. Firstly,

it is clear that the large literature on importance sampling- and similar methods for hierarchical models

(among many others, Shephard and Pitt, 1997; Richard and Zhang, 2007; Rue et al., 2009; Durbin and

Koopman, 2012) may be leveraged to suggest suitable choices for importance density m(x|θ) or γθ(u).

Specific choices considered here are discussed in more detail in Section 4.

Secondly, as discussed, e.g., in Koopman et al. (2009), importance sampling-based likelihood estimates

such as ωθ(u) may have infinite variance and thus become unreliable, in particular in high-dimensional

applications. This occurs when the tails of m(x|θ) are thinner than those of the target distribution

p(x|θ,y) ∝ p(y|x,θ)p(x|θ), making ωθ(u) unbounded as a function of u. However, under the modified

target (4) the likelihood estimate is combined with the thin-tailed standard normal distribution in u, which

counteracts the potential unboundedness of the IS weight in the u-direction. This robustness with respect to

the infinite-variance problem is also evident in the representation (3) of the target, which does not explicitly

involve the importance sampling weight. Affine transport maps γθ(u), and consequently thin-tailed Gaussian
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importance densities m(x|θ), lead to the Jacobian determinant |∇uγθ(u)| being constant with respect to u.

Consequently, in this case the tail behavior of (3) with respect to u will be the same as the tail behavior of

p(θ,x|y) in x. Thus, the proposed methodology may be seen as a resolution of the infinite variance problems

complicating the application of high-dimensional importance sampling.

Finally, the proposed methodology may be seen as a special case of the pseduo-marginal HMC (PM-

HMC) method of Lindsten and Doucet (2016). PM-HMC relies on joint HMC sampling of a Monte Carlo

estimate of the marginal likelihood and the random variables used to generate said estimate. Lindsten and

Doucet (2016) find a similar decoupling effect by admitting their Monte Carlo estimate be based on n ≥ 1

importance weights (at the cost of increasing the dimensionality of u in their counterpart to (4)), and are

to a lesser degree reliant on choosing high-quality importance densities. In particular, Lindsten and Doucet

(2016) use m(x|θ) = p(x|θ) in their illustrations, which for moderately dimensional and low-signal-to noise

situations will produce a good decoupling effect for moderate n. However, in the present work we focus on

high-dimensional applications where it is well known that such “brute force” importance sampling estimators

can suffer from prohibitively large variances for any practical n (see, e.g., Danielsson, 1994), and thus focus

rather on higher fidelity importance densities and n = 1.

Lindsten and Doucet (2016) also propose a symplectic integrator suitable for HMC applications with

target distributions on the form (4) under the “close to decoupling” assumption. In the decoupling case

u 7→ ωθ(u) ∝ 1, the integrator reduces to a standard leapfrog integrator in the dynamics of θ, whereas the

dynamics of u (typically high-dimensional) are simulated exactly. This integrator will be referred to as the

LD-integrator in the example applications and is detailed in the supplementary material, Section A.

4 Specific choices of m(x|θ) and γθ(u)

As alluded to above, taking m(x|θ) = p(x|θ) may in cases where data y are rather un-informative with

respect to the latent variable x lead to satisfactory results (see e.g. Stan Development Team, 2019b, Section

2.5). However, as illustrated by e.g. Kleppe (2019), such procedures can lead to misleading MCMC results

if data are more informative with respect to the latent variables. An even more challenging situation with

m(x|θ) = p(x|θ) is when one or more elements of θ determine how informative the data are with respect to

the latent variables (e.g. σ when yi ∼ N(xi, σ
2)), as this may still lead to a funnel-shaped target distribution.

On the other hand, as illustrated by Kleppe (2019), rather crude transport maps reflecting only roughly the

location and scale of p(x|y,θ) may lead to dramatic speedups, and the resolution of funnel-related problems.

In the rest of this section, two families of strategies for locating transport maps are discussed. Both are well

known in the context of importance sampling, and are typically applicable when p(x|θ) is non-Gaussian.
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4.1 m(x|θ) and γθ(u) derived from approximate Laplace approximations

As explained e.g. in Rue et al. (2009), the Laplace approximation (also often referred to as the second order

approximation) for integrating out latent variables relies on approximating p(x|y,θ) with a N(hθ,G
−1
θ )

density, where

hθ = arg max
x

log [p(x|θ)p(y|x,θ)] ,

Gθ = −∇2
x log [p(x|θ)p(y|x,θ)]x=hθ

.

Namely, the first and second order derivatives of log p(x|y,θ) at the mode are matched with the same

derivatives of the approximating Gaussian log-density. Due to conditional independence assumptions often

involved in modelling, the negative Hessian of − log p(x|y,θ) is typically sparse which, when exploited, can

substantially speed up the associated Cholesky factorizations.

In the present situation, obtaining the exact mode hθ is typically not desirable from a computational

perspective. Rather, given an initial guesses for hθ and Gθ, say h
(0)
θ and G

(0)
θ , a sequence of gradually more

refined approximate solutions h
(k)
θ and G

(k)
θ are calculated via iterations of Newton’s method for optimization

or an approximation thereof (see supplementary material, Sections C and D for details specific to the models

considered shortly).

Finally, for some fixed number of iterations, K = 0, 1, 2, . . . , the transport map is taken to be

γθ(u) = h
(K)
θ +

(
L
(K)
θ

)−T
u, (5)

where L(K) is the lower triangular Cholesky factor of G
(K)
θ , so thatm(x|θ) = N

(
x|h(K)

θ ,
[
G

(K)
θ

]−1)
. Notice

in particular that the Jacobian determinant of γθ(u), required in representation (3) (or in the normalization

constant of m(x|θ) in (4)), takes a particularly simple form, namely |∇uγθ(u)| = |L(K)
θ |−1, when applying

the affine transport map (5). It should be noted that the applicability of the Laplace approximation relies

critically on that p(x|y,θ) is unimodal and log-concave in a region around the mode that also contains h
(0)
θ .

Choices of h
(0)
θ , G

(0)
θ and the iteration over k are inherently model specific. However, for a rather general

class of models, the initial guesses may be taken to be

G
(0)
θ = Gθ,x + Gθ,y|x (6)

h
(0)
θ =

(
G

(0)
θ

)−1
(Gθ,xhθ,x + Gθ,y|xhθ,y|x), (7)

where hθ,x and Gθ,x are the mean and precision matrix associated with x|θ. Further, hθ,y|x and Gθ,y|x are
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the mode, and the negative Hessian at the mode of x 7→ log p(y|x,θ). Note that Equations 6 and 7 corre-

spond to the precision and mean of the crude approximation ∝ N
(
x|hθ,x,Gθ,x

−1)N
(
x|hθ,y|x,Gθ,y|x

−1)

to p(x|θ)p(y|x,θ). Moreover, it is also in some cases possible to find approximations to the involved negative

Hessian that do not depend on x (see e.g. Kleppe, 2019), reducing the number of Cholesky factorization per

evaluation of (3) to one.

Interestingly, the approximate pseudo-marginal MCMCmethod of Gómez-Rubio and Rue (2018) is closely

connected to the proposed methodology with Laplace approximation-based transport maps. Specifically,

ωθ(0D) is the conventional Laplace approximation (see e.g. Tierney and Kadane, 1986) of p(y|θ) (modulus

the usage of an approximate mode and Hessian). By substituting ωθ(0D) for ωθ(u) in (3) (and integrating

analytically over u), the target distribution of Gómez-Rubio and Rue (2018) is obtained. Thus, the pro-

posed methodology with Laplace approximation-based transport maps may be regarded as variant of the

Gómez-Rubio and Rue (2018) method that corrects for the approximation error of the underlying Laplace

approximation.

4.2 m(x|θ) and γθ(u) derived from the Efficient Importance Sampler

The efficient importance sampler (EIS) algorithm of Richard and Zhang (2007) is a widely used technique

for constructing close to optimal importance densities, typically in the context of integrating out latent

variables. At its core, the EIS relies initially on eliciting a family of sampling mechanisms, say x = Γa(u),

Γa : RD 7→ RD, indexed by some, typically high-dimensional parameter a ∈ A. Moreover, for all a ∈ A, and

for u ∼ N(0D, ID), the density of Γa(u) is denoted by ma(x). The EIS algorithm proceeds by first sampling

a collection of “common random numbers” Z =
{
z(i)
}r
i=1

, z(i) ∼ iid N(0D, ID), i = 1, . . . , r, then selecting

an initial parameter a[0], and finally iterate over the below steps for j = 1, . . . , J :

• Sample latent states x(i) = Γa[j−1](z(i)), i = 1, . . . , r.

• Locate a new a[j] as a (generally approximate) minimizer (over a) of the sample variance of the

importance weights w(i)
a = p(y|x(i),θ)p(x(i)|θ)/ma(x(i)), i = 1, . . . , r.

An unbiased estimate of p(y|θ) is given by the means of conventional importance sampling (Robert and

Casella, 2004, Section 3.3) based on importance density ma[J](x), with random draws (from ma[J](x)) gen-

erated based on random numbers independent from z(i), i = 1, . . . , n.

Notice that the near optimal EIS parameter a[J] = a[J](θ,Z) generally depends both on θ and Z. In

the present context, for some fixed set of common random numbers Z and number of EIS iterations J , the

importance density of (4) is simply set equal to the EIS importance density, i.e. m(x|θ) = ma[J](θ,Z)(x).
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Notice in particular that the EIS iterations above must be repeated for each evaluation of (4), and that the

common random numbers must be kept fixed during each HMC iteration (which typically involve several

evaluations of (4) and its gradient), or throughout the whole MCMC simulation.

The EIS importance density is often regarded as more reliable than the Laplace approximation counter-

part, as it explicitly seeks to minimize the importance weight variation across typical outcomes of importance

density. In addition, the family of importance densities ma(x) may be constructed to highly non-Gaussian

densities, whereas the Laplace approximation importance density is multivariate Gaussian. On the other

hand, the EIS algorithm typically is substantially more costly in a computational perspective, whether this

additional computational effort pays of in terms of a better decoupling effect in (3,4) is sought to be answered

here.

The sketch of the EIS algorithm above is intentionally kept somewhat vague, as the actual details, both

in terms of selecting ma(x) and how the optimization step is implemented, depends very much on the model

specification at hand. A more detailed description of the EIS suitable for the models considered in the

simulation study discussed shortly is given in Section B of the supplementary material.

4.3 Implementation and Tuning Parameters

The proposed methodology has been implemented in two ways. Firstly, the Laplace approximation-based

methods are implemented in Stan using the modified target representation (3). This is also the case for the

reference method corresponding to mθ(x) = p(x|θ).

Secondly, we also consider a bespoke HMC implementation as outlined in Section 2.1, for q = (θT ,uT )T ,

targeting either (3, for Laplace approximation-based methods) or (4, for EIS-based methods). This HMC

method is based on the LD-integrator (see supplementary material, Section A) in order to better exploit

the approximate decoupling effects in the target, and was in particular included to explore the advantage of

using the LD-integrator over the leapfrog integrator in the present situation.

The mass matrix in the bespoke implementation was taken to be

M =




M̂θ 0d×D

0D×d ID


 ,

where M̂θ = −∇2
θ log [p̂(y|θ)p(θ)]θ=θ̂ and the simulated MAP θ̂ = arg maxθ log [p̂(y|θ)p(θ)] is obtained

from an EIS importance sampling estimate p̂(y|θ) of p(y|θ). Finding the approximate parameter marginal

posterior precision M̂θ is very fast and requires minimal additional effort as gradients of the importance

weight with respect to θ are already available via automatic differentiation (AD, to be discussed shortly).
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Notice that the mass matrix specific to u is take to be the identity to match the precision of the N(0D, ID)

“prior” of u in (3,4). As for the integrator step size ε and the number of integrator steps L, we retain L as a

tuning parameter while keeping the total integration time εL per HMC proposal fixed at ≈ π/2. This choice

of total integration time is informed by the expectation that θ,u|y under (3,4) will be close to a Gaussian

with precision matrix M. Moreover, whenever π̃(q) in (1) is Gaussian with precision M, the dynamics (2) are

periodic with period t = 2π, and choosing a quarter of such a cycle leads to HMC proposals q∗ independent

of the current configuration q(k) (see e.g. Neal, 2011; Mannseth et al., 2018). Finally, L is tuned by hand to

obtain acceptance rates around 0.9.

Both implementations rely on the ability to compute gradients of log-targets (3,4) with respect to both

θ and u. To this end, we rely on Automatic Differentiation (AD). In Stan, this is done automatically,

whereas in the bespoke implementation, the Adept C++ automatic differentiation software library (Hogan,

2014) is applied. Notice that for the Laplace approximation-based method, AD is applied to calculations of

band-Cholesky factorizations, and thus there may be room for improvement in CPU times if the AD libraries

supported such operations natively. The bespoke algorithm is implemented using the R (R Core Team, 2019)

package Rcpp by Eddelbuettel and François (2011), which makes it possible to run compiled C++ code in

R. Stan is used through its R interface rstan (Stan Development Team, 2019a), version 2.19.2. The same

C++ compiler was used for both the bespoke and Stan methods. All computations are performed using R

version 3.6.1 on a PC with an Intel Core i5-6500 processor running at 3.20 GHz.

5 Simulation study

This section presents applications of the proposed methodology to three non-Gaussian/nonlinear state-space

latent variable models for the purpose of benchmarking against alternative methods. State-space models

with univariate state were chosen as the Laplace approximation-based methods only require tri-diagonal

Cholesky factorizations, which are easily implemented in the Stan language. The specific models are selected

to illustrate the performance under different, empirically relevant, scenarios. In particular, the three models

exhibit significantly different, and variable signal-to-noise ratios, which as discussed above may modulate

the need for (non-trivial) transport map methods.

In the proceeding, different combinations of implementation (∈ {Stan, LD}) and transport map method

(∈ {Prior, Laplace, EIS, Fisher}) are considered, where “LD” refers to the bespoke HMC implementation with

LD integrator. Transport map “Prior” correspond to mθ(x) = p(x|θ) and is equivalent to carrying out the

simulations in an (θ,η)-parameterization where η = (η1, . . . , ηD)′ are a-priori standard normal disturbances

of the models to be discussed.
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Transport map method “Fisher” corresponds to Fisher information-based DRHMC approach of Kleppe

(2019) applied to the latent variables only (i.e. general DRHMC involves non-trivial transport maps for the

parameters also). Fisher also leads to an affine transport map γθ(u) = hF + L−TF u, LFLTF = GF . Here, GF

is the sum of the a-priori precision matrix of x and the Fisher information of the observations with respect

to x. Notice that this method requires both that said Fisher information is constant with respect to the

latent state, and that the p(x|θ) precision matrix has closed form, where the latter requirement limits its

applicability to the first two models considered below.

Methods LD-Prior and LD-Fisher were not carried out as the default tuning discussed in Section 4.3

work poorly in these cases. Moreover, Stan-EIS was also not considered as it was impractical to implement

the EIS algorithm in the Stan language. For each of the three models, the LD algorithm is simulated for

1,500 iterations, where the draws from the first 500 burn-in iterations are discarded. Stan uses (the default)

2,000 iterations with 1,000 burn-in steps also used for automatic tuning of the integrator step size and the

mass matrix. The reported computing times are for the 1,000 sampling iterations for both methods. Further

details for the different example models, including prior assumptions and details related to the Newton

iterations for the Laplace maps, are found in the supplementary material, Section C.

5.1 Stochastic Volatility Model

The first example model is the discrete-time stochastic volatility (SV) model for financial returns given by

(Taylor, 1986)

yt = exp(xt/2)et, et ∼ iid N(0, 1), t = 1, . . . , D, (8)

xt = γ + δxt−1 + νηt, ηt ∼ iid N(0, 1), t = 2, . . . , D, (9)

where yt is the return observed on day t, xt is the latent log-volatility with initial condition x1 ∼ N(γ/[1−

δ], ν2/[1− δ2]), while et and ηt are mutually independent innovations. The data consists of daily log-returns

on the U.S. dollar against the U.K. Pound Sterling from October 1, 1981 to June 28, 1985 with D = 945.

Under this SV model the data density p(yt|xt) = N (yt|0, exp{xt}) is fairly uninformative about the states

xt, with a Fisher information (w.r.t. xt) which is independent of θ and given by −E[∇2
xt log p(yt|xt)] = 1/2,

whereas the states are fairly volatile under typical estimates for θ. This low signal-to-noise ratio together

with a shape of the data density which is independent of the parameters implies that the conditional posterior

of the innovations η given θ are close to a normal distribution regardless of θ, leading to a correspondingly

well-behaved joint posterior of θ and η. Hence, this represents a scenario where the Stan-Prior sampling on

the joint space of θ and η used as a benchmark can be expected to exhibit a comparably good performance.
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LD-EIS Stan-Prior LD-Laplace Stan-Laplace Stan-Fisher

Min Mean Min Mean Min Mean Min Mean Min Mean

CPU time (s) 276.5 278 12.4 15 10.6 10.6 9.7 16.7 6.1 7.6

γ

Post. mean -0.021 -0.021 -0.021 -0.021 -0.021

Post. std. 0.012 0.01 0.011 0.011 0.011

ESS 201 337 237 348 275 354 268 494 218 321

ESS/s 0.7 1.2 18.1 23.5 25.7 33.3 16.7 37.2 5.6 27

δ

Post. mean 0.98 0.98 0.98 0.98 0.98

Post. std. 0.01 0.01 0.01 0.01 0.01

ESS 269 380 192 309 320 363 290 423 239 319

ESS/s 1 1.4 15.3 20.6 30.1 34.1 13.9 32 5 27.2

v

Post. mean 0.15 0.15 0.15 0.15 0.15

Post. std. 0.03 0.03 0.03 0.03 0.03

ESS 363 503 243 332 360 512 274 431 226 293

ESS/s 1.3 1.8 16.7 23 33.9 48.1 14.1 32.8 3.8 25.6

Table 1: Simulation study results for the SV model (8,9). ESS corresponds to the effective sample size (out of
1,000 iterations) and ESS/s is the number of effective samples produced per second of computing time. The
columns “Min”, “Mean” correspond to the minimum, mean across 8 independent replicas of the experiment.
Burn-in iterations are not included in the reported CPU times. The tuning parameters are: LD-EIS: J = 2,
r = 6, ε = 0.4 and L = 4. LD-Laplace: K = 2, ε = 0.4 and L = 4. Stan-Laplace: K = 0.

For the Fisher transport map method, GF = Gθ,x + Gθ,y|x, and as suggested by Table 4 of Kleppe

(2019), we set hF = 0d.

Table 1 shows the HMC posterior mean and standard deviation for the parameters, which are sample

averages computed from 8 independent replications. It also reports the effective sample size (ESS) (Geyer,

1992) and the ESS per second of CPU time (ESS/s), where the latter will be the main performance measure

(provided of course that the MCMC method properly explores the target distribution) considered here.

Several settings of the tuning parameters (i.e. some subset of r, J , K, and L) where considered, and the

presented results are the best considered, in terms of ESS/s. Table 1 indicates firstly that all five methods

produce a good exploration of the target distribution with posterior moments being essentially the same. For

the Stan-based methods, there is substantial variation in the CPU times due to variation in the automatic

tuning of the integrator step size ε over the replica. Judging from the ESS values, on average there is

not much to be gained from introducing the Laplace approximation- and EIS-based transport map for this

model. This finding mirrors to some extent what was found by Kleppe (2019, Section 5.2), and is also as

expected since the observations carry very little information regarding the states. In terms of ESS/s, there

is no uniform winner, but the computational overhead of locating the EIS importance density is clearly not

worthwhile for this model, relative to the computationally cheaper Laplace- and Fisher transport maps.
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5.2 Gamma Model for Realized Volatilities

The second example model is a dynamic state-space model for the realized variance of asset returns (see,

e.g., Golosnoy et al., 2012, and references therein). It has the form

yt = β exp(xt)et, et ∼ iid G(1/τ, τ), t = 1, . . . , D, (10)

xt = δxt−1 + νηt, ηt ∼ iid N(0, 1), t = 2, . . . , D, (11)

where yt is the daily realized variance measuring the latent integrated variance β exp(xt), and G(1/τ, τ)

denotes a Gamma-distribution for et normalized such that E(et) = 1 and Var(et) = τ . The innovations et

and ηt are independent and the initial condition for the log-variance is x1 ∼ N(0, ν2/[1− δ2]). This Gamma

volatility model is applied to a data set consisting of D = 2, 514 observations of the daily realized variance

for the American Express stock (more information concerning the data is given in Section 6; yt here is

identical to the 1,1-element of realized covariance matrices Yt).

In contrast to the SV model, this Gamma model applied to the realized variance data has both a

considerably higher signal-to-noise ratio and a shape of the data density xt 7→ p(yt|xt,θ) which depends on

the parameters. In particular, the Fisher information of its data density with respect to xt is 1/τ with an

estimate of τ ' 0.13 (see Table 2), while the estimated volatility of the states is roughly as large as under

the SV model. Hence, it can be expected that the conditional posterior of the innovations η given θ deviates

distinctly from a Gaussian form and exhibits nonlinear dependence on θ, which makes the Gamma model a

more challenging scenario for the Stan-Prior benchmark than the SV model.

The same initial guess h(0) in the Laplace scaling as for the SV model above was applied, and also

here GF coincides with Gθ,x + Gθ,y|x. Choosing hF = 0 leads to poor results, and we therefore set hF

equal to (7) (see also Kleppe, 2019, Equation 20). Consequently, Stan-Fisher coincides with Stan-Laplace,

K = 0 (which was also found to be the optimal Stan-Laplace method in this situation). The remaining

experiment setup is also identical to that for the SV model, and the results are given in Table 2. Stan-

Prior produces substantially lower ESSes than the EIS- and Laplace methods, which we attribute to the

failure to take the higher information content from the observations into account in the transport map.

LD-Laplace and Stan-Laplace are the winners in terms of ESS/s and again it is not beneficial to opt for

the presumably more accurate and expensive EIS-transport map over the cruder and computationally faster

Laplace-approximation.
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LD-EIS Stan-Prior LD-Laplace Stan-Laplace

Min Mean Min Mean Min Mean Min Mean

CPU time (s) 935.4 938.1 150.5 171.1 50.9 51.1 40.8 62

τ

Post. mean 0.13 0.13 0.13 0.13

Post. std. 0.006 0.006 0.006 0.006

ESS 1000 1000 194 238 1000 1000 623 873

ESS/s 1.1 1.1 1.1 1.4 19.5 19.6 10.1 15.2

β

Post. mean 2.7 2.8 2.5 2.8

Post. std. 0.8 1 0.8 0.9

ESS 460 542 65 281 216 568 103 505

ESS/s 0.5 0.6 0.4 1.7 4.2 11.1 2.5 8.3

δ

Post. mean 0.98 0.98 0.98 0.98

Post. std. 0.004 0.004 0.004 0.004

ESS 497 641 207 282 384 685 382 719

ESS/s 0.5 0.7 1.3 1.7 7.5 13.4 8.7 11.9

ν

Post. mean 0.22 0.22 0.22 0.22

Post. std. 0.01 0.01 0.01 0.01

ESS 827 976 139 178 1000 1000 416 785

ESS/s 0.9 1 0.6 1.1 19.5 19.6 8.3 13.4

Table 2: Simulation study results for the Gamma model (10,11). ESS corresponds to the effective sample
size (out of 1,000 iterations) and ESS/s is the number of effective samples produced per second of computing
time. The columns “Min”, “Mean” correspond to the minimum, mean across 8 independent replicas of the
experiment. Burn-in iterations are not included in the reported CPU times. The tuning parameters are:
LD-EIS: J = 2, r = 5, ε = 0.64 and L = 3, LD-Laplace: K = 1, ε = 0.64 and L = 3. Stan-Laplace: K = 0.
Notice that Stan-Fisher and Stan-Laplace coincide in this case.

5.3 Constant Elasticity of Variance Diffusion Model

The last example model is a time-discretized version of the constant elasticity of variance (CEV) diffusion

model for short-term interest rates (Chan et al., 1992), extended by a measurement error to account for

microstructure noise (Aït-Sahalia, 1999; Kleppe and Skaug, 2016). The resulting model for the interest rate

yt observed at day t with a corresponding latent state xt > 0 , is described as

yt = xt + σyet, et ∼ iid N(0, 1), t = 1, . . . , D, (12)

xt = xt−1 + ∆(α− βxt−1) + σxx
γ
t−1
√

∆ηt, ηt ∼ iid N(0, 1), t = 2, . . . , D, (13)

where et and ηt are mutually independent and ∆ = 1/252. The parameters are θ = (α, β, γ, σx, σy) and the

initial condition x1 ∼ N(y1, 0.012). The data consist of D = 3, 082 daily 7-day Eurodollar deposit spot rates

from January 2, 1983 to February 25, 1995 (see Aït-Sahalia, 1996 for a description of this data set).

The estimated standard deviation of the noise component σy is very small with an estimate of 0.0005 (see
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LD-EIS LD-Laplace Stan-Laplace

Min Mean Min Mean Min Mean

CPU time (s) 615.6 618.8 60.3 60.6 482.2 515.7

α

Post. mean 0.01 0.01 0.01

Post. std. 0.01 0.01 0.01

ESS 869 984 876 972 1000 1000

ESS/s 1.4 1.6 14.5 16 1.9 1.9

β

Post. mean 0.17 0.17 0.17

Post. std. 0.17 0.17 0.17

ESS 707 963 745 957 1000 1000

ESS/s 1.1 1.6 12.4 15.8 1.9 1.9

γ

Post. mean 1.18 1.18 1.18

Post. std. 0.06 0.06 0.06

ESS 759 957 1000 1000 631 852

ESS/s 1.2 1.5 16.4 16.5 1.3 1.6

σx

Post. mean 0.41 0.41 0.41

Post. std. 0.06 0.06 0.06

ESS 769 946 1000 1000 650 890

ESS/s 1.2 1.5 16.4 16.5 1.3 1.7

σy

Post. mean 0.0005 0.0005 0.0005

Post. std. 0.00002 0.00002 0.00002

ESS 769 963 1000 1000 1000 1000

ESS/s 1.2 1.6 16.4 16.5 1.9 1.9

Table 3: Simulation study results for the CEV model (12,13). ESS corresponds to the effective sample size
(out of 1,000 iterations) and ESS/s is the number of effective samples produced per second of computing
time. The columns “Min”, “Mean” correspond to the minimum, mean across 8 independent replicas of the
experiment. Burn-in iterations are not included in the reported CPU times. The tuning parameters are:
LD-EIS: J = 1, r = 7, ε = 0.57 and L = 3. LD-Laplace: K = 2, ε = 0.57 and L = 3, Stan-Laplace: K = 1.

Table 3) so that the data density xt 7→ p(yt|xt,θ) is strongly peaked at xt = yt and by far more informative

about xt than in the SV- and Gamma model with a Fisher information given by 1/σ2
y. Also, the volatility of

the states is not constant and depends, unlike in the previous models, nonlinearly on the level of the states.

As a result, the posterior of η and θ strongly deviates from being Gaussian. Consequently, Stan-Prior fails

to produce meaningful results and is therefore not reported on. Moreover, since the prior on x is nonlinear

and its precision matrix does not seem to have closed-form, Fisher-scaling is not feasible.

Table 3 reports results for LD-EIS, LD-Laplace and Stan-Laplace, and it is seen that all three methods

produce reliable results. In terms of ESS per computing time, the LD-Laplace is a factor 5-10 faster than

the other methods, where the difference between LD-Laplace and Stan-Laplace is due to the substantially

higher number of integrator steps required for Stan-Laplace.

The same model and data set was also considered by Kleppe (2018, Section 5), who compare the modified
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Cholesky Riemann manifold HMC algorithm and a Gibbs sampling procedure. Both methods were imple-

mented in C++ and thus the orders of magnitude of produced ESS per computing time are comparable to

the present situation. It is seen that for the “most difficult” parameters γ, σx, the proposed methodology is

roughly two order of magnitude faster than the Riemann manifold HMC method and roughly three orders

of magnitude faster than the Gibbs sampler.

5.4 Summary from simulation experiment

For models with higher signal-to-noise ratios than the SV model, the proposed methodology produces large

speedups (or makes challenging models feasible as for the CEV model) relative to the benchmarks, even if the

per evaluation cost of the modified target is higher than in the default parameterization. For the considered

models, the EIS transport map is not competitive relative to the Laplace approximation counterpart due

to the relatively higher computational cost. For the Laplace-based methods, it is seen that relatively few

Newton iterations is optimal in an ESS per computing time perspective. Overall, and very much in line

with Kleppe (2019), this is indicative that rather crude representations of the location and scale of p(x|y,θ)

are sufficient. Moreover, this latter observation ties in with the second point discussed in Section 3.2: Due

to the thin-tailed Gaussian distribution entering explicitly in representation (4) of the modified target, the

importance sampling rule of thumb that you should seek high-fidelity approximations to p(x|y,θ) as the

importance density is less relevant in the present situation.

With respect to the choice of integrator, it is seen that the LD-integrator and the leapfrog-integrator-

based Stan produces similar raw ESSes, but that that the LD-integrator in general requires non-trivially

fewer integration steps to accomplish this. E.g., the reported (automatically tuned) Stan-Laplace results for

the CEV model required on average 63 leapfrog steps whereas the corresponding (manually tuned) number

for LD-Laplace was 3. For the two other models, the performance of the LD integrator is roughly on par

with Stan when Laplace scaling was employed. Further, the LD integrator generally needs more refined

Laplace maps (higher K) to work satisfactory, whereas under Stan, more crude Laplace transport maps are

permissible.

6 High-dimensional application

6.1 Model

To illustrate the proposed methodology in a high-dimensional situation, we consider the dynamic inverted

Wishart model for realized covariance matrices proposed in Grothe et al. (2019, Section 6). More specifically,
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for a time series of r× r symmetric positive definite observed realized covariance matrices Yt, t = 1, . . . , D,

the observations are modeled conditionally inverse-Wishart distributed,

p(Yt|Σt, ν) ∝ |Yt|−
ν+r+1

2 exp

(
−1

2
tr
(
ΣtY

−1
t

))
, (14)

so that E(Yt) = (ν+ r+ 1)−1Σt. Here, the degrees of freedom ν > r+ 1 is a parameter, and Σt is a (latent)

time-varying scale matrix, given by

Σt = HDtH
T , Dt = diag(exp(x1,t), . . . , exp(xr,t)),

whereH is a lower triangular matrix with ones along the main diagonal and unrestricted parameters hi,j , i >

j, 1 ≤ j < r below the main diagonal. Moreover, xs = {xs,t}Dt=1, s = 1, . . . , r are latent Gaussian AR(1)

processes

xs,t = µs + δs(xs,t−1 − µs) + σsηs,t, t = 2, . . . , D, s = 1, . . . , r, (15)

xs,1 = µs +
σs√

1− δ2s
ηs,1, s = 1, . . . , r (16)

where ηs,t ∼ iid N(0, 1), t = 1, . . . , D, s = 1, . . . , r. In total, the model contains 1+3r+r(r−1)/2 parameters

θ = (ν, µ1:r, δ1:r, σ1:r, h2:r,1, h3:r,2, . . . , hr,r−1). Further details concerning the model specification and priors

can be found in the supplementary material (Section D).

A fortunate property of this model is that the conditional posterior of the latent states are independent

over s, i.e. p(x1:r|θ, Y1:D) =
∏r
s=1 p(xs|θ, Y1:D). This implies that the transport map for x also may be split

into r individual transport maps, say xs = γθ,s(us), us = {us,t}Dt=1, s = 1, . . . , r, without losing fidelity.

The (combined) transport map becomes γθ(u) = [(γθ,1(u1))
T
, . . . , (γθ,r(ur))

T
]T , where u = [uT1 , . . . ,u

T
r ]T ,

and in particular |∇uγθ(u)| = ∏r
s=1 |∇usγθ,s(us)| due to the block-diagonal nature of the Jacobian of γθ.

Further, each of the factors of the conditional posterior have a shape corresponding that of a state-space

model with univariate state-process xs:

p(xs|θ, Y1:D) ∝ p(xs|θ)
D∏

t=1

exp

(
ν

2
xs,t −

ỹs,t
2

exp(xs,t)

)
, ỹs,t = (H1:s,s)

T
Y−1t H1:s,s, s = 1, . . . , r. (17)

Thus, individual transport maps γθ,s may be constructed to target (17) as described in the previous Sections.

In particular, individual Laplace approximation-based maps, γθ,s, involve only tri-diagonal Cholesky factor-

izations. It is, however, worth noticing that the proposed methodology does not rely on such a conditional

independence structure in order to be applicable per se.
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Stan-Prior Stan-Laplace Stan-Laplace Stan-Laplace

K = 0 K = 1 K = 2

CPU time (s) 6437 910 1196 1452

µ1:5 ESS (min , max) (832 , 918) (967 , 1000) (987 , 1000) (985 , 1000)

σ1:5 ESS (min , max) (301 , 349) (1000 , 1000) (1000 , 1000) (1000 , 1000)

δ1:5 ESS (min , max) (357 , 501) (980 , 1000) (986 , 1000) (975 , 1000)

hi,j ESS (min , max) (972 , 1000) (984 , 1000) (1000 , 1000) (1000 , 1000)

ν ESS 562 1000 1000 1000

x1:5,1 ESS (min , max) (986 , 1000) (1000 , 1000) (1000 , 1000) (1000 , 1000)

u1:5,1 ESS (min , max) (871 , 959) (1000 , 1000) (1000 , 1000) (1000 , 1000)

Table 4: Effective sample sizes and CPU times for the inverse Wishart model (14-16). The parameters are
grouped, and the reported ESS figures are (min, max) across each group. All of the results are averages
across 8 independent replica of each experiment. Here, us,1 is the first element in us. Under Prior transport
map, u1:5,1 is identical to η1:5,1 in (16).

The observed Fisher information (w.r.t. xs,t) of the marginal “measurement densities” ∝ exp(ν2xs,t −
ỹs,t
2 exp(xs,t)) equals ν/2, with an estimate of ν ' 33.6 for the data set considered here (see Table 5 in

supplementary material). Thus, the signal to noise ratio here is similar to that of the Gamma model

considered in section 5.2. As the LD- and Stan- results are similar for the Gamma model, we consider only

Stan for this model, as it entails only a few dozen lines of Stan code and tuning is fully automated. EIS was

found not to be competitive and is not considered here. The initial guess h
(0)
θ under Laplace scaling is given

by (7), whereas G
(K)
θ = G

(0)
θ given in (6). This (fixed) matrix was also used as the scaling matrix in the

approximate Newton iterations for K = 0, 1, 2 (see supplementary material, Section D for more details).

6.2 Data and results

The data set of D = 2, 514 observations of daily realized covariance matrices of r = 5 stocks (American

Express, Citigroup, General Electric, Home Depot, and IBM) spanning Jan. 1st, 2000 to Dec. 31, 2009 is

described in detail in Golosnoy et al. (2012). The same model and data set was considered in Grothe et al.

(2019), where Gibbs sampling procedures were considered. From Grothe et al. (2019), it is seen that even

with close to iid sampling from p(x1:r|θ, Y1:D), the chains for ν and σs, s = 1, . . . , r mix rather poorly under

Gibbs sampling.

The ESSes for the parameters and the first elements of xs and us, and CPU times for Stan-Prior and

Stan-Laplace are given in Table 4. Corresponding posterior means and standard deviations for Stan-Laplace

(K = 0) are given in Table 5 in the supplementary material and these are very much in line with Grothe

et al. (2019, Table 5).

From Table 4 it is seen that the proposed methodology Stan-Laplace outperforms the benchmark Stan-

Prior, both in terms CPU time (the modified target is highly non-Gaussian and thus requires many integration
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Figure 1: Posterior mean and standard deviation of us, s = 1, . . . , 5, for the inverse Wishart model (14-16)
under Laplace transport map with K = 0. The results are for a single representative simulation replica with
1000 sampling iterations.

steps) and ESS. Indeed, Stan-Laplace with K = 0 is at least a full order of magnitude faster in terms of

ESS per CPU time than Stan-Prior for the “difficult” parameters ν and σs, s = 1, . . . , r. The added per

evaluation computational cost of the more accurate Laplace approximations (K = 1 and K = 2) is not

worthwhile, and this again corroborates the finds above that only crude location- and scale information with

respect to p(x1:r|θ, Y1:D) is needed. Figure 1 depicts the posterior mean and (marginal) standard deviation

of each us, for Stan-Laplace with K = 0. It is seen that the posterior standard deviations are close to 1,

which one would expect in the case of close to perfect decoupling, i.e. is indicative that any funnel effects

have been removed. The posterior means, on the other hand, are somewhat off 0, which is related both to

the usage of the initial guess (7) and the fact that (17) is non-Gaussian and thus cannot be exactly decoupled

using a Gaussian importance density. Figures 2,3 in the supplementary material shows corresponding plots

for K = 2 and K = 10, and it is seen that the posterior means of us are closer to zero, but some deviation

still exact due to the non-Gaussian target.

Comparing the computational performance to the Gibbs sampler in Grothe et al. (2019), it is seen

that Stan-Laplace is also roughly an order of magnitude faster than a Gibbs sampler. This comparison is

somewhat complicated by that Grothe et al. (2019) employ parallel processing (over s) when sampling the

latent states xs, and that the computations in Grothe et al. (2019) are done in MATLAB, whereas Stan

is based on compiled C++ code. In this consideration, also the fact that a model with 20 parameters and

12,570 latent variables can be fitted using a few minutes of CPU time and minimal coding efforts in Stan

must be weighed against the typically time consuming and error-prone development efforts to develop Gibbs
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samplers tailored for any given model.

7 Discussion

The paper proposes and evaluates importance sampler-based transport map HMC for Bayesian hierarchical

models. The methodology relies on using off-the-shelf importance sampling strategies for high-dimensional

latent variables to construct a modified target distribution that is easily sampled using (fixed metric) HMC.

Indeed, as illustrated, the proposed methodology can lead to large speedups relative to relevant benchmarks

for models with high-dimensional latent variables, while still being easily implemented using e.g. Stan.

Two strategies for selecting the involved importance samplers were considered in order to assess the

optimal accuracy versus computational cost-tradeoff. The main insight in this regard is that only rather crude

importance densities/transport maps (e.g. Laplace or DRHMC-type) are required when these are applied in

the present framework. This observation is very much to the contrary to the importance sampling literature

at large, where typically very accurate importance densities are required to produce reliable approximations

to marginal likelihood functions when integrating over high-dimensional latent variables.

The proposed methodology, with Laplace transport maps and few or no Newton iterations lead to similar

transport maps as those used in DRHMC in the cases where DRHMC is applicable. Thus the Laplace

transport map approach may, in a rather broad sense, be seen as a generalization of DRHMC to models with

nonlinear structures where DRHMC is not applicable.

Finally, there is scope for future research in developing software that can encompass a large class of

models, and which implements the proposed methodology in a user-friendly manner. In particular, such

software should include a sparse Cholesky algorithm for more general sparsity structures so that Laplace-

based transport maps for e.g. multivariate latent state dynamic models and spatial models can be considered.
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Supplementary Material for “Importance Sampling-based

Transport map Hamiltonian Monte Carlo for Bayesian

Hierarchical Models”

Equation numbers < 18 refer to the equations in the main text.

A The Lindsten and Doucet (2016)-integrator

The the pseduo-marginal HMC (PM-HMC) algorithm of Lindsten and Doucet (2016) can be viewed as a

standard HMC algorithm for simulating the random vector q = (θ′,u′)′ from the modified target densities (3)

or (4). Proceeding with representation (4), the Hamiltonian is taken to be

H(θ,u,pθ,pu) = − logωθ(u)− log p(θ) +
1

2
u′u +

1

2
p′θM

−1
θ pθ +

1

2
p′upu, (18)

where pθ ∈ Rd and pu ∈ RD are the artificial momentum variables specific to θ and u, respectively. Note that

for this form of the extended Hamiltonian the mass matrix (M) of the compound vector (θ′,u′)′ is selected

to be block diagonal, where the mass matrix specific to θ is denoted by Mθ ∈ Rd×d, while the mass for u is

set equal to the identity in order to match the a-priori precision matrix of u. Straight forward modifications

of (18) and the proceeding theory applies if representation (3) is computationally more convenient.

Applying Hamilton’s equations (2) to the extended Hamiltonian (18), for q = (θ′,u′)′ and p = (p′θ,p
′
u)′,

we get the following equations of motion

d

dt




θ

pθ

u

pu




=




M−1
θ pθ

∇θ log p(θ) +∇θ logωθ(u)

pu

−u+∇u logωθ(u)



. (19)

Equation (19) shows that the Hamiltonian transition dynamics of (θ,pθ) and (u,pu) are linked together

via their joint dependence on the importance weight ωθ(u). However, this link vanishes as the MC variance

of the MC estimator Varu[ωθ(u)] tend to zero. In fact, an ‘exact’ MC estimate with zero MC variance

implies that ∇u logωθ(u) = 0D, in which case the transition dynamics of (θ,pθ) would be completely

decoupled from that of (u,pu) and would be (marginally) the dynamics of the ‘ideal’ HMC algorithm for

p(θ|y). Moreover, the resulting marginal (u,pu)-dynamics would reduce to that of a harmonic oscillator
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with analytical solutions given by u(t) = cos(t)u(0) + sin(t)pu(0) and pu(t) = cos(t)pu(0)− sin(t)u(0).

In order to approximate the Hamiltonian transition dynamics (19), Lindsten and Doucet (2016) develop

a symplectic integrator which for exact likelihood estimates produces exact simulations for the dynamics of

(u,pu) and reduces for (θ,pθ) to the conventional leapfrog integrator. They derive this integrator for the

special case where the mass matrix Mθ, in (18) and (19) is restricted to be the identity. For the more general

case with an unrestricted Mθ this integrator for approximately advancing the dynamics from time t = 0 to

time t = ε is given by

θ(ε/2) = θ(0) + (ε/2)M−1
θ pθ(0), (20)

u(ε/2) = cos(ε/2)u(0) + sin(ε/2)pu(0), (21)

p∗u = cos(ε/2)pu(0)− sin(ε/2)u(0), (22)

p∗∗u = p∗u + ε∇u

{
logωθ(ε/2)(u(ε/2))

}
, (23)

pθ(ε) = pθ(0) + ε∇θ
{

log p
[
θ(ε/2)

]
+ logωθ(ε/2)(u(ε/2))

}
, (24)

θ(ε) = θ(ε/2) + (ε/2)M−1
θ pθ(ε), (25)

u(ε) = cos(ε/2)u(ε/2) + sin(ε/2)p∗∗u , (26)

pu(ε) = cos(ε/2)p∗∗u − sin(ε/2)u(ε/2). (27)

B The EIS principle

In order to minimize the variance of IS estimates for the likelihood p(y|θ) =
∫
p(y|x,θ)p(x|θ)dx of non-

Gaussian and/or nonlinear latent variable models, EIS aims at sequentially constructing an IS density which

approximates, as closely as possible, the (infeasible) optimal IS density m∗(x|θ) ∝ p(y|x,θ)p(x|θ), which

would reduce the variance of likelihood estimates to zero.

With reference to the likelihood it is assumed that the conditional data density p(y|x,θ) and the prior for

the latent variables p(x|θ) under the latent variable model can be factorized as functions in x = (x1, . . . , xD)

into

p(y|x,θ) =

D∏

t=1

gt(xt, δ), p(x|θ) =

D∏

t=1

ft(xt|x(t−1), δ), (28)

where x(t) = (x1, . . . , xt) with x(D) = x and δ = (θ,y). Such factorizations can be found for a broad class of

models, including dynamic non-Gaussian/nonlinear state-space models for time series, non-Gaussian/nonlinear

models with a latent correlation structure for cross-sectional data as well as static hierarchical models without

2
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latent correlation for which ft(xt|x(t−1), δ) = ft(xt, δ). E.g., variants of EIS for univariate and multivari-

ate linear Gaussian states subject to nonlinear measurements are given in Liesenfeld and Richard (2003,

2006) and for more general nonlinear models in Kleppe et al. (2014); Moura and Turatti (2014). EIS im-

plementations with more flexible IS densities such as mixture of normal distributions are found in Kleppe

and Liesenfeld (2014), Scharth and Kohn (2016), Grothe et al. (2019), and Liesenfeld and Richard (2010)

use truncated normal distributions. Applications of EIS to models with non-Markovian latent variables for

spatial data are provided in Liesenfeld et al. (2016, 2017). In our applications we consider univariate time

series models, which is why we use t to index the elements in x and restrict xt in (28) to be one-dimensional.

EIS-MC estimation of likelihood functions p(y|θ) associated with (28) is based upon an IS density m for

x which is decomposed conformably with the factorization in (28) into

m(x|a) =
D∏

t=1

mt(xt|x(t−1),at), (29)

with conditional densities mt such that

mt(xt|x(t−1),at) =
kt(x(t),at)

χt(x(t−1),at)
, χt(x(t−1),at) =

∫
kt(x(t),at)dxt, (30)

where K = {kt(·,at),at ∈ At} is a preselected parametric class of density kernels indexed by auxiliary param-

eters at and with a point-wise computable integrating factor χt. As required for the proposed methodology,

it is assumed that the IS density (29) can be simulated by sequentially generating draws from the condi-

tional densities (30) using smooth deterministic functions γt such that xt = γt(at, vt) for t = 1, . . . , D, where

vt ∼ N(0, 1).

From (28)-(30) results the following factorized IS representation of the likelihood:

p(y|θ) =

∫ [
χ1(a1, δ)

D∏

t=1

ωt(x(t),a(t+1), δ)

]
m(x|a)dx, (31)

where the period-t IS weight is given by

ωt(x(t),a(t+1), δ) =
gt(xt, δ)ft(xt|x(t−1), δ)χt+1(x(t),at+1, δ)

kt(x(t),at)
, (32)

with χD+1(·) ≡ 1. For any given a = (a1, . . . ,aD) ∈ A = ×Dt=1At, the corresponding MC likelihood estimate
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is given by

p̂(y|θ,u) = ω(x,a), ω(x,a) =
D∏

t=1

ωt(x(t),a(t+1)), (33)

where x is a draw simulated from the sequential IS density m(x|a) in (29) (which is obtained by transforming

u using the sequence of smooth deterministic functions γt).

In order to minimize the MC variance of the likelihood estimate (33), EIS aims at selecting values for the

auxiliary parameters a that minimize period-by-period the MC variance of the IS weights ωt in (32) with

respect to m(x|a). This requires that the kernels kt(x(t),at) as functions in x(t) provide the best possible

fit to the products gt(xt, δ)ft(xt|x(t−1), δ)χt+1(x(t),at+1). For an approximate solution to this minimization

problem under the preselected class of kernels K, EIS solves the following back-recursive sequence of least

squares (LS) approximation problems:

(ĉt, ât) = arg min
ct∈R,at∈At

r∑

i=1

{
log
[
gt
(
x
(i)
t , δ

)
ft
(
x
(i)
t |x(i)

(t−1), δ
)
χt+1

(
x
(i)
(t), ât+1

)]

− ct − log kt
(
x
(i)
(t),at

)
}2

, t = D,D − 1, . . . , 1,

(34)

where ct represents an intercept, and {x(i)}ri=1 denote r iid draws simulated fromm(x|a) itself. Thus, the EIS-

optimal values for the auxiliary parameters â result as a fixed-point solution to the sequence {â[0], â[1], . . .}

in which â[j] is given by (34) under draws from m(x|â[j−1]). In order to ensure convergence to a fixed-

point solution it is critical that all the x draws simulated for the sequence {â[j]} be generated by using

the smooth deterministic functions γt to transform a single set of rD Common Random Numbers (CRNs),

say z ∼ N(0rD, IrD). To initialize the fixed-point iterations j = 0, . . . , J , the starting value â[0] can be

found, e.g., from an analytical local approximation (such as Laplace) of the EIS targets ln(gtftχt+1) in (34).

Convergence of the iterations to a fixed-point solution is typically fast to the effect that a value for the

number of iterations J between 2 and 4 often suffices to produce a (close to) optimal solution (Richard and

Zhang, 2007). The MC-EIS likelihood estimate, for a given θ, is then calculated by substituting in (33) the

EIS-optimal value â for a. In order to highlight its dependence on θ and z we shall use â = a(θ, z) to denote

the EIS-optimal value.

The selection of the parametric class K of EIS density kernels kt is inherently specific to the latent

variable model under consideration as those kernels are meant to provide a functional approximation in x(t)

to the product gtftχt+1. In the applications below, we consider models with data densities gt which are log-

concave in xt and Gaussian conditional densities for xt with a Markovian structure so that ft(xt|x(t−1), δ) =
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ft(xt|xt−1, δ). This suggests selection of the kt’s as Gaussian kernels and to exploit that such kernels are

closed under multiplication in order to construct the kt’s as the following parametric extensions of the prior

densities ft:

kt(xt, xt−1,at) = ft(xt|xt−1, δ)ξt(xt,at), (35)

where ξt is a Gaussian kernel in xt of the form ξt(xt,at) = exp{a1txt + a2tx
2
t} with at = (a1t, a2t). In this

case the EIS approximation problems (34) take the form of simple linear LS-problems where log[gt(x
(i)
t , δ)

χt+1(x
(i)
t , ât+1)] are regressed on a constant, x(i)t and [x

(i)
t ]2. In fact, (34) reduces to linear LS regressions

for all kernels kt chosen within the exponential family (Richard and Zhang, 2007), which simplifies imple-

mentation. However, it is important to note that EIS is by no means restricted to the use of IS densities

from the exponential family nor to models with low-order Markovian specifications for the latent variables.

The EIS approach as outlined above differs from standard IS in that it uses IS densities whose parameters

â = a(θ, z) are (conditional on θ) random variables as they depend via the EIS fixed-point repressions (34)

on the CRNs z. This calls for specific rules for implementing EIS which ensure that the resulting MC

likelihood estimates meet the qualifications needed for their use within PM-HMC. In order to ensure that

the EIS likelihood estimate (33) based on the random numbers u is unbiased the latter need to be a set

of random draws different from the CRNs z used to find â (Kleppe and Liesenfeld, 2014). Note also that

since â is an implicit function of θ, maximal accuracy requires us to rerun the EIS fixed-point regressions

for any new value of θ. In order to ensure that the resulting EIS likelihood estimate (33) as a function of â

is smooth in θ, â itself needs to be a smooth function of θ. This can be achieved by presetting the number

of fixed-point iterations J across all θ-values to a fixed number, rather than using a stopping rule based on

a relative-change threshold.

The EIS-specific tuning parameters are the number of x(i)-draws r used to run the EIS optimization

process, the number of fixed-point iterations on the EIS regressions J , and the number of x(i)-draws n

for the likelihood estimate (33). Those parameters should be selected to balance the trade-off between

EIS computing time and the quality of the resulting EIS density with respect to the MC accuracy. In

particular, for r it is recommended to select it as small as possible while retaining the EIS fixed-point

regressions numerically stable and the parameter J should be set such that it is guaranteed that the fixed-

point sequence {a[j]}j approximately converge for the θ values in the relevant range of the parameter space.

In our applications, where the selected class of kernels K imply that the EIS regressions are linear in the

EIS parameters at, we find that a J set equal to 1 or 2 and an r about 2 times the number of parameters in

(at, ct) suffice. We obtain EIS kernels kt providing highly accurate approximations to the targeted product
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gtftχt+1, with an R2 of the EIS regressions in the final iteration typically larger than 0.95.

C Details related to the example models in Section 5

C.1 SV model

For the SV model, the standard prior assumptions for the parameters θ = (γ, δ, ν) are the following: for

γ we use a flat prior, for (δ + 1)/2 a Beta prior B(α, β) with α = 20 and β = 1.5, and for ν2 a scaled

inverted-χ2 prior p0s0/χ2
(p0)

with p0 = 10 and s0 = 0.01. For numerical stability we use the parametrization

θ∗ = (γ, arctanh δ, log ν2) together with the priors for θ∗ to run the HMC algorithms, where the priors are

derived from those on θ.

For the Laplace transport map, G
(0)
θ and h

(0)
θ are taken to be identical to (6,7). More refined solutions

are found using Newton iterations;

h
(k)
θ = h

(k−1)
θ +

[
∇2

x log [p(x|θ)p(y|x,θ)]
x=h

(k−1)
θ

]−1 {
∇x log [p(x|θ)p(y|x,θ)]

x=h
(k−1)
θ

}
,

G
(k)
θ = ∇2

x log [p(x|θ)p(y|x,θ)]
x=h

(k−1)
θ

.

for k = 1, 2, . . . ,K. Further modifications, including changing to G
(k)
θ = ∇2

x log [p(x|θ)p(y|x,θ)]
x=h

(k)
θ

(at

the cost of one additional Cholesky factorization), or keeping G
(k)
θ = G

(0)
θ (costs only a single Cholesky

factorization) both in the transport map and as the scaling matrix in the Newton iterations was tried, but

did not produce better results.

It is straight forward to show that Gθ,y|x = 0.5ID is also the Fisher information of p(y|x) with respect

to x (i.e. p(y|x) is a constant information parameterization). Hence also Stan-Laplace K = 0 may be

interpreted as a special case of DRHMC (Kleppe, 2019).

C.2 Gamma model

For the Gamma model, the priors on the parameters θ = (τ, β, δ, ν) are as follows; we use flat priors for

log τ as well as log β, a Beta B(α, β) with α = 20 and β = 1.5 for (δ + 1)/2, and a scaled inverted-χ2

for ν2 with p0s0/χ
2
(p0)

and p0 = 10, s0 = 0.01. For the LD computations we use the parameterization

θ∗ = (log τ, log β, arctanh δ, log ν2).

For this model, the same strategy for calculating the Laplace transport map as for the SV model was

used. Notice that here Gθ,y|x = τ−1ID is also the Fisher information of p(y|x) with respect to x. Hence,

Stan-Laplace, K = 0 may be interpreted as a DRHMC method.
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µ1 µ2 µ3 µ4 µ5 δ1 δ2 δ3 δ4 δ5

post. mean 4.16 4.12 3.72 4.11 3.53 0.97 0.98 0.96 0.94 0.96

post. std. 0.2 0.25 0.15 0.1 0.13 0.005 0.004 0.006 0.008 0.006

σ1 σ2 σ3 σ4 σ5 ν

post. mean 0.31 0.26 0.29 0.28 0.25 33.61

post. std. 0.009 0.008 0.009 0.009 0.009 0.283

h2,1 h3,1 h4,1 h5,1 h3,2 h4,2 h5,2 h4,3 h5,3 h5,4

post. mean 0.39 0.29 0.29 0.23 0.20 0.17 0.12 0.22 0.18 0.11

post. std. 0.003 0.003 0.003 0.002 0.003 0.003 0.002 0.004 0.003 0.002

x1,1 x2,1 x3,1 x4,1 x5,1 u1,1 u2,1 u3,1 u4,1 u5,1

post. mean 5.23 5.28 4.27 5.46 5.11 -0.08 -0.05 -0.07 -0.10 -0.10

post. std. 0.206 0.195 0.198 0.205 0.202 1.022 0.993 0.99 1.031 1.049

Table 5: Posterior mean and standard deviations for the inverse Wishart model (14-16) based on Stan-
Laplace, K = 0. All figures are means across 8 independent replica. Here, us,1 is the first element in us,
and should be close to standard normal when the transport map produces a sufficient de-coupling effect.

C.3 CEV model

For the CEV model, for α and β we assume Gaussian priors both with N(0, 1000), for γ a uniform prior on

the interval [0, 4], and for σ2
x and σ2

y uninformative inverted-χ2 priors with p(σ2
x) ∝ 1/σ2

x and p(σ2
y) ∝ 1/σ2

y.

The LD computations are conducted on the following transformed parameters: θ∗ = (α, β, γ, log σ2
x, log σ2

y).

For the CEV model, the precision of the latent state prior is does not have closed-form, which precludes

the application of (6,7). However, it is known that the measurement densities has a very small variance,

hence h
(0)
θ = y seems sensible. Subsequently, a full Newton iteration is performed:

h
(k)
θ = h

(k−1)
θ +

[
∇2

x log [p(x|θ)p(y|x,θ)]
x=h

(k−1)
θ

]−1 {
∇x log [p(x|θ)p(y|x,θ)]

x=h
(k−1)
θ

}
,

G
(k)
θ = ∇2

x log [p(x|θ)p(y|x,θ)]
x=h

(k−1)
θ

.

for k = 1, 2, . . . ,K. Further modifications, including changing to G
(k)
θ = ∇2

x log [p(x|θ)p(y|x,θ)]
x=h

(k)
θ

(at

the cost of one additional Cholesky factorization) did not improve the fit sufficiently to warrant the additional

computation.

D Details related to the realized volatility model in Section 6

The (normalized) observation density is given by:

p(Yt|Σt, ν) =
|Σt|

ν
2

2
νr
2 π

r(r−1)
4

∏r
s=1 Γ ([ν + 1− s]/2)

|Yt|−
ν+r+1

2 exp

(
−1

2
tr
[
ΣtY

−1
t

])
.

In the Stan implementation,
∏D
t=1 |Yt| and Y−1t , t = 1, . . . , D where precomputed.
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Figure 2: Posterior mean and standard deviation of us, s = 1, . . . , 5, for the inverse Wishart model (14-16)
under Laplace transport map with K = 2.
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Figure 3: Posterior mean and standard deviation of us, s = 1, . . . , 5, for the inverse Wishart model (14-16)
under Laplace transport with K = 10.
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The (independent) priors used to complete the model specification in Section 6.1 are as follows: µs ∼

N(0, 25), δs ∼ uniform(−1, 1), σ2
s ∼ p0s0/χ

2
p0 where p0 = 4 and s0 = 0.25, hi,j ∼ N(0, 100). Finally, a flat

prior on (6.0,∞) was chosen for ν.

Posterior- means and standard deviations of the parameters and the first elements in xs and us are given

in Table 5. The results are very much in line with those of Grothe et al. (2019).

The Laplace transport maps for each of xs, s = 1, . . . , r are constructed as follows; the initial guesses

for h
(0)
θ and G

(0)
θ are those given in (6,7), applied to (17). The mean is further refined via the following

approximate Newton iteration

h
(k)
θ = h

(k−1)
θ +

[
G

(0)
θ

]−1 {
∇x log [p(x|θ)p(y|x,θ)]

x=h
(k−1)
θ

}
,

whereas G
(k)
θ = G

(0)
θ is kept fixed which result in that only a single Cholesky factorization is required.

Figures 2,3 show the posterior mean and standard deviations of us over time t for Stan-Laplace, K = 2

and K = 10 respectively. It is seen that even with the approximate Newton iteration, the iteration makes

us have a mean close to zero, where the remaining deviation from zero for K = 10 iterations in Figure 3

is presumably due to the non-quadratic nature of the "measurement density" in (17) (in addition to Monte

Carlo variation).
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Abstract

We propose a state-space model (SSM) for commodity prices that combines the competitive storage

model with a stochastic trend. This approach fits into the economic rationality of storage decisions,

and adds to previous deterministic trend specifications of the storage model. Parameters are estimated

using a particle Markov chain Monte Carlo procedure. Empirical application to four commodity markets

shows that the stochastic trend SSM is favored over deterministic trend specifications. The stochastic

trend SSM identifies structural parameters that differ from those for deterministic trend specifications.

In particular, the estimated price elasticities of demand are significantly larger under the stochastic trend

SSM.

Keywords: Commodity price dynamics; Bayesian posterior analysis; Particle marginal Metropolis-

Hastings; State-space model.

1 Introduction

Economic theories are often developed in a stationary context. However, the real world does not always

correspond to stationarity. This potential mismatch creates a challenge when attempting to relate theory

to historical data. This is a well-known problem in empirical macroeconomics, where structural parameters

of business cycle models are often estimated on data that have been filtered in order to remove variation at

frequencies that the model is not intended to explain, such as low-frequency trend variations and seasonal

fluctuations (DeJong and Dave, 2011; Sala, 2015). For an overview of alternatives to the use of pre-filtered

data in order to address this general problem, see Canova (2014).

∗Corresponding author. Email: kjartan.osmundsen@gmail.com
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In the competitive storage model for commodity prices introduced by Gustafson (1958), the situation is

similar to that of business cycle models. The rational expectations equilibrium implied by the solution of

this model is only known to exist in a stationary market. Accordingly, it is a model for describing dynamic

price adjustments towards an exogenously given fixed steady-state equilibrium. However, it cannot explain

low-frequency price movements due to persistent shocks. This is problematic when attempting to estimate

the structural parameters of the model using commodity price data, since time series of commodity prices

typically display a strongly persistent behavior in the price level, so that non-stationarity cannot be rejected

when using conventional statistical tests (Wang and Tomek, 2007; Gouel and Legrand, 2017). As a result,

the estimates for the structural parameters, which determine quantities like the price elasticity of demand

and storage costs, are likely to be biased. This issue was recognized by Deaton and Laroque (1995) in one

of the earliest attempts to directly estimate the structural parameters of the storage model.

This paper proposes an approach to estimate the structural parameters of the competitive commodity

storage model using a state-space model (SSM) for commodity prices, which decomposes the observed price

into a stationary component which is due to the storage model and a stochastic trend component included

to capture low-frequency price variations the storage model is unable to explain. Using a stochastic trend

specification to account for non-stationary price data, our empirical approach aims at fitting into the economic

rationality of the stationary storage model so that it preserves theoretical coherence, promising meaningful

estimates of the structural parameters. Such a fit results from the fact that a stochastic trend that scales

equilibrium prices can be isolated in the storage model by assuming that the innovations to the trend do

not interfere with the agents’ equilibrium storage decisions. In the baseline storage model, unrestricted

equilibrium storage decisions lead to an intertemporal pricing restriction of the form Pt = βEt (Pt+1),

where Et(Pt+1) is the rational period-t expectation of the commodity price Pt+1 and β represents some

discount factor. Thus, a stochastic price scaling Kt will not impair the equilibrium storage decisions if

KtPt = βEt (Kt+1Pt+1). This generically identifies stochastic trends as shifts in the price levels that do

not interfere with intertemporal stock allocations, allowing a coherent integration of the stationary rational

expectations equilibrium into a non-stationary environment, thus providing the theoretical basis of our

empirical SSM approach. The corresponding SSM, that jointly identifies the trend parameters and the

structural parameters of the storage model, is non-linear in the latent states so that its likelihood function

is not available in closed form. To overcome this difficulty, we propose to use a Bayesian posterior analysis

based on a particle Markov chain Monte Carlo (PMCMC) procedure (Andrieu et al., 2010).

With our proposed approach we contribute to the literature concerned with the general problem of adapt-

ing stationary economic models to non-stationary data, and more specifically to the problem of estimating the

structural parameters of the competitive storage model on non-stationary commodity price data. Legrand
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(2019) identifies reliable estimation as one of the main issues of structural models for commodity prices.

Early attempts of estimating the structural parameters revealed that fitted competitive storage models are

not able to satisfactorily approximate the observed strong serial dependence in commodity price data, indi-

cating misspecification of the empirical model and casting doubt on the reliability of the parameter estimates

(Deaton and Laroque, 1995). Suggested solutions to this problem include ad-hoc enrichments of the dynamic

structure of the storage model by including weakly dependent supply shocks (Deaton and Laroque, 1996;

Kleppe and Oglend, 2017), or the tuning of the grid for the commodity stock state variable, used for ap-

proximating the policy function (Cafiero et al., 2011). Other approaches replace the estimation techniques

applied in early empirical implementations of the storage model, like the pseudo maximum likelihood (ML)

procedure of Deaton and Laroque (1996), by more sophisticated ones, such as the ML technique developed

by Cafiero et al. (2015) or the particle filtering methods proposed in Kleppe and Oglend (2017).

Empirical approaches that, like ours, decompose the observed price into a component to be explained

by the storage model and a trend component are those of Cafiero et al. (2011), Bobenrieth et al. (2013),

Guerra et al. (2015) and Gouel and Legrand (2017). The first three of these studies propose to account for

the strong persistence in the price data that the storage model is not able to approximate, by detrending the

prices using a deterministic log-linear trend prior to the estimation of the structural parameters. Gouel and

Legrand (2017) improves upon this procedure by jointly estimating the structural and deterministic trend

parameters using the ML-estimator of Cafiero et al. (2015). The trend specifications Gouel and Legrand

(2017) consider in their empirical application include log-linear trends as well as more flexible trends specified

as restricted cubic splines. One of their main findings is that empirical models accounting for a properly

specified trend component in the observed commodity price yield more plausible estimates of the structural

parameters than models without a trend. However, the deterministic trends used in those studies inherently

imply well predictable capital gains in the storage model, and so question the economic logic of separating

the trend from structural economic pricing components. Moreover, the appropriate functional form of the

deterministic trend needs to be tailored to the specific commodity market and the sampling frequency for

which the storage models are applied. In contrast, the stochastic trend as used in our SSM approach

represents, in Bayesian terms, a hierarchical prior for the low-frequency price component, which is not only

consistent with the rationality of the economic model, but also flexible in its design to account for variation

that the storage model is not intended to explain. This makes our approach applicable to a broad range

of commodity markets and different sampling frequencies. The strategy of scaling prices to address non-

stationarity was also done by Routledge et al. (2000) in their equilibrium term structure model of crude oil

futures. However, they did not do so in a rigorous estimation framework.

A stochastic trend as used in our storage SSM allows a potentially large fraction of the observed variation
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in commodity prices to be accounted for by the trend component. This risks miss-assigning price variation

due to speculative storage to the trend component. Thus, if considered as an evaluation of the empirical

relevance of the storage model, the use of a stochastic trend can be considered as a conservative test. To

explore this issue further we perform a simulation experiment. The simulation results suggest that our

proposed approach is able to accurately assign price variation to trend and model components. We further

apply our storage SSM to monthly observations of nominal coffee, cotton, aluminum and natural gas prices.

The results show, not surprisingly, that most of the observed price variation is due to the stochastic trend

component. In order to assess the empirical relevance of the competitive storage model, we compare the

storage SSM to the nested model that results in the absence of storage. The comparison reveals that the

storage model predicting non-linear price dynamics with episodes of isolated price spikes and increased

volatility adds significantly to explaining the observed commodity price behavior. We also compare the

stochastic trend SSM to the deterministic trend models of Gouel and Legrand (2017) by using the Bayes

factor and a model residual analysis. Results show that the SSM with stochastic trend fits the price data

much better than models with deterministic trends. The estimates for the price elasticity of demand obtained

from the stochastic trend SSM are substantially larger than for the deterministic trend models. Also, the

estimated storage costs vary considerably depending on the commodity. This highlights the importance of

properly accounting for the trend behavior when evaluating the role of speculative storage in commodity

markets.

The rest of this paper is structured as follows. In the next section, we present the storage model used in

the paper and the assumed price representation. We then present the estimation methodology (Section 3),

simulation results (Section 4) and empirical results for historical data (Section 5). We discuss the findings

before we offer some concluding remarks (Section 6).

2 Storage Model

2.1 State-Space Formulation with Stochastic Trend

Our approach relies upon the commodity storage model of Oglend and Kleppe (2017). It extends the

Deaton and Laroque (1992) model by including an upper limit of storage capacity, C ≥ 0, in addition to

the conventional non-negativity constraint for stocks, so that the storage space is completely bounded. This

upper limit takes into account possible congestion of the storage infrastructure, which can lead to negative

price spikes in the event of substantial oversupply in the market. In addition, the assumption of a completely

bounded storage space allows numerical solutions of the model that are more robust over a wider parameter
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range than those for a model without this assumption (Oglend and Kleppe, 2017). This, in turn, simplifies

estimation of the model parameters.

The economic model of commodity storage is a canonical dynamic stochastic partial equilibrium model

in discrete time for a commodity market with risk neural storage agents and rational expectations. The

rational expectations equilibrium is characterized by a price function, denoted by f(x), which maps the

stocks x to commodity prices. For empirical implementation, we assume that the observed commodity price

can be decomposed into a component to be explained by the commodity storage model and a stochastic

trend component. The corresponding time series model that we propose for the commodity log-price pt,

observed at time t (t = 1, . . . , T ), has the form

pt = kt + log f(xt), (1)

kt = kt−1 + εt, εt ∼ iid N(0, v2), (2)

xt = (1− δ)σ(xt−1) + zt, zt ∼ iid N(0, 1), (3)

where the available quantity of commodity stocks xt is treated as a latent state variable. Its dynamics are

linear in the equilibrium storage policy σ(·), with stock depreciation rate δ and Gaussian supply shocks zt.

The latent trend component of the log-price kt is specified as a driftless Gaussian random walk, so that it

is allowed to vary gradually over time. The innovations of this stochastic trend εt and the supply shocks zt

are assumed to be serially and mutually independent.

The rational expectations equilibrium price function f(x) satisfies for all x

f(x) = min
{
P (x− C),max

[
f̄(x), P (x)

]}
, (4)

f̄(x) = β

∫
f
(

(1− δ)σ(x) + z
)
φ(z)dz, (5)

σ(x) = x−D(f(x)), (6)

where D(p) represents a continuous and monotonically decreasing aggregate demand function in the market,

P (x) is the corresponding inverse demand, and φ(z) is the probability density function of the supply shock z.

The storage cost discount factor is given by β = (1−δ)/(1+r), where r is a relevant interest rate. According to

Equation (4), the equilibrium pricing function exhibits three different pricing regimes: (i) a stock-out pricing

regime, where f(x) = P (x)⇔ σ(x) = 0, (ii) a no-arbitrage pricing regime, i.e. f(x) = f̄(x)⇔ C > σ(x) > 0,

where f̄(x) is the expected next period commodity price, and (iii) a full capacity pricing regime, where

f(x) = P (x−C)⇔ σ(x) = C. The stock-out regime is characterized by positive price spiking and high price
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volatility due to reduced shock buffering capabilities in the market. Under the no-arbitrage regime, prices

evolve smoothly with a relatively low volatility. Full capacity pricing mirrors the stock-out regime but with

negative price spikes. As the market transitions between regimes, prices move between periods of quiet and

turmoil, generating non-linear dynamics in the price process. The rational expectations equilibrium f(x) is

stationary, having an associated globally stationary price density (Oglend and Kleppe, 2017).

Using kt = pt−1 − log f(xt−1) + εt in the price equation, the model as given in Equations (1)-(3) can be

written as

pt = pt−1 + log

(
f(xt)

f(xt−1)

)
+ εt, εt ∼ iid N(0, v2), (7)

xt = (1− δ)σ(xt−1) + zt, zt ∼ iid N(0, 1). (8)

This defines a non-linear Gaussian state-space model, with measurement equation (7) for the observed price

and state-transition equation (8) for the latent stocks.

2.2 Stochastic Trends and Storage Decisions

Separating the trend from the storage model pricing component in a consistent way that does not compromise

the rationality of storage agents in the market requires that the trend does not interfere with intertemporal

allocation incentives. The martingale property of a trend component specified as a stochastic trend with

innovations that are independent of supply shocks ensures that this requirement is met. By using a separable

stochastic trend we are assuming that storage agents do not alter their storage decisions based on trend

innovations. In other words, trend innovations are assumed perceived by agents as permanent scalings of

price levels that do not warrant adjustments to storage allocations.

As an example, consider permanent shocks K to the inverse aggregate demand in the market, P ∗ = KP .

The aggregate demand implied by P ∗ is D∗, and the resulting rational expectations equilibrium is given by

f∗(x) = min

{
P ∗(x− C),max

[
β

∫
f∗
(

(1− δ) (x−D∗ (f∗(x))) + z
)
φ(z)dz, P ∗(x)

]}
. (9)

Assume the scaling process is given by K ′ = γK + ε, where ε is a random variable with density φε which is

independent of the supply shock z. This scaling does not affect the optimal storage policy if f∗(x) = Kf(x)

solves the functional equation problem in Equation (9), where f(x) is the rational expectations equilibrium
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for the original non-scaled prices. Substituting the proposed solution for f∗(x), we get

Kf(x) = min

{
KP (x− C), (10)

max

[
β

∫
(γK + ε)

∫
f
(

(1− δ)(x−D∗(Kf(x))) + z
)
φ(z)φε(ε)dzdε,KP (x)

]}
.

Note that D∗(Kf(x)) = D(f(x)) by the definition of D∗ as the inverse of the scaled inverse demand function

P ∗ = KP , where P = f(x). And so,

Kf(x) = min

{
KP (x− C), (11)

max

[
β

∫
(γK + ε)

∫
f
(

(1− δ)(x−D(f(x))) + z
)
φ(z)φε(ε)dzdε,KP (x)

]}
.

If
∫

(γK + ε)φε(ε)dε = K implying that E(K ′) = K, we obtain

Kf(x) = K min

{
P (x− C),max

[
β

∫
f
(

(1− δ)(x−D(f(x))) + z
)
φ(z)dz, P (x)

]}
, (12)

which establishes f∗(x) = Kf(x) as the solution to the inverse demand scaled rational expectations equilib-

rium. Consequently, any observed commodity price can be represented as P = Kf(x). Formally, the rational

expectations equilibrium is linear homogeneous to the proportional scalingK of the inverse aggregate demand

function when E(K ′) = K and innovations to the trend are orthogonal to supply shocks.

Note that in our econometric model as given by Equations (1)-(3), it is the logarithm of the scaling

process for the price levels k = log(K) and not K, for which we assume a stochastic trend. Hence, the mar-

tingale property for the scaling term process K will not apply exactly, and the assumed Gaussian process

for log(K) implies that E(K ′) = K exp
(
v2/2

)
> K. By ignoring this bias in our econometric model we

make the behavioral assumption that agents do not alter storage decision based on the capital gain due to

the expected mark-up factor exp
(
v2/2

)
> 1. We consider this a reasonable trade-off to allow us to empir-

ically analyze the storage model within a log-linear state and measurement space, which is comparatively

convenient for statistical inference. In addition, the bias is small when v2 is small, that is, when the trend is

fairly smooth. In fact, the estimates we obtain for v in our empirical application discussed below imply that

the factor exp
(
v2/2

)
varies in a range between 1.001 and 1.004 so that it is essentially negligible. Ignoring

this factor is essentially equivalent to transforming the probability space to a setting where agents ignore

information from trend innovations, similar to a risk-neutral valuation setting where v2 defines a required

risk premium term or a nominal inflation term.
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3 Statistical Inference

3.1 Preliminaries

In our empirical application of the storage model with stochastic trend based on its state-space representation

as given in Equations (7) and (8), we use monthly commodity spot prices and rely on a Bayesian Markov

chain Monte Carlo (MCMC) posterior analysis. For this application, we follow Kleppe and Oglend (2017)

and use P (x) = exp(−bx) as the inverse demand function, where the parameter bmeasures the semi-elasticity

of the demand price. In line with Gouel and Legrand (2017), we fix the yearly interest rate at 5%, so that

the monthly storage cost discount factor is given by β = (1 − δ)/(1 + r), with r = 1.051/12 − 1. The set of

parameters then consists of the structural parameters (δ, b, C) and the trend parameter v.

In initial experiments to estimate the parameters, we found that the capacity limit C is empirically not

well identified separately from the remaining parameters. This appears to be mainly due to the fairly small

sample size of our data, ranging from 264 to 360 monthly spot price observations. Therefore, we decided

to fix C at a positive predetermined value. Since C determines the full capacity threshold for equilibrium

storage, it bounds the space for the unit-free latent state variable x, and by fixing its value (together with

normalizing the mean of z to zero) we pin down the range of this space. The values of the remaining

parameters (δ, b, v) and their implications for the price dynamics are then to be interpreted relative to this

scale of x. In our empirical application below we set the capacity limit C = 10. This ensures that it is a

fairly rare event for the market to be in the full-capacity regime. Suppose, for example, that all realizations

of the supply shocks z for a sequence of periods are equal to one standard deviation and that nothing is

consumed in those periods, so that xt+1 = (1 − δ)xt + 1. Then a storage infrastructure with C = 10 and

a notable depreciation rate of δ = 0.01 can store those unconsumed supplies for about 10 months before

reaching the capacity limit1.

In order to solve the functional equation for the equilibrium price function f(x) as defined by Equations

(4)-(6), we use a numerical algorithm which is based on the method of Kleppe and Oglend (2019), detailed in

Appendix A.1. This algorithm takes advantage of the fact that the storage space is completely bounded by

the non-negative constraint and the capacity limit C, thus providing numerically robust and computationally

fast solutions. This is critical for a Bayesian MCMC posterior analysis because it requires a significant number

1Our selection of C = 10 also corresponds to the lowest upper limit, which Deaton and Laroque (1995, Table I) use for their
grids of x-values in the interpolation scheme to compute the equilibrium price function for a set of various yearly commodity
prices. The upper grid boundaries for the different commodities have been chosen by the authors so that the calculations never
generate x-values that exceed these maximum values for the grid.
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of reruns of the algorithm to obtain a solution to the pricing function for each new parameter value.

3.2 Bayesian Inference Using Particle Markov Chain Monte Carlo

In the SSM model as given by Equations (7) and (8) the vector of parameters to be estimated is given

by θ = (v, δ, b) and the vector of latent state variables is x1:T , where the notation as:s′ is used to denote

(as, as+1, . . . , as′). The posterior of the parameters is π(θ|p1:T ) ∝ πθ(p1:T )π(θ), where π(θ) denotes the prior

density assigned to θ and πθ(p1:T ) represents the likelihood function, given by

πθ(p1:T ) =

∫ [ T∏

t=2

πθ(pt|pt−1, xt−1:t)πθ(xt|xt−1)

]
πθ(p1, x1)dx1:T , (13)

with

πθ(pt|pt−1, xt−1:t) = N
(
pt|pt−1 + log

(
f(xt)

f(xt−1)

)
, v2

)
, πθ(xt|xt−1) = N (xt|(1− δ)σ(xt−1), 1) , (14)

where N (·|µ, σ2) denotes a normal density function with mean µ and variance σ2. For the joint density of

the price and state in the initial period πθ(p1, x1) we assume that it factorizes into a uniform density on

(−2, C + 2) for the state x1, denoted by U(x1| − 2, C + 2), and a dirac measure for the price p1 located at

its actually observed value (effectively conditioning the likelihood on the first price observation).

Due to the non-linear nature of the pricing function f(x) and the storage function σ(x) entering the

measurement and state transition density as given in Equation (14), the likelihood (and hence the resulting

posterior for θ) are not available in closed form, so that a Bayesian and likelihood-based inference requires

approximation techniques. Several Monte Carlo (MC) approximation approaches have been developed for

statistical inference in non-linear SSMs with analytically intractable likelihood functions. However, only

a few of them are suited to the model considered here due to the discontinuous derivatives of f(x). In

particular, methods using MC estimators for the likelihood πθ(p1:T ) based on approximations to the con-

ditional posterior of the states π(x1:T |θ, p1:T ), including second order/Laplace approximations (Shephard

and Pitt, 1997; Durbin and Koopman, 2012) or global approximations as used by the efficient importance

sampler (Liesenfeld and Richard, 2003; Richard and Zhang, 2007), perform poorly in such a context. The

same applies to the Gibbs approach targeting the joint posterior distribution of the states and parameters

π(x1:T , θ|p1:T ) and alternately simulating from the conditional posteriors π(x1:T |θ, p1:T ) and π(θ|x1:T , p1:T ).

It is known that such a Gibbs procedure typically has problems in efficiently approximating the targeted

joint posterior in non-linear SSMs due to a fairly slow mixing (Bos and Shephard, 2006). Moreover, the

Gibbs procedure is also not very computationally attractive in the present context, since both the (joint)
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conditional posterior of all the states π(x1:T |θ, p1:T ) and the single-site conditional posterior of the individual

states π(xt|x1:t−1, xt+1:T , θ, p1:T ) are non-standard distributions.

Here, we propose to use the particle marginal Metropolis-Hastings (PMMH) approach as developed by

Andrieu et al. (2010), which is well suited for a posterior analysis of our proposed storage SSM as it can cope

with the discontinuity of the gradients of f(x) and is very easy to implement. The PMMH uses unbiased

MC estimates of the likelihood πθ(p1:T ) inside a standard Metropolis-Hastings (MH) algorithm targeting the

posterior of the parameters π(θ|p1:T ). The MC estimation error of the likelihood estimate does not affect

the invariant distribution of the MH so that the PMMH allows for exact inference. The PMMH produces

an MCMC sample {θi}Si=1 from the target distribution by the following MH updating scheme: Given the

previously sampled θi−1 and the corresponding likelihood estimate π̂θi−1(p1:T ), a candidate value θ∗ is drawn

from a proposal density Q(θ|θi−1), and the estimate of the associated likelihood π̂θ∗(p1:T ) is computed. Then

the candidate θ∗ is accepted as the next simulated θi with probability

α(θ∗, θi−1) = min

{
1,

π̂θ∗(p1:T )π(θ∗)
π̂θi−1(p1:T )π(θi−1)

Q(θi−1|θ∗)
Q(θ∗|θi−1)

}
, (15)

otherwise θi is set equal to θi−1. Under weak regularity conditions, the resulting sequence {θi}Si=1 converges

to samples from the target density π(θ|p1:T ) as S →∞ (Andrieu et al., 2010, Theorem 4).

For the PMMH, we use a Gaussian random walk proposal density Q(θ|θi−1) = N (θ|θi−1,Σ) and follow the

approach of Haario et al. (2001) to adaptively set the proposal covariance matrix Σ during the burn-in period

of the MCMC iterations. After dropping the draws from the burn-in period, we use the θ draws from the

next M PMMH iterations to represent the posterior π(θ|x1:T ). The posterior mean of the parameters, used

as point estimates, is approximated by the sample mean over the M PMMH draws. For numerical stability

of the PMMH computations, we reparameterize the likelihood function using the transformed parameters

θ =
(

log(v), arctanh(2δ − 1), log(b)
)
so that the resulting parameter space is unconstrained.

The prior densities for the parameters are selected as follows: For log(b) we assume a N(0, 1) prior, and

for v2 an inverted chi-squared prior with v2 ∼ 0.1/χ2
(10), where χ

2
(10) denotes a chi-squared distribution with

10 degrees of freedom. Under this prior for v2, the mean is given by 0.01 and the standard deviation by

0.007. The prior density assigned to δ is a Beta with δ ∼ B(2, 20) so that the mean and standard deviation

are given by 0.09 and 0.05, respectively.

3.3 Particle Filter Likelihood Evaluation

In order to obtain unbiased MC estimates for the likelihood in Equation (13), required as an input of the

PMMH, we follow Andrieu et al. (2010) and Flury and Shephard (2011) and use a simple sampling importance
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resampling (SIR) particle filter (PF). For given values of the parameters θ, it produces MC estimates for

the sequence of period-t likelihood contributions πθ(pt|p1:t−1) by sequentially sampling and resampling using

an importance sampling (IS) density q(xt|x1:t−1) for the states xt (see, Doucet and Johansen, 2009; Cappé

et al., 2007, for a detailed treatment of PFs). For the implementation of the PF we use the state-transition

density πθ(xt|xt−1) as IS density (Gordon et al., 1993), and rely on a dynamic resampling scheme in which

the particles are resampled only when their effective sample size falls below one half of the number of particles

(Doucet and Johansen, 2009). This simple version of the PF (also known as the bootstrap PF, BPF) for

approximating the likelihood as given by Equations (13) and (14) consists of the following steps:

For period t = 1 (initialization): Sample xk1 ∼ π1(x1) = U(x1| − 2, C + 2) for k = 1, . . . , N and set the

corresponding (normalized) IS weights to W k
1 = 1/N . For initialization set x̄k1 = xk1 .

For periods t = 2, . . . , T : Sample xkt ∼ πθ(xt|x̄kt−1) = N
(
xt|(1 − δ)σ(x̄kt−1), 1

)
for k = 1, . . . , N and set

xk1:t = (xkt , x̄
k
1:t−1). Compute the IS weights as

wkt = W k
t−1πθ(pt|pt−1, x

k
t−1:t), (16)

and their normalized versionsW k
t = wkt /(

∑N
`=1 w

`
t). Then use the IS weights to obtain the period-t likelihood

contribution as π̂θ(pt|p1:t−1) = (
∑N
k=1 w

k
t )/N , and compute the effective particle sample size defined by

Ne
t = [

∑N
k=1(W k

t )2]−1. If Ne
t < N/2, resample from the particles {xk1:t}Nk=1 with replacement according

to their IS weights W k
t to obtain the resampled particles {x̄k1:t}Nk=1, and set their weights to W k

t = 1/N .

Otherwise, set x̄k1:t = xk1:t.

The resulting BPF estimate for the likelihood (conditional on the first price observation) is given by

π̂θ(p1:T ) = [
∏T
t=2 π̂θ(pt|p1:t−1)]. The measurement density πθ(pt|pt−1, xt−1:t) is not very informative about

the states xt for empirically relevant parameter values, resulting in a low signal-to-noise ratio. Thus, the

simple BPF yields fairly precise MC estimates of the likelihood with a modest number of particles N (Cappé

et al., 2007). High precision likelihood estimates are a critical requirement for the PMMH to produce a

well mixing MCMC sample from the posterior of the parameters π(θ|x1:T ) (Flury and Shephard, 2011). In

our applications below, we use N = 10, 000 particles. For a time series with T = 360, one BPF likelihood

estimate requires approximately 2.5 seconds (on a computer with an Intel Core i5-6500 processor running

at 3.20 GHz). The MC numerical standard deviation of the log-likelihood estimate log π̂θ(p1:T ), computed

from reruns of the BPF for a fixed θ value under different seeds, is about 0.1 percent of the absolute value

of the log-likelihood, illustrating the high accuracy of the BPF.
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3.4 State Prediction and Diagnostics

The BPF outlined in the previous section, and used for the PMMH implementation, can also be used to

produce MC estimates for the predicted values of the latent state vector x1:t+1 and functions thereof, given

the prices observed up to period t, p1:t. MC estimates of such predictions can serve as the basis for diagnostic

checks. Let h(x1:t+1) be a function of interest in x1:t+1. Its conditional mean given p1:t can be expressed as

E
(
h(x1:t+1)|p1:t

)
=

∫
h(x1:t+1)πθ(xt+1|xt)πθ(x1:t|p1:t)dx1:t+1, (17)

where πθ(xt+1|xt) is the state-transition density as given by Equation (14) and πθ(x1:t|p1:t) is the filtering

density for x1:t. Since the particles and IS-weights {xk1:t,W
k
t }Nk=1 produced by the BPF provide an MC

approximation to this filtering density, the conditional mean in Equation (17) for a given value of θ can be

easily estimated by

Ê(h(x1:t+1)|p1:t) =
N∑

k=1

h(xk1:t+1)W k
t , (18)

with xk1:t+1 = (xk1:t, x
k
t+1), where xkt+1 is obtained by propagating the BPF particle xk1:t via the state-transition

density, i.e. xkt+1 ∼ πθ(xt+1|xkt ). In practice, the parameters θ are set equal to their estimates.

This MC approximation of a predicted mean like that in Equation (17) enables us to compute several

useful statistics, such as the filtered mean for the price function of the storage model E(log f(xt)|p1:t) and

the stochastic trend component E(kt|p1:t) = pt − E(log f(xt)|p1:t), for which the function h to be used is

h(x1:t+1) = log f(xt). State predictions can also be used to compute standardized Pearson residuals defined

as

ηt+1 = [pt+1 − E(pt+1|p1:t)]/Var(pt+1|p1:t)
1/2. (19)

If the model is correctly specified, then ηt+1 and η2
t+1 are serially uncorrelated so that they can be used for

diagnostic checking of the assumed dynamic structure. The conditional moments of pt+1 for the storage SSM

are given by E(pt+1|p1:t) = pt+E(log[f(xt+1)/f(xt)]|p1:t) and Var(pt+1|p1:t) = Var(log[f(xt+1)/f(xt)]|p1:t)+

v2, which can be evaluated by Equation (18), using the functions h(x1:t+1) = log[f(xt+1)/f(xt)] and

h(x1:t+1) = {log[f(xt+1)/f(xt)]− Ê(log[f(xt+1)/f(xt)]|p1:t)}2.

In order to check the capability of the storage SSM to approximate the distributional properties of the
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observed prices we use the probability integral transformed (PIT) residuals defined as

ξt+1 = Φ−1(ut+1), ut+1 = Pr(pt+1 ≤ pot+1|p1:t), (20)

where Pr(pt+1 ≤ pot+1|p1:t) is the predicted probability that pt+1 is less or equal to the actually ex-post

observed price pot+1, and Φ denotes the cdf of a N(0, 1)-distribution (Kim et al., 1998). The PIT residuals

ξt+1 follow a N(0, 1)-distribution if the model is valid. For the storage SSM, the probability ut+1 can be

calculated by setting the function h(x1:t+1) equal to Φ({pot+1 − pt − log[f(xt+1)/f(xt)]}/v).

3.5 Marginal Likelihood for Model Comparison

Marginal likelihood is used to compare the storage SSM with alternative models and assess the empirical

relevance of the structural storage model component in the SSM. In order to evaluate the marginal like-

lihood for the storage SSM we rely upon the procedure proposed by Chib and Jeliazkov (2001), which is

specifically customized for Bayesian analyses implemented using MH algorithms targeting the posterior of

the parameters. This procedure takes advantage of the fact that the marginal likelihood can be expressed as

π(p1:T ) =
πθ̄(p1:T )π(θ̄)

π(θ̄|p1:T )
, (21)

where πθ̄(p1:T ) is the likelihood function for the observed prices evaluated at some value of the parameters θ̄,

and π(θ̄) and π(θ̄|p1:T ) are the corresponding ordinates of the prior and posterior of the parameters. Then

it exploits that the posterior ordinate π(θ̄|p1:T ) can be expressed in terms of the MH acceptance probability

α(·, ·) and the proposal density Q(·|·). Namely, as the ratio of the expectation of α(θ̄, θ)Q(θ̄|θ) under the

posterior π(θ|p1:T ) relative to the expectation of α(θ, θ̄) under the proposal density Q(θ|θ̄). This implies that

a consistent MC estimate for π(θ̄|p1:T ) based on the MH acceptance probability defined in Equation (15) is

given by

π̂(θ̄|p1:T ) =
M−1

∑M
i=1 α(θ̄, θi)Q(θ̄|θi)

L−1
∑L
l=1 α(θl, θ̄)

, (22)

where {θi}Mi=1 are the M simulated draws from the posterior distribution π(θ|p1:T ) and {θl}Ll=1 are draws

from the proposal distribution Q(θ|θ̄). For evaluating the likelihood πθ̄(p1:T ) in Equation (21) we use the

same BPF algorithm as applied for the computation of the MH acceptance probabilities in Equation (15)

(and outlined in Section 3.3). The value of the point θ̄ is set equal to the posterior mean of θ.
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4 Ability to Isolate the Trend and Storage Model Component

In order to illustrate the capability of our Bayesian storage SSM approach to empirically separate the

variation in the observed prices into the variation generated by the structural storage model component and

that of the stochastic trend, we conduct a simulation experiment. Prices are simulated from the storage

SSM for parameters that are set equal to their posterior mean values found for the empirical application to

natural gas prices, discussed further below (see Table 1). Prices are simulated for 800 periods, with the first

500 discarded as burn-in, so that the size of the simulated sample is T = 300. The storage SSM is then fitted

to the time series of simulated prices by using the PMMH procedure, and the BPF is applied to produce

estimates of the filtered mean for the storage model price component E(f(xt)|p1:t) and the stochastic trend

E(kt|p1:t), evaluated at the posterior mean of the parameters.
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Figure 1: Filtered price components for simulated data. Upper panel: time series plot of the simulated
log price log pt (blue line), the actual stochastic trend component kt (green line), and its estimated filtered
mean E(kt|p1:t) (red line). Lower panel: time series plot of the actual storage model component log f(xt)
(green line) and its estimated filtered mean E(log f(xt)|p1:t) (red line). The gray shaded areas indicate
the 95% credible intervals under the filtering densities for kt and log f(xt), and the dashed lines in the
lower panel mark the boundaries of the storage regimes. The prices are simulated using parameters set at
(v, δ, b) = (0.097, 0.011, 0.420). The posterior mean of the parameters obtained by fitting the model to the
simulated price data are (v̂, δ̂, b̂) = (0.101, 0.013, 0.436).

Figure 1 shows the results of the simulation experiment. The upper panel displays the time series of

the simulated log price log pt and the actual simulated stochastic trend component kt together with the

estimate of its filtered mean, and the lower panel shows the time series of the actual price component which

is generated by the competitive storage model log f(xt) together with its estimated filtered mean. Also
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plotted are the boundaries of the storage regimes. Values of the price component above the upper boundary

correspond to the stock-out pricing regime, and values below the lower boundary correspond to the full

storage capacity pricing regime. The plotted time series show that the estimated filtered means of the

two price components track the time evolution of the true components quite well. We also observe that the

estimated filtered means predict most of the stock-out events, which is critically important for identifying the

structural parameters of the storage model. These simulation results illustrate that our approach appears to

be well capable to empirically identify - from observed commodity prices - the fraction of the price variation

which is due competitive storage decisions and to separate it from stochastic trend variation.

5 Empirical Application

In this section, we apply our Bayesian storage SSM approach to historical monthly price data for the following

four commodities: Coffee (Coffee, Other Mild Arabicas, New York cash price, ex-dock New York, US cents

per pound), cotton (Average Spot Price in US cents per Pound for Upland cotton – color 41, leaf 4, staple

34), aluminum (Aluminum (LME) London Metal Exchange, unalloyed primary ingots, high grade, minimum

99.7% purity, USD per Metric Ton), and natural gas (Natural Gas (U.S.), spot price at Henry Hub, Louisiana,

USD per MBtu). The respective sample periods range from Jan 1989 until Dec 2018 (T = 360) for coffee,

cotton and aluminum, and from Jan 1997 until Dec 2018 (T = 264) for natural gas. All prices are in

nominal terms. We use monthly instead of annual prices to allow for more information about short-term

price movements, as well as to avoid potentially spurious averaging effects of annual prices (Guerra et al.,

2015).

5.1 Estimation Results for the Storage SSM with Stochastic Trend

For the Bayesian posterior analysis of the storage SSM, we run the PMMH algorithm for 12,000 iterations

and discard the first 2,000 as burn-in. In order to evaluate the sampling efficiency of the PMMH for

estimating the parameters, we compute the effective sample size (ESS) of their posterior PMMH samples

(Geyer, 1992). The ESS measures the size of a hypothetical independent sample directly drawn from the

posterior of the parameters which delivers the same numerical precision as the actual sample ofM correlated

PMMH parameter draws, so that large ESS values are to be preferred.

For each of the four commodities, the estimated posterior mean, standard deviation and ESS for the

parameters are found in Table 1. The ESS values range from 376 to 1,028, indicating a satisfactory sampling

efficiency with a fairly fast mixing rate of the PMMH algorithm. The estimates for the standard deviation

of the trend innovations v imply that the stochastic trend accounts for 53% of the variation observed in the
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Natgas Coffee Cotton Aluminum
v Post. mean 0.0972 0.0607 0.0459 0.0448

Post. std. 0.0083 0.0034 0.0027 0.0023
ESS 634 442 1028 990

δ Post. mean 0.0112 0.0023 0.0013 0.0011
Post. std. 0.0048 0.0013 0.0008 0.0007
ESS 580 376 761 847

b Post. mean 0.4196 0.3849 0.3247 0.1987
Post. std. 0.2594 0.0913 0.0598 0.0676
ESS 515 386 972 917

Table 1: MCMC posterior analysis of the storage SSM with stochastic trend. The reported numbers are the
posterior mean, posterior standard deviation and effective sample size (ESS) for the parameters. The results
are based on 12, 000 PMMH iterations, discarding the first 2000 burn-in iterations.

monthly price changes for natural gas, 66% for coffee, 71% for cotton, and 81% for aluminum. As for the

estimates of the depreciation rate δ, we observe that they are fully in line with the actual storage costs to be

expected for the different types of commodities: For natural gas we find the largest estimated depreciation

rate (1.1%), which implies that the monthly cost of storage amounts to 1.5% of the price. This relatively

large estimated storage cost is in accordance with the fairly expensive storage technology for US natural

gas, which is typically stored in underground salt caves and similar facilities. The second largest storage

cost is found for coffee, with a monthly depreciation rate of 0.2% leading to estimated monthly costs of

0.6% of the price. The lowest storage costs are predicted for the non-food and non-energy products cotton

and aluminum, for which the estimated depreciation rate is 0.1% resulting in storage costs of 0.5%. We

also observe that the larger the estimated storage cost for a commodity, the larger the fraction of observed

price variation which is captured by the storage decision behavior. This is in agreement with the rationality

of the competitive storage model, where higher storage costs are associated with more frequent stock-out

events, which in turn implies greater price volatility. The posterior mean values for the slope parameter b

of the inverse demand function imply that a reduction in supply on the market by one standard deviation

of production leads to a price increase of 42% for natural gas, 38% for coffee, 32% for cotton and 20% for

aluminum. The size of these estimated price elasticities roughly corresponds to the size of the price peaks

observed in these markets.

Figure 2 displays the time series of the log-prices for each of the four commodities, together with the

filtered mean for their stochastic trend component kt and their price component associated with the compet-

itive storage model f(xt). We observe that the temporal evolution of the filtered estimates of the stochastic

trend variable closely follows that of the observed prices. The filtered estimates for the storage model price

component reveal that it predominantly captures periodically recurring price fluctuations with large price
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Figure 2: Commodity prices and filtered price components. Upper panels: time series plot of the log price
log pt (blue line) and the estimated filtered mean of the stochastic trend component E(kt|p1:t) (red line).
Lower panels: time series plot of the estimated filtered mean of the storage model component E(log f(xt)|p1:t)
(red line). The gray shaded areas indicate the 95% credible intervals under the filtering densities for kt
and log f(xt), and the dashed lines in the lower panels mark the boundaries of the storage regimes. The
parameters are set to their posterior mean as given in Table 1.

peaks and drops. Beyond the periods with elevated price volatility, the contribution of this component to

the price variation appears small. This reflects that when equilibrium storage is an inner solution (so that

0 < σ(xt) < C), the resulting price is subject to an intertemporal price restriction leading to prices which

behave as a stationary Markov process. Accordingly, in this no-arbitrage pricing regime, the economic stor-

age model provides little additional information about the price evolution that goes beyond the stochastic

trend. However, storage becomes empirically relevant with a significant impact on the price behavior when

the normal no-arbitrage pricing mechanism collapses in the stock-out and full-capacity regime, which occurs
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in the storage model in periods of severe and prolonged commodity shortages or oversupply.

The limits-to-arbitrage regimes (stock-out or full-capacity) detected by the fitted storage model tend

to coincide with known historical market events. For example, the time periods with peaks in the filtered

storage price component for natural gas usually correspond to periods when the historical level of natural

gas storage in the market was very low (Kleppe and Oglend, 2017). The sharp drop in the storage price

component for coffee in 1989 coincides with the collapse of the International Coffee Agreement (a cartel of

coffee-producing countries) and oversupply in the market due to World Bank subsidies, while the 1994 peak

is consistent with a negative supply shock triggered by significant frost damage in much of the coffee-growing

areas of Brazil. The cotton price peak detected by the storage model in 2011 was arguably due to the severe

global shortages, which were caused, inter alia, by the tightening of Indian export restrictions on cotton.

The early nineties spike in aluminum prices coincides with the collapse of the Soviet Union, and the 2008-

2009 price drop is consistent with the sharp decline in global aluminum demand that created a large stock

overhang during this period after the subprime crisis.

5.2 Model Comparisons

In this section, we assess the empirical relevance of the price component related to the competitive storage

model for explaining the observed price variation, and compare the storage SSM model with stochastic trend

to that with deterministic trend specifications. For this assessment, we rely on the marginal likelihood as

well as diagnostic checks on Pearson and PIT residuals.

5.2.1 Alternative Models

For assessing the relevance of the storage model price component, we compare our SSM model to the

restricted SSM that results in the absence of storage. The latter is obtained by letting δ → 1, making

storage prohibitively costly, so that the stock process xt collapses to that of the supply shocks zt. In this

case the SSM in Equations (1)-(3) with the assumed demand function P (x) = exp(−bx) reduces to

pt = kt − bzt, zt ∼ iidN(0, 1),

kt = kt−1 + εt, εt ∼ iidN(0, v2).

This represents a standard linear Gaussian local level (LGLL) SSM (Durbin and Koopman, 2012) so that

the Kalman filter can be applied for likelihood evaluation. As the Kalman filter provides exact values for the

likelihood, the PMMH used for simulating from the posterior of the parameters for the unrestricted storage

SSM can be replaced by a standard MH algorithm. The priors assigned to the two parameters (b, v) are the
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Natgas Coffee Cotton Aluminum
Storage SSM 164.15 420.07 522.80 545.36

LGLL SSM 146.77 404.08 510.28 540.88
(17.38) (15.99) (12.52) (4.48)

Linear trend 109.57 309.64 427.00 496.77
(54.58) (110.43) (95.80) (48.59)

RCS3 trend 144.49 362.90 473.59 488.53
(19.66) (57.17) (49.21) (56.83)

RCS7 trend 132.03 375.50 488.44 517.23
(32.12) (44.57) (34.36) (28.13)

Table 2: Log marginal likelihood values with the log Bayes factor of the storage SSM relative to the alternative
models in parentheses.

same as those we assume for the unrestricted storage SSM.

As deterministic trend specifications to be compared with the stochastic trend in the storage SSM, we

consider those used in the study of Gouel and Legrand (2017). They use a linear time trend, for which

kt in Equation (2) is replaced by kt = α + βt. In addition, they consider restricted cubic spline trend

specifications of the form kt =
∑G
g=1 = γgBg(t), where Bg(·) are the basis functions of B-splines, G is the

degree of freedom, and γg are the corresponding trend parameters to be estimated. For our comparison we

consider restricted cubic splines with 3 knots (RSC3) and 5 trend parameters as well as 7 knots (RSC7) and

9 trend parameters2. For these deterministic trends the SSM in Equations (1)-(3) reduces to a univariate,

non-linear autoregression for the log-price:

pt = kt + log f [(1− δ)σ(xt−1) + zt] , xt−1 = f−1 [exp(pt−1 − kt−1)] , zt ∼ iidN(0, 1). (23)

Analogously to the LGLL SSM, we can simulate from the posterior for the parameters of the deterministic

trend models by using a standard MH algorithm. For the structural parameters (δ, b) we assume the same

priors as used in the storage SSM, and to the deterministic trend parameters (α, β, γg) we assign independent

N(0, 202) priors. For details on the computation and derivation of the Pearson and PIT residuals of the

deterministic trend models, see Appendix A.2.

5.2.2 Marginal Likelihood Model Comparisons and Diagnostics Checks

Table 2 provides the log marginal likelihood values log π(p1:T |models) for the storage SSM together with those

of the LGLL SSM and the storage model combined with the deterministic trend specifications. Also reported

are the resulting values for the log Bayes factor of the storage SSM relative to the four alternative models
2The knots for the RSC3 specification are located at the 25%, 50% and 75% quantiles of the time index and for the RSC7

at the 12.5%, 25%, 37.5%, 50%, 67.5%, 75% and 87.5% quantiles.
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Figure 3: Fitted stochastic and deterministic trends. Smoothed stochastic trend (purple solid line), linear
trend (red dashed line), RSC3 trend (blue number sign), RCS7 trend (green square).

log[π(p1:T |storage SSM)/π(p1:T |model`)]. The results reveal that the storage SSM is strongly preferred over

the LGLL SSM for all commodities, which suggests that the structural storage component in the SSM

substantially contributes to the model fit. Hence, the non-linear price dynamics with periodically recurring

increases in price volatility and price spiking, as predicted by the competitive storage model, adds significantly

to explaining the price behavior. For all commodities, we also observe that the storage SSM is clearly favored

over all deterministic trend specifications. Thus, the storage SSM has a trend component that is not only

consistent with the rationality of the economic model, but is also much more supported by the data than the

deterministic trends, such as those used by Gouel and Legrand (2017) for the estimation of the structural

parameters of the competitive storage model. Our estimates of the structural parameters for the deterministic

trend models are found in Appendix A.3. Figure 3 shows the time series plots of the fitted deterministic

trends k̂t and the smoothed mean of the stochastic trend E(kt|p1:T ), all computed by setting the parameters

to their posterior mean values3. Unsurprisingly, we find that the stochastic trend captures a substantially

larger fraction of the observed price variations than the deterministic trends.

Table 3 provides the results of diagnostic checks on the PIT residuals ξt and the Pearson residuals ηt for

the storage SSM and the four alternative models considered. The PIT residuals of the storage SSM suggest

that this model accounts well for the observed distributional properties of the prices for all commodities.

The skewness and kurtosis of its PIT residuals are close to their benchmark values for a normal distribution

and they all pass the Jarque-Bera normality test at the 5% significance level. In contrast, the LGLL SSM

3The smoothed mean E(kt|p1:T ) = pt −E(log f(xt)|p1:T ) is computed using the particle smoothing algorithm, which adds
to the BPF as outlined in Section 3.3 a backward sampling step (Doucet and Johansen, 2009, Section 5).
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Skew(ξt) Kurt(ξt) JB(ξt) ρ1(ηt) LB12(ηt) LB12(η
2
t )

Storage SSM

Natgas 0.053 3.069 0.915 0.075 0.027 0.297
Coffee 0.255 3.333 0.062 0.359 <0.001 <0.001
Cotton -0.064 3.445 0.201 0.518 <0.001 <0.001
Aluminum -0.214 3.25 0.159 0.291 <0.001 <0.001

LGLL SSM

Natgas 0.033 4.298 <0.001 0.084 0.055 0.452
Coffee 0.801 7.681 <0.001 0.258 <0.001 <0.001
Cotton -0.23 6.325 <0.001 0.502 <0.001 <0.001
Aluminum -0.381 4.652 <0.001 0.268 <0.001 <0.001

Linear trend

Natgas 0.049 5.368 <0.001 0.075 0.065 0.427
Coffee -0.532 4.795 <0.001 0.253 <0.001 0.053
Cotton 0.137 4.904 <0.001 0.497 <0.001 <0.001
Aluminum 0.625 6.502 <0.001 0.243 <0.001 <0.001

RCS3 trend

Natgas -0.099 3.962 0.005 <0.001 0.003 0.068
Coffee -0.508 5.231 <0.001 0.185 <0.001 0.004
Cotton 0.094 4.669 <0.001 0.449 <0.001 <0.001
Aluminum 0.369 5.407 <0.001 0.205 <0.001 0.002

RCS7 trend

Natgas -0.258 3.835 0.005 0.022 <0.001 0.004
Coffee -0.472 4.938 <0.001 0.184 <0.001 0.022
Cotton 0.181 4.437 <0.001 0.454 <0.001 <0.001
Aluminum -0.059 3.495 0.144 0.198 <0.001 <0.001

Table 3: Diagnostics on the PIT and Pearson residuals. Skewness, Kurtosis, and p-value of the Jarque-Bera
test (JB) for the PIT residuals. Lag-1 autocorrelation (ρ1) and p-value of the Ljung-Box test (LB) for the
Pearson residuals and their squared values, including 12 lags.

as well as the storage models with deterministic trends have difficulties approximating the distributional

properties of the prices. Only the PIT residuals of the storage model with an RSC7 trend for aluminum pass

the Jarque-Bera normality test at a conventional significance level.

The first-order serial correlation of the Pearson residuals ηt and the p-values of the Ljung-Box test for

ηt and η2
t including 12 lags reported in Table 3 show that the storage SSM successfully accounts for the

observed autocorrelation in the level and volatility of the gas price, while they point towards significant

residual correlation in price level and volatility for coffee, cotton and aluminum. However, all competing

models cannot fully capture the serial correlation in the price levels of those three commodities either.

Only the volatility dynamics for coffee is better approximated by the linear and RSC7 trend model than

by the storage SSM. Clearly, based on these results, we can not identify whether the failure of the storage
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SSM and the deterministic trend models to explain all of the observed dynamics in the coffee, cotton and

aluminum prices is due to a potential misspecification of the trend or the competitive storage model itself,

since the diagnostic tests are, as any specification test in this context, joint tests for the validity of both

price components.

In sum, the results show that the storage SSM outperforms the deterministic trend models in explaining

the observed distributional properties of commodity prices, and that its ability to account for the dynamics

in the price levels is not worse. Only in the approximation of the volatility dynamics, the deterministic trend

specifications appear to have a slight advantage.

5.2.3 Structural Parameter Estimates Under Stochastic and Deterministic Trends

As it is evident from Figure 6, the dynamic and distributional characteristics of the de-trended prices

substantially differ depending on whether a stochastic or deterministic trend is assumed. Therefore, it can

be expected that the nature of the trend has a critical impact on the estimates of the parameters that

determine the storage costs (δ) and the price elasticity of demand (b), since these parameters are identified

by the strength of the serial correlation and the size of the spikes in the trend-adjusted prices. The lower

the storage costs in the competitive storage model are, the stronger the predicted serial correlation, while

the more inelastic the demand is, the larger the resulting price spikes. As larger price spikes also imply

more speculative storage activity, an inelastic demand also contributes to the strength of the predicted serial

correlation in the prices.

Table 4 summarizes the estimates for the annualized storage costs (net of interest costs) in percent of the

average price, and the price elasticities of demand obtained from the fitted storage SSM and the deterministic

RCS trend models. The annual storage costs are computed as −[(1 − δ)12 − 1] and the price elasticity is

given by [−(bx̄)−1], where x̄ is the mean supply. We observe that the SSM with stochastic trend predicts

substantially larger elasticities (in absolute values) than the deterministic trend models for all commodities

and, except for natural gas, lower storage costs. The larger elasticities found under the storage SSM reflect

that the stochastic trend produces, due to its greater flexibility to track the observed price, trend-adjusted

prices that have spikes that are smaller than those obtained under a deterministic trend. Hence, in contrast

to the deterministic trend specifications, the stochastic trend SSM is not forced to match the large spikes

observed in the actual prices by small estimated values for the elasticity. For natural gas, the residual serial

correlation in the prices adjusted by the stochastic trend component also appears to be relatively low, which

indicates relatively high storage costs. However, for the other commodities, this residual serial correlation is

larger leading to substantially lower estimated storage costs.

Gouel and Legrand (2017) provide estimates of storage costs and price elasticities of demand based on
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Natgas Coffee Cotton Aluminum

costs elast. costs elast. costs elast. costs elast.

Storage SSM 12.6 -1.03 2.7 -0.65 1.6 -0.69 1.3 -1.46
RCS3 trend 8.9 -0.11 4.8 -0.20 2.1 -0.25 6.5 -0.27
RCS7 trend 11.1 -0.10 4.1 -0.19 4.7 -0.26 1.7 -0.30

Table 4: Estimates for the annual storage costs (net of interest costs) in percent of the average price and
price elasticities of demand.

deterministic trend models used for annual data on various commodities, including coffee and cotton. This

allows for some comparisons with our results for those two commodities. The annual storage costs estimates

they report for their preferred trend model for coffee and cotton are, respectively, 1.4% and 0.3% of the

average price. These estimates based on annual data are much lower than those we found for the storage

SSM as well as the deterministic trend models fitted to monthly data. However, they argue that their

estimated annual costs are possibly too small - an assessment that is consistent with our estimates for the

storage costs. For the annual price elasticity of demand, the estimates of Gouel and Legrand (2017) are

-0.04% for coffee and -0.03% for cotton. These estimates imply a demand for those commodities which is

substantially more inelastic than that implied from our estimates. One can argue which elasticities better

reflect the markets. Mehta and Chavas (2008) assume a range of plausible values for the annual elasticity of

demand for coffee between -0.2% and -0.4%, while Duffy et al. (1990) argue that the annual export demand

for cotton is likely fairly elastic. Hence, our elasticity estimates are more in line with these assessments than

those found by Gouel and Legrand (2017).

6 Conclusion

In this paper, we have proposed a stochastic trend competitive storage model for commodity prices, which

defines a non-linear state-space model (SSM). For the Bayesian posterior analysis of the proposed stochastic

trend SSM, we use an efficient MCMC procedure. This adds to existing empirical commodity storage models

based on deterministic trend specifications. Our stochastic trend approach fits into the economic rationality

of the competitive storage model and is also sufficiently flexible to account for the variation in the observed

prices that the competitive storage model is not intended to explain. The obvious benefit is that it makes

the storage model applicable to markets with highly persistent unit root-like prices, which appears relevant

for many commodity markets. Our approach aims at increasing the empirical relevance and applicability of

the competitive storage model.

The MCMC procedure we propose for jointly estimating the structural and trend parameters in the SSM
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is a particle marginal Metropolis-Hastings algorithm based on the bootstrap particle filter. A Monte Carlo

simulation experiment shows that this approach is able to disentangle the stochastic trend from the price

variation due to speculative storage. The SSM is applied to monthly price data for natural gas, cotton,

coffee and aluminum. Not surprisingly, the stochastic trend explains a large part of the observed variation in

the commodity prices. More importantly, the competitive storage component adds short-run price volatility

and price spiking, and becomes periodically relevant to explain non-linear pricing behavior related to states

of market turmoil. A formal empirical comparison of the SSM to the corresponding model that results in

the absence of storage suggests that the speculative storage price component significantly contributes to

commodity price variation.

Which trend to apply will depend on the specific market under consideration. If a stochastic trend

is not appropriate, fitting a highly flexible stochastic trend model risks overfitting the price variation and

downplaying the contribution of the storage model. Consequently, the price elasticity of demand will tend

to be overestimated and the estimates of the storage costs can be expected to be correspondingly biased. On

the other hand, failing to account for a stochastic trend when it is appropriate will tend to underestimate

the elasticity of demand. Our empirical results show that the stochastic trend model consistently estimates a

higher elasticity of demand and a different amount of storage costs than existing deterministic trend models

for the commodity markets investigated in this paper. Pre-testing of price characteristics can guide trend

choice. For instance, unit root tests can be applied to evaluate whether a stochastic trend specification is

suitable.

The empirical comparison of the stochastic trend SSM to existing deterministic trend models using the

Bayes factor and model residual analysis shows that the stochastic trend fits the price data for the investigated

commodity markets much better than the deterministic trends. In particular, in contrast to the deterministic

trend specifications, the stochastic trend SSM captures the observed distributional properties of the prices,

such as their skewness and kurtosis, quite well. While the stochastic trend SSM also accounts for the price

dynamics in the observed prices on the natural gas market it is not able to fully capture all the serial

dependence of the coffee, cotton and aluminum prices. This is similar to the results of financial approaches

on modeling commodity term structures, showing the relevance of additional pricing factors beyond the

traditional ones for the spot price and the convenience yield (Miltersen and Schwartz 1998; Schwartz 1997;

Tang 2012). The stochastic trend SSM is essentially a two-factor model with one reduced-form random walk

component orthogonally appended to a factor restricted by economic constraints. Increasing the flexibility

in the economic model will arguably improve the explanatory power of the model, although with additional

statistical challenges in separately identifying the trend behavior from the price component related to the

competitive storage model.
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A Appendix

A.1 Numerical Solution of the Price Function

The numerical algorithm we use to solve the functional equation for the price function f(x) as defined

by Equations (4)-(6) is based on that used by Kleppe and Oglend (2019) for a model with autocorrelated

supply shocks. The algorithm is based on solving the storage policy function σ(x) and then recover f(x) via

Equation (6), which implies that

f(x) = P (x− σ(x)). (A-1)

Let x∗ be defined such that P (x∗) = f̄(x∗) and x∗∗ such that P (x∗∗ − C) = f̄(x∗∗). For x < x∗, so that

f(x) = P (x), it follows that σ(x) = 0 (stock-out regime); for x∗ ≤ x ≤ x∗∗, so that f(x) = f̄(x), it follows

that σ(x) ∈ [0, C] (storage regime); and for x > x∗∗, so that f(x) = P (x−C), it follows that σ(x) = C (full

capacity storage regime).

The numerical representation of σ(x) is given by S = {x̂∗, x̂∗∗, s(x)}, where the function s(x) (with

s(x) ' σ(x) for x ∈ [x̂∗, x̂∗∗]) is represented on a (comparatively sparse) grid on [x̂∗, x̂∗∗] and is evaluated

using a suitable interpolation method (e.g. linear). The resulting approximation is given by

σS(x) =





0 if x < x̂∗

s(x) if x̂∗ ≤ x ≤ x̂∗∗

C if x > x̂∗∗

,

and correspondingly fS(x) = P (x− σS(x)).

The iteration to find σ̂S(x) ' σ(x) consists of the following steps:

1. Select an initial guess, e.g. S1 = {x̂∗1, x̂∗∗1 , s1(x)} = {0, C, s1(x)}, where s1(x) is the linear function

such that s(0) = 0, s(C) = C. Set n = 1.

2. Update the left kink point x̂∗n+1 according to

x̂∗n+1 = D

(
β

∫
fSn(z)φ(z)dz

)
. (A-2)

3. Update the right kink point x̂∗∗n+1 according to

x̂∗∗n+1 = D

(
β

∫
fSn((1− δ)C + z)φ(z)dz

)
+ C. (A-3)
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4. Update the grid {x(j)
n+1} to be on [x̂∗n+1, x̂

∗∗
n+1].

5. For each grid point j, find the update sn+1(x
(j)
n+1) as the solution in s to

s = x
(j)
n+1 −D

(
β

∫
fSn((1− δ)s+ z)φ(z)dz

)
, (A-4)

using a univariate non-linear root-finding algorithm. Notice that the solution s = sn+1(x
(j)
n+1) is

constrained to be in [0, C], and that sn+1(x̂∗n+1) = 0, sn+1(x̂∗∗n+1) = C.

6. Until convergence, set n← n+ 1 and go back to step 2.

The integrals in Equations (A-2)-(A-4) are approximated using the trapezoidal quadrature rule with 128

subintervals, over the interval [−4, 4], and the non-linear equation (A-4) is solved using Brent’s method.

Allowing the grid space to adjust to the updated functional solutions ensures that the grid can dynamically

concentrate in the region of the state-space where a high precision is needed, namely the region defining the

storage regime. This provides both efficient and precise numerical solutions to the pricing function.

A.2 Residuals for the Deterministic Trend Models

For the deterministic trend models as given by Equation (23) the conditional expectation E(pt+1|p1:t) and

variance Var(pt+1|p1:t) defining the Pearson residuals in Equation (19) can be evaluated by MC integration

as the sample mean and variance of the simulated prices

pkt+1 = kt+1 + log f [(1− δ)σ(xt) + zkt+1], k = 1, . . . , N, (A-5)

where {zkt+1}Nk=1 are iid draws from a N(0, 1) distribution.

The PIT residuals in Equation (20) obtain as follows: The probability ut+1 = Pr(pt+1 ≤ pot+1|p1:t), which

follows for a correctly specified model a uniform distribution U[0,1] on the unit interval, results as

ut+1 = Pr(exp(pt+1 − kt+1) ≤ exp(pot+1 − kt+1) | p1:t) (A-6)

= Pr(f−1[exp(pt+1 − kt+1)] ≥ f−1[exp(pot+1 − kt+1)] | p1:t) (A-7)

= Pr(zt+1 ≥ zot+1 | p1:t), (A-8)

where zot+1 = f−1[exp(pot+1 − kt+1)] − (1 − δ)σ(xt). Equation (A-7) follows from the fact that the inverse

of the rational expectations equilibrium price function f−1 is monotonically non-increasing. Since zt is a

N(0, 1) random variate with cdf denoted by Φ, Equation (A-8) implies that 1 − ut+1 = Φ(z
(o)
t+1). Since for
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ut+1 ∼ U[0,1] it holds that 1− ut+1 ∼ U[0,1], the PIT residuals are given by

ξt+1 = Φ−1(1− ut+1) (A-9)

= Φ−1(Φ(z
(o)
t+1)) (A-10)

= z
(o)
t+1. (A-11)

A.3 Additional Estimation Results

Table A-1 provides the posterior mean and standard deviation for the structural parameters of the compet-

itive storage model combined with deterministic trend specifications.

Natgas Coffee Cotton Aluminum
δ Linear Post. mean 0.0090 0.0025 0.0023 0.0087

Post. std. 0.0053 0.0016 0.0015 0.0030

RCS3 Post. mean 0.0077 0.0041 0.0017 0.0056
Post. std. 0.0044 0.0023 0.0012 0.0021

RCS7 Post. mean 0.0098 0.0035 0.0040 0.0014
Post. std. 0.0051 0.0024 0.0022 0.0010

b Linear Post. mean 2.05 1.33 1.02 0.75
Post. std. 0.122 0.058 0.045 0.036

RCS3 Post. mean 1.83 1.12 0.84 0.74
Post. std. 0.110 0.056 0.045 0.046

RCS7 Post. mean 1.82 1.08 0.77 0.67
Post. std. 0.118 0.054 0.043 0.032

Table A-1: Estimates for the storage model parameters under the storage model with deterministic trends.
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