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Preface

This dissertation compiles five papers, written in the period 2016–2019,
during a 3-year PhD program at the University of Stavanger in Norway,
under the supervission of Professor Sigbjørn Hervik, and with Professor
Anders Tranberg as co-supervisor. The papers are preceded by five intro-
ductory chapters. These chapters aim at providing a su�cient basis for
understanding the content of the papers. It is, however, generally assumed
that the reader will be a physicist or a mathematician, or someone who
otherwise has found the required time to build the mathematical backbone
needed.

Since the author has a physicists’ background himself, he has however
generously provided an appendix entitled A physicist’s guide to mathemat-
ical jargon. Hopefully this will make the current dissertation a bit more of
a page-turner for some of you.

B. D. N.
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I N T R O D U C T I O N

“We are now approaching lunar sunrise, and for all the
people back on Earth, the crew of Apollo 8 has a message
that we would like to send to you:

“In the beginning God created the heaven and the earth.
And the earth was without form, and void; and darkness
was upon the face of the deep. And the Spirit of God
moved upon the face of the waters. And God said, Let
there be light: and there was light. And God saw the
light, that it was good: and God divided the light from
the darkness.”

William Anders





Chapter 1

Background

1.1 History

It is interesting that the crew on board the Apollo 8 mission chose to read
from a perhaps 2 000–3 000 years old document—the account of creation
in the Hebrew Bible—when they reported back to the distant Earth from
lunar sunrise.

Understanding one’s origin seems to be a quest we have set out for,
for as long as we have existed. Our understanding of the cosmos has,
however, di�ered greatly over the ages. We may model this di�erence as a
projection P(t) from a Platonic space of possibilities œp to a representation-
space Ep [1];

P(t) : œp æ Ep. (1.1)

The nature of œp will now entail the issues of ontology; what possibilities
actually exist, whereas epistemology – what we know about that which
exists – is contained in Ep(t). Ancient texts were written in times with
altogether di�erent ideas about ontology from our own. Where many
a modern mind will take material existence to be primary, the ancient
thinker would be oriented toward functional existence [2]. As a result,
naming was important, as names were thought to convey truth about that
being named. For instance, the Babylonian creation myth Enuma Elish
opens in the following way.

“At a time when even the glories above had yet to be named, And
unuttered was the word for the world which lay beneath...”(Enuma Elish,
1 000–1 700 BCE) [3].

The di�erences between (for instance) this creation account and our
modern, Western account of origins seem infinite, and hence P(t) demon-

3



4 chapter 1 background

strably varies with time. Following G.F.R. Ellis [1, Chapter 1] we shall
categorize the epics of ancient times as part of the fuller field of cosmologia,
since they deal with (the origin of) matters such as function and purpose
and the like. The questions of modern scientific endeavour—such as “What
is mass-energy?” or “What is space-time?”—were considered derivative
issues and drew little or no interest. Even Aristotle would base his cosmo-
logical treatise “On the Heavens” [4] on philosophical deduction. In this
doctoral dissertation, however, we shall consider only the far lesser field of
cosmology, the study of which we define as follows.

Definition 1 (The study of cosmology). The study of the physical Uni-
verse at large, as projected onto a scientific methoda through mathe-
matics.
aWe leave aside the issues connected with deciding what method.

Having thus cleared the waters, we see that the modern field of cosmology is
but a part of the fuller field of cosmologia. Taking such a view, it becomes
understandable how advocates of modern science would convey their
message to the Earthlings through words from Genesis 1. The message
they spoke simply found no basis within science: it was a message of
cosmologia.

As a matter of curiosity a few words on etymology is in place. The word
“cosmology” derives from Greek Ÿó‡µoÎ and ⁄o“í–, which translates into
English as something like “the study of the ordainedb.” In Greek writings
from Homer and down Ÿó‡µoÎ seems to originally have been related to
the (aesthetic) ordering of somethingc. In the Greek translation of the
Hebrew Bible (Septuagint) it is used for the arrangement of the stars (“the
heavenly hosts”). Actually Pythagoras might have been the first to use the
word for the world, although he possibly referred only to the heavens [5].

bAs opposed to chaos.
cAlso in modern language a phantom of this connection is evident: The etymology of
cosmetics goes back to the Greek word Ÿó‡µoÎ.
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This doctoral dissertation is a mathematical endeavour embarking
upon questions relating to cosmology as defined above. The reader inter-
ested in questions of more philosophical character is highly encouraged to
consider the book The Philosophy of Cosmology [1] and also Ellis’ paper [6]
and further references therein.

1.2 Principles of physical cosmology

As an observatory, planet Earth is thought to be situated in a galaxy that
is typical among other typical ones in a typical cluster among clusters in
a typical supercluster among superclusters [7, Chapter 2]. The anthro-
pocentric view of preceding generationsa has been exchanged with the
more recent Copernican Principleb, which could be taken to express the
opposite standing point.

Principle 1 (The Copernican Principle). Planet Earth is not a privi-
leged place of (cosmological) observation.

If our observations are arch-typical for observations performed anywhere
else in the Universe, then it follows that the Universe must look essen-
tially the same everywhere. Philosophically, this leads to a version of the
cosmological principle [9, Chapter 2] which we shall refer to as the weak
version.

Principle 2 (Weak Cosmological Principle). The Universe presents the
same aspects from every point.

Observations from the vantage point of Earth suggest that the Universe is
(quite) isotropic [10,11], meaning that it looks the same in every spatial
direction. By the Copernican Principle, the Universe must therefore be
everywhere isotropic. We may therefore also make a stronger version of
the cosmological principle.
aThe roman emperor Marcus Aurelius nevertheless calls the Earth a mere “...point
in space...” in his work [8, book 4 Sec. III], originally written in Greek around AD
170–180.

bNot so strange at all, considering the shift in attention from cosmologia toward
cosmology.
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Principle 3 (Strong Cosmological Principle). The Universe is isotropic
around every point.

Hence, there is an implication from the strong to the weak, but not the
converse. Both versions, however, imply that the Universe is homogeneousa.
Clearly, this is not true at every scaleb. These principles should therefore
be understood as expressing the idea that there exists an averaging scale
at which the Universe is homogeneous.

Both versions of the cosmological principle amounts to put severe
restrictions (laws) on the di�erent universes realised, Ep, out of all theo-
retically possible ones œp. In the language of the previous section, such
principles are projections Pcosm.pr. between the two categories. Naturally
they do not come without philosophical quandary. The mathematical
study undertaken in this thesis, could be taken to address one of them:

How did the Universe become the way it is?

1.3 Isotropy: chance or necessity?

Strategy. The strategy underpinning our approach, is that of turning
mainstream astronomy on its head. Instead of asking what the Universe
looks like, given ‘theory + data’, and what principle one may derive such
Universe from, one works the other way around, beginning instead with
disregarding the principle in question. In our case we discard of the Strong
Cosmological Principle and ask: How likely is an everywhere isotropic
Universe, if we do not take it as an a-priori postulate?

Assumptions. This question will be sought answered through assump-
tions concerning the geometry and matter content of the Universe. These
aspects will be further discussed in the two following chapters, after which
aHomogeneity (in cosmology) refers to sameness-of-observation as observed from dif-
ferent points in space. This is distinct from isotropy, which refers to sameness-of-
observation as one varies the direction of the telescope.

bNone of us would insist on seeing the same in all directions in everyday life!



chapter 1 background 7

we state our assumptions in a final chapter, where the project and the
results are summarized.

Outcome. Applying the kind of approach laid out above to any principle
will reveal if the principle is a result of chance or of necessity. Necessity
occurs if the principle turns out to be a consequence of the theory. In this
case it is no longer a principle. Chance, however, is made relevant if the
principle does not follow from the theory. In that case the following should
occur.

(i) Reexamination of the data to see if hasty conclusions have been drawn.

(ii) If the outcome of (i) is negative, one must proceed with acceptancea in
the hope that there is yet to be found a theory in which the principle
is indeed a necessity and not a result of mere chance.

In our particular case, the specific outcome will be to pin down the equilib-
rium points of the dynamical systems constructed for the development of
the di�erent invariant sets of initial conditions of the universes considered.
As we shall see, the equilibrium points that are stable into the future are
given relevant roles as (possible) future asymptotic states of the whole
invariant set of initial conditions under consideration.

The bottom line. If isotropyb correctly describes the Universe at some
scale, then one may hope for the correct theory of gravity to be capable of
uniquely (or at least in a probabilistic manner) describing how that came
to be.

Summary (Philosophical justification): This project intends to
contribute toward the longstanding investigation of how likely the ob-
served Universe is [12]. More specifically, we will investigate these issues
for a certain type of matter content in a Universe where we assume
General Relativity (GR) to be the correct theory of gravity.

aAnd consider consulting a philosopher.
bOr any other characteristic, for that sake!





Chapter 2

Homogeneous, anisotropic cosmologies

This chapter builds extensively on chapters 6 and 15 in Einstein’s General
Theory of Relativity [13], chapter 1 in Dynamical Systems in Cosmology [14]
and chapters 2 and 3 in Lecture Notes [15].

As mentioned in the previous chapter we will rely on the Coperni-
can principle and hence we are interested in cosmologies with (three-
dimensional) homogeneous spatial sections. Furthermore, we restrict at-
tention to a four-dimensional manifold with three-dimensional (spatial)
orbits of homogeneity. In the following sections we introduce (briefly) the
mathematical machinery necessary in order to be precise about what we
mean by this, and point toward more substantial literature on the di�erent
topics introduced. We shall assume that the reader is somewhat familiar
with basic concepts of di�erential geometry and dynamical-systems theory.
For instance, the concepts of a manifold and of a p-form are concidered
known. Since the signing author has a physics’ background himself, he
grants a generous portion of sympathy for whom such concepts may be
unfamiliar. Consequently, Appendix A is provided as a look-up tool for (a
few) central definitions.

In the rest of this dissertation we assume a torsion-free, Lorentzian
manifold with a metric of signature (≠, +, +, +). Furthermore, numer-
ical indices {0, 1, 2, 3} are used to index the orthonormal frame (to be
introduced) and the letters {t, x, y, z} are used to index the coordinate
basis. Greek indices are taken to run over all four space-time components,
whereas Latin indices {a, b, c, · · · , m, n}a run over spatial components only.
We use eµ to refer to a general basis vector, and Êµ to refer to a general

aWe will stick to these letters to avoid confusion: The letters {t, x, y, z} always refer to
particular components of the coordinate basis.

9



10 chapter 2 homogeneous, anisotropic cosmologies

basis one-form. Throughout, we shall assume a space-time foliation such
that e0 = ˆ0 = ˆt is orthonormal to spatial hypersurfaces, and (the velocity
of) our congruence of observers u will be aligned along et. Throughout,
M denotes a manifold, and we use units such that c = 8fiG = 1, where c
refers to the speed of light and G is the gravitational constant. Also, ”µ

‹

are the components of the identity-matrix (Diag(1, 1, 1, 1)) and Á–—“” is
the totally antisymmetric symbol specified by Á0123 = 1 and (˙) denotes
di�erentiation with respect to proper timea, except in Chapter 4 and Paper
V, where it denotes di�erentiation along the null curve. Finally, take the
following definition of a cosmology.

Definition 2 (A cosmology). In this treatise we take a cosmology to
consist of the triple (M, g, u), where M is the four-dimensional space-
time manifold, g is the space-time metric and u is the time-like (velocity-
field of the) congruence of fundamental observers.

2.1 Homogeneity

In order to define what we mean by a homogeneous space, we shall make use
of the mathematical concept of an isometry; a mapping that preserves the
metric. Take „ = „(p, t) to be a one-parameter group of di�eomorphisms.
Then the following definition.

Definition 3 (Isometry). We say that „ is an isometry if

„úg = g (2.1)

where g is the metric tensor.

One may use a one-parameter group of di�eomorphisms to formalise the
idea of comparing the metric at di�erent locations on a manifold M. If
the di�erence between the metric at two points p and q di�er at most by
aProper time coincides with coordinate-time whenever the observers are comoving,
which will be the case in this dissertation.
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a coordinate transformation, then they are the same. To be precise, we
let q = „(p, t), and note that the pull-back „ú(p, t) now induces a way
to compare the metric ĝ at q with the metric g at p. More specifically,
let {xµ} be coordinates at p and {yµ = „ú(x)} coordinates at q = „(p, t).
Then

ĝ = „ú(p, t)g = ˆy–

ˆx‹

ˆy—

ˆxµ
g–— dxµ ¢ dx‹ . (2.2)

Furthermore, if ĝ = g, then we say that „ú(p, t) is an isometry. The
transformation has preserved the metric.

Definition 4 (Isometry group). The isometry group Isom(M) is defined
such that

Isom(M) © {„ : M ‘æ M | „ isometry} . (2.3)

From the two above definitions we can now formalise the notion of a
homogeneous space.

Definition 5 (Homogeneous (/transitive) space). If, for each pair of points
p, q œ M there is a „ œ Isom(M) such that „(p) = q, then we say
that M is a homogeneous space.

Homogeneity is therefore a measure of how similar a manifold looks as we
move from point to point. To the one-parameter group of di�eomorphisms
is attached a notion of an underlying vector field. This vector field is at
every point p tangent to the orbit of p. A vector field › is said to be Killing
if

£› g = 0 (2.4)

where £ is the Lie derivative, and g is the metric tensor. Hence, for a
homogeneous manifold, there must exist Killing-vectors generating isome-
tries connecting any two points on the manifold. The Killing-vector fields
become important as we seek to understand a related but di�erent concept:
isotropy.
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2.2 Isotropy

For a manifold M of dimension n to be homogeneous, the number k of
Killing-vectors {›–} must be equal to or larger than n. Hence we require

k Ø n homogeneity requirement. (2.5)

By such it becomes possible to generate n independent translations at a
point p œ M. Since the Killing-vectors at a point p live in the tangent-
space TpM, and since dim(TpM) = n, it follows that in the case where
k > n, not all Killing-vectors can be linearly independent. We denote the
di�erence as

d = k ≠ n. (2.6)

Thus the number d is a measure of how many transformations are left that
will leave the metric invariant upon having subtracted the n translations
following from the homogeneity requirement on an n-dimensional manifold.
d is a measure on what we call isotropy. As an example, consider the
maximally symmetric three-spaces, n = 3, where k = n(n + 1)/2 = 6.
From (2.6) we find d = 3. The remaining transformations are the three
rotations. To formalise the concept of isotropy, we use Lie Groups and Lie
algebras.

2.2.1 Connection to Lie groups and Lie algebras

It is instructive to note that the isometries of a manifold M form a Lie
group. A Lie group is a group that is also a manifold.

Definition 6 (Lie group). A Lie group G is a topological group that has
the following properties:

1) G is a manifold.

2) The group multiplication m : G ◊ G ‘≠æ G is smooth.

3) Inversion i : G ‘≠æ G is smooth.
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Note also the following definition of a Lie algebra.

Definition 7 (Lie algebra). A real (or complex) Lie algebra, g, is a (finite-
dimensional) vector space equipped with a bilinear map
[≠, ≠] : g ◊ g ‘≠æ g which satisfies the following properties:

1) [X, X] = 0 , ’ X œ g

2) The Jacobi identity:

[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0 , ’ X, Y, Z œ g. (2.7)

From 1) and 2) it may be inferred that the bilinear map is skew-symmetric:
[X, Y] = ≠ [Y, X]. A Lie algebra is thus a vector space, and a Lie group is
a group manifold. The following theorem reveals the connection between
them.

Theorem 2.1 (The Lie algebra of a Lie group). Let G be a Lie group.
Then the tangent space of G at the identity element, TeG, is a Lie
algebra; i.e.,

g = TeG. (2.8)

The Killing-vectors form a Lie algebra, and, as discussed above, they are
also generators of isometries. In fact it turns out that the Lie algebra of the
Killing-vectors is isomorphic to the Lie algebra of Isom(M). Furthermore,
let the structure constants of the Killing-vectors be D⁄

µ‹ , and the structure
constants of the Lie algebra at the identity element of the Lie group be
C⁄

µ‹ , such that

[›µ, ›µ] = D⁄
µ‹›⁄ and [eµ, e‹ ] = C⁄

µ‹e⁄, (2.9)

where {eµ} is a basis for the Lie algebra of the isometry group. If these
vector fields coincide at one point, then they coincide everywhere [15,
Sec. 3.3] and it may be shown that

D⁄
µ‹ = ≠C⁄

µ‹ . (2.10)
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Understanding the Lie algebra of the Killing-vector fields, or equivalently,
the Lie algebra of the isometry group, will therefore determine the (alge-
braic) properties of the isometry group. It will not, however, determine
the action of the group. The concept of isotropy is now formally defined
through the isotropy subgroup (stabiliser) of the isometry group.

Definition 8 (Isotropy subgroup). Take a point p œ M. Then the
isotropy subgroup of p is

Ip(M) = {„ œ Isom(M) | „(p) = p}. (2.11)

In the case where not all the Killing-vectors at a point p are linearly
independent, they will necessarily span a tangent space of dimension
s < r, where r is the dimension of the isometry group. We call this
di�erence

d = r ≠ s (measure of isotropy) (2.12)

and say that this is the dimension of the isotropy subgroup. This provides
a more formal definition of the d used in (2.6). The Killing-vector fields
that vanish at p, form a subgroup of dimension d that leaves the point
p fixed. Taking all this together, we now have tools to classify both the
isotropic and homogeneous properties of a space:

ı The dimension d of the isotropy subgroup of the manifold (M, g)
determines the isotropic properties of the manifold.

ı The dimension s of the orbit of the isometry group (i.e. dim(span(›–)))
at a point p determines the homogeneity properties of the manifold.

We are interested in four-dimensional space-time. The case s = 4 must
then correspond to static universe models, since (in that case) no change
may occur as we move along time. Since we shall allow for expanding
models, however, we shall require instead that the dimension of the orbit
of a point p œ M under the isometry group equals the dimension of
the spatial sections. Hence we require s = 3. Cosmologies with even less
symmetries (s < 3) are also not considered in this work. Note for instance
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that s = 0 is the fully inomogeneous case. Having specified s, we must
also specify the dimension d of the isotropy subgroup.

ı d = 3: Isotropic. This necessarily corresponds to r = 6. These models
are maximally symmetric and correspond to the so-called Friedmann-
Lemaître-Robertson-Walker models. We refer to a model of this class
as a FLRW model.

ı d = 1: Locally rotationally symmetric (LRS). In this case we must have
r = 4. Note the two further possibilities:

ù G4 has a subgroup G3 that acts simply transitively on the three-
dimensional orbits. We obtain the LRS Bianchi models.

ù G4 is multiply transitive (it does not have a subgroup that acts
simply transitively). We obtain the Kantowski-Sachs models.

ı d = 0: Anisotropic. The Bianchi models (G3).

Observe that the more symmetric cases (d = 3 and d = 1) have G3 sub-
groups that, with one exception, act simply transitively. We may therefore
restrict our study to d = 0, where d = 3 and d = 1 will show up as special
cases. The exception is, as mentioned, the Kantowski–Sachs model, which
we will not consider in this thesis, except briefly in Paper IV, where we
look for shear-free solutions. As a summary: in this work we consider

s = 3 and d = 0. (2.13)

We saw that the algebraic properties of the Lie group can be under-
stood in terms of the corresponding Lie algebra. To understand the three-
dimensional, fully anisotropic cases, we shall therefore (in a later section)
classify the three-dimensional, real Lie-algebras. This is what gives rise to
the so-called Bianchi models.
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2.3 Left-invariant basis

In this section, we consider the left action as defined by the elements of a
Lie group. The reader is referred to [15] for details and proofs. Let a and
g be elements of the Lie group G. Then the left action is a mapping

La : G æ G , La(g) = ag. (2.14)

This induces a mapping between tangent and co-tangent spaces in the
following way.

Lúa : TgG æ TagG (2.15)

Lú
a : T ú

agG æ T ú
g G (2.16)

The idea is to use this induced map to construct a left-invariant vector
field (and correspondingly a left-invariant one-form basis). In order to do
so, we note the following theorem.

Theorem 2.2. An n-dimensional Lie-group G has n left-invariant vector
fields being linearly independent at every point.

Hence we may compute the members of the tangent space at the identity
element, and then left-translate these vectors across the Lie group. By such
we obtain a left-invariant basis for the vectors over the whole manifold.
The members of the vector-space TeG at the identity element e form a Lie
algebra, and in our case, this Lie-algebra must be of one of the Bianchi
types. By such, we may find left-invariant basis-fields for each Bianchi
type, which in turn allows for constructing a left-invariant metric (for
each type). Let {Êµ} be a field of one-forms constituting a basis for the
co-tangent bundle of G. Then we define

Êµ(e‹) = ”µ
‹ . (2.17)

By application of the induced pull-back one may now show that these are
left-invariant one-forms. Furthermore, upon taking the exterior derivative,
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one finds
dÊ⁄ = ≠1

2C⁄
µ‹Êµ · Ê‹ . (2.18)

Since the Bianchi types may be classified according to their structure
coe�cients, this equation shows that one may construct a left-invariant
metric corresponding to any of the Bianchi types. In particular, having
found one-forms that fulfill Eq. (2.18), the line-element is given by

ds2 = gµ‹Êµ ¢ Ê‹ , (2.19)

where gµ‹ are the components of the metric tensor. Similarly, one could have
defined a right-action, showing that the right-invariant vectors correspond
to the Killing-vectors {›µ}. The left-invariant frame is then the frame that
is invariant under the action of the Killing-vectors.

2.4 Orthonormal-frame formalism

In this thesis, we adopt the orthonormal-frame approach. The reason is
two-fold:

1. The Einstein equations will reduce to a set of first-order di�erential
equations.

2. The physical meaning of variables is less disguised.

Take the basis vectors to be {eµ}, and the corresponding basis one-forms
to be {Ê‹}. Then the orthonormal frame is defined through

eµ · e‹ = g(eµ, e‹) = ÷µ‹ and Êµ(e‹) = ”µ
‹ . (2.20)

Here ÷µ‹ = diag(≠1, 1, 1, 1) is the Minkowski metric. Let Ò denote the
Koszul connection. The components of the directional derivative of a basis
vector eµ are now

Ò‹eµ = ≈ ⁄
µ‹ e⁄, (2.21)
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where ≈ ⁄
µ‹ are the connection coe�cients. The exterior derivative d of a

basis vector is
deµ = e‹ ¢ œ‹

µ = e‹ ¢ ≈ ‹
µ– Ê–, (2.22)

Hence, the connection one-forms œ‹
µ are defined to give the ‹th component

of the change of basis vector eµ. In an orthonormal frame such changes are
necessarily reduced to rotations (since the frame must remain orthonormal),
and we consequently refer to the connection one-forms as rotation one-
forms. Calculating the exterior derivative of the components gµ‹ of the
metric tensor, one finds dgµ‹ = œµ‹ + œ‹µ. In an orthonormal frame this
must imply

œµ‹ = ≠œ‹µ. (2.23)

where œµ‹ = gµ⁄œ⁄
‹ . This relation greatly simplifies calculations.

2.4.1 Frame rotations

In this thesis we employ the orthonormal frame to study the Bianchi
models of Solvable type. Their isometry group admit a two-dimensional
Abelian subgroup G2. Throughout this dissertation we choose to align our
frame such that {e2, e3} span the Lie algebra that generates this subgroup.
Hence e1 is orthonormal to it. To every point on the space-time manifold
there is attached an orthonormal frame (a vierbein). The rotation œ– of
the frame around the axis aligned with e– is defined as

œ– © ≠1
2Á–—“”u—e“ · ė”. (2.24)

Here Á–—“” is the totally antisymmetric symbol fixed by Á0123 = 1. In the
following we show that for a congruence of time-like observers u = e0

these correspond to three rotations of the spatial frame. Indeed: putting
— = 0 in the above equation, it becomes clear that there are only spatial
rotations œi. Using the properties of the antisymmetric symbol, and the
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fact that u0 = ≠1, we find

œ1 = ≠e2 · ė3 = e3 · ė2, (2.25)

where we have arbitrarily chosen i = 1 for clarity. Since the length of
the basis vectors in the orthonormal, spatial triad are |ei| = 1, the frame
may only change its orientation. Hence, since the frame is rigid, the only
possibility is a rotation around the e1-axis. Furthermore, since i = 1 was an
arbitrary choice, we may generally conclude that œi does give the rotation
of the frame around axis i, as expected. To see this even more explicitly,
consider the rotation of a frame (e2, e3) relative to a frame (ẽ2, ẽ3) of
gyroscopesa. Then the change of basis vectors must be given by the time-
derivative of the rotation matrix in two dimensions. Di�erentiating, and
pulling out the common factor „̇1 one finds

S

U ė2

ė3

T

V = ≠„̇1

S

U sin „1 ≠ cos „1

cos „1 sin „1

T

V

S

U ẽ2

ẽ3

T

V . (2.26)

From this it is straight forward to confirm that the magnitude of the
change of e2 when rotated around another axis e1 is given by

|ė2| = „̇1 and hence ė2 = „̇1e3. (2.27)

Since the frame is rigid, we similarly find ė3 = ≠„̇1e2. In this thesis, e1

is as mentioned chosen orthonormal to the orbits of G2, and rotations
around this axis will be a major focus. We therefore simply define „ © „1.
Inserting (2.27) into (2.25) and using that ej · ej = 1 in an orthonormal
basis we therefore find

œ1 = „̇. (2.28)

The frame rotations (œ1, œ2, œ3) may be seen as gauge freedom. As
explained in the following section, aligning e1 orthogonal to the orbits of
G2 is a gauge choice: one must specify the frame rotations œ2 and œ3.
Note that in our case „ is constant on the orbit of G3.

aa Fermi-propagated frame.
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2.5 The Bianchi models in an orthonormal frame

As explained earlier, the Bianchi types correspond to distinct three-
dimensional Lie algebras. A certain Bianchi type may therefore be studied
through the structure coe�cients corresponding to its Lie algebra. We
denote these as “⁄

µ‹ , and follow standard procedure by invoking the Behr
decomposition. The spatial parts of the structure coe�cients are then
decomposed into a symmetric matrix nab and a 1-index object aa. We have

“c
ab = Áabmnmc + aa” c

b ≠ ab”
c

a . (2.29)

Furthermore, the congruence of observers is in our case hypersurface
orthogonala. This implies that the motion is geodesic (u̇a = 0) and that
the congruence is irrotational (Êµ‹ = 0). Using that Ò(u·ei) = 0, where ◊µ‹

is the expansion-tensor, one finds upon some straight forward algebra that
◊µ‹ = ≈ 0

µ‹ . Since we use an orthonormal frame, we may use equation (2.23);
œµ‹ = ≠œ‹µ. It allows for expressing ≈ –

µ‹ in terms of the structure
coe�cients “–

µ‹ . The result is that the mixed structure coe�cients become

“a
0b = ≠‡ a

b ≠ H” a
b ≠ Áa

bmœm. (2.29)

Here H is the Hubble-Lemaître parameter and ‡ab is the shear-tensor.
Refer to Appendix B for a general decomposition of the four-velocity field,
and to [13, Chpt. 15] for more on the Bianchi models in an orthonormal
frame. The remaining structure coe�cients vanish; “0

0a = u̇a = 0 and
“0

ab = ≠2Á m
ab Êm = 0.

2.5.1 The Jacobi identity

The Jacobi identity must be fulfilled for all vectors. Taking the Jacobi
identity for the triple (ea, eb, ec) implies that the vector a lies in the kernel
of the matrix nij;

nijaj = 0. (2.30)
awhere the hypersurface is defined by the orbits of the isometry group.
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The Jacobi identity for the triple (u, ea, eb) provides evolution equations
for the structure coe�cients. In particular, for comoving observers u = ˆt,
we find

ȧi = ≠1
3◊ai ≠ ‡ija

j + Áijkajœk , (2.31)

ṅab = ≠1
3◊nab + 2nk

(aÁb)klœ
l + 2nk(a‡k

b). (2.32)

The di�erent invariant sets of the system of evolution and constraint
equations obtained through the Jacobi identity give rise to the di�erent
Bianchi-models I–IX. Without loss of generality [14, chapters 1.5 and 1.6],
a choice is made such that e1 points in the direction of the vector a, leaving
the remaining frame vectors e2 and e3 defined up to a rotation. We shall
adopt the choice

a = (a, 0, 0) 1+1+2 decomposition. (2.33)

As a consequence, the equations for ȧ2 and ȧ3 immediately imply

œA = ÁAB‡1B, (2.34)

and also
n1i = 0. (2.35)

In (2.34) capital letters run over {2, 3} and ÁAB is the totally antisymmetric
symbol with Á23 = 1. Note that Eq. (2.33) carries no information for models
where a = 0 (the so-called Class-A models; to be introduced). The gauge-
choice (2.34) may still be made, however, in all class-A models that admit
a G2 subgroup. By such, it becomes possible to make this choice for all
types except VIII and IX, which do not admit a G2 subgroup of isometries.
In this dissertation, we only consider the Bianchi models of Solvable typea.
By the above equation two of the frame rotations are specified. There
remains in this way only one rotational gauge freedom: rotation of the

aAs shown in Paper 1, the types VIII and IX do not admit for isotropy-breaking
degrees of freedom for the matter type we intend to study; the p - form with p = {1, 3}.
These types are consequently less interesting.
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frame around the e1-axis.

2.6 Bianchi classification (the solvable types)

In the following we give the specifications for each individual Bianchi model
of Solvable type in terms of the sign of the eigenvalues, which remain
invariant under time evolution, as shown explicitly in for instance [16]. It
is possible to use the remaining gauge freedom of œ1 to diagonalize nij.
By such, we would obtain simpler expressions for the di�erent Bianchi
types. In the following, however, we choose to keep the gauge freedom in
the equations since that is the route taken in the papers contained in this
work. Decomposing nij according to

nab =

Q

ccca

0 0 0
0 n+ +

Ô
3n≠

Ô
3n◊

0
Ô

3n◊ n+ ≠
Ô

3n≠

R

dddb (2.36)

we find the three eigenvalues

n1 = 0 , n2 = n+ +
Ô

3
Ò

n2
≠ + n2

◊ , n3 = n+ ≠
Ô

3
Ò

n2
≠ + n2

◊.

(2.37)
As mentioned, one may show from the evolution equations that the signs
of n2 and n3 are preserved in time (cf. [14] and [16]). One may also show
that a2 evolves proportionally to n2n3. Id est: d (a2/(n2n3)) /dt = 0. It
follows that

a2 = h(n2
+ ≠ 3n2

≠ ≠ 3n2
◊) (2.38)

for some constant h. This constant is the so-called group-parameter of
Bianchi types VIh and VIIh. All Bianchi models with a = 0 are so-called
class-A models, and the rest, where a ”= 0 are class-B models. In the
following we give the specifications of all invariant Bianchi-sets of Solvable
type, henceforth denoted B(i). In accord with the notion used so far, we
let Ci

jk denote the structure constants of the Lie algebra that generates
the group of isometries for each of these Bianchi types.
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The left-invariant one-forms listed for each type fulfill (2.18).

ı B(I): Class A. nij has three zero-eigenvalues. The specifications are

a = n+ = n≠ = n◊ = 0. (2.39)

Hence G3 is Abelian and Ci
jk = 0. A set of left-invariant one-forms is

{dx , dy , dz}.

ı B(II): Class A. nij has two zero-eigenvalues. Furthermore,

a = 0 and n2
+ ≠ 3(n2

≠ + n2
◊) = 0. (2.40)

The non-zero commutator is C3
12 = ≠1 and a set of left-invariant

one-forms is {dx , dy , dz ≠ xdy}.

ı B(III): Class B. nij has one zero-eigenvalue. The two others are of
opposite signs. Type III is decomposable into the Lie algebras of
dimension 1 and 2. It may also be seen as the special case h = ≠1 of
type VIh. Its specification is

a2 = 3(n2
≠ + n2

◊) ≠ n2
+. (2.41)

The non-zero structure constant is C3
13 = 1 and a set of left-invariant

one-forms is {dx , dy , e≠xdz}.

ı B(IV): Class B. nij has two zero-eigenvalues. Furthermore,

a ”= 0 and n2
+ ≠ 3(n2

≠ + n2
◊) = 0. (2.42)

The non-zero structure constants are C3
13 = C3

12 = C2
12 = 1. A set

of left-invariant one-forms is
{dx , e≠xdy , e≠x(dz ≠ xdy)}.

ı B(V): Class B. nij has three zero-eigenvalues. The specifications are

a ”= 0 and n◊ = n≠ = n+ = 0. (2.43)

The non-zero structure constants are C3
13 = 1 and C2

12 = 1. A set of
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left-invariant one-forms is
{dx , e≠xdy , e≠xdz}.

ı B(VI0): Class A. nij has one zero-eigenvalue. The specifications are

a = 0 and n2
+ ≠ 3(n2

≠ + n2
◊) < 0. (2.44)

Non-vanishing structure constants are C2
12 = ≠1 and C3

13 = 1. A set of
left-invariant one-forms is
{dx , exdy , e≠xdz}.

ı B(VIh): Class B. nij has one zero-eigenvalue. This is a one-parameter
family of invariant sets. The specifications are

a2 = h(n2
+ ≠ 3(n2

≠ + n2
◊)) and h < 0. (2.45)

Non-vanishing structure constants are C2
12 = p and C3

13 = 1. A set of
left-invariant one-forms is
{dx , e≠pxdy , e≠xdz}.

ı B(VII0): Class A. nij has one zero-eigenvalue. The specifications are

a = 0 and n2
+ ≠ 3(n2

≠ + n2
◊) > 0. (2.46)

The non-vanishing structure constants are C2
13 = ≠1and C3

12 = 1. A
set of left-invariant one-forms is
{dx , (sin xdz ≠ cos xdy) , (cos xdz + sin xdy)}.

ı B(VIIh): Class B. nij has one zero-eigenvalue. This is a one-parameter
family of invariant sets, and the specifications are

a2 = h(n2
+ ≠ 3(n2

≠ + n2
◊)) and h > 0. (2.47)

The non-vanishing structure constants are C2
12 = C3

13 = q , C2
13 =

≠1and C3
12 = 1. A set of left-invariant one-forms is

{dx , e≠qx(sin xdz ≠ cos xdy) , e≠qx(cos xdz + sin xdy)}.
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2.7 Dynamical-systems approach

The reader is referred to [17] for a thorough introduction to dynamical
systems in general. For instance, center-manifold theory—which has been
used in this thesis—is explained in Sec. 2.12 therein. We also refer to [14,
Chapter 4] for an introduction to dynamical systems theory as applied to
cosmology.

2.7.1 Expansion normalization

Since we are interested in self-similar cosmological models, we ‘factor out’
the overall isotropic expansion encoded in the Hubble–Lemaître parameter
H. This is done by constructing expansion-normalized variables, as follows.
Define a dimensionless time-parameter · according to

l = e· (2.48)

where l is the overall scale-factor of the isotropic expansion. Id est; let

H = l̇/l. (2.49)

Taking the two above equations together gives

1
H

= dt

d·
, (2.50)

where t is the proper time of comoving observersa and H is the Hubble–
Lemaître parameter. Meanwhile ( ˙ ) denotes derivation with respect to
proper time (as before), ( Õ ) denotes, henceforth, derivation with respect
to dynamical time · . In the following we give the expansion-normalized
quantities. Let ‡ denote shear and let n and a be the decomposition of the
structure coe�cients as before. With the conventions given in Appendix Cb

aor, equivalently, the coordinate time.
bNote that our conventions slightly di�er from that used by [14,18,19].
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we now find the following normalizations.

À+ = ‡+
H

, À≠ = ‡≠

H
, À◊ = ‡◊

H
, À2 = ‡2

H
, À3 = ‡3

H
,

N+ = n+
H

, N≠ = n≠

H
, N◊ = n◊

H
, N2 = n2

H
, N3 = n3

H
,

A = a

H
, À2 = ‡ab‡ab

6H2 .

Take next a general anisotropic matter-sector with energy-momentum
tensor

Tµ‹ = fluµu‹ + p hµ‹ + 2q(µu‹) + fiµ‹ . (2.51)

Here fiµ‹ is the anisotropic stress, q‹ the heat-flow, fl the energy density
seen by an observer with four-velocity u and p the isotropic pressure (refer
to Appendix D for details. The normalized variables are now

 + = fi+
H2 ,  ≠ = fi≠

H2 ,  ◊ = fi◊

H2 ,  2 = fi2
H2 d,

 3 = ‡3
H2 , P = p

3H2 , œ = fl

3H2 , …i = qi

3H2 .

By the above normalization the equations of motion become an autonomous
system of di�erential equations and all equilibrium points will represent
self-similar cosmologies (to be defined). The resulting dynamical system
will be on the form

XÕ = F (X), Ci(X) = 0, (2.52)

where X is the n-dimensional state space vector of the system, Ci(X) = 0
is the set of constraints, F is an n-dimensional vector function. The
local stability of the self-similar cosmological solutions represented by
equilibrium points, X0 (where F (X0) = 0), may now be computed by
looking at displacements from such points to linear order:

(”X)Õ = J (”X). (2.53)
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Here J is the Jacobian matrix of the system. The eigenvalues l are given
by the equation

det(J ≠ I l) = 0, (2.54)

where I is the Identity matrix. Finally; the equation for the Hubble
expansion now elegantly decouples from the rest of the system, and may
be shown to be

H Õ = ≠(1 + q)H, (2.55)

where q is the so-called deceleration-parameter, generally defined as q = ≠l̈/(l̇)2.

2.7.2 Gauge freedom: scalars and spin-n quantities

Following [20] the gauge freedom is left in the equationsa introducing the
(expansion-normalized) local angular velocity Ra of a Fermi-propagated
axis, with respect to the triad {ea}, with components

R1 © œ1
H

= „Õ and Rc © R2 + iR3 © œ2
H

+ i
œ3
H

. (2.56)

Recall that Rc is already fixed according to Eq. (2.34). There remains in
this way only one rotational gauge freedom (rotation of the frame around
the e1-axis). This is

S

U e2

e3

T

V =
S

U cos „ sin „

≠ sin „ cos „

T

V

S

U ẽ2

ẽ3

T

V . (2.57)

The complex variable Rc is introduced in order to simplify the equations
when the gauge symmetry is still not fixed. This is in accordance with [20]b

and becomes a particularly useful tool in constructing gauge independent

aThis di�ers from the general treatment in [14], where the dynamical system is instead
built from gauge-independent quantities only.

bNote that there are some small conventional discrepancies in the current notation
compared to that of [20].
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quantities). Define next the complex quantities

N∆ = N≠ + iN◊ , �1 = …2 + i…3 ,

�∆ = À≠ + iÀ◊ , �1 =  2 + i 3 , (2.58)

�1 = À2 + iÀ3 , �∆ =  ≠ + i ◊.

Some of the quantities introduced so far are independent under transfor-
mations over the remaining gauge freedom, (2.57), whereas others change.
To distinguish these quantities from each other, note the following two
definitions.

Definition 9 (Scalar). Any quantity invariant under the transformation
(2.57) is said to be a scalar.

Definition 10 (Spin-n object). Any quantity X transforming such that

X æ exp (in„)X

under the transformation (2.57) is said to be a spin-n object.

The above variables may now be classified as scalars or spin-n objects by
looking at how they transform under the gauge transformation(2.57). For
the geometric and shear-variables we find

{A, N+, À+, �1, �∆, N∆}æ{A, N+, À+, ei„�1, e2i„�∆, e2i„N∆} . (2.58)

The rest we shall return to in the next chapter, where we discuss the
matter sector more intently. Observe that the complex conjugates of the
spin-n objects transform in a similar manner. In particular exp(ix)ú =
exp(≠ix))c. This makes it very easy to construct all sorts of physical
variables (gauge-independent quantities; hence scalars) from the spin-n
objects.
cBy such for instance �∆�ú

∆ becomes a scalar quantity, since the exponentials cancel
out.
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2.7.3 Equilibrium sets

As anticipated, in the dynamical-systems approach a relevant role is given
to the equilibrium points, the stable of which function as asymptotic states
of the system (at least locally). In order to formally define an equilibrium
point in a gauge-independent manner, consider the definition of a scalar
given in Def. 9. Then, a gauge independent definition of an equilibrium
point is

Definition 11 (Equilibrium point). An equilibrium point P is a set on
which all scalars are constants on P as functions of · .

The equilibrium points that we obtain through our dynamical systems,
with the expansion normalization described in this section, will generally
represent self-similar cosmological models. A definition of self-similar is as
follows.

Definition 12 (Homothety and Self-similar space-time). A self-similar
space-time is a space-time possessing a proper homothety. A vector field
H is said to be a (proper) homothety if

£Hg = k g, (2.59)

where k is a (non-zero) constant.

The stable equilibrium points will, as mentioned, correspond (at least
locally) to future asymptotic states of the system, and are therefore of
special interest. Furthermore, one may note that the Einstein equations
will be part of our dynamical systems, since we shall assume General
Relativity as the theory of gravity. Henceforth, finding the metric that
corresponds to an equilibrium point will provide exact solutions to the
Einstein equations.
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2.7.4 Gauge choices

An important part of the analysis will consist in choosing a certain gauge
in which to study the equilibrium points. We have employed quite a few
di�erent choices in the papers contained in this thesis. The gauge choice
must be invariant under time evolution. That is to say: One must choose
the remaining gauge freedom (the tuple (R1, „0 = „(t = 0)) such that
this choice remains invariant under the evolution of the dynamical system.
Oftentimes, the choosing of a gauge consists in being able to set a variable
Xi of the dynamical system to zero. Take Xi = N◊ as an example. First, it
must be possible to choose an initial orientation „0 such that N◊(„0) = 0.
Second, one must find a choice for R1 such that this remains true for all
subsequent times. In our case this specifies the N≠ - gauge. In the following
we list gauge choices employed in our works.

ı Diagonal shear frame: In this case the tetrad is aligned with the shear
eigenvectors, so that the shear tensor takes a diagonal form.

ı Vector aligned frame: Aligning the frame with the 3-vector part of the
matter sector becomes an important option in the class-A types, since
the geometrical vector a in that case is zero.

ı F-gauge (R1 = 0): This is in some sense a quite physical gaugea: R1

specifies the angular velocity compared to a Fermi-Walker propagated
frame, so equating this to zero means that one plane is following the
frame of gyroscopesb. Note that there is still a U(1)-gauge freedom left:
the initial configuration („0) of the frame around the axis orthonormal
to the plane spanned by the G2 subgroup.

ı N≠-gauge: Use the gauge freedom to diagonalize Nab. This gauge may
be implemented by choosing

R1 =
Ô

3–À◊ and N+ =
Ô

3–N≠.

aRemember that R1 © „
Õ.

bTo fully align with the gyroscope frame one must additionally have œ2 = œ3 = 0.
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It can be shown that this allows for choosing N◊ = 0 for all times if
one chooses the inital orientation

„0 = ≠1
2 tan

A
À̃◊

À̃≠

B

where À̃◊, À̃≠ are variables referring to the frame following gyroscopes.

ı À3-gauge (R1 =
Ô

3À◊):In this gauge �1 is imposed to be purely real,
so Ÿ{�1} = 0. This gauge choice becomes natural in the analysis of
type I in a G2 frame aligned such that Vc = 0.

2.7.5 Monotonic functions

Monotonic functions are of great value in dynamical-systems theory.
Though valuable, the problem with monotonic functions is that they
are, generally speaking, hard to find. In this section we shall make no
attempt at giving a general procedure on how to obtain such functions for
a given dynamical system. Instead, we shall simply make an observation
regarding a special case. Take a dynamical system

ẋ = f(x) (2.60)

where x œ Rn and f is a function from Rn æ R. Let the system of
equations be arranged such that the first k of these equations are on the
form

ẋi = (bi + aijg(xj))xi. (2.61)

for some k œ (0, n] and a function g(xj) where j œ (0, n]. Here bi and aij

are constants. Construct from the k first variables {xi} the function

Z =
kŸ

j=1
x

cj

j . (2.62)

Calculating Ż by inserting from (2.61), will now give an algebraic system
of equations for the coe�cients cj that must be fulfilled in order for Z to
be monotonic. In particular: if it is possible to choose the coe�cients such
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that
ciaij(gj) = 0, (2.63)

it follows that
Ż = (cibi)Z, (2.64)

and hence Z is a monotonic function. This was used in constructing some
of the monotonic functions for B(II). The methods of [21] were applied to
more general cases.

2.8 Obtaining the line-element

In the following we describe an eloquent way to obtain the line-elements
of the equilibrium points found in the orthonormal-frame formalism. Since
we are looking at the Bianchi models, we know that the metric must be
isotropic and on the form

ds2 = ≠dt2 + hij(t)W iW j, (2.65)

where, for each Bianchi type, the {W i} are left-invariant one-forms that
fulfill the Lie algebra associated with that particular Bianchi type (see
Section 2.6). Next, taking (2.49),(2.50) and (2.55) together, one may show
that in the case of a constant deceleration-parameter

H(t) = 1
(1 + q)t æ l(t) = t1/(1+q). (2.66)

The deceleration parameter is a scalar and hence it must by definition
be constant on the equilibrium points. The equilibrium-point solutions
that we seek are self-similar, and the coe�cients are powers of t [22].
Consequently, it may be shown that the line-element Hence we may write
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on the form

ds2 = ≠dt2 + t2a

C

t4p
1
W 1 + btcW 2 + rtsW 3

22

+ t≠2p+2w
1
W 2 + utvW 3

22
+ t≠2p≠2w(W 3)2

D

.

(2.67)

The factor of t2a is the overall isotropic scale-factor, which we previously
called l(t). By Eq. (2.66) we find the relation

a = 1
1 + q

. (2.68)

In our calculations we have used an orthonormal frame. To compare with
the solutions thus obtained as equilibrium points, we need to relate the
above metric to the orthonormal frame. To this end we find an orthonormal
basis:

Ê0 = dt, (2.69)

Ê1 = ta+2p(W 1 + btcW 2 + rtsW 3), (2.70)

Ê2 = ta≠p+w(W 2 + utvW 3), (2.71)

Ê3 = ta≠p≠wW 3. (2.72)

In this basis the metric g = gµ‹Êµ ¢ Ê‹ simplifies to g = ÷µ‹Êµ ¢ Ê‹ ,
where ÷µ‹ is the Minkowski metrica. In an orthonormal frame with a
time-parameter t orthonormal to a spatial hypersurface Àt, the extrinsic
curvature K of the spatial sections Àt is given by

K = 1
2£ˆth = ◊ (2.73)

where h is the metric of the hypersurface and ◊ is the expansion tensor.
In an orthonormal frame we must have

h = Ê1 ¢ Ê1 + Ê2 ¢ Ê2 + Ê3 ¢ Ê3. (2.74)

aIn particular: eµ ·e‹ = g(eµ, e‹) = ÷–—Ê
– ¢Ê

—(eµ, e‹) = g–— Ê
–(eµ)Ê—(e‹) = ÷µ‹ .
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Also note that in the hyper-surface orthogonal case the expansion-tensor
is

◊ = H (”ij + Àij) Êi ¢ Êj, (2.75)

where Àij is the expansion-normalized shear. Note next the rule

1
2£ˆt

1
Êi ¢ Êi

2
= ˆt(Êi) ¢ Êi. (2.76)

Applying this rule to Eq. (2.69) one finds

1
2£ˆt(Ê1 ¢ Ê1) =

(1 + q)H
Ë
(a + 2p)Ê1 + bc t3p≠w+cÊ2 + (rs t3p+w+s ≠ bcu t3p+c+v≠a)Ê3

È
¢ Ê1,

1
2£ˆt(Ê2 ¢ Ê2) = (1 + q)H

Ë
(a ≠ p + w)Ê2 + uv t2w+vÊ3

È
¢ Ê2,

1
2£ˆt(Ê3 ¢ Ê3) = (1 + q)H(a ≠ p ≠ w)Ê3 ¢ Ê3.

(2.77)

Taking all the above together, and using that the tensors h and ◊ are
symmetric we thus obtain a set of scalar equations by comparing term by
term in (2.73). These are as follows.

Ê1 ¢ Ê1 : (1 + q)(a + 2p) = (1 ≠ 2À+), (2.78)

Ê2 ¢ Ê2 : (1 + q)(a ≠ p + w) = (1 + À+ +
Ô

3À≠), (2.79)

Ê3 ¢ Ê3 : (1 + q)(a ≠ p ≠ w) = (1 + À+ ≠
Ô

3À≠), (2.80)

Ê2 ¢ Ê1 : (1 + q)bc · t3p≠w+c = 2
Ô

3À2, (2.81)

Ê3 ¢ Ê1 : (1 + q)(rs · ts ≠ bcu · tv+c) · t3p+w = 2
Ô

3À3, (2.82)

Ê3 ¢ Ê2 : (1 + q)uv · t2w+v = 2
Ô

3À◊. (2.83)

From these equations, the coe�cients may be calculated, and the line-
element thus found. In the following we provide an explicit example.
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2.8.1 Wonderland in type VIh

In this case the algebra is (cf. Sec. 2.6) such that

C2
12 = ≠kf and C3

13 = ≠k. (2.84)

The rest of the structure coe�cients vanish. Also

Cj
ij = 2Ai æ C2

12 + C3
13 = 2A. (2.85)

Inserting from (2.84) we find (expansion normalized) that

A = ≠k

2(1 + f). (2.86)

A left-invariant basis for the type VIh algebra is

W 1 = dx, (2.87)

W 2 = e≠kfxdy, (2.88)

W 3 = e≠kxdz. (2.89)

The corresponding general, self-similar metric incorporating this geometry
is therefore

ds2 = ≠dt2 + t2a+4p
1
dx + btce≠kfxdy + rtse≠kxdz

22

+ t2a≠2p+2w
1
e≠kfxdy + utve≠kxdz

22

+ t2a≠2p≠2we≠2kxdz2.

(2.90)

The shear-specifications for Wonderland in B(VIh) are:

À+ = 1
2 ≠ 4

3“ , À≠ = ≠Ÿ‹3 , À◊ = Ÿ‹2 and À2 = À3 = 0
(2.91)
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Here (‹2, ‹3) = (N≠, N◊), and ≠1 < Ÿ Æ 0 Since À2 = À3 = 0, we set
b = c = r = s = 0. The remaining system is

(1 + q)(a + 2p) = (1 ≠ 2À+) (2.92)

(1 + q)(a ≠ p + w) = (1 + À+ +
Ô

3À≠) (2.93)

(1 + q)(a ≠ p ≠ w) = (1 + À+ ≠
Ô

3À≠) (2.94)

v = ≠2w (2.95)

(1 + q)uv = 2
Ô

3À◊. (2.96)

This results in the line-element

ds2 = ≠dt2 + t2dx2 + t
2≠“

“ ≠≈
3

e≠kfxdy + ‹2
‹3

t≈ e≠kxdz
42

+ t
2≠“

“ ≠≈ e≠2kxdz2,

(2.97)

where ≈ = ≈ (‹3, “) is actually a function defined such that ≈ (‹3, “) =
4Ÿ‹3/(

Ô
3“). Also, ≠1 Æ f < 1. In Wonderland, A = ≠3

4Ÿ(2 ≠ “). Using
this with (2.86) one finds k(1 + f) = 3

2(2 ≠ “)Ÿ.

Summary (Geometry): We intend to study the Bianchi models of
solvable type in the orthonormal-frame approach. This will permit for
a dynamical-systems approach, and by expansion-normalization the
equilibrium points of the dynamical system will generally represent
self-similar cosmological models. We are particularly interested in those
equilibrium points that are stable into the future.



Chapter 3

The matter sector

We consider a matter sector made up of a perfect fluid with barotropic
equation of state and anisotropic matter. They are all non-interacting,
meaning that

(Ti)µ‹
;‹ = 0 (3.1)

for each matter component i. In this chapter we describe the anisotropic
matter in more detail, starting from a p-form action. But before that, we
will have a look at what has already been investigated.

3.1 Existing contributions

The modern field of cosmology has been up and running for about 100 years
by now, and the strategy described in the previous section is inherited
from others [23, 24]. In particular, spatially homogeneous, anisotropic
cosmologies have been studied systematically for many decades. As we
have seen, such a cosmology are either of a Bianchi type [25], or it is
Kantowski–Sachs [26].

The Bianchi models are well studied [27–29], and dynamical systems
theory has been applied to cosmology for a long time [24,30]. The early
development eventually culminated in the book Dynamical Systems in
Cosmology edited by Wainwright and Ellis [14]. In this book and other
early works (e.g. [31]) perfect fluids with a barotropic equation of state are
investigated. Such fluids give simple, physically relevant general-relativistic
models, despite the fact that they most certainly represent approximations
to reality. The question of whether or not bulk-viscosity should be added
into the equations have been discussed for some time by now. Consider for

37
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instance my own works [32,33] and references therein. Such models do not,
however, contain anisotropic stress. One way to include anisotropic stress,
is to include shear viscosity [34]. Others have considered generalizations
such as tilt, di�usion and vorticity [18,20,21,35–47].

Others have considered electromagnetic fields. The electromagnetic
fieldstrength may from a mathematical point of view be described as a
so-called 2-form. As such, electromagnetism may be seen as a particular
realization of the more general p-form. This is described next.

3.2 The general p-form action

It is necessary to find a source that will sustain anisotropies, if one intends
to investigate the possibilities for anisotropic hairs. The p-form is a nat-
ural candidate for describing a general anisotropic matter sector. For a
recapitulation on what a p-form is, please refer to Appendix A.

For a Lorentzian manifold of dimension n, the canonical volume form ÷

is given by the relation ÷ = ı1, and hence any Lorentz scalar (function) f

defines a volume form F = ıf . Since the volume form is a top-form,
integrating it will again give a scalar. A functional S may therefore be
constructed in a coordinate-invariant manner as S =

s
ıf . The question is

now which volume form F we take to define our theory. In constructing a
gauge theory, there is a natural choice. In particular, take F = ≠1

2P · ıP ,
where P is a p-form constructed by the exterior derivative of a (p ≠ 1)-
form K. The action now reads

S = ≠1
2

⁄
P · ıP . (3.2)

The Bianchi identity and the equations of motion may now be given in
the language of exterior calculus by the following two equations.

dP = 0 æ Ò[–0P–1···–p] = 0 Bianchi Identity. (3.3)

dıP = 0 æ Ò–1P–1···–p = 0 Equations of motion. (3.4)
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The latter equation implies a sourcefree field, as dictated by the action.
Note that the theories derived from the general p-form action (3.2) respect
the following properties: (i) gauge invariance of the Lagrangian density Lb,
such that L æ L under K æ K + dU , where U is a (p ≠ 2) -form; (ii) only
up to second order derivatives in equations of motion; (iii) Lagrangian
is up to second order in field strength P; (iv) constructed by exterior
derivatives of a p-form and (v) minimally coupled to gravity.

Homogeneity. On the fieldstrength level, our theory is required (spa-
tially) homogeneous. We must therefore have

P(t, x) ∆ P(t).

Note, however, that since we choose to build the p-form field from an
underlying gauge field, we have

P(t) = dK(t, x). (3.5)

Id est; the underlying gauge field K(t, x) may vary both with space and
time. Hence, our study is richer than [48] where the gauge field is a function
of time only.

3.2.1 Back to the literature

So what about the literature on the p-form action? Source-free electro-
magnetism (p = 2) has received more or less full attention in the context
of Bianchi models [49–53]. Recently, a general study of coupled p-form
actions in a cosmological context was undertaken [54, 55], though not gen-
erally in anisotropic backgrounds. In [56] inflationary scenarios realized by
p-forms with arbitrary potentials were investigated, also in axisymmetric,
anisotropic cosmologies. An inflationary scenario with a 3-form gauge field
was also studied in [57].

A number of studies have looked at 3-form fields (typically with 4-form

bWhere the Lagrangian density is defined such that S =
s Ô

≠g d4
x L
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fieldstrength) to mimic dark energy, or as a way to couple dark energy to
dark matter [58–60]. Dynamical-systems approaches have been used in
some of these, but the interest typically lies in the gauge potential, and
isotropy is therefore assumed. This is also true for most of the seemingly
infinite amount of literature on inflation, with a few exceptions, such
as [54, 61, 62]. A short notice regarding 3-form inflation was also given
here [63].

Since observations seem to be quite compatible with the Universe
being isotropic, the criteria for having shear-free anisotropic cosmologies
have also drawn interest [64–67]. Shear-free cosmologies realised by a
canonical massless 2-form field were studied in [68] (3-form fieldstrength).
Generalizing the matter sources used in these works, one may seek to
facilitate shear-free evolution by a general p-form action. It was recently
shown [69] that the Bianchi type III is the only class of such cosmological
models in which a shear-free solution (properly defined therein) with a
lower-bounded Hamiltonian exists.

In ending this section we draw attention to the review (e)book by
Coley [70], where actions both from scalar-field theories, scalar-tensor
theories and string theory are considered. In particular, the fat list of
references therein comprises a treasure for the interested reader.

From the above, we conclude that no systematic study of a p-form
fieldstrength where p œ {1, 3} exists in the literature on anisotropic
cosmology. In this dissertation we therefore conduct a systematic analysis
of a p-form fieldstrength with p œ {1, 3}. Observe next that since we are in
four-dimensional spacetime, the Hodge-dual of a three-form is a one-form,
and the Hodge-dual of a one-form is a three-form. The equations (3.3)
and (3.4) must therefore (collectively) take precisely the same form for
p = 1 as for p = 3. This is (more generally) discussed in for instance [71,
Sec. 7.8], and may also be seen in the action (3.2) (up to a prefactor). We
therefore and henceforth introduce a piece of new notation; the j-form
field, defined as follows.
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Definition 13 (j-form field). With a ‘j-form field’ we mean a matter-
sector deriving from (3.2) with p = j, where j œ {1, 3}. The corre-
sponding fieldstrength is a j-form. With the j-form field we associate a
one-form J , which we decompose such that

J– = ≠w u– + v– , (3.6)

where the 4-velocity u– is time-like (u–u– < 0), whereas v– is defined
to be orthogonal to u– and therefore space-like (v–v– > 0). Note the
following.

ı If j = 1, then J denotes the j-form, which is a one-form.

ı If j = 3, then J denotes the Hodge dual of the j-form, which is a
one-form.

Note that the di�erence between the case j = 1 and j = 3 will only be
important when discussing the underlying gauge field.

3.3 The j-form field

Generally, for the p-form action (3.2), the energy-momentum tensor T–—

is given by

T–— © ≠ 2Ô
≠g

” (
Ô

≠gL)
”g–—

= 1
p!

5
p P µ2···µp

– P—µ2···µp
≠ 1

2g–—Pµ1···µpPµ1···µp

6
,

(3.7)

where L = ≠ 1
2p!P

µ1···µpPµ1···µp is the Lagrangian density following from
the same action. Because of the invariance of the equations (3.3) and (3.4)
previously noted, it follows that for a j-form the energy-momentum tensor
becomes

T f
µ‹ = JµJ‹ ≠ 1

2gµ‹ J–J – . (3.8)

Here and later ‘f’ stands for ‘form-fluid.’
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3.3.1 Connection to scalar-field theories

Take now j = 1, such that J becomes a 1-form constructed from an
underlying gauge-potential „. Inserting J (t) = ˆµ„(t, x) Êµ into (3.8) we
may also write

Lf = ≠1
2ˆµ„ˆµ„ æ T f

µ‹ = ˆµ„ˆ‹„ ≠ 1
2gµ‹ˆ“„ˆ“„, (3.9)

where we have suppressed the arguments of „ for brevity. In terms of the
gauge-potential „, the Equations (3.3) and (3.4) now take the form

dd„ = 0 æ (ÒµÒ‹ ≠ Ò‹Òµ)„ = 0, (3.10)

dıd„ = 0 æ 2„ = 0 Klein–Gordon Eq. (3.11)

where we have defined 2 = ÒµÒµ. Equation (3.10) is the Bianchi identity.
The latter equation, Equation (3.11), we recognize as the Klein–Gordon
equation for a massless scalar field.

Our study of a j-form may be viewed as the study of a massless, inhomo-
geneous scalar field with a homogeneous gradient.

3.3.2 Equation of state and energy-momentum tensor components

In Definition 13 we mentioned that we decompose such that J– = ≠w u– +
v–. Hence, the j-form field has four independent components. We will,
however, rather use the four quantities

{w, v1, v2 + iv3, v2 ≠ iv3}

as independent components (more precisely their expansion-normalized
counterparts), since this complex form permits for a more compact notation.
In real variables, however, the six energy-momentum tensors in the standard
irreducible decomposition by the velocity field components u– and the
spatial metric components hij (refer to Appendix D for details) are as
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follows.

flf = 1
2(w2 + v2) , (3.12)

pf = 1
2(w2 ≠ 1

3v2) , (3.13)

qi = ≠wvi , (3.14)

fiij =
3

vivj ≠ 1
3v2hij

4
. (3.15)

We omit the subscript ‘f’ on the o�-diagonal elements qi and fiij, since
we shall include no other matter sourcing with such components. The
equation-of-state parameter › for the j-form fluid is defined by

pf = (› ≠ 1)flf . (3.16)

Hence, one finds the relation

› = w2 ≠ v2/3
w2 + v2 + 1 æ 2

3 Æ › Æ 2 . (3.17)

The range of › follows directly from requiring that J– œ R. Note that
(3.17) is a dynamical equation of state, since the components of J in
general change with time. The lower bound (› = 2/3) is found for w = 0
and the upper bound (› = 2) is found for v = 0. Note also that w = v

gives › = 4/3, as in the case of electromagnetic radiation.

Expansion-normalization. With the normalization introduced in the
previous chapter, Sec 2.7.1, the expansion-normalized j-form components
become

« = wÔ
6H

, Vi = viÔ
6H

. (3.18)

Analogously with the complex entities defined in (2.58) of the previous
chapter, we now define the complex quantity

Vc = V2 + iV3, (3.19)
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which transforms as a spin-1 quantity under the transformation (2.24).
The four independent components of J are now {«, V1, Vc, Vú

c}.

3.3.3 1+1+2 decomposition

As mentioned in the previous chapter, the Bianchi types analyzed in this
dissertation (I-VIIh) admit an Abelian G2 subgroup and this allows for
a 1+1+2 split of the four-dimensional space-time. This translates into a
1 + 1 + 2 decomposition of the Jacobi identity (as we saw), the Einstein
Field Equations and the Bianchi identities. Furthermore, we chose a group-
invariant orbit-aligned frame, i.e. an orthonormal frame which is invariant
under the action of G2 [14]. In this way the complete set of independent
basic variables reduces to

{H, ‡AB, ‡1A, œ1, nAB, a} and {qa, fiAB, fi1A, flf , flpf} , (3.20)

where the capital letter indices A, B run over 2 and 3 which are taken to
be the two Killing-vector fields chosen tangential to the group orbits of
the G2 subgroup, all as before. Note that ‡11 and fi11 may be derived from
the trace-free property of these tensors and the isotropic pressures from
equations of state. The energy densities, flpf and flf , refer to the ‘perfect
fluid’ and to the ‘form-fluid,’ respectively. Note that by the expansion-
normalized quantities constructed in the previous chapter, we now find
that under the gauge transformation (2.24), the matter variables transform
in the following manner.

{…1,  +, �1, �∆, �1}æ{…1,  +, e2i„�∆, ei„�1, ei„�1}, (3.21)

{œf , œpf , «, V1, Vc} æ{œf , œpf , «, V1, ei„Vc}. (3.22)
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3.4 Motivation for studying the j-form field

Our motivation has largely been mathematical. Knowing that actions built
from p-forms with p œ {2, 4}c have already been covered by the literature
on anisotropic cosmology, there is a sense of completeness with now also
having investigated the remaining scenarios; p = {1, 3}. Especially so,
since it is clear that one cannot know the results before they are obtained.

Furthermore, it seems possible to draw motivation to study j-form
fields from physical aspects as well. First of all, standard cosmology invokes
inflation, cold dark matter (CDM) and a cosmological constant [10] to
account for observations. The line of work contained in this thesis may
be seen as another attempt at closing in on a better understanding of the
‘dark side’ of the Universe.

The aim of this dissertation is not a detailed study of observations,
or to make claims toward such ends, and we su�ce it to let the reader
know about papers like [68, 72–77], where observations are discussed in
the context of anisotropy. Also, for the interested reader, we mention that
Section 4 in Paper III, discusses more intently the possible physical
motivation for studying the j-form field.

Summary (The matter content): In this dissertation we shall study
the so far unstudied cases of a general p-form action. Id est; we assume
that the matter content consists of a j-form, where j œ {1, 3}. Ad-
ditionally, we add a non-tilted, non-phantom, barotropic perfect fluid
(0 Æ “ Æ 2). Denoting the energy densities by œi we write

œ = œjf + œpf . (3.23)

We will also investigate the e�ects of adding a cosmological constant
œ» on top of œ.

cWhere, as mentioned, electromagnetism is studied through p = 2 and the cosmological
constant through p = 4. These matters are more thoroughly discussed in Paper I.
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Probing the Night Sky

It seems as if Nature couldn’t care less about my theories. No matter how
fine they are: if they do not correctly describe her, she does not reveal
herself through them. As a matter of fact; any theory that seeks to describe
(parts of) Nature is judged by the observation of her. It becomes all the
more important, therefore, to develop good probes on the night sky, such
as to facilitate an as accurate judgement of theories as possible.

Today we collect information from the night sky in many di�erent
ways. The electromagnetic spectrum is read from the radio-wave frequency
to the x-ray frequency, and gravitational-wave signals are caught on tape
and analysed. However, non of these observations would be of any par-
ticular value without proper theoretical framework in which to interpret
them. Theoretical development is therefor important. One such theoretical
development came with the understanding that even light is deflected by
gravity’s ‘pull’a. This e�ect is nowadays called gravitational lensing (GL).

4.1 A brief history of GL

Isaac Newton himself added a couple of lines at the end of his 1704 work
on optics, about light also being influenced by gravity in the same way as
matter [78]. Following a century later, scientists such as John Michell b [80]
and Pierre-Simon Laplace [81] would build on Newton’s theory of gravity
and conclude that light should be a�ected by gravity. Actually, Newton’s
aActually, gravity does not exert forces on the objects on which it acts. Rather, the
notion of straight lines—geodesic motion— is a�ected. Hence ‘pull’ and not pull.

bThis creative chap also speculated that there might be objets so massive that even
light cannot escape their gravitational attraction. Today we call such objects black
holes. An overview is provided in [79].

47
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theory misses the correct lensing equation for a point mass by a factor two,
only. This discrepancy between general relativity (GR) and Newton’s
theory of gravitation, however, was su�cient to discriminate between the
two theories under a solar eclipse back in 1919 [82], favouring Einstein’s
theory over Newton’s. A solid framework in which to study GL-e�ects was
hence provided: GR. The contest between the two theories also displayed
the power of the tool, leading to optimism concerning its capacities. Since
then, the field of GL has been vibrant with contributions.

Einstein’s calculations, however, led to pessimism about observing
stars lensed by our sun [83]. It is fortunate, therefore, that Zwicky [84,85]
studied lensing e�ects by galaxies outside our own, successfully showing
how such observation could determine the mass of distant galaxies. Later,
further theoretical advancement came with the Norwegian astrophysicist
Sjur Refsdal, who in the 1960s [86,87] did pioneering work in using GL as
a probe on cosmic parameters. By measuring the time delay between a
light-ray travelling one way against a ray taking a di�erent route around a
lens (galaxy), the Hubble–Lemâitre constant was successfully calculated.

The modern field of GL is typically divided into two regimes [88, p.
21]: weak lensing (Ÿ < 1) and strong lensing (Ÿ > 1 ). Here Ÿ is the
dimensionless surface-mass density (or convergence) of the lens, and will
be more properly discussed later on. Observation of strong lensing is rare.
Observation of weak lensing is not rare, but subtle as it is a weak e�ect
and requires statistical treatment. A typical application is to measure
the distortion of background galaxies lensed by a (foreground) cluster of
galaxies. This e�ect was first detected by Tyson et al. in 1990 [89] in a
pioneering work on cluster lens-mass reconstruction. Since there is
a map between surface-mass density and lensing, one early recognised
GL as a good probe on the distribution of dark matter. Already in 1989,
microlensingc was used to explore the nature of dark matter [90]. Since then
the e�ect has been used to detect black holes, exoplanets and much more.

cMicrolensing typically refers to the lensing of galactic or extra-galactic sources by
lenses inside our galaxy.
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As late as in 2018, the study of microlensing e�ects in images magnified
through galaxy-cluster lensing e�ects, led to the discovery of Icarus, the
most distant star observed so far [91,92]. The field of strong lensing was
recently reviewed by Anna Barnacka, who concludes that it provides unique
physical information about the central structure of active galaxies [93].
Since GL-e�ects such as magnification, arcs and rings [94, 95] allow for
deep-galaxy observation, one may conclude that improved accuracy of
GL-measurements means an improved probe on the Universe of the distant
past.

4.2 GL as a probe on dark matter

The first use of GL was, as mentioned, to pin down the correct theory of
gravity. The dispute concerning whether or not GR really is the correct
theory of gravity has not remained silent, however. Today we know that if
the standard »CDM-cosmologya is correct, then we need a whole lot more
matter in galaxies than the luminous part. The Planck survey suggests
a ratio of luminous to non-luminous of about 1/5 [10, 96]. Furthermore,
estimates suggest that in a galaxy cluster, about 80% of the mass is due to
non-luminous sources [97, p. 300]. According to the same source (p. 327)
observations of colliding galaxy clusters cannot properly be accounted
for without the inclusion of collision-less dark matter—even if GR is
modified on large scales. Within the paradigm of »CDM-cosmology, one
has therefore set out to search for the nature of this so-called dark matter.

To this end it is important to map the gravitational potential of the
Universe. A large share of today’s cosmology is devoted to finding out,
and this is where lensing comes in as an excellent tool [98,99].

aStandard cosmology is named after its two main constituents: The cosmological
constant (») and cold dark matter (CDM).
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4.3 Lens-mass reconstruction

One of the most prospering outputs of studying GL, has been the ability
to do lens-mass reconstruction. Understanding how light-rays are being
deflected by a lens, is the same as understanding the gravitational potential
of the lens; its magnitude and distribution. This, in turn, translates into a
map of dark matter in the lens. Early in the 1990s, Kaiser and Squires
did pioneering work to this end; finding expressions for the mass in terms
of the shear field measured in galaxy clusters [100,101]. A key improvement
from previous attempts with weak lensing (e.g. [102,103]) was that this
approach was model-independent. Later Schneider and Seitz [104–106]
developed the method further, using only local data to reconstruct the
lens mass from the shear field. These early works have paved the way for
an array of papers describing the implementation of Kaiser and Squires’
work to obtain real data.

4.4 The two approaches to GL

In this dissertation, The roulette formalism will be used. This is a
weak-lensing approach that aims at describing also strong lensing e�ects.
Of course any divide between weak and strong lensing is in some sense
artificial and imposed by the formalism. Since both weak and strong lensing
will typically occur together, one should seek a formalism in which both
regimes may be accounted for. Roughly speaking, one may say that there
are two approaches to gravitational lensing.

ı The lensing equation. This approach starts with the gravitational field
outside a point mass, and looks at how a light-ray is deflected. More
complicated matter profiles of the lens is obtained by integrating over
the lens-plane (to be defined). For strong lensing, this will typically be
the way to go.

ı The geodesic deviation equation. Starting from the equation of geodesic
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deviation, one calculates how light-rays scatter. This approach is more
often used for weak lensing.

In order to create a unified treatment of the two regimes, it is natural
to assume one of the above established approaches, seeking to extend it
to include both regimes in an appropriate manner. In [107] they start
by the lensing equation, thus creating a ‘strong-lensing formalism for
weak lensing’. The Roulette-approach is taking the opposite approach. By
starting from the geodesic deviation equation, one seeks to implement
strong gravitational lensing through the inclusion of higher-order terms. In
the following we briefly describe the two approaches. Take in the following
÷ and RL to be two-dimensional vectors and –, —, Ë to be (three) two-
dimensional vectors of angular coordinates. The following definitions are
now used.

ı Optical axis. A straight line OA from the observer to the source-plane.

ı Source-plane: The plane orthogonal to OA at the source, which is at a
distance ‰S along OA and spanned by ÷.

ı Lens-plane: The plane orthogonal to OA at the lens, which is at a
distance ‰D along OA and spanned by RL. Note that ‰S ≠ ‰D © ‰DS.

ı Deflection-angle: Let C be the path of the light-ray from the source
to the lens-plane, and L the path from the lens-plane to the observer.
Then –(RL) is the angle between these two lines, such that –(RL) = 0
in the case of no lensing.

Refer to Figure 4.1 for a more intuitive picture. Note also that we will
assume the flat-sky approximation, meaning that the angular distance
between the lensed objects observed on the celestial sphere are so small
that we may assume flatness. Hence the name lens-plane.

4.4.1 Approach 1: The lensing equation

To derive the lensing equation, one starts by considering the deflection
of a light-ray by a point-mass lens. Using the fact that for small angles
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Figure 4.1: The figure shows the notation used for the Roulette formalism in
the thin-lens approximation. The bold symbols are those defined and used in
context of the lensing equation.
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sin – ¥ tan – ¥ –, one may now use Figure 4.1 to show geometrically
that the lensing equation takes the following simple form,

— = Ë ≠ –(Ë), (4.1)

where we have used angular coordinates such that ÷ = ‰S—, RL = ‰LË.
The lensing-equation now maps any point in the source-plane to point(s)
in the lens-plane by the condition that the points in the lens-plane are
those seen by the observer. Considering next a geometrically thin lens, the
incoming light-ray may still be approximated as a straight line s = sŝ.
The surface-mass density Àb of the plane perpendicular to s may in this
case be shown to be

À(RL) =
⁄

ds fl(RL, s), (4.2)

where RL is a vector of coordinates (approximately) perpendicular to s.
From this, one defines the already mentioned dimensionless surface-mass
density Ÿ—also called convergence—as

Ÿ(Ë) = À(‰DË)
Àcr

where Àcr = c2

4fiG
‰S

‰D‰DS
. (4.3)

As always, c is here the speed of light and G is the gravitational constant.
Àcr is the so-called critical surface mass density, which depends on the
relative distances between source, lens and observer. If À Ø Àcr, (which
is the same as Ÿ > 1), multiple images may occur. Hence we see that in
the strong-lensing regime (Ÿ > 1) the lensing-map may map one image
to many lensed images. The kink-like behaviour of the light-ray is a good
approximation, and the formalism described above is frequently used. On
the other hand, in the weak-lensing regime (Ÿ < 1), the lens is bigger than
the so-called Einstein-radius, and rings or multiple images do therefore
not occur.

Next, one defines the so-called amplification-matrix A according to
bCaution! Not to be confused with the À used to describe the shear of the congruence
of observers elsewhere in this thesis. However, these are standard notations and the
context will provide the correct interpretation.
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d— = A(Ë) dË. Define now the lensing potential Â according to

Ẫ(Ë) = 1
fi

⁄

R2
d2ËÕŸ̃(ËÕ) log |ËÕ ≠ Ë| , (4.4)

where Ò̃ = (ˆË1 , ˆË2) is given in angular coordinates. One may show that
this implies the relations

– = Ò̃Â and Ÿ = 1
2Ò̃2Â. (4.5)

The amplification matrix A now takes the form

A(Ë) =
Q

a 1 ≠ Ÿ̃ + “̃1 “̃2

“̃2 1 ≠ Ÿ̃ ≠ “̃1

R

b (4.6)

with

Ÿ̃(Ë) = 1
2Ò̃2Ẫ(Ë), (4.7)

“̃1 = 1
2(Ẫ,22 ≠ Ẫ,11), (4.8)

“̃2 = ≠Ẫ,12. (4.9)

Here ,i refers to derivative w.r.t. Ëi, where Ë = (Ë1, Ë2). Kaiser & Squires
described a method for inverting the measured shear caused by the lens to
obtain the surface-mass density of a lens [101]. Moreover, they obtained
an inversion formula, yielding an expression for the surface mass density.
Defining “̃ = “̃1 + i“̃2 one finds

Ÿ̃(Ë) = 1
fi

⁄

R2
d2ËÕŸ [D(Ë ≠ ËÕ)“̃(ËÕ)] , (Kaiser & Squires’ inversion formula)

(4.10)
where D = (Ë2

1 ≠ Ë2
2 + 2iË1Ë2)/ |Ë|4. As mentioned, this formula gives the

convergence (surface mass density) in terms of the shear-field generated
by the lens. Kaiser & Squires’ results are very well described by Schneider,
who extended their work in two papers [104,105] and finds a way to use
only local data to reconstruct the lens-mass from the shear-field, and also
points out the need for a generalized Kaiser & Squires’ inversion procedure,
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to account for stronger lensing e�ects.

4.4.2 Approach 2: Starting from the geodesic-deviation equation

Weak lensing is, as the name suggests, a relatively weak e�ect, and the
treatment becomes theoretically more involved. The starting-point is often
the 1st order geodesic deviation equation (GDE)

›̈a + Ra
kbk›b = O(›, ›̇)2 1st order GDE. (4.11)

Here › = ›aea is the deviation vector, and Ra
kbk are Riemann-tensor

components where k as an index denotes the projection of that index in the
direction of k, which is the direction of the tangent-vector of the light-ray. (˙)
denotes derivative along the null curve. Weak GL is traditionally assumed
to only have two principle e�ects; magnification and shear, although
higher-order e�ects, such as flexion and second flexion are sometimes
included [108–110], and arise from including higher-order terms in the
GDE. To second order in (›, ›̈) one finds the so-called Bazanski equation
[111–113].

4.4.3 The Roulette formalism

In 2015 Clarkson showed that integrating the second order GDE resulted
in a Hessian map for GL. In two subsequent papers [114,115], Clarkson
set out to solve the GDE equation to arbitrary order, keeping only the
maximum number of leading screen-space derivatives. This essentially
amounts in the replacement

Ra
k›k æ

Œÿ

n=0

1
(n + 1)!

1
›bÒb

2n
Ra

kbk (4.12)

in the above equation (4.11). By this procedure the GDE now takes the
form

›̈ ≠ R› = F , (4.13)
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where R is the optical tidal matrix,

RAB = ≠CAcBdkckd ≠ 1
2”ABRcdkckd (4.14)

where Cab
cd is the Weyl tensor and capital-letter indices refer to screen-

space coordinates and Rab is the Ricci tensor. Moreover, F is a matrix
containing leading-order screen-space derivativesc, such that

F A
(m) = ›A1

(1)›
A2
(1) · · · ›Am

(1) ÒA1ÒA2 · · · ÒAm≠1RA
Am

. (4.15)

By application of the same solution strategy as in [116], the general integral
solution is

› =
⁄ ⁄

⁄0
d⁄

Õ Ë
K(⁄) ≠ J (⁄)J ≠1(⁄Õ)K(⁄Õ)

È
KT (⁄Õ)F (⁄Õ), (4.16)

where J (⁄) is the Jacobi-map, K(⁄) is the reciprocal Jacobi-map and ⁄ is
an a�ne parameter on the past light-cone of the light-ray. The technical
details are nasty, and far beyond the scope of this introduction, and so
we shall refer the reader to the sources for derivations. The important
outcome is that the mth order map between the image and the source
may now be shown to be given by

›A
(m) = MA

B1···Bm
’B1 · · · ’Bm , (4.17)

where the matrix M may be decomposed into symmetric, trace-free tensors.
By such it may be shown to fulfill the relation

MAB1···Bm ’̂B1 · · · ’̂Bm =
m+1ÿ

s=0

[1 ≠ (≠1)m+s]
4 ◊

1ËË
C+–m

s + —̄m
s

È
R≠ +

Ë
C+—m

s ≠ –̄m
s

È
R/

È
ps≠1

+
ËË

C≠–m
s ≠ —̄m

s

È
I +

Ë
C≠—m

s + –̄m
s

È
Á

È
ps+1

2
,

(4.18)

cwe here use capital letters A, B, · · · to denote screen-space components.
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where ’̂ = ’/r is the radial unit vector in the lens plane. Here we have
defined

C± = 1 ± s

m + 1 . (4.19)

Also, I is the 2◊2 identity matrix, and the rest are the Pauli spin matrices:

Á≠ =
Q

a 0 1
≠1 0

R

b , R≠ =
Q

a1 0
0 ≠1

R

b , R/ =
Q

a0 1
1 0

R

b . (4.20)

The coe�cients –m
s and —m

s (and –̂m
s and —̂m

s ) are the so-called even (and
odd) Roulette-amplitudes. These amplitudes each encode independent
distortions. Actually, we may obtain expressions for each one of them by
considering distortions of the unit circle. Consider a distortion induced by
a vector

p(s) = cos s◊ex + sin s◊ey. (4.21)

Multiplying this on the right by the row-vector pT
(n), and integrating around

the unit circle, one finds

1
fi

⁄
d◊ p(m)p

T
(n) =

Y
________]

________[

I”mn for m, n > 0,

R≠”|m|n for m < 0, n > 0,
Q

ca
2 0

0 0

R

db ”0n for m = 0.

(4.22)

Next, applying this to solve the integral 1
fi

s
d◊ ›̂(m)p

T
(n) one finds by (4.18)

the following: For s > 0 the roulette amplitudes become

–m
s = 1

2fi

⁄ fi

≠fi
d◊›̂A

(m)
Ë
p(s+1)

A + R≠
ABpB

(s≠1)
È

, (4.23)

—m
s = 1

2fi

⁄ fi

≠fi
d◊›̂A

(m)
Ë
ÁABpB

(s+1) + R/
ABpB

(s≠1)
È

, (4.24)

–̂m
s = 1

2fi

⁄ fi

≠fi
d◊›̂A

(m)
Ë
≠C+ÁABpB

(s+1) + C≠R/
ABpB

(s≠1)
È

, (4.25)

—̂m
s = 1

2fi

⁄ fi

≠fi
d◊›̂A

(m)
Ë
≠C+p(s+1)

A + C≠R≠
ABpB

(s≠1)
È

. (4.26)
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For s = 0 one similarly finds

–m
0 = 1

2fi

⁄ fi

≠fi
d◊›̂A

(m)p
(1)
A , (4.27)

—m
0 = 1

2fi

⁄ fi

≠fi
d◊ÁAB ›̂A

(m)p
B
(1), (4.28)

whereas the odd modes vanish. For a given order m of the map M,
these amplitudes contain the spin-s contributions to the distortion. By
such, one has for any order m, decomposed the s distortions of an image
into independent contributions. This formalism therefore entails not only
the distortions named convergence and shear (recall that we discussed
these e�ects from the lensing-equation point-of-view), but also higher order
e�ects a to arbitrary order in leading screen-space derivatives. Consequently,
one may view this approach as a a weak-lensing approach to strong lensing.

The weak-field approximation

Weak lensing should not be confused with the weak-field approximation,
which merely states that the Newtonian potential „N is small in a lineari-
sation around a Minkowski background ( „N/c2 π 1). Linearising around
Minkowski space we write the perturbations with respect to Poisson gauge
as

ds2 = ≠(1 + 2Õ)d÷2 + (1 ≠ 2Œ)“ijdxixj, (4.29)

and define a lensing potential

Â =
⁄ ‰

0
d‰Õ

A
‰ ≠ ‰Õ

‰‰Õ

B

(Õ + Œ). (4.30)

We refer the reader to the discussion around eq. 102 in [115] for further
details, and su�ce it here to give the results, as follows: For a general
thin lens in the weak-field and flat-sky approximation the (non-vanishing)

aThe two first of which are typically named flexion and second flexion.
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Roulette amplitudes may be shown to take the form

–m
s = ≠2≠”0s‰m+1

mÿ

k=0

A
m

k

B 1
Cm(k)

s ˆX + Cm(k+1)
s ˆY

2
ˆm≠k

X ˆk
YÂ, (4.31)

—m
s = ≠‰m+1

mÿ

k=0

A
m

k

B 1
Sm(k)

s ˆX + Sm(k+1)
s ˆY

2
ˆm≠k

X ˆk
YÂ, (4.32)

where ‰ is the distance from the observer to the lens. X, Y are coordinates
in the lens-plane and Â = Â(X, Y ) is the lensing potential given in (4.30).
Also the spin s is restricted such that 0 Æ s Æ m + 1 and the roulette
amplitudes –m

s , —m
s may be non-zero only if m + s is odd. Finally;

Cm(k)
s = 1

fi

⁄ fi

≠fi
d◊ sink ◊ cosm≠k+1 ◊ cos s◊, (4.33)

Sm(k)
s = 1

fi

⁄ fi

≠fi
d◊ sink ◊ cosm≠k+1 ◊ sin s◊. (4.34)

The above expressions for the roulette-amplitudes –m
s , —m

s constitute the
starting point of our Paper V. One may note that allthough the above
formulas makes it possible in principle to calculate the amplitudes, the
complexity of the expressions makes it a somewhat time-consuming busi-
ness.

Why use the Roulette formalism?

There are primarily three reasons as to why we intend to use the Roulette
formalism:

First; one of the clear advantages with using the Roulette formalism, is
the ability to include higher-order terms and by such constucting a theory
that encompasses both weak and strong lensing. Since cluster lenses will
contain both strongly and weakly lensed images, this is highly beneficial.
Today, the number of massive single lensed galaxies lensed by a distant
galaxy is not so large (< 1000), but surveys like the Dark Energy Survey
(DES), SLACS, and in particular upcoming surveys like the LSST [39],
Wide-Field Infrared Survey Telescope and ESA’s Euclide will change the
picture dramatically. Among strong lensing e�ects alone, hundreds of
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thousands are expected to be observed [117]. An equally dramatic shift in
the way we build models is no doubt needed (refer to [118], Conclusions)
in order to capacitate analysis of all the data.

Second, the approach should in principle be applicable also to the
exact GDE derived by Vines through an exponential map approach via
bitensors [119]. This is highly beneficial, since solutions of the GDE to
high order in › and its derivatives have not been developed beyond the
aforementioned literature, in particular Clarkson’s works.

Third, it should be noted that the roulette formalism is parameter-
free. Hence we need no a-priori model for the lens.

Summary (GL and Roulette theory): Theoretical understanding
of GL is important for many reasons, one of which is its promising
future as a means to mapping the dark-matter distribution of the night
sky. The Roulette-formalism for gravitational lensing is a scheme for
integrating the non-linear geodesic-deviation equation to arbitrary order,
by such extending the much praised Kaiser-Squires relations from weak
to stronger lensing regimes. By such, weak and strong lensing may be
treated within the same formalism.



Chapter 5

Summary

5.1 Research question and assumptions

Knowing that the Universe is quite isotropic, one may, as already discussed
in Chapter 1, wonder how likely such a Universe is. We take the following
research question.

Question 1. Is the asymptotic future of a cosmology filled with a perfect
fluid alongside j-form matter isotropic?

Take a cosmological model (M, g, u). Then the research question stated
above will be addressed under the following assumptions.

Assumption 5.1 (Philosophy). We assume the weak cosmological prin-
ciple (WCP). Id est; we assume that the manifold M of the model is
homogeneous on spatial sections, meanwhile simultaneously allowing
for anisotropies in the metric g.

Assumption 5.2 (Matter). We take as matter content a perfect fluid
with barotropic, non-phantoma equation of state with which the funda-
mental observer u will be aligned and a j-form fluid. We also investigate
the e�ects of adding a cosmological constant.
aWith ‘barotropic’ we mean that the fluid is a function of pressure only. ‘Non-
phantom’ means that the equation-of-state parameter “ is not allowed to be
negative.

Assumption 5.3 (Theory). General Relativity is assumed to be the cor-
rect theory of gravity.

61
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Finally, in repetition: the ruthless swiftness of time has forced us to leave
the Kantowski-Sachs model out and concentrate on the Bianchi models.
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5.2 Method

The Question 1 will be addressed within the boundaries set by the As-
sumptions 5.1-5.3 above, which specify what sort of models we intend to
study. The following steps will be crucial in the actual analysis.

1) Write down the system of equations in the orthonormal frame (ONF).
This ensures first-order di�erential equations. Furthermore, since ho-
mogeneity is required, no spatial derivatives are allowed for, and we
are hence left with a system of ordinary di�erential equations (ODE).

2) The ODE will be studied as a dynamical system. Since each Bianchi
model is an invariant seta we study each of these sets separately.

3) The next crucial step is to expansion-normalize (EN). The isotropic
part of the expansion decouples from the system of di�erential equa-
tions. The equilibrium points of the expansion-normalized system of
expanding cosmologies now represent self-similar cosmological modelsb.

4) The next step in the analysis is to work out the stability of the equi-
librium points. The stable (/unstable) equilibrium points are given
relevant roles as candidatesc for future (/past) asymptotic states of the
invariant sets. Where found possible, the local analysis is supplemented
by a global analysis.

The above points 1)-4) are summarized in Figure 5.1.

aInvariant sets: In our case these are interesting because a Universe model that belongs
to an invariant set of state-space will remain in that set.

bExcept if q = ≠1, for which H
Õ = 0.

cI say ‘candidates’ since one must be able to exclude closed orbits in order to understand
the global behaviour in the set. A local analysis alone does not exclude closed orbits.



64 chapter 5 summary

Observed isotropy
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Figure 5.1: This schematics provides an overview of the work-flow entailed by
the approach taken in this project. Observations (ellipse) lead to a research
question (tilted square). To answer the question the project is broken down
into various steps (non-tilted rectangles) that answer the question for each
model tested (white-blue rectangle). It is also indicated where the assumptions
Ass. 5.1-5.3 come in and where essential methods like the orthonormal frame
(ONF) and expansion normalisation (EN) apply.
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5.3 Breakdown into papers

This dissertation consists, as mentioned, of five papers. In this section I
give a brief summary of each of the papers, alongside comments displaying
my own contributions.

ı Paper I [120]: In this paper (i) the system of equations for a j-form
matter content alongside a prefect fluid (and a cosmological constant)
is written down, (ii) the allowed components of the j-form field in the
Bianchi models is determined, (iii) past and future attractors of the
dynamical systems B(I) and B(V) are found and (iv) global results are
established.
My contribution: With the exception of monotonic functions and parts
of the written analysis, I have done most of the work.

ı Paper II [121]: In this paper, past and future attractors of the dy-
namical systems B(II), B(IV), B(VII0) and B(VIIh) are obtained and
some global results are established.
My contribution: With the exception of the monotonic function used
in the analysis of B(VII0) and proofreading I have done all the work.

ı Paper III [122]: In this paper, past and future attractors of the
dynamical systems B(VI0) and B(VIh) are obtained. and some global
results are established.
My contribution: With the exception of proofreading and discussions I
have done all the work.

ı Paper IV [123]: In this paper a unique shear-free cosmological model
(of Bianchi type III) is discussed. The propagation of light is shown to
be isotropic and the dynamical evolution of this model is shown to be
the same as that of an FLRW model.
My contribution: In this paper I have contributed in writing, making
figures and discussions of the results. I also performed an extensive bit
of local stability analysis of B(III) relevant for the project.
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The final paper honors observations as the true judge of scientific correct-
ness. The paper concerns gravitational lensing, which might be used as
a probe on the distribution of (dark) matter in the Universe. Hence, an
increased understanding of gravitational lensing might literally shed obser-
vational light on potential anisotropies in the (dark) matter distribution.

ı Paper V [124]: In this paper we prove recursion relations that apply
in the weak-field, thin-lens regime of the Roulette-formalism for gravi-
tational lensing. These relations relate lower-order Roulette-amplitudes
to higher-order ones, and serve to make computations exceedingly more
economic.
My contribution: Everything except initialising the project and proof-
reading.
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5.4 Main results

This section provides a brief overview of the main results obtained in
this dissertation, whereupon we compare with relevant literature. In the
following we shall for brevity use BS to refer to the union of all the invariant
sets corresponding to the solvable Bianchi types except the type VIú

≠1/9
and VI≠1. Id est;

BS = B(I) fi B(II) fi B(IV) fi B(V) fi B(VI0) fi B(VIh̃) fi B(VII0) fi B(VIIh)
(5.1)

where h̃ = {h < 0| h ”= ≠1 fi ≠1/9}. Also, we shall in most of this chapter
refer to the same type of matter sector. We therefore define

œ © œjf + œpf , (5.2)

in accordance with (the summary of) the previous chapter. Recall that
œjf is the energy-density of the j-form and œpf is the energy-density of
the perfect fluid with barotropic equation of state and equation-of-state-
paramter 0 Æ “ Æ 2.

Remark The results obtained for the various invariant sets have varied,
and far from all the sets have resulted in global conclusions. From a
dynamical-systems point of view, this distinction is crucial, since monotonic
functions exclude the existence of closed orbits. Global solutions were
mainly obtained for B(I), B(II) B(V), B(VI0) and B(VII0), and we refer
the reader to the various papers for a detailed discussion.

5.4.1 No-hair theorems

In Paper I the equations for GR with œ alongside a cosmological constant
œ» were written down in an orthonormal frame. From these equations,
certain conditions under which all universes of Solvable Bianchi type must
and will isotropize irrespective of initial conditions were obtained, and
formulated in two so-called no-hair theorems. The conditions concern the
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inclusion of a cosmological constant, or the restriction of the “-range, and
the isotropic state that asymptotically will be reached is so-called flat de
Sitter, defined in the following.

Definition 14 (Flat de Sitter universe). A flat de Sitter Universe is a
universe which is maximally symmetric with flat spatial sections
( À2 = A2 = |N∆|2 = 0) and for which q = ≠1.

The fact that q = ≠1 implies both that H Õ = 0 in a flat de Sitter universe
and that a de Sitter solution may be reached in the solvable Bianchi types
if and only if œ» = 1 or if œpf = 1 , “ = 0. With this definition in mind,
we summarise next the content of the two theorems (Theorems 6.1 & 6.2)
in Paper I in the follow conclusion.

Conclusion 1 (Necessity): Except for a set of measure zero, any space-
time of Solvable Bianchi type and with a matter sector œ will asymptot-
ically isotropize under the following circumstances.

ı If a cosmological constant œ» is added. In this case a de flat Sitter
universe is reached asymptotically.

ı If the equation-of-state parameter is restricted to 0 Æ “ < 2/3.
In this case a so-called quasi de Sitter universe with deceleration
parameter q = 3

2“ ≠ 1 < 0 is reached asymptotically.

Discussion

The Conclusion 1 is not surprising, and agrees with Wald’s so-called cosmic
no-hair theorem [125], and extends results previously established for perfect
fluids (cf. [14, Thrm. 8.2]) to include also the j-form. Such extensions are
found also elsewhere. Consider for instance the case of a tilted perfect
fluid, as discussed in e.g. [35,36].
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5.4.2 Anisotropic hairs

For the matter content œ in BS with “ > 2/3 the results change dramati-
cally. It is a generic result (modulo sets of measure zero) that the future
attractors are anisotropic. The anisotropic attractors Plane Waves (PW),
Wonderland, Edge (E) and Rope (R) are summarised in the following.
Figure 5.2 gives an overview of where these sets are stable. Please note in
the following that we adopt notation such that

(N+, N≠, N◊, À+, À≠, À◊, À3) æ (‹1, ‹2, ‹3, —1, —2, —3, —4), (5.3)

alongside
‹2 =

Ò
‹2

2 + ‹2
3 . (5.4)

This notation is in accordance with [121, 122], and is introduced to abbre-
viate notation. For further details, refer to Section 5 in Paper II.

Wonderland, W(Ÿ, ‹1, ‹2)
Wonderland exists for 2/3 < “ < 2 and is a fabric of equilibrum points
with subsets in all the invariant sets belonging to BS. Moreover, it is an
attractor on all of its existence in these sets. According to the most general
specification of Wonderland, the non-vanishing variables are as follows.

—1 = 1
4(2 ≠ 3“) , —2 = ≠Ÿ‹3 , —3 = Ÿ‹2 , ‹1‹

2 = 0 (5.5)

A = ≠Ÿ(1 + —1) , V 2
1 = ≠—1(1 + —1) ≠ ‹2 , « = ŸV1. (5.5)

Wonderland is hence a so-called isolatedd set of equilibrium points. In
particular

œpf = 3
4(2 ≠ “)(1 ≠ Ÿ2) and q = ≠1 + 3

2“. (5.6)

The family W (Ÿ, ‹1, ‹2) may be divided into several subsets that belong
to di�erent invariant sets. They are as follows.

dUsed to denote the fact that œpf > 0.
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ı B(I) ∏ PW © limŸ,‹1,‹æ0 W (Ÿ, ‹1, ‹2).

ı B(V ) ∏ PW (Ÿ) © lim‹1,‹æ0 W (Ÿ, ‹1, ‹2).

ı B(VIIh) ∏ PW (Ÿ,‹1) © lim‹æ0 W (Ÿ, ‹1, ‹2).

ı B(VII0) ∏ PW (‹1) © limŸ,‹æ0 W (Ÿ, ‹1, ‹2).

ı B(VIh) ∏ PW (Ÿ,‹2) © lim‹1æ0 W (Ÿ, ‹1, ‹2).

ı B(VI0) ∏ PW (‹2) © limŸ,‹1æ0 W (Ÿ, ‹1, ‹2).

Please refer to Sec. I in Paper II for a more nuanced categorization.

Plane Waves, PW(—1, ‹1, ‹2)

The Plane-Wave fabric exists for 0 Æ “ Æ 2 and is a three-parameter
family of equilibrium points, denoted PW(—1, ‹1, ‹2), that stretches across
several invariant sets. It is specified as follows.

≠ 1 < —1 < 0 , —2 = ‹3 , —3 = ≠‹2, (5.7)

A = 1 + —1 , V 2
1 = ≠—1(1 + —1) ≠ ‹2 , « = ≠V1. (5.8)

This implies that

œpf = 0 and q = ≠2—1. (5.9)

The family PW (—1, ‹1, ‹2) may be divided into subsets that belong to
di�erent Bianchi invariant sets. In particular,

ı B(VIIh) ∏ PP W (—1,‹1) © lim‹æ0 PW (—1, ‹1, ‹2).

ı B(VIh) ∏ PP W (—1,‹2) © lim‹1æ0 PW (—1, ‹1, ‹2).

ı B(V) ∏ PP W (—1) © lim‹1,‹æ0 PW (—1, ‹1, ‹2).

ı B(V) ∏ PM © lim—1,‹1,‹æ0 PW (—1, ‹1, ‹2).

M is here the Milne exact vacuum solution, and we have M µ PW (—1) µ
PW (—1, ‹1, ‹2).



chapter 5 summary 71

Rotating-vector solutions
Two special types of solutions (The Rope and The Edge) of Bianchi
type I were found. Since two of the frame-rotations are specified by
œA = ÁAB‡1B (by Eq. (2.34)), one may observe that the orthonormal
frame rotates for ‡1B di�erent from zero. If one now finds that the vector
V e stays fixed along an axis di�erent from the axis around which the
frame rotates, this is properly interpreted as a rotating vector. We have
discovered equilibrium sets of type I where there are rotating vectors in
the above explained sense. In the À3-gauge 2.7.4 and with V aligned along
e1, the specification of these are as follows (as thoroughly discussed in
Paper I).

The Rope (R) exists for 6/5 < “ < 4/3 and is stable on all of its
existence. The non-vanishing variables takes the following values.

—1 = 1
4(2 ≠ 3“) , —2 =

Ô
3

4 (6 ≠ 5“) , (5.10)

—4 = ±1
2

Û
15
2 (2 ≠ “)

3
“ ≠ 6

5

4
, V1 = 3

2

Û
3
2 (2 ≠ “)

3
“ ≠ 10

9

4
. (5.11)

This gives
œpf = 6 ≠ 9

2“ , q = ≠1 + 3
2“. (5.12)

The Edge (E) exists for 0 Æ “ Æ 2 and takes over the stability from
Rope at “ = 4/3 and on. The non-vanishing variables takes the following
values.

—1 = ≠1
2 , —2 = ≠ 1

2
Ô

3
, —4 = ± 1Ô

6
, V1 = 1Ô

2
. (5.13)

This gives

œpf = 0 and q = 1. (5.14)

eHere meant to refer to the 3-vector degree of freedom in the j-form J = («, V). Hence
V = (V1, V2, V3).
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Conclusion 2 (Vector rotation): With the matter sector œ there exist
type I self-similar cosmologies that at every point in space possess a rotat-
ing vector-field. Moreover, the sets B(I) and B(II) are future asymptotic
to these cosmologies for 6/5 < “ < 2.

The above conclusion is based on the results of Paper I & II. In Figure 5.2
the anisotropic attractors of the various invariant sets are summarised.

“

V̨ 2 > 0 œpf > 0 œjf > 0 2/3 < “ < 2

2/3 6/5 4/3 2

ERW B(I-II)

W B(VI0-VII0)

W and PW(À+ > 1/2 ≠ 3“/4) B(IV-VIIh)

Figure 5.2: The figure summarises the stable equilibrium sets 2/3 < “ < 2)
in the studied models for the specifications given in the box above. Note that
B(IV-VIIh) is short for B(IV)fiB(V)fiB(VIh̃)fiB(VIIh).

Conclusion 3 (Chance): In the case where “ > 2/3 and except for a set
of measure zero, isotropization will not occur for universes in BS with
œ where V ”= 0. Moreover, anisotropic, self-similar attractors exist in
all the invariant Bianchi sets belonging to BS.

Discussion

As an illustration, this means that for a dust-filled (“ = 1) universe, a
lasting isotropic state, like that observed around us today, is an infinitely
unlikely asymptotic future in the universes belonging to BS and with a
j-form. As an important side-mark, however, intermediate FLRW-like
phases is far more likely. An example is provided in Paper III.
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The results obtained here are not surprising. Also with only a non-tilted
perfect fluid present, the stability picture changes for “ > 2/3. a [14]. The
biggest di�erence is perhaps found for the sets B(I) and B(II). In B(I) one
finds in the case of a non-tilted perfect fluid that the flat FLRW is the
future attractor, whereas in B(II) it is the Collins-Stewart solution that
takes over the stability for “ > 2/3. Furthermore, the Collins solution is in
this case the attractor solution for œpf > 0 in B(IV), B(VI0), B(VIh̃) as
well as in B(VIIh). For œpf = 0 and for h > ≠(3“ ≠ 2)/(2 ≠ “), however,
Plane Waves take over the stabilityb. This is in perfect agreement with
our analysis, which additionally includes a j-form, and where Wonderland
takes over the role of the Collins solution. These matters are further
discussed in Paper III, where it is also shown that the Wonderland-fabric
reduces to precisely this solution in the limit « = V1 = 0.

Note that with only a perfect fluid present, and also (typically) with
a homogeneous, magnetic field [49], self-similarity is broken in B(VII0).
In the presence of the j-form, however, this self-similarity breaking is
regularized, providing instead self-similar asymptotics, as further discussed
in Paper II [121].

As mentioned, electromagnetic fields together with a non-tilted perfect
fluid have also been investigated in the foregoing literature. Electro-vacuum
Plane Waves are reported to be the future attractor for all expanding
Universes of Bianchi-class B [53], also here under the condition À+ > 1/2≠
3“/4. Moreover, all models in B(I) isotropize into the future for 0 < “ Æ
4/3 [51]. This is di�erent from the j-form case, where we see from Figure 5.2
that isotropization is prevented for “ > 2/3 in B(I). Isotropization from
“ > 2/3 occurs also for electromagnetic fields in B(II) [52] and B(VI0) [50].
The behaviour is, not surprisingly, less complicated in our case, where the
most involved stability bifurcation tree is found in B(I). We have

FLRW “=2/3≠≠≠æW “=6/5≠≠≠æR “=4/3≠≠≠æE.

aAs for why the stability changes at certain “-values, consider the physical intuition
given in [36, Sec. 1].

bMore precisely; the part of Plane Waves where À+ > ≠ 3
4

!
“ ≠ 2

3
"
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In the magnetic case, these diagrams are more involved, as summarised
in [52, Fig. 7].

Anisotropic, shear-free attractor

In Paper IV we study a corner of the Bianchi models that has not
received so much attention; namely universes with underlying anisotropic
Bianchi geometry that nevertheless expand isotropically. As pointed out
in [64] such models require an isotropy-breaking matter field. By such, the
matter isotropy may cancel out the geometrical anisotropy. In B(III) there
exists such a shear-free attractor with œ, where œf > 0. This solution was
recently [69] proven to be the unique shear-free solution with anisotropic
spatial curvature within spatially homogeneous orthogonal models that
contain, in addition to a perfect fluid, a free canonical p-form gauge field.
The shear-free model may be mapped onto a reference FLRW-model, and
thus one cannot conclude from isotropic expansion that the background
geometry is isotropic. The shear-free attractor in B(III) is globally stable
in the LRS subspace of B(III), and locally stable with respect to all
homogeneous perturbations.

Conclusion 4 (Anisotropic and shear-free): It is possible for a cosmol-
ogy with œ in an anisotorpic background to have an asymptotic shear-free
yet anisotropic future, dynamically equivalent to that of an FLRW cos-
mology.

5.4.3 Gravitational lensing

In Paper V we found recursion relations for the roulette amplitudes
of the theory developed by Clarkson in [114]. In the ordinary theory,
the Kaiser & Squires’ relations [100] provides an e�cient way to draw
information from the shear field of a cluster lens. Our work generalises
these relations to stronger lensing. Id est; higher order modes of distortion
by the lens are calculated. In particular, by constructing the complex
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amplitude “m
s = –m

s + i—m
s , we have proven that for the –m

s s and —m
s s

given by (4.31) and (4.32), respectively, the following relations hold.

Recursion relations

Y
_]

_[

“m+1
s+1 = D+

+“m
s = (C+

+)m+1
s+1 ˆc“m

s ,

“m+1
s≠1 = D+

≠“m
s = (C+

≠)m+1
s≠1 ˆú

c “m
s .

(5.14)

Here 2 = ˆcˆú
c and ˆc = ˆx + iˆy, where x, y are coordinates in the lens-

plane cf. Fig. 4.1. The mth order coe�cients of spin s coe�cients are such
that

(C+
+)m

s = 2”0(s≠1)
m + 1

m + 1 + s
‰ and (C+

≠)m
s = 2≠”0s

m + 1
m + 1 ≠ s

‰,

(5.15)
The + and ≠ signs are hence there to indicate whether we add or subtract
to the number m (upper index) and s (lower index). Moreover, this result
allowed us to rewrite the horrendous formulas (4.31) and (4.32) (which
involved the integrals (4.34) and (4.33)) to the neat little inch

“m
s = ≈ m

s 2a≠
ˆs

c Â. (5.16)

Here a≠ = (m + 1 ≠ s)/2 and ≈ m
s are numerical coe�cients given by

≈ m
s =

Y
_]

_[

≠(2≠”0s)‰m+1

2m

1
m+1
a≠

2
m + s odd,

0 else.
(5.16)

Sums and integrals are thus dismissed from the expressions. Finally; the
recursion-relations makes it possible to express the derivatives of the
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lensing potential in terms of the roulette-modes, as follows.

Âx = ≠ 1
‰

–0
1 , Ây = ≠ 1

‰
—0

1 , Âxx = ≠ 1
‰2

1
–1

0 + –1
2
2

,

Âyy = ≠ 1
‰2

1
–1

0 ≠ –1
2
2

, Âxy = ≠ 1
‰2 —1

2 ,

Â3x = ≠ 1
‰3

1
–2

1 + –2
3
2

, Â3y = ≠ 1
‰3

1
—2

1 ≠ —2
3
2

,

Âxyy = ≠ 1
3‰3

1
–2

1 ≠ 3–2
3
2

, Âyxx = ≠ 1
3‰3

1
—2

1 + 3—2
3
2

,

etc. .

(5.17)

For brevity we used, in the above, notation such that ˆn
x ˆm

y Â © Ânxmy,
where n, m are positive integers.

Conclusion 5: The Kaiser & Squires inversion procedure may, through
the Roulette formalism, be extended to include higher-order terms, by
such treating stronger lensing e�ects than those captured by convergence
and shear.



Paper I

Bianchi cosmologies with p-form gauge fields

Ben David Normann Sigbjørn Hervik

Angelo Ricciardone Mikjel Thorsrud

Published in
Classical and Quantum Gravity 35 (2018) 095004.

“Why, sometimes I’ve believed as many as six impossible
things before breakfast.

Lewis Carroll, Through the looking-glass





Appendix A

A physicist’s guide to mathematical jargon

In this appendix the concepts most crucially underpinning this study are
discussed and sometimes defined, all for reference purposes. Most of the
following material is borrowed from [13,15].

A.1 Exterior calculus

Take in the following an n-dimensional space. A p-form P is a totally
antisymmetric tensor whose components have ‘lower’ indices. Using the
wedge-productc · we write

P = 1
p!Pµ1···µpÊµ1 · · · · · Êµp . (A.1)

In an n-dimensional space, one must have p Æ n. In such a space, the
n-form is for this reason referred to as a top-form. Since top-forms can only
have one componentd all top-forms must be proportional. The volume-form
is a top-form defined in the following manner.

÷ = 1
n!

Ò
|g|Áµ1···µnÊµ1 · · · · · Êµn . (A.2)

Here |g| is the absolute value of the determinant of the metric tensor g
and Áµ1···µn is the standard antisymmetric symbol of rank n. The Hodge
dual ıP of the p-form P is now an (n ≠ p)-form constructed from the

cThe wedge-product signals that only totally antisymmetric combinations are counted.
dNamely the one corresponding to the basis-element Ê1 · · · · · Ên.

245
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contraction of the volume-form with the p-form. That is,

ıP = 1
p!(n ≠ p)!÷µ1···µp‹1···‹n≠pPµ1···µpÊ‹1 · · · · · Ê‹n≠p

= 1
(n ≠ p)! ú Pµ1···µn≠pÊµ1 · · · · · Êµn≠p .

(A.3)

The exterior derivative d is a mapping from the space of (p ≠ 1)-forms to
the space of p-forms. Taking Ò to represent the covariant derivative, we
have for a (p ≠ 1)-form K that

dK = 1
(p ≠ 1)!Òµ1Kµ2···µpÊµ1 · · · · · Êµp . (A.4)

Since both dK and P are p-forms, we could have the relation P = dK If
this relation is fulfilled we say that P is exact. Note that for p-forms, the
exterior derivative has the property that

d2P = 0. (A.5)

This, however, is not generally true for vectorial p-forms. For more on this,
and how to apply exterior calculus to general relativity, consult [13, Chpt.
6]. A p-form that fulfills the relation dP = 0 is said to be closed. Hence,
by (A.5), all exact p-forms are closed. The converse is however not always
true and hence Poincaré’s lemma comes in handy.

Lemma A.1 (Poincaré). For any star-shapeda open set U there will, for
any closed p-form P, exist a (p ≠ 1)-form K such that P = dK.
aWith star-shaped is here meant any region that is homomorphic to a region in a
Euclidean space that has a point that can be connected to any other point in the
region by a straight line.
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A.2 A manifold M and its tangent- and cotangent spaces

Definition 15 (Manifold). A manifold M is a space satisfying the fol-
lowing properties:

1) There exists a family of open neighbourhoods Ui together with
continuous one-to-one mappings fi : Ui ‘≠æ Rn with a continuous
inverse for a number n.

2) The family of open neighbourhoods cover the whole of M. We write

M =
€

i

Ui. (A.6)

One may want to attach the notion of vectors to points on the manifold.
For instance, if a river flow on the surface of the Earth, its flow may be
described by a vector field that uniquely assigns a vector to every point
on the manifold (the surface of the Earth). These vectors will, however,
not live on the manifold, but in the tangent space TpM of every point p

in the manifold M. Consider all possible curves in M through p,and take
the union of the tangent vectors of all these curves at a point p. The span
of these vectors is a basis for TpM.

In a similar fashion, the co-tangent space T ú
p M is the space where the

one-forms (p = 1 in (A.1)) live. Take {eµ} to be a basis for TpM. Then
we take the one-forms {Ê‹} to be a basis for T ú

p M, related to {eµ} by the
relation

Ê‹(eµ) = ”‹
µ. (A.7)

A.3 The orbit of a point p

Definition 16 (Di�eomorphism). Given two manifolds M and N a dif-
ferentiable map f : M ‘æ N is called a di�eomorphism if it is a
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bijectiona and if also its inverse f≠1 : N ‘æ M is di�erentiable.
aThere is a one-to-one correspondence between every element in M and N .

Consider next a vector-field v. The path „(p, t) of a point p is such that

ˆ„

ˆt
= v„(p,t) , „(p, 0) = p. (A.8)

I.e; the vector field at a certain point „(p, t) along the path gives the tangent
of the path of p at that pointa. Let us denote the path „(p, t) © „t(p) for
a fixed t. Then, for any t, „t(p) is a group element acting on p. As such,
the path represents a one-parameter group of di�eomorphisms written in
a coordinate-independent manner. Such di�eomorphisms depend only on
the underlying vector-field v, and are very useful in physics.

Definition 17 (Orbits of a group). A vector field v generates a one-parameter
group of transformations (and vice versa). The orbits of this group are
the integral curves of v.

Definition 18 (Orbit of a point ). The orbit of a point p in a manifold
M under the group G is the set of all points into which p is mapped
when all elements of G act on p.

A.4 Push-forward and pull-back

Having a smooth map F : M æ N between two manifolds M and N ,
one may induce a way to relate vectors in TpM to vectors in Tf(p)N , and
similarely one-forms on T ú

p M to one-forms on T ú
f(p)N .

Definition 19 (Pull-back and push forward). For all di�erentiable func-
tions F one may define the push-forward Fú for a vector v and the
pull-back F ú for a one-form –. Let F : M ‘æ N , and introduce a local

aThe intuition must be a leaf on water. The leaf just follows the current (i.e. the vector
field) wherever it goes.
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set of coordinates {xµ} on M such that the function F is expressed as
yµ = F µ(x) and thus becomes a local set of coordinates on N . Then

Fúv = v— ˆyµ

ˆx—

ˆ

ˆyµ

F ú– = ˆyµ

ˆx—
–µdx—

(A.9)

where the latter equation follows from the requirement that (F ú–)(v) =
–(Fúv). Note that for a function f we have (F úf)(x) = f(y(x)), and for
– = dy‹ the latter of the above formulae becomes the chain rule. Thus,
in essence, we can think of this as coordinate transformations. The name
‘pull-back’ comes from the fact that the tensor defined on N is ‘pulled
back’ to a tensor on M. Similarely for ‘push forward’.

A.5 Lie transport and killing-vectors

Consider next the concept of change of a tensor along a vector field. The
Lie derivative £ of a covariantb tensor T with respect to a vector-field X
is defined as

£XT = lim
tæ0

1
t

1
„ú

t T„t(x) ≠ Tx

2
. (A.10)

Similarely, the Lie derivative of a contravariant tensorc Y with respect to
the vector-field X is:

£XY = lim
tæ0

1
t

1
„≠túY„t(x) ≠ Yx

2
(A.11)

We thus find that the Lie derivative relates to transport of tensors along
vector fields. Since we push forward the vector at one point to a vector
at a later point, it should not come as a surprise that the Lie derivative
can be related to parallel transport, and thus the covariant derivative of a
vector. Specifically, for a vector Y we have

£XY =
1
X‹Y µ

;‹ ≠ Y ‹Xµ
;‹

2
= [X, Y] = ≠£YX. (A.12)

bLower indices on the components.
cUpper indices on the components.
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Note also that
£eµY = Y–

,µe–. (A.13)

The Lie derivative thus expresses the change of a vector as one moves
along the integral curve of an underlying vector field.

Definition 20 (Definition of Lie transport:). We say that a tensor T is
Lie transported along a curve whose tangent vector field is U i�

£UT = 0. (A.14)

Now let g be the metric tensor.

Definition 21 (Killing-vector field:). › is said to be a Killing vector-field
if

£›g = 0, (A.15)

where g is the metric tensor.



Appendix B

Relativistic decomposition of a velocity field

Take u to denote the four-velocity field and take the four-acceleration to
be

a = dv
d·̃

, (B.1)

where ·̃ is the proper time. Denoting with ; the covariant derivative, and
using (˙) to denote di�erentiation with respect to proper time we have

u̇– = a– = u–;µuµ. (B.2)

The projection-operator hµ‹ projects tensors onto the plane of simultaneity
orthogonal to the four-velocity u. The covariant derivative of the four-
velocty may now be written

u–;— = 1
3◊h–— + ‡–— + Ê–— + u̇–u—, (B.3)

where ◊ is the expansion scalar, ‡–— is the shear tensor and Ê–— is the
vorticity tensor. These are defined such that

◊ = uµ
;µ, (B.4)

‡–— = u(–;—) ≠ 1
3uµ

;µh–— + u̇(–u—), (B.5)

Ê–— = u[–;—] + u̇[–u—]. (B.6)

Here square brackets in the indices denote antisymmetric combination and
ordinary brackets denote symmetric combination. Freely moving particles
move along geodesics; curved space-time’s answer to straight lines. Hence,
in the case of no external forces we have

a = 0. (B.7)
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In this thesis we assume that the fundamental observers move freely.
Moreover, we assume co-motion, such that

u = ˆt. (B.8)

Taking this together with (B.7) and using that ◊ = 3H, where H is the
Hubble parameter, one finally has

◊ = 3H, (B.9)

u(–;—) = ‡–— + Hh–—, (B.10)

Ê–— = 0. (B.11)

Note also that the expansion tensor is

◊–— = ‡–— + 1
3◊h–—. (B.12)



Appendix C

Conventions

The notation used in the paper is such that

xab =

Q

ccca

≠2x+
Ô

3x2
Ô

3x3Ô
3x2 x+ +

Ô
3x≠

Ô
3x◊Ô

3x3
Ô

3x◊ x+ ≠
Ô

3x≠

R

dddb (C.1)

where xab is one of the traceless matrices fiab or ‡ab (their normalized
equivalents  ab and Àab have the same structure). For the considered
Bianchi type I-VIIh models nab can always be written on the form

nab =

Q

ccca

0 0 0
0 n+ +

Ô
3n≠

Ô
3n◊

0
Ô

3n◊ n+ ≠
Ô

3n≠

R

dddb . (C.2)
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Appendix D

Standard irreducible decomposition

Let T µ‹ be the components of a rank (2,0) tensor and let hµ‹ be the
projection onto the hypersurfaces orthogonal to the 4-velocity uµ. That is
to say; we decompose the full metric gµ‹ according to

gµ‹ = hµ‹ ≠ uµu‹ . (D.1)

Since uµ is time-like, hµ‹ will always represent spatial sections. As usual,
we define the lower components according to

Tµ‹ = T –—g–µg—‹ . (D.2)

Then, by (D.1), we find

Tµ‹ = T –—(h–µ ≠ u–uµ)(h—‹ ≠ u—u‹). (D.3)

Expanding the brackets we obtain

Tµ‹ = h–
µh—

‹T–— + uµu‹u–u—T–— ≠ uµh—
‹u–T–— ≠ u‹u—h–

µT–—. (D.4)

Projecting onto uµu‹: The energy density fl is the scalar quantity we
observe in the comoving frame. It must be

fl © u–u—T–—. (D.5)

Projecting one index onto uµ and one onto h–µ: To get the energy
flow q‹ we project one ‘leg’ on each side. We find

q‹ © ≠h –
‹ u—T–— (D.6)
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The spatial part: The part of T µ‹ projected onto spatial sections is

h–
µh—

‹T–—. (D.7)

These will therefore give the purely space-like components of Tµ‹ . More
specifically, the isotropic pressure p is now given as the trace, whereas the
rest, fiµ‹ , represents shear. Hence

p = 1
3hµ‹Tµ‹ (D.8)

and
fiµ‹ © h–

µh—
‹T–— ≠ p hµ‹ . (D.9)

With these definitions we may rewrite Tµ‹ .

Symmetric T µ‹: Any symmetric tensor T µ‹ may now be decomposed
such that

Tµ‹ = fluµu‹ + p hµ‹ + 2q(µu‹) + fiµ‹ . (D.10)
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