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Abstract: We report on recent theory progress in understanding the production of heavy quarkonium
in heavy-ion collisions based on the in-medium heavy-quark potential extracted from lattice QCD
simulations. On the one hand, the proper in-medium potential allows us to study the spectral
properties of heavy quarkonium in thermal equilibrium, from which we estimate the ψ′ to J/ψ ratio in
heavy-ion collisions. On the other hand, the potential provides a central ingredient in the description
of the real-time evolution of heavy-quarkonium formulated in the open-quantum-systems framework.
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1. Introduction

The bound states of heavy quarks and antiquarks, so-called heavy quarkonia, have matured
into a high precision tool in heavy-ion collisions (HIC) at accelerator facilities, such as the Relativistic
Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). The availability of experimental
data of unprecedented accuracy for both bottomonium (bb̄) and charmonium (cc̄), collected during
the past five years, provides us access to different stages of the evolution of the quark–gluon plasma
(QGP) created in the collision center.

The STAR collaboration at RHIC has observed overall suppression of bottomonium states in√
sNN = 193 MeV collisions [1]. At LHC, the most recent dimuon measurements of the CMS

collaboration at
√

sNN = 5.02 TeV furthermore resolve a clear sign of excited statesuppression [2].
These are compatible with phenomenological models that describe the bottom–anti-bottom pair as
non-equilibrium test-particle traversing the QGP while sampling its full time evolution (see, e.g., [3]).
On the other hand, novel measurements by the ALICE collaboration have by now established
an unambiguous signal for a finite elliptic flow, and even triangular flow of the charmonium vector
channel ground state, the J/ψ particle [4]. This tells us that the charm quarks must at least be in partial
kinetic equilibrium with the bulk matter to participate in its collective motion. In turn, equilibration
entails a loss of memory of the initial conditions, positioning charmonium as probe of the late stages of
the collision.

The goal for theory thus must be to provide a first principles description of this intricate
phenomenology. As the temperatures encountered in current heavy-ion collisions are relatively
close to the chiral crossover transition, genuinely non-perturbative methods are called for and, in this
article, I discuss one possible route how first principles lattice QCD simulations can contribute to gain
insight into the equilibrium and non-equilibrium properties of heavy quarkonium in HIC.

2. Quarkonium in Thermal Equilibrium

Let us start with the question of what are the properties of heavy quarkonium in thermal
equilibrium? That is, we consider the idealized setting of immersing a heavy quark and antiquark pair
in an infinitely extended QCD medium at a fixed temperature and wait until full kinetic equilibration
is achieved. Then, we ask for the presence or absence of in-medium bound eigenstates and their
properties, such as their in-medium mass and stability.
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These questions may be answered in the modern language of quantum field theory by computing
so-called in-medium meson spectral functions, which encode the particle properties as well defined
peak structures. The position of the peaks along the frequency axis encodes the mass of the particle,
while their width is directly related to the inverse lifetime of the state. At higher frequencies,
the open heavy-flavor threshold manifests itself in the spectral function as broad continuous structures,
often with a steep onset. In a thermal setting, the peak width not only encodes the decay of the bound
state into gluons but also carries a contribution from processes that: (1) excite the color singlet bound
state into another singlet state due to thermal fluctuations; and (2) transform the singlet state into
a color octet state due to the absorption of a medium gluon. On the level of the spectral function,
these three contributions cannot be disentangled. Once we have access to the in-medium meson
spectral function, we argue that phenomenologically relevant processes, such as the production of J/ψ

particles at hadronization, may be estimated from inspecting the in-medium spectral structures.
There are currently two viable options to determine the in-medium quarkonium spectra in

QCD and both involve lattice QCD simulations. For the first and direct one, we can compute the
current–current correlators of a heavy meson in the Euclidean time domain, in which the simulation is
carried out. In particular, for bottomonium, it is customary to use a discretization of the heavy quarks,
which is derived from a non-relativistic effective field theory (EFT) (see, e.g., [5,6]). A fully relativistic
description of bottomonium still requires too fine of a lattice spacing, which in turn would make
simulation in dynamical QCD prohibitively expensive. For charmonium, relativistic formulations
have been considered in, e.g., [7,8]. From the Euclidean correlation function obtained in that way,
the spectral function may be extracted using Bayesian inference. Due to the intricate structures encoded
in the in-medium spectral function and the relatively small number of available simulated correlator
points along the Euclidean time domain, this approach remains very challenging. Recent progress
has been made in the robust determination of the ground state properties using the lattice NRQCD
discretization at finite temperature [6]. It was shown that the ground state of both bottomonium and
charmonium becomes lighter as temperature increases. An investigation of the excited state properties
however is currently still out of reach.

The second possibility is to take a detour and instead of the spectral function compute first the
potential acting in between a static quark and antiquark at finite temperature. Using this in general
complex valued potential one can solve a Schrödinger equation for the unequal time correlation
function of meson color singlet wavefunctions, i.e., for the meson forward current–current correlator,
whose imaginary part then yields the in-medium spectral function. This approach on the one hand
provides us with a very precise determination of the spectral function, however it does not yet include
finite velocity or spin dependent corrections, since only the static potential is used in the computation.
At T = 0, some of the correction terms to the heavy-quark potential have already been computed [9]
and their determination at T > 0 is a work in progress. We show below that, to extract the in-medium
potential from lattice QCD simulations, a spectral function also needs to be reconstructed. However,
the benefit here lies in the fact that the structure of this Wilson correlator spectral function is much
simpler than that of the full in-medium meson spectral function and thus its reconstruction can be
achieved with much higher precision. In this article, I focus on the second strategy.

Today we are in the fortunate position of not having to rely anymore on model potential for the
description of heavy quarkonium. Indeed, over the past decade, it has become possible to derive the
inter quark potential directly from QCD using a chain of EFTs [10]. An EFT provides a systematic
prescription of how to exploit the inherent separation of scales between the heavy quark rest mass and
the temperature, as well as the characteristic scale of quantum fluctuations in QCD ΛQCD to simplify
the language needed to describe the relevant physics of the in-medium two-body system. Starting out
from the relativistic field theory QCD where heavy quarks are described by four-component Dirac
spinors, one may go over to Non-Relativistic QCD (NRQCD), a theory of two-component Pauli spinors.
Subsequently, we can leave the language of fermion fields all together and go over to an EFT called
potential NRQCD (pNRQCD). The latter describes the quark antiquark pair in terms of color singlet
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and color octet wavefunctions with in general coupled equations of motions, containing both potential
and non-potential effects. The potential in pNRQCD is nothing but a matching (Wilson) coefficient in
the Lagrangian of the EFT.

It is the process of matching that allows us to connect back to QCD. We need to select a correlation
function in the EFT and find the corresponding correlation function in QCD with the same physics
content. Once we set them equal at the scale at which the EFT is supposed to reproduce the microscopic
physics, we can express the non-local Wilson coefficients of the former in terms of correlation functions
of QCD. For static quarks, it can be shown that the unequal time singlet wave function correlation
function is related to the rectangular Wilson loop

〈ψs(t, r)ψ∗s (0, r)〉pNRQCD
m→∞≡ W(t, r) =

〈
Tr
[
Pexp

(
−ig

∫
dxµ Aµ(x)

)]〉
QCD

, (1)

which obeys an equation of motion of the following type

i∂tW(t, r) = Φ(t, r)W(t, r) Φ(t, r) ∈ C; V(r) = lim
t→∞

Φ(t, r) = lim
t→∞

i∂tW(t, r)
W(t, r)

(2)

If the function Φ at late times converges to a constant, we may use its value to define what we
mean by the interquark potential [11].

This genuinely real-time definition of the potential was first evaluated at high temperature
in resummed perturbation theory by Laine et al. [12] who found it to be complex valued.
The physics of the imaginary part has since been related to the phenomenon of Landau damping and
gluo-dissociation [13,14]. Note that this complex potential does not evolve the wavefunction itself
but instead a correlation function of wavefunctions. Thus, the presence of an imaginary part is by no
means related to the disappearance of the heavy quarks (since they are static they cannot disappear
from the system) but instead encodes the decoherence of the evolving in-medium system from its
initial conditions [15].

We may now ask how to evaluate the real-time definition of the potential in non-perturbative
lattice QCD, as these simulations are carried out in artificial Euclidean time. It is here that the technical
concept of spectral function again finds application [16,17]. Indeed, we may express the real-time
Wilson line correlator W(t, r) as a Fourier transform over its real-valued and positive definite spectral
function ρ(ω, r)

W(t, r) =
∫

dωeiωtρ(ω, r) ⇔ W(τ, r) =
∫

dωe−ωτρ(ω, r) (3)

The quantity accessible on the lattice is the imaginary time Wilson correlator, which is governed
by the same spectral function, just with a different integral transform. Let me first note that using the
spectral decomposition, inserted in the r.h.s. of Equation (2), we can relate ρ(ω, r) and V(r). A careful
inspection of the relation between the two reveals that a potential picture is applicable as long as we
can identify a well defined lowest lying peak structure in ρ (for details see [11]). Its position is related
to the real part of V, its width to the imaginary part. (In practice, we use the Wilson line correlators in
Coulomb gauge instead of the Wilson loop in order to avoid the cusp divergences present in the latter.)

The central challenge lies in extracting the spectral function from lattice simulations,
which amounts to solving an ill-posed inverse problem. In the past, this required the application of
Bayesian inference [18], which uses additional prior information available on the spectral function to
regularize the inversion task. The benefit of the Bayesian strategy is that it is applicable to simulation
data with moderate statistical uncertainty (∆W/W ≈ 10−2). One challenging aspect on the other
hand is that the influence of the prior information on the end result must be carefully investigated.
In this article, we present the most recent results obtained for the potential using very high statistics
simulations (∆W/W < 10−2). In that case, another method for spectral reconstruction becomes
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feasible, the Pade approximation [19]. The simulation data are interpolated with an optimal Pade
rational approximant, which in turn is analytically continued to give the retarded current–current
propagator in real-time frequencies. Taking the imaginary part of this object yields the spectral function
of interest, from which the values of Re[V] may be read off. Through mock datatests, we have found
that, based on Nτ = 12, 16 data points, the Pade is yet unable to faithfully reconstruct the width of the
potential peak, which is why we have resorted to extracting tentative values of Im[V] using standard
methods of Bayesian inference [20]. (For an alternative analysis based on the concept of effective
potential, see [21].)

The lattice data on which the latest determination of the potential is based were obtained in
a collaboration with the HotQCD and TUMQCD collaboration [22,23]. We compute the Wilson
correlators on realistic 483 and 483 × 16 lattices, featuring N f = 2 + 1 flavors of dynamical light quarks
in the medium. These ensembles are deemed realistic, as the pion mass mπ = 161 MeV lies close to its
physical value. Temperature is changed via the lattice spacing in a large range of T ∈ [151, 1451] MeV.

In Figure 1 (left), we present the latest results for Re[V] from the aforementioned lattices [24].
The values shown are shifted manually in the y-direction for better readability. A qualitative
inspection reveals that, while the potential in the hadronic phase at T = 151 MeV is well described
by a Cornell type potential (Coulombic at small distances, linear rising at larger distances), it quickly
becomes weakened as one passes into the QGP regime. Well above T = 155 MeV, Re[V] flattens
off asymptotically and exhibits a form compatible with Debye screening. Figure 1 (right) contains
a selection of results for the imaginary part. As the extraction of spectral widths is much more
challenging than that of the peak positions, the values shown are only tentative. (Since the Pade
method is known to underestimate Im[V] based on Nτ = 16 data points, we show here results utilizing
the Bayesian BR method instead.)
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Figure 1. (left) Re[V] obtained from Pade reconstructed spectral functions of the Wilson line correlator
in Coulomb gauge on 483 × 12, 16 lattices with N f = 2 + 1 light quarks. The values are shifted by
hand in y-direction for better readability from lowest temperature T = 151 MeV on top to highest
T = 1451 MeV bottom. The gray data points denote the color singlet free energy in Coulomb gauge on
the same lattices. (right) Tentative values of Im[V] at a selection of temperatures extracted via Bayesian
inference from the same lattice data.

While it might be tempting to use the lattice values of Re[V] and Im[V] directly for a subsequent
computation of the in-medium spectral function, this is not admissible. The lattice results obtained here
are not yet extrapolated to the continuum limit and thus will not lead to consistent phenomenological
results. Obtaining a genuine extrapolation is a work in progress but has thus far not yet been achieved.
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Therefore, continuum corrections need to be used as laid out in detail, e.g., in Ref. [25]. To utilize
the discrete values of the in-medium potential to solve a Schrödinger equation requires an analytic
parametrization of Re[V] and Im[V] that can faithfully reproduce the lattice data. A novel derivation of
such a parameterization, based on the generalized Gauss law, has been presented at the 2018 Zimanyi
workshop (see Ref. [26]).

In Figure 2 (left), we show the in-medium spectral functions computed from the continuum
corrected in-medium heavy quark potential obtained in [25]. One can clearly see the characteristic
in-medium modification consisting of a shift of the peaks to lower frequencies and a concurrent
broadening before they are dissolved into the continuum structure, whose onset moves to lower and
lower frequencies. Consistent with intuition, the more weakly bound excited state is more strongly
affected by the medium than the deeply bound ground state.
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Figure 2. (left) Charmonium in-medium spectral functions from the continuum corrected in-medium
heavy quark potential [25]. (right) Survival probabilities of the ground state in a one-dimensional model
calculation of the real-time dynamics of bottomonium in the open-quantum systems approach [27].
The blue and green curve correspond to the stochastic potential computation with different correlation
lengths. The pink and dark red curves arise from a naive Schrödinger equation with complex potential.

How can such spectral functions help us to learn about quarkonium production in HICs?
Note that we are considering a fully thermalized scenario here, which applies, if at all, for charmonium.
Note further that what is measured in experiment are not the decay dileptons from the in-medium
states but the decays of vacuum states long after the QGP ceases to exist. Thus, any information of
in-medium quarkonium needs to be translated into a modification of the yields of produced vacuum
states at hadronization. The process of hadronization is among the least well known stages of a HIC
and a first principles understanding of its dynamics has thus far not been achieved. Therefore,
we continue with the phenomenological ansatz of instantaneous freezeout introduced in [25]. That is,
we assume that at the phase boundary the in-medium states convert into vacuum states. The question
we then wish to answer is: How many vacuum states does the in-medium spectral peak correspond
to? The answer may be given in units of dilepton emission R` ¯̀ ∝

∫
dp0d3p ρ(P)

P2 nB(p0), which relates to
the area under the spectral peaks.

That is, we compute the weighted area under the in-medium J/ψ peak and divide by the area
of the vacuum spectral peak. This is our estimate for the number of J/ψ particles produced in this
scenario. Carrying out the same computation for the ψ′ peak, we may form the ratio of the two results,
which constitutes our estimate for the in-medium ψ′ to J/ψ ratio. The value obtained in Ref. [25] reads

Rψ′

` ¯̀ /RJ/ψ

` ¯̀ = 0.023± 0.004. (4)
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and agrees within uncertainty with the value predicted by the statistical model of hadronization [28],
as well as with the most recent determination of the ratio by the ALICE collaboration at the LHC
(see, e.g., [29]).

3. In-Medium Quarkonium Real-Time Dynamics

Up to this point, we have only considered equilibrium aspects of quarkonium. In a HIC, this will
always constitute only an approximation to the genuine non-equilibrium physics occurring. Therefore,
we wish to learn more about the real-time dynamics of quarkonium states exploiting the fact that we
already have access to the in-medium potential extracted on the lattice. A promising route towards
a microscopic understanding of quarkonium real-time dynamics is offered by the open-quantum
systems approach, a technique developed originally in the context of condensed matter theory.

The overall system consisting of the heavy quark and antiquark, as well as the medium degrees
of freedom is of course closed and described by a hermitean Hamiltonian. The overall density matrix
evolves according to the von Neumann equation

H = HQQ̄ ⊗ Imed + IQQ̄ ⊗ Hmed + Hint,
dρ

dt
= −i[H, ρ]. (5)

Our goal however is to investigate the properties and dynamics of the heavy quarkonium sub
system coupled to the thermal bath. To this end, we may trace out all medium degrees of freedom from
the density matrix of the full system, ending up with ρQQ̄ = Trmed[ρ]. The question then is: What kind
of equation of motion does this reduced density matrix obey?

Over the past five years, it has become possible to derive the master equation for ρQQ̄ from QCD,
based on a limited number of assumptions [30,31]. Starting from the path integral representation of
the density matrix on the Schwinger–Keldysh contour, the integrating out of the medium degrees of
freedom may be implemented in a functional sense. This leads to a path integral for the reduced density
matrix, in which only the heavy quark degrees of freedom appear explicitly. In addition to the heavy
quark action on the forward and backward contour, an additional effective action emerges, the so-called
Feynman–Vernon influence functional SFV . It encodes all interactions between the subsystem and the
traced out medium. SFV in general is a very complicated object but it may be simplified using the
separation of scales in the system. As shown in Ref. [31], at high temperatures, where at intermediate
steps of the derivation a weak coupling ansatz has been used, the Feynman–Vernon influence functional
takes the explicit form

SFV ≈ Spot
[
Re[V]

]
+ S f luct

[
Im[V]

]
+ Sdiss

[
Im[V]

]
+ SLB. (6)

The first part is related to a real valued in-medium potential term, while the second and third
implement the fluctuation–dissipation relation for the heavy quarkonium. They are intimately related
to the imaginary part of the interquark potential. The last term assures that the master equation for
ρQQ̄ preserves the positivity of its eigenvalues. (For other recent studies of the open-quantum systems
approach for quarkonium, see [32–36].)

The above expression for SFV leads to Markovian dynamics for ρQQ̄, described by a so called
Lindblad equation.

d
dt

ρQQ̄(t) = −i
[
HQQ̄, ρQQ̄

]
+

NLB

∑
i=1

γi

(
L̂iρQQ̄ L̂†

i −
1
2

L̂i L̂†
i ρQQ̄ −

1
2

ρQQ̄ L̂i L̂†
i

)
(7)

The operators Li are called Lindblad operators and encode the interactions between the
quarkonium subsystem and the surrounding environment. They may be expressed in terms Im[V].
It is important to note that the Lindblad equation cannot be implemented (unraveled) in terms of
a deterministic evolution of a microscopic wave function. Instead, one is led to stochastic dynamics for
an ensemble of wavefunctions.
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Together with collaborators from Japan, we have investigated the effects of the Lindblad operators
on the real-time dynamics of heavy quarkonium in a simple one-dimensional setting [27]. As a first
step, we considered only the leading order gradient expansion of SFV ≈ Spot

[
Re[V]

]
+ S f luct

[
Im[V]

]
,

which leads to the notion of a stochastic potential. That is, it allows implementing unitary time
evolution via Re[V], which is stochastically disturbed with noise η, whose correlations are governed
by Im[V].

ψQQ̄(t) = exp
[
− ∇2

M + Re[V] + η(t)
]
ψQQ̄(0), i∂t〈ψQQ̄(t)〉 =

(
− ∇2

M + Re[V]− i|Im[V]|
)
〈ψQQ̄(t)〉 (8)

While the evolution of each realization of the ensemble proceeds via a norm preserving evolution
operator, the ensemble average of the wave function washes out according to a Schrödinger equation
with a complex valued potential. This mechanism provides a unitary microscopic implementation of
quarkonium real-time dynamics, which reproduces the imaginary part of the interquark potential for
the unequal time correlation function of wavefunctions.

Note that there is a new physical scale present in this approach, which is the correlation length of
the noise induced by the medium. Depending on the size of the quarkonium bound state compared
to this correlation length, the noise may be able to efficiently destabilize the bound state or not.
This phenomenon is known as decoherence. That is, the noise provides an additional mechanism
to dissociate a heavy quarkonium particle over time, which acts in addition to the screening of the
real-valued potential.

In Figure 2 (right), we show an example computation of the survival probabilities of the
bottomonium ground state in a one dimensional setup based on perturbative values for the in-medium
Re[V] and Im[V]. We draw two conclusions. First, the survival crucially depends on the value of the
medium correlation length. Secondly, using the more realistic description in terms of a stochastic
potential instead of a naive Schrödinger equation with a complex potential leads to significantly
different survival. The naive approach systematically underestimates the survival.

While the stochastic potential provides a conceptually attractive microscopic implementation
of the complex inter-quark potential, it can only be the first step towards understanding heavy
quarkonium in-medium dynamics. It does not account for dissipation effects and thus does not
allow the quarkonium to thermalize with its surroundings. This means that the stochastic potential
description is only applicable to early times in the evolution. Incorporation of the full Linblad equation
is work in progress and we have successfully tested it in the single heavy quark case [37]. The extension
to quarkonium is under way.

4. Summary

In this article, I have showcased recent progress in our understanding of in-medium heavy
quarkonium in the context of heavy-ion collisions. In thermal equilibrium, it has become possible
to derive a complex valued real-time in-medium potential from QCD based on EFT methods.
Its evaluation in lattice QCD simulations is challenging as it involves the reconstruction of spectral
functions from Wilson correlators. The most recent determination has been performed on realistic
mπ = 161 MeV ensembles by the HotQCD and TUMQCD collaboration. From the continuum corrected
potential, one may compute in-medium quarkonium spectral functions, which have been used to
estimate the ψ′ to J/ψ ratio, showing good agreement with the statistical model of hadronization and
the most recent measurements by the ALICE collaboration. To implement the microscopic dynamics
of heavy quarkonium based on the complex in-medium potential, the open-quantum-systems
approach is promising. Using a clear set of assumptions, one may derive a Lindblad master
equation for the reduced density matrix, which to first order leads to unitary time evolution with
a stochastic potential. The medium induced noise leads to decoherence of the in-medium quarkonium,
which provides an additional mechanism to the dissolution of the in-medium state besides Debye
screening. The implementation of the full Lindblad equation for quarkonium remains work in progress.
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