
IOP Conference Series: Materials Science and Engineering

PAPER • OPEN ACCESS

Case study on topology optimized design for additive manufacturing
To cite this article: A M Aliyi and H G Lemu 2019 IOP Conf. Ser.: Mater. Sci. Eng. 659 012020

 

View the article online for updates and enhancements.

This content was downloaded from IP address 152.94.100.73 on 22/06/2020 at 12:18

https://doi.org/10.1088/1757-899X/659/1/012020


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

IRMES 2019

IOP Conf. Series: Materials Science and Engineering 659 (2019) 012020

IOP Publishing

doi:10.1088/1757-899X/659/1/012020

1

 
 
 
 
 
 

Case study on topology optimized design for additive 
manufacturing 

A M Aliyi1 and H G Lemu2 

1 Addis Ababa University of Science and Technology, Department of Mechanical 
Engineering, Addis Ababa, Ethiopia  
2  University of Stavanger, Faculty of Science and Technology, N-4036 Stavanger, 
Norway 

E-mail: corresponding author: Hirpa.g.lemu@uis.no 

Abstract. Additive Manufacturing (AM), also known as rapid prototyping, rapid 
manufacturing, layer manufacturing and three-dimensional printing, represents one of the most 
promising aspects of manufacturing for highly complex geometries. In particular, AM is 
nowadays seen as provider of possibilities to realize true design optimized manufacturing 
through topology optimization. Topology optimization is an approach that is considered 
powerful in design because it contributes to a design that can save energy, materials and time 
that are not economically achievable using other manufacturing processes. This paper is 
intended to explore the potentials of topology optimized design approach for AM in developing 
products that are lightweight and at the same time efficient and have load bearing capacity. A 
case study has been conducted to demonstrate the steps involved in topology optimization and 
its benefits in terms of weight reduction. 

1. Introduction 
Additive manufacturing (AM), also referred to as Rapid prototyping (RP), Additive layer 
manufacturing (ALM), 3D printing, and many other names is a new manufacturing technique that 
allows fast fabrication of computer models designed with three-dimension (3D) computer aided design 
(CAD) software. Nowadays, this technology is seen as a potential gamechanger in a wide variety of 
industries, from shoes to aircraft manufacturers. It employs a group of technologies capable of 
performing the layer by layer manufacturing processes almost completely under computer control, 
with little or no human intervention once the process has begun [1]. The initial concept of AM 
technology was to assist the design engineering in better visualization and smooth communication 
through rapid prototyping. In its latter developments, however, the technology transformed itself to a 
tool of manufacturing functional products as a result of the innovations in different printing machines, 
materials and printing processes. In deciding whether a process can be classified as a rapid prototyping 
process or not, five criteria, as specified by Burns [2], are used. These are: 

1. Raw material intake is in some shapeless form such as blocks, sheets or a fluid, and the products 
are solid objects with a definite shape. 

2. The manufacturing process takes place without a significant amount of human intervention. 
3. The produced shapes have some degree of three dimensional geometrical complexity. This 

eliminates extrusion and cutting of tubes or rods drilling of holes. 
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4. The process must not involve manufacturing of part specific new tools. This eliminates all types 
of molding and casting, electro-discharge machining (EDM) die sinking and copy milling 
operations.  

5. Each produced item must be a single object not an assembly of component parts. This 
eliminates joining operations such as gluing, welding and riveting.  

Employing the above-listed criteria, some of the established fabrication techniques can be 
classified as illustrated in Figure 1. One of the expected benefits of AM technology is the realization 
of optimized design through topology optimization. This optimization technique is a mathematical tool 
used in conceptual design stage to reduce part weight by optimally distributing the material throughout 
the body. To implement topology optimization technique during the concept design stage, it is 
necessary to determine the goal function(s) as well as the desired constraints. Material properties, 
essential geometric features of the part and loading conditions are normally considered as the desired 
constraints in the optimization process. The optimization tool will then attempt to spread the material 
within the design boundaries while meeting the design requirements [3]. As a result, there exists no 
question about the feasibility of the design due to not taking into account the design for manufacturing 
requirements.  

 
Figure 1. Classification of major component manufacturing methods. 

 The aim of this paper is to make a closer study of research and development works in application of 
topology optimization in design of parts for manufacturing using AM technology. In addition to 
highlighting the recent works in the area in Section 2, the paper explains the key formulation 
procedures involved in a topology optimization based design in Section 3, whose application has been 
illustrated using a case study in Section 4. Finally, the withdrawn conclusions are briefly presented in 
Section 5. 

2. Literature review 
As stated earlier, topology optimization provides the design freedom because it allows the designer to 
perform very flexible design optimization problems at early stage of the design process, thus, creating 
a design concept in terms of a general material distribution as either solid or void. The existing 
challenge of topology optimization is, however, to initiate design parameterization that leads to 
physically optimal designs. With the advances in finite element analysis (FEA), however, it has been 
possible to generate finite element meshes and define the meshed elements in design domain as a 
design variables. This allows a variation in density (homogenization, Solid Isotropic Material with 
Penalization (SIMP)) [4 - 7] or void-solid (bidirectional evolutionary structural optimization (BESO)) 
[8 - 9]. 

In recent years, in particular, topology optimized design has been an active topic of research from 
the perspective of using AM technology to manufacture functional parts with complex geometry. A 
study focusing on topology optimization based design approach for AM with a case study on 
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lightweight design of jet engine bracket was also reported [10]. The angle bracket was redesigned 
considering four loading conditions and the work was intended to reduce its weight while satisfying all 
stated design requirements. Altair Hypemesh 14 Optistruct, which is a dedicated topology 
optimization tool, was used for the optimization purpose. The results of the study showed that 
topology optimization is a powerful design technique to enable reduction of the weight (65% 
reduction) of additive manufactured part while maintaining the design requirements. 

Gardan and Schneide [11] reported optimization and fabrication of a hip joint implant interior part 
using AM technique. The implant has an interior pore that makes complex geometry and unachievable 
with conventional manufacturing techniques. Use of AM enabled manufacturing of the part with its 
complex geometry and allowed to find porous implants that allow the ingrowth of bone and cells, 
which could have been impossible if design optimization and AM were not used together in the design 
process. A topology Optimized Design, Manufacturability, and Performance Evaluation of Ti-6Al-4V 
Porous Structures Fabricated by Selective Laser Melting (SLM) was also reported by Xu et al. [12]. 
The porous structures were designed by using topology optimization under the condition of human 
skeletal stress, obtained a unit cell and constructed a series of porous structures with porosity from 40 
to 80 % and unit cell size from 2 to 8 mm. The manufacturability of these parts was investigated for 
SLM technology. Among others, properties such as compression strength and dynamic elastic 
modulus were measured. The compressive behavior was explained and three failure models of porous 
structures were proposed. 

Implementation of topology optimization approach for Fused Deposition Modeling (FDM) process 
is reported by Rezaie et al. [13], who investigated the issues and opportunities for the application of 
topology optimization methods for additive manufacturing. The topology optimization output files 
were converted to usable additive manufacturing input data for production and investigation of meso-
scale structures for realizing intermediated density regions. Based on the implemented AM technology 
(i.e. FDM), a case study was redesigned, fabricated and evaluated. 

Material usage for the supporting structure in AM is considered one of the major material wastages. 
Leary [14] introduced the idea of self-supporting designs, where the topology optimized design was 
altered to include features similar to support structures. Based on existing experience, support 
structures were introduced as design features. This alters the structural load path because the self-
supporting design is introduced after topology optimization. Bracket et al. [15] have also 
recommended the integration of topology optimization and AM in to minimize the need for support 
structures. They suggested a penalization scheme on overhanging surfaces, and an edge analysis was 
carried out on a benchmark 2D example. The overhang constraint was suggested but not demonstrated. 
Based on the recommendation of Bracket et al. [15], Gaynor and Guest [16] employed a smooth heavy 
side approximation method to penalize overhanging surfaces within a SIMP based topology 
optimization. They demonstrated that, for 2D compliance minimization, this scheme changes the 
topology to be AM friendly. In particular, they demonstrated that it is possible to eliminate support 
structures by suitably changing the topology optimization process. Though the results seem 
encouraging, convergence issues when the overhanging penalization was imposed are reported as 
remaining issues. Another method proposed to reduce the need for support structure in topology 
optimized design is using the concept of support structure topological sensitivity [17]. This method 
combines performance sensitivity with the result in a topology optimization framework that 
maximizes performance, subject to support structure constraints. The robustness and efficiency of the 
proposed method was demonstrated through numerical experiments, and validated using FDM 
process. 

The research on reduction of the need for support structure is part of the measures to reduce the 
material cost in AM process. Among recent efforts, the work of Wang et al. [18], who proposed a 
novel strategy to reduce the material cost by first extracting the frame structure of the design, can be 
mentioned. In this proposed design frame, solution of a multi-objective optimization problem (MOOP) 
was used to minimize the number of struts while accounting for stability and printability. The 
combined topology optimization and shape optimization is also considered [19] as a means of 
providing more self-supporting printing process by generating a volumetric tetrahedral mesh and 
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mapping the overhang tetrahedra onto a Gauss sphere that is minimally rotated to a self-supported 
state. This method is also reported to be an effective method in finding optimal build direction. 

3. Formulation of topology optimized design 

3.1. Design optimization – backgrounds  
Topology optimization for mechanical design is a mathematical approach implemented in a finite 
element mesh (the design space) and finds the tradeoffs in both minimizing material usage and 
maximizing part strength for a given design. The approach functions as a solver as well as a high-end 
analysis tool because it requires a pre-processor solver for meshing. The earlier optimization works 
extensively focused on size and shape optimization that are employed to manipulate design variables 
to improve performance of structures and/or mechanical systems. For a truss design, for instance, the 
design variable during a size optimization uses the cross sectional area of its members. The structure is 
optimized by finding the cross sectional areas that maximize its stiffness for a particular weight [5]. 
Shape optimization is also employed in performance enhancement of energy converters such as gas 
turbine blades [20] and hydropower converters [21]. The basics of shape optimization is often 
demonstrated when it is applied to alter the shape of holes to reduce the stress concentrations, resulting 
in a more structurally efficient part. The design variables in such cases are the parameters that control 
the shape of the holes in the original design.  

Topology optimization is far more comprehensive than both size and shape optimization 
techniques. It is widely applied using the SIMP approach that involves modification of the stiffness 
matrix of the model so that it depends continuously on a function that is interpreted as a density of 
material. The optimal distribution of material is then obtained through making the material density as a 
design variable. This leads not only the optimum shapes of the model, but also the material 
distribution. 

3.2. Topology optimized design process 
Topology optimization in design may be applied to two different types of structures; namely, 
continuum and discrete. While the former refers to optimized design of single objects like an engine 
block or a turbine blade, the latter is optimization of truss-like constructions composed of many 
members. The topology optimization algorithms solve design problems by applying boundary 
conditions, design responses and constraints to a design domain. The design domain involves all 
possible configurations of the design. Using finite element meshes, the optimization algorithms find 
the optimal distribution of material and voids in the given design space, depending on the loading and 
boundary conditions such that the resulting structure meets the prescribed performance targets.  

Figure 2 shows processes involved in a design process based on topology optimization. The 
process starts with the development of the original design using a 3D CAD modeling software and 
then the design and non-design spaces are identified (Figure 3), where the former represents the part of 
the model that is subjected to topology optimization. In other words, the topology optimization 
algorithm is “allowed” to remove materials from areas defined as the optimization design space. The 
non-design space, on the other hand, remains untouched by the optimizer, and all boundary conditions 
including loads and constraints are applied to this space. The next step involves meshing and 
conducting finite element analysis (FEA), which provides stress and strain distributions. The topology 
optimizer utilizes the stress and strain distributions for the optimization procedure. Based on the 
distribution of stress and strain/displacement, the topology optimizer removes materials from areas 
that have insignificant contribution in carrying the loads.  

The material removal usually leaves an irregular geometry that needs smoothing using proper 
algorithms or remodeling using approximate surface of the exterior boundaries of the optimized shape. 
As illustrated in the figure (Figure 2), the topology optimization based design involves iterative 
procedures of changing the geometry of the model within a specified design domain constrained by 
the given boundary conditions. Provided that the design optimization is verified, i.e. it satisfies the 
design requirements, a physical verification model such as physical prototypes can be developed. If 
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not, the part is remodeled until it is verified. The final design model is then developed for 
manufacturing using AM technology.  

The key steps given in Figure 2 [10] were used to conduct a case study on a jet engine angle 
bracket, which was intended to demonstrate the potentials of topology optimization. With reduction of 
the weight of the angle bracket as an objective, the bracket was subjected to different loading 
conditions (horizontal, vertical and torsional loads). As reported earlier in Section 2, the topology 
optimization resulted in a 65% weight reduction, which is very significant for aircraft components. 
The step-by-step application of the procedure is illustrated in Figure 3. 

 
Figure 2. Topology optimization based design process. 

 
Figure 3. Sequential demonstration of topology optimization design process (Adapted from [10]). 

3.3. General topology optimization problem statement  
Topological optimization is sometimes referred to as layout optimization [22]. As stated earlier, its 
goal is to find the best use of material for a load carrying object such that an objective criterion (i.e., 
global stiffness, natural frequency and the like) is achieved subject to given constraints such as weight 
or volume reduction. In topology optimization, the material distribution function serves as 
optimization parameter.  
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To formulate a topology optimization based design optimization, five steps are commonly 
employed [23]. 

1. Developing the optimization problem statement: This involves definition of the design goals, 
the objective of the optimization and defined group of criteria. 

2. Collecting data and information: This step involves collection of all the necessary information. 
3. Identifying and defining design variables: At this step, the design variables describing the 

system are identified and defined. 
4. Identifying the optimization criterion: This involves identification of the objective function and 

the stop criteria of the optimization process.  
5. Identifying constraints: These represent the restrictions on the problem and can be extracted 

from the resources and stated performance requirements.  
In general, a topology optimization problem can be formulated as: 

Minimize: F =  f(u(x),x)dV                                                                (1) 
                                            Subject to: G0 =  xdV – V0  0  
                                                             Gj(u(x),x)   0 with j = 1, 2, … m                                                                        
Where f(u(x), x) is the objective function, which represents the quantity that is being minimized for 

the required best performance. In structural optimization, for example, compliance function, which 
maximizes the stiffness of a structure, is often used as the objective function. u(x) is the material 
distribution variable described by the density of the material at each location of the given volume dV. 
Using this variable, the optimization is defined by either 1 (presence of material) or 0 (absence of 
material). Ω is design space and it indicates the allowable volume within which the design value exist 
or valid. Gj(u(x), x) define the m constraints that the solution must satisfy. Examples include maximum 
amount of material, which is volume constraint or the maximum stress values. 

4. Case Study on a Triangular Bracket 
In this section, a case study conducted on a triangular bracket or angle bracket with three holes is 
presented. The bracket (shown in Figure 4(a)) has arbitrarily selected dimensions of D1 = 2 mm, H1 = 
13.9 mm, H2 = 18.4 mm, L = 25.7 mm, V1 = 20.8 mm and V2 = 25.3 mm. The stress distribution (von 
Mises) from FEA on the original design with contour plots is shown in Figure 4(b). As the contour 
plots indicate, the portion of the part shown in blue color represent the inefficient use of material. This 
indicates the probability that materials can be removed from this areas of the model because they have 
insignificant effect on the mechanical performance of the part in carrying loads. 

     

Figure 4. Original triangular bracket with three holes, (a) Dimensions and (b) FEA of the model. 

In this study, the triangular bracket is redesigned using topology optimization based design 
approach using the three holes as the non-design spaces, where the two left side holes are fixed 
support and a bearing load is applied to the right hand side hole. The objective of this study is to 
reduce the weight of the bracket while satisfying all the design requirements related with its 
performance including: 

(a) (b) 
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 The optimized geometry must fit within the original part envelope. 
 The material is structural steel with tensile yield and ultimate strength of 250 MPa and 460 

MPa respectively at room temperature (20 oC). 
 The wall thickness is 2.0 mm. 
Figure 5(a) shows the model processed by the topology optimizer in ANSYS Workbench, where 

the portion that contributes to the load carrying (gray) and non-load carrying (red) are demarcated 
after the computation of the stress and displacement distribution on the part for load bearing. As 
optimized (Figure 5(b)), the geometry looks rough and very natural showing the layout of the 
optimized material within the design space.  

To smooth the irregular surface of the optimized model to not only make it aesthetically good 
looking, but also to represent the geometry by solid modelling functions, i.e. curves and surfaces, for 
further FEA for verification, it is important to create a new model that roughly circumscribes the 
optimized shape. Then the new model is remeshed and followed by computation of the stress and 
displacement distribution under the same loading conditions as the first analysis. If required, the final 
part is prepared for the second round of topology optimization process as shown in Figure 6.  

This final design has to be verified with the given design criteria so that the von Mises stress values 
for the load cases should not exceed the yield strength. For this triangular bracket, the final design 
satisfied the yielding condition with safety factor that varied from 1.067 to 50. The optimized design 
weighed only 1.188e-003 kg, compared to 4.378e-003 kg in the original design, which is a significant 
weight reduction of 72.86%. Though this case study is conducted on a simple geometry to demonstrate 
topology optimization steps and benefits with practical examples, the real benefit is the parallel use of 
AM technology to produce the resulting complex shape with no manufacturing constraints.  

       

Figure 5. Optimization phase (a) Optimization region generation and  (b) Design topology 
optimized geometry of the triangular bracket. 

       

Figure 6. Topology optimized design geometry (a) Remodeled and computed (FEA) and  
(b) Design stress verification after second optimization. 

(b) (a)

(a) (b) 
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5. Conclusions 
Topology optimization based design may provide more freedom to change design than conventional 
design for structural products. In this era of additive manufacturing, in particular, the designers design 
freedom can better be realized through topology optimization that results in possibilities of fabricating 
parts at low cost and lightweight. However, there still exist remaining challenges in the topology 
optimization process to make it effective and user friendly. Among these, the existing optimization 
algorithms are not yet fully capable to smooth the geometry that remains after optimization, which 
appears natural than a model defined by modelling functions. Though the considered case for topology 
optimization is simple and intended only to apply the optimization procedures on a practical example, 
the case study reported in this paper has demonstrated that topology optimization is a powerful design 
concept that can reduce the weight of structural products. Among others, reduction of weight can save 
large amount of material, processing energy and hence cost of the product.  

As demonstrated by the case study, the weight reduction of approx. 73% implies a significant 
achievement in terms of products that require lightweight design such as in aircraft component design. 
Because the finally optimized geometry can be of irregular and complex shape, it is possible to 
conclude that real optimized design can be realized only through application of AM technology.   
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