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Abstract 

 

A common challenge in on-bottom stability design is to select accurate hydrodynamic 

quantities, such as drag and lift coefficients, to compute the forces on structures subject to fluid 

flow. The objective of the present study is to perform series of numerical simulations of flow 

over different bottom-mounted structures at high Reynolds numbers. The effects of the 

geometries and configurations of the structures on the hydrodynamic quantities and the 

surrounding flow fields are investigated. 

The thesis is divided into six chapters. The first chapter consists of an introduction of the topics 

to be investigated. In the second chapter, a brief review of theory of flow around bluff bodies, 

turbulence and boundary layer flow is given. The third chapter contains the main theory of 

Computational Fluid Dynamics (CFD). Also, a description of the Proper Orthogonal 

Decomposition (POD) technique, which is used to perform post-processing of the simulation 

results, is presented. The following two chapters consist of two submitted draft journal papers.  

In the study of the first paper, flows over single and two tandem partially buried cylinders at 

Reynolds number of 1.31 × 104 are investigated using two-dimensional (2D) Reynolds-

averaged Navier-Stokes (RANS) simulations. The cylinders are subjected to a boundary layer 

flow. The effects of different burial ratios of the cylinders into the bottom wall and the spacings 

between the two tandem cylinders are studied. The RANS simulations are combined with the 

𝑘 − 𝜔 Shear Stress Transport (SST) turbulence model. Due to the bottom-wall, the large-scale 

vortex shedding behind the cylinders is supressed, hence, steady simulations are performed. 

Grid resolution studies are conducted, and the validation studies show that the present results 

are in agreement with previous published data. It is found that the drag and lift coefficients 

decrease with the increasing burial ratio of the cylinders. For the two tandem cylinders cases, 

the hydrodynamic forces of the downstream cylinder are significantly lower compared with 

those of the upstream cylinder. Also, for each burial ratio considered in the present study, a 

critical distance between the cylinders is found where the drag forces on the downstream 

cylinder are zero. It is observed that this critical distance is close to the recirculation length 

behind a single cylinder with the same burial ratio.  

In the study of the second paper, flows over bottom-mounted ribs with square, trapezoidal and 

rectangular cross-sections are studied. Three-dimensional (3D) Spalart-Allmaras Delayed 

Detached-Eddy Simulations (SADDES) are performed at the Reynolds number of 1 × 106. The 
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structures are exposed to a boundary layer flow. A grid convergence study is conducted, and the 

results are validated against the published experimental data. It is observed that the 

hydrodynamic quantities of the trapezoidal rib are lower compared with those of the square and 

rectangular ribs. The coherent structures of the turbulent flow are studied using POD analysis of 

the pressure and velocity components obtained on one streamwise plane and two spanwise 

planes in the wake region behind the ribs. A convergence study based on the number of 

snapshots and the time step between them is performed. It is found that the energy is highly 

concentrated in a few low order modes, which can be useful for building reduced order models 

of the flow. Many of the POD modes appear in pairs, which indicates the convection of the flow 

structures. The most energetic flow structures of the POD modes tend to appear around the 

shear layer of the wake flow and the vortical structures shown in the POD modes indicate a 

strong 3D behaviour of the flow behind the ribs. 

At the end, the main conclusions are given together with the recommendations for future works. 
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Chapter 1 

1. Introduction  

 

1.1 Background and Motivation  

Bottom-mounted structures are vastly used for engineering purposes, such as subsea pipelines, 

subsea covers, heat exchangers and gas turbines. With the depletion of most oil and gas reserves 

located onshore and close to shore, significant amount of subsea structures and equipment is 

designed to be installed in offshore locations. A similar trend is observed for the installation and 

use of devices to generate renewable energy, such as wind turbines and wave energy converters. 

According to Ong et al. (2010), the structures located on offshore environments can be exposed 

to high Reynolds number flow of up to O(107).  

Billions of dollars are spent to install and maintain thousands of kilometres of pipelines every 

year (Rui et al. 2011). The design of such structures requires good understanding of the forces 

acting on them and the surrounding flow pattern influenced by the geometry of the structures. 

For example, subsea pipelines can be found completely or partially buried in the seabed due to 

their weight, the seabed permeability, installation motion, trenching and burying methods. At 

different burial depths, pipelines are subjected to different forces due to changes in the exposed 

geometry to the flow. Hence, to correctly estimate the hydrodynamic coefficients of them, it is 

necessary to analyze the flow over these structures under different configurations. Moreover, to 

ensure the safe installation of the subsea structures on the seabed, the prediction of the 

hydrodynamic quantities is also important.  

With the advance of numerical methods and computational power in last decades, the use of 

Computational Fluid Dynamics (CFD) has significantly increased for research and engineering 

purposes. Problems that are expensive or unfeasible to be solved using experiments have been 

performed with the aid of numerical tools, and they also require a good understanding of the 

physical phenomena. In the present thesis, CFD simulations are used to investigate the flow 

over different wall-mounted structures. For numerical simulations that generate significant 

amount of data, advanced post-processing techniques can be used to treat them. Proper 

Orthogonal Decomposition (POD) is employed in the current work. In fluid mechanics, it was 

originally proposed by Lumley (1967) and it is a valuable tool to identify the dominant turbulent 

structures in the flow. Such post-processing technique is also proved to be useful to build 

reduced order models (Tairal et al. 2017) as the main characteristics of the flow can be extracted 

from the huge amount of simulation data. 
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1.2 Problem Definition and Objectives 

Numerical simulations are carried out to study the flow over different bottom-mounted 

structures. The well-known finite volume method (FVM) numerical toolbox Open-source Field 

Operation And Manipulation (OpenFOAM) is used to resolve the CFD simulations. Two main 

studies are performed in the present thesis: 

(i) Two-dimensional (2D) Reynolds-averaged Navier-Stokes (RANS) simulations are 

employed to study the flow over a single and two tandem pipelines laid on a flat 

seabed with different burial ratios within the seabed and pitch ratios between the 

two pipelines. The main objective of this study is to analyze the effects of different 

configurations on the main hydrodynamic quantities, such as drag and lift 

coefficients and the surrounding flow field. 

(ii) Flows over different bottom-mounted ribs with square, trapezoidal and rectangular 

cross-sections, are studied using three-dimensional (3D) Spalart-Allmaras Delayed 

Detached-Eddy Simulations (SADDES). The main objectives are to investigate the 

hydrodynamic coefficients and the flow structures around the three different ribs. 

POD analysis is carried out to identify the main flow structures in the wake region. 

 

1.3 Structure of the Thesis 

The contents found in the thesis are structured as follows: 

 Chapter 2: A concise review of turbulence in fluids, flow around bluff bodies, boundary 

layer and hydrodynamic forces are given. 

 Chapter 3: A review of the theory of CFD is presented. An introduction to CFD is given 

along with the numerical method tool used in the simulations, (OpenFOAM). Also, the 

governing equations of the flow, FVM method, turbulence models and the POD 

technique are discussed. 

 Chapter 4: A similar version of the paper that has been sent to Ocean Engineering 

journal is given. Flows over a single and two tandem pipelines laid on a flat wall with 

different burial ratios in the seabed and different pitch ratios between the two pipelines 

are investigated using 2D RANS equations combined with the 𝑘 − 𝜔 SST turbulence 

model at a Reynolds number of 1.31 × 104. 

 Chapter 5: It contains a similar version of the paper that has been submitted to Ships 

and Offshore Structures journal. Flows over ribs with different geometries at a 
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Reynolds number of 1 × 106 is studied using 3D SADDES, and POD analysis of the 

flow structures in the wake flow behind the ribs is performed. 

 Chapter 6: Lastly, conclusion remarks of both studies and recommendations for future 

work are given. 
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Chapter 2 

2. Theory  

 

2.1 Flow Characteristics 

One major quantity of any flow is defined by the dimensionless ratio of inertial and viscous 

forces. It characterizes the flow pattern in different scales of regimes, here summarized as 

laminar, transitional and turbulent flows (Fig. 2.1). The Reynolds number can be defined as: 

 

 
𝑅𝑒 =

𝑈∞𝐿

𝜈
 (2.1) 

 

where 𝑈∞ denotes the free stream velocity, L is the characteristic length of the structure and the 

kinematic viscosity is given by 𝜈. 

 

Figure 2.1: Flow regimes (Çengel and Cimbala, 2010, p. 11) 

 

Flow over wall-mounted structures or obstacles very close to the bottom-wall does not 

experience periodic vortex shedding as observed by Sumer and Fredsøe (2006) and it has a large 

recirculation motion behind the structure. As a result, this type of flow is much less time 

dependent compared with the flow around structures far from the wall. According to Castro 

(1984) and Adams & Johnston (1988), besides the Reynolds number, the main parameters that 
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influence the flow without vortex shedding are the boundary layer thickness and profile, 

geometry of the obstacle and the turbulence intensity in the free stream.  

 

2.2 Turbulence  

An exact definition of turbulence in fluids is not obvious to formulate. According to Tennekes 

& Lumley (1972), Pope (2000), Versteeg & Malalasekera (2007) and Lesieur (2008), the main 

characteristics of turbulent flows can be listed as follows: 

 There is an effective transport and mixing of quantities, which is caused by the 

diffusivity characteristic of turbulence. As a result, there is a high rate of mass, heat and 

momentum transfer in turbulent flows. 

 The flow is characterized by high Reynolds numbers. As the Reynolds number 

increases, the laminar flow undergoes transitional to turbulent. 

 The flow is irregular and unpredictable. Thus, the randomness and chaotic 

characteristics of turbulent flow demand statistical approaches to simulate it. 

 The flow is significantly rotational. Turbulence is highly related to fluctuations of 

vorticity, which appear due to the no-slip condition on obstacles and boundaries.  

 The turbulent flow is essentially 3D. This property is mainly due to the associated 

randomness of the turbulent fluctuations. 2D approximation of the turbulent flow is 

usually restricted to cases where 3D effects are low or negligible. 

 Turbulent eddies have different length scales. Large eddies tend to be dictated by inertia 

effects obtained from the mean flow and have their energy transferred through a 

cascade process to smaller eddies, which tends to be increasingly influenced by viscous 

effects (Fig. 2.2). Thus, the turbulent flow is substantially dissipative. There is a fast 

decay in small-scale eddies due to kinetic energy consumption to compensate the 

viscous losses, resulting in increased energy losses.   

 Turbulence is a property of the fluid flow and not of the fluid itself. The main properties 

of fluid flow are not restrained by the properties of the fluid. Also, turbulent flows can 

be characterized as a continuum phenomenon, where the smallest eddies are 

significantly larger compared with molecular scale. 
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Figure 2.2: Energy cascade of turbulence (Ecke, 2005)  

  

The problems studied in the present thesis assume that the fluid is Newtonian. Thus, the shear 

stress (𝜏) varies linearly with the dynamic viscosity (𝜇) and when the shear rate is zero, the 

resultant shear stress is also zero. This assumption can be made since the Mach number (𝑀) is 

lower than 0.3. The shear stress and the Mach number can be expressed as:  

 
𝜏 = 𝜇

𝑑𝑢

𝑑𝑦
 (2.2) 

 
𝑀 =

𝑈∞
𝑐

 (2.3) 

 

where 𝑐 represents the speed of sound in a given medium. 

 

2.3 Boundary Layer and Flow Separation 

2.3.1 Boundary Layer 

The viscosity of a fluid implies that when it is in contact with a solid surface, the velocities on 

the wall are zero, which is termed as “no-slip condition”. The region of the flow directly 

affected by the surface can be defined as boundary layer and was first described by Prandtl 

(1904). Also, the boundary layer thickness (δ) corresponds to the region where the horizontal 

velocity is up to 99% of the free stream velocity. The boundary layer in different flow regimes 

is illustrated in Fig. 2.3. 
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Figure 2.3: Boundary layer in different flow regimes (Çengel and Cimbala, 2006, p.579) 

 

Many authors have developed the boundary layer theory, such as Tennekes & Lumley (1972), 

Pope (2000), White (2006), Çengel & Cimbala (2006), Versteeg & Malalasekera (2007), 

Lesieur (2008) and Kundu et al. (2012). The governing equations of a steady 2D laminar 

boundary layer can be expressed as: 

 𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
= 0 (2.4) 

 
𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝑈∞

𝑑𝑈∞
𝑑𝑥

+ 𝑣
𝜕2𝑢

𝜕𝑦2
 (2.5) 

 

where 𝑢 and 𝑣 are the horizontal and vertical velocity components, respectively. 

Far from the wall boundary, the velocity components tend to be much higher than near the wall, 

resulting in the dominance of inertia forces. On the other hand, in regions very close to the wall, 

characterized by very low velocities due to the no-slip condition, viscous forces are at least in 

the same magnitude of inertial forces and potential flow theory cannot be applied. The shear 

stress (Eq. 2.2) on the bottom wall is given by:  

 
𝜏𝑤 = 𝜌𝜈 (

𝜕𝑢

𝜕𝑦
)
𝑦=0

 (2.6) 

 

where 𝜌 denotes the fluid density. The dimensionless wall distance (𝑦+) and the dimensionless 

velocity (𝑈+) can be defined as: 

 
𝑦+ =

𝑢𝜏∆𝑦

𝜈
 (2.7) 

 
𝑈+ =

𝑈

𝑢𝜏
 (2.8) 
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where ∆𝑦 is the distance of the first element perpendicular to the wall and the friction velocity 

(𝑢𝜏) is given by: 

 

𝑢𝜏 = √
𝜏𝑤
𝜌

 (2.9) 

 

The inner region of the wall layer is known as viscous sublayer, corresponding to the region of 

𝑦+ ≤ 5, where the velocity profile can be expressed by only near-wall parameters. In turbulent 

flows over smooth surfaces, there is a linear velocity distribution, which can be expressed by: 

 𝑈+ = 𝑦+ (2.10) 

  

For the outer region, of 𝑦+ between 5 and 30, known as buffer layer, the main characteristics of 

the turbulent flow start to get similar to those in the free stream region, which is inviscid. Also, 

above the buffer layer, the velocity can be described by the logarithmic law given by:  

 
𝑈+ =

1

𝜅
ln(𝑦+) + 𝐶+ (2.11) 

 

where 𝜅 represents the von Kármán constant, in general equal to 0.41, and the constant 𝐶+ =

5.1. The velocity in the region of 𝑦+ = 𝑂(102) can be well described by Eq. 2.11. The velocity 

distribution of a turbulent flow near a flat wall is presented in Fig. 2.4. 

 

Figure 2.4: Velocity distribution in different sublayers near the wall  

 

In the numerical modelling of high Reynolds flows, it is common to use wall functions to avoid 

resolving the flow in the viscous sublayer region. Some turbulence models, such as 𝑘 − 휀, do 
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not perform well close to the wall. Also, a 𝑦+of O(1) for the first grid point off the wall is 

necessary, which can be computationally expensive. The use of wall functions is possible due to 

the low contribution of the viscous sublayer region to the entire flow compared with the rest of 

the boundary layer and it is also useful to avoid excessive refinement close to the walls. In this 

case, for a log-law layer, a minimum of 𝑦+ ≈ 30 has to be satisfied to ensure that the first nodes 

are in the region where the logarithmic wall function is accurate. An example of modelling 

without wall function and with wall function is presented in Fig. 2.5. 

(a)  

 

(b)  

 

Figure 2.5: Numerical modelling (a) without wall function and (b) with wall function 

 

2.3.2 Flow Separation 

Due to a strong adverse pressure gradient, separation of the boundary layer from bluff bodies 

surfaces may occur. As a result, the velocities along the boundary layer start to decrease, the 

boundary layer thickness is increased, and the flow starts to reverse. Thus, the boundary layer 

can no longer continue attached to the wall and there is a local stagnation point, known as 

separation point, where:  

 
𝑢
𝑑𝑢

𝑑𝑥
= −

1

𝜌

𝑑𝑝

𝑑𝑥
 (2.12) 

 
(
𝑑𝑢

𝑑𝑦
)
𝑆

= 0 (2.13) 

  

According to Eq. (2.12), when the pressure increases, there is an adverse pressure gradient. 

Also, in the separation point, the shear stress on the wall is zero (Eq. 2.13). In the region where 

separation occurs and downstream the separation point, it is not possible to apply the boundary 

layer approximation, as its properties are lost. An example of flow separation on a curved 

surface is given in Fig. 2.6. The flow separation is strongly dependent on the flow 
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characteristics and the geometry of the structure. Regarding the shape of a structure in the flow 

direction, the flow separation over blunt bodies tend to occur easier than over streamlined 

geometries.  

 

Figure 2.6: Velocity profiles around a separation point (Kundu, 2012, p.386) 

  

2.4 Hydrodynamic Forces 

When a body is immersed in fluid flow, there is a force exerted by the flow on it. This force is 

due to the pressure and friction components of the flow on the surfaces of the structure. The 

force acting along the flow direction is known as the drag force (𝐹𝐷) and can be defined as: 

 
𝐹𝐷 = ∫(�̅�cos(𝜃𝑛) + �̅�𝑤sin(𝜃𝑛))



𝐴

𝑑𝐴 (2.14) 

 

where the differential area is given by 𝑑𝐴 and 𝜃𝑛 denotes the angle between the normal unity 

vector to the surface and the flow direction. The force acting perpendicular to the flow direction 

is known as the lift force (𝐹𝐿) and is given by: 

 
𝐹𝐿 = −∫(�̅�sin(𝜃𝑛) + �̅�𝑤cos(𝜃𝑛))



𝐴

𝑑𝐴 (2.15) 

 

Based on the expressions for the hydrodynamic forces (Eq. 2.14 and 2.15), the drag and lift 

coefficients can be defined as: 

 
𝐶𝐷 =

𝐹𝐷
1
2𝜌𝑈∞

2𝐴
 (2.16) 

 
𝐶𝐿 =

𝐹𝐿
1
2𝜌𝑈∞

2𝐴
 (2.17) 

where the projected area normal to the flow is denoted by 𝐴. The use of coefficients is suitable 

to analyze flows under similar conditions, such as geometry and Reynolds number, and compute 
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the forces acting on the structure. The lift and drag forces on a wall-mounted cylinder are 

displayed in Fig. 2.7.  

 

Figure 2.7: Hydrodynamic forces on a bottom-mounted cylinder 
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Chapter 3 

3. Computational Method  

 

3.1 Introduction to CFD 

In the past decades, the use of CFD tools has been increased due to decreasing required 

computational time of simulations. Hence, problems which cannot be solved through empirical 

or analytical approaches can be solved by using numerical simulations. Numerical 

investigations of fluid flow, heat transfer and many other phenomena can be carried out for 

research and industrial purposes with satisfactory results. In the present thesis, the OpenFOAM 

code is employed to perform the numerical simulations. 

The codes employed for CFD simulations have in general three main steps (Versteeg & 

Malalasekera, 2007): 

 Pre-processing: it involves all the necessary inputs for the simulations such as 

the computational domain and grid (or mesh) of cells (or elements), also known 

as control volumes. Physical phenomena, fluid properties and boundary 

conditions are also set. 

 Solving: FVM is employed for the integration of the control volume and 

discretization of equations. 

 Post-processing: it consists of the numerical and graphical analysis of the 

results. 

 

3.2 OpenFOAM  

The present simulations are carried out using the software OpenFOAM v2.4. It is an open 

source CFD code with a customized C++ engine. Different from commercial tools, it does not 

have a graphical user interface (GUI) and all the flow parameters are written in text files, while 

tasks are performed by commands in the terminal. A typical structure of the case directory is 

given in Fig. 3.1. 

Where the case directory contains three major folders: 

 Constant: it contains the physical properties of the flow. The value for the kinematic 

viscosity is given in the transportProperties, and in the turbulenceProperties, the 

turbulence model used in the simulation is defined. Also, the grid and its boundary 

conditions are located in the subdirectory polyMesh. 



   15 

 System: it is used to specify the solution procedure and all its parameters. There are 

three main subdirectories: controlDict, used to set control parameters such as time step 

and simulation time. It also contains additional inputs to generate non-standard data; the 

employed discretization schemes are located in the subdirectory fvSchemes; and the 

numerical solvers are found in the fvSolution subdirectory as well as algorithm controls 

and residual tolerances.  

 Time directory: it contains the initial and boundary conditions that define the problem. 

It can also contain the resolved flow at a specific simulation time. 

 

Figure 3.1: Directory structure in OpenFOAM (OpenFOAM-UserGuide, 2015 p. U-108) 

 

3.3 Governing Equations  

Based on the continuum hypothesis, a numerical description of the fluid flow is given by the 

Navier-Stokes equation. The continuity equation of an incompressible fluid can be written as: 

 

𝜕𝑢𝑖
𝜕𝑥𝑖

= 0 (3.1) 

 

When Newton’s Second Law is applied to an infinitesimal volume, given by a fluid particle, the 

momentum equation of an incompressible fluid can be given by: 

 

𝜕𝑢𝑖
𝜕𝑡

+ 𝑢𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

= −
1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+ 𝜈

𝜕2𝑢𝑖

𝜕𝑥𝑗
2  (3.2) 

 

where 𝑖, 𝑗 = 1, 2, 3 denote the streamwise, cross-stream and spanwise directions, respectively. 

And (u1, u2, u3) = (u, v, w), which are their corresponding velocity components. 
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3.4 Finite Volume Method 

There are many numerical methods that can be applied to solve Eq. (3.1) and Eq. (3.2) such as 

Finite Element Method (FEM), Finite Difference Method (FDM) and FVM. However, due to its 

conservative nature, FVM is considered more efficient for CFD simulations. The discretization 

of differential equations in a system of algebraic equations is the key of FMV. In a spatial 

discretization, the grid is subdivided in a collection of control volumes, given by the cells in the 

mesh topology. Moreover, in unsteady problems the time domain is divided in time steps based 

on the temporal discretization. The integral form of the conservation equation can be expressed 

as: 

 𝜕

𝜕𝑡
∭𝜙𝑑𝑉 +∬𝑓𝑑𝑆 =∭𝑉𝑉𝑑𝑉 +∬𝑉𝑆𝑑𝑆



𝑆



𝑉



𝑆



𝑉

 (3.3) 

 

where an unknown quantity, such as mass or a velocity component, is given by 𝜙. The control 

volume is denoted as 𝑉, the control surface is given by 𝑆, 𝑉𝑉 and 𝑉𝑆 are sources of 𝜙 in the 

control volume and on the control surface, respectively. Also, 𝑓 denotes the flux of the quantity 

𝜙. 

 

3.4.1 Spatial Discretization 

A spatial discretization is necessary to obtain the solution in each mesh element. An example of 

the control volume is illustrated in Fig. 3.2. It is a polyhedral element where the flow is solved. 

A general space discretization can be given as: 

 
∫(𝑥 − 𝑥𝐶)𝑑𝑉 = 0



𝑉𝐶

 (3.4) 

 

 

Figure 3.2: Control volume (Jasak, 1996)   
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where VC is the volume of a specific element and the centroid of the volume is C, where the 

calculations are performed. Also, the centroid of a neighbouring element is denoted as N and 𝑆 

represents the surface vector. 

The type of grid and how it is built has a significant impact on the simulation time and results. 

Both are influenced by the type and skewness of the elements, cell progression, non-

orthogonality, aspect ratio and density of the grid. The grids can have two types of elements, 

structured or unstructured (Fig. 3.3).  

(a)   

 

(b)   

 

Figure 3.3: Example of (a) structured and (b) unstructured meshes 

 

2D and 3D structured meshes consist of quadrilateral and hexahedra elements, respectively, 

which are orthogonal in space. In general, they give converged results with less elements. When 

the number of neighbouring nodes is not fixed in a control volume and the mesh has irregular 

connectivity, the grid elements are unstructured. They are used in geometries with high 

complexity and are typically given by triangles and tetrahedral elements in 2D and 3D grids, 

respectively.  

In order to compute the flow quantities in each cell, interpolation methods are used. In the 

present simulations, the scheme applied for interpolation is linear. It can be written as: 

 𝜙𝑓 = 𝑓𝑥𝜙𝐶 + (1 − 𝑓𝑥)𝜙𝑁 (3.5) 

 
𝑓𝑥 =

|𝑥𝑓 − 𝑥𝑁|

|𝑥𝑓 − 𝑥𝑁| + |𝑥𝑓 − 𝑥𝐶|
 (3.6) 

 

where 𝑓𝑥 represents the linear interpolation factor. 
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3.4.2 Temporal Discretization 

Similarly to spatial discretization, the time must also be discretized. There are many schemes for 

temporal discretization, such as backward, Euler implicit and Crank-Nicolson time schemes. In 

the present thesis, second order Crank-Nicolson method is employed to resolve the transient 

problem given in Chapter 5. This method implies that any quantity 𝜙 integrated in time is given 

by: 

 
𝜙𝑛+1 = 𝜙𝑛 +

∆𝑡

2
[𝑓(𝑡𝑛, 𝜙𝑛) + 𝑓(𝑡𝑛+1, 𝜙𝑛+1)] (3.7) 

 

where the fixed time step is denoted as ∆𝑡. 

In order to maintain stability during the simulations, the given scheme needs to satisfy Courant 

number (𝐶𝑜) lower than one. The dimensionless number measures the amount of information 

that is traversed through an element of the grid and it is expressed as: 

 
𝐶𝑜 =

𝑈Δ𝑡

Δ𝑥
 (3.8) 

 

where U and 𝛥𝑥 represent the velocity at a specific element and the element size, respectively. 

If 𝐶𝑜 is higher than one in an element, it means that for a given time step, the information will 

not be properly computed in that cell, which may result in an unstable solution.  

 

3.4.3 SIMPLE and PISO Algorithms 

In the current thesis, steady state and transient problems are investigated. The equations for 

pressure and velocity are solved iteratively. The algorithm used to solve the steady state 

problem in Chapter 4 is the Semi-Implicit Method for Pressure-Linked Equations (SIMPLE). 

The transient analyses in Chapter 5 are solved with the Pressure-Implicit Split-Operator (PISO). 

SIMPLE algorithm employs only one correction of the initial solutions, while PISO algorithm 

generally correct them one to four times (OpenFOAM-UserGuide, 2015). In the present study, 

two corrections are carried out in the PISO algorithm. The flowcharts of both algorithms are 

given in Fig. 3.4. 
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(a)   

 

(b)   

 

Figure 3.4: Flowchart of (a) SIMPLE and (b) PISO algorithms 

where SIMPLE and PISO solvers are employed in OpenFOAM via terminal by the commands 

simpleFOAM and pisoFOAM, respectively.  

 

3.5 Turbulence Models 

There are mainly three methods to simulate turbulent flows. The first one is Direct Numerical 

Simulation (DNS) where the full Navier-Stokes equations are solved, and no turbulence model 

is used. In this case, even the smallest turbulent eddies are resolved, which demands a very fine 

grid and very small time steps, resulting in a very high computational cost. The second approach 

is Large Eddy Simulation (LES) where only the large-scale turbulent fluctuations of the flow 

are resolved. It still demands a fine grid and high computational cost, but it is considerably less 

demanding compared with DNS. The third is the Reynolds-Averaged Navier-Stokes (RANS) 

approach where only the time-averaged flow quantities, such as velocity and pressure, are 

resolved (Fig. 3.5). It demands considerably less computational time compared with DNS and 

LES. The instantaneous flow quantities 𝜙 in a specific time can be defined as: 

 𝜙 = �̅� + 𝜙′  (3.9) 

 

where the mean value is given by �̅� and the fluctuation part is denoted by 𝜙′.  
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From integration of the continuity (Eq. 3.1) and the momentum (Eq. 3.2) equations, the mean of 

the fluctuations is �̅� = 0. Thus, the RANS equations of conservation of mass and momentum 

can be expressed as: 

 𝜕�̅�𝑖
𝜕𝑥𝑖

= 0 (3.10) 

 𝜕�̅�𝑖
𝜕𝑡

+ �̅�𝑗
𝜕�̅�𝑖
𝜕𝑥𝑗

= −
1

𝜌
(
𝜕𝑃

𝜕𝑥𝑖
) + 𝜈

𝜕2�̅�𝑖

𝜕𝑥𝑗
2 −

𝜕𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅

𝜕𝑥𝑗
 (3.11) 

 

where 𝑖, 𝑗 = 1, 2 denote the streamwise and the cross-stream directions, respectively. 𝑢1 and 𝑢2 

are their corresponding resolved velocity components, also denoted by 𝑢and 𝑣, respectively. 

The Reynolds stress component is given by 𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅ , where 𝑢𝑖
′ is the fluctuation part of the 

velocities. In steady RANS simulations, the term 
𝜕�̅�𝑖

𝜕𝑡
 is neglected. 

According to the Boussinesq approximation, the Reynolds stress components can be expressed 

as: 

 
−𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅ = 𝜈𝑡 (

𝜕𝑢�̅�
𝜕𝑥𝑗

+
𝜕𝑢�̅�

𝜕𝑥𝑖
) −

2

3
𝑘𝛿𝑖𝑗 (3.12) 

 

where 𝜈𝑡 is the turbulent viscosity, the turbulent kinetic energy is given by 𝑘 and the Kronecker 

delta is denoted by 𝛿𝑖𝑗. In order to solve the given system of equations, the 𝑘 − 𝜔 SST 

turbulence model is employed. 

 

Figure 3.5: Turbulent fluctuation of a quantity 𝜙 along time  
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3.5.1 𝒌 −𝝎 SST Turbulence Model 

The 𝑘 − 𝜔 SST turbulence model (Menter, 1994 and Menter et al. 2003) is a hybrid of the 

classic 𝑘 − 휀 (Jones & Launder, 1973) model and the original 𝑘 − 𝜔 (Wilcox, 1998) model. The 

𝑘 − 휀 model is applied in the region away from the wall, in the free-stream flow. On the other 

hand, the 𝑘 − 𝜔 model is used in the near-wall region. The equations for 𝑘 and 𝜔 are given as: 

 𝐷(𝜌𝑘)

𝐷𝑡
= 𝑃�̃� − 𝛽∗𝜌𝑘𝜔 +

𝜕

𝜕𝑥𝑖
[(𝜇 + 𝜎𝑘𝜇𝑡)

𝜕𝑘

𝜕𝑥𝑖
] (3.13) 

 𝐷(𝜌𝜔)

𝐷𝑡
= 𝛼𝜌𝑆2 − 𝛽𝜌𝜔2 +

𝜕

𝜕𝑥𝑖
[(𝜇 + 𝜎𝜔𝜇𝑡)

𝜕𝜔

𝜕𝑥𝑖
] + 2(1 − 𝐹1)𝜌𝜎𝜔2

𝜕𝑘

𝜕𝑥𝑖

𝜕𝜔

𝜕𝑥𝑖
 (3.14) 

 
𝑃�̃� = 𝑚𝑖𝑛 [𝜇𝑡

𝜕𝑢𝑖
𝜕𝑥𝑗

(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
) , 10𝛽∗𝜌𝑘𝜔] (3.15) 

The constant 𝜑𝑖, where 𝑖 = 1, 2, is applied for the 𝑘 − 𝜔 model and the 𝑘 − 휀 model constants, 

respectively. The switch between the two models is given by the blending functions 𝐹1 and 𝐹2. 

The constant 𝜑 in the SST model can be described as: 

 𝜑 = 𝐹1𝜑1 + (1 − 𝐹1)𝜑2 (3.16) 

 

𝐹1 = tanh{{𝑚𝑖𝑛 [𝑚𝑎𝑥 (
√𝑘

𝛽∗𝜔𝑦
,
500𝜈

𝑦2𝜔
) ,

4𝜌𝜎𝜔2𝑘

𝐶𝐷𝑘𝜔𝑦
2
]}

4

} (3.17) 

 
𝐶𝐷𝑘𝜔 = 𝑚𝑎𝑥 (2𝜌𝜎𝜔2

1

𝜔

𝜕𝑘

𝜕𝑥𝑖

𝜕𝜔

𝜕𝑥𝑖
, 10−10) (3.18) 

where the distance to the closest wall is given by 𝑦 and the positive part of the cross-diffusion 

term in Eq. (3.13) is expressed by 𝐶𝐷𝑘𝜔. The turbulent viscosity (𝜈𝑡) can be written as: 

 
𝜈𝑡 =

𝑎1𝑘

𝑚𝑎𝑥(𝑎1𝜔, 𝑆𝐹2)
 (3.19) 

 

𝐹2 = 𝑡𝑎𝑛ℎ [[𝑚𝑎𝑥 (2
√𝑘

𝛽∗𝜔𝑦
,
500𝜈

𝑦2𝜔
)]

2

] (3.20) 

where the constant 𝑎1 = 0.31, the invariant measure of the strain rate is denoted by 𝑆 and the 

corresponding constants employed in the SST model are presented in Table 3.1.  
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Table 3.1: Corresponding constants in SST model 

𝜑 𝛽∗ 𝛽 𝜎𝑘 𝜎𝜔 𝛼 

𝜑1 0.09 0.075 0.85 0.5 0.555 

𝜑2 0.09 0.083 1 0.856 0.44 

 

3.5.2 Detached-Eddy Simulation  

Detached-Eddy Simulation (DES) method is a hybrid of RANS and LES approaches. RANS 

model is applied in boundary layers, while LES treatment is applied far from the walls. DES is a 

valuable method to avoid very high refinement in the near wall region at high Reynolds flows. 

Here, both RANS and LES are resolved with the Spalart-Allmaras turbulence model. 

 

3.5.2.1 Spalart-Allmaras Turbulence Model 

Originally developed by Spalart & Allmaras (1994), the Spalart-Allmaras turbulence model 

only uses one equation to solve the Reynolds stresses in RANS approach. Thus, the Reynolds 

stress component can be written as: 

 
−𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅ = 𝜈𝑡 (

𝜕𝑢�̅�
𝜕𝑥𝑗

+
𝜕𝑢�̅�

𝜕𝑥𝑖
) (3.21) 

 

The one equation Sparlat-Allmaras model solves the transport equation for the turbulent eddy 

viscosity (𝜈𝑡) and it is defined by: 

 𝜈𝑡 = 𝜈𝑓𝑣1          𝑓𝑣1 =
𝑋3

𝑋3+𝐶𝑣1
3           𝑋 =

�̃�

𝜈𝑡
 (3.22) 

 

where the subscript 𝑣 represents “viscous”, the modified turbulent viscosity is denoted by 𝜈 and 

the constant 𝐶𝑣1 = 7.1. 

In OpenFOAM, it is used the 𝑓𝑣3-implementation (Rumsey et al. 2001) of the Spalart-

Allmaras model, which is indicated to solve fully turbulent flows. The variable �̃� and the 

empirical function 𝑓𝑣2 are given as: 

 
�̃� = 𝑓𝑣3𝑆 +

𝜈𝑓𝑣2
𝜅2𝑑2

 (3.23) 

 
𝑓𝑣2 =

1

(1 +
𝑋
𝐶𝜈2

)
3 (3.24) 
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where 𝑆 is the measure of the deformation tensor, the minimum distance from the closest wall is 

given by 𝑑, 𝐶𝜈2 = 5 and the additional term (𝑓𝑣3) is: 

 
𝑓𝑣3 =

(1 + 𝑋𝑓𝑣1)(1 − 𝑓𝑣2)

𝑋
 (3.25) 

To determine whether RANS or LES is applied, the length scale d̃ is employed: 

 �̃� = 𝑚𝑖𝑛(𝑑, 𝐶𝐷𝐸𝑆𝛥) (3.26) 

where the calibration constant CDES = 0.65 and the measure of grid spacing is denoted as Δ: 

 𝛥 = 𝑚𝑎𝑥(𝛥𝑥 , 𝛥𝑦, 𝛥𝑧) (3.27) 

where 𝛥𝑥 , 𝛥𝑦, 𝛥𝑧 represent the measure of the grid cell in a 3D coordinate system. 

 

3.5.2.2 Delayed Detached-Eddy Simulation  

If there is any undesirable change of RANS to LES within the boundary layer, modelled-stress 

depletion (MSD) may occur, which can lead to grid-induced separation (Spalart et al. 2006). An 

updated version of DES, Delayed Detached-Eddy Simulation (DDES), uses a new length scale 

�̃�𝑑 to prevent MSD, avoiding RANS to switch to LES prematurely. In the present thesis, 

SADDES turbulence model is employed in Chapter 5 and �̃�𝑑 is given by:  

 �̃�𝑑 = 𝑑 − 𝑓𝑑max(0, 𝑑 − 𝐶𝐷𝐸𝑆𝛥) (3.28) 

 𝑓𝑑 = 1 − tanh([8𝑟𝑑]
3) (3.29) 

 
𝑟𝑑 =

(𝜈𝑡 + 𝜈)

(�̃�𝜅2𝑑2)
 (3.30) 

where 𝑓𝑑 and 𝑟𝑑 are modified parameters in DDES formulation. 

 

3.6 Proper Orthogonal Decomposition  

Originally proposed by Lumley (1967) in fluid dynamics, POD is employed as a post-

processing technique to analyze the dominant turbulent structures of the 3D flow in the problem 

investigated in Chapter 5. It is a strong statistical method of data driven to find 

interdependencies within the data. Hence, it is possible to describe large amount of data with a 
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lower order approximation and the technique can be also useful to control the flow, and for 

design purposes (Samani, 2014).  

This statistical method can be applied to any scalar or vector quantities, such as pressure and 

velocities. A time-dependent flow variable 𝒒(𝝌, 𝑡) can be decomposed into a series of spatial 

modes 𝝓𝒋(𝝌) and their corresponding temporal coefficients 𝑎𝑗(𝑡): 

 𝒒(𝝌, 𝑡) =∑𝑎𝑗(𝑡)𝝓𝒋(𝝌)

𝑗

 (3.31) 

where the POD modes 𝝓𝒋(𝝌) are orthogonal, satisfying 〈𝝓𝒊(𝝌),𝝓𝒋(𝝌)〉 = 𝛿𝑖𝑗 and can be 

obtained by eigenvalue decomposition of the spatial or temporal correlation matrix of the flow 

quantities as described by Lumely (1967), Sirovich (1987) and Meyer et al. (2007). The flow 

quantity can be arranged in a matrix as follows:  

 𝑴 = 𝒒𝟏
𝒏 = [𝒒𝟏, 𝒒𝟐, … , 𝒒𝒏] (3.32) 

where 𝒒𝒊 (𝑖 = 1,2,3…𝑛) are column vectors containing the quantity components at each grid 

node at the time step of 𝑡𝑖(𝑖 = 1,2,3…𝑛). According to Taira et al. (2017), the POD modes can 

be obtained by employing Singular Value Decomposition (SVD) on the 𝑚 × 𝑛 matrix M: 

 𝑴 = 𝑼𝚺𝑽𝑻 (3.33) 

where the diagonal matrix 𝚺 = 𝐝𝐢𝐚𝐠(𝜆𝟏, 𝜆𝟐, 𝜆𝟑. . . 𝜆𝒏) represents the singular values of the 

matrix 𝑴 and each diagonal value contains the energy carried by each POD mode. The left-

singular vectors are denoted by 𝑼 and the right-singular vectors are given by 𝑽. Both of them 

are orthogonal matrices and the column vectors of 𝑼are the POD modes 𝝓𝒋. The column 

vectors of 𝑽 represent the temporal coefficients 𝑎𝑗(𝑡).  

The formulation presented above is used to perform POD with an economy-size SVD in 

MATLAB. It means that for a rectangular matrix 𝑴𝑚×𝑛 with 𝑚 > 𝑛, only the first 𝑛 columns of 

the left singular vectors are calculated, resulting in 𝚺 as a 𝑛 × 𝑛 matrix. This approach is 

possible due to the fast decay of the energy contained in the modes, resulting in a very small 

contribution of higher modes. 
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Chapter 4  

 

 

PAPER I: NUMERICAL SIMULATIONS OF FLOW OVER SINGLE 

AND TWO TANDEM CYLINDERS WITH DIFFERENT BURIAL 

RATIOS AND SPACINGS 

 

 

A similar version of the draft of the paper that has been submitted to Ocean Engineering journal 

is presented in this chapter. The aim of this study is to investigate the flow over single and two 

tandem bottom-mounted cylinders under different configurations. The numerical simulations 

are carried out at a Reynolds number of 1.31 × 104 and the structures are subjected to a 

boundary layer flow with thickness of 𝛿 = 0.48𝐷. This analysis is potentially useful for on-

bottom stability design of pipelines, risers and umbilicals. The results of the current study reveal 

the effects of different burial depths and different spacing between the cylinders on the drag and 

lift coefficients. They indicate that, for each burial configuration, there is a region of minimum 

hydrodynamic coefficients of both cylinders, which is found to be close to the recirculation 

length obtained from the single cylinder results.  
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Abstract 

High Reynolds number flow (𝑅𝑒 = 𝑈∞𝐷/𝜈) at 𝑅𝑒 = 1.31 × 104 over partially buried cylinders 

is investigated using two-dimensional (2D) Reynolds-averaged Navier-Stokes (RANS). The 

free stream velocity of the boundary layer flow is denoted as 𝑈∞. The diameter of the cylinders 

is denoted as 𝐷 and the kinematic viscosity of the fluid is represented by 𝜈. Single cylinder and 

two tandem cylinders with pitch ratios of 𝐿/𝐷 = 2 to 10 have been investigated as well as the 

effects of different burial ratios of 𝐵/𝐷 = 0, 0.25 and 0.5. The cylinders are exposed to a 

boundary layer flow with a fixed thickness of 𝛿 = 0.48𝐷. To determine the grid resolution, 

mesh convergence studies are performed based on the hydrodynamic quantities such as drag and 

lift coefficients. The results obtained are compared with the results reported in the previous 

published experimental and numerical studies to validate the present numerical model. The 

variation of the hydrodynamic quantities, contours of the pressure and velocity as well as the 

streamlines for different configurations are analysed and discussed.  

 

Keywords: tandem cylinders, partially buried, turbulent flow, RANS 

 

 

1. Introduction 

Significant amount of the oil and gas produced in the world is transported by pipelines placed 

on the seabed. For the on-bottom stability design, it is necessary to guarantee vertical and 

horizontal stability of the subsea pipelines under external loads induced by the waves and 

currents. In deep water conditions, waves have little effect on pipelines on the seabed and the 

main inline and crossflow forces on the pipelines are due to boundary layer flows caused by 

currents. Thus, the hydrodynamic quantities, such as drag and lift coefficients, are of extreme 

importance for a reliable subsea pipeline design.  

                                                           
1 Corresponding author: guang.yin@uis.no 
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A few experimental investigations were conducted to investigate the flow over bottom-mounted 

cylinders or cylinders close to the seabed. Jensen et al. (1990) carried out experimental studies 

for the flow over a cylinder initially placed on the bottom wall with a temporal evolving scour 

hole beneath the cylinder at the Reynolds number range of 0.6 × 104to1 × 104. It was found 

that vortex shedding appears at the beginning of the scour process with a sufficiently large gap 

between the cylinder and the bottom wall. Lei et al. (1999) also studied the flow over a cylinder 

at a subcritical Reynolds number for different gap ratios (𝐺/𝐷), where 𝐺 is the gap between the 

cylinder and the bottom wall, and 𝐷 is the diameter of the cylinder. They concluded that the 

incoming boundary layer flow and the gap ratio have great influence on the drag on the cylinder 

and the flow characteristics around the cylinder. Moreover, the vortex shedding was found to 

occur at a critical gap between 0.2𝐷 and 0.3𝐷 depending on the boundary layer thickness. 

Cokgor & Avci (2001) investigated the flow over single and two partially buried cylinders at the 

Reynolds number flows of 0.8 × 104 and 1.5 × 104. It was concluded that both drag and lift 

coefficients decrease with the embedment of the cylinder and the variation of the drag 

coefficient with the buried ratio is nearly linear. It was also found that the addition of the second 

cylinder has significant impacts on the hydrodynamic quantities of the first cylinder. Lower 

values of the lift and drag coefficients were obtained on the downstream cylinder compared with 

those of the upstream one. Wang et al. (2015) conducted experimental investigations of the flow 

over single and tandem cylinders in proximity to a flat wall at the Reynolds number of 0.63 ×

104. The hydrodynamic forces and flow patterns showed strong dependency on the gap ratio 

between the cylinders and the wall as well as the distance between the two cylinders. Also, the 

vortex shedding started to be suppressed at a gap smaller than 0.3𝐷 between the cylinders and 

the wall.  

Numerical investigations have also been carried out to analyze the flow over bottom-mounted 

cylinders or cylinders close to a wall. Akoz et al. (2019) performed numerical simulations to 

study the flow over cylinders with different burial ratios at subcritical Reynolds number. 

Different two-equation turbulence models were employed, and it was found that the 𝑘 − 𝜔 

Shear Stress Transport (SST) model provided similar results when compared with the 

experimental data. Zhao et al. (2007) used the 𝑘 − 𝜔 turbulence model to simulate the boundary 

layer flow around a piggyback pipeline with different gap ratios between the pipeline and the 

wall. The simulations were validated against the flow over a single bottom-mounted cylinder 

under the Reynolds number of 1.8 × 104. The results showed that the drag coefficient increases 

with the increasing gap ratio, while the mean lift coefficient decreases with the increasing gap 

ratio. Also, the vortex shedding is suppressed when the gap is below 0.3𝐷. Ong et al. (2010) 

investigated the boundary layer flow around a circular cylinder for different gap ratios and 

bottom wall roughness at high Reynolds number using the 𝑘 − 휀 turbulence model. It was 
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concluded that the variations of the drag coefficient with the gap ratio display similar 

behaviours at high and low Reynolds numbers, and the drag coefficient decreases when the 

surface roughness is increased. Moreover, the onset of the vortex shedding was at a gap ratio of 

0.25𝐷. Simulations using the two-equation 𝑘 − 𝜔 turbulence model were performed by An et 

al. (2011) to analyze the high Reynolds number flow over a partially buried cylinder on a 

permeable bottom wall. The values of the hydrodynamic quantities decrease linearly with the 

increase of the burial depth. Li et al. (2018) carried out Large Eddy Simulations (LES) of the 

flow around two tandem cylinders close to the bottom wall at a high Reynolds number. The 

effects of the gap ratio and the distance between the cylinders were investigated. It was 

concluded that the drag coefficient decreases when the cylinders are placed closer to the wall 

and with the increasing distance between the two cylinders. In addition, the hydrodynamic 

coefficients of the downstream cylinder are significant lower compared with those of the 

upstream cylinder. 

Two-dimensional (2D) flow over single and two tandem cylinders with different burial ratios 

(𝐵/𝐷), where 𝐵 is the burial depth, and different pitch ratios (𝐿/𝐷), where 𝐿 is the distance 

between the centers of the cylinders, is investigated in the current study. This is a common 

configuration that appears in ocean engineering. The turbulent flow is resolved by employing 

the 2D Reynolds-averaged Navier-Stokes (RANS) equations combined with 𝑘 − 𝜔 SST 

turbulence model. The Reynolds number is 1.31 × 104 based on the diameter of the cylinder 

and the free-stream velocity, and the boundary layer thickness is 𝛿 = 0.48𝐷. The paper is 

organized as follows: the governing equations and numerical methods are presented in Section 

2. Section 3 gives the computational overview, the convergence studies and the validation 

studies. Section 4 presents the results and discussions. Finally, the conclusion is presented in 

Section 5. 

 

2. Governing Equations and Numerical Methods 

2.1 Mathematical formulation 

Since the cylinders are placed on the flat wall with buried ratio, there is no vortex shedding 

behind the cylinders. Therefore, the 2D steady RANS equations of the conservation of mass and 

momentum are solved in the present study, which are given as: 

 𝜕𝑢𝑖
𝜕𝑥𝑖

= 0 (1) 
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𝑢𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

= −
1

𝜌

𝜕𝑃

𝜕𝑥𝑖
+ 𝜈

𝜕2𝑢𝑖
𝜕𝑥𝑗𝜕𝑥𝑗

−
𝜕𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅

𝜕𝑥𝑗
, (2) 

where 𝑖, 𝑗 = 1,2 denote the streamwise and the cross-stream directions, respectively. 𝑢1 and 𝑢2 

(also represented as 𝑢and 𝑣) are the corresponding time-averaged velocity components. 𝜌 is the 

fluid density, the time-averaged pressure is denoted as 𝑃 and the Reynolds stress components is 

given by 𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅ , where 𝑢𝑖
′ is the fluctuation part of the velocities. 

According to the Boussinesq approximation, the Reynolds stress components can be expressed 

as: 

 
−𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅ ̅̅ = 𝜈𝑡 (

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
) −

2

3
𝑘𝛿𝑖𝑗  (3) 

where the turbulent kinetic energy is denoted as 𝑘 and 𝛿𝑖𝑗 is the Kronecker delta.  

The 𝑘 − 𝜔 SST turbulence model (Menter, 1994 and Menter et al. 2003) is a hybrid model of 

the 𝑘 − 휀 (Jones & Launder, 1973) and the 𝑘 − 𝜔 (Wilcox, 1998) models. The 𝑘 − 휀 model is 

applied away from the wall in the free-stream flow and the 𝑘 − 𝜔 model is used within the near-

wall region. The equations for 𝑘 and 𝜔 are written as: 

 𝐷(𝜌𝑘)

𝐷𝑡
= 𝑃�̃� − 𝛽∗𝜌𝑘𝜔 +

𝜕

𝜕𝑥𝑖
[(𝜇 + 𝜎𝑘𝜇𝑡)

𝜕𝑘

𝜕𝑥𝑖
] (4) 

 𝐷(𝜌𝜔)

𝐷𝑡
= 𝛼𝜌𝑆2 − 𝛽𝜌𝜔2 +

𝜕

𝜕𝑥𝑖
[(𝜇 + 𝜎𝜔𝜇𝑡)

𝜕𝜔

𝜕𝑥𝑖
] + 2(1 − 𝐹1)𝜌𝜎𝜔2

𝜕𝑘

𝜕𝑥𝑖

𝜕𝜔

𝜕𝑥𝑖
 (5) 

 
𝑃�̃� = min [𝜇𝑡

𝜕𝑢𝑖
𝜕𝑥𝑗

(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
) , 10𝛽∗𝜌𝑘𝜔] (6) 

The constant 𝜙𝑖, where 𝑖 = 1,2, represents the 𝑘 − 𝜔 model and the 𝑘 − 휀 model constants, 

respectively. The constant 𝜙 in the SST model can be described as: 

 𝜙 = 𝐹1𝜙1 + (1 − 𝐹1)𝜙2 (7) 

 

𝐹1 = tanh{{min [max(
√𝑘

𝛽∗𝜔𝑦
,
500𝜈

𝑦2𝜔
) ,

4𝜌𝜎𝜔2𝑘

𝐶𝐷𝑘𝜔𝑦
2
]}

4

} (8) 

 
𝐶𝐷𝑘𝜔 = max(2𝜌𝜎𝜔2

1

𝜔

𝜕𝑘

𝜕𝑥𝑖

𝜕𝜔

𝜕𝑥𝑖
, 10−10) (9) 

where the distance to the closest wall is given by y and the positive part of the cross-diffusion 
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term in (4) is expressed by 𝐶𝐷𝑘𝜔. The turbulent viscosity is given by: 

 
𝜈𝑡 =

𝑎1𝑘

max(𝑎1𝜔, 𝑆𝐹2)
 (10) 

 

𝐹2 = tanh [[max(2
√𝑘

𝛽∗𝜔𝑦
,
500𝜈

𝑦2𝜔
)]

2

] (11) 

where the invariant measure of the strain rate is denoted by 𝑆 and the constants employed in the 

SST model are: 𝛽∗ = 0.09, 𝑎1 = 0.31, 𝛽1 = 0.075, 𝛽2 = 0.083, 𝜎𝑘1 = 0.85, 𝜎𝑘2 = 1, 𝜎𝜔1 =

0.5, 𝜎𝜔2 = 0.856, 𝛼1 = 0.555 and 𝛼2 = 0.44. 

 

2.2 Numerical methods 

The code OpenFOAM is used in the present simulations. It is an open source Computational 

Fluid Dynamics (CFD) tool with a customized C++ library for numerical simulations which has 

been vastly applied for scientific and engineering research. The solver based on the algorithm of 

Semi-Implicit Method for Pressure-Linked Equations (SIMPLE), simpleFoam, is used in the 

present study. Gauss linear is employed for gradient and divergence; Gauss linear corrected is 

applied for Laplacian. 

 

3. Computational Overview, Convergence and Validation Studies  

3.1 Computational overview 

Figure 1 displays the computational domain used in the present study. Single and two tandem 

cylinders are considered. The burial ratios 𝐵/𝐷 are 0, 0.25 and 0.5. In the cases with tandem 

cylinders, different distances 𝐿/𝐷 between the centers of the cylinders are studied: 2, 4, 6, 8 and 

10. The height of the computational domain is given by 𝐿𝐻 = 20𝐷, the length between the inlet 

and the center of the upstream cylinder is 𝐿𝑈 = 11.5𝐷 and the distance from the center of the 

downstream cylinder to the outlet is 𝐿𝐷 = 35𝐷. Ong et al. (2010) found that a domain with 

𝐿𝐻 = 10𝐷, 𝐿𝑈 = 10𝐷 and 𝐿𝐷 = 20𝐷 is large enough to avoid far-field effects, which indicates 

that the present computational domain is sufficiently large. The boundary conditions shown in 

Figure 1 are the following: 
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(i) At the inlet, the streamwise velocity has a logarithmic profile obtained experimentally by 

Arie et al. (1975). A fixed boundary layer thickness of 𝛿 = 0.48𝐷 is applied. The cross-

stream velocity is set to zero and the pressure is prescribed as zero gradient. 

𝑢1(𝑦) = min {
𝑢∗
𝜅
ln (

𝑦

𝑧𝑤
) , 𝑈∞} (12) 

𝑢2(𝑦) = 0 (13) 

𝑘(𝑦) = max {𝐶𝜇
−0.5 (1 −

𝑦

𝛿
)
2

𝑢∗
2, 0.0001𝑈∞

2 } (14) 

𝜔 =
𝜅0.5

𝐶𝜇
0.5𝑙

 (15) 

𝑙 = min {𝜅𝑦 (1 + 3.5
𝑦

𝛿
)
−1

, 𝐶𝜇𝛿} (16) 

where the friction velocity is given by 𝑢∗ = 𝜅𝑈∞/ln(𝛿/𝑧𝑤), the roughness parameter is set 

as 𝑧𝑤 = 1 × 10−6, the constant 𝐶𝜇 = 0.09, the Von Kármán constant is 𝜅 = 0.41and 𝑙 is 

the turbulent length scale. This boundary layer flow profile has been used in Ong et al. 

(2010), Prsic et al. (2016) and Li et al. (2018). 

(ii) At the outlet boundary, the velocities are set as zero gradient and the pressure is prescribed 

as zero. 

(iii) On the cylinders surfaces and at the bottom wall, no-slip condition is applied, giving 𝑢1 =

𝑢2 = 0. The pressure is prescribed as zero gradient. On the walls, a 𝑦+ < 1 is satisfied, in 

which 𝑦+ is given as: 

𝑦+ =
𝑢∗∆𝑦

𝜈
 

(17) 

      where ∆𝑦 is the normal distance between the wall and the center of the first grid layer. 

(iv) At the top, the velocities and the pressure are set as zero normal gradient.      
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Figure 1: Computational domain and boundary conditions 

 

3.2 Convergence studies  

Mesh convergence studies are carried out for the single cylinder and all the configurations with 

the two tandem cylinders. The drag coefficient 𝐶𝐷 and the lift coefficient 𝐶𝐿  are computed by the 

expressions: 

 𝐶𝐷 =
𝐹𝑥

1
2
𝜌𝑈∞

2𝐷
 (18) 

 𝐶𝐿 =
𝐹𝑦

1
2𝜌𝑈∞

2𝐷
 (19) 

where the force in the streamwise direction is denoted as 𝐹𝑥 and the force in the cross-stream 

direction is denoted as 𝐹𝑦.   

For each configuration, three meshes with an increment of at least 30% in the total number of 

cells are analysed. The results of the hydrodynamic quantities and the recirculation length (𝐿𝑊) 

from the back face of the downstream cylinder for the cases with 𝐵/𝐷 = 0 are presented in 

Table 1. The setup with a single cylinder, represented by Cases 1 to 3, show good convergence 

for 𝐶𝐷 and 𝐶𝐿  with the relative differences lower than 1% between cases. Cases 4 to 6 show the 

results for the two cylinders cases with 𝐿/𝐷 = 2, and differences lower than 1% between cases 

are achieved. The results for the cylinders with 𝐿/𝐷 = 4 (Cases 7 to 9) display good 

convergence, with changes in the hydrodynamic quantities lower than 1%. Cases 10 to 12 with 

𝐿/𝐷 = 6, also give good convergence with relative differences around 1% between the cases. In 
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addition, with 𝐿/𝐷 = 8 (Cases 13 to 15), a good convergence is obtained with differences in 𝐶𝐷 

and 𝐶𝐿 around 1%. Lastly, for 𝐿/𝐷 = 10 between the two cylinders (Cases 15 to 18), the 

hydrodynamic quantities of the upstream cylinder give good convergence with relative 

differences lower than 1%. The differences of hydrodynamic quantities of the downstream 

cylinder is large, however due to their small values close to zero, the results can still be 

reasonable.  

Table 1: Results for the cases with 𝐵/𝐷 = 0 based on different numbers of grids  

Case No. of cells 𝐶𝐷1 𝐶𝐿1 𝐶𝐷2 𝐶𝐿2 𝐿𝑊 

𝐵/𝐷 = 0 

Single cylinder 

1 35096 0.752 0.459 - - 10.560 

2 45868 0.751 0.461 - - 10.153 

3 61118 0.754 0.459 - - 9.724 

𝐵/𝐷 = 0 

𝐿/𝐷 = 2 

4 39322 0.976 0.582 -0.544 -0.104 5.847 

5 54024 0.980 0.581 -0.546 -0.104 5.985 

6 68786 0.981 0.583 -0.549 -0.105 5.917 

𝐵/𝐷 = 0 

𝐿/𝐷 = 4 

7 42447 0.871 0.533 -0.418 -0.137 4.516 

8 55584 0.871 0.532 -0.419 -0.137 4.173 

9 71524 0.873 0.531 -0.422 -0.139 4.428 

𝐵/𝐷 = 0 

𝐿/𝐷 = 6 

10 41424 0.809 0.501 -0.266 -0.097 3.816 

11 55038 0.812 0.499 -0.272 -0.098 3.524 

12 71125 0.813 0.499 -0.274 -0.099 3.832 

𝐵/𝐷 = 0 

𝐿/𝐷 = 8 

13 41966 0.774 0.481 -0.114 -0.053 3.522 

14 55258 0.777 0.479 -0.119 -0.057 3.539 

15 71098 0.778 0.479 -0.122 -0.057 3.749 

𝐵/𝐷 = 0 

 𝐿/𝐷 = 10 

16 42015 0.754 0.468 0.015 -0.002 3.630 

17 55420 0.756 0.467 0.010 -0.005 3.407 

18 73153 0.758 0.466 0.008 -0.007 3.631 

  

The results for the cases with 𝐵/𝐷 = 0.25 are given in Table 2. In the cases with single cylinder 

(Cases 19 to 21), the relative differences of the hydrodynamic quantities between cases are 

lower than 1%. The configurations with two cylinders and 𝐿/𝐷 of 2 and 4 (Cases 22 to 27) give 

relative differences around 1% in 𝐶𝐷1, 𝐶𝐿1 and 𝐶𝐷2, 𝐶𝐿2. With a distance of 6𝐷 between the 

centers of the cylinders (Cases 28 to 30), the upstream cylinder has a good convergence with 

differences lower than 1% based on the hydrodynamic quantities and the relative differences of 

the hydrodynamic quantities of the downstream cylinder between cases are lower than 4%. 
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Cases 31 to 36 also have good convergence, with relative differences around 1% for the drag 

and lift coefficients for both cylinders.  

Table 2: Results for the cases with 𝐵/𝐷 = 0.25 based on different numbers of grids 

Case No. of cells 𝐶𝐷1 𝐶𝐿1 𝐶𝐷2 𝐶𝐿2 𝐿𝑊 

𝐵/𝐷 = 0.25 

Single cylinder 

19 34016 0.493 0.407 - - 7.455 

20 43866 0.491 0.412 - - 7.175 

21 55684 0.490 0.412 - - 6.818 

𝐵/𝐷 = 0.25 

𝐿/𝐷 = 2 

22 40708 0.622 0.639 -0.361 0.286 3.915 

23 50820 0.620 0.642 -0.360 0.285 3.881 

24 66288 0.612 0.632 -0.354 0.282 3.897 

𝐵/𝐷 = 0.25 

𝐿/𝐷 = 4 

25 40774 0.528 0.483 -0.183 0.188 3.050 

26 51720 0.527 0.484 -0.182 0.188 3.076 

27 65829 0.521 0.476 -0.180 0.187 2.909 

𝐵/𝐷 = 0.25 

𝐿/𝐷 = 6 

28 40133 0.493 0.417 -0.050 0.149 2.826 

29 51436 0.493 0.418 -0.051 0.149 2.649 

30 67748 0.494 0.416 -0.052 0.147 2.760 

𝐵/𝐷 = 0.25 

𝐿/𝐷 = 8 

31 41618 0.478 0.382 0.060 0.150 2.936 

32 52524 0.477 0.383 0.058 0.150 2.854 

33 68640 0.478 0.381 0.057 0.148 2.674 

𝐵/𝐷 = 0.25 

𝐿/𝐷 = 10 

34 42004 0.472 0.366 0.147 0.175 3.540 

35 53274 0.471 0.367 0.145 0.176 3.300 

 36 70530 0.472 0.365 0.145 0.173 3.283 

 

Table 3 gives the results for the configurations with 𝐵/𝐷 = 0.5. In the first two configurations 

(Cases 37 to 42), relative differences lower than 1% are found for the hydrodynamic quantities. 

The upstream cylinder of Cases 43 to 45 also has good convergence with differences lower than 

1% for the drag and lift coefficients. The relative differences of 𝐶𝐿2 between cases are lower 

than 1% and due to the small value of 𝐶𝐷2, their relative differences between cases can be large. 

A good convergence is also achieved for the following three configurations (Cases 46 to 54) and 

the relative differences between cases are lower than 1% for both hydrodynamic quantities.  
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Table 3: Results for the cases with 𝐵/𝐷 = 0.5 based on different numbers of grids 

Case No. of cells 𝐶𝐷1 𝐶𝐿1 𝐶𝐷2 𝐶𝐿2 𝐿𝑊 

𝐵/𝐷 = 0.5 

Single cylinder 

37 25097 0.268 0.329 - - 4.705 

38 33294 0.266 0.331 - - 4.720 

39 44063 0.265 0.333 - - 4.511 

𝐵/𝐷 = 0.5 

𝐿/𝐷 = 2 

40 31967 0.305 0.419 -0.128 0.263 2.506 

41 41920 0.302 0.421 -0.126 0.262 2.421 

42 55508 0.301 0.422 -0.124 0.262 2.381 

𝐵/𝐷 = 0.5 

𝐿/𝐷 = 4 

43 34492 0.265 0.316 -0.010 0.170 2.072 

44 45168 0.264 0.318 -0.008 0.171 1.987 

45 60368 0.263 0.320 -0.008 0.171 1.914 

𝐵/𝐷 = 0.5 

𝐿/𝐷 = 6 

46 35502 0.256 0.282 0.075 0.158 2.242 

47 46908 0.254 0.285 0.076 0.160 2.284 

48 62393 0.253 0.286 0.076 0.161 2.315 

𝐵/𝐷 = 0.5 

𝐿/𝐷 = 8 

49 37017 0.256 0.277 0.130 0.183 2.710 

50 48648 0.254 0.280 0.130 0.186 3.074 

51 64418 0.253 0.281 0.130 0.187 2.857 

𝐵/𝐷 = 0.5 

 𝐿/𝐷 = 10 

52 38532 0.259 0.283 0.163 0.215 3.248 

53 50388 0.257 0.287 0.161 0.218 3.381 

54 65768 0.256 0.289 0.161 0.219 3.375 

 

Moreover, the streamwise velocity profiles along the streamwise direction at 𝑦/𝐷 = 0.5 and the 

pressure on the bottom wall for the single cylinder configurations with 𝐵/𝐷 = 0 (Cases 1 to 3), 

𝐵/𝐷 = 0.25 (Cases 19 to 21) and 𝐵/𝐷 = 0.5 (Cases 37 to 39) are presented in Figure 2, and a 

good agreement between the cases is displayed. Thus, it can be concluded that sufficient grid 

convergence has been achieved for all the finest meshes of each configuration. Therefore, they 

are used for discussion in the following sections. An example of the mesh used in the present 

study is given in Figure 3 for the configuration with two cylinders and 𝐿/𝐷 = 2 (Case 6). 
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(a)  

 

(b)  

 

(c) 

 

(d)  

 
(e)  

 

(f)  

 
Figure 2: Profiles of the streamwise velocity (a, c, e) at 𝑦/𝐷 = 0.5 and the pressure on the 

bottom wall (b, d, f) for the single cylinder cases with different 𝐵/𝐷s. 

(a)  

 

(b) 

 
Figure 3: The computational mesh of two cylinders (Case 6): (a) full domain and (b) zoom-in 

view close to the cylinders 
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3.3 Validation studies  

The results obtained for the hydrodynamic quantities are validated against the previous 

experimental data and numerical results. Table 4 shows the results obtained by the present study 

with one cylinder and two cylinders with 𝐿/𝐷 = 2 and 4. The cases are also validated against 

two cylinders cases with a small gap ratio between the cylinders and the bottom wall in the 

previous studies. For these cases, only the drag coefficient for the upstream cylinder is 

considered due to the significant reduction in the lift coefficient when there is flow beneath the 

cylinder as found by Lei et al. (1999) and Zhao et al. (2007). Also, the flow that comes out of 

the gap between the upstream cylinder and the bottom wall can influence the drag force on the 

downstream cylinder as reported in Li et al. (2017). It can be observed that the hydrodynamic 

quantities for the single cylinder case is in satisfactory agreement with the literature. In addition, 

the value of 𝐶𝐷1 of the two tandem cylinders cases give a good agreement with relative 

differences lower than 6% compared with the drag coefficients reported by Li et al. (2017). 

Table 4: Hydrodynamic quantities of Cases 3, 6 and 9 compared with the experimental and 

numerical data 

Configuration  Author Flow conditions 𝐶𝐷1 𝐶𝐿1 

Single 

cylinder 

 Present 𝑅𝑒 = 1.31 × 104, 𝐵/𝐷 = 0, δ/D=0.48  0.754 0.459 

 Zhao et al. (2007) 𝑅𝑒 = 1.8 × 104, 𝐵/𝐷 = 0  0.710 0.400 

 Lei et al. (1999) 𝑅𝑒 = 1.31 × 104, 𝐵/𝐷 = 0, δ/D=0.48  0.825 0.530 

 Ong et al. (2010) 𝑅𝑒 = 1.31 × 104, 𝐺/𝐷 = 0.1, δ/D=0.48  0.750 - 

Two 

cylinders 

 Present 𝑅𝑒 = 1.31 × 104, 𝐵/𝐷 = 0, L/D=2, δ/D=0.48 0.981 - 

 Present 𝑅𝑒 = 1.31 × 104, 𝐵/𝐷 = 0, L/D=4, δ/D=0.48 0.873 - 

 Li et al. (2017) 𝑅𝑒 = 1.31 × 104, 𝐺/𝐷 = 0.1, L/D=2, δ/D=0.48 0.930 - 

 Li et al. (2017) 𝑅𝑒 = 1.31 × 104, 𝐺/𝐷 = 0.1, L/D=5, δ/D=0.48 0.860 - 

 

4. Results and Discussion  

4.1 Hydrodynamic quantities  

The variations of the hydrodynamic quantities of the two cylinders with 𝐿/𝐷 for different 𝐵/𝐷 

compared with those of a single cylinder is given in Figure 4. For all 𝐵/𝐷s, the drag and lift 

coefficients of the upstream cylinder decrease with the increasing 𝐿/𝐷. For the case with 

𝐵/𝐷 = 0, the drag and lift of the downstream cylinder are negative. When 𝐿/𝐷 = 10, which is 

close to the recirculation length behind a single cylinder as shown in Case 3, the value of 𝐶𝐷2 
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is almost 0. With 𝐵/𝐷 = 0.25, both values of 𝐶𝐷1 and 𝐶𝐿1 for the upstream cylinder decrease 

when compared with those of 𝐵/𝐷 = 0. The zero crossing of 𝐶𝐷2 is found when 𝐿/𝐷 ≈ 7, 

which is also close to the recirculation length behind the single cylinder with 𝐵/𝐷 = 0.25 given 

by Case 21 in Table 2. Then, for 𝐿/𝐷 > 7, the value of 𝐶𝐷2 of the downstream cylinder 

increases with the increasing 𝐿/𝐷. With this 𝐿/𝐷, it is also found that the value of 𝐶𝐿2 of the 

downstream cylinder starts to increase with the increasing 𝐿/𝐷. In addition, for 𝐵/𝐷 = 0.5, the 

critical value of 𝐿/𝐷 for zero 𝐶𝐷2 decreases to 4. This is also close to the length of the 

recirculation motion behind the single cylinder case (Case 39). These results indicate that a 

minimal value of 𝐶𝐷2 of the downstream cylinder is achieved when the downstream cylinder is 

placed at the edge of the recirculation region behind the upstream cylinder.  

Furthermore, it can be seen that with the increasing 𝐵/𝐷, the values of 𝐶𝐷 of both the upstream 

and the downstream cylinders decrease compared with those of 𝐵/𝐷 = 0 and this is because the 

cylinders are subjected to a decreasing averaged flow velocity, which is consistent with what 

has been found in Akoz et al. (2019) and Zhao et al. (2019). In addition, due to effects of the 

upstream cylinder, the value of 𝐶𝐷 for the downstream cylinder is lower than that of the 

upstream cylinder, which was also reported in Cokgor & Avci (2001), Wang et al. (2015) and Li 

et al. (2017).  

(a)   

 

(b)   

 
(c) 

 

(d)  
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(e)  

 

(f)  

 
Figure 4: Evolution of 𝐶𝐷 (a, c, e) and 𝐶𝐿  (b, d, f) with the increase of 𝐿/𝐷 for different burial 

ratios: (a, b) 𝐵/𝐷 = 0, (c, d) 𝐵/𝐷 = 0.25, and (e, f) 𝐵/𝐷 = 0.5 

 

4.2 Pressure and horizontal velocity contours 

In order to understand the behaviour of the variation of the hydrodynamic quantities with 

different configurations, the contours of the pressure and the streamwise velocity for different 

cases are analysed in this section. For all 𝐵/𝐷s, the contours for a single cylinder are presented 

for comparison in Figures 5 to 7 (a) and (b). For the single cylinder case, when the flow hits the 

cylinder, it is slow down, which creates a high-pressure region in front of the cylinder. When 

the flow separates from the cylinder surface, a large recirculation motion is formed behind the 

cylinder where a low-pressure region is formed. For the two cylinders in tandem cases, the 

downstream cylinder causes a further blockage effect to the flow separated from the upstream 

cylinder and then a stronger recirculation motion is formed between the two cylinders compared 

with the one behind the single cylinder. The amplitude of the negative-pressure region between 

the two cylinders becomes stronger than that behind the single cylinder and the downstream 

cylinder, which explains the strong negative value of 𝐶𝐷2 in Figure 4 (a) and the higher value of 

𝐶𝐷1 compared with that of the single cylinder.  
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(a)   

 

(b)  

 
(c)   

 

(d)  

 
(e)   

 

(f)  

 
(g)   

 

(h)  

 

(i)   

 

(j)  

 
 

(k) 

 
 

(l)  

 
 

Figure 5: The contours of the pressure (a, c, e, g, i, k) and the streamwise velocity (b, d, f, h, j, l) 

with 𝐵/𝐷 = 0 for different 𝐿/𝐷s 
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Furthermore, with the increasing 𝐿/𝐷, the blockage effect of the downstream cylinder to the 

flow is reduced and the amplitude of the negative pressure region between the two cylinders is 

decreased, which results in the decreasing value of 𝐶𝐷1 and the absolute value of 𝐶𝐷2 with the 

increasing 𝐿/𝐷. With 𝐿/𝐷 = 10, the pressure behind and in front of downstream cylinder are 

almost the same, resulting in a zero value of 𝐶𝐷2. With this 𝐿/𝐷, the value of 𝐶𝐷1 is almost the 

same as that of the single cylinder. Moreover, when the flow separates from the upstream 

cylinder surface, the flow is accelerated as shown in the streamwise velocity contours in Figures 

5 to 7 and a negative-pressure region is formed above the cylinders, which creates a lift for these 

cylinders. Also, these figures show that the streamwise velocity above the upstream cylinder 

decreases with the increasing 𝐿/𝐷, which results in a higher-pressure region above the upstream 

cylinder, and as a consequence, lower lift coefficients. It can be seen from the pressure contour 

around the downstream cylinder that the amplitude of the negative pressure above the cylinder 

is lower than that below the cylinder, resulting a negative lift force on the cylinder as shown in 

Figure 4 (b). Furthermore, with the increasing 𝐿/𝐷, the amplitude of the negative pressure 

below the cylinder is reduced and thus resulting in a decreasing absolute value of 𝐶𝐿2 as shown 

in Figure 4 (b). 

Figure 6 displays the pressure and the streamwise velocity contours of the cases with 𝐵/𝐷 =

0.25. With the reducing blockage effect of the buried cylinder to the flow, the pressure 

difference between the back and front face of the cylinder is reduced. Similar behaviour of the 

pressure region between the two cylinders are shown for 𝐵/𝐷 = 0.25 with 𝐿/𝐷 < 6 compared 

with the cases with 𝐵/𝐷 = 0. The critical value of 𝐿/𝐷 for 𝐶𝐷2 is around 7 as shown in Figures 

6 (g) and (i). It can be seen that with 𝐿/𝐷 > 6, the pressure in front of the downstream cylinder 

becomes positive which results in positive value of 𝐶𝐷2 for this cylinder.  

The pressure and the streamwise velocity contours of the cases with 𝐵/𝐷 = 0.5 are shown in 

Figure 7. The critical value of 𝐿/𝐷 for 𝐶𝐷2 is around 4, where the pressure between the front 

and back faces of the downstream cylinders is almost zero. Also, due to the reduced pressure 

difference and velocity around the two cylinders, their hydrodynamic quantities are lowest 

compared with 𝐵/𝐷 = 0 and 0.25. Also, the velocity and pressure contours around the 

upstream cylinders shown in Figures 7 (g) to (l) tend to be close to the contours observed in the 

single cylinder case as shown in Figures 7 (a) and (b), indicating that the influence of the 

downstream cylinder to the flow around the upstream cylinder is small at large 𝐿/𝐷s. 
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(a)   

 

(b)  

 
(c)   

 

(d)  

 
(e)   

 

(f)  

 
(g)   

 

(h)  

 
(i)   

 

(j)  

 
(k)   

 

(l)   

 
Figure 6: The contours of the pressure (a, c, e, g, i, k) and the streamwise velocity (b, d, f, h, j, l) 

with 𝐵/𝐷 = 0.25 for different 𝐿/𝐷s 
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(a)   

 

(b)  

 
(c)   

 

(d)  

 
(e)   

 

(f)  

 
(g)   

 

(h)  

 
(i)   

 

(j)  

 
(k)   

 

(l)   

 
 

Figure 7: The contours of the pressure (a, c, e, g, i, k) and the streamwise velocity (b, d, f, h, j, l) 

with 𝐵/𝐷 = 0.5 for different 𝐿/𝐷s 
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4.3 Streamlines 

Figure 8 displays the streamlines of the flow for the single cylinder and two cylinders in tandem 

with different 𝐿/𝐷s and 𝐵/𝐷 = 0. The streamlines shown in Figure 8 (a) display three 

recirculation vortices, in which the main vortex is located downstream the cylinder. It is resulted 

from the flow separation and the length of the vortex is found to be around 10𝐷. For all cases, 

as shown in Figures 8 (a) to (f), there are two small vortices located around the bottom of the 

two cylinders. The small recirculation motion around the front corner of the upstream cylinder 

is formed due to the downward flow caused by the blockage effect of the cylinder to the flow. 

The small vortices around the back corner of the upstream cylinder and the two corners of the 

downstream cylinder are induced by the two large recirculation motions behind the two 

cylinders. Figure 8 (b) shows three strong vortices between the two cylinders with 𝐿/𝐷 = 2, 

which indicates that the energy is highly concentrated in that region, with the strong vorticity 

contributing to the strong negative pressure. The recirculation length behind the downstream 

cylinder tends to decrease with the increasing 𝐿/𝐷 because the recirculation motion behind the 

upstream cylinder becomes larger due to the increasing 𝐿/𝐷 and less flow is separated from the 

downstream cylinder. 

The streamlines for the cases with 𝐵/𝐷 = 0.25 are displayed in Figure 9. There are still three 

main vortices around the single cylinder as shown in Figure 9 (a), which is similar to those in 

Figure 8 (a). However, the sizes of the large recirculation motions are smaller compared with 

that in Figure 8 (a) due to the lower velocity of the incoming flow with the increasing 𝐵/𝐷. The 

sizes of the large vortex located behind the downstream cylinder shown in Figures 9 (b) to (e) 

decrease, which shows a similar behaviour of the recirculation length with the increasing 𝐿/𝐷 to 

that in Figure 8 (b) to (e). However, the recirculation length may also reach the minimum value 

when the second cylinder is placed with the critical 𝐿/𝐷 around 7. Moreover, the large vortex 

located between the cylinders starts to detach from the front face of the downstream cylinder 

with 𝐿/𝐷 = 10, as displayed in Figure 9 (f). 

Figure 10 shows the streamlines for the cases with 𝐵/𝐷 = 0.5 and all the small vortices located 

around the corners of the cylinders are almost suppressed and the streamlines are attached to the 

cylinders surfaces, which was also found in Tauqeer et al. (2017) and Gao & Mi (2009). Also, 

the sizes of the recirculation motion behind the downstream cylinder are reduced compared with 

other 𝐵/𝐷s, which is also shown in Tables 1, 2 and 3. The recirculation length behind the 

downstream cylinder decreases with the increasing 𝐿/𝐷 and it reaches a minimum length with  

𝐿/𝐷 = 4 and then starts to increase with the further increasing 𝐿/𝐷. As shown in Figures 10 (e) 

and (f), the main vortex between the cylinders are detached from the downstream 
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cylinder, which indicates that the flows over both cylinders are becoming similar to the flow 

over the single cylinder. 

(a)  

 
(b)  

 
(c)  

 
(d)  

 
(e)  

 
(f)  

 
Figure 8: The streamlines of the flows: (a) to (f) Cases 3, 6, 9, 12, 15 and 18, respectively 
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(a)  

 
(b)  

 
(c)  

 
(d)  

 
(e)  

 
(f)  

 
Figure 9: The streamlines of the flows: (a) to (f) Cases 21, 24, 27, 30, 33 and 36, respectively 
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(a)  

 
(b)  

 
(c)  

 
(d)  

 
(e)  

 
(f)  

 
Figure 10: The streamlines of the flows: (a) to (f) Cases 39, 42, 45, 48, 51 and 54, respectively 
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5. Conclusion 

In the present study, 2D Reynolds-Averaged Navier-Stokes with 𝑘 − 𝜔 SST turbulence model 

flow over a single and two tandem cylinders with different burial and pitch ratios are 

investigated. The cylinders are subjected to a boundary layer flow with a fixed thickness of 𝛿 =

0.48𝐷 at 𝑅𝑒 = 1.31 × 104. The convergence studies are carried out based on the hydrodynamic 

quantities 𝐶𝐷 and 𝐶𝐿. The validation studies show that the coefficients are in good agreement 

with the previous published experimental and numerical results. The hydrodynamic quantities 

of the two cylinders in tandem with different 𝐿/𝐷s and 𝐵/𝐷s, as well as the pressure and the 

streamwise velocity contours, and the streamlines around them are discussed. The main 

conclusions are summarized as follows: 

1. Regarding the single cylinder cases, the hydrodynamic coefficients 𝐶𝐷 and 𝐶𝐿 and the 

recirculation length behind the cylinder are all reduced with the increasing 𝐵/𝐷. 

2. With 𝐿/𝐷 = 2 for all 𝐵/𝐷s, the vorticity between the cylinders is the strongest compared 

with that for other 𝐿/𝐷s and the absolute value of the negative pressure region between the 

two cylinders are the highest, which results in the largest value of 𝐶𝐷1 and the largest 

absolute value of the negative 𝐶𝐷2. 

3. For all 𝐵/𝐷s and 𝐿/𝐷s, the downstream cylinder has lower absolute values of drag and lift 

coefficients compared to the upstream cylinder. 

4. For all 𝐵/𝐷s, there is a critical value of 𝐿/𝐷 that leads to the zero value of 𝐶𝐷2 of the 

downstream cylinder. They are found to be: 𝐿/𝐷 = 10 for 𝐵/𝐷 = 0; 𝐿/𝐷 ≈ 7  for 𝐵/𝐷 =

0.25; and 𝐿/𝐷 = 4 for 𝐵/𝐷 = 0.5. These critical values of 𝐿/𝐷 are close to the 

recirculation length behind the corresponding single cylinder cases. Also, the recirculation 

length behind the downstream cylinder is found to be minimum in these critical locations. 

5. For 𝐿/𝐷 higher than the critical value, the flow over both cylinders starts to get similar to 

the flow over the single cylinder with the increasing 𝐿/𝐷, and the hydrodynamic quantities 

of the upstream cylinder, the pressure, velocity contours and the streamlines around the 

two cylinders are also similar to those around the corresponding single cylinder. 
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Chapter 5 

 

 

PAPER II: THREE-DIMENSIONAL NUMERICAL SIMULATIONS 

AND PROPER ORTHOGONAL DECOMPOSITION ANALYSIS OF 

FLOW OVER DIFFERENT BOTTOM-MOUNTED RIBS 

 

 

A corresponding version of the draft of the paper that has been submitted to Ships and Offshore 

Structures journal is given in the present chapter. 3D flow over bottom-mounted square, 

trapezoidal and rectangular ribs using SADDES at a Reynolds number of 1 × 106 is studied. 

The ribs are subjected to a boundary layer flow with thickness of 𝛿 = 0.73𝐻. Such 

configuration can be found in subsea covers and equipment, as well as in several other industrial 

equipment. It is shown that the flow over the trapezoidal rib can be considered smoother 

compared with the other geometries investigated, resulting in lower hydrodynamic coefficients. 

POD analysis of the flow behind the ribs is employed to investigate the dominant turbulent 

structures. This technique is performed on different planes in the streamwise and spanwise 

directions and it is found that the fluctuation modes tend to appear in pairs. Also, the energy is 

highly concentrated in the lower modes and the turbulent structures appear mainly around the 

shear layer of the wake flow.  
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Abstract 

Turbulent flow over bottom-mounted ribs is investigated using three-dimensional (3D) Spalart-

Allmaras Delayed Detached-Eddy Simulations (SADDES). The wall-mounted ribs are 

subjected to a boundary layer flow with a thickness of 𝛿/𝐻 = 0.73 at a Reynolds number (𝑅𝑒 =

𝑈∞𝐻/𝜈) of 1 × 106, where 𝑈∞ is the free stream velocity of the boundary layer flow, H is the 

height of the rib and 𝜈 is the kinematic viscosity of the fluid. Mesh and time step convergence 

studies are conducted to determine the grid and time step resolution based on the time-averaged 

hydrodynamic quantities. The numerical model is validated against the experimental data 

reported by Liu et al. (2008). The effects of different ribs geometries (square, trapezoidal and 

rectangular) on the hydrodynamic quantities, such as drag and lift coefficients, and the wake 

flow structures are discussed. Dominant features of the flow are investigated by carrying out 

Proper Orthogonal Decomposition (POD) analysis of the flow velocities and pressure in the 

wake behind the ribs. 

 

Keywords: bottom-mounted ribs, 3D turbulent flow, SADDES, Proper Orthogonal 

Decomposition 

 

 

1. Introduction 

Bottom-mounted rib structures are widely used in many industries, such as subsea covers to 

protect pipelines, heat exchangers and gas turbines. These structures are often exposed to a high 

Reynolds number flow. It is of great significance to investigate the hydrodynamic forces on the 

structures. For example, subsea structures are commonly subjected to strong current and wave, 

and should be kept on their installation positions. For design and optimization with safe 

operation, it is necessary to obtain the drag and lift coefficients on them.  

                                                           
2 Corresponding author: guang.yin@uis.no 
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There are many experimental studies carried out to analyze the high Reynolds flow over 

surface-mounted structures over decades. Arie et al. (1975) studied the flow over wall-mounted 

rectangular cylinders subjected to turbulent boundary layer flow and concluded that the pressure 

coefficient on the structure surface is correlated with the thickness of the boundary layer.  Fully 

developed turbulent channel flow around prismatic obstacles was investigated by Martinuzzi & 

Tropea (1993) and it was found that there is a nominally two-dimensional (2D) middle region in 

the wake about the plane of symmetry behind the structures with an aspect ratio larger than 6. 

Liu et al. (2008) studied the unsteady characteristics of the flow over a 2D square rib and the 

flapping behaviour of the separation bubble behind the rib was analysed. 

Numerical simulations have also been used to study the flow over wall-mounted structures. 

Utnes & Ren (1995) analysed the turbulent flow around a wall-mounted cube by using 

Reynolds-averaged Navier-Stokes (RANS) equations with the two-equation 𝑘 − 휀 turbulence 

model. The results were in good agreement with the experimental data reported by Castro & 

Robins (1997). Hwang et al. (1999) carried out 2D simulations of turbulent flow around ribs 

with varying length using RANS combined with the 𝑘 − 휀 model. It was found that the length 

of the recirculation region behind the rib is dependent on the rib width. The recirculation length 

decreases linearly with the increasing height-to-width ratio of the rib cross-section. Orellano & 

Wengle (2000) compared Large Eddy Simulation (LES) with Direct Numerical Simulation 

(DNS) for turbulent flow over a wall-mounted fence. LES was able to provide satisfying results 

compared with the reference data of DNS while using less than 5% of the computational 

requirement of DNS. Schmidt & Thiele (2002) conducted Detached Eddy Simulation (DES) of 

high Reynolds number flow over wall-mounted cubes and compared the results with those 

obtained by LES and RANS simulations. It was shown that DES was capable of capturing the 

unsteadiness of the wake flow behind the cubes. Frederic et al. (2008) compared DES and LES 

by carrying out numerical simulations of flow around a wall-mounted cylinder. DES and zonal 

DES of high Reynolds number flow around a bottom-mounted cube were performed by Haupt 

et al. (2011). It was found that DES can obtain better results than RANS compared with the 

experimental data reported by Hoxey et al. (2002). Tauqeer et al. (2017) carried out 2D RANS 

simulations of flow over wall-mounted square, triangular and semi-circular structures using 𝑘 −

휀 model. The results were in good agreement with the experimental data obtained by Liu et al. 

(2008). Also, the highest values of drag coefficient were obtained from the square structure and 

the highest lift coefficient was obtained from the semi-circular structure.  

After performing the numerical simulations of the flow over the ribs, it is necessary to analyze 

the coherent structures behind the ribs in order to understand the dominant flow structures 

which will benefit the engineering design of the rib geometries. In the present study, a data-
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driven postprocessing technique kown as Proper Orthogonal Decomposition (POD) is used to 

study the wake flow behind the ribs. It has been widely used to capture the temporal-spatial 

characteristics of large-scale coherent structures and build a low-dimensional representation of 

the turbulent flow fields using only a finite number of modes according to Podvin (2009) and 

Lehnasch et al. (2011). For flow around wall-mounted structures, Muld et al. (2012) carried out 

POD analysis of the turbulent flow around a high-speed train and the method showed good 

capacity in extracting key coherent structures of the flow. The flow over a wall-mounted square 

cylinder was studied using experiments by Leite et al. (2018) and POD analysis was carried out 

to identify coherent structures in the wake region. It was concluded that the symmetrical and 

anti-symmetrical vortices in the cylinder wake flow can be captured by the first four POD 

modes. Amor et al. (2019) employed different decomposition techniques to analyze the flow 

over a bottom-mounted square cylinder and the relationship between the flow scales and 

different modes was discussed.  

The three-dimensional (3D) Spalart-Allmaras Delayed Detached-Eddy Simulations (SADDES) 

are carried out to investigate the flow over different bottom-mounted ribs at a high Reynolds 

number of 1 × 106 in the present study. The effects of different bottom-mounted ribs (square, 

trapezoidal and rectangular) on the flow are studied. In addition, 2D POD is employed to 

identify dominant coherent structures of the wake flow behind the ribs. The paper is organized 

as follows: the mathematical formulation and numerical methods are given in Section 2. The 

computational overview, the convergence studies and the validation studies are presented in 

Section 3. The results and discussion are presented in Section 4. Lastly, the conclusion is given 

in Section 5. 

 

2. Mathematical Formulation and Numerical Methods 

2.1 Mathematical formulation  

The filtered Navier-Stokes equations of incompressible and viscous fluid applied in DDES 

simulations can be written as: 

 𝜕𝑢𝑖
𝜕𝑥𝑖

= 0 (1) 

 𝜕𝑢𝑖
𝜕𝑡

+
𝜕𝑢𝑖𝑢𝑗

𝜕𝑥𝑗
= −

𝜕𝑝

𝜕𝑥𝑖
+ 𝜈

𝜕2𝑢𝑖
𝜕𝑥𝑗𝑥𝑗

−
𝜕〈𝑢𝑖

′𝑢𝑗
′〉

𝜕𝑥𝑗
 (2) 

where 𝑖, 𝑗 = 1,2,3 represent the streamwise, cross-stream and spanwise directions, respectively. 
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u1, u2, and u3 (also denoted as 𝑢, v and w) are their corresponding resolved velocity 

components. The unresolved stresses −〈𝑢𝑖
′𝑢𝑗

′〉 can be defined as:  

 
-〈𝑢𝑖

′𝑢𝑗
′〉 = 𝜈𝑡 (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) (3) 

The one equation Sparlat-Allmaras model solves the transport equation for the turbulent eddy 

viscosity (νt) which is described as: 

 𝜈𝑡 = 𝜈𝑓𝑣1          𝑓𝑣1 =
𝑋3

𝑋3+𝐶𝑣1
3           𝑋 =

�̃�

𝜈𝑡
 (4) 

where 𝜈 is the modified turbulence viscosity and the constant 𝐶𝑣1 = 7.1. DES is a hybrid 

approach where RANS method is applied in the near-wall region and LES is used far away from 

the wall. The distance to the wall (d̃) is given as: 

 �̃� = 𝑚𝑖𝑛(𝑑, 𝐶𝐷𝐸𝑆𝛥) (5) 

where the minimum distance from the nearest wall is represented as d and the constant CDES = 

0.65. The length scale associated with the local grid spacing is given as Δ: 

 𝛥 = 𝑚𝑎𝑥(𝛥𝑥 , 𝛥𝑦, 𝛥𝑧) (6) 

where 𝛥𝑥 , 𝛥𝑦, 𝛥𝑧 denote the dimension of the grid cell in the streamwise, cross-stream and 

spanwise directions, respectively. 

An improved version of DES, SADDES, is used in the present study. It employs a modified 

DES limiter d̃ given in (5) in order to prevent grid-induced separation (Spalart et al. 2006): 

 �̃� = 𝑑 − 𝑓𝑑max(0, 𝑑 − 𝐶𝐷𝐸𝑆𝛥) (7) 

 

2.2 Numerical methods 

The open source Computational Fluid Dynamics (CFD) code OpenFOAM v2.4 is used in the 

present study. The code is a customized C++ engine with noticeable application in CFD. 

Pressure-Implicit with Splitting of Operators (PISO) algorithm is used. The second order 

schemes for gradient and divergence are Gauss linear; for Laplacian and interpolation, Gauss 

linear corrected and linear schemes are employed, respectively. The time integration is 

conducted by using the second order Crank–Nicolson method. 
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3. Computational Overview, Convergence and Validation Studies  

3.1 Computational overview 

The computational domain used in this study is presented in Figure 1 (a) and (b) and the height 

of the rib is denoted as H. Three different cross-section geometries are studied: square (with a 

bottom edge length of 𝐵 = 𝐻), trapezoidal and rectangular. A bottom edge length of 𝐵 = 4𝐻 is 

used for the trapezoidal and the rectangular ribs. The slope angle of the two sides of the 

trapezoidal rib is 𝛼 = 45°. The distance between the inlet and the center of the rib bottom is 

𝐿𝑢 = 11.5𝐻 and the distance between the center of the rib and the outlet is 𝐿𝑑 = 40.5𝐻. The 

height of the computational domain is 𝐿ℎ = 20𝐻. According to Ong et al. (2010), a domain 

with 𝐿𝑢 = 10𝐻, 𝐿𝑑 = 20𝐻 and 𝐿ℎ = 10𝐻 is able to suppress the far-field effects on the 

structures. Therefore, the sizes of the XY domain in the present study can be considered 

sufficiently large. The spanwise length is 𝐿𝑧 = 6𝐻, which is larger than that of 4𝐻 used in Prsic 

et al. (2019) and Tian et al. (2014). 

The boundary conditions are shown in Figure 1. The following boundary conditions are applied 

for all cases in this study:  

 At the inlet, a log profile for the fully developed boundary layer flow is used for the 

streamwise velocity, which is obtained by curve fitting of the experimental boundary layer 

profile reported by Arie et al. (1975). The vertical and spanwise velocities are set to zero. A 

boundary layer thickness of 𝛿/𝐻 = 0.73 is employed, which is the same as that in the 

experiments carried out by Arie et al. (1975). A zero normal gradient is applied for the 

pressure at the inlet. 

 At the top boundary, the pressure and velocities are prescribed as zero normal gradient.  

 At the outlet, the velocities are prescribed as zero normal gradient and the pressure is set to 

be zero. 

 At the front and back boundary, periodic boundary conditions are used for all the quantities. 

 On the bottom wall and the surfaces of the structures, no-slip conditions are applied for the 

velocities and the pressure is set as zero normal gradient. The flow over the surfaces of the 

structures can be considered as fully developed turbulent. Therefore, a wall function based 

on the Spalding’s law of the wall (Spalding 1961) is used in the near-wall region. 
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(a)   

 

 

(b) 

 

Figure 1: Computational domain and boundary conditions: (a) 2D XY-plane and (b) 3D view 

 

3.2 Convergence studies  

The mesh and time step convergence studies have been carried out. The results for each bottom-

mounted rib are presented in Table 1. Two hydrodynamic quantities are analysed in this study: 

the time-averaged drag coefficient (𝐶𝐷̅̅̅̅ ) in the streamwise direction and the time-averaged lift 

coefficient (𝐶𝐿̅̅ ̅) in the cross-stream direction, which are given by: 

 𝐶𝐷̅̅̅̅ =
𝐹𝑋̅̅ ̅̅

1

2
𝜌𝑈∞

2 𝐴𝐻
  and 𝐶𝐿̅̅ ̅ =

𝐹𝑌̅̅ ̅̅
1

2
𝜌𝑈∞

2 𝐴𝑉
  (8) 

where 𝐹𝑋̅̅ ̅ is the time-averaged force acting on the rib surface in the streamwise direction while 

𝐹𝑌̅̅ ̅ is the time-averaged force acting on the rib surface in the cross-stream direction, 𝜌 is the 

density of the fluid, 𝐴𝑉 is the vertical projected area and 𝐴𝐻  is the horizontal projected area of 

the ribs. 
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Table 1: Results for the bottom-mounted ribs based on the mesh elements and the time step 

Case No. of cells 
Grids in Z 

direction 
Δt 𝐶𝐷̅̅̅̅    𝐶𝐿̅̅ ̅ Lw 

Square rib 

1 1275219 33 0.002 1.116 0.567 14.168 

2 1652970 33 0.002 1.121 0.572 13.626 

3 2140512 33 0.002 1.133 0.581 12.907 

4 2140512 33 0.001 1.132 0.580 12.907 

5 2140512 33 0.003 1.131 0.579 12.907 

6 3113472 48 0.002 1.133 0.581 13.172 

 7 1275219 33 0.002 0.806 0.261 13.702 

Trapezoidal 

rib 
8 1652970 33 0.002 0.825 0.272 12.400 

 9 2140512 33 0.002 0.844 0.287 10.195 

 10 1275219 33 0.002 0.961 0.490 18.213 

Rectangular 

rib 
11 1652970 33 0.002 0.985 0.499 15.812 

 12 2140512 33 0.002 1.006 0.527 11.755 

 

For the XY-plane grid resolution study, three meshes with the same grid in the spanwise 

direction are used with an increment of 30% in the total number of elements between different 

cases for each rib: the square rib (Cases 1 to 3), the trapezoidal rib (Cases 7 to 9) and the 

rectangular rib (Cases 10 to 12). The results for 𝐶𝐷̅̅̅̅  and 𝐶𝐿̅̅ ̅ show good convergence for the 

square rib with relative differences around 1% between cases. Also, convergence for both 

trapezoidal and rectangular ribs has also been achieved, with the maximum relative differences 

of  𝐶𝐷̅̅̅̅  being less than 3% and the maximum relative difference around 5% of 𝐶𝐿̅̅ ̅ between cases. 

In addition, Cases 4 and 5 are simulated to show the dependence of the results on the time step 

resolution for the square cases with the same grid number as Case 3, which indicates that the 

relative differences of 𝐶𝐷̅̅̅̅  and 𝐶𝐿̅̅ ̅ are around 1% between cases. Finally, Case 6 is simulated with 

an increasing grid number in the spanwise direction and the relative differences against Case 3 

are lower than 0.1% for 𝐶𝐷̅̅̅̅  and 𝐶𝐿̅̅ ̅, which shows that the grid number of 33 in the spanwise 

direction is enough. Furthermore, the time- and spanwise-averaged streamwise velocity and 

pressure at 𝑦/𝐻 = 0.004, which is close to the first layer above the bottom along the 

streamwise direction for the square rib (Cases 1 to 6), are shown in Figure 2. Both of the two 

profiles show good convergence between the different cases with similar recirculation lengths 

(Lw) as shown in Figure 2 (a). Likewise, a good agreement between Cases 1 to 6 for the pressure 

distribution is also displayed in Figure 2 (b).  
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(a)  

 

(b) 

 

Figure 2: Profiles of the time- and spanwise-averaged (a) streamwise velocity and (b) pressure 

at 𝑦/𝐻 = 0.004 for Cases 1 to 6 

Therefore, based on these results, it can be concluded that a satisfactory grid and time step 

resolution have been achieved in Cases 3, 9 and 12 for the square rib, the trapezoidal rib and the 

rectangular rib, respectively, and the results for the grid and the time step of these cases are 

analysed in the following sections. An example of the mesh is displayed in Figure 3 which 

shows the XY-plane of the converged Case 3 

(a) 

 

(b) 

 

Figure 3: Computational mesh of the square rib (Case 3): (a) full XY-plane domain and (b) 

closer view around the rib 

 

3.3 Validation studies  

In order to validate the present SADDES numerical model at a high Reynolds number, the 

converged results of the flow over the square rib (Case 3) are compared with the experimental 

data reported by Liu et al. (2008). The time- and spanwise-averaged streamwise velocity 

profiles at different locations of the present results are compared with those of the experiments 

in Figure 4. It can be seen that the velocity profiles are overall in good agreement with the 
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experimental data. The streamwise velocity profiles of the present numerical simulation display 

great similarity with the experimental data upstream and on the top of the square rib, while in 

the wake region behind the rib there are slight discrepancies between the present results and the 

experimental data. However, the negative parts of the velocity profiles are well captured. The 

minor differences may be due to the difference of the Reynolds number between the experiment 

done by Liu et al. (2008) and the present numerical simulation.  

𝑥/𝐻 = −3.5 

𝑥/𝐻 = 3.25 

𝑥/𝐻 = −1.5

 
𝑥/𝐻 = 5.25 

𝑥/𝐻 = −0.5

 
𝑥/𝐻 = 7.25 

𝑥/𝐻 = −0.1

 
𝑥/𝐻 = 9.25 

𝑥/𝐻 = −0.5

 
𝑥/𝐻 = 10.25 

𝑥/𝐻 = 1.25

 
𝑥/𝐻 = 12.25 

      
 

 

 

Figure 4: Time-averaged streamwise velocities of Case 3 compared with the experimental data 

reported by Liu et al. (2008)   
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(a)  

 

(b)  

 
                                                       (c)  

  
Figure 5: Power spectra of the velocity fluctuations at 𝑦/𝐻 = 0.5 with a distance of 0.5𝐻 to the 

back face of the ribs for (a) square, (b) trapezoidal and (d) rectangular ribs. The red lines 

represent the -5/3 law 

In addition, the spectra of the resolved streamwise velocity fluctuations obtained at 𝑦/𝐻 = 0.5 

with a distance of 0.5𝐻 to the back face of the three different ribs are displayed in Figure 5. It is 

shown that the three spectra are observed to be close to the −5/3 slope in the inertial range, 

which indicates that the turbulence spectrum can be properly captured by the current 

simulations.   

 

4. Results and Discussion  

4.1 Hydrodynamic forces and flow field 

The time histories of the hydrodynamic quantities 𝐶𝐷 and 𝐶𝐿 of the converged cases (Cases 3, 9 

and 12) of the three ribs are shown in Figure 6 together with the phase-space plots of the two 
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force coefficients. It can be seen that there exists unsteadiness in the time histories of the force 

coefficients which has also been reported in Tian et al. (2016) and Wu et al. (2019). The force 

coefficients of the trapezoidal rib show the weakest unsteadiness and the rectangular rib 

displays the strongest unsteadiness. Approximate linear correlations between the envelops of 𝐶𝐷 

and 𝐶𝐿 are observed.  

(a) 

 

(b) 

 
(c) 

 

(d) 

 
(e) 

 

(f) 

 
Figure 6: Time histories of 𝐶𝐷, 𝐶𝐿 for (a) the square rib of Case 3; (c) the trapezoidal rib of Case 

9 and (e) the rectangular rib of Case 12 and phase-space plots of 𝐶𝐷, 𝐶𝐿 for (b) the square rib; 

(d) the trapezoidal rib and (f) the rectangular rib   
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The streamlines of the time- and spanwise-averaged flows are shown in Figure 7. For the three 

ribs, a large recirculation motion is observed behind the ribs. The recirculation motion is the 

longest for the square rib among the three ribs. For the square and rectangular ribs, there also 

exist two small recirculation motions in front of the ribs and in the corner of the back face of the 

ribs. The first one is caused by the downward flow to the bottom wall when the flow hits the 

front face of the rib, while the second one has similar behaviour when the flow hits the back 

face of the rib. Due to the inclination, the flow is more attached to the trapezoidal rib and the 

two small recirculation motions disappear.  

 

 

 

Figure 7: The streamlines of the time- and spanwise-averaged flows for (a) the square rib of 

Case 3; (b) the trapezoidal rib of Case 9; (c) the rectangular rib of Case 12 

The three-dimensional instantaneous vortex structures identified by the 𝑄 criterion proposed by 

Hunt et al. (1988) for the three ribs are shown at 𝑡𝑈∞/𝐻 = 1000 in Figure 8. The 𝑄 is given by: 

 𝑄 =
1

2
(‖𝜴‖2 − ‖𝑺‖2)   (9) 

where 𝜴 is the vorticity tensor and𝑺 is the rate of strain tensor. It can be seen that shear layers 

stem from the leading edges of the ribs where the flows separate and roll up in to small-scale 

streamwise vortices further downstream. It is observed that the complexity of the vortex 
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structures is reduced for the rectangular and the trapezoidal ribs compared with the square rib. 

The vorticities behind the rectangular and the trapezoidal ribs are lower than that behind the 

square rib, which results in a reduced pressure difference between the front and back faces of 

the ribs and thus leads to lower drag coefficients for the two ribs than that of the square rib as 

shown in Figure 6. For the trapezoidal rib, as the flow is more attached to the rib surfaces, the 

small-scale vortex structures move further from the back face of the rib compared with the other 

ribs. For the rectangular rib, the shear layer on the top of the rib undergoes instability which 

may result in the strong unsteadiness of the hydrodynamic quantities as shown in Figure 6 (e, f). 

(a)  

 
(b) 

 
(c) 

 
Figure 8: Instantaneous iso-surface of 𝑄 = 0.25 at 𝑡𝑈∞/𝐻 = 1000 for (a) the square rib of 

Case 3; (b) the trapezoidal rib of Case 9; (c) the rectangular rib of Case 12 
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4.2 Proper orthogonal decomposition analysis 

In order to analyze the complex flow structures behind the ribs, Proper Orthogonal 

Decomposition is used to extract the energy containing structures in the wake region. This 

technique was proposed by Lumley (1967) to analyze the turbulent coherent structures. This 

method can also be applied to any scalar or vector quantities. In fluid mechanics, POD attempts 

to decompose a time-dependent flow variable 𝒒(𝝌, 𝑡) (where 𝝌 denote the spatial coordinates 

and 𝑡 denotes the time, respectively) into a series of spatial modes 𝝓𝒋(𝝌) and their 

corresponding temporal coefficients 𝑎𝑗(𝑡) as: 

 𝒒(𝝌, 𝑡) =∑𝑎𝑗(𝑡)𝝓𝒋(𝝌)

𝑗

 (10) 

The POD modes 𝝓𝒋(𝝌) are orthogonal satisfying 〈𝝓𝒊(𝝌),𝝓𝒋(𝝌)〉 = 𝛿𝑖𝑗  and can be obtained by 

eigenvalue decomposition of the spatial or temporal correlation matrix of the flow quantities as 

proposed by Lumely (1967), Sirovich (1987) and Meyer et al. (2007). As discussed in Taira et 

al. (2017), the modes can also be obtained by Singular Value Decomposition (SVD). 

In the present study, POD analysis of the velocity components and the pressure at 2D planes is 

carried out. The algorithm of the POD method is given as follows. The flow field data from the 

simulations is sampled and arranged in a matrix:  

 𝑴 = 𝑽𝟏
𝒏 = [𝒗𝟏, 𝒗𝟐, … , 𝒗𝒏] (11) 

where 𝒗𝒊 (𝑖 = 1,2,3…𝑛) are column vectors containing the velocity components at each grid 

node in a 2D plane at the time step of 𝑡𝑖(𝑖 = 1,2,3…𝑛) separated by the same time step ∆𝑡POD. 

The procedure is similarly applied for the pressure: 

 𝑴 = 𝑷𝟏
𝒏 = [𝒑𝟏, 𝒑𝟐, … , 𝒑𝒏] (12) 

The POD modes are obtained by applying SVD on the snapshot's matrix M: 

 𝑴 = 𝑼𝚺𝑽𝑻 (13) 

where U and V are the left and the right singular vectors of M, respectively. The column vectors 

of 𝑼are the POD modes 𝝓𝒋 and the column vectors of 𝑽 denote the temporal coefficients 𝑎𝑗(𝑡) 

of the corresponding modes. They are both orthogonal matrices satisfying: 

 𝑽𝑻𝑽 = 𝑰 (14) 
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 𝑼𝑻𝑼 = 𝑰 (15) 

The diagonal matrix 𝚺 = 𝐝𝐢𝐚𝐠(𝜆𝟏, 𝜆𝟐, 𝜆𝟑. . . 𝜆𝒏) contains the singular values of the matrix 𝑴 and 

each diagonal value represents the energy carried by each POD mode. They are ordered as: 

 𝜆1 > 𝜆2 > 𝜆𝟑 >. . . > 𝜆𝒏 > 0 (16) 

In the present study, an economy-size SVD is performed by using the corresponding internal 

function in MATLAB, which means that for the rectangular matrix 𝑴𝑚×𝑛 with 𝑚 > 𝑛, only the 

first 𝑛 columns of the left singular vectors are calculated and 𝚺 is a 𝑛 × 𝑛 matrix. 

 

4.2.1 Proper orthogonal decomposition analysis along the streamwise direction 

In this section, POD analysis is made on a XY-plane in the middle of the spanwise direction at 

𝑧 = 3𝐻. The total number of spatial points of each snapshot is 𝑚 = 129728 (Figure 9). 

According to Yang et al. (2017), the results obtained from POD analysis should be independent 

on the number of snapshots and the time step ∆𝑡POD between the sampling flow fields snapshots. 

Therefore, a convergence study has to be done in order to determine the appropriate number of 

snapshots and the time step (∆𝑡POD).  

 

Figure 9: Representation of the snapshots assembling along the streamwise direction 

Due to the orthogonality of the POD modes, Muld et al. (2012a) proposed a method for the 

convergence study based on the orthogonality of the POD modes. If the scalar product between 

the leading POD modes defined as 휀𝑜𝑟𝑡ℎ𝑜 = 〈𝜙𝑗,1, 𝜙𝑗,2〉 (1,2 denote different snapshots samples 

with different snapshots numbers and 𝑗 denotes the number of the modes) obtained using 

different numbers of snapshots equals 1, the POD modes have been fully converged. A similar 

test can also be conducted based on different time steps ∆𝑡POD between snapshots. Figures 10 

and 11 show the mean value of 휀𝑜𝑟𝑡ℎ𝑜 of the ten most energetic velocities and pressure modes of 

all geometries. The value of 휀𝑜𝑟𝑡ℎ𝑜 is obtained by comparing the POD modes acquired from 
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different numbers of snapshots with the POD modes obtained based on the number of 800 

snapshots, which is used as the reference set of modes. This procedure is the same as done in 

Muld et al. (2012a, b). A similar convergence test is done by calculating 휀𝑜𝑟𝑡ℎ𝑜 comparing the 

POD modes based on different number of snapshots 𝑆𝑛POD and time step ∆𝑡POD. The results 

given in Figures 10 (a) and 11 (a) are based on a reference snapshot of 𝑆𝑛POD = 800with equal 

sampling time. The results shown in Figures 10 (b) and 11 (b) are based on a reference time step 

of ∆𝑡POD = 0.5𝐻/𝑈∞ and sampling time of 800𝐻/𝑈∞. It can be seen that an acceptable 

convergence can be achieved when the number of snapshots is higher than 600 and ∆𝑡POD is 

lower than 1𝐻/𝑈∞. A similar behaviour of the value 휀𝑜𝑟𝑡ℎ𝑜 is also reported in Muld et al. 

(2012a, b). Thus, the POD analyses of the present study are carried out using 1600 snapshots 

with ∆𝑡POD = 0.5𝐻/𝑈∞. 

     (a) 

 

(b) 

 
Figure 10: The mean value of 휀𝑜𝑟𝑡ℎ𝑜 of the ten most energetic modes between different sets of 

snapshots of the velocity modes based on: (a) number of snapshots; (b) ∆𝑡POD of the velocity 

modes 

(a) 

 

(b) 

 

Figure 11: The mean value of 휀𝑜𝑟𝑡ℎ𝑜 of the ten most energetic modes between different sets of 

snapshots of the pressure modes based on: (a) number of snapshots; (b) ∆𝑡POD of the velocity 

modes 
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4.2.1.1 The square rib 

The energy distribution of all the velocity POD modes of the square rib is shown in Figure 12 

(a). It shows an exponential decay of the energy from the lower modes to the higher modes. The 

energy contribution of the first 20 POD modes is presented in Figure 12 (b). The first POD 

mode corresponds to the mean flow containing almost 30% of the total energy of the velocity 

field in the 2D plane, while the following modes contribute less than 1% to the total energy. 

Figure 12 (c), (e) show the temporal coefficients of Modes 2, 3 and Modes 4, 5. For Modes 2 

and 3, a wave-like periodic behaviour is observed and the frequency spectrum of their temporal 

coefficients given in Figure 12 (d) show similar peaks within the low frequency range. This 

indicates a large-scale traveling wave structure as reported in Semeraro et al. (2012) and Yang et 

al. (2017). The frequency spectra of mode temporal coefficients of Modes 4 and 5 are displayed 

in Figure 12 (f) and a wide spectra distribution is observed, indicating a chaotic behaviour of 

Modes 4 and 5. 

(a)  

 

(b) 

 
(c) 

 

(d) 
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(e)  

 

 

(f)   

 

Figure 12: Modal decomposition of the velocities for the square rib: (a) energy of modes; (b) 

energy contribution of the 20 leading energetic modes; (c) temporal coefficients of Modes 2 and 

3 and (d) frequency spectra of Modes 2 and 3; (e) temporal coefficients of Modes 4 and 5 and 

(f) frequency spectra of Modes 4 and 5   

Contours of the POD velocity modes of the square rib are shown in Figure 13: (a) and (c) show 

the most energetic pair of the fluctuation modes (Modes 2 and 3), while (e) and (g) show the 

following pair (Modes 4 and 5) of the streamwise velocity. The pairs have similar level of 

energy as shown in Figure 12 (b) indicating the downstream convection of the modes. The first 

pair of POD modes shows a strong shear layer around the edge of the wake flow, while the 

second pair shows positive and negative velocity regions with a shorter streamwise length scale 

compared with the first pair. Figure 13 (b, d, f, h) display the cross-stream velocity contours of 

Modes 2, 3 and Modes 4, 5. The positive and negative pairs are clearly seen and shorter length 

scale regions are also observed in the higher modes of Modes 4, 5 compared with those of 

Modes 2, 3. 
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Figure 13: POD modes of the streamwise (a, c, e, g) and cross-stream (b, d, f, h) velocities for 

the square rib: (a, b) POD Mode 2; (c, d) POD Mode 3; (e, f) POD Mode 4 and (g, h) POD 

Mode 5 

Figure 14 (a) shows the 𝐿2-norm distribution of all pressure POD modes for the square rib. The 

𝐿2-norm decays exponentially from the first modes to the following modes faster than the 

energy contained in the velocity modes as shown in Figure 12 (a). The contribution of the most 

energetic modes is given in Figure 14 (b). The first POD mode corresponds to the mean pressure 

and contains almost 35% of the total energy while the following fluctuation POD modes are 

much less energetic, with less than 2% of the total energy of the pressure field. The time 

histories of the coefficients of Modes 2 and 3 are shown in Figure 14 (c) with the frequency 

spectra of the two modes in Figure 14 (d). Different spectra of the two modes are shown, which 

indicates that the two modes cannot form a mode pair. A broadband distribution of the spectra is 

also observed within the low frequency range.  
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(a)  

 

(b) 

 
(c) 

 

(d)    

 
Figure 14: Modal decomposition of the pressure for the square rib: (a) energy of modes, (b) 

energy contribution of 20 most energetic modes (c) coefficients of Modes 2 and 3 and (d) 

frequency spectra of Modes 2 and 3 

 

Figure 15 displays the pressure contours of Modes 2 to 9 for the square rib which are fluctuation 

modes and contain 9.5% of the total energy of the pressure field in the 2D plane. Figure 15 (a) 

shows a single large-scale pressure structure of Mode 2. Figures 15 (b, c) shows the energetic 

pair of Modes 3 and 4, which display wave-packet form of structures with similar length scale 

of the structures and indicate downstream convection of the structures. Furthermore, the POD 

modes shown in Figures 15 (d) to (g) also appear in pairs with a decreasing length scale of the 

turbulent structures that are mostly located on the shear layer behind the rib. 
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Figure 15: POD modes of the pressure for the square rib: (a) to (h) show POD Modes 2 to 9 

 

4.2.1.2 The trapezoidal rib 

Figure 16 (a) shows the energy distribution of the velocity POD modes for the trapezoidal rib 

case. An exponential decay of the energy from the first modes to the following higher modes is 

observed. Figure 16 (b) displays the energy contribution of the 20 most energetic modes. The 

first mode corresponds to the mean flow and contributes with 35% of the total kinetic energy, 

while each of the following fluctuation modes contains less than 1% of the total energy. It can 

be seen that the mean flow occupies more energy than that of the square rib which also indicates 

that velocity fluctuations of wake flow behind the trapezoidal rib are weaker than those behind 

the square rib. The temporal coefficients as well as their frequency spectra of Modes 2 and 3 are 

shown in Figures 16 (c) and (d). The peaks of the two Modes temporal coefficients are in the 

low frequency range and there is slight difference between the two modes. A chaotic behaviour 

is seen in the time histories of the coefficients of Modes 4 and 5 as shown in Figure 16 (e) and 

the spectra of the two modes shown in Figure 16 (f) display similar broadband distribution.  
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(a)  

 

(b) 

 
(c) 

 

(d) 

 
(e) 

 

(f)  

 

Figure 16: Modal decomposition of the velocities for the trapezoidal rib: (a) energy of modes; 

(b) energy contribution of most energetic modes; (c) coefficients of Modes 2 and 3, (d) 

frequency spectra of Modes 2 and 3; (e) temporal coefficients of Modes 4 and 5 and (f) 

frequency spectra of Modes 4 and 5   

The first fluctuation modes are shown in Figures 17 (a) to (h). There is also difference of the 

mode shapes between Modes 2 and 3, indicating that the two modes cannot form a pair. The 

streamwise velocities of the first mode show strong flow structures along the shear layer of the 

wake region. The second mode displays large-scale positive and negative alternate structures. 

The shapes of Modes 4 and 5 are similar, which can form a pair of modes. This pair of modes 

shows shorter vortical structures compared with the first pair located with a distance of 
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8~10𝐻 from the back face of the rib. Together with the streamwise velocity modes, the large-

scale spanwise rollers are indicated by these POD modes.  

  

  

  

  

Figure 17: POD modes of the streamwise (a, c, e, g) and cross-stream (b, d, f, h) velocities for 

the trapezoidal rib: (a, b) POD Mode 2; (c, d) POD Mode 3; (e, f) POD Mode 4 and (g, h) POD 

Mode 5 

The 𝐿2 −norm distribution of the pressure modes for the trapezoidal rib is given in Figure 18 

(a). A faster exponential decay of the 𝐿2 −norm from the most energetic modes to the less 

energetic modes is observed compared with the velocity POD modes as shown in Figure 16 (a). 

The energy contribution of the first 20 modes is presented in Figure 18 (b). The first mode 

corresponds to the mean pressure, containing more than 35% of the total energy, while the 

higher modes contributes less than 2% of the total pressure energy. The temporal coefficient and 

the frequency spectrum of Mode 2 are shown in Figures 18 (c) and (d). Low frequencies of the 

mode are observed. POD Modes 3 and 4 appear in pair which is indicated by their similar 

broadband frequency distribution of the temporal coefficients. 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
(e) 

 

(f) 

 
Figure 18: Modal decomposition of the pressure for the trapezoidal rib: (a) energy of modes; (b) 

energy contribution of the leading energetic modes; (c) coefficients of Mode 2; (d) frequency 

spectrum of Mode 2; (e) coefficients of Modes 3 and 4; (f) frequency spectra of Modes 3 and 4 

Figure 19 shows the pressure POD Modes 2 to 10 for the trapezoidal rib. They contain 10% of 

the total pressure energy in the 2D plane. The single Mode 2 is presented in Figure 19 (a) and 

Figures 19 (b, c) show the most energetic pair of modes (Modes 3 and 4). The wave-packets are 

also shown, and their length scales are decreasing with higher modes. The high order POD 

modes are shown in Figures 19 (d) to (i) and they are mostly located around the shear layer of 



78  

 25 

 
the wake flow. Furthermore, the attachment of the fluctuations to the bottom wall is observed in 

these high order modes. 

 

  

  

  

  
Figure 19: POD modes of the pressure for the trapezoidal rib: (a) to (i) show POD Modes 2 to 

10 

 

4.2.1.3 The rectangular rib 

Figure 20 (a) shows the energy distribution of the velocity POD modes for the rectangular rib. It 

also has an exponential decay from lower order modes to higher order modes. Figure 20 (b) 

shows the energy containing in the first 20 modes. The mean flow represented by the first mode 

contributes with 35% of the total kinetic energy, while the fluctuation modes have less than 1% 

of the total energy. The temporal coefficients of Modes 2 and 3 are given in Figures 20 (c, d), 
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which show the low frequency of the two modes. However, compared with those of the square 

and trapezoidal ribs, wider frequency distributions are observed for the two modes, indicating a 

more chaotic behaviour. Figures 20 (e, f) displays the temporal information of the following pair 

of Modes 4 and 5. It is shown that the corresponding frequency spectra of this pair have wide 

distribution within the low frequency range.  

(a) 

 

(b) 

  
(c) 

 

(d) 

 
(e) 

 

(f) 

 

Figure 20: Modal decomposition of the velocities for the rectangular rib: (a) energy of modes; 

(b) energy contribution of most energetic modes; (c) coefficients of Modes 2 and 3, (d) 

frequency spectra of Modes 2 and 3; (e) coefficients of Modes 4 and 5, and (f) frequency spectra 

of Modes 4 and 5 
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The most energetic pair of modes of the velocities in the streamwise plane (Modes 2 and 3) is 

shown in Figures 21 (a) to (d) while the following pair (Modes 5 and 6) is given in Figures 21 

(e) to (h). The large-scale structures of the first pair are located far from the rib around 𝑥/𝐻 =

10~15. The streamwise and the cross-stream velocities of the first pair shows similar large-

scale rollers structures convected downstream. Their streamwise length-scales are larger than 

the first pair of modes of the square and trapezoidal ribs. The second pair displays shorter length 

scale compared with the first pair. 

  

  

  

  

Figure 21: POD modes of the streamwise (a, c, e, g) and cross-stream (b, d, f, h) velocities for 

the rectangular rib: (a, b) POD Mode 2; (c, d) POD Mode 3; (e, f) POD Mode 4 and (g, h) POD 

Mode 5 

The 𝐿2 −norm distribution of all the pressure POD modes for the rectangular rib is shown in 

Figure 22 (a). It has a faster exponential decay of the energy compared to the energy distribution 

of the velocity POD modes. The 𝐿2 −norm contribution of the most energetic modes is 
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presented in Figure 22 (b). The first mode corresponds to the mean pressure, contributing with 

37% of the total energy, while each of the following modes contributes less than 2% of the total 

energy. Figure 22 (c) shows the temporal coefficients of the pair of Modes 2 and 3 which show a 

chaotic behaviour. The frequency spectra of the first pair of modes is displayed in Figure 22 (d) 

and they are more distributed in high frequency range compared to the other ribs. 

(a)  

 

(b) 

 
(c) 

 

(d) 

 
Figure 22: Modal decomposition of the pressure for the rectangular rib: (a) energy of modes; (b) 

energy contribution of most energetic modes; (c) coefficients of Modes 2 and 3 and (d) 

frequency spectra of Modes 2 and 3 

The first four pairs of the fluctuation pressure POD modes for the rectangular rib are shown in 

Figure 23. In total, they have 13% of the pressure energy in the 2D plane. Figures 23 (a) and (b) 

show the first pair of modes (Modes 2 and 3) with a length scale close to the height of the large 

recirculation motion. The next two pairs of POD modes are shown in Figures 23 (c) to (f) 

(Modes 4 to 7). They have higher streamwise wavenumber and are located on the edge of the 

shear layer. Also, small-scale turbulent structures can be seen in Figures 23 (g) and (h), Modes 8 

and 10, on the shear layer close to the rib. 
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Figure 23: POD modes of the pressure for the rectangular rib: (a) to (h) show POD Modes 2 to 9 

 

4.2.2 Proper orthogonal decomposition analysis along the spanwise direction 

     To further investigate the 3D characteristics of the coherent structures in the wake flows, 

POD analysis is also applied to the velocity components (𝑣, 𝑤) on ZY-planes. Two planes are 

chosen with distances of 𝐿𝑥,POD = 1𝐻 and 6𝐻 to the back face of the ribs, as shown in Figure 

24.   

 

Figure 24: Representation of the snapshots assembling along the spanwise direction 
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The total number of spatial points of each snapshot ranges from 12342 to 15972 depending on 

the rib shapes and meshes on the selected plane. A convergence study of the most energetic 

modes is done in order to determine an acceptable number of snapshots and time step. Figure 25 

shows the mean value of 휀𝑜𝑟𝑡ℎ𝑜 of the ten most energetic POD modes of all geometries between 

different numbers of snapshots and the time step. It can be seen that an acceptable convergence 

can be achieved when ∆𝑡POD is 0.5 and a total of 1600 snapshots are used to conduct the 

analysis for each bottom-mounted rib.  

(a) 

 
 

(b) 

 
 

(c) 

 
 

(d) 

 
 

Figure 25: The mean value of 휀𝑜𝑟𝑡ℎ𝑜 of the ten most energetic modes between different sets of 

snapshots of the velocity modes based on: (a) number of snapshots; (b) ∆𝑡POD of the velocity 

modes at 𝐿𝑥,POD = 1𝐻 behind the ribs; (c) number of snapshots; (d) ∆𝑡POD of the velocity 

modes at 𝐿𝑥,POD = 6𝐻 behind the ribs 
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4.2.2.1 The square rib  

The energy distribution of all the velocity POD modes with 𝐿𝑥,POD = 1𝐻 is shown in Figure 26 

(a), while the energy contribution of the 20 leading modes is presented in detail in Figure 26 (b). 

The first mode also corresponds to the mean flow, contributing with more than 9% of the total 

energy, while the following modes contribute with less than 2% of the kinetic energy of the flow 

in the 2D plane.  

(a)  

 

(b)  

 
  

Figure 26: Modal decomposition of the velocities at 𝐿𝑥,𝑃𝑂𝐷 = 1𝐻 : (a) energy of modes and (b) 

energy contribution of most energetic modes  

Contours of the POD velocity modes with 𝐿𝑥,𝑃𝑂𝐷 = 1𝐻 are shown in Figure 27: (a) and (c) 

show the first pair of the fluctuation modes (Modes 2 and 3), while (e) and (g) show the second 

pair (Modes 4 and 5) of the cross-stream velocity. The two modes of each pair have similar level 

of energy as shown in Figure 26 (b) indicating the downstream convection of the flow modes. 

Both pairs show a strong shear layer above the rib height which is located on the edge of the 

wake flow. Figures 27 (b, d, f, h) display the spanwise velocity contours of Modes 2, 3 and 

Modes 4, 5, showing more complex turbulent structures which indicates a chaotic flow in the 

spanwise direction inside the near wake region.  

The energy distribution of the velocity POD modes at 𝐿𝑥,POD = 6𝐻 behind the square rib is 

shown in Figure 28 (a). An exponential decay of the energy distribution with the increasing 

mode number is observed and the energy contribution of the most energetic modes is presented 

in Figure 28 (b). It can be seen that only fluctuation modes appear since the mean values for 

𝑣,𝑤 are small at this streamwise location. 
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Figure 27: POD modes of the velocities at 𝐿𝑥,𝑃𝑂𝐷 = 1𝐻 after the square rib: (a, b) POD Mode 

2; (c, d) POD Mode 3; (e, f) POD Mode 4; and (g, h) POD Mode 5 with the cross-stream 

velocities (a, c, e, g) and the spanwise velocities (b, d, f, h) 
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(a) 

 

(b)  

 
  

Figure 28: Modal decomposition of the velocities at 𝐿𝑥,𝑃𝑂𝐷 = 6𝐻: (a) energy of modes and (b) 

energy contribution of most energetic modes 

 

Contours of the POD velocity modes with 𝐿𝑥,𝑃𝑂𝐷 = 6𝐻 downstream the square rib are shown in 

Figure 29 and all of them can be considered fluctuation modes. For the first pair of Modes 1 and 

2, the structures occupy the whole area of the wake region. Large-scale positive and negative 

regions of the cross-stream velocity indicates strong downwards and upwards flows. Together 

with the spanwise velocity as shown in Figures 29 (b) and (d), Modes 1 and 2 represents large-

scale streamwise vortices. Modes 3 and 4 of the second pair have smaller length-scale 

comparing with Modes 1 and 2. The modes shapes also represent streamwise vortices with a 

smaller spanwise length.  
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Figure 29: POD modes of the velocities at 𝐿𝑥,POD = 6𝐻 after the square rib: (a, b) POD Mode 

1; (c, d) POD Mode 2; (e, f) POD Mode 3; and (g, h) POD Mode 4 with the cross-stream 

velocities (a, c, e, g) and the spanwise velocities (b, d, f, h) 
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4.2.2.2 The trapezoidal rib 

The energy distribution of the velocity modes at 𝐿𝑥,POD = 1𝐻 downstream the trapezoidal rib is 

given in Figure 30 (a) and it is possible to observe an exponential decay of energy from lower 

modes to higher modes. The energy contribution of the first 20 modes is presented in Figure 30 

(b). The first mode, corresponding to the mean flow, contains 8% of the total energy, while each 

of the higher order POD modes contribute with less than 2% of the energy.  

(a)  

 

(b) 

 
Figure 30: Modal decomposition of the velocities at Lx,POD = 1H after the trapezoidal rib: (a) 

energy of modes and (b) energy contribution of most energetic modes 

Contours of the POD velocity modes at 𝐿𝑥,POD = 1𝐻 behind the trapezoidal rib are shown in 

Figure 31. Figures 31 (a) to (d) show two most energetic single fluctuation modes (Modes 2 and 

3), while (e) to (h) show the pair of Modes 4 and 5. The complex and chaotic flow behaviours 

are shown in these modes.  

Figure 32 (a) shows the energy distribution of all the velocity POD modes at 𝐿𝑥,POD = 6𝐻 

behind the trapezoidal rib with a lower exponential decay compared with that at 𝐿𝑥,POD = 1𝐻. 

However, different from that of the square rib, the energy fraction of the first mode given in 

Figure 32 (b) is around 2% of the total energy of the velocity components in the 2D plane and it 

still can represent the mean flow. Figures 33 (a) to (h) gives the first two pairs of the cross-

stream and spanwise velocities of POD modes (Modes 2, 3 and Modes 4, 5) at 𝐿𝑥,POD = 6𝐻 

downstream the trapezoidal rib with structures distributed throughout the center part of the wake 

region. The first pair clearly shows large-scale streamwise vortical structures with low spanwise 

wavenumber while the second pair also displays strong streamwise vortical structures with 

relatively higher spanwise wavenumber.  
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Figure 31: POD modes of the velocities at 𝐿𝑥,𝑃𝑂𝐷 = 1𝐻 after the trapezoidal rib: (a, b) POD 

Mode 2; (c, d) POD Mode 3; (e, f) POD Mode 4; and (g, h) POD Mode 5 with the cross-stream 

velocities (a, c, e, g) and the spanwise velocities (b, d, f, h) 
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(a) 

 

(b)  

 

Figure 32: Modal decomposition of the velocities at 𝐿𝑥,𝑃𝑂𝐷 = 6𝐻 after the trapezoidal rib: (a) 

energy of modes and (b) energy contribution of most energetic modes   
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Figure 33: POD modes of the velocities at 𝐿𝑥,𝑃𝑂𝐷 = 6𝐻 after the trapezoidal rib: (a, b) POD 

Mode 2; (c, d) POD Mode 3; (e, f) POD Mode 4; and (g, h) POD Mode 5 with the cross-stream 

velocities (a, c, e, g) and the spanwise velocities (b, d, f, h) 

 

4.2.2.3 The rectangular rib  

Figure 34 (a) gives the energy distribution of all velocity POD modes at 𝐿𝑥,POD = 1𝐻 after the 

back face of the rectangular rib with an exponential decay. The energy contribution of the first 

20 modes is given in detail in Figure 34 (b) with the first mode dominating the flow with 9% of 

the total energy in the 2D plane, while each of the following fluctuation modes contain less than 

2% of the energy contribution. POD velocity modes at 𝐿𝑥,𝑃𝑂𝐷 = 1𝐻 after the rectangular rib are 

displayed in Figure 35 and give complex flow structures: (a) to (d) show the fluctuation Modes 

2 and 3 with strong structures around the shear layer at 𝑦/𝐻 ≈ 2 with a few vortical structures 

inside the near wake region. This pair of modes does not seem to have significant large-scale 

turbulent structures inside the wake region. Modes 4 and 5 are displayed in Figures 35 (e) to (h) 

showing a large-scale cross-stream length vortical structure centered at the rib height.         

(a)  

 

(b)  

 
  

Figure 34: Modal decomposition of the velocities at 𝐿𝑥,𝑃𝑂𝐷 = 1𝐻 after the rectangular rib: (a) 

energy of modes and (b) energy contribution of most energetic modes  
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Figure 35: POD modes of the velocities at 𝐿𝑥,𝑃𝑂𝐷 = 1𝐻 behind the rectangular rib: (a, b) POD 

Mode 2; (c, d) POD Mode 3; (e, f) POD Mode 4; and (g, h) POD Mode 5 with the cross-stream 

velocities (a, c, e, g) and the spanwise velocities (b, d, f, h) 
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The energy distribution of all velocity POD modes at 𝐿𝑥,𝑃𝑂𝐷 = 6𝐻 after the back face of the 

rectangular rib is given in Figure 36 (a). The energy contribution of the first 20 modes is shown 

in Figure 36 (b) with the most energetic mode contributing with only 2.5% of the kinetic energy, 

however it can be considered a representation of the mean flow. The following modes contain 

less than 2% of energy contribution individually. Contours of the POD velocity modes at 

𝐿𝑥,𝑃𝑂𝐷 = 6𝐻 downstream the rectangular rib are shown in Figure 37: (a, b) show the single 

fluctuation Mode 2. The cross-stream velocity of Mode 2 represents spanwise uniform 

downward flow in the wake and the spanwise velocity of this mode represents the flow towards 

the two spanwise directions. The pair of Modes 3 and 4 is shown in Figures 37 (c, d) and (e, f) 

representing streamwise vorticities. Figures 37 (g, h) display Mode 5 which represents an 

ejection motion in the wake flow.  

(a)  

 

(b)  

 
  

Figure 36: Modal decomposition of the velocities at 𝐿𝑥,𝑃𝑂𝐷 = 6𝐻 after the rectangular rib: (a) 

energy of modes and (b) energy contribution of most energetic modes   
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Figure 37: Modal decomposition of the velocities at 𝐿𝑥,𝑃𝑂𝐷 = 6𝐻 after the rectangular rib: (a, b) 

POD Mode 2; (c, d) POD Mode 3; (e, f) POD Mode 4; and (g, h) POD Mode 5 with the cross-

stream velocities (a, c, e, g) and the spanwise velocities (b, d, f, h) 
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5. Conclusion 

In the present study, Spalart-Allmaras Delayed Detached-eddy simulations of flows over three 

different bottom-mounted ribs subjected to a boundary layer with a thickness of 𝛿/𝐻 = 0.73 at 

𝑅𝑒 = 1.0 × 106 are carried out. Convergence studies based on the time- and spanwise-averaged 

hydrodynamic quantities 𝐶𝐷̅̅̅̅  and 𝐶𝐿̅̅ ̅ are performed to determine the grid and time step 

resolutions. The time- and spanwise-averaged streamwise velocities behind the square rib were 

compared with the experimental data reported by Liu et al. (2008) and a generally good 

agreement is achieved. Results of the hydrodynamic quantities and the turbulent wake flow 

were analysed. Proper orthogonal decomposition of the velocities and the pressure at one 2D 

XY-plane and two ZY-planes is used to extract the most energetic modes and careful 

convergence studies have been carried out to determine the necessary number of snapshots and 

the time step between the snapshots. The main conclusions can be outlined as follows: 

1. The complexity of the vortical structures is reduced for the rectangular and the 

trapezoidal ribs compared with the square rib, resulting in reduced pressure differences 

of the rectangular and trapezoidal ribs and thus lower drag coefficients compared with 

the square rib. 

2. A positive correlation between the time-histories of 𝐶𝐷 and 𝐶𝐿 for the three structures is 

observed. The streamlines of the time- and spanwise-averaged flows for the three ribs 

display large recirculation motions behind the ribs. The square rib produces the longest 

recirculation motion among the three ribs. There are two small recirculation motions in 

front and in the corner of the back face of the square and rectangular ribs while for the 

trapezoidal rib, the flow streamlines are attached to the rib surface with no other small 

recirculation motion. 

3. The energy contained in the POD modes show an exponential decay from the first 

modes to the higher modes. For the flow velocity components and pressure at the 2D 

XY-plane, the first mode corresponds to the mean flow and contains more than 30% of 

the total energy for all the different ribs. Most of the POD modes of the velocities and 

pressure fluctuation appear in pairs, indicating the downstream convection of the flow 

structures. The first pair of the fluctuation POD modes shows strong shear layer 

stemming from the ribs. High order fluctuation modes on the XY-plane display a wave-

packet form of structures with alternate positive and negative value regions and their 

length scales decrease with the increasing order. The structures of the high order 

pressure modes are mainly located around the shear layer of the wake flow. 
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4. The POD modes of the cross-stream and spanwise velocities at the two ZY-planes are 

analysed. With a distance of 1𝐻 to the ribs back face, the POD modes are mainly 

located around the shear layer. For the square rib with a distance of 6𝐻 to the rib back 

face, due to the small mean value of the cross-stream velocity and the zero mean 

spanwise velocity, there is no POD mode for the mean flow. Also, the POD modes of 

the velocities represent streamwise vorticities with different length-scales. For the 

trapezoidal and rectangular ribs, the first mode corresponds to the mean flow and the 

fluctuation modes also display streamwise vortices. These streamwise vortical 

structures indicate the strong motions in the spanwise direction. 
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Chapter 6 

 

6. Concluding Remarks 

6.1 Conclusions 

In the present thesis, flows over different bottom-mounted structures are investigated 

using different numerical simulations. In the first study, which is presented in Chapter 4, 2D 

steady RANS with 𝑘 − 𝜔 SST turbulence model is used to simulate the flow over a single and 

two tandem cylinders with different configurations. In all simulations, a good grid convergence 

has been achieved using a mesh number of less than 75000 cells and the validation study has 

shown that the results are in agreement with the previous published studies. For the cases with a 

single cylinder and different 𝐵/𝐷s, the values of 𝐶𝐷, 𝐶𝐿 and 𝐿𝑤 decrease with the increasing 

𝐵/𝐷. When another cylinder with the same diameter is added downstream the original single 

cylinder, there are significant differences in the results. The absolute values of the 

hydrodynamic quantities for both cylinders tend to decrease with the increase of 𝐿/𝐷 until 

minimum absolute values are reached with a critical 𝐿/𝐷. When 𝐿/𝐷 is larger than the critical 

value, the values of 𝐶𝐷 and 𝐶𝐿 for the two cylinders tend to develop to those of the single 

cylinder cases. The critical value of 𝐿/𝐷 reduces with the decreasing 𝐵/𝐷 and it is found to be 

very close to the value of 𝐿𝑤 for the single cylinder case. Such results are useful for the on-

bottom stability design of subsea tandem structures. 

In the second study, which is presented in Chapter 5, 3D SADDES is employed to 

investigate the flows over square, triangular and rectangular wall-mounted ribs. The 

convergence studies shown that a grid size of around two million cells achieves good 

convergence between cases. Also, validation of the results for the square rib is achieved against 

previous published experimental data. Hydrodynamic coefficients, such as 𝐶𝐷 and 𝐶𝐿, time- and 

spanwise averaged streamlines, and instantaneous 3D flow structures are shown for each rib. 

Due to its streamlined geometry, 𝐶𝐷 and 𝐶𝐿 of the trapezoidal rib are lower compared with those 

of the square and rectangular ribs. Moreover, the flow in the wake region was analysed using 

the POD technique. A clear 3D behaviour of the flow is also observed by the streamwise and 

spanwise planes in which POD is applied. Strong turbulent fluctuations are found to be located 

around the shear layer of the flow. The POD modes in the XY-planes show wave-packet 

structures that convected downstream and the POD modes in the ZY-planes mainly show 

streamwise vortical structures. 
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6.2 Recommendations for Future Work 

 Based on the investigations presented in this thesis, it is possible to address a few future 

research studies that would have great contribution to the topic. They are summarized as 

follows:   

 Investigation of the flow over two tandem bottom-mounted cylinders with different 

diameters at Reynolds number of 1.31 × 104 subjected to boundary layer flow with 

different thicknesses. 

 Investigation of the flow over two tandem bottom-mounted cylinders at different 

Reynolds numbers, e.g. Reynolds number of O(106).  

 3D SADDES study of the flow over single and two tandem bottom-mounted ribs with 

geometries different from the ones investigated in Chapter 5, such as triangular ribs or 

trapezoidal ribs with different incline angles of the slopes, at high Reynolds number of 

O(106) and POD analysis of the flow structures in the wake region. 

 3D LES study of the flow over two bottom-mounted cylinders with different spacing 

between them at high Reynolds number of O(106) and POD analysis of the flow 

structures in the wake region. 

 


