u

University of
Stavanger

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER’S THESIS

Study programme/specialisation:

) Spring/-Asturan-semester, 2020
Computer Science

Open / €enfidenttal-

Author: Eivind Bakkevig E‘N,'ng{ &HQVL)

Programme coordinator: Hein Meling

Supervisor(s): Hein Meling and Thomas Stidsborg Sylvest

Title of master’s thesis:

Implementing a Distributed Key-Value Store Using Corums

Credits: 30 ECTS

Keywords:

. 60
Distributed Systems, Consensus Number of pages: 2%

Algo.r lth.ms’ Corums, Paxos, State Machine + supplemental material/other: C0de on
Replication Github

Stavanger, .June 30/2020

date/year

Title page for master’s thesis
Faculty of Science and Technology

University
of Stavanger

Faculty of Science and Technology
Department of Electrical Engineering and Computer Science

Implementing a Distributed Key-Value

Store Using Corums

Master’s Thesis in Computer Science

by
Eivind Bakkevig

Supervisors
Hein Meling
Thomas Stidsborg Sylvest

June 30, 2020

Abstract

Corums is a novel framework made for simplifying the process of building fault-tolerant
systems. In this thesis, we investigate whether Corums is suitable for implementing a
practical fault-tolerant service by using it to implement a distributed key-value store,
which we call Distributed Dictionary. This service uses a Corums-based Multi-Paxos
implementation to handle state replication. We assess the usability of Corums in terms
of ease of adoption, availability and protection from user errors. We also run experiments
to evaluate the performance efficiency of Corums in a system like ours. We discover that
the abstractions Corums provides lead to more readable code and an execution flow that
is easier to reason about than traditional programming paradigms. We also discover and

discuss areas where the Corums framework should be improved.

Acknowledgements

I would like to thank my supervisor Hein Meling for his guidance and encouragement
throughout the course of this thesis. I would also like to thank Thomas Stidsborg Sylvest
for his technical help in learning to use Corums as well as his continuous improvements

to the framework as issues were discovered.

ii

Contents

Abstract i
Acknowledgements ii
1 Introduction 1
1.1 Project Description 2
1.2 Contributions 2
1.3 Outline o 3

2 Background 4
2.1 Distributed Systems 4
2.1.1 Why We Need Distributed Systems 4

2.1.2 Challenges of Distributed Systems 7

2.2 Replicated State Machines 0oL 7
2.3 Consensus Algorithms 8
2.3.1 The Paxos Protocol 9

2.3.2 Batching and Pipelining oL 13

3 Corums 15
3.1 Motivation L 15
3.2 Network Communication Using Reactive Programming 16
3.2.1 Reactive Programming o oL 16

3.2.2 Corums’ Hybrid Programming Model 17

3.2.3 Corums Communication Streams 18

3.2.4 Corums In-Memory Network, 19

3.3 Single-Threading 20
3.4 Persistency 21

4 TImplementing a Distributed Dictionary 22
4.1 Introducing Distributed Dictionary 22
4.2 System Architecture for Distributed Dictionary With Paxos Using Corums 23
4.2.1 Client Handling Module 24

422 PaxosModule. Lo 26

4.2.3 Failure Detection and Leader Election Module 29

4.2.4 Modifying the Corums Networking Implementation 32

iii

CONTENTS iv
4.3 Development Environment oo 33
4.3.1 Using Corums In-Memory Network for Testing 33

4.3.2 Using Docker to Prepare for Benchmark Measurements 33

5 Corums Evaluation 35
51 Corums Usability 36
5.2 Corums Compatibility oo 37
5.3 Distributed Dictionary Performance Efficiency 38
5.3.1 Experimental Setup 38

5.3.2 Experimental Results 39

6 Lessons Learned, Conclusion and Future Directions 43
6.1 Lessons Learned e 43
6.1.1 Learning a Framework With No Community 43

6.1.2 Lack of Documentation 44

6.1.3 Contributing to Corums 44

6.1.4 Learning C# e 44

6.2 Future Work 44
6.3 Conclusion 46
List of Figures 46
List of Tables 48
A Experimental Data 50
B Distributed Dictionary Source Code 51
Bibliography 52

Chapter 1

Introduction

Modern digital services are required to be fast, stable, durable and safe. An update on a
global system performed by an individual in Southeast Asia needs to be visible to an
another system user located in North America, instantly. Tens of thousands of users
must be able to connect to a system at the same time, without experiencing a hiccup.
When the power goes out in a data center due to an electrical fire, the user must remain
oblivious. The engineering behind such achievements is highly complex and requires

expert knowledge.

In this thesis, we look at tools that aim to assist in the process of developing such systems.
We look at implementing Paxos [1-3], a renowned algorithm used to achieve consensus
among machines in a distributed system. Paxos is used to achieve strong consistency in
state machine replication in high-availability systems. It is a tried and tested algorithm

that has proven it’s worth over decades of development in the field of distributed systems.

We also look at Corums, a messaging framework that aims at alleviating software engineers
from some of the implementation details of consensus algorithms, such as Paxos, which
is known to be a complex algorithm to implement correctly. Corums is a new framework
under development by the BBChain research group at UiS, headed by the supervisor of
this thesis, Hein Meling.

The main purpose of this thesis is to implement a real-world application utilizing Corums
to evaluate the gain in ease of implementation of consensus algorithms and to evaluate
the performance of Corums in an application that depends on consensus algorithms. The
result is a scalable and fault-tolerant replicated key-value store with an ASP.NET Core
Web API [4] wrapped around to handle the communication with clients. This approach

means that any web client can utilize this key-value store, which leaves all options for

tools used to test similar systems open to test our work as well, which we consider an

important point for further development and use of the work done in this thesis.

1.1 Project Description

The project description given prior to starting our work was the following;:

The goal of this project is to implement a distributed highly available key
value store with strong consistency guarantees using the Corums framework.
Such systems are built using a consensus algorithm, e.g. Raft or Multi-Paxos
at their core. The student is free to choose an algorithm in cooperation with

the supervisors.

Corums is an artifact of the current research, into simplifying implementation
of consensus algorithms, conducted by the research group headed by Hein
Meling. Corums is a .NET framework specifically designed for this purpose.

This means that the key value store must be implemented in C#.

The project provides the opportunity for the student to dig into and under-
stand how enterprise systems such as Cassandra and distributed databases
functions at a low level. Thereby, providing the student with invaluable
knowledge before pursuing be it a professional or academic career afterwards.

Furthermore, the project is very much open for the ambitious student.

1.2 Contributions

Taking the given project description into consideration, we decided on implementing
Paxos to achieve strong consistency between multiple machines. High availability is
achieved by having multiple machines and using them so that the system can keep

functioning in the event of one or more server failures.

As the main focus of Corums is to simplify the implementation of consensus algorithms,
the greatest contribution of our work was to come in with knowledge of consensus
algorithms, but no knowledge of Corums, and implement a consensus algorithm using
Corums. This way, we were able to provide new, valuable feedback to the developers of
Corums, helping them discover framework weaknesses in terms of elements or abstractions

that are hard to understand for its users.

In addition, we contributed by evaluating the performance of Corums as the backbone
for communication in a realistic distributed environment. We stress-tested our service to

measure the performance of our use of Corums under heavy load.

Finally, we contributed to the networking implementation of Corums by implementing

our own TCP socket communication and integrating it with Corums.

1.3 Outline

The remainder of this thesis will have the following structure:

Chapter 2 introduces the reader to the relevant background info for the work done
in this thesis. It discusses distributed systems and the challenges they come with. It
introduces state machine replication and consensus algorithms. Finally, it explains the

Paxos algorithm and some common optimizations to it.

Chapter 3 presents Corums. It will explain what the motivation behind Corums is and

what Corums brings to the table when it comes to implementing consensus algorithms.

Chapter 4 will give a detailed explanation of our fault-tolerant distributed key-value
store, which we have named Distributed Dictionary. It will give a general overview of
how the system is structured, as well as going into how the important components are

implemented.

Chapter 5 contains an evaluation of Corums as a software framework, as well as

experimental results from running load-tests on our replicated key-value store.

Chapter 6 lists some of the lessons we have learned during the work on this thesis. It
also suggests directions for future work on Corums and our service. Finally, it concludes

the work we have done.

Chapter 2

Background

This chapter will explain the background of why this thesis work has been done. The
information given in this chapter is considered a prerequisite to understand the work
done in the practical solution and experiments. It will explain the general challenges
that leads to the development of distributed systems, the concept of a replicated state
machine as well as what a consensus algorithm is, why we need it and the way our choice

of algorithm, Paxos, works.

2.1 Distributed Systems

A distributed system is a system running on multiple physical machines, passing messages
over a network to coordinate actions to achieve a common goal. There are multiple
approaches of distributed systems, some that aim to minimize the risk of data loss or
downtime by having redundancy over multiple machines and some that aim to achieve
higher performance by spreading the network traffic to multiple machines, either full-time
or on-demand when the system is under heavy load. Some simply aim to improve
productivity in system maintenance by splitting a system into components that each do
their part in achieving a greater goal, which is typically referred to as a microservice
architecture. Others are naturally distributed to be able to serve users or other systems

in different geographical areas of the world.

2.1.1 Why We Need Distributed Systems

Why do we need to make systems more complex to implement by spreading their pieces

to different physical locations? This introduces a multitude of new headaches that we

never would have to worry about if we just kept every system monolithic (running on

one machine).

Availability

One of the most important factors used to evaluate a computer system’s performance is

availability. According to [5], availability in a computer system is defined as follows:

“Availability means that a system is on-line and ready for access. A variety
of factors can take a system off-line, ranging from planned downtime for
maintenance to catastrophic failure. The goals of high availability solutions
are to minimize this downtime and/or to minimize the time needed to recover

from an outage.”

If a power outage occurs in the building where a monolithic system is running, the service
is gone. All active users will lose their connections, data in transit may be lost and

important events will be missed.

If we consider a system that is distributed to machines in different physical locations with
a reroute to a backup server in the case of an outage, this problem is solved instantly and
thus, the availability of the system is dramatically improved. A system like this is referred
to as a fault-tolerant system. Additionally, if the system’s workload is spread to multiple
components working on multiple machines (known as a microservice architecture), we
can have partial failures, only rendering parts of the system unusable, while other parts
will be working fine. This is not perfect, but obviously better than a full failure of the

entire service.

A similar approach can be implemented in the case of planned downtime for maintenance.
Instead of taking an entire service down to deploy a new version of the code base, a
distributed system with the same processes running on multiple machines would allow
the administrators to deploy to one machine at a time, while the rest of the machines are
answering requests and performing their work as usual. Again, the distributed approach

has dramatically improved availability.

Scalability

Another important point to be made for taking the distributed approach is a system’s

scalability. TechTerms [6] defines a scalable system as follows:

“Scalable hardware or software can expand to support increasing workloads.
This capability allows computer equipment and software programs to grow

over time, rather than needing to be replaced.”

Allowing a system to grow over time can mean multiple things. The size of a system can
be referring to its number of users, the number of tasks it performs, the amount of data
it processes etc. In this context, the meaning of a system’s growth will be the amount of

work it does, which all of the factors above affects.

A computer can only have so many resources, so if the amount of work necessary to run
a service is increasing, the computer will at some point run out of these resources and be
unable to handle more work. Taking the monolithic approach would mean the computer
hardware would need to be replaced to something more powerful. This gets problematic
in terms of financial cost when the workload gets large, as powerful hardware components
are expensive. It’s also limited how powerful a single machine can get. Taking the
distributed approach solves this problem by having the work done by multiple machines,
so that if the amount of work increases substantially, another machine can be added to
the system to increase the total amount of available computing resources. If the workload
is fairly stable, this can be a permanent upgrade. If the increased workload is only a
temporary spike, a scalable system will also allow us to increase/decrease the amount of

resources for limited periods of time.

Speed

An important metric to measure how well a piece of software is performing is to measure
its speed in terms of how long it takes to perform any given task. This is also referred
to as the latency between making a request to perform some operation and getting the

response to that request.

If a monolithic system is slow and we want to do something to improve its speed, it
could be a good solution to divide the work it’s performing between multiple machines,
depending on the nature of the operations it’s performing. If the operations can be split
into multiple independent tasks that each take some time to perform, chances are high
that we could benefit from passing them to multiple “workers” that each execute their
given task and return to the “master”, who combines the results of the tasks to the
result of the whole operation. For this to have a positive impact, it’s important that the
network latency of sending the messages between the “master” and “workers” doesn’t

outweigh the time we saved by not having the “master” do the work itself.

2.1.2 Challenges of Distributed Systems

What makes distributed systems so hard to implement?

o Unreliable communication
When messages must travel over a network to reach a process running on a different
machine, we run the risk of losing messages, losing connections to peers, receiving

faulty messages due to signal noise, etc.

e No synchronized clocks
One of the fundamental difficulties of ordering operations that are to be executed
on multiple machines is that we can’t trust that all machines have the same clock

function. We cannot trust timestamps to decide ordering of messages.

 Concurrency/Parallelism
Multiple processes executing at the same time may be using and updating the same

resources. This requires synchronizing between the different processes.

e Slow communication
Comparing distributed systems to monolithic systems, communicating between
different parts/processes of the system is slow over a network compared to when

all processes run on the same machine.

2.2 Replicated State Machines

The system we have implemented in this thesis is of a type that is commonly referred to
as a finite state machine or simply a state machine. A state machine is an abstraction,
meaning it’s not a name of a physical concrete system, rather it’s an abstract model we
use as a generic way of speaking or writing about some computer systems, typically used

when developing tools to be used for building such systems.

A state machine is any device that holds a state of something at a given time, as a result
of a sequence of operations given from external inputs. The state must be deterministic
based on this sequence of operations, meaning that if we have one state machine and
would like to create another with the same state, we would execute the sequence of
operations that have ran on the first machine and we should have the exact same state

on the second machine as on the first machine.

A replicated state machine is when we have multiple instances of the same state machine

that all have the same state and have had the same sequence of operations executed

on them. Replicated state machines is the principle the systems typically adhere to
when we are creating fault-tolerant services to improve availability. Achieving such a
system is most commonly done by utilizing a consensus algorithm, which is explained in

Section 2.3.

2.3 Consensus Algorithms

Definition of consensus algorithms from [7]:

“A consensus algorithm is a process in computer science used to achieve
agreement on a single data value among distributed systems. Consensus
algorithms are designed to achieve reliability in a network involving multiple
nodes. Solving the issue — known as the consensus problem — is important

in distributed computing and multi-agent systems.”

To achieve the functionality of replicated state machines explained in Section 2.2 in
a real-world application, we must ensure that all machines get the same operations
executed on them to be certain that they all have the same state at all times. This is

the problem that consensus algorithms solve.

As we have already discussed, when designing and implementing a distributed system,

we operate with a mindset based on the infamous Murphy’s law:
“Anything that can go wrong, will go wrong.”

Network partitions happen, power outages happen, computers crash for numerous reasons.
Instead of doing everything possible to prevent these failures and design the system with
an assumption of nothing going wrong, we use consensus algorithms in replicated state

machines to ensure that the service stays up in the event of such failures.

In consensus algorithms, we use the word “proposal” as the terminology for a new
operation that is to be executed on the replicated state machines, if consensus is reached.
We also use the word “decision” as the terminology for when a consensus is reached and
it has been decided that the proposed operation should be executed on all machines. In
general, we aim to achieve the following safety criteria when implementing consensus

algorithms [2]:

¢ Only values that have been proposed may be decided on.
e Only a single value can be decided on.

e No machines believe that a value has been decided unless it actually has been.

2.3.1 The Paxos Protocol

The consensus algorithm we have decided to implement in this thesis is called the Paxos
protocol [1]. Paxos is a flexible consensus algorithm that has been used for numerous
applications over the years. It was first introduced in [1] in 1998 by Leslie Lamport.
The name originates from the Greek island Paxos and a fictional legislative system that
Lamport imagined was used on the island. In this legislative system, the participants
would walk in and out of the parliament as they pleased, and the system should still
function as normal. This was meant to represent a cluster of computers where we expect
some computers to be unavailable at some times. The explanation given in this article
turned out to be perceived as very confusing and because of that, Lamport published a
new paper [2] where he explained the protocol in a simplified manner. This has received
criticism for being too simplified, as it takes away most of the complexity we encounter
when we want to implement the protocol to be used for practical purposes. Either way,
this is the explanation we use as ground material to explain the algorithm in this thesis,

along with [3].

The Paxos protocol aims to satisfy the criteria listed in Section 2.3 with the following

assumptions [2]:

“Agents operate at arbitrary speed, may fail by stopping, and may restart.
Since all agents may fail after a value is chosen and then restart, a solution is
impossible unless some information can be remembered by an agent that has
failed and restarted. Messages can take arbitrarily long to be delivered, can

be duplicated, and can be lost, but they are not corrupted.”

It promises to satisfy the criteria if a majority of the machines in a cluster are up and
running. If a majority of the servers in a system running Paxos stop functioning, the

Paxos protocol won’t be able to reach consensus anymore.

Paxos is explained by introducing us to three different roles, which are called “proposer”,
“acceptor” and “learner”. These three roles all have different tasks that contribute to
reaching a consensus when a new operation is requested by an external input. Each role
may be running on its own physical machine, but the most common approach is for each

machine in a distributed system to run all three roles.

Before we begin to explain the roles and the execution of Paxos, we need to introduce a

few terms:

e Broadcast: In the context of consensus algorithms, a broadcast is used as a term

for sending a message to all nodes participating in the consensus, which commonly

10

would be called a multicast in the networking field. It doesn’t necessarily mean to
send a message to all nodes on the network, which is the common definition of a

broadcast in the networking field.

e Paxos instance: A full execution of the Paxos protocol from receiving a request

with a value from external input to having decided on that value.

e Quorum: The criteria that must be reached for a value to be decided. In Paxos,
this criteria is having a majority of the total number of servers in the system

agreeing to something.

o Paxos round: An increasing unique number that is used to mark a value to be
decided on and whether a message is logically “newer” than another (without taking

actual time into consideration).

e Client: Some external entity which is sending requests to set new values to the

system.

Proposer
The proposers initiate the Paxos instance. They take input from the process which
handles client requests and then proposes to set a new value. When the proposer has

gotten permission from the acceptors, it sends a request to set the value from the client

request.

Acceptor

The acceptors accept proposals made by the proposer. They dictate whether a new value

can be set and they ensure that new values aren’t chosen until a quorum is reached.

Learner
The learners learn new chosen values from the acceptors. Eventually, they will conclude
that a chosen value is decided. When this happens, they notify the client request handling

process that the value requested has been decided, meaning that Paxos has reached a

consensus on it.

Execution Flow

There are 4 different message types used to explain the Paxos protocol:

11

e Propose: Contains the round number.

¢ Promise: Contains the round number and, if a value has been decided, the decided

value along with the round number belonging to it.
e Accept: Contains the round number and the value to be decided.

¢ Learn: Contains the round number and the value to be decided.

Prepare Promise E Accept Learn
St
Leader
s2 >
S3 >
Phase 1 : Phase 2

Figure 2.1: A perfect/ideal Paxos instance.

The execution of Paxos is often explained as two different phases, as illustrated in

Figure 2.1.

Phase one starts when the system receives a client request. The proposer on the leader
node initiates the Paxos instance by broadcasting a propose to all acceptors with a round
number. This symbolizes that the proposer asks for permission from the acceptors to set

a new value.

The acceptors who receive the propose checks if the round number contained within is
higher than the highest round number they have seen before. If it is, they reply with
a promise containing the round number, as well as the previously decided value with
the highest round number associated, if any exist. The promise symbolizes that the
acceptor promises not to accept any proposal with a lower round number than that which
it includes in this promise. Additionally, the acceptors store the new round number from

the received prepare as the new highest round number they’ve seen. Phase one is now

finished.

12

Phase two starts when the proposer who initiated the Paxos instance has received a
quorum of promises from the acceptors. If the proposer doesn’t receive a quorum of
promises in a given time, it will start phase one over again with a higher round number.
After it has a quorum, the proposer broadcasts an accept to all acceptors, containing
either the value with highest round number associated of the values in the received
promises, if there were any, or the value from the client request. The accept also includes
the round number it sent a propose for in phase one. This symbolizes that the proposer

asks the acceptors to agree to setting a new value.

The acceptors who receive the accepts will check if the round number within is higher
than any round number they have responded to before. If it is, they accept the value. If
it isn’t, they ignore/reject the value. If the acceptors accept the value, they finish their
job by broadcasting a learn to all learners. This means that every learner should receive

a learn from every acceptor.

Finally, all learners receive learns. When they have received a quorum of learns, all with
same round number and value, the value in the learns is set on the machine they’re
running on. Phase two is now finished. On the leader node, a response to the client who

made the initial request is sent.

Leader Election

For Paxos to guarantee liveness, meaning that something useful will eventually happen,
we rely on what’s known as a leader election algorithm [8]. The idea of this is to choose
a distinguished machine by some criteria that will act as a leader and coordinator for the
system. The leader will be handling the communication with external input sources and
it will be the only machine that proposes new values. The reason this is necessary to
guarantee liveness is that without it, we could easily end up in a scenario where multiple
proposers try to execute phase one simultaneously and none of the proposals will ever
be decided, because acceptors are seeing higher round numbers in propose messages
constantly, meaning that all accept messages would be ignored, leading to an infinite

loop of phase one attempts without making any progress.

There are many different approaches to failure detection and leader election, such as [9]
and [10]. We won'’t go into details about how leader election algorithms function here,
but it’s important to know that Paxos relies on having one. The details of the leader

election algorithm we implemented is given in Section 4.2.3.

13

Multi-Paxos

In regular Paxos, as described above, only one value can be decided. There has also
been a lot of work done to be able to use Paxos for reaching consensus on multiple
values by chaining instances together. This is known as Multi-Paxos and is one of the
most popular uses of the Paxos protocol. There are many ways of implementing a chain
of Paxos instances and Multi-Paxos simply refers to the concept of chaining instances,
not a specific implementation, as there is no one implementation that will work for all
applications. In Section 2.2, we talk about making sure all replicated state machines
have the same sequence of operations applied to them. This sequence is known as a
transaction log and Multi-Paxos is well suited to maintain such a sequence, as each

operation is represented as a value to be decided by the Paxos protocol.

Implementing Multi-Paxos require some modifications to the Paxos algorithm as we have
described it, typically involving a slot number to mark each decided instance with to
ensure correct ordering. This also means that acceptors will have to inform proposers

about all previously decided values, not just a single one.

Another important note about Multi-Paxos is that a very common optimization to
implement for Multi-Paxos is to only require phase one on startup and leader changes.
This means that as long as we have a stable leader, only phase two is run when new
requests arrive. If the current leader crashes and a new leader is elected, the new leader
must initiate and finish phase one before new client requests can be processed. This
optimization reduces latency and increases throughput greatly in systems with a lot of

traffic during short periods of time.

2.3.2 Batching and Pipelining

Request Batching

Further optimization to Multi-Paxos can be done by collecting requests from clients in a
cache-storage without initiating a Paxos instance until we have reached a certain number
of requests, called the batch size. This reduces the average latency, as storing a request
and replying immediately is very fast compared to waiting for Paxos to reach a consensus.
Once the batch size is reached, the leader will try to get a consensus for all the values
at once. Obviously, this one large request will be slower than a single request is when
running without batching, but as mentioned, the average latency and throughput will be

improved overall as it takes less time to send one large proposal than multiple small ones.

14

Pipelining

Similarly to batching, pipelining is a technique used to reduce latency in Multi-Paxos
under moderate to high traffic-load. Pipelining means that we allow a new Paxos instance
to be started before the previous one has finished. This is especially beneficial in networks

with high latency, while batching gives the largest performance gains in general [11].

More about the results of implementing batching and pipelining in Paxos is found in
[11].

Chapter 3

Corums

Corums is a novel framework intended to simplify the development of consensus algorithms
by providing useful abstractions that hide a lot of the complexity we normally would have
to deal with. This chapter introduces Corums as well as explains some of the properties

that make it stand out as a useful framework for programming consensus algorithms.

This chapter is inspired by [12], as well as good conversations with Thomas Stidsborg

Sylvest.

3.1 Motivation

Implementing, operating and reasoning about consensus algorithms, such as Paxos, is
notoriously difficult. The research being done by the developers of Corums has a focus
on developing a software framework in a mainstream language that will aid in simplifying
the development of consensus algorithms. The main focus of this framework is on source

code readability and ease of adoption.

There have been attempts at making designated programming languages intended for
implementing consensus algorithms, such as DistAlgo [13]. This language has abstractions
that make reading the source code of consensus algorithm implementations as similar
as possible to reading their pseudo-code. This makes for great readability, but it’s not
suitable for mainstream industry adoption, as professionals will lack the tools they are

accustom to when developing in the mainstream programming languages.

Corums is implemented in C# and compiled for the .NET Core framework [14], which is
a very popular open-source, cross-platform software framework used for a large variety
of applications. This is important, as it sets Corums well up for mainstream industry

adoption.

15

16

Other attempts have been made to implement frameworks for implementing consensus
algorithms, similar to the approach that Corums is taking. An example of this is Gorums
[15], which is a software framework implemented using the Go language. It provides
high-level abstractions for sending/receiving messages to multiple nodes at the same time
and the workflow is comparable to that of Corums. Gorums facilitates code readability
similar to Corums, but it’s concurrency model relies on the Go language’s runtime
scheduler, which makes it harder to debug and reason about implementations than the
single-threaded nature of Corums, which we’ll explain in Section 3.3. This point is
mentioned briefly when explaining some of the difficulties of implementing Raft [16] with
Gorums [15] in [17].

3.2 Network Communication Using Reactive Programming

3.2.1 Reactive Programming

The information given in this subsection about reactive programming is inspired by [18].

Corums uses a reactive programming model to abstract away the network communication.
Reactive programming is centered around what’s known as data streams and events.
A data stream is an object that may be observed by others who are interested in the
data on the stream. Data streams emit events when something has happened. The
event can be for everything from receiving a new message to finishing an execution of a
method to receiving input from a user, all depending on the application it’s used in. The
observers of the stream will react to new events by calling static event handler methods.
Algorithm 3.1 is pseudo-code that illustrates how subscribing to a stream will typically
look.

DataStream.onEvent (handleNewEvent);

handleNewEvent (event) {

log("A new event was observed!");

Algorithm 3.1: Stream subscription example.

By using data streams we have access to a multitude of useful operators. The reactive
programming model uses operators applied to streams that return new streams after
the operator is applied. This allows the developer to chain operators in a very explicit
way which makes it easy to see what the desired result is by reading the code. An

example of stream operators is given in Algorithm 3.2. In this example, we apply the

17

“Where” operator to a stream of network replies, which will return a new stream of all the
replies with a “success” field set to true. On the resulting stream, we apply the “Count”
operator, which simply counts the elements in its input stream and emits a single event

containing the number of elements it got.

var numberOfSuccessReplies = replies
.Where(reply -> reply.success)
.Count ();

Algorithm 3.2: Stream operators example.

A data stream will typically handle multiple types of events, allowing the observers to
choose which events they are interested in. In Algorithm 3.1, the observer subscribes to
all events. Normally, different observers will be interested in different event types and

each event type will have its own event handler method.

When programming in the reactive paradigm, one of the fundamental differences to
programming in the object-oriented paradigm is that you are writing asynchronous code.
The code you are writing happens when an event is emitted, independent to where the
main flow of the program is currently working. Imagine an application with a graphical
user interface (GUI) that retrieves information from some service on the internet. When
the user clicks a button to fetch the information, the GUI must still respond to input
from the user while waiting to receive data from the web service. A reactive programming
model facilitates this behaviour by having the main program flow set an event handler
on a stream subscription when sending the request and then moving on without waiting

for an event.

3.2.2 Corums’ Hybrid Programming Model

Corums utilizes a lot of the principals from reactive programming to make useful
abstractions for consensus algorithm implementations, but it doesn’t limit developers to
only use the reactive programming model. Corums facilitates a combination of reactive
and object-oriented programming, where the idea is that one can use the reactive model
for what it’s good at, then switch to the more traditional object-oriented model when

it’s needed /wanted.

18

var promises = await Bus
.Broadcast (new Prepare(_round))
.Collect ()
.Take (_majority)
.Last;

if (promises.Any(promise -> promise.hasPreviousDecidedValue) {

return;

Algorithm 3.3: Corums’ combination of reactive and object-oriented programming.

Algorithm 3.3 is valid Corums code for initiating phase one in Paxos and it shows the
flexibility of Corums’ hybrid model as well as how the declarative code style lets a reader

of the code to easily reason about what’s going on.

3.2.3 Corums Communication Streams

As mentioned, Corums abstracts away the network layer by using streams and events.
Sending a message to a node is as simple as putting an object on a stream. Corums also
provides useful methods for broadcasting a message to all nodes, directly replying to a

message we have received etc.

When configuring a Corums node, we provide the network details for all nodes in the
cluster to Corums. When this is done, Corums opens a network connection to the nodes
and sets up an adapter that reads messages from the network layer, deserializes them
and places them onto the Inmput stream. The Input stream can be injected into classes
that are registered to Corums. The classes can then subscribe to messages coming in
with filters to get the message types they are interested in. They can assign callback
methods that will execute when a new message is received. This concept is often referred
to as static event handlers. Algorithm 3.4 shows an example of how the Input stream
in Corums is injected and how a Paxos proposer would subscribe to the event of new

Promises being received and assign an event handler to react to these events.

19

class Proposer {

Input _input;
Logger _logger;

Proposer (Input input) {
_input = input;

_logger = new Logger ("Proposer");

void init () {
_input.WhereEnvelopeContains <Promise >()

.ExecuteOnEvent (HandlePromise);

void HandlePromise (Envelope<Promise> promise) {

_logger.Log("I received a new promise.");

Algorithm 3.4: Corums network stream example.

When sending messages in Corums, we use a stream named Output. At the same time
that the adapter for placing incoming messages on the Input stream was set up, another
adapter is initiated that subscribes to all events on the Output stream and when events
occur, serializes them and sends them on the network connection. Using this abstraction
is similar to that of the Input stream. It is injected in the same fashion as shown in

Algorithm 3.4 and to send a message is done as shown in Algorithm 3.5.

_output.Emit (new Envelope (message, messageld, toNodeId, fromNodeId);

Algorithm 3.5: Sending a message with Corums.

In addition to the Input and Output streams for handling network communication,
Corums provides a third convenience object named Bus. The bus is an abstraction for
all network traffic, both incoming and outgoing, and simply wraps around the Input and
Output streams. It has a lot of convenience features, such as broadcasting a message
to all nodes in the cluster and directly collecting replies to a sent message, as shown in
Algorithm 3.3.

3.2.4 Corums In-Memory Network

In the early stages of developing a consensus algorithm implementation, we may not

want to bother with the network layer and which physical machines we’re running on

20

just yet. It’s useful to be able to test our implementation rapidly without having to
worry about deployments, networking issues etc. To solve this, Corums provides another
useful tool called In-Memory Network. This allows us to simulate multiple participants
in a consensus algorithm in one process running on one machine, where participants
will communicate using the same network stream abstractions that is used for proper
network communication. This can help reduce noise while implementing the behavior of
the participants, and when the implementation is finished and we want to start testing
on multiple physical machines, Corums can be configured to start using proper network
connections and a single participant for each machine, all without having to make changes

to the actual consensus algorithm implementation.

3.3 Single-Threading

Corums uses a built-in scheduler that handles scheduling of the execution of method
calls. The method calls are kept on a queue. They are executed sequentially on a
single thread by an event loop that dequeues one executable at time. A new method
call is not executed until the previous has finished. The architecture of the scheduler
and event loop is illustrated in Figure 3.1. This allows the users of Corums to not
worry about synchronization between threads and makes it easier to verify correctness of

implementations and debug issues, due to the lack of thread interleaving.

Corums

S
2
Sy ' Scheduler

N |88 8|88 [[oowan | Bromior

Pending function calls

/}”e,.

Schedule external

Execute function call

A

Application

Figure 3.1: Corums’ event loop architecture.

21

Both Corums internally and the user of Corums externally may schedule method calls.
When an event is emitted on a stream that someone is subscribing to, the callback
method will be scheduled for execution by Corums itself. If a code component outside of
Corums gets a new client request to be delivered to a component residing inside Corums,

the user may schedule a method call to handle the request, as shown in Figure 3.1.

3.4 Persistency

Corums has built-in functionality for automatic object state persistency. This means
that Corums will automatically write the state of the relevant parts of the program to
non-volatile memory as the state changes. Having this built-in persistency means that
if a computer running a Corums program crashes in the midst of executing, it can be
restarted and continue where it left off. The user of Corums controls which parts shall
be serialized and written to disk, to then be deserialized and put into memory again
upon a restart. The deserialization logic is invoked by the framework automatically on a

restart and it will supply the latest serialized state.

Chapter 4

Implementing a Distributed

Dictionary

This chapter will describe the path we have taken to solve the problem given in Section 1.1.
It will describe the relationship between the different components we have used to achieve

our result and how the resulting system functions.

4.1 Introducing Distributed Dictionary

As the main focus of this thesis is to explore the use of the Corums framework in practical
applications that rely on consensus algorithms, we have built such a practical application
with Multi-Paxos as the underlying mechanism to facilitate state machine replication.
The name of the system we have built is inspired by the data structure for a key-value
store in C# (and some other popular languages, such as Python), which is “Dictionary”,
as well as the focus on each server in the cluster holding a copy of the dictionary, meaning

it’s distributed. The resulting name is Distributed Dictionary.

The purpose of Distributed Dictionary is to maintain a fault-tolerant key-value store
by replicating the data across multiple physical machines. We want to achieve this by

utilizing Multi-Paxos and we implement Multi-Paxos using Corums.

A key-value store must have three important operations available to clients:

e Insert: A request to insert a new entry in the key-value store. The client must

provide a key and a value to be paired together as an entry.

22

23

e Read: A request to read an existing value from an entry in the key-value store.
The client must provide a key that the server will use to retrieve the associated

value.

« Update: A request to set a new value in an existing entry. The client must provide
a key and a value. The provided key will be used by the server to look up the entry

in which it will replace the existing value with the provided value.

Distributed Dictionary exposes these operations to clients in the form of endpoints in a
Web API. By taking this approach, we ensure that any type of HT'TP client, such as a

web application, desktop program or mobile application, can use Distributed Dictionary.

Distributed Dictionary is designed for a single server, the leader, to communicate with
the client. From the perspective of the client, there is only one server which holds the
dictionary. To execute any of the mentioned operations, requests are sent to the leader,

which coordinates all consensus logic, as well as communicating the results to the client.

4.2 System Architecture for Distributed Dictionary With Paxos

Using Corums

In this section, we’ll explain the system in detail. We’ll explain the role of each of the
important modules and how they are implemented. Figure 4.1 gives a technical overview
of the architecture of Distributed Dictionary (including an external client). In this
illustration we display three server replicas, but this is a configurable number and can be
any number we choose when starting the system. It displays the client communicating
over HT'TP with all three replicas, which may seem strange, as we already have stated
that the client only communicates with the leader. This is done to show that the client
can communicate with all replicas, and if the current leader crashes, it will start to

communicate with a new leader.

When starting Distributed Dictionary, we set a few environment variables in our de-
ployment scripts. One containing a string of comma-separated hostnames that tell each
replica which machines are participating. In addition, we give each replica a unique node
identifier which is used internally by Corums. Finally, we also set the desired batch size
(ref. Section 2.3.2) in an environment variable. This makes it easier to experiment with
different configurations when testing the system, as it doesn’t require a new version of
the code deployed. Instead, to test a new configuration, we simply stop the program and

start it back up with new values for the environment variables.

24

421

HTTP

HTTP

Client

A

HTTP

API

L

d9O1 J19A0 swnio)

/ Server2
§$
,(ré?/ / Paxos
§°’ / Acceptor
s/
ASP NET /
» Core WEB [
APl ——>| Proposer
& \
/ Serveri
e
«é?t / Paxos
§°’/ Acceptor
S/
ASP NET
> Core WEB [

=

ASP .NET

Core WEB
API

&

— > | Proposer

N

Acceptor

Figure 4.1: Distributed Dictionary system architecture.

Client Handling Module

d0O1 Jeno swnio)

d01 Jeno swnio)

The client handling module is the part of the program that takes HT'TP requests from

the outside, routes them to the correct place and sends a response to the client saying

what the result of its request was. It’s the entry point of the execution flow for any

operation in Distributed Dictionary.

Referring to Figure 4.1, the client handling module is the red square marked with

“ASP.NET Core Web API” in every server replica. This module consists of two main

components: the controller and the request handler.

Controller

The controller is set up as an ApiController in the ASP.NET Core Web API framework

[4]. Using ApiController gives us a lot of useful features automatically. It allows us to

25

easily route URLs to methods in the code, automatically deserialize JSON input to our
data models and reply to clients with specific status codes and messages that explains

the result of their requests.

[HttpGet ("getValue")]
public ClientResponse GetValue(string key) {
var value = _requestHandler.GetValueFor (key);
return new ClientResponse(value.Value, $"The value for [{key}] is [{value}].");

}

Algorithm 4.1: Defining an API endpoint in an ApiController class.

Algorithm 4.1 shows how we set up the endpoint for the read operation described in
Section 4.1. The first line defines an endpoint at the path /getValue which takes HTTP
GET requests. The endpoint is linked to the following method, which takes a key
as a string input, which is automatically parsed from the request URL. This key is
passed along to the request handler to retrieve the associated value. Finally, a client
response containing the value and a human-readable message is created and returned.
The response object is automatically serialized to JSON and sent to the client. Because
we haven’t provided an HTTP response code, the code 200 will automatically be used,

indicating a successful response.

In addition to the /getValue endpoint, we have two other endpoints defined in the same

ApiController:

1. GET - /getDictionary: Takes no input. Returns the entire dictionary with all

entries.

2. POST - /insertOrUpdate: Takes a key-value pair as input. Inserts a new entry
if no entry is present for the provided key. If an entry is present for the provided

key, updates that entry with the provided value.

Request Handler

The request handler is the next step in the flow of a client request passing through the
system. As shown in Algorithm 4.1, a request to get a value associated with a provided
key is passed from the controller to the request handler. The request handler will then

ask the Paxos module for the value, before returning it to the controller.

The communication with the Paxos module from the outside is done through the

CorumsFacade abstraction, illustrated as the green circle in Figure 4.1. We use the

26

CorumsFacade to schedule a new method call to be executed by Corums’ scheduler,

described in Section 3.3.

_paxosNode.Scheduler.Schedule<Coordinator, DictionaryValue>(coordinator =>

coordinator.GetValueFor (key)).Result;

Algorithm 4.2: Calling a method through the CorumsFacade.

Algorithm 4.2 shows how we retrieve a value from the Paxos module through the
CorumsFacade. The _paxosNode object is the CorumsFacade. Coordinator is the class
that contains the method to get a dictionary value, which we’ll explain in detail in
Section 4.2.2. DictionaryValue is the return type of the method we’re scheduling. Finally,
calling .Result on the returned Task [19] means that we want to wait for the method to

be executed by the scheduler so we can have our dictionary value before moving on.

In addition to handling the communication with the Paxos module, the request handler
takes care of request batching as described in Section 2.3.2. This requires thread
synchronization, as each request coming into the controller will be handled by a new
thread. To be sure that we pass along a batch of requests when it is exactly the batch
size we want, we must ensure that only one thread is allowed to add its incoming request
to the request buffer at a time, followed by checking if the buffer size is equal to the
batch size. We do this by utilizing the built-in locking feature in C# [20] to lock on a
common object around the critical lines of code, making the next thread that wants to

execute the same method have to wait for the lock to be released to execute these lines.

For each request that is added to the buffer before it’s full, we simply return nothing
(null) to the controller, which is interpreted as a signal that the request has been added
to the buffer and the desired operation will be executed when the buffer is full. This
results in a 202 client response with a corresponding message to the client. When a
client request results in the batch size being reached, the batched operations will be
delivered to the Paxos module and we will wait for a decision to be made before passing
the decision to the controller, which replies to the client with a 200 and a corresponding

message.

4.2.2 Paxos Module

The Paxos module is the main use of the Corums framework in this thesis. It implements
the Multi-Paxos protocol as described in Section 2.3.1 running all three roles on every
machine, with some minor adaptions to fit our use case. The three Paxos roles: Proposer,

Acceptor and Learner are implemented as separate components interacting using the

27

stream abstractions presented in Section 3.2.3. Communicating between these roles on
the same machines is not differentiated from communicating between these roles over

the network to other machines.

We utilize the Bus to broadcast propose, accept and learn messages as well as sending a
promise as a reply to a server who initiated Paxos’ phase one. In addition, on program
startup, we set up static event handlers to take action when messages of different types
are received on the Input stream. The setup and the event handler method for handling
prepare messages on the acceptor is shown in Algorithm 4.3. Registering the event
handler is done in a separate method that is executed on startup, but for simplicity
we chose to extract the relevant line for this purpose, rather than showing that whole
method. The same approach for registering the event handler as shown in Algorithm 4.3

has been taken for all incoming messages on all three Paxos roles.

_input.WhereEnvelopeContains <Prepare>()

.ExecuteOnEvent (true, HandlePrepare);

private void HandlePrepare (Envelope<Prepare> envelope) {
var prepare = envelope.Message;

_logger.Log($"Received prepare: [{prepare}] from [{envelope.Froml}].");

if (prepare.Round > _round) {
_round = prepare.Round;
_bus.Send(new Promise(_round, GetSlotsHigherThan(prepare.Slot)),

envelope.From);

Algorithm 4.3: Setting up an event handler for receiving prepare messages on the

acceptor.

Behavior On Startup

When the program starts, all the event handlers for incoming messages are set up on the
proposer, acceptor and learner. In addition, every proposer will check if it’s running on
the leader node. The one proposer which finds out that it ¢s running on the leader node,
will wait five seconds to allow others to start up and then it will initiate Paxos phase
one by broadcasting a prepare and waiting to receive promises from the acceptors. If it
doesn’t receive a majority of promises within a second, it increases its round number and
tries again. This is repeated until a majority of promises is received or the proposer finds
out it’s no longer the leader. When phase one is finished, all Paxos roles will remain

inactive until external input arrives.

28

Behavior When New Values Arrive

When a new value arrives from the client handling module, the proposer will start by
checking if phase one is finished. If it isn’t, the client request is put into a temporary
storage and kept there until phase one finishes. If phase one is finished, the proposer will
immediately broadcast an accept to the acceptors followed by the acceptors broadcasting

a learn to the learners while also storing the value as a “filled slot”.

As mentioned in Section 2.3.1, acceptors must inform proposers about all previously
decided values that the proposer doesn’t know about, so the reason for storing the
accepted values is so that they can be included in a future promise in the event of

receiving a prepare with a lower slot number than the acceptor has accepted before.

When the learners have received a majority of learns, a decision event is emitted. When a
decision event is received, the requested operation(s) is performed on the actual dictionary.
Finally, the leader node will notify the client handling module that consensus has been

reached.

Coordinator

As we have briefly explained before, the interaction with the Paxos module from the
outside must be done by scheduling method calls through the CorumsFacade. Because
we have a client handling module outside of the CorumsFacade, which requires the ability
to schedule a consensus round and wait for its result before replying to the client, we
need a single place to both trigger an accept message to be sent from the proposer and
listen for a decision event emitted from the learner. In other words, we need a single
component inside the CorumsFacade that can coordinate the actions desired by the client

handling module.

To facilitate this we created a fourth component in our Paxos module which we called
the coordinator. The coordinator only coordinates consensus rounds on the machine
its running on and does not send any messages over the network. Instead, it simply
utilizes the Corums streams to emit internal events notifying the proposer about new

client requests, as well as subscribing to events for decisions from the learner.

The coordinator also holds the actual dictionary. When decision events are received, it
is the coordinator who performs the requested operation(s) on the dictionary. It’s also
the coordinator who provides the client handling module with the data used to reply
to requests for reading a value from the dictionary or the entire dictionary. Because

Corums has built-in persistency, the dictionary is simply kept as an in-memory field

29

variable in our implementation. When a replica is restarted, the dictionary will be read
from persistent storage and put back into memory by Corums, providing the state it was

in before restarting.

Proposer

1. Client Request .
< > Coordinator
6. Decision

Acceptor

Figure 4.2: Overview of our Multi-Paxos implementation.

The flow of messages in Paxos phase two in our Paxos module using the coordinator is
illustrated in Figure 4.2. A client request is passed from the client handling module to
the coordinator by a simple method call, which eventually returns a decision when it is

received from the learner. This method call is shown in Algorithm 4.2.

4.2.3 Failure Detection and Leader Election Module

In Section 2.3.1, we mentioned that for Paxos to guarantee liveness, we depend on having
a leader election component available. To provide a leader election component, we also
must implement a failure detector. We have implemented a failure detector and a leader

elector combined in one component, loosely based on the Eventually Perfect Failure
Detector, described in [21] and [22].

Failure Detection Implementation
When implementing our failure detector we were faced with two options:

1. Using a separate communication channel dedicated to this purpose.

30

2. Using Corums as the communication channel for this purpose in addition to the

Paxos implementation.

The benefit of option 1 is that even if Corums for some reason struggles to process
messages intended for other components, but the program hasn’t fully crashed, the failure
detector still survives and maintains correctness. On the other hand, if Corums doesn’t
function properly on a node, it has, as far as we’re concerned, failed and won’t be able
to contribute anymore anyway. In our eyes, option 2 gives the failure detector a better

understanding of the situation in the system, so we chose that approach.

Our failure detector contains two collections of node IDs: one that has the ID of all nodes
that we consider alive and one that has the ID of all nodes that we suspect are crashed.
To start with, no nodes are considered alive and no nodes are suspected. The execution
in our failure detector mainly consists of two eternal-running loops: the heartbeats loop

and the detection loop.

H Check for missing heartbeats
: I
Heartbeat . Heartbeat S1 and S3 suspects S2
S1 : >
Failure :
s2 > i R e
Heartbeat : Heartbeat
S3 - >
1 second : 1 second

Figure 4.3: Failure detector execution flow.

The heartbeats loop simply utilize the Corums Bus to broadcast a heartbeat message
to all other participants. A heartbeat message is an empty message only intended to
tell others “I am alive”. After broadcasting a heartbeat, the loop will sleep for one
second, before running again. This is illustrated in Figure 4.3, where S1 and S3 run the

heartbeats loop twice, while S2 crashes before broadcasting any heartbeats.

Whenever the failure detectors receives a heartbeat on the Corums Input stream, we add

the senders node ID to the collection of alive nodes.

The detection loop has the job of checking the status of all participants. It starts by
checking if the node’s ID is present in any of the collections containing alive and suspected

nodes. Based on the results of this, there are four possible outcomes:

31

1. The node is present in the alive collection, but not in the suspected collection. In

this case, no action is taken, as this means the node is functioning as expected.

2. The node is not present in either of the collections. This means the node was alive
on the last execution of the detection loop, but we haven’t received a new heartbeat
since then. In this case, we add the node to the suspected collection, as this means
the node is not functioning as expected. This is what happens in Figure 4.3 where
S1 and S3 suspects S2.

3. The node is present in the suspected collection, but not in the alive collection.
In this case, no action is taken, as this means the node is still not functioning as

expected, so it should remain in the suspected collection.

4. The node is present in both the suspected collection and the alive collection. This
means the node has been suspected before, as it has failed to send a heartbeat
in the given time, but has now started sending heartbeats again. In this case,
we remove the node from the suspected collection, as this means the node is now

functioning as expected again.

After one of the four outcomes has occurred for every participant, the detection loop
empties the alive collection and then sleeps for two seconds to ensure that all participants

have enough time to send at least one heartbeat before running the detection again.

Leader Election Implementation

The leader election algorithm we have implemented is defined in [21] and is called a
monarchical leader election algorithm. In short, this means we assign a rank to each
node, which will be used to decide who shall be leader. The leader will be the alive node
with the highest rank. In our case, we have used the node ID, which has an integer value,
to decide the rank. The higher the numerical value of the node ID, the higher the rank

in the leader election algorithm.

In practice, we start by letting the proposer choose the node with the highest ID out of all
participants as the leader. After all nodes have been checked for one of the aforementioned
four outcomes in the detection loop, the leader election algorithm is asked to re-evaluate
who shall be leader. It will go through all the nodes which are not suspected and, from
these, select the node with the highest ID as leader. As the proposer is the component in
our system that relies on knowing who is leader at all times, the leader election algorithm
will compare the leader it has chosen with who the proposer believes is the leader. If the

leader elector has another opinion than the proposer, it will notify the proposer about a

32

)

leader change. This will cause the proposer on the new leader node to initiate Paxos

phase one.

4.2.4 Modifying the Corums Networking Implementation

In Section 3.2.3, we explained how Corums has something we refer to as adapters, which
coordinate the interaction between the network layer code and the Corums streams.
Due to issues with instability and a desire to make some minor changes in the TCP
communication in Corums, we ended up implementing our own TCP communication and
thus, our own adapter logic as well. This was implemented as a separate module that we
configured Corums to use instead of the built-in TCP communication when setting up

our Paxos module.

The built-in implementation for TCP communication is quite complex, as it aims to
guarantee delivery for all messages. It uses acknowledge messages to keep track of who has
received a message and retries sending messages if it doesn’t receive an acknowledgement.
When we wanted to make changes, we found the complexity a hurdle, so we decided to
simplify the logic to something more minimal and easier to debug and make changes to.
We copied parts of the built-in logic, but left out the acknowledgements and retrying
logic to end up with a minimalist implementation that consists of three components:
one for receiving messages, one for sending messages and one that holds the network

hostname of all the participants.

Server 2]

TCP Sender

Output stream

Input stream \ / TCP Receiver) -
\
Server 3
N d \

Figure 4.4: The structure of the Corums networking implementation we implemented.

33

The receiving component listens for incoming connections from other participants on a
dedicated network port, then receives new messages, deserializes them and passes them

onto the Corums adapter.

The sending component opens and maintains a TCP connection to all other participants,
and when it receives a new message to be sent from the Corums adapter, it serializes it

and sends it to the correct recipient.

The two Corums network adapters we needed to implement were the InputStreamAdapter

and the OutputStreamAdapter.

The InputStreamAdapter has the job of passing messages received on the TCP socket to
Corums. It has a method which is called by the TCP receiver component every time a
new message is received, that simply emits a new event on the Input stream containing

the received message.

The OutputStreamAdapter has the job of listening for new messages to be sent and
passing them onto the TCP sending component. To achieve this, it subscribes to new
events on the Output stream and, when an event occurs, it extracts the message and

passes it onto the TCP sending component.

4.3 Development Environment

4.3.1 Using Corums In-Memory Network for Testing

As we were developing our Paxos implementation, we set up a convenient environment
that allowed us to easily test our changes using the Corums in-memory network. When
starting our program using our IDE, Corums is automatically configured to use the
in-memory network and three virtual Paxos nodes would automatically be set up, all
running in the same process. The virtual node with the highest ID would be leader and
would handle the requests coming in on the HT'TP endpoints, mocking the behaviour we
would have when running on multiple machines. This setup allowed for testing changes

in our algorithms as easy as pressing a single button in our IDE.

4.3.2 Using Docker to Prepare for Benchmark Measurements

When we got closer to having a system that was ready to be deployed to a proper
cluster for making our benchmark measurements, we utilized Docker [23] to test in an

environment as close to the real cluster as possible, but still maintaining the rapid nature

34

of testing locally. Docker is also useful for testing our networking implementation as,
though it’s running locally on our development machine, it uses the network interface

card on the machine and a simulated network with DNS look-up etc.

Setting up a Docker environment requires us to build a Docker image for our program,
that is used to set up containers. To create a Docker image we wrote a Dockerfile which
downloads the .NET Core SDK base image [24] and uses that as a platform to build our
application on, then downloads the ASP.NET Core runtime image [25] and uses that as

a platform to run the compiled code on.

Once we have a Docker image ready, we use a tool called Docker Compose [26] to easily
run our images on multiple containers. Docker Compose uses a YAML file to define our
cluster in terms of the number of containers we’re running, the hostname and IP address
each of them will have, etc. When we have a setup we’re happy with, starting the cluster
of containers running Distributed Dictionary is as simple as writing “docker-compose up”

in a terminal shell.

The Docker setup we have made is very convenient when developing consensus algo-
rithms using Corums, and we encourage future projects involving Corums to utilize this

contribution as well.

Chapter 5

Corums Evaluation

This chapter will explain how we evaluate the system we have built, described in Chapter 4.
It will explain the criteria we used to assess Corums and the performance of our replicated
key-value store using Corums. Finally, it will present the results we got on the criteria

we researched.

To assess whether Corums provides value as a framework for working with consensus
algorithms, we must decide on what criteria we measure its value. The ISO standard
25010:2011 [27] provides a framework for measuring software quality. It’s designed for
evaluating software used by industry or consumers, not necessarily for evaluating software
tools to be used for creating other software, such as Corums. Nonetheless, some of it is
suitable for Corums, so we have chosen three of the criteria from the product quality
model in ISO 25010:2011 that we believe to be important qualities of a framework. These

criteria are:

e Usability: How appropriate is this software for this use case? Is its features
recognisable for people using it? How hard is it to learn? How well does it protect

against user errors? How accessible is it?

o« Compatibility: To what degree can this software co-exist with other tools? How

does it interact with other tools?

¢ Performance Efficiency: How fast is the software? How does it utilize the

machine’s resources?

35

36

5.1 Corums Usability

As the main focus of Corums is simplifying consensus algorithm implementation by
providing intuitive, useful abstractions, researching whether it does this should be a
large part of assessing its worth. The problem with this is that how intuitive and useful
something is is highly subjective by nature and therefore hard to measure. Our approach
is to give our opinion on the experience we’ve had using Corums, as well as comparing
the code in our Paxos implementation with another implementation that doesn’t use

Corums.

An important point to assess for how usable a software framework is, is how readable the
resulting code using the framework is. This is crucial because for a software to have a
long life, it must be easy to maintain over time and doing so generally includes multiple
developers working on the same code base, which makes them reliant on being able to
read each others code. A study [28] has been made where research is done to investigate
what effect using the reactive programming paradigm has on program comprehension.
They do this by implementing a program in two versions: one using the reactive paradigm
and another using the traditional object-oriented style, then they conduct a test on
thirty-eight subjects. The conclusion of this study is that understanding the reactive

programming version requires less programming skills as that code is more readable.

Our experience with Corums coincides with the conclusion of the research on the
effect reactive programming has on code readability. The abstractions provided and the
flexibility in Corums of alternating between the reactive paradigm and the object-oriented
paradigm, as described in Section 3.2.2, frees us from the bounds of any of the paradigms
and allows us to focus on efficiency and readability. Our experience is that using Corums
allows us to write code that is more similar to the pseudo-code we see in research articles
for consensus algorithms, if we so desire. This is good because it makes it easier to
reason about the correctness of implementations, as well as increasing the probability
that those who are familiar with the protocol will be able to read and understand our
code. Moreover, thread programming is a complex field, so, because Corums alleviates

its users from that complexity, it protects them from making user errors.

We studied a Paxos implementation in Java called JPaxos [29, 30] to compare its code
with ours. It could be considered unfair to compare implementations using two different
languages, but Java is a language with a very similar syntax to C# [31, 32|, as both are
based on C and C++. In this study we found that the JPaxos code included a lot more
configuration for setting the network connections up, routing incoming messages to the
correct handlers, thread synchronization, etc. In those regards, Corums takes away the

need for almost all of this configuration by handling it for us. Moreover, we discovered

37

that the message handlers in the Paxos roles are longer and harder to read than ours.
As an example, the method for handling a prepare message in JPaxos is thirty lines long,
while the equivalent method in the Distributed Dictionary Paxos implementation is nine
lines long. Using lines of code as a metric for comparing algorithm implementations
is somewhat unfair, as JPaxos handles a lot more edge cases than we do, but it is
a reoccurring theme when comparing the two code bases that JPaxos has more code
lines that are not directly a part of the Paxos protocol. In addition, we discovered
that the abstractions Corums provides us encourages us to put thought into naming
variables, methods, classes, etc. As a result, the code can be read more like reading the
English language than the JPaxos code, resulting in greater program comprehension.
The JPaxos implementation has also been split more granular into separate methods
than the Distributed Dictionary Paxos implementation, making the execution flow harder

to follow.

Additionally, we have first-hand experience with implementing Multi-Paxos using the
Go programming language [33]. Go has some useful data structures and abstractions
that help in protecting users from making errors in concurrent programming, such as
goroutines and channels [34]. That being said, we still spent a large portion of our efforts
in implementing Multi-Paxos with Go on setting up goroutines to listen for incoming
messages, encoding/decoding message types, setting up network connections to peers,
etc. Spending so much time on these things feels like noise that draws our attention
away from the problem we’re suppose to be solving. When comparing the experience we
had with Go with the experience we’ve had in this thesis work with Corums and C#,

it’s clear that Corums simplifies the process greatly.

5.2 Corums Compatibility

Corums is distributed as a Nuget package [35] that can be included in any .NET Core
project using the Nuget package manager. This is the standard mechanism of sharing

code in the .NET world, and thus, it makes Corums very accessible for anyone to use.

The Stack Overflow Developer Survey for 2020 [36] shows that the ASP.NET Core
framework is the sixth most used web framework with 19.1% of the participants answering
that they use it. Moreover, in the category of other frameworks, libraries and tools, .NET
Core ranks as the third most used with 26.7% answering that they use it. In addition,
the survey presents the most loved web frameworks and most loved other frameworks,
libraries and tools. ASP.NET Core takes the number one position as the most loved
web framework, while .NET Core takes the number one position as the most loved other

framework. This tells us that the NET Core community has a strong position in the

38

industry and because it’s loved by so many, we consider it likely to have a growing

position in industry popularity in the coming years.

Because Corums is compiled to be used in the .NET Core runtime and can easily be
included in any .NET Core project, it will be a compatible tool for a large variety of

development projects.

As we demonstrated in Algorithm 4.2, Corums is well adapted for coordinating other
application logic with Corums logic. Because consensus algorithms are usually just a
minor part of practical applications, it’s important that using Corums doesn’t hinder
any other features of the application. We have demonstrated in our system, which uses
the ASP.NET Core Web API framework for the application logic, that Corums can be

used in a practical application without causing problems for the rest of the program.

5.3 Distributed Dictionary Performance Efficiency

5.3.1 Experimental Setup

To measure the performance efficiency of Distributed Dictionary, we ran experiments
to measure latency at different throughput settings on different configurations. All
benchmarking experiments are run on the BBChain research group’s cluster. We have used
five server replicas running on five different physical machines in a LAN environment, each
having an eight-core CPU and 32 GB of RAM. In addition, we have a single client running
on a separate machine which simulates multiple clients by using thread concurrency. All
machines run Ubuntu 18.04.4 as the operating system and the Distributed Dictionary

server code is compiled using .NET Core 3.1.

The replicated service we run in the experiments is the Distributed Dictionary presented
in Section 4.1. For the benchmarks, we request a high number of update operations on
the key-value store. We run the experiment for two different batch sizes and we use

pipelining in both cases. Refer to Section 2.3.2 for the explanation of these principles.

To set up Distributed Dictionary on the BBChain cluster, we wrote shell scripts that
allowed us to compile the code, copy the code to all five machines and start the program
on all machines by executing a single line in the terminal shell on our development
machine. The shell script takes the desired batch size as input, so we can easily configure
different batch sizes when running our experiments. We wrote extensive logging in our
Paxos implementation, that we had printed to the terminal shell in which we executed
the script. This allows us to follow what’s going on on the servers while the automated

client requests are executing.

39

JMeter

On the machine used for making the client requests, we utilize a tool from Apache
called JMeter [37]. This is a cross-platform, open-source Java application made primarily
for load-testing web applications, but it has also been expanded to support other test
functions. This tool allows us to configure how many requests an experiment should
consist of, how many simulated clients should be used, the rate to send the requests at,
the connect-timeout, the response-timeout, etc. Moreover, when a test is running, JMeter
reports the experienced latency along the way and when it finishes, it prints a summary
of the test, which we noted down for each run to create the plots in Section 5.3.2. The

data can be found in Appendix A.

5.3.2 Experimental Results

In this experiment we assess the performance of our Multi-Paxos implementation in
Distributed Dictionary by sending a constant stream of update requests to the system
and measuring the latency for a reply. As mentioned, we use batching and pipelining for
all tests and we run the experiment for two different batch sizes. The batch sizes we have
used are 64 and 1024. For each test we have made one million update requests to the
leader from 1250 simulated clients. All the latency measurements are results of running
three tests for each throughput setting and calculating the average of the latency result
we get from JMeter, which again is the average latency for all executed requests in that

test.

Batch Size: 64

Figure 5.1 shows the results of the experiment with a batch size of 64. The lowest
throughput settings produces an average latency of under ten ms, while we see a rapid
increase when the throughput surpasses 800 requests/second. When the throughput
surpasses 1200 requests/second, the average latency approaches a full second. This is
likely a result of putting too much load on the Corums scheduler, as method calls are

being scheduled at a higher pace than the scheduler is able to execute them at.

Batch Size: 1024

Figure 5.2 shows the results of the experiment with a batch size of 1024. In this
experiment, we see an even lower average latency when using low to moderate throughput

settings. The reason for this is that the requests that are simply added to a batch and

40

1,200 T T T T T
1.100| |~ Distributed Dictionary load-test results |

1,000 | |
900 | .
800 | .
700 | .
600 | .

500 - 2

Latency in ms

400 - 2
300 |- 3
200 - 2

100 2

| |

t I | | I
0 200 400 600 800 1,000 1,200 1,400
Throughput in requests/second

Figure 5.1: Latency vs. throughput with a batch size of 64. Each data point is the
average of three experiments.

not pushed through a consensus round have very low latency, while the requests that
result in a consensus round have higher latency. Thus, the larger the batch size, the
lower the average latency, as a larger portion of the requests made will be very fast.
In this experiment we see that the average latency is kept low until the throughput
surpasses 10 000 requests per second. After that, it increases in a similar manner to
the experiment with a batch size of 64, though it doesn’t reach the same high values.
The reason the average latency doesn’t reach the same extremes in this experiment is
that such a large portion of the requests are being batched, so even when the Corums
scheduler is overloaded, the slow requests that result in a consensus round don’t affect

the average latency number as much.

In 2017, a Master’s thesis [38] was done to investigate the use of Gorums [15] for
implementing a fault-tolerant replicated service. This project is similar to ours in many
ways, as they also implemented a consensus algorithm as the backbone of a replicated key-
value store. Their solution used a Gorums-based implementation of the Raft consensus
algorithm [16] to provide state replication and was implemented in the Go programming
language. Comparing our performance efficiency results with the results they got shows

that the latency at lower throughput settings are similar, but the latency in our Corums

41

3 5 T T T T T

—o— Distributed Dictionary load-test results

30 - 2

25

20

Latency in ms

G

| | | | | | I
0 2,000 4,000 6,000 8,000 10,000 12,000 14,000
Throughput in requests/second

Figure 5.2: Latency vs. throughput with a batch size of 1024. Each data point is the
average of three experiments.

Paxos implementation starts increasing at a substantially lower throughput setting than
their Gorums Raft implementation does. Especially with the smaller batch size of 64, we
see that their results show a stable low latency until the throughput reaches around 14
000 requests per second, at which point it starts increasing, though at a slower rate than
in our measurements. There could be multiple reasons for these dramatic differences in

performance, such as:

e Running on different hardware. The results from the Gorums Raft service was
achieved running on machines in Amazon’s Elastic Compute Cloud [39] with 4
virtual CPUs and 32.75 GB of RAM.

o Different software environment. Their system runs on the Amazon Linux AMI

operating system and runs in the Go runtime.

o Different algorithm. Their system uses Raft, while our system uses Paxos. Though
these algorithms are similar, they are not the same, and minor differences are

amplified when running under high-load.

« Differences in application logic and the quality of our algorithm implementations.

42

 Differences in speed of the Gorums framework vs. the Corums framework. As the
Gorums framework is built using multi-threading for concurrency, it will naturally

handle high numbers of concurrent requests better than Corums.

Most likely, a combination of multiple or all of the above points contribute to the
differences. More investigation would have to be done to pinpoint where the major

efficiency problems in our system lie.

Chapter 6

Lessons Learned, Conclusion and

Future Directions

In this chapter we explain some of the lessons we have learned during our work with
this thesis, as well as what we would like to see be the future work on Corums and

Distributed Dictionary. Finally, we conclude on the work we have done.

6.1 Lessons Learned

6.1.1 Learning a Framework With No Community

When choosing a framework for a software development project, the popularity and
community of frameworks are considered important [40, 41]. Choosing a framework with
an active community will aid in learning a new framework because there will be a lot of
resources such as books, forums, video tutorials, etc. that provide useful information

and examples of usage.

As Corums is a brand new framework under development, there is no community yet.
Thus, there are no resources to be found and no community to ask for help. Making a
Google search for similar uses of Corums, or any use of Corums for that matter, will not
yield any results. This made a world of difference when developing Distributed Dictionary,
even though we did get good help from our supervisors. It required us to investigate
the internal code of Corums in more detail than we would normally would have to with
any other framework. This is the nature of participating in research projects, so we
were somewhat prepared for this going into it, but we learned exactly how important
a framework’s community is once we ran into circumstances that Corums hadn’t been

used for before.

43

44

6.1.2 Lack of Documentation

When starting our work with Corums, we quickly discovered that it lacked code docu-
mentation. As a general rule, we would have liked to see documentation for all of the
Corums source code, but we especially believe it’s important for the user-facing parts.
Though the abstractions are recognizable and well-named, we missed having the ability
to utilize the quick documentation feature of our IDE to get a short explanation of what
something is and how to use it. With the lack of documentation, we ended up having to
ask our supervisors for explanations, and though the responses came quickly and were

good, it’s a not viable replacement for proper code documentation.

6.1.3 Contributing to Corums

By making the contributions to the networking implementation that we described in
Section 4.2.4, we understood the workings of Corums in a better, more detailed manner.
Though this isn’t strictly necessary to use the framework, understanding its inner workings
made us more equipped to develop our system, as well as reasoning about what separates

Corums from other frameworks.

6.1.4 Learning C#

Going into this project, we had little experience using the C# programming language. As
programmers with Java as our “mother tongue”, learning C# has been a good experience.
The documentation that Microsoft produces is clear, the community is active and helpful
and the development tools are good. In addition, the syntax of C+# is recognizable and
clear, leading to less time struggling with language barrier and more time to think about

the actual logic.

6.2 Future Work

For technical optimizations to Corums, we would encourage focus on optimizing the
scheduler to achieve higher performance efficiency. In our load-tests with smaller batch
sizes, we had problems with high latency numbers at relatively low throughput settings.
We believe these problems were caused by the Corums framework internally and would
strongly encourage uncovering where possible bottlenecks and making the necessary
optimizations. Though the nature of Corums being single-thread would lead us to

expect lower performance than multi-threaded counterparts, we don’t believe Corums

45

has achieved its full potential in terms of speed. We would also advocate for more testing
done on the TCP communication of Corums, as it is a very crucial part of the framework

which we believe has not gotten the focus it deserves.

To measure usability on a more accurate level, a large group of users should be given
access to the framework, ideally observed when learning and then answer a questionnaire
about their experience afterwards. The larger and more diverse the group of testers, the
more accurate measurements we get. Try to get as detailed feedback as possible and take

these into consideration for the further development of the framework.

If Corums aims to achieve industry adoption, there should be work done to encourage
community growth by arranging workshops, starting forums, creating video tutorials, etc.
Because a community is so important to developers when choosing a framework, new
users of Corums should be encouraged to share knowledge and participate actively. We
would also encourage publishing the source code in a public repository, allowing Corums’
users to investigate the inner workings themselves and participate in deciding the future

direction of the framework.

Finally, we would strongly encourage a greater focus on code documentation in the
Corums source code going forward. Start by documenting all new code that is added and
writing documentation for existing components when they are modified. Eventually, there
should be made an effort by systematically going through the code base and verifying

that all important components are well-documented.

There should be done more testing on Distributed Dictionary to investigate the correctness
of our Paxos implementation. We would encourage implementing a specialized Distributed
Dictionary client which could be used to insert randomized data at a high rate, then
check the correctness of the dictionary afterwards. The client could also be utilized
for testing the system in the event of the leader crashing. It should have a mechanism
to detect that the leader it has communicated with has crashed, and then it should
attempt to connect to a new server. There could be made changes to the server replicas
to optimize the process of the client finding the new leader, where if the client tries to

connect to a server who is not the leader, that server can tell the client who is.

Additional testing on the Distributed Dictionary Paxos implementation with focus on
fault-toleration should be done. We recommend performing tests where participating
servers are intentionally crashed or taken out of the network for a while during execution,
then started back up again, to assess how/if it’s able to catch up again after missing a

number of consensus rounds.

Another feature we would have like to seen included in the Distributed Dictionary Paxos

implementation is a cluster reconfiguration policy. Such a policy should handle situations

46

where a minority of participating servers crash or are having issues. The leader should
keep track of the participants’ performance by utilizing the failure detector explained in
Section 4.2.3, and when it detects a server is not responding properly, it could perform a

reconfiguration, meaning that it replaces the faulty server with a new one.

6.3 Conclusion

Corums claims to make the work of developers implementing consensus algorithms easier.
To verify if this statement holds, we implemented Multi-Paxos with it. We also built an
application layer around our Multi-Paxos implementation to assess whether Corums is
usable for practical applications. Our experience is that Corums does genuinely simplify
the implementation of the Paxos protocol. We found the provided abstractions useful
and clear. In addition, Corums manages other aspects of distributed programming, such
as configuring network connections and handling thread interleaving, so that we are

allowed to focus on the details of implementing the Paxos protocol instead.

With the contributions we have made in this thesis, we have uncovered some of the areas
were Corums is lacking and thus, should get more focus. Our contributions also show
that there is good use for Corums in the distributed systems field by explaining usability
and compatibility of the framework. In addition, having a practical application, such
as ours, implemented using Corums will make it easier to implement similar systems in
the future. We predict that some of the difficulties we have had in implementing our
system will become easier in the future, as more people use the framework so that more

practical examples are produced and best practices takes form.

List of Figures

2.1

3.1

4.1
4.2
4.3
4.4

5.1

5.2

A perfect/ideal Paxos instance. 11
Corums’ event loop architecture. 20
Distributed Dictionary system architecture. 24
Overview of our Multi-Paxos implementation. 29
Failure detector execution flow. o0 30

The structure of the Corums networking implementation we implemented. 32

Latency vs. throughput with a batch size of 64. Each data point is the

average of three experiments. 40
Latency vs. throughput with a batch size of 1024. Each data point is the
average of three experiments. 41

47

List of Tables

A.1 Load-test results with a batch size of 64

A.2 Load-test results with a batch size of 1024.

48

List of Algorithms

3.1
3.2
3.3
3.4
3.5
4.1
4.2
4.3

Stream subscription example. 16
Stream operators example. Lo 17
Corums’ combination of reactive and object-oriented programming. 18
Corums network stream example. 19
Sending a message with Corums. 19
Defining an API endpoint in an ApiController class. 25
Calling a method through the CorumsFacade. 26

Setting up an event handler for receiving prepare messages on the acceptor. 27

49

Appendix A

Experimental Data

This appendix contains the measurements made for the performance testing of Distributed
Dictionary. This data is used to create the plots in Section 5.3.2. All latency values in

the data tables are averages calculated from running three tests with the same configured

throughput.
Throughput (commits/second) | Latency (ms)
83 9.00
166 9.67
250 9.00
333 20.00
416 19.33
500 29.00
666 52.33
833 56.67
1000 438.67
1166 473.33
1416 1019.33

Table A.1: Load-test results with a batch size of 64.

Throughput (commits/second) | Latency (ms)
833 1.00
1666 1.00
3333 1.00
5000 1.00
6666 1.33
8333 5.67
10000 13.33
11666 27.67
13333 30.67

Table A.2: Load-test results with a batch size of 1024.

50

Appendix B

Distributed Dictionary Source Code

The source code for the Distributed Dictionary service can be found in this Github

repository.

51

https://github.com/relab/DistributedDictionary
https://github.com/relab/DistributedDictionary

Bibliography

1]

Leslie Lamport. The part-time parliament. ACM Transactions on Computer Systems
16, 2 (May 1998), 133-169. Also appeared as SRC Research Report 49. This paper
was first submitted in 1990, setting a personal record for publication delay that has
since been broken by [60]., May 1998. URL https://www.microsoft.com/en-us/
research/publication/part-time-parliament/. ACM SIGOPS Hall of Fame
Award in 2012.

Leslie Lamport. Paxos made simple. ACM SIGACT News (Distributed Com-
puting Column) 32, 4 (Whole Number 121, December 2001), pages 51-58, De-
cember 2001. URL https://www.microsoft.com/en-us/research/publication/

paxos-made-simple/.

Hein Meling and Leander Jehl. Tutorial Summary: Paxos Explained from Scratch.
In David Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann
Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bern-
hard Steffen, Madhu Sudan, Demetri Terzopoulos, Doug Tygar, Moshe Y. Vardi,
Gerhard Weikum, Roberto Baldoni, Nicolas Nisse, and Maarten van Steen, ed-
itors, Principles of Distributed Systems, volume 8304, pages 1-10. Springer In-
ternational Publishing, Cham, 2013. ISBN 978-3-319-03849-0 978-3-319-03850-6.
doi: 10.1007/978-3-319-03850-6_ 1. URL http://link.springer.com/10.1007/
978-3-319-03850-6_1. Series Title: Lecture Notes in Computer Science.

Scott Addie and Tom Dykstra. Create web APIs with ASP.NET Core, February 2020.
URL https://docs.microsoft.com/en-us/aspnet/core/web-api/. Library Cat-

alog: docs.microsoft.com.

IBM Global Services. Improving systems availability, August 1999. URL http:
//www.cs.cmu.edu/~priya/hawht.pdf.

Per Christensson. Scalable definition, Januaury 2011. URL https://techterms.

com/definition/scalable.

52

https://www.microsoft.com/en-us/research/publication/part-time-parliament/
https://www.microsoft.com/en-us/research/publication/part-time-parliament/
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
http://link.springer.com/10.1007/978-3-319-03850-6_1
http://link.springer.com/10.1007/978-3-319-03850-6_1
https://docs.microsoft.com/en-us/aspnet/core/web-api/
http://www.cs.cmu.edu/~priya/hawht.pdf
http://www.cs.cmu.edu/~priya/hawht.pdf
https://techterms.com/definition/scalable
https://techterms.com/definition/scalable

Bibliography 53

[7]

8]

[13]

18]

Coinbundle Team. Consensus algorithms, September 2018. URL https://medium.
com/coinbundle/consensus-algorithms-dfa4f355259d.

Mark Brooker. Leader election in distributed systems, 2019. URL https://aws.
amazon.com/builders-1library/leader-election-in-distributed-systems/.

Library Catalog: aws.amazon.com.

Naohiro Hayashibara, Xavier Défago, Rami Yared, and Takuya Katayama. The ph
accrual failure detector. Unknown, 01 2004. doi: 10.1109/RELDIS.2004.1353004.

Tushar Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43, 07 1999. doi: 10.1145/226643.226647.

Nuno Santos and André Schiper. Optimizing paxos with batching and pipelining.
Theoretical Computer Science, 496:170-183, 07 2013. doi: 10.1016/j.tcs.2012.10.002.

Thomas Stidsborg Sylvest, Hein Meling, Leander Jehl, and Veronica Estrada-
Galinanes. Corums - simplifying implementation of consensus algorithms. Unpub-
lished, 12 2018.

Yanhong Liu, Scott Stoller, and Bo Lin. High-level executable specifications of
distributed algorithms. In Unknown, volume 7596, pages 95-110, 10 2012. doi:
10.1007/978-3-642-33536-5_ 11.

What is .NET? An open-source developer platform., 2020. URL https://
dotnet.microsoft.com/learn/dotnet/what-is-dotnet. Library Catalog: dot-

net.microsoft.com.

T. E. Lea, L. Jehl, and H. Meling. Towards new abstractions for implementing
quorum-based systems. In 2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS), pages 23802385, 2017.

D. Ongaro, J.K. Ousterhout, D.F. Mazieéres, M. Rosenblum, and Stanford University.
Computer Science Department. Consensus: Bridging Theory and Practice. Stanford

University, 2014. URL https://books.google.no/books?id=xfLynQAACAAJ.

Sebastian Pedersen, Hein Meling, and Leander Jehl. An analysis of quorum-based
abstractions: A case study using gorums to implement raft. In Unknown, pages
29-35, 07 2018. doi: 10.1145/3231104.3231957.

Clement Escoffier. 5 Things to Know About Reactive Programming,
June 2017. URL https://developers.redhat.com/blog/2017/06/30/

5-things-to-know-about-reactive-programming/.

https://medium.com/coinbundle/consensus-algorithms-dfa4f355259d
https://medium.com/coinbundle/consensus-algorithms-dfa4f355259d
https://aws.amazon.com/builders-library/leader-election-in-distributed-systems/
https://aws.amazon.com/builders-library/leader-election-in-distributed-systems/
https://dotnet.microsoft.com/learn/dotnet/what-is-dotnet
https://dotnet.microsoft.com/learn/dotnet/what-is-dotnet
https://books.google.no/books?id=xfLynQAACAAJ
https://developers.redhat.com/blog/2017/06/30/5-things-to-know-about-reactive-programming/
https://developers.redhat.com/blog/2017/06/30/5-things-to-know-about-reactive-programming/

Bibliography 54

[19]

21]

[30]

dotnet bot. Task class (system.threading.tasks), 2020. URL https://
docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task. Li-

brary Catalog: docs.microsoft.com.

Bill Wagner. lock statement - C# reference, February 2020. URL
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/

keywords/lock-statement. Library Catalog: docs.microsoft.com.

Christian Cachin, Rachid Guerraoui, and Luis Rodrigues. Introduction To Reliable
And Secure Distributed Programming. Springer-Verlag Berlin Heidelberg, 2011. URL
https://www.springer.com/gp/book/9783642152597.

Srikanth Sastry and Scott Pike. Eventually perfect failure detectors using add
channels. In Unknown, pages 483-496, 08 2007. doi: 10.1007/978-3-540-74742-0_44.

Why Docker? | Docker, 2020. URL https://www.docker.com/why-docker. Library

Catalog: www.docker.com.

.NET Core SDK - Docker Hub, 2020. URL https://hub.docker.com/_/

microsoft-dotnet-core-sdk/.

ASP.NET Core 2.1/3.1 Runtime - Docker Hub, 2020. URL https://hub.docker.

com/_/microsoft-dotnet-core-aspnet/.

Overview of Docker Compose, June 2020. URL https://docs.docker.com/

compose/. Library Catalog: docs.docker.com.

ISO/IEC 25010. ISO/IEC 25010:2011, systems and software engineering — systems
and software quality requirements and evaluation (square) — system and software
quality models. Technical report, International Organization for Standardization,

2011. URL https://www.iso.org/standard/35733.html.

G. Salvaneschi, S. Proksch, S. Amann, S. Nadi, and M. Mezini. On the positive effect
of reactive programming on software comprehension: An empirical study. IEEFE
Transactions on Software Engineering, 43(12):1125-1143, 2017.

Jan Konczak, Nuno Filipe de Sousa Santos, Tomasz Zurkowski, Pawet T. Woj-
ciechowski, and André Schiper. Jpaxos: State machine replication based on the
paxos protocol. Unknown, page 38, 2011. URL http://infoscience.epfl.ch/
record/167765.

Nuno Santos, Jan Konczak, and Tomasz Zurkowski. JPaxos/JPaxos, April 2020.
URL https://github.com/JPaxos/JPaxos. original-date: 2011-05-16T07:00:547Z.

https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/lock-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/lock-statement
https://www.springer.com/gp/book/9783642152597
https://www.docker.com/why-docker
https://hub.docker.com/_/microsoft-dotnet-core-sdk/
https://hub.docker.com/_/microsoft-dotnet-core-sdk/
https://hub.docker.com/_/microsoft-dotnet-core-aspnet/
https://hub.docker.com/_/microsoft-dotnet-core-aspnet/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://www.iso.org/standard/35733.html
http://infoscience.epfl.ch/record/167765
http://infoscience.epfl.ch/record/167765
https://github.com/JPaxos/JPaxos

Bibliography 55

31]

[36]

Vaida. C# vs Java Tutorial: Find Out Difference Between C# and Java, May
2019. URL https://www.bitdegree.org/tutorials/c-sharp-vs-java/. Library

Catalog: www.bitdegree.org Section: Comparisons.

C+# vs Java: Differences you should Know, June 2020. URL https://hackr.io/
blog/c-sharp-vs-java. Library Catalog: hackr.io.

Google. The Go Programming Language, 2020. URL https://golang.org/.

Naveen Ramanathan. Goroutines - Concurrency in Golang, July 2017. URL
https://golangbot.com/goroutines/. Library Catalog: golangbot.com.

Microsoft. What is NuGet and what does it do?, 2020. URL
https://docs.microsoft.com/en-us/nuget/what-is-nuget. Library Catalog:

docs.microsoft.com.

Stack Overflow. Stack Overflow Developer Survey 2020, 2020. URL https:
//insights.stackoverflow.com/survey/2020/7utm_source=social-share&
utm_medium=social&utm_campaign=dev-survey-2020. Library Catalog: in-

sights.stackoverflow.com.
Apache JMeter - Apache JMeter™, 2020. URL https://jmeter.apache.org/.

Sebastian Maland Pedersen. A practical analysis of the gorums framework: A case
study on replicated services with raft. Master’s thesis, University of Stavanger, 2017.

URL http://hdl.handle.net/11250/2455424.

Amazon. Amazon EC2, 2020. URL https://aws.amazon.com/ec2/. Library

Catalog: aws.amazon.com.

Symfony. Ten criteria for choosing the correct framework, 2020. URL https:

//symfony.com/ten-criteria. Library Catalog: symfony.com.

Christian Varisco. How to choose a framework | Hacker Noon, October 2016. URL
https://hackernoon.com/how-to-choose-a-framework-ea8b5blelf44. Library

Catalog: hackernoon.com.

https://www.bitdegree.org/tutorials/c-sharp-vs-java/
https://hackr.io/blog/c-sharp-vs-java
https://hackr.io/blog/c-sharp-vs-java
https://golang.org/
https://golangbot.com/goroutines/
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://insights.stackoverflow.com/survey/2020/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2020
https://insights.stackoverflow.com/survey/2020/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2020
https://insights.stackoverflow.com/survey/2020/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2020
https://jmeter.apache.org/
http://hdl.handle.net/11250/2455424
https://aws.amazon.com/ec2/
https://symfony.com/ten-criteria
https://symfony.com/ten-criteria
https://hackernoon.com/how-to-choose-a-framework-ea8b5b1e1f44

	Abstract
	Acknowledgements
	1 Introduction
	1.1 Project Description
	1.2 Contributions
	1.3 Outline

	2 Background
	2.1 Distributed Systems
	2.1.1 Why We Need Distributed Systems
	2.1.2 Challenges of Distributed Systems

	2.2 Replicated State Machines
	2.3 Consensus Algorithms
	2.3.1 The Paxos Protocol
	2.3.2 Batching and Pipelining

	3 Corums
	3.1 Motivation
	3.2 Network Communication Using Reactive Programming
	3.2.1 Reactive Programming
	3.2.2 Corums' Hybrid Programming Model
	3.2.3 Corums Communication Streams
	3.2.4 Corums In-Memory Network

	3.3 Single-Threading
	3.4 Persistency

	4 Implementing a Distributed Dictionary
	4.1 Introducing Distributed Dictionary
	4.2 System Architecture for Distributed Dictionary With Paxos Using Corums
	4.2.1 Client Handling Module
	4.2.2 Paxos Module
	4.2.3 Failure Detection and Leader Election Module
	4.2.4 Modifying the Corums Networking Implementation

	4.3 Development Environment
	4.3.1 Using Corums In-Memory Network for Testing
	4.3.2 Using Docker to Prepare for Benchmark Measurements

	5 Corums Evaluation
	5.1 Corums Usability
	5.2 Corums Compatibility
	5.3 Distributed Dictionary Performance Efficiency
	5.3.1 Experimental Setup
	5.3.2 Experimental Results

	6 Lessons Learned, Conclusion and Future Directions
	6.1 Lessons Learned
	6.1.1 Learning a Framework With No Community
	6.1.2 Lack of Documentation
	6.1.3 Contributing to Corums
	6.1.4 Learning C#

	6.2 Future Work
	6.3 Conclusion

	List of Figures
	List of Tables
	A Experimental Data
	B Distributed Dictionary Source Code
	Bibliography

