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“Arguing that you don’t care about the right to privacy because you have nothing to hide
is no different than saying you don’t care about free speech because you have nothing to
say.”

Edward Snowden





Abstract

Moving large amounts of data between networks for data analysis and computations
presents several issues related to privacy and security. In collaboration with the TOTEM
project [1], we propose a solution to these problems, by moving computations to the
residence of the data. We introduce a novel approach for managing access to remote
datasets and resources by blockchain technology through Hyperledger Fabric. Organiza-
tions with similar interests may join a consortium, which will form a private channel on
the blockchain network, i.e., a separate ledger. Participating organizations will enroll
their users, who thereafter must obtain a one-time-code using a smart contract in order
to gain access to remote resources. We utilize Ansible for remotely deploying Hadoop
clusters for computation, which will comprise several Docker containers. A user may
run computations at several remote locations separately, and subsequently retrieve a
combined result without having to share data between organizations. To ensure privacy
between participating organizations we utilize chaincode and private data collections in
Hyperledger Fabric. Finally, we demonstrate three ways of deploying the solution: locally,
as a single cluster in the cloud using Azure, and across multiple clusters in the cloud
using Azure. Our solution ensures data privacy by allowing data providing organizations
to connect their own computational resources for data consumers to use. By running
computations inside Docker containers on these resources, we ensure that these processes
are isolated from the host system.
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Chapter 1

Introduction

1.1 Motivation

These days data is more valuable than ever. The tasks of storing and transferring data
securely becomes increasingly difficult and expensive as the amount of data grows. Trans-
ferring such large datasets presents high costs and several security concerns. Furthermore,
business leaders and data owners may be hesitant to transfer data which is considered to
be private.

A solution for moving the computations to the data instead of vice versa satisfies the
security and privacy concerns, as well as the extra expenses related to transferring large
datasets between networks. This would allow the data to remain at its location or
within its respective network at all times while still allowing remote users, such as an
organization with shared interests, to access and perform computations on the data.
Such computations may be performed to retrieve trivial statistical values, as well as more
complex algorithms.

Furthermore, different organizations may possess datasets containing similar information.
In such cases, it may be interesting to retrieve a combined computational result from these
datasets. Traditionally, one could combine these datasets before performing computations,
however, we aim to achieve the same result without sharing data between the participants.

We aim to find a solution satisfying these criteria. The TOTEM project [1] is seeking
similar solutions as a part of their architecture, which we will discuss in more detail later.

1



2 Chapter 1 Introduction

1.2 Problem Definition

We seek a novel solution for securely and privately performing computations at the
location of remote datasets. For this, we need to provision temporary computational
environments at the site of the data. Inside these environments, computations need to
be performed and results must be retrieved, while keeping the operations hidden from
unauthorized entities.

Additionally, we face the issue of granting access to authorized users. Rules for controlling
access to these resources must be agreed upon by the participating organizations, and
allow access to authorized users without requiring interference or administration from
the remote organizations. i.e., a user must be able to perform computations at any time,
without having to wait for an administrator to grant them access.

Lastly, in the case of multiple datasets residing in different organizations, we must
consider that the data is to be kept private between the participating organizations.
Computational results from each participant must, therefore, be combined without
exposure to other organizations.

Thus, the problem is essentially divided into three parts: How should we govern access
to remote resources? How should we provision temporary computational environments
at remote resources? How can we obtain a combined computational result from multiple
datasets without sharing information between participating organizations?

1.3 Usecases/Examples

A project which would benefit from such a solution is the Clarify [2] project. Clarify
is a multinational, multi-sectorial and multidisciplinary research and trainee program
that comprises 12 early stage researchers from both engineering and medicine. The
participants comprise mostly of universities and hospitals from Stavanger in Norway,
Spain and the Netherlands. They aim to maximize the benefits of digital pathology
and facilitate the daily work of pathologists by creating an automated digital diagnostic
environment.

Clarify breaks down their goal into three parts. Firstly, advanced image processing
techniques and AI methods for automatic WSI (whole-slide-image) interpretation for
diagnosis and image retrieval. Next, novel cloud-oriented data infrastructure and algo-
rithms for securely storing, retrieving and sharing a publicly available WSI database
while assuring data interoperability and portability. Lastly, user friendly software such
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as computer-aided diagnosis and content-based image retrieval tools based on AI and
cloud-computing algorithms.

We observe that their second goal resembles what we are trying to achieve in our thesis.
Our solution may aid in their problem of securely storing, retrieving and sharing data
by securely moving computations to the data, thereby making it unnecessary for data
providers to share their data sets outside their respective networks. Furthermore, since
the Clarify project pertains to medical data, it will surely be considered private. Our
system will aid in keeping data private, while still allowing legitimate users to combine
computational results harvested from the data.

1.4 Outline

Chapter 2

Here, we present some useful background knowledge, as well as the tools we use for
developing our solution. Additionally, we compare different tools and select the most
appropriate candidates.

Chapter 3

In chapter 3 we present some related works, provide a short summary of their work and
explain how their approach differs from ours.

Chapter 4

Chapter 4 contains our solution approach. Here, we describe how we use the different
tools and technologies presented in Chapter 2, and present our proposed architectures
for solving our different problems.

Chapter 5

In this chapter we deploy our system in three different manners: Locally, on a single
cluster in Azure using AKS, and across multiple clusters in Azure using AKS. We describe
how we go about deploying the system, as well as what we need to consider when working
with Azure and AKS.
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Chapter 6

This chapter concludes our work. We summarize what we have achieved, as well as
discuss possible future directions for the system.



Chapter 2

Background

2.1 Virtual Machines and Container Technology

2.1.1 Virtual Machines

A Virtual Machine1, VM, is is used to emulate computer systems, and may be used
to create isolated and fully functioning computer architectures within a computing
environment, e.g., a computer or server. A hypervisor separates the environment’s
resources from its hardware and distributes them such that they can be used by the
virtual machine. The physical hardware which holds the hypervisor is called the host,
while the VMs which use its resources are called guests. Virtual machines are isolated
from the rest of the system, which allows for several VMs to exist on one physical
machine.

There are two types of hypervisors: Type 1 hypervisors schedule the VM resources
directly to the hardware. An example of a type 1 hypervisor is a Kernel-based Virtual
Machine, KVM. Type 2 hypervisors are hosted, meaning the VM resources are scheduled
against a host operating system. An example of a type 2 hypervisor is Oracle VirtualBox.

Virtual machines allow for more efficient use of server resources by placing multiple
virtual servers on one physical server to improve hardware utilization. This also provides
redundancy and robustness since, in the case of a server failure, you have one or several
other virtual servers running. VMs are also good for setting up testing and production
environments, since they are isolated from the rest of the system.

1https://www.redhat.com/en/topics/virtualization/what-is-a-virtual-machine

5
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2.1.2 Containers

Instead of virtualizing the entire computer system, containers virtualize the OS. Container
technology ([3], [4]) can be used to run applications, with all their dependencies, isolated
from other processes on the machine. Containers sit on top of the host OS to share the
kernel as well as, in some cases, binaries and libraries. All shared resources are read-
only, as to not interfere with other processes. Sharing these resources makes containers
light-weight compared to VMs, since they do not need to reproduce the OS code, thus
allowing a single OS installation to run several containers with ease.

There are several providers of container technology, such as Docker, rkt and Kubernetes,
with one of the most popular choices being Docker. Docker offers light-weight, secure
and portable containers, and is available for Linux, Mac OS and Windows Pro/Business.
Docker containers can be created and destroyed in a matter of seconds, unlike VMs
which could take several minutes. A major benefit of using Docker is the ease of running
multi-container applications by using docker compose. Docker compose [5] is a tool which
allows you to configure your application’s services using a YAML file, and then create
and start all the services with a single command.

The purpose of our thesis is to effectively provision temporary and isolated computing
environments in which we will perform calculations. We consider this when choosing our
method for isolating computations.

2.1.3 Virtual Machines vs. Containers

A figure illustrating the isolation differences between VMs and containers is shown in
Figure 2.12.

In a blog post by Mike Coleman [6], an employee at Docker, he uses the analogy of
comparing VMs to houses, and containers to apartment buildings. In which, he proceeds
to explain that houses are self-contained, meaning they have their own utilities such as
electricity, plumbing and heating. They provide their own security, i.e., if your neighbour
is careless and allows an intruder to break in, it should not matter to you. An apartment
building, however, have a shared infrastructure for electricity, plumbing and heating. Also,
a security slip by one of your apartment building neighbours could have consequences for
you.

The same principals apply to VMs and containers. VMs have their own standalone OS and
is virtualized at the hardware level, while containers shares the host OS, possibly along

2https://www.backblaze.com/blog/vm-vs-containers/

https://www.backblaze.com/blog/vm-vs-containers/
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(a) Virtual Machines Diagram (b) Docker Containers Diagram

Figure 2.1: Comparison between Virtual Machine and Docker Container structures

with other resources, and is isolated at the process level. Thus, the security threat within
one virtual machine will not affect adjacent ones. However, a multi-container environment
communicating over a shared network could potentially introduce several security threats.
In such an environment, if someone gains unwanted access to a neighbouring container,
it could have severe consequences for adjacent containers.

However, this does not mean that Docker container environments are insecure or un-
regulated, in fact, some argue that containers have security benefits over VMs3. One
argument being that by dividing your application into microservices, each running in its
own container with carefully defined interfaces, you are effectively decreasing the attack
surface of your application.

Continuing Coleman’s analogy of houses vs. apartment buildings, it is also worth noting
that when buying a house you often risk buying more than you need, since houses usually
come with a basic set of rooms, furniture, etc. Apartments, however, can be bare-bone,
and only contain the minimum requirement of living. The same applies to VMs and
containers. With Docker, you can create containers from images which contain only the
essentials for a functioning environment, allowing you to only install what you need. On
the contrary, virtual machines are often built with a full operating system, leaving it to
the user to strip the system down to what they need.

In Table 2.1, an overview of some important differences are presented.
3https://thenewstack.io/thirteen-ways-containers-secure-virtual-machines/

https://thenewstack.io/thirteen-ways-containers-secure-virtual-machines/
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Table 2.1: Virtual machines vs. Docker containers

Specs Virtual machines Docker containers
Host environment strain Heavy-weight Light-weight
Virtualization level Hardware virtualization OS virtualization
Startup time Minutes Seconds
Isolation level Fully isolated Process-level isolated

2.2 Tools and Concepts

2.2.1 Cloud Computing

Cloud computing [7] is a model for enabling omnipresent, convenient and on-demand
access to a pool of computing resources. These resources can be rapidly provisioned with
minimal management effort or service provider interaction.

Essential Characteristics

The cloud computing model comprises five essential characteristics: On-demand self
service, Broad network access, Resource pooling, Rapid elasticity and Measured service.

• On-demand self service: A consumer can, when required, unilaterally and
automatically provision computing capabilities without requiring human interaction
with each service provider.

• Broad network access: All capabilities are available through standard mecha-
nisms accessible through a variety of platforms (such as mobile phones, laptops,
etc.).

• Resource pooling: Resources are served to several consumers using a multi-
tenant model, where both physical and virtual resources are dynamically assigned
depending on consumers’ demand. Resources can refer to storage, processing,
memory and network bandwidth.

• Rapid elasticity: Resources can rapidly scale both inward and outward depending
on demand. Capabilities are dynamically provisioned, and are often seen as
unlimited to consumers.

• Measured service: Cloud computing employs a metering capability, which is
used to automatically control and optimize the resource usage. Transparency can
be ensured for both the provider and consumer by monitoring, controlling and
reporting resource usage.
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Service Models

Cloud computing also employs three service models:

• Software as a Service (SaaS): Providers may have applications running in their
cloud infrastructure. These capabilities are available to the consumer through
several interfaces such as a program interface or a web browser. The consumer
does not control any of the underlying infrastructure or configuration related to the
application, possibly, with the exception of some user-specific application settings.

• Platform as a Service (PaaS): Consumers have the capability to deploy their
own consumer-created or acquired applications as long as the programming language,
libraries, services and tools are supported by the provider. The consumer does not
control any of the underlying infrastructure, however, they control the application
they have deployed and, possibly, some application-hosting environment settings.

• Infrastructure as a Service (IaaS): Consumers have the capability to provision
computing resources like processing, storage and networks where the consumer
can deploy software which may include operating systems and applications. The
consumer does not control any of the underlying infrastructure, however, they
control the operating system, storage, deployed applications and, possibly, some
networking components such as host firewalls.

Deployment Models

Furthermore, cloud computing comprises four deployment models.

• Private cloud: The cloud infrastructure is provisioned for a single organization.
It may be owned, managed and operated by the organization, a third party or a
combination of both. The infrastructure may exist on or off premises.

• Community cloud: The cloud infrastructure is provisioned for a community of
organizations with shared interests. It may be owned, managed and operated by
the entire, or parts of, the community, a third party or a combination of them.

• Public cloud: The cloud infrastructure is open to the general public. The
infrastructure exists on the premises of the cloud provider.

• Hybrid cloud: The cloud infrastructure is based on a combination of two or more
of the other deployment models.
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2.2.2 Blockchain Technology

Blockchain [8] is a distributed digital ledger designed to be resilient against tampering. It
allows for users to record any transaction made on the network in a shared and transparent
manner, meaning that after a transaction has been made it cannot be changed, hence,
resilience against tampering. This technology was first applied to cryptocurrency, namely
Bitcoin, and was originally published in the paper Bitcoin: A Peer to Peer Electronic
Cash System [9] under the pseudonym Satoshi Nakamoto.

There are four characteristics that make blockchain work as intended:

• Ledger: Blockchain uses an append-only ledger which provides the entire trans-
actional history of the network. Transactions are appended as blocks, and unlike
traditional databases, transactions recorded on the ledger cannot be overwritten.
An illustration of how transaction blocks are connected is shown in Fig. 2.2.

• Secure: Blocks appended to the ledger contain the hash-value of its preceding
block. This makes the blockchain cryptographically secure and ensures protection
against data tampering.

• Shared: The ledger is shared by multiple participants to provide transparency
across all participating nodes in the network.

• Distributed: The blockchain can be distributed across multiple nodes. By scaling
up the number of participating nodes the network becomes more resilient to attacks
by ill-intended participants. More nodes make it harder for such participants to
impact the consensus protocol used by the blockchain network.

Figure 2.2: Illustration of a blockchain [10]

Blockchain networks can be divided into two categories: Permissionless and permissioned.
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Permissionless Blockchain Networks

A blockchain network is permissionless if anyone can publish new blocks to the ledger
without any authoritarian permission. Such platforms are often available as open-source
software and may be downloaded by anyone. It follows that since anyone can publish
blocks on the network, then anyone can transact on the blockchain as well as read and
write to the ledger.

Furthermore, since a permissionless blockchain network is open to anyone, ill-intended
participants may attempt to publish blocks that corrupt the system. This is prevented
by introducing a consensus protocol, which requires users to spend or maintain some
resources to be able to publish blocks. A consensus system usually rewards non-malicious
behaviour by granting a native cryptocurrency to participants who conform to the
protocol. The Bitcoin blockchain is an example of a permissionless blockchain network,
rewarding those who conform to the proof of work consensus protocol with Bitcoin.

Permissioned Blockchain Networks

A permissioned blockchain network forces users to be to authorized by some authority,
which may be centralized or decentralized. This means that such a network may allow
anyone to read and write to the ledger and transact on the network, or it can restrict
read and write access as well as who may submit transactions.

Permissioned blockchains can maintain the same traceability of digital assets as per-
missionless blockchains, as well as the same distributed and resilient data storage.
Furthermore, permissioned blockchains also use consensus models for publishing blocks.
However, because participants have to be authorized before joining the network, and
therefore have a level of trust between them, there is often no need to base the consensus
model on spending or maintaining any resources.

An example of where permissioned blockchains are especially useful is when organizations
want to work together but do not fully trust each other. They may want to control
or protect their data and resources for some reason, while still being able to cooperate
with their business partners. The participating organizations, often referred to as a
consortium, may then establish a permissioned blockchain network, agree on which
consensus model they want to use, and authorize the appropriate users. This provides
trust as well as transparency which may help with business decisions as well as holding
malicious participants accountable.

Lastly, permissioned networks can provide a level of transaction privacy by only allowing
certain users to view transaction information based on their identity or credentials.
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2.2.3 Smart Contracts

Smart contracts are a supplement to blockchains which allows user-defined rules and
restrictions for transactions. The involved parties will agree on the rules of a transaction
just as with traditional contracts, however, the rules are defined in code. These smart
contracts will then execute every time a transaction is made to make sure the defined
rules are followed.

This concept was first introduced by Nick Szabo in 1994 [11].

2.2.4 Ethereum

We previously mentioned Bitcoin as an example of permissionless blockchains. However,
the Bitcoin blockchain is only fit for transacting the cryptocurrency known as Bitcoin.
Another permissionless blockchain technology called Ethereum [12] utilizes blockchains
for more than just monetary value by exploiting smart contracts. They set out to create a
blockchain with a built-in programming language to be used for creating smart contracts,
allowing users to develop systems covering a vast selection of use cases.

Despite the advantages of using smart contracts, it introduces some security concerns.
Malicious users may deploy smart contracts with infinite loops or very computationally
heavy code. This can be exploited to perform Denial-of-Service attacks (DoS attacks),
halt the network, and deny access to legitimate users. Ethereum tackles this issue by
introducing gas. A user has a certain amount of gas available, and when they wish to
run any smart contract on the blockchain they must have a sufficient amount of gas. If a
user’s gas runs out during a computation, it will stop running the code. This mechanism
allows the Ethereum blockchain to be permissionless and utilize smart contracts, without
being victim to DoS attacks.

2.2.5 Hyperledger Fabric

Hyperledger is an open-source project created to enhance blockchain for enterprises.
The project started in 2015, hosted by the Linux Foundation, and is a collaborative
effort between many different companies. It comprises over 230 organizations and several
projects, including IBM’s Hyperledger Fabric.

Hyperledger Fabric ([13], [14]) is an enterprise-grade permissioned distributed ledger
framework created by IBM. It focuses on a modular and configurable architecture,
allowing it to meet the requirements of many different use cases such as banking,
insurance, healthcare, etc. Fabric supports smart contracts written in general purpose
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programming languages including Java, Go and Node.js, meaning users do not need to
learn a domain-specific language to write them. Smart contracts are called chaincode in
Hyperledger Fabric, this is further discussed in Section 2.2.5.

Furthermore, Fabric is a permissioned ledger (recall Section 2.2.2) meaning organizations
who wish to transact privately without completely trusting each other can do so on a
Fabric network. Organizations may agree how the access to data and resources should be
governed before any transactions take place, due to the modularity and configurability
of Fabric. A feature which demonstrates this configurability, is the pluggable consensus
protocol. This allows for participating organizations to customize the platform to fit
their specific use case. For example, a network comprising a single enterprise versus a
network with several competing organizations will have different needs in terms of how
comprehensive the consensus protocol is.

Channels

As discussed in Section 2.2.2, permissioned blockchains force users to be authorized before
joining the network. Hyperledger Fabric allows for privacy and confidentiality through
channels. A channel is formed by a consortium of organizations, which share a separate
channel ledger and are free to transact as long as they conform to the policies defined on
the channel. This allows for transparency between the members of the consortium, while
still keeping their transactions private from outsiders. Note that the channel we describe
here is known as an application channel. This differs from the system channel, which
controls the configuration of the Fabric network. In this thesis, we refer to application
channels when mentioning channels.

A channel ledger will comprise a world state and a transaction log. The world state
represents the current state of the channel ledger, while the transaction log is the history
of transactions which has lead to the current world state, i.e., the transaction log is the
blockchain. A channel will also logically host smart contracts, which in Fabric are written
in chaincode, and may be invoked by applications who wish to interact with the ledger.

Peers and Orderers

The nodes which comprise a Hyperledger Fabric network are primarily peer nodes and
orderer nodes, who cooperate to ensure that only proper transactions are committed
to the ledger. Peers may take on different roles in the network, however, for now it is
enough to know that some peers act as endorsing peers, which will endorse a transaction
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before sending it to the orderer. The following steps are taken to commit a transaction
to the ledger.

1. A transaction proposal is sent to each endorsing peer, who will run and subsequently
endorse the transaction before sending it to an orderer.

2. The orderer will ensure that the transaction is endorsed by the necessary peers.
It will then add the transaction to the next block and distribute it to all peers
participating on the channel.

3. Each peer will then inspect the block to validate that every peer has received the
same result. Upon a successful validation, the peers will commit the block to the
ledger.

Every peer will additionally host a ledger instance for each channel it is participating
in. Furthermore, if the peer is an endorsing peer, it will host an installation of every
chaincode instantiated on the channels. We discuss chaincode further in Section 2.2.5.

Membership Service Provider

Members of the network and channels are enrolled through a Membership Service Provider
(MSP). The MSP maps a user’s certificate to the organization it is a member of. Thus,
the MSP can turn the identity of a user into a role. Organizations can agree on the
permissions a role should be granted on the network or in a channel. Organizations may,
therefore, govern their data and resources by establishing MSPs which determine the
access level roles should be allowed, as well as the operations they can perform.

Chaincode

The terms smart contract and chaincode4 are often used interchangeably. One could
define smart contracts as the transactional logic for interacting with the world state,
which is then packaged into a chaincode and deployed to the Fabric network. For
simplicity’s sake, we will think of a chaincode as Fabric terminology for a smart contract.
At the time of writing, Fabric supports chaincode written in Go, Java and Node.js.

Chaincodes are deployed on channels to put, get and delete states in the world state.
We may also leverage chaincode to generate and return values to the user. Different
applications of chaincode are discussed in Section 4.3.3. When deploying a chaincode

4https://hyperledger-fabric.readthedocs.io/en/release-1.4/smartcontract/smartcontract.
html

https://hyperledger-fabric.readthedocs.io/en/release-1.4/smartcontract/smartcontract.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/smartcontract/smartcontract.html
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to a channel, it must first be installed on the endorsing peers from each organization
participating on the channel. Additionally, the chaincode must be instantiated on the
channel by one of the participating peers. Therefore, we may say that a chaincode is
physically hosted on peers, while it is logically hosted on the channel.

Hyperledger Fabric Example Network

Figure 2.3: Illustration of a Hyperledger Fabric network [15]

An illustration of a Hyperledger Fabric network comprising four organizations (R1, R2, R3
and R4) is shown in Fig. 2.3. Here, we observe peers (P1, P2 and P3) belonging to three
different organizations. These peers physically host smart contracts (S5 and/or S6), as
well as a channel ledger copy (L1 and/or L2) of the channel(s) they are a member of. We
observe two channels (C1 and C2) who each have their own separate channel configuration
(CC1 and CC2) defined by the member organizations. The external applications (A1, A2
and A3) can interact with the channel ledgers by invoking the smart contracts which are
hosted on them. Each organization has their own certificate authority (CA1, CA2, CA3
and CA4) which issue X.509 certificates for authenticating users. Lastly, there exists an
orderer (O4) which is defined by the network configuration (NC4).

2.2.6 Hadoop and Big Data

Big data [16] is a term used to describe data sets which are too large to be handled using
conventional mechanisms. Important characteristics of big data are volume, velocity,
variety and variability. New techniques for data handling are required to work with big
data, such as parallel data processing. One framework which allows for parallel and
distributed processing of large data sets is Hadoop.
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Apache Hadoop [17] is a framework for parallel processing of large data sets in a distributed
setting. Processing tasks are distributed across clusters of computers who each contribute
their own storage and computational power. Hadoop is designed to be highly scalable,
and is programmed to detect and handle failures at the application layer, thereby ensuring
availability. The framework comprises several modules, the two main layers are Hadoop
MapReduce and Hadoop Distributed File System (HDFS).

HDFS is a distributed file system which consists of a master-slave architecture. A HDFS
cluster comprises a single NameNode which acts as the master server that manages the
file system namespace and regulates file access, as well as several DataNodes. After a
file has been divided into fixed-size blocks, they are distributed among these DataNodes.
The NameNode is tasked with mapping these blocks to the DataNodes, as well as per-
forming namespace operations such as opening, closing and renaming files and directories.
Furthermore, the NameNode can instruct the DataNodes to create, delete and replicate
blocks. It is the DataNodes’ job to handle read and write operations from the client of
the file system.

Hadoop provides solutions for moving computations instead of moving data, which
directly addresses the motivation for our thesis. Therefore, we choose Hadoop as our
computational framework.

2.3 Choosing an Automated Deployment Tool

There exist several tools for automating IT infrastructure and application-deployment.
We will investigate some advantages and drawbacks to see which is most fitting for our
problem.

2.3.1 Infrastructure as Code

Infrastructure as Code5, IaC, is the concept of managing infrastructure as a descriptive
model. The code can be imperative, meaning an ordered list of instructions which walks
through the configuration step by step, or declarative, meaning we define the desired
final state of our environment.

IaC tackles the issue of environment drift, which is the problem of each configuration in
an environment being unique, and hard to exactly replicate due to manually maintaining
all node configurations. Inconsistencies in an environment can lead to issues during

5https://docs.microsoft.com/en-us/azure/devops/learn/what-is-infrastructure-as-code

https://docs.microsoft.com/en-us/azure/devops/learn/what-is-infrastructure-as-code
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deployment. IaC solves this by assuring that a set of nodes can consistently run the
same configuration by deploying the same model on each of them.

We will be using the concept of IaC to deploy Docker containers on a set of resources,
and within them, run the necessary computations. Next, we must choose the tool for
which we will use to provision these Docker containers. There exist several viable choices,
of which we consider two: Ansible and Puppet.

2.3.2 Ansible

Ansible6 is an open-source software which automates the process of IT infrastructure
and application-deployment. An Ansible-managed infrastructure will consist of one or
several control nodes, which will have Ansible installed on them, and managed nodes
which will receive instructions from the control nodes. Ansible holds the advantage of
not requiring any client-side installation, as it is based on a push configuration where a
control node pushes out tasks to its managed nodes.

The tasks which are to be executed on the managed nodes can be defined singularly
ad-hoc, or as a series of tasks in a playbook. Playbooks are written in YAML, making
them both easy to define and easy to read.

To ensure a secure connection between a control node and a managed node, Ansible uses
SSH with public key authentication. This means the managed node must grant access to
the control node before any commands can be pushed.

2.3.3 Puppet

Puppet7 is another tool which utilizes IaC. This infrastructure consists of several Puppet
agents which are controlled by a Puppet master. Puppet is based on a pull configuration,
unlike Ansible, which requires an installation of the software on both master and agent
nodes.

Puppet uses its own declarative language to create files called manifests, which are used
to describe the desired state of a system. Furthermore, Puppet compiles these manifests
into catalogs, which describes the desired state of a specific node. This language holds
the advantage of being generally easier to debug than YAML, however, YAML is easier
to understand and results in human-readable playbooks.

6https://www.ansible.com/overview/it-automation
7https://puppet.com/docs/puppet/latest/puppet_overview.html#puppet_overview

https://www.ansible.com/overview/it-automation
https://puppet.com/docs/puppet/latest/puppet_overview.html##puppet_overview
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The ease of setup and installation, as well as the practicality of a push configuration
makes Ansible the best choice for our temporary container deployments.
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Related Work

3.1 The TOTEM Project

TOTEM [1], token for controlled computation, aims to integrate blockchain technology
with big data to move computations to the data. Their proposed architecture utilizes a
Hyperledger Fabric network for governing access to remote resources, and the Hadoop
framework for running computations at the residence of data sets.

Furthermore, the project proposes an entity called TOTEM, which is used to prevent ill-
intending users from executing malicious code by putting constraints on the computational
code submitted by users. A user will obtain a pre-defined totem value which will be
gradually exhausted as the operation code (opcode) comprising the computational code
is executed. When a user’s totem value is spent, they will no longer be able to run their
code on the remote data sets. In the TOTEM project’s current architecture, the totem
value resembles Ethereum’s gas concept [12], as discussed in Section 2.2.4.

In order to determine when a user has exhausted their totem value, they employ a system
for estimating the computational cost of opcode called a totem estimator table. The
computational code is submitted to the Hyperledger Fabric blockchain, where a smart
contract resides to determine the cost of each opcode.

In the TOTEM project’s customised computational framework they introduce a master
node which communicates with a totem manager, and several slave nodes which commu-
nicate with totem updaters. The totem manager receives the user’s available totem, as
well as the estimated totem to perform the desired computation. It is then the totem
manager’s job to calculate the usage of the totem in between each executed opcode, while
updating the master node on whether or not computations should continue.

19
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Our proposed solution is in association with the TOTEM project. However, the usage of
totem values and the customised computational framework is beyond the scope of this
thesis. We aim to implement solutions for resource governance, temporary computational
environments at remote resources, and secure result retrieval in a multi-provider scenario.
These solutions may then be implemented into TOTEM’s proposed architecture.

3.2 Data Privacy and Blockchain

Systems built around a centralized architecture are often forced to trust a third party
with their information, which presents issues when data owners are reluctant to share
their information. Aitzhan and Svetinovic [18] aims to solve these security and privacy
issues in energy trading, by proposing a decentralized system using multi-signatures,
blockchain and anonymous messaging streams. Their system is built upon the Bitcoin
blockchain [19] to eliminate the need of trusted third parties, and utilize Bitmessage
[20] for propagating encrypted data in messaging streams. However, their solution is
based on a trust-less scenario of strangers trading with each other and, being built upon
the Bitcoin blockchain, entails a permissionless system. Our system proposes the use of
a Hyperledger Fabric, a permissioned blockchain, to keep information private between
organizations with shared interests, as well as private data collections (discussed further
in 4.5.1), for keeping private data hidden between organizations.

Brandenburger et al. [21] discusses the problems of keeping data private on blockchains.
Smart contracts cannot keep secrets as their data is replicated on all nodes. Furthermore,
they investigate the pitfalls of combining blockchain with trusted execution environments
(TEEs). A TEE, such as Intel’s Software Guard Extensions1 (Intel SGE), will isolate its
executions on the host CPU, meaning the host’s environment does not need to be trusted
and data is kept private. They go on to mention the susceptibility of rollback attacks in
this approach. Finally, they propose a solution using Intel SGE with Hyperledger Fabric
for securely executing chaincode in an isolated environment.

In our case, we may trust the environment in which we run our computations, since the
data provider will connect their own computational environment. Therefore, there is no
need for a TEE. Furthermore, we need to allow combining computational results from
multiple data providers while keeping data and results private from other organizations
in the consortium. As mentioned, we use private data collections to solve this.

Moreover, Brandenburger et al. [21] raises an interesting point when discussing the
possibility of using cryptographic protocols such as multiparty secure computations as

1https://software.intel.com/content/www/us/en/develop/topics/
software-guard-extensions.html

https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
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a solution approach. They point out that these approaches are not mature enough to
easily handle general-purpose computations. Our approach of running computations
individually at each data provider and retrieving results with private data collections
allows us more freedom in what computations we can run.

Benhamouda et al. [22] address the problem of private data on Hyperledger Fabric. They
point out the fact that all peers on a channel must have the same view of the world state,
meaning all data and transactions are transparent to all participants. Since this may be
undesirable in several scenarios, they propose encrypting private data before committing
it to the blockchain, and utilize a multi-party computation solution when private data is
needed in a transaction. They introduce two new components which should be added to
the Hyperledger Fabric architecture to support their solution. The first component they
introduce would allow for a local configuration, meaning the chaincode running at peers
with private data should have access to parameters which are not available to other peers.
The second component addresses inter-peer communication, which entails that private
data may interfere with the endorsement decision for peers who do not see that data.

We solve these issues by using private data collections in Hyperledger Fabric. Here,
we can introduce and utilize collections of private data directly in our chaincode, by
giving these collections their own policy regarding who may access them. Private data is
then communicated between authorized peers using a gossip protocol and stored in a
separate private database, with no involvement from the orderer. The concept of private
data collections and how they function are discussed in Section 4.5.1. By exploiting this
concept, we do not need to introduce any additional components to Hyperledger Fabric,
nor do we need any multi-party computation implementations.





Chapter 4

Solution Approach

4.1 Introduction

In Section 1.2 we present three problems that need to be considered. To ensure that
connections and permissions are granted safely, we will connect to a Hyperledger Fabric
network, which will return a one-time-code (OTC) to users with proper permissions.
Furthermore, we choose to use Ansible to provision Docker containers, in which computa-
tions will be run inside a Hadoop cluster. Valid users may use their obtained OTC to gain
access to the remote resources, and subsequently provision their temporary infrastructure
with Ansible. Lastly, we utilize private data collections in Hyperledger Fabric for keeping
data and computational results private between participating organizations.

4.2 Analysis

As per TOTEM’s [1] proposed architecture, we identify the entities participating in our
network as data providers and data consumers. These can be defined as follows:

Definition 1 (Data Consumer): A member of the Hyperledger Fabric network who
wishes to run their computational code on a data provider’s dataset, using the provider’s
resources.

Definition 2 (Data Provider): A member of the Hyperledger Fabric network who
provides a dataset and a set of resources which may be used by a data consumer to run
computations.

Observe that data consumers and data providers correspond to control nodes and managed
nodes from the perspective of Ansible.

23
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Our goal is to automate the process of performing computations on data providers’ data
sets, possibly containing private information, by bringing the computations to the data.
However, before any computation take place, we must create a system for granting access
to data providers’ resources and data. First, we must first define what granting access
entails in our scenario, and the steps a user must complete to obtain access.

As mentioned, our proposed solution uses Ansible for provisioning the necessary infras-
tructure and running Hadoop jobs. Since Ansible relies on SSH connectivity to push
commands, we need to implement a system which grants SSH access to data consumers.
Also, we assume that a user is authorized before attempting to access resources. An
authorized user refers to someone who is enrolled in the Hyperledger Fabric network as a
member of a participating organization.

When access has been granted to properly authorized users, they are free to run the
Ansible playbooks which will automatically install, start and utilize Docker to run
MapReduce jobs in Hadoop. After the computations have completed, we are faced with
the challenge of handling the results. We differ between two scenarios when retrieving
results. These can be defined as follows:

Definition 3 (Single-Provider Scenario): When a data consumer runs computations
on the data set of one single provider.

Definition 4 (Multi-Provider Scenario): When a data consumer runs computations
on several data sets from several data providers.

The latter of these two scenarios presents challenges regarding privacy. We must imple-
ment a system for combining and retrieving results without sharing any data with other
organizations on the channel.

Our final system will comprise three peer organizations and one orderer organization.
We take inspiration from the Clarify project, mentioned in Section 1.3, and create the
consortium in Table 4.1.

Table 4.1: Consortium of Participating Organizations

Name Type Count
Stavanger Peer Organization 1
Netherlands Peer Organization 1
Spain Peer Organization 1

We will use this consortium to form a channel on our network, which we will use to
demonstrate our solutions. Additionally, we add an orderer organization simply called
OrdererOrg, which will comprise a single orderer on our network.
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The rest of this chapter will comprise sections describing how we solve the different
challenges of our thesis. The sections are structured as follows:

• Governing resource and data access using Hyperledger Fabric.

• Running computations with Ansible playbooks, Docker and Hadoop.

• Private data collections for retrieving distributed private results in a multi-provider
scenario

4.2.1 Assumptions

We implement our solution as a proof-of-concept, meaning we acknowledge that the
system contains several caveats and is not a production-ready solution. Therefore, we
must make some assumptions about the environment we are working in.

Firstly, we assume that data providers are running Linux in their computational resources,
namely, we are developing the system for Ubuntu systems. Furthermore, we assume
that the computational code is already present at the provider’s residence. In TOTEM’s
proposed architecture, the computational code will be written in a custom SDK and
transferred using the blockchain, however, this is beyond the scope of this thesis.

We also acknowledge the vulnerability of a man-in-the-middle attack1 when transporting
the OTC and public key from the data consumer to the data provider. We will assume a
secure communication when exchanging the public key and OTC, however, this issue
should be addressed in future works, and is discussed further in Section 6.2.

1https://en.wikipedia.org/wiki/Man-in-the-middle_attack

https://en.wikipedia.org/wiki/Man-in-the-middle_attack
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4.3 Governing Resource and Data Access using Hyperledger
Fabric

We present a proposed architecture for data and resource governance managed by
Hyperledger Fabric.

Figure 4.1: Proposed Architecture for Authentication Managed by Hyperledger Fabric

In Fig. 4.1 we observe the process one must go through in order to gain access to a data
provider’s resources. A closer look into the operations happening inside the Hyperledger
Fabric network and the data provider’s computational resource are discussed later in
this section.

1) The data consumer invokes the grantAccess chaincode which will 2) check the
identity of the consumer, and make sure they have the appropriate role to perform the
operation (discussed further in Section 4.3.1). 3) Upon confirming the privilege of the
data consumer, the chaincode will return a one-time-code2 (OTC). In short, an OTC
is a value which may be used to authenticate a user for a single session. 4) The data
consumer will subsequently send their OTC and public key to the provider, which will
5) query the Hyperledger Fabric network to receive the OTC that is recorded on the
ledger. If the OTC received by the alleged consumer matches the OTC recorded on the
ledger, the provider will 6) place the consumer’s public key in its authorized_keys, and
7) notify the consumer that access has been granted. The data consumer now has access
to the data provider’s resources, and may 8) push Ansible commands for provisioning
infrastructure and running computations.

2https://en.wikipedia.org/wiki/One-time_authorization_code

https://en.wikipedia.org/wiki/One-time_authorization_code
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Before implementing this authentication system we must launch a Fabric network, as well
as write the necessary chaincode and client scripts for realizing the proposed functionality.
Firstly, we discuss the process of setting up a Hyperledger Fabric network.

4.3.1 Configuring and Launching a Hyperledger Fabric Network

We want a system which allows all participating parties to agree on how resources and
data should be governed. This makes Hyperledger Fabric a fitting choice as our tool for
governance.

For our purpose, we will first launch a network containing three peer organizations and
one orderer organization. The network will comprise a single orderer and a single peer
in each organization. In a production environment it would be reasonable to deploy
several orderers and peers per organization, however, for testing our proposed solution it
is sufficient to deploy a minimal network configuration.

Each organization will decide a policy3 for which of their users may read, write and
administer in the network. The definition of these policies support combinations of AND,
OR and NOutOf. For example, and organization policy stating that a writer can be either
an admin or a client would be expressed as Listing 4.1.

Writers:
Type: Signature
Rule: "OR(’Org1MSP.admin’, ’Org1MSP.client’)"

Listing 4.1: Organization Policy Example

The Type:Signature field refers to the fact that a writing operation requires the signature
to be compliant with the Rule that is defined. In this case the policy definition is based
on the role of the user, which is issued by the MSP. As previously mentioned, a user is
given an X.509 certificate4 by a Certificate Authority (CA), which the MSP will use to
assign a role to the user. We use the CA issued by Hyperledger Fabric, called Fabric-CA,
which allows users to be registered with admin, peer, client, orderer, or member as their
role.

Furthermore, we must define the channels which will populate our network, and which
peer organizations will join them. The channel will also enforce a policy to decide who
can perform which operations. We describe how the channel is configured in Section 4.3.2.

3https://hyperledger-fabric.readthedocs.io/en/release-1.4/policies/policies.html
4https://www.ssl.com/faqs/what-is-an-x-509-certificate/

https://hyperledger-fabric.readthedocs.io/en/release-1.4/policies/policies.html
https://www.ssl.com/faqs/what-is-an-x-509-certificate/
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4.3.2 PIVT

The task of configuring and setting up a Hyperledger Fabric network from scratch is a
time-consuming and error-prone task. Luckily, there are tools which facilitate network
configurations as well as network interactions.

We utilize PIVT [23], which is a tool for running and operating Hyperledger Fabric v1.4.5
in Kubernetes. Kubernetes5 is an open-source system for orchestrating containers, which
automates deployment, scaling and management of container applications. Kubernetes
leverages services which directs traffic to pods, which again consists of several containers.
For example, in the case of Hyperledger Fabric we will have a peer service, which acts as
an entry point for interactions with peers. This service directs traffic to a peer pod, which
will consist of one or several peer containers. We discuss Kuberentes, and launching a
Hyperledger Fabric network in Chapter 5. An extensive overview of a simple Hyperledger
Fabric network in Kubernetes, from the PIVT GitHub repository [23], is shown in Fig 4.2.

Figure 4.2: A Simple Hyperledger Fabric Architecture in Kubernetes

As per the Hyperledger Fabric docs and its samples, we run our network in a Docker
container environment, which we will orchestrate using Kubernetes. PIVT provides Helm
charts to facilitate launching a Fabric network, as well as interacting with it. Helm6

is a package manager for Kubernetes, which manages charts. Charts are packages of
pre-configured Kubernetes resources, which helps us define, install and update Kubernetes
applications.

5https://kubernetes.io/docs/home/
6https://helm.sh/

https://kubernetes.io/docs/home/
https://helm.sh/
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PIVT is a collaborative effort between APG7 and Accenture NL8. According to their
GitHub repository they provide Helm charts for:

• Configuring and launching a Hyperledger Fabric network.

• Populating the network declaratively with channels, peers and chaincode.

• Adding new peers to running networks and updating channel configurations declar-
atively.

• Backing up and restoring the state of the network.

Being able to run these operations declaratively means they are safe to run multiple
times, e.g, a channel will not be created if it is already present.

Before we can use these Helm charts, we need to satisfy some prerequisites. Firstly,
PIVT requires that we have a running Kubernetes cluster, on which we will launch
our network. For testing purposes we utilize Minikube9, which launches a single-node
Kubernetes cluster inside a VM on our local machine. Next, we need the binaries for
Hyperledger Fabric, Helm, jq10 and yq11. In short, yq will take yaml as input, convert
it to json, and pipe it to jq, which is a lightweight json-processor. Lastly, we will need
Argo Workflows12, a container-native workflow engine for orchestrating parallel jobs in
Kubernetes.

After we have installed all requirements, we may use PIVT to launch our network. For
this, there are three files we must configure:

configtx.yaml, crypto-config.yaml and network.yaml.

The network.yaml defines the channels we will add to the network, which peer organiza-
tions will join the channels, as well as what chaincode will be installed on the channels.
Our network.yaml definition is shown in Listing 4.2. In this definition, we first observe
a genesisProfile and systemChannelID. These are both used by PIVT to create the
genesis block, which is the first block added to our blockchain, containing configuration
information. As mentioned in Section 2.2.5, the system channel controls the configuration
of our network, and the systemChannelID is used to identify this channel.

Next, we define the channels, containing the channel names which will populate the
network, as well as the peer organizations which will participate in them. The final section,

7https://www.apg.nl/en
8https://www.accenture.com/nl-en
9https://kubernetes.io/docs/setup/learning-environment/minikube/

10https://stedolan.github.io/jq/
11https://pypi.org/project/yq/
12https://argoproj.github.io/projects/argo/

https://www.apg.nl/en
https://www.accenture.com/nl-en
https://kubernetes.io/docs/setup/learning-environment/minikube/
https://stedolan.github.io/jq/
https://pypi.org/project/yq/
https://argoproj.github.io/projects/argo/
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network:
genesisProfile : OrdererGenesis
systemChannelID: ansiblenetwork

channels:
- name: common
orgs: [ Spain , Netherlands , Stavanger ]

chaincodes:
# CHAINCODE FOR ACCESSING REMOTE RESOURCES.
- name: access−chaincode
version: # "2.0"
orgs: [ Spain , Netherlands , Stavanger ]
channels:
- name: common
orgs: [ Spain , Netherlands , Stavanger ]
policy: OR(’SpainMSP.member’, ’NetherlandsMSP.member’,

’StavangerMSP.member’)

Listing 4.2: Network Definition

chaincodes, describes which chaincodes should be included, and to which channels they
should be installed. In our case, we define a channel called common, which will be
joined by all of our peer organizations, i.e., Spain, Netherlands and Stavanger. We also
specify that the access-chaincode shall be installed on peers in all organizations, with
the policy that members in any of the organizations may invoke the chaincode. In a
real-world scenario, the chaincode will be deployed as a collaborative effort between all
data providers. This means that all providers must agree on the chaincode that will
govern their resources, and the policies deciding who gets to invoke the chaincode.

Next, we inspect the crypto-config.yaml file. The file is shown in Listing 4.3. Here,
we first observe the OrdererOrgs section, which lists the orderer organizations in the
network, for which we specify a name, domain and hostname. Additionally, we set the
EnableNodeOUs parameter to true. This tells the MSPs in the network to enable the use
of roles.

The final section, PeerOrgs, specify the peer organizations participating in the network.
Here, we also specify name, domain and the use of roles. Also, we use the Template and
Count parameters to specify the number of peers each organization should contain. This
file is used by PIVT to generate the cryptographic material for each organization, such
as MSP directories, certificates and keys.

It is important to note that while channels and organizations are specified in
crypto-config.yaml and network.yaml, this is not where they are defined. The bulk
of the network is defined in the configtx.yaml file. Here, we define each orderer and
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OrdererOrgs:
- Name: OrdererOrg
Domain: ordererOrg.com
EnableNodeOUs: true
Specs:

- Hostname: orderer0

PeerOrgs:
- Name: Stavanger
Domain: stavanger.no
EnableNodeOUs: true
Template:
Count: 1

Users:
Count: 1

- Name: Netherlands
Domain: netherlands . nl
EnableNodeOUs: true
Template:
Count: 1

Users:
Count: 1

- Name: Spain
Domain: spain.es
EnableNodeOUs: true
Template:
Count: 1

Users:
Count: 1

Listing 4.3: Crypto-Config Definition

peer organization, along with all organization policies, channels and applications. This is
also where we define consortiums, which subsequently are used to form channels.

An extract from our configtx.yaml file, showing the definition of the Spain organization,
is shown in Listing 4.4. Refer to Appendix A for the whole file. The name of the
organization is defined in the very first line, followed by the name, ID and file path of
the organization’s MSP. Next, we observe the organization policies which determine
reading, writing and administrative rights of organization members. Lastly, we define an
anchor peer. As mentioned in 2.2.5, peers may take on different roles, one of which being
the anchor peer, which is used for cross-organization gossip communication. We discuss
gossip communication in Section 4.5.1.

The three files mentioned are the basic building blocks for setting up a Hyperledger Fabric
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− &Spain
Name: SpainMSP

ID: SpainMSP

MSPDir: crypto−config/ peerOrganizations / spain . es/msp

Policies :
Readers:
Type: Signature
Rule: "OR(’SpainMSP.admin’, ’SpainMSP.peer’, ’SpainMSP.client’)"

Writers:
Type: Signature
Rule: "OR(’SpainMSP.admin’, ’SpainMSP.client’, ’SpainMSP.peer’)"

Admins:
Type: Signature
Rule: "OR(’SpainMSP.admin’)"

AnchorPeers:
- Host: hlf−peer−−spain−−peer0
Port: 7051

Listing 4.4: Configtx Definition

network using PIVT. Though we have options for more advanced configurations, we deem
it sufficient for a single cluster solution to use the current three files we have discussed.
We discuss a multi-cluster solution in Chapter 5. The next subsection discusses how we
exploit the Hyperledger Fabric network for controlling access to data providers’ resources.

4.3.3 Interacting with Hyperledger Fabric and Chaincode

As mentioned in Section 2.2.5, Fabric supports chaincode written in Go, Java and Node.js.
Furthermore, they provide different SDKs for invoking chaincodes. At the time of writing
they provide SDKs for Node.js and Java, with plans of introducing SDKs for python
and Go in future releases13. We consider using the unfinished python SDK due to our
assumption of a linux-based operating system for data providers’ resources. It follows
from this assumption that the remote resource will have python installed, meaning no
additional installations are required. However, the python SDK proves difficult to use
due to the lack of proper documentation. Therefore, we choose the Node.js SDK for
interacting with our chaincode, specifically, release 1.4. Refer to Appendix A for our
Node.js scripts.

13https://hyperledger-fabric.readthedocs.io/en/release-1.4/fabric-sdks.html

https://hyperledger-fabric.readthedocs.io/en/release-1.4/fabric-sdks.html
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Applications

When writing a Fabric application14 for interacting with chaincode, there are six steps
we must consider.

1. Export an identity from a wallet.

2. Connect to a gateway.

3. Access the desired network (channel).

4. Construct a transaction request.

5. Submit the transaction.

6. Retrieve the result.

The first step introduces the term wallet, which is a mechanism for holding one or several
user identities. We utilize the SDK to create a file system wallet, and add identities to
it. PIVT automatically enrolls one client and one admin per organization. We use the
Node.js SDK to generate identities from the certificates and private keys of these users,
and subsequently add them to our wallet.

After fetching an identity from the wallet, we must connect to a gateway15, which will
manage the network interactions on behalf of our application. To establish a connection,
we use our identity along with a connection profile. The connection profile comprises
information regarding the network we are connecting to. This may include addresses to
peers, orderers and certificate authorities, as well as several connection options16. Refer
to Appendix A for our connection profile.

After connecting to the gateway, we may access the desired channel with the
gateway.getNetwork(<channel_name>) command. Note that this operation will only
successfully return a channel instance if the identity used to connect to the gateway is a
member of the channel.

From the channel instance, we may generate an instance of our chaincode using the
channel.getContract(<contract_name>) command. This instance allows us to either
submit transactions when we wish to add a new block to the ledger, or evaluate transac-
tions when we simply wish to query a state. When submitting the transaction, we must

14https://hyperledger-fabric.readthedocs.io/en/release-1.4/developapps/application.
html

15https://hyperledger-fabric.readthedocs.io/en/release-1.4/developapps/gateway.html
16https://hyperledger-fabric.readthedocs.io/en/release-1.4/developapps/

connectionoptions.html

https://hyperledger-fabric.readthedocs.io/en/release-1.4/developapps/application.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/developapps/application.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/developapps/gateway.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/developapps/connectionoptions.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/developapps/connectionoptions.html


34 Chapter 4 Solution Approach

provide the name of the function we are invoking, as well as any parameters the function
is expecting. If we are successful, the chaincode function will generate a payload and
return it to us. The payload may be any arbitrary value presented as a stream of binary
data. We may use this payload to return an OTC to data consumers.

4.3.4 Governing Data and Resources with Hyperledger Fabric

As previously mentioned, we may use channel policies to govern user privileges based on
their roles. We can exploit this concept to decide who gets to perform computations on
remote datasets, i.e., who gets to push Ansible commands on a data provider’s resource.
The participating organizations will agree which roles from which organizations will be
granted privileges before the network is used.

As mentioned in 4.2, we exploit the fact that Ansible requires SSH access in order to
govern access. Since we are assuming that the data provider’s resource is running a
Linux-based system, it would be sufficient for them to hold the data consumer’s public
key in their authorized_keys file. However, before the data provider can accept the
public key of any alleged data consumer, they need to confirm that the consumer indeed
is a member of the channel, and that their role is satisfactory according to the channel
policies.

Our Chaincode

We introduce the chaincode access-chaincode to our channel. The chaincode is writ-
ten in Node.js, and will contain functions for granting access to the resources of any
participating data provider. As shown in Figure 4.1, our architecture proposes the use
of an OTC for granting access. The grantAccess function will construct an OTC by
combining the client ID of the person invoking the chaincode with the current datetime,
and hash this value using the SHA-256 hash function. We assume the following to be
true for cryptographic hash functions:

Collision resistance in cryptographic hash functions: Given a hash function H,
it should be infeasible to find two messages M and M ′, where M 6= M ′, such that
H(M) = H(M ′).17

This assumption ensures us that all OTCs are unique, and are safe for one-time usage.
After generating the OTC, the chaincode function will commit the OTC to the ledger,
and subsequently return it to the user. The function is shown in Listing 4.5.

17https://en.wikipedia.org/wiki/Collision_resistance

https://en.wikipedia.org/wiki/Collision_resistance
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async grantAccess(stub, args) {
const cid = new shim.ClientIdentity(stub);
const provider = args[0];

const dateTime = new Date().toLocaleString();
const userId = cid.getID();
const valToHash = dateTime.concat(userId);
const digest = crypto.createHash("sha256").update(valToHash).digest("hex");

await stub.putState(provider, Buffer.from(digest ));

const payload = Buffer.from(digest.toString());

return payload;
}

Listing 4.5: Chaincode Function for Granting Access

From the grantAccess function we observe the stub18, which contains the APIs between
the chaincode implementation and the peers. From this, we can create a ClientIdentity,
containing information about the user who invoked the chaincode. This is the ID we
use in conjunction with the stringified datetime object to produce the OTC. We then
hash this value, and commit it to the channel ledger. The stub.putState() function
accepts a key and a value for adding state changes to the ledger. We use the provider’s
name as the key, which we expect to be the first argument of the args parameter. The
value committed to the ledger must be a stream of binary data, which we achieve by
transforming our hash digest with the Node.js Buffer module. Lastly, we return the
hash digest, i.e. the OTC, as the payload.

A data consumer may now invoke this chaincode function to obtain an OTC. The OTC
will be recorded on the ledger, where the data provider may query it to ensure the
legitimacy of any alleged consumer. For this to be possible, we must add a function to
our chaincode for querying the ledger. This function can be seen in Listing 4.6.

Observe the difference between invoking the query function as opposed to the grantAccess
function. This function will not add a block to the ledger, since we are getting an existing
state instead of putting a new state. After getting the OTC using stub.getState(), the
function will return the OTC to whoever invoked it.

These functions may now be installed on the proper peers and instantiated on the channel.
However, the data consumer and provider will need some logic for sending and handling
access requests. We discuss this logic next.

18https://hyperledger.github.io/fabric-chaincode-node/release-1.4/api/fabric-shim.
ChaincodeStub.html

https://hyperledger.github.io/fabric-chaincode-node/release-1.4/api/fabric-shim.ChaincodeStub.html
https://hyperledger.github.io/fabric-chaincode-node/release-1.4/api/fabric-shim.ChaincodeStub.html


36 Chapter 4 Solution Approach

async query(stub, args) {
const provider = args[0];
const otc = await stub.getState(provider);
if (!otc || otc.length === 0) {
throw new Error(’OTC does not exist’);

}

const payload = Buffer.from(otc.toString());

return payload;
}

Listing 4.6: Chaincode Function for Querying the Ledger

Sending and Handling Access Requests

In order for the data provider to verify that an alleged consumer is valid, they must
ensure that the received OTC matches the OTC that is recorded on the ledger. The
provider will then either accept or reject the consumer’s public key based on the OTC
comparison. First, we need a mechanism for transferring the OTC and public key from
the consumer to the provider.

Firstly, the provider needs to listen for access requests. We write a python script which
uses TCP sockets to listen for requests. We choose python due to the reason previously
mentioned in Section 4.3.3. Upon receiving a public key and an OTC, the data provider’s
script will run our application for invoking the query function in our chaincode. This
will return the last OTC committed to the ledger.

Next, the data provider’s script will compare the OTC from the ledger to the one received
from the alleged data consumer. If they are the same, the data provider will add the
received public key to its authorized_keys file, thereby granting the data consumer
passwordless SSH access, and return a message telling the consumer that access has been
granted. However, if the OTCs do not match, the provider will discard the received
public key and return a message telling the consumer that their OTC is invalid.

With this script running on the data provider, it is ready to receive access requests.
Furthermore, the data consumer requires some logic such that they may connect to the
provider’s TCP socket, and send their obtained OTC and public key.

We write another python script for the data consumer’s functionality. The script will use
the address of the data provider along with the port on which they are listening for TCP
connections. It will then run our application for invoking the grantAccess function in
our chaincode, and subsequently send the obtained OTC and public key. The public key
is obtained from a path, which the user will supply when running the script. Lastly, the
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script awaits a response informing the consumer that access has either been granted or
denied.

When these operations are done, the data consumer will have passwordless SSH access to
the data provider. Thus, we are ready to push Ansible commands and run computations.
This is discussed in the next section.

4.4 Running Computations with Ansible Playbooks, Docker
and Hadoop

In this section we discuss our process of developing Ansible playbooks for installing
Docker, starting the necessary containers for a Hadoop cluster, and running a MapReduce
job.

4.4.1 Docker Environment for Local Testing

Before implementing our solution, we set up an environment of one control node and
two managed nodes, i.e. one data consumer and two data providers, to test our Ansible
playbooks. We achieve this by setting up a Docker environment comprising one container
per node. The control container will hold an installation of Ansible, and is the container
from which we run our playbooks.

We use docker compose to automate the process of setting up the environment. Com-
pose allows us to define and run a multi-container environment by defining a YAML
configuration file. Here, we can specify all the services we want to run in an isolated
environment.

Each container uses a Dockerfile19, in which we can, e.g., specify what image the container
should use and which ports it should expose, as well as copy files from the host system
to the container. Furthermore, we use the RUN command to execute commands in a
new layer on top of the current image. We use this feature to install Ansible and all its
dependencies inside the control container, as well as create the necessary directories for
SSH connections on both control and managed nodes.

4.4.2 SSH Connectivity

As mentioned in Section 2.3.2, we need SSH to be able to connect between the control
node and managed nodes. This functionality does not come out-of-the-box with the

19https://docs.docker.com/engine/reference/builder/

https://docs.docker.com/engine/reference/builder/
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Ubuntu 18.04 image, since Docker images are usually shipped with the bare minimum
of software and services. Therefore, we use the RUN command inside each Dockerfile to
install and start the SSH service, as well as create the necessary directories for storing
public and private keys. These directories are crucial, since they will allow a passwordless
SSH connection between our control node and managed nodes.

To facilitate the process of generating keys and storing them at the appropriate locations,
we generate the keys on the host machine and copy them into the appropriate directories
after they are created. An important note regarding Linux based systems is that the
SSH and authorized keys directories must be created with proper permissions. If the
SSH directories are too accessible, they will be ignored. The directories created and their
permissions are shown in Listing 4.7 and Listing 4.8.

# Make directories for ssh and authorized keys
RUN mkdir root/.ssh
RUN chmod 700 root/.ssh
RUN touch root/.ssh/authorized_keys
RUN chmod 600 root/.ssh/authorized_keys

Listing 4.7: Managed node SSH setup

# Make directories for ssh key.
RUN mkdir root/.ssh
RUN chmod 700 root/.ssh

# Copy private and public ssh key into ~/.ssh/
COPY ssh/id_rsa root/.ssh
COPY ssh/id_rsa.pub root/.ssh

# Change permission to 600 for private key
RUN chmod 600 /root/.ssh/id_rsa

Listing 4.8: Control node SSH setup

4.4.3 Docker Compose

After defining our Dockerfiles, we use a docker compose file to automate the process of
setting up our containers. In this file, we specify each container we want to start along
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with several configuration options. One of these options is to specify a Dockerfile we
wish to build the container from. This option is called build, and we use it to point to
our control and managed Dockerfiles.

Furthermore, we have the option to add volumes20 to our containers. Volumes are a
mechanism for persisting data which is generated and used by Docker containers. This
entails that files from our host machine which are added to a volume are available within
our containers. Moreover, changes made to these files are instantly reflected in our
containers. This is useful regarding our Ansible playbooks and other scripts, since we
will not have to restart our containers each time a change is made.

Since we are planning to install and run Docker containers inside of Docker containers,
we need to add some options which grant the containers certain permissions. On Linux,
Docker utilizes iptables to provide network isolation. However, the containers will
not have permission to initialize certain tables by default. We solve this by adding the
NET_ADMIN parameter to the cap_add option, and setting the privileged option to true

in our docker compose file.

4.4.4 Installing Docker and Starting Hadoop Containers with Ansible

Our process contains four stages, with each stage defined in its own playbook.

• install_docker

• pull_images

• start_containers

• run_job

Docker Installation

We now have a Docker environment with three containers, which simulates one control
node and two managed node. Next, we will use Ansible to install Docker and start
Hadoop containers on the managed nodes. Both of our containers are running Ubuntu
18.04, and Docker provides several options for installing the Docker engine on an Ubuntu
host21. The simplest way would be to use the convenience scripts provided by Docker,
which is a shell script that will set up Docker engine for you. However, according to
the documentation there is some risk involved with this, since it has to run with root or

20https://docs.docker.com/storage/volumes/
21https://docs.docker.com/engine/install/ubuntu/

https://docs.docker.com/storage/volumes/
https://docs.docker.com/engine/install/ubuntu/
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sudo privileges, and it is therefore not recommended for all environments. We choose to
install using the repository.

The "Install using the repository" option consists of installing packages to allow apt (a
package manager used by Ubuntu) to use a repository over HTTPS. After the packages
are installed, we can add Docker’s official GPG (GNU Privacy Guard) key as well as
their repository, and install the Docker engine. DigitalOcean already provides an Ansible
playbook which performs these operations22, as well as starts some containers. We may
use this playbook, omitting the steps which pull images and start containers, for our
purposes. We put these operations in the install_docker playbook.

Additionally, we observe that the Docker installation automatically uses the outdated
aufs storage driver when installing and starting the Docker service. This proves to be
problematic when starting our containers. For this reason, we add a daemon.json file,
telling the remote Docker service to use the vfs storage driver. Refer to this link for more
information on storage drivers in Docker.

Pulling Images and Starting Containers

After installing Docker we need to start the necessary containers for running a Hadoop
job. First, we consult Docker Hub23 for the Hadoop images we need. We observe that
Big Data Europe24 offers all the images needed for a Hadoop YARN architecture. They
also include a wordcount job, and a README.md file to be used as an example job. Thus,
we can use Ansible to pull these images from their repository to the remote resource.
Ansible offers several modules for orchestrating Docker containers25, amongst which we
can use the docker_image module for pulling images. The images we can choose from
are: namenode, datanode, resourcemanager, nodemanager and historyserver. For testing
purposes, it is sufficient to pull the namenode and datanode images to launch a minimal
cluster. These operations are defined in the pull_images playbook.

Furthermore, we need to start the containers with the proper configurations. Big Data
Europe provides a Docker compose file in their GitHub repository, along with all their
images. Running this file will build the images, start the containers and add them
to a Docker network. However, if we were to use this to start the containers, the
files would have to reside on the remote host. To avoid unnecessarily transmitting
files to the remote host, we write an Ansible playbook which performs the necessary
operations. We use the docker_network module to create a network for our containers,

22https://github.com/do-community/ansible-playbooks
23https://hub.docker.com/
24https://www.big-data-europe.eu/
25https://docs.ansible.com/ansible/latest/scenario_guides/guide_docker.html

https://docs.docker.com/storage/storagedriver/select-storage-driver/
https://github.com/do-community/ansible-playbooks
https://hub.docker.com/
https://www.big-data-europe.eu/
https://docs.ansible.com/ansible/latest/scenario_guides/guide_docker.html
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and the docker_container module to create and start the containers with the proper
configurations. These operations are defined in the start_containers playbook.

Running the Job

Furthermore, Big Data Europe provides a Makefile to perform the job, which will run
the necessary commands inside the Hadoop base image. Again, using this file will require
us to send it to the remote machine, which is undesirable. We instead write an Ansible
playbook to run the necessary commands. Our playbook will create an input directory
in HDFS, copy the attached README.md file into it, run the included wordcount job,
place the output in the output directory in HDFS, and finally delete the input and
output directories. Writing and testing complex jobs is outside the scope of this thesis,
which is why we use the included wordcount job as a test computation, and the included
README.md file as test data.

Since we want to retrieve these results before deleting the directories, we need to add a
few lines of code. We simply copy the output directory from HDFS to the namenodes’
local file systems, and then copy the directory from the namenode container to the
managed nodes’ local file system. These operations are defined in the run_job playbook.

When the results reside on the managed nodes’ local file systems, we may perform the
task of retrieving the results. We discuss this in the following section.

4.5 Private Data Collections for Retrieving Distributed Private
Results in a Multi-Provider Scenario

The last problem we tackle is the task of collecting and combining the results from all
data providers, while keeping data private between them. Simply putting the results
in a state in the Hyperledger Fabric will expose the data to all participating peers and
orderers. This may be undesirable in situations where data providers are reluctant
towards sharing data. We propose using private data collections (PDCs) in Hyperledger
Fabric for solving this problem.

4.5.1 Private Data Collections

When a transaction is committed to a channel ledger, it is broadcasted to all peers and
orderers participating on the channel. As discussed in Section 2.2.5, every peer holds a
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physical copy of the channel ledger. This means that any organization may access all
data that is transacted on the channel as long as they are a member.

We previously discussed how channels can be used to keep transactions transparent
between a subset of organizations, while keeping them private from the rest of the
network. However, consider the case where a subset of organizations on a channel needs
to keep their transactions private. One possible solution would be to create separate
channels for each of these cases, though, this would surely clutter the network, increasing
complexity and introducing unnecessary configurations. Hyperledger Fabric introduced
private data collections26 to aid such cases.

When using a private data collection, there are two types of data being transmitted:
The actual private data and a hash of the data. The actual data is only sent to peers
from organizations who are authorized to see it, using a gossip protocol27. The private
data is stored in a separate private database on the authorized peers, and is accessible
from chaincode on these peers. The orderer is not involved in this process, keeping
it private from orderer organizations as well. The hash of the data is treated as a
normal transaction, meaning, is endorsed by peers, sent to the orderer for validation and
broadcasted to every peer on the channel.

Note that we are required to set up anchor peers for this communication to work. We have
briefly mentioned that anchor peers are used for cross-organization communication. This
is essential when using private data collections, since the gossip protocol communicates
private data peer-to-peer between authorized organizations.

Defining Private Data Collections

A private data collection is initialized when instantiating a chaincode by passing the
collections-config parameter. This parameter must contain a path to a collection
definition. The definition we use for our network is shown in Listing 4.9.

First, observe the name property, which is what a chaincode will use to identify the
collection from which it will get data. The policy is what determines who may access the
collections, in this case, any member of the specified organizations has access. However,
one may define a more role-specific policy simply by replacing member with any role
definition. The requiredPeerCount and maxPeerCount defines the minimum number
of peers which must receive the private data, and the maximum number of peers which
may receive the private data, respectively. Authorized peers which do not posess the

26https://hyperledger-fabric.readthedocs.io/en/release-1.4/private-data/private-data.
html

27https://hyperledger-fabric.readthedocs.io/en/release-1.4/gossip.html

https://hyperledger-fabric.readthedocs.io/en/release-1.4/private-data/private-data.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/private-data/private-data.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/gossip.html
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[
{

"name": "collectionNetherlandsStavanger",
"policy ": "OR(’NetherlandsMSP.member’, ’StavangerMSP.member’)",
"requiredPeerCount": 1,
"maxPeerCount": 3,
"blockToLive": 3,
"memberOnlyRead": true

},
{

"name": "collectionSpainStavanger",
"policy ": "OR(’SpainMSP.member’, ’StavangerMSP.member’)",
"requiredPeerCount": 1,
"maxPeerCount": 3,
"blockToLive": 3,
"memberOnlyRead": true

}
]

Listing 4.9: Collection Definition

private data may then pull it from other authorized peers, should they need to. These
properties are not important in our test scenario, since our network comprises one peer
per organization. Next, we observe the blockToLive parameter, which specifies how long
data should be present in the private database, expressed in number of blocks. Once the
number of blocks is reached, the private data is purged. In our definition, this means that
for every third block committed to the ledger, the private data should be purged. Finally,
the memberOnlyRead specifies that only members from the specified organizations may
have read-access to the private data. One may set this value to false if one wishes to
implement a more self-defined access control for different chaincodes.

4.5.2 Proposed Architecture

An illustration of our proposed architecture for using private data collections is shown in
Figure 4.3.

In the figure, we observe 1) two data providers who will, upon completing their computa-
tions, put the results in their respective private data collection. The policies for these
PDCs are shown in Table 4.2. With the results residing in their own collections, the data
consumer may 2) invoke the accessResults chaincode, which is shown as pseudo-code in
the figure. In short, the chaincode will 3) get each result from the private data collections,
and then perform the necessary operations to combine the results. In our case, we have
results from a wordcount job, meaning the function will transform the results to json
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Figure 4.3: Proposed Architecture for Retrieving Distributed Private Results

objects, sum values with matching keys, and add key-value pairs which are unique to
an object. Refer to Appendix A for the entire accessResults chaincode. When the
results are combined, the chaincode will 4) return the final json object (as a binary data
stream).

Table 4.2: Policy for Each Private Data Collection

Collection Policy
PDC 1 OR(’Data Consumer’, ’Data Provider 1’)
PDC 2 OR(’Data Consumer’, ’Data Provider 2’)

We mentioned that a private data collection is initialized when instantiating the chaincode.
For this reason, we may not use PIVT for instantiating our chaincode, since it does
not yet support private data collection definitions. Therefore, we use the Node.js
SDK to instantiate the chaincode following the same steps for invoking chaincode,
described in Section 4.3.3. We construct an instantiation request, which contains the
collections-config parameter pointing to our collection definition, and send it as an
instantiation proposal. If successful, we get a message telling us the chaincode has been
instantiated.

After instantiating, we have a chaincode which may utilize the private data collections
defined in our collection definition. The process illustrated in Figure 4.3 starts when
computations are finished, and results have been produced. With PDCs in place, the
last thing our Ansible playbooks will do is run a Node.js script which will invoke the
putPrivateCollection chaincode. This chaincode is shown in Listing 4.10.
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async putPrivateCollection(stub, args) {
const result = args [0];
const collection = args [1];

await stub.putPrivateData(collection, ’result’, Buffer.from(result ));

return Buffer.from(result.toString ());
}

Listing 4.10: Chaincode Function for Putting Private Data into a PDC

From the chaincode, we observe a quite straight-forward approach, where the result and
collection name are passed in as arguments. We then put the result in the specified
collection under a "result" key, which the accessResults chaincode will use to fetch
each result.

Once the Ansible playbook has finished, and the results are put in their respective
collections, the data consumer may request the combined results. After the data consumer
retrieves the combined result, we have completed the process. A data consumer has
successfully gained access to multiple data providers, run computations on each of their
data sets, and safely retrieved the combined result without sharing any data or results
between data providers.

In the next chapter we will run three demonstrations using this system. We will run
the network locally, in a single cluster on Microsoft Azure cloud, and in a distributed
multi-cluster environment on Microsoft Azure.





Chapter 5

Deploying the System

5.1 Overview of Experiments

With the system in place, we will experiment with several ways of running the Hyperledger
Fabric network. We will first describe how the system can be deployed locally, using a
single node Kubernetes cluster in Minikube. Next, we will describe two ways of deploying
the network in a cloud environment, namely, in Microsoft Azure. The sections will be
structured as follows:

• Deploying the Hyperledger Fabric network locally with Minikube.

• Deploying the Hyperledger Fabric network in Azure using AKS.

• Deploying the Hyperledger Fabric network in a Distributed Cross-Cluster Environ-
ment in Azure using AKS.

5.2 Running the Hyperledger Fabric Locally with Minikube

To deploy the system, we need a running Kubernetes cluster in which we can deploy
the Hyperledger Fabric network. Such a cluster can be run locally using a multitude of
tools. On Windows or Mac, one can activate a Kubernetes cluster with a Docker for
Desktop installation. However, when developing on Linux we must choose another option.
We first consider microk8s1, which is a lightweight Kubernetes installation running on a
single node. However, this tool proves to be problematic when using Argo workflows.
Therefore, we use Minikube2 instead.

1https://microk8s.io/
2https://kubernetes.io/docs/setup/learning-environment/minikube/
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spec:
type: NodePort
selector :
name: hlf−peer
app: hlf−peer−−{{ $org.Name | lower }}−−{{ $peer | lower }}

ports:
- protocol: TCP
port: 7051
name: grpc
nodePort: 3000{{ $i | int }}

Listing 5.1: Extract from Peer Service Definition

Minikube is supported for Windows, Mac and Linux, since it runs a single-node cluster
inside a VM on the host machine. After installation, one can simply launch a Kubernetes
cluster by running minikube start in a terminal, however, we additionally specify the
driver3 which Minikube will use. We specify KVM as the driver (briefly mentioned in
Section 2.1.1), since using the Docker driver presents interaction issues between our
Docker containers and the Fabric network.

As mentioned in Section 4.3.2, Kubernetes leverages services for directing traffic to pods.
In our case, these services are our peers, orderers and certificate authorities. We must
expose these to outside resources, such that we may interact with the Hyperledger Fabric
network, which may be done in several ways. When launching a Fabric network with
PIVT’s standard configurations, all services will be exposed through a Cluster IP. This
address is internal, meaning it is only accessible to pods running inside the cluster. This
is not sufficient for our purposes, since we must be able to access Fabric services from
Docker containers running outside the cluster. Therefore, we introduce a load balancer4.

A load balancer will distribute incoming network traffic to a set of backend resources. We
may leverage this concept to allow outside communication into our Kubernetes cluster.
Minikube supports several Kubernetes features, including NodePorts5. A NodePort
will expose services at a static port on the Node’s IP address, and will route traffic to
the Cluster IP of the service. In our case, this means a service can be accessed using
<Minikube IP><NodePort>.

In order to configure our services to leverage NodePorts, we edit the peer-service.yaml,
orderer-service.yaml and ca-service.yaml files, which are part of the PIVT project.

3https://minikube.sigs.k8s.io/docs/drivers/
4https://docs.microsoft.com/en-us/azure/load-balancer/load-balancer-overview
5https://kubernetes.io/docs/concepts/services-networking/service/

https://minikube.sigs.k8s.io/docs/drivers/
https://docs.microsoft.com/en-us/azure/load-balancer/load-balancer-overview
https://kubernetes.io/docs/concepts/services-networking/service/
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An extract from our peer service definition is shown in Listing 5.1. Observe the type of
the service, this is where we specify that the peer service should be exposed through
a NodePort. Furthermore, we specify the port number using the nodePort parameter
under the ports definition. This definition ensures that port numbers are predictable,
starting at 30000 and incrementing by one per peer we add.

Once all our services have been configured to use NodePorts, we may launch our network
on the Minikube cluster. To interact with the network we simply update our connection
profiles (introduced in Section 4.3.3) with the IP address of Minikube, and the port
numbers of the NodePorts.

Realistically, one would not run a Hyperledger Fabric network locally. Ideally, one would
have the network running on a set of servers, or use a cloud provider. In the next section,
we will deploy our network in the cloud using Azure and AKS.

5.3 Deploying the Hyperledger Fabric Network in Azure using
AKS

Azure6 is a cloud service created by Microsoft. It offers a plethora of services, including
the Azure Kubernetes Service (AKS). AKS offers a fully managed Kubernetes service,
and allows users to easily scale their infrastructure when needed. In this section, we will
utilize AKS for provisioning a multi-node Kubernetes cluster.

5.3.1 Setting up an AKS Cluster

Provisioning a Kubernetes cluster in Azure using the Azure portal is a simple affair.
When in the portal, we first go to Create a resource and choose Kubernetes Service.
Here, we may specify some basic settings, such as which subscription to use, a resource
group, a cluster name and a region. We will later experiment with regions to create a
multi-cluster distributed Hyperledger Fabric network.

After basic configurations, we specify the size of our node pool. The node pool will contain
the nodes which will host the Hyperledger Fabric infrastructure. Here, it is essential that
we first consider the number of nodes it takes to run our Hyperledger Fabric network.
Our network comprises three peer organizations with one peer each, and one orderer
organization. This results in three peers, three certificate organizations and one orderer;
each requiring one node, i.e., we will need seven nodes in our node pool to launch the
network.

6https://azure.microsoft.com/en-us/

https://azure.microsoft.com/en-us/
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Furthermore, AKS allows us to choose the size of each node. There are different specs for
each choice, allowing the user to consider their need for number of CPUs, size of RAM,
number of disks, etc. Note, we also consider that the peer node must contain at least
two disks, since we need one disk for the peer, and one disk for holding copies of ledgers.
It is sufficient for us to use the smallest VM size, which contains four disks.

In the authentication tab, we turn off role-based access control for simplicity’s sake. This
makes it easier for us to connect to the cluster. For networking, integrations and tags, we
use the default values. We are now ready to review and create our cluster.

During setup, we observe that Azure restricts the number of CPUs one is allowed to have
in a region. We originally use the free-trial subscription, however, during the reviewing
phase of our cluster setup we receive an error saying our CPU quota has been exceeded.
Therefore, we are forced to upgrade our subscription to a pay-as-you-go plan. This allows
us to have up to ten CPUs running in each region, which is sufficient for our deployment.

Once the cluster has been successfully reviewed, we may create it and subsequently connect
to it from the Azure Cloud Shell. This shell has the kubectl client pre-installed, which is
the client used for interacting with a Kubernetes cluster. However, we must first configure
kubectl to connect to our cluster. We do this with the az aks get-credentials

command, and specify the name and resource group pertaining to our cluster.

Next, we must install the prerequisites for PIVT7. We first use the wget command to
download all the binaries, and subsequently add them to our path. When all prerequisites
are added, we may launch the network from the Azure Cloud Shell. Subsequently,
we may create the channel, and install chaincode using PIVT’s helm charts. How-
ever, when deploying our network in the cloud it is essential that we use a proper
load balancer to activate external IP addresses for our services, i.e., we need exter-
nal IP addresses for our peers, certificate authorities and orderers such that users
may interact with them. Using PIVT, we may activate this behaviour by passing the
peer.externalService.enabled and orderer.externalService.enabled flags, and
setting them to true. This tells PIVT to include the external services definitions. An
extract from the peer-external-service.yaml is shown in Listing 5.2.

Observe the type field, where we specify the use of LoadBalancer. This will utilize the
cloud provider’s load balancer, as well as automatically create NodePorts and Cluster IPs
which the load balancer will route traffic to. We may watch as the external IP addresses
are being assigned. In Figure 5.1, observe the External IP column. Here, we see our
external services obtaining IP addresses for external access. In the figure, we also observe
that the status of the external orderer’s IP is pending. This is because Azure is working

7https://github.com/APGGroeiFabriek/PIVT#requirements

https://github.com/APGGroeiFabriek/PIVT##requirements
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spec:
type: LoadBalancer
selector :
name: hlf−peer
app: hlf−peer−−{{ $org.Name | lower }}−−{{ $peer | lower }}

ports:
- protocol: TCP
port: 7051
name: grpc

Listing 5.2: Extract from Peer External Service Definition

to assign a proper IP address, which may take a few minutes. Once all external services
have received an IP address, we may access the network by updating our connection
profile with the external IP addresses. e.g., we may access the Stavanger peer using
51.104.146.139:7051.

Figure 5.1: External IP Addresses for our Services

In Appendix A, we provide a video demonstration of the system in Azure. In the
demonstration, we use the README.md file as our dummy data set and the included
wordcount.jar file as our computational code. The same job is performed using the
same data set on both data providers. Therefore, when using two data providers, we
may conclude that the process is successful if we retrieve a result where the count of
each word has doubled from its original result.

We have now deployed a functional Hyperledger Fabric network across several nodes in
Azure using AKS. However, we are only utilizing one cluster. In a real-world scenario,
organizations might want to host their infrastructure (peers, certificate authorities, etc.)
in the cloud-provider of their choice or on their own premises. This would require multiple
clusters, hosted in different parts of the world, communicating with each other to form a
single Hyperledger Fabric network. Next, we will use PIVT to deploy our Hyperledger
Fabric network on two AKS clusters, residing in different regions.
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5.4 Deploying the Hyperledger Fabric Network in a Distributed
Cross-Cluster Environment using AKS

In order for us to separate our Hyperledger Fabric infrastructure, we first need to create
another cluster in AKS. We use the same configurations described in Section 5.3.1, except
we now have to consider a different number of nodes. We divide our network as shown in
Table 5.1.

Table 5.1: Overview of Clusters in Cross-Cluster Environment

Cluster Region Members Nr. of nodes
1 North Europe Spain and Netherlands 4
2 South-East Asia Stavanger and Orderer 3

From the table, we observe that cluster 1 requires four nodes, while cluster 2 requires
three. This is because a peer organization requires one node per peer, and one node per
certificate authority, while an orderer organization only requires one node per orderer.
Thus, we need four nodes for the two peer organizations in cluster 1, and three nodes for
the peer and orderer organizations in cluster 2.

After we have created our clusters, we take inspiration from PIVT’s "Cross-cluster Raft
network" example8. Following this example, we first create two separate PIVT projects
for each cluster by simply copying the files. Next, we alter the network.yaml and
crypto-config.yaml files. In crypto-config.yaml, we have to specify external peer
organizations for cluster 2, as well as an external orderer organization for cluster 1. Note
that as opposed to PIVT’s example, we do not enable TLS for our example. This is to
simplify network communication for our proof-of-concept, however, it should be enabled
in a production environment.

Another important difference when launching our cross-cluster network, is the use of
host aliases and external host aliases. Host aliases are simply domain names along with
their respective Cluster IP, while external host aliases are domain names along with
their external IP. These are needed in order for the two clusters to be aware of each
other’s external services. To collect these host aliases, we first launch the network in a
broken state, which means to launch the network without starting the peer and orderer
pods. Before these are started, we will collect host aliases and external host aliases
using shell scripts provided by PIVT. This needs to be done separately for each cluster.
Furthermore, we need to copy the external host aliases of cluster 2 into the host aliases of
cluster 1, and vice versa. Now, each cluster has the proper addresses for communicating
with their external resources. Note that we are again using LoadBalancer for granting

8https://github.com/APGGroeiFabriek/PIVT#cross-cluster-raft-network

https://github.com/APGGroeiFabriek/PIVT##cross-cluster-raft-network
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external IP addresses to our services. Therefore, it is important that we wait until all
services have obtained an external IP before collecting external host aliases.

Afterwards, we may upgrade the network with the host aliases using a helm chart
provided by PIVT. The setup of this cross-cluster example requires a number of operations
performed on each cluster separately, and in the right order. To facilitate the process,
and make it less error-prone, we write two shell scripts to automatically launch the
network. Refer to Appendix A for our shell scripts. When each component is running on
both clusters, we may create channels and install chaincode using the same helm charts
as before, and subsequently instantiate the chaincode using our Node.js script.

Once these operations are done, we have a fully functioning multi-cluster Hyperledger
Fabric network, with infrastructure residing in different parts of the world.





Chapter 6

Conclusion and Future Directions

6.1 Conclusion

In this thesis, we have presented an architecture for managing access to remote resources
by utilizing chaincode in Hyperledger Fabric. Our system uses Ansible as a tool for
provisioning computational resources in the form of Docker containers, which form a
Hadoop cluster allowing us to run computations in an isolated environment on remote
resources. Users who are enrolled in the Hyperledger Fabric network may invoke chaincode
to obtain a one-time code for authentication, and subsequently send their public key
along with the one-time code to gain passwordless SSH access to a data provider’s
resources. Furthermore, we have leveraged private data collections in Hyperledger Fabric
for ensuring data privacy in a multi-provider scenario; allowing users to run computations
on several data providers separately, and obtain a combined result. Finally, we have
demonstrated how the system may be deployed using PIVT and Kubernetes running
locally, and in Azure using AKS on a single cluster, as well as across two clusters residing
in different regions of the world.

Our system allows organizations with common interests to collaborate without the need
for complete trust. All activity is kept private from the rest of the network, while all
data is kept private between the data providers on the channel.

6.2 Future Directions

In this section we highlight some caveats in our system and briefly discuss possible ways
to solve them, as well as some added features to the system which would enhance its
usability significantly. As previously mentioned, our implementation is a proof-of-concept,
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meaning we have taken some liberties in assuming certain scenarios, as well as simplified
some implementations. These proposals are subjects to future work, which may be
implemented to improve the system and progress it in the direction of a production-ready
solution.

6.2.1 Securely Transporting the OTC and Public Key

As we mention in 4.2.1, there is a clear threat when communicating the OTC and public
key as we do now. Our current implementation is simply sending the data through TCP
sockets, which could prove devastating if malicious users intercept the traffic. They would
then be able to replace the public key of the legitimate data consumer with their own,
and gain access to remote resources. This is an example of a man-in-the-middle attack.

A common way of defending oneself against such an attack is using TLS (Transport
Layer Security)1. TLS uses symmetric and asymmetric cryptography to provide secrecy
and non-repudiation. Non-repudiation assures us that users cannot deny who they are,
i.e., it provides assurances towards the origin of the data. A TLS implementation would
drastically improve the system’s tolerance against a man-in-the-middle attack.

6.2.2 Extending Computational Possibilities

As of now, the system uses a dummy computation along with a dummy dataset in
order to demonstrate its functions. An interesting improvement would be to extend
the computational possibilities of the system, such that it may handle more complex
computations.

A relevant use for our system would be training machine learning models across several
remote datasets. This would require a different approach to combining results or private
datasets, possibly, a multi-party computation (MPC) protocol could be used to realize
this functionality.

Chen et al. [24] investigate the possibilities of using SPDZ, a framework providing an
MPC protocol, for machine learning algorithms such as linear regression and logisitic
regression. Their work investigates the runtime and accuracy of SPDZ and conclude
with promising results regarding the possibilities of extending SPDZ to more complex
algorithms such as neural networks.

1https://www.thesslstore.com/blog/protecting-against-man-in-the-middle-attacks/

https://www.thesslstore.com/blog/protecting-against-man-in-the-middle-attacks/
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With a proper implementation for supporting machine learning, our system would be
able to build machine learning models upon several distributed private datasets, without
forcing the owners of the data to share it.

6.2.3 Integrating the Solution into TOTEM

An obvious future direction would be to integrate the solution with the rest of TOTEM’s
proposed architecture. Our system tackles the issues in TOTEM regarding data and
resource governance, running computations at remote locations, as well as safely returning
combined results in a multi-provider scenario.

Integrating our solution would entail implementing the customized computational frame-
work, instead of using plain Hadoop. Furthermore, the computational code would have
to be transacted on the blockchain. One way to solve this, would be to install and
instantiate some chaincode which would evaluate the submitted computational code. If
the code is deemed non-malicious, the chaincode will estimate a totem value, produce an
OTC, and return them both to the user.

6.2.4 Removing Ourselves from Remote Resources

As the system stands today, we are not cleaning up after ourselves when computations
are finished, meaning, we leave installations and Docker containers residing on the remote
resource with no further purpose. Considering the case where the remote resources
should be used for multiple purposes, and not just our system, it would be ideal for us
to purge the system of our activity before exiting.

Such a purge would entail removing all containers and images, uninstalling Docker, and
removing dependencies. However, some dependencies might have already existed on the
remote resources, so we must be careful not to remove these. This can be facilitated
with Ansible, which allows us to easily remove Docker containers and images, as well as
uninstall dependencies. When we first connect and install our dependencies, Ansible will
check whether or not the dependencies are there. We could harvest that information,
and later use it for determining which dependencies we should uninstall, and which we
should leave be.

Furthermore, we must remove the files and directories pertaining to our computations
and results. Since we decide where these files and directories reside on the remote system,
and therefore know exactly where they are, we may simply delete them using Ansible.
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When these operations are completed, it is crucial that the SSH key of the data consumer
is removed from the authorized_keys file on the remote resource. We wish that the
user invokes the grantAccess chaincode function each time they run computations on
a data provider’s resource, which would not be necessary if the SSH key stayed in the
data provider’s authorized_keys. For this, one must add some functionality on the
data provider’s side, which would purge the current data consumer’s public key upon a
completed computation.

One must also consider the possibility of several data consumers being connected at once.
In this case, it is essential that only remove the key pertaining to data consumers which
have finished their computations is removed.

Lastly, in order for the OTC to be safe we must render it useless after one use. This
could be achieved by the data provider submitting a state change to the blockchain. We
could write chaincode which holds a state along with the OTC, which could either be
active or inactive. With this approach, all data providers will be able to check if the
OTC they received is still valid. If the status of the received OTC is inactive, the
data provider will reject the access request and inform the requester. A data provider
will set the OTC to inactive after it has added the data consumer’s public key to its
authorized_keys file.
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Appendix A

Video Demonstration and Code

A.1 Video Demonstration

We provide a video demonstration of our system deployed on a single cluster in Azure
using AKS.

Refer to this link for the video demonstration.

The video can also be found by search on YouTube, under the title: "Demonstrating
Secure Distributed Computing Managed by Hyperledger Fabric in Azure".

Explanations as to what is going on in the video along with time stamps are provided in
the video’s description, located under the video. Click on "Show more" for the full
explanations.

A.2 Code

We provide a GitHub repository containing our code.

Refer to https://github.com/jorgenholme/master-thesis for the GitHub repository.

The repository is divided into three parts.

• docker-files: Contains the Docker compose file, Dockerfiles and all the necessary
code to set up an environment with one data consumer and two data providers. The
code for interacting with the HLF network is available under the /fabric-scripts
located at the root directory of the control node. To open a bash shell into the
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control node, use the following command from the directory of the Docker compose
file: docker-compose exec control bash.

Note, when launching the Hyperledger Fabric network for the first time, PIVT will
automatically generate some users. These users are added to a local file system
wallet, which we then use for accessing the network. To use our Docker containers,
we must first create the wallet and then copy it into each Docker container.

• fabric-kube: Contains the PIVT project files needed to launch our network. Our
network files can be found under samples/ansible-nework/, while the scripts for
interacting with our network are found under samples/ansible-nework-scripts/.
We also provide our access-chaincode under samples/chaincode/access-chaincode/.

The scripts in samples/ansible-network-scripts/javascript/addUsers/ may
be used to add the already generated users to a local file system wallet. This wallet
may then be used by other Node.js scripts to access the network.

• cross-cluster: Contains two PIVT projects for launching the network on two
separate clusters. The first shell script for launching the network is found at
fabric-kube-orderer-stav/cross_cluster.sh, run this from the directory it re-
sides in. The second script is found at fabric-kube-spain-netherlands/collect_host.sh,
run this from the directory it resides in. The second script must be run after all
services on both clusters have received an external IP address.

Before performing any operations, install all prerequisites specified in PIVT’s GitHub.

https://github.com/APGGroeiFabriek/PIVT

A.3 Launching the Network

To launch the network, use the following helm commands:

Create necessary crypto-config material, and prepare chaincodes:

./init.sh ./samples/ansible-network/ ./samples/chaincode/

Launch the network:

helm install ./hlf-kube –name hlf-kube -f samples/ansible-network/network.yaml -f
samples/ansible-network/crypto-config.yaml

When all the pods are running (check with kubectl get pod –watch) create the channel:

https://github.com/APGGroeiFabriek/PIVT
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helm template channel-flow/ -f samples/ansible-network/network.yaml -f samples/ansible-
network/crypto-config.yaml | argo submit - –watch

Next, install the chaincode:

helm template chaincode-flow/ -f samples/ansible-network/network.yaml -f samples/ansible-
network/crypto-config.yaml | argo submit - –watch

When chaincode is installed, we instantiate the chaincode using the instantiate.js

script. This script may fail due to a timeout, but it will work after a few tries. This is
due to some timeout restrictions set in Hyperledger Fabric.

When interacting with the Hyperledger Fabric network using our scripts, it is essential
to first update the connection profiles with the correct IP addresses, i.e., update with
the IP addresses and ports pertaining to the current network.
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