
Faculty of Science and Technology
Department of Electrical Engineering and Computer Science

Automated Well Monitoring:
Machine Learning and Web Application

Master’s Thesis in Computer Science
by

Anisa Zhurda

Internal Supervisor

Prof. Chunming Rong

External Supervisor

Dr. Anton Shchipanov
NORCE

June 15, 2020

Abstract

The challenge within the oil and gas industry is that of complexity and therefore cost,
specifically due to the tough working environments and delays/downtime [1]. Therefore,
digitization is proposed as a cost saving opportunity ,making data collection through
sensors and data analytic approaches priority in the industry. The integration of

machine learning has already shown its contribution in augmenting human decision
making and optimizing processes. However deciding the right technique keeps being a
challenge for further reducing the cost. In this thesis, we are assembling several machine

learning and deep learning models and testing them with the aim of optimally
reconstructing missing flow rates in well monitoring data. The experiments are focused
in some simple regression models such as Linear Regression, Ridge Regression, Kernel
Ridge Regression and Gradient Boosting Regression and one deep learning model for
time-series: LSTM. Except of its original form, we are applying two feature engineering
techniques on the well data: convolution method and transient reduction method. The
experimental results shows the importance of feature transformation in performance of
the models by emphasizing two moments: the dramatic improvement of Kernel Ridge
Regression over the convolutional transformed data and the outstanding ability of

LSTM to learn on raw data. We finalize our work by creating a simple web application
for reconstructing the missing flow rate values using the most optimal machine learning

model, by giving a chance for everyone to reuse and interact with the model.

Acknowledgements

I am very grateful to my supervisor Prof. Chunming Rong from University of Stavanger
who trusted me to work on this thesis.

I would like to express my special gratitude to Dr. Anton Shchipanov from NORCE for
providing me his guidance, ideas, encouragement and insightful feedbacks amidst his

busy schedule.

ii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1
1.1 Motivation . 1
1.2 Related work . 2

1.2.1 Feature-Based machine Learning for PDG Data Analysis 2
1.2.2 Deep Learning for PDG Data Analysis 3

2 Problem statement 6
2.1 Dataset . 6
2.2 Data preparation . 7
2.3 Predictive modeling . 9

2.3.1 Evaluation metrics . 9
2.3.2 Model details . 10

3 Experimental Evaluation 15
3.1 Experimental Setup . 15
3.2 Experimental Results . 15

3.2.1 Feature transformation: Convolution approach 16
3.2.2 Feature transformation: Transient-wise approach & Original Features 20
3.2.3 Model comparison . 21
3.2.4 Model application . 23

4 Machine Learning model deployment 25
4.1 Requirement specifications . 26
4.2 Flask web application . 26

5 Conclusion and Future Work 29

List of Figures 30

List of Tables 32

iii

CONTENTS iv

A Appendix 33

Bibliography 37

Chapter 1

Introduction

1.1 Motivation

The oil and gas industry is rapidly changing by emerging into more dynamic and complex
environments, as it is facing constant challenges in terms of supply and demand.[2] As
this industry continues to adapt to a sustained period of volatility, companies are taking
concrete steps by adopting digital technologies with the aim to increase efficiency and
safety,improve production processes and reduce cost.

At the center of all these digitization efforts stands an exciting technological field,
presumably dominating major industries and life-sectors: Artificial Intelligence (AI).
Primary applications of this technology, within the oil and gas industry, are attained via
advanced machine learning (ML) and deep learning (DL) techniques.

In 1959, Arthur Samuel defined machine learning as a "Field of study that gives computers
the ability to learn without being explicitly programmed".[3] With massive amounts of
computational power, machines are now able to analyze large sets of data observations
and apply relationship modeling in an inferential and predictive way, in real time and
with high accuracy. Machine learning and other big data applications could save the oil
and gas industry as much as $50 billion in the coming decade, according to McKinsey. [4]

Reservoir being the core of the entire operation in upstream sector, needs to be maintained
and optimized to increase the longevity of the whole production cycle. Therefore, sensors
such as Permanent Downhole Gauges (PDGs) are installed permanently in a well to
provide continuous record of pressure,temperature and sometimes also flow rate from
the use of flow meters during operations. The fundamental idea is to show that machine
learning has the potential to handle the complexities in well data analysis and find
patterns behind the data,which will implicitly contain the well and reservoir information.

1

Chapter 1 Introduction 2

In this thesis,we are addressing two main problems which are significant to well data
analysis ,namely, reconstruction of missing flow rate values by applying ML and DL
techniques and website development for user interaction with the most optimal predictive
model achieved in the first task. As inferred, presence of such gaps in flow rate records is
still a usual case in the petroleum industry due to installation of flow-meters for clusters
of wells and following rate allocation per well. Therefore we are testing and comparing
different models,to reproduce or predict well flow rate time series based on pressure
time series from the PDG data. Then the predictive model will be presented through
an interactive web application,where the user uploads the corresponding well data with
missing values of flow rate and get a reconstructed version resulted by a data-driven
approach. Results will be interpreted in graphical,tabular form and as a csv file the user
can download for further usage.

1.2 Related work

1.2.1 Feature-Based machine Learning for PDG Data Analysis

Feature-based machine learning aims to identify the patterns behind PDG measurements,
for instance, the relationship between flow rate and pressure data. Such patterns contain
the reservoir information implicitly, and can be utilized in various ways. One use is to
identify the reservoir model with pressure deconvolution by feeding a simple rate history
into the trained flow rate-pressure relationship. Another use is to predict the reservoir
performance with rate control as inputs to the trained patterns. [5]

The first work of this kind was initiated by Liu and Horne (2012, 2013a, 2013b) [6] [7] [8].
They introduced the convolutional kernel approach to model the pressure convolution
effects, and validated the method on several synthetic and real cases. The subsequent
work by Tian and Horne (2014)[9] addressed some of the issues in Liu and Horne’s work,
including early transient behaviors and computational efficiency.

Tian and Horne (2015)[10] also extended the applications of feature-based machine
learning to multiwell testing, flow rate reconstruction and interwell connectivity problems.
Being a topic of interest in our thesis, we are analyzing a bit further the approach to
flow rate reconstruction presented in this paper. After modeling new features using the
pressure measurements from PDG data, the previously proposed convolutional kernel
approach was tested on both synthetic and real dataset. A high agreement of true values
and predictions were observed in the synthetic case (fig 1.2/a) although the unseen data
was quite different from the one used for training the model. Moreover ,promising results

Chapter 1 Introduction 3

Figure 1.1: Reconstructed flow rate in synthetic (a) and real data (b) by Tian and
Horne 2015b

(fig 1.2/b) were also shown from the real-life usage of this method, demonstrating a
flexibility of machine learning in adapting new set of features and learning from them.

All those works relied on the careful handcrafting of features, which are identified
as candidate factors to model the patterns based on knowledge of the physics. An
inappropriate feature design can hurt the modeling results significantly. Thus it becomes
challenging to apply feature-based machine learning when the understanding about the
physics is limited,that means a forward model is not available.

1.2.2 Deep Learning for PDG Data Analysis

Although some of the core concepts in deep learning such as back-propagation date back
to the 1980s,it has been only in recent years that deep learning has risen in various
research topics and engineering problems. Deep learning is also often referred to as deep
neural networks, which reveals the technical foundation on which deep learning is built.
One key characteristic of deep learning is that it does not require the laborious feature
handcrafting process but learns from the raw data directly. In fact, the information
about features are captured by the unique structure of deep neural networks.

Until now, there have been a very limited number of studies of deep learning in reservoir
characterization. Aggarwal et al. (2014)[11] used NARX to conduct a simulated well
testing, but considered only one synthetic test case with simple model settings. Korjani et
al. (2016)[12] studied how deep learning can help estimate petrophysical characteristics

Chapter 1 Introduction 4

Figure 1.2: LSTM predictions of flow rate in synthetic dataset (a),shown also in a
zoomed interval (b)by Heghedus et al. (2019)

by generating synthetic logs of newly drilled wells, and reported that deep learning
outperformed kriging for that case.

Heghedus et al. (2019)[13] compared NARX and LSTM to forecast pressure and rate
using a synthetic dataset of PDG data and flow meters, driven by the success deep
learning approaches have shown in the energy consumption field. The main contribution
of this paper was the adaptation of shifting window method in well data, to boost the
performance of LSTM specifically in flow rate prediction. The results shown by LSTM
further extended the applicability of Deep Learning in all the industries operated with
wells.

Chapter 1 Introduction 5

In this thesis we will be referring the concept of convolutional kernel technique proposed
by Tian and Horne (2015b) and the LSTM model applied by Heghedus et. al (2019) to
reconstruct missing flow rate. Our aim is to create a wider perception of feature modeling
and machine learning techniques applicable to well data and examine differences among
them.

Chapter 2

Problem statement

2.1 Dataset

Two datasets with well measurements of flow rate and pressure over time ,were simulated
on a reservoir model and used in this study. The first dataset is considerably small, with
observations measured hourly for approximately 8 months.For each pressure transient
there is a constant flow rate record represented as a step function in time, which as seen
from Table 2.1 has negative value. Moreover,we observe that in consecutive pressure
transients,if the pressure values are increasing the flow rate is decreasing ,indicating a
negative relation .

Elapsed time(hr) Water rate Pressure
0 0.018177 -6742.395145 2149.773050
1 0.024235 -6742.395145 2168.851204
2 0.030294 -6742.395145 2184.962183
3 0.036353 -6742.395145 2199.005331
4 0.042412 -6742.395145 2211.508740

Table 2.1: Sample of first dataset

Different from the first dataset, the measurements for the second one were separated in
different files accordingly [time , pressure] and [time , flow rate]. Pressure is recorded
more frequently, so to combine the data together over time, the following steps were
taken:

1. Find the start and end time for each pressure transient

2. If there is a value of rate recorded in a specific time that falls in this range ,assign
the rate to observations inside that time period.

6

Chapter 2 Problem statement 7

Figure 2.1: Graph from first dataset

As a result, a similar dataset with parameters elapsed time, flow rate and pressure is
created ,for a period of approximately 8 years. Despite the positive values of flow rate,
the relation between the pressure transients and flow rate remains the same (Fig 1.2).
For the sake of comparison , only a small part of the second dataset is presented in the
graph.

Due to the fact that the dataset is synthetic and clean, noise will be excluded as a
possible issue while handling the data. A complication appears when a continuous section
of flow rate is missing over the total time period during a pressure transient. In order
to reconstruct the missing values of flow rate, several machine learning models will be
built with target flow rate and features selected by different interpretations of time and
pressure measurements.

2.2 Data preparation

Since feature selection has a huge impact on model’s performance ,it is considered to be
on of the most important steps. Three techniques were applied in this thesis:

Chapter 2 Problem statement 8

Figure 2.2: Graph from second dataset.

1. Using the behaviour of pressure over time as feature, without further changes, in
order to find a dependency with flow rate q(i).

x(i) =

t(i)
p(i)

 , i = 0, ..., n

2. Exploiting the relationship between pressure changes and flow rate over one pressure
transient. For each of the transients, we calculate delta pressure, starting time,
duration time and corresponding flow rate. This will shrink the total number of
observations in the dataset to the number of the transients (m).

x(k) =

t(k−1)

t(k) − t(k−1)

p(k) − p(k−1)

 , k = 1, ...,m

So, the target is q(k), which is the constant flow rate for each transient.

Chapter 2 Problem statement 9

3. Based on the convolution approach that was proposed by Tian and Horne [10].
The vector of features where p stands for pressure and t time, is represented as:

x(i) =

∑n

j=1(p(j) − p(j−1))∑n
j=1(p(j) − p(j−1)) log(t(i) − t(j−1))∑n

j=1(p(j) − p(j−1))(t(i) − t(j−1))

 , i = 1, ..., n

Thus, the target flow rate is q(i) for n observations.

We observe from Table 2.1 that the data features vary highly in range ,which will affect
in the contribution of features to the prediction. In order to make each feature similarly
significant, we have to apply feature scaling. MinMaxScaler is an estimator from scikit-
learn library that scales and translates each feature individually in a given range ,between
0 and 1.

After normalization, we split the data to train and test set by following the usual approach
of 80/20 split intuition.

2.3 Predictive modeling

Depending on the performed task, there are two machine learning algorithms :supervised
and unsupervised. In supervised learning we have both input variables (p,t) and an
output variable (q) and we are using an algorithm to learn the mapping function from
input to output. If the outcome is quantitative, then this is classified as a regression
problem. On the other hand, the target can be categorical and the problem is classified
as a classification problem. In unsupervised learning, the outcome is not provided and
the main goal is to find similar patterns among observations. Due to the nature of our
target,this study is focused on regression problem .

2.3.1 Evaluation metrics

Several machine learning models are chosen to be evaluated over each of the feature sets
extracted by the PDG data and flow meters. Before discussing the models details ,we
will focus on four evaluation techniques that will handle the performance of models in
terms of error rate and explained variance . Since this is a regression task, we are using
the following evaluation metrics :

Chapter 2 Problem statement 10

• Mean Absolute Error (MAE)

MAE = 1
n

n∑
i=1
|q(i) − q̂(i)|

• Root Mean Squared Error (RMSE)

RMSE = 1
n

n∑
i=1

√
(q(i) − q̂(i))2

• Mean Absolute Percentage Error (MAPE)

MAPE = 1
n

n∑
i=1

|q(i) − q̂(i)|
q(i) × 100%

• R2 or Coefficient of Determination.

R2 = 1− MSE(model)
MSE(baseline)

MSE = 1
n

n∑
i=1

(q(i) − q̂(i))2

where q is the flow rate in n observations ,and the baseline MSE is the mean over
the target data.

Generally, the best model is the one that shows low error rate (MAE, RMSE, MAPE)
and high determination coefficient (R2). However, we will further explain the behavior
for each of these metrics while we analyze the results and include the computational cost
in terms of model fitting time.

2.3.2 Model details

Linear Regression

We start with the simplest machine learning model, in order to explain any tracks of
linearity between features and target: Linear Regression. This model predicts the target
as a weighted sum of the feature inputs, providing an easy interpretation on modular
level, given by the equation:

q(i) = θTx(i)

where q is the target flow rate and x the features, for observations i=1,..,n.

Chapter 2 Problem statement 11

The “best” model is defined in terms of minimizing the cost function:

J(θ) = 1
2

n∑
i=1

(θTx(i) − q(i))2

The value of θ that minimizes J(θ) is given in a closed form (Hastie et al., 2009):

θ = (XTX)−1XT q

Although it looks simple, the linear regression approach shows a high level of inter-
pretability. Since all the features are related directly to the target, the impact of each
feature could be detected easily. As feature expansion is applied, the model becomes
less interpretable. This will also make the learning procedure more like a trial-and-error,
because we lose the guidance from the physical essence. However, as data distribution is
changed to include more complex reservoir behaviors, linear regression fails to show a
high learning ability and the kernel method comes in to give the algorithm more flexibility
in describing reservoir characteristics.

Kernel Method

Linear regression allows the algorithm to learn in the feature space whose dimension is
defined by X. There are certain situations which require mapping of the features X to
higher dimension features ϕ(X).

The kernel helps the algorithm to learn in ϕ(X) dimensional space without explicit
representation of ϕ(X). This property allows us to add more features into our model
with little cost, thus gives the model more flexibility to capture more detailed reservoir
behaviors. The form of kernel should be carefully chosen to give an appropriate number
of feature dimensions according to the complexity of the problem. The equation from
Linear Regression can now be rewritten as :

q(i) =
n∑

j=1
βjK(x(i), x(j)), i = 1, .., n

However, adding more features into the model can result in too much complexity and
cause overfitting. To handle this issue we will introduce some useful tools to regularize
the model so as to reduce the variance of predictions.

Chapter 2 Problem statement 12

Model Regularization

Model regularization is a technique that shrinks the parameter estimates (in our case,θ
and β). Model regularization is widely used to address the overfitting issue by reducing
the prediction variance (the reason will be shown later in this section). Generally there
are two ways of model regularization: ridge regression and lasso.(James et al.,2013), but
we will be focused only on ridge regression. Starting from linear regression, we can shrink
the linear coefficients adding penalty to the cost function:

J(θ) = 1
2

n∑
i=1

(θTx(i) − q(i))2 + λ
p∑

j=1
θj

2

where parameters θ that minimize the cost function are calculated as:

θ = (XTX + λI)−1XT q

and λ ≥ 0 is known as the tuning parameter. Choosing the right value for λ is quite
challenging because it is a bias-variance trade off problem.

Ridge regression can also be applied on the kernel framework, such as Kernel Ridge
Regression, when we want to achieve the feature expansion . The cost function will be
presented as :

J(β) = 1
2

n∑
i=1

 n∑
j=1

βjK(x(i), x(j))− q(i)

2

+ λ
p∑

j=1
βj

2

The solution of parameters β is given by (Shawe-Taylor and Cristianini, 2004) with a
defined kernel matrix KM :

β = (KM + λI)−1q

Overall, ridge regression is particularly useful to address the overfitting problem when
used with the kernel approach as we will later see from the results. [9]

Regression Tree

Then we introduce a tree ensemble learner,such as Gradient Boosting, to test how
regression trees will handle this forecasting task.

Chapter 2 Problem statement 13

"Boosting" in machine learning is a way of combining multiple simple models into a
single composite model. This is also why boosting is known as an additive model, since
simple models (also known as weak learners) are added one at a time, while keeping
existing trees in the model unchanged. As we combine more and more simple models,
the complete final model becomes a stronger predictor. [14]

The term "gradient" in "gradient boosting" comes from the fact that the algorithm uses
gradient descent to minimize the loss. By using gradient descent, predictions are updated
consistently according to a learning rate (α) ,with the goal of minimizing the loss function
(MSE).

LSTM

After testing the performance of these traditional machine learning models, a remarkable
deep learning model proposed by Hochreiter and Schmidhuber in 1997 is applied to the
time-series data : Long short-term memory (LSTM).

Figure 2.3: RNN with LSTM deep learning architecture

Chapter 2 Problem statement 14

A really good representation of RNN with LSTM deep learning architecture is given
by George Loukas et al. (2017) [15] in figure 2.3. In terms of the deep learning
architecture,the design consists of three main layers:

1. Input Layer: Time-series data corresponds in n data observations which are grouped
as k consecutive points to increase the detection latency.

2. Hidden Layer: It includes a Long-Short Term Memory (LSTM) layer, a Dense layer
and Activation Function. Each LSTM neuron consists of input gate,forget gate and
output gate which determine the significance of the input and whether it should
continue to remember its value or forget it, and when it should output it. This is
followed by a Dropout Layer where the number of hidden nodes serve as the main
tuning parameter, and activation function introduces non-linearity into the output
of a neuron.

3. Output Layer: After receiving the output the error between the actual value and the
predicted value is calculated (MSE).Then we will backpropagate through time,to
update the weights and LSTM cell states to optimize the results.

The selective memory function of LSTM makes it suitable to deal with time sequence
prediction problems such as our well data. A better understanding of the mathematical
computations in LSTM can be achieved from the paper LSTM: A Search Space Odyssey
[16]

Chapter 3

Experimental Evaluation

3.1 Experimental Setup

To the extent of the model analysis in our regression task, the following main python
libraries will assist in building the predictive models:

1. Scikit-learn, a library built upon the SciPy (Scientific Python) ,is focused on
modelling data and it provides a range of supervised and unsupervised learning
algorithms.[17] In this thesis we are using Python version 3.6.10 and Scikit-learn
version 0.22.1. As inferred, this library is used to build the following regression
models: Linear regression, Ridge Regression,Kernel Ridge Regression and Gradient
Boosting.

2. Tensorflow,a library for fast numerical computing, can be used to create Deep
Learning models directly. On top of Tensorflow ,we are capable of running Keras
which is a high-level neural networks API, written in Python.[18] For compatibility
among libraries , we have chosen to work with Tensorflow version 2.1.0 and Keras
2.3.1. Hence we are building a Keras LSTM model and evaluate the deep learning
approach to our problem.

3.2 Experimental Results

In this section we will analyze the data-driven results of several simple regression models
and a deep learning model, based on three feature transformation techniques applied to
our dataset, as demonstrated in the diagram in fig. 3.1.

15

Chapter 3 Experimental Evaluation 16

Figure 3.1: Experiment workflow

The dataset transformed by the convolution method has shown very promising results,so
we will start by interpreting it in details and then proceed with a brief explanation of
the other methods.

3.2.1 Feature transformation: Convolution approach

The initial data measured by PDG and flow meters, shown in table 2.1, will be trans-
formed based on the convolution method that was previously introduced as a feature
transformation method. The following dataset is achieved .

Feature 1 Feature 2 Feature 3 Water Rate
0 -6.704426 -3.151023 -11.138749 514.791
1 -6.777953 -3.955461 -12.623886 514.791
2 -6.853799 -4.777462 -14.308884 514.791
3 -6.931966 -5.618032 -16.221045 514.791
4 -7.012430 -6.478161 -18.391429 514.791

Table 3.1: Convolution approach: Data transformation

Train Test

Model RMSE MAE MAPE R2 RMSE MAE MAPE R2 Fitting Time(s)

Linear Regression 0.0907 0.032 2.252 0.931 0.107 0.064 4.868 0.912 0.002

Ridge Regression 0.0902 0.030 2.135 0.932 0.106 0.060 4.605 0.918 0.23

Kernel Ridge Regression 0.006 0.002 0.148 0.9981 0.0021 0.0012 0.105 0.9988 29.87

Gradient Boosting Regressor 0.007 0.005 0.187 0.999 0.107 0.039 2.689 0.934 9.54

Table 3.2: Convolution approach :Evaluation results for simple regression models

Chapter 3 Experimental Evaluation 17

Figure 3.2: Convolution approach: Predictions of simple regression models

Linear regression implementation is quite straightforward, using LinearRegression() class
from scikit-learn library, as no additional parameters are required in the process. We
will fit the model by applying the training dataset, with 3 features and flow rate as
target ,which will explicitly calculate the intercept and feature coefficients. As we can
see from the results in figure 3.2, 93% of the variance in flow rate is described from the
corresponding three features in the training set and 91.2% in the test set, with quite a
small error rate. These results show a good performance of linear regression compared
to its later applications.

For Ridge regression, we are performing grid search by tuning the parameter alpha. We
start from 0 where the model behaves identically like the simple linear regression to
larger alpha values as we introduce higher smoothness constraint. The optimal alpha is
determined to be 6. The model shows better error rate and a slightly better R2 value.

Kernel Ridge Regression shows exceptional performance ,with the highest explained
variance 99.8% and a significant drop in error rate for both training and test sets.
Moreover the prediction in unseen data is slightly better than the train prediction. The

Chapter 3 Experimental Evaluation 18

optimal parameters that gave these results are :∥∥∥∥alpha = 0.01, gamma = 2000, kernel =′ rbf ′
∥∥∥∥

• Small value of alpha improves the conditioning of the problem and reduces the
variance of the estimates.

• Radial basis function kernel (kernel="rbf") with the parameter gamma, which
defines how far the influence of a single training example reaches. In our case high
values refers to "close".

Lastly, Gradient Boosting Regressor is implemented as we tune the parameters to achieve a
good trade-off of learning rate and number of boosting stages to perform, correspondingly
0.5 and 1000. Even though the train results show a promising performance similar to
Kernel Ridge, this model tends to overfit with a poor prediction in unseen data. However,
in comparison with Linear Regression and Ridge Regression it shows a slightly better
performance.

In addition to evaluation metrics, the graphical representation of the test predictions
zoomed in a small interval for each of the machine learning models in figure 3.2, shows that
Kernel Ridge regression is certainly the most optimal regression model to be used in this
specific task. However, fitting this model takes more time which can be computationally
expensive.

On the other hand, in order to test the deep learning approach on the transformed well
data, a Keras LSTM model is built. Prior to building the model, two essential steps are
taken to modify the dataset to be compatible with the model:

• Creating lagged data with a range (t, t + 5), shifting by 1 for each observation,
which will lead to an expansion of the features from 3 to 19.

• Since the model will expect the input component to have the dimensions [samples,
timesteps, features], we will reshape both training and test data into this new
3-dimensional structure. Correspondingly, the timesteps are chosen to be 2 in this
experiment.

Regarding the model, we followed a trial and error approach to get the best results,
which leaves space for further improvements. In this experiment, we define a model
with different LSTM units in the hidden layer and an output layer that predicts a single
numerical value: the flow rate . Every LSTM layer should be accompanied by a dropout
layer which reduces the sensitivity to the specific weights of individual neurons: 30%

Chapter 3 Experimental Evaluation 19

Train Test

LSTM model RMSE MAE MAPE R2 RMSE MAE MAPE R2 Fitting time(s)

20 nodes 0.0226 0.0116 0.736 0.9956 0.0232 0.0106 0.657 0.9957 418.57

50 nodes 0.0160 0.0080 0.515 0.9978 0.0182 0.0088 0.562 0.9973 723.53

100 nodes 0.0165 0.0086 0.526 0.9976 0.0150 0.0062 0.381 0.9982 890.50

200 nodes 0.0159 0.0059 0.367 0.9978 0.0152 0.0059 0.367 0.9982 1114.32

Table 3.3: Convolution approach: Evaluation results for LSTM with different number
of hidden nodes

dropout rate is a good compromise in terms of accuracy and overfitting. The model is fit
using the efficient Adam version of stochastic gradient descent and optimized using the
mean squared error, or ‘mse‘ loss function. As an activation function we have chosen relu
which is computationally efficient and non-linear , and an L2 kernel regularizer to further
reduce overfitting. As a general rule of thumb : 1 hidden layer works good enough to
find reasonably complex features. The experiments are done with 500 iterations and a
batch size of 10.

Figure 3.3: Convolution approach: RMSE for LSTM with different number of hidden
nodes

We can infer from the results that the measured error is dropping with the increase of the
number of hidden nodes. Hence the LSTM model with 200 hidden nodes is performing
better. However the dropping rate starts to decrease for a large number of nodes. As we
can see from the table 3.3 and graph 3.3, the lines representing RMSE are getting closer
to each other with quite a small difference in error rate. Furthermore, the complexity of

Chapter 3 Experimental Evaluation 20

LSTM model is demonstrated by the amount of time it takes for the model to fit, which
is positively correlated to the number of hidden nodes applied.

Figure 3.4: Convolution approach: Kernel Ridge and LSTM with 200 hidden nodes

The predictions from LSTM model are quite accurate (fig 3.4), but this experiment
indicates a better performance of Kernel Ridge Regression which yields the most accurate
predictions.

3.2.2 Feature transformation: Transient-wise approach & Original Features

If we closely observe the prediction graphs for both Kernel Ridge Regression and LSTM
in the previous experiment, we notice that the predicted flow rate values for one transient
vary slightly. Since our goal is to reconstruct a single value of flow rate per pressure
transient, we can further smooth that by getting the median of values in one transient or
we can follow another feature transformation technique based on transients. The new
dataset will look as following:

Another advantage of this method stands in the reduction of the size of observations
by making it more computationally efficient to learn from this data. However,this is

Chapter 3 Experimental Evaluation 21

Start time Duration Delta pressure Water Rate
0 0.000 55.315 0.000 0.000
1 55.325 12.026 -4.046 514.791
2 67.361 70.617 -1.680 505.615
3 137.988 35.706 4.614 0.000
4 173.704 44.762 -4.294 465.312

Table 3.4: Transient-wise approach: Data transformation

Train Test

Model + FT RMSE MAE MAPE R2 RMSE MAE MAPE R2 Fitting + FT time(s)

Kernel Ridge

Convolution Approach 0.006 0.002 0.148 0.997 0.0021 0.0012 0.105 0.998 29.87 + 7893.8

Gradient Boosting

Transient-Wise Approach 0.105 0.065 3.591 0.897 0.126 0.076 4.031 0.848 0.479 + 2200.5

LSTM

Original Features 0.0143 0.004 0.193 0.988 0.0188 0.0062 0.235 0.9912 120.58

Table 3.5: Comparison among best models for each feature transformation

associated with a drawback in the precision of predictions made in the corresponding
smaller dataset. In order to achieve a better trade off between bias and variance, more
instances are preferred. Hence, the tree ensemble learner outperforms the rest of the
regression models,including LSTM. However,even for the most optimal model using this
feature transformation the adjusted R2 value does not exceed 85% , which is really low
compared to the overall results from the previous experiment.

Both feature transformations: convolution and transient-wise approach require additional
time for data preparation. This leads to optionally using the original features measured
by PDG data and flow meters to build a predictive model. The absence of a significant
relationship between this set of features and the target, is shown by a really low perfor-
mance of the simple regression models that we tested. Deep learning ,otherwise, doesn’t
require much feature handcrafting but it can learn from raw data as well. Hence, LSTM
shows the most promising results with an approximately 99% determination coefficient for
both train and test set and a considerably low error rate, using the originally measured
features.

3.2.3 Model comparison

The comparison of the most optimal models for each feature transformation is done in
terms of :

Chapter 3 Experimental Evaluation 22

Figure 3.5: Prediction graph of the best models for each feature transformation

1. Accuracy: Gradient Boosting applied in the dataset transformed by the transient-
wise approach shows by far the highest error rate, which can also be easily noticed
in the prediction graph 3.5 . The most accurate happens to be Kernel Ridge
Regression with the convolution feature transformation showing an exceptionally
low error rate.

2. Time complexity: Considering only the model fitting time, Gradient Boosting is
the fastest algorithm, followed by Kernel Ridge and leaving LSTM to be the most
time demanding. However in a bigger picture,adding up the data preparation time

Chapter 3 Experimental Evaluation 23

for the convolution approach, Kernel Ridge results in a higher time complexity
than LSTM.

With regard to their needs,users can choose the most suitable and optimal model to
reconstruct the missing flow rate values. In case the aim is a closer learn of the flow
rate pattern and computational expenses are a worth-taken risk ,then Kernel Ridge
Regression & Convolution Feature Transformation is the right data-driven solution. If
our focus is not in data engineering, but in a powerful model who can learn fast without
explicitly crafting the data then LSTM & Original Data is an ideal choice.

Figure 3.6: Performance comparison

For further work we are using Kernel Ridge Regression as the best model, since we are
more interested in the high accuracy this approach demonstrates.

3.2.4 Model application

Subsequent to understanding the well data and finding an algorithm to learn the pat-
tern,our goal is to reconstruct the missing flow rate values.

Until now we tested the case when missing values occurred in the end of the time interval,
but in a real-life situation the absence of the flow rate values will be spread irregularly
over time. Several flow rate points are dropped in our dataset, to test the performance
of Kernel Ridge Regression in predicting these missing values after being trained on the
present data. As we can see from the first graph in figure 3.7, the model demonstrates a

Chapter 3 Experimental Evaluation 24

Figure 3.7: Using Kernel Ridge Regression to reconstruct missing flow rate values with
different splitting criterion

good fitting as it fills the gaps in flow rate data closely to its true values and it shows a
smooth transition from true values to predictions.

However, the proportion of flow rate missing data is sometimes higher than demonstrated
in the first figure, not following the ideal split where training set covers most of the
dataset. The splitting criteria is to get enough information for training the model and
explicitly more data means more accurate model. Hence,this explains the deterioration
of the machine learning model when the proportion of missing values in the well data
increases. Therefore we should pay attention to this issue before applying the predictive
model to our collection of well data.

Chapter 4

Machine Learning model deployment

In the paper published by Sculley et al. in 2015 [19] "Hidden Technical Debt in Machine
Learning Systems", they highlight that in real-world Machine Learning (ML) systems,
only a small fraction is comprised of actual ML code. There is a vast array of surrounding
infrastructure and processes to support their evolution. They also discuss the many
sources of technical debt that can accumulate in such systems, some of which are related
to data dependencies, model complexity, reproducibility, testing, monitoring, and dealing
with changes in the external world.

The process of releasing ML website into production is reliable and reproducible, leverag-
ing automation as much as possible. In this chapter we will explore how we can prepare a
machine learning model for production and deploy it inside of a Python Web application.
Using the most optimal algorithm from our experiments, we train a prediction model
using the labeled input data, integrate that model into a simple web application, which is
then deployed to a production environment.[20] Figure 4.1 shows the high-level process.

Figure 4.1: [20] Initial process to train our ML model, integrate it with a web application,
and deploy into production

25

Chapter 4 Machine Learning model deployment 26

4.1 Requirement specifications

The process starts by determining the requirements that the web application will fulfill
in terms of performance and complexity. Among different ML system architectures, we
will use Rest API ,hence the model will be trained locally and the predict function will
be exposed via flask where we can upload our test batch for prediction.

Figure 4.2: [21] Initial process to train our ML model, integrate it with a web application,
and deploy into production

As there are many options for creating web applications, the following choices were made:

• In order that the language used in the research environment matches the production
environment, the Flask web framework was chosen which is written in Python.
This will bring ease in development because of the wide availability of libraries in
data preprocessing.

• Tight iOS integration was implemented with HTML along with various CSS and
JavaScript tweaks to polish the front end. In addition the Bootstrap framework
was chosen for its capabilities in building responsive user interfaces.

4.2 Flask web application

With regards to our goal to take full advantage of our machine learning model , we are
following these steps to build the web application :

Chapter 4 Machine Learning model deployment 27

1. It is advisable to start by creating a new virtual environment for this project, to
avoid any dependency issues.

2. The most optimal machine learning model will be saved in a pickle file. Pickling is
a way to convert a python object into a character stream. The idea is that this
character stream contains all the information necessary to reconstruct the object
in another python script (app.py).

3. A flask environment will be built which will wrap the trained machine learning
model into an API endpoint and enable it to receive features from a csv file
through GET requests over HTTP/HTTPS and then return the predictions after
de-serializing the earlier serialized model.

4. The input dataset will go through a pre-processing pipeline, to make the set of
features in the right format to be fed to the model.

5. The flask script will be uploaded along with the trained machine learning model ,
and then we make requests to the hosted flask script through a website.

6. To test the prediction endpoint, we can use Postman. Postman is a collaboration
platform for API development. Postman’s features simplify each step of building
an API and streamline collaboration so you can create better APIs — faster [22].

An overview of the website is given with the following main functionalities:

• Upload the dataset as a csv file with the specific order of columns :time,flow
rate,pressure.

Figure 4.3: Website: Step 1

• Model performance expressed via percentage R-squared is shown for both train
and test set.

Chapter 4 Machine Learning model deployment 28

Figure 4.4: Website: Step 2

• A prediction graph with the reconstructed flow rate values is shown in the following
section.

Figure 4.5: Website: Step 3

• In order to take a glimpse of the prediction values, a table of the new dataset is
shown with both actual values and predictions. This dataset can be downloaded as
a csv file for further usage.

Figure 4.6: Website: Step 4

Chapter 5

Conclusion and Future Work

In this study, several Machine Learning models and one Deep Learning model were
applied to a synthetic single-well dataset modeled in various forms, with the aim of
an accurate and time-effective reconstruction of missing flow rate values. The main
conclusions derived by this work are as following :

• First, we acknowledge the importance that feature transformation has on the per-
formance of a predictive model. The more significance we find between features and
the target, the better results are achieved. Modeling the features with convolutional
method increased the prediction accuracy in simple regression models, and showed
a significant decrease of error rate for Kernel Ridge Regression which captures the
well behaviour in more details.

• On the other hand,it was shown that data modeling can be really time consuming,
shifting the attention to Deep Learning. The experiment demonstrated how flexible
LSTM is in learning patterns from complex data that are not handcrafted and
show a non-linear relationship. Even though LSTM has the most demanding
model-fitting time, the total prediction time including the data preparation is
reasonable and it is justified by the low error-rate.

• Releasing the Machine Learning model into production is as important as building
the model. A micro-framework written in Python, known as Flask, enables the
use of the Machine Learning model by other end-users in a less challenging way.
However, managing the life-cycle of the ML web application is more complex due
to overtime degradation.

29

Chapter 5 Conclusion and Future Work 30

• Exploring the impact of machine Learning in oil and gas industry is a never-ending
process, which by far has shown really promising results with a significant ability to
generalize to new and unseen situations. "Data is the new oil" is a metaphoric quote
first used in 2006 by Humble [23]. Since then it is continuously proven that proper
data handling is the key of profitable decision-makings. However it’s important to
highlight the limitations of these machine learning applications according to the
requirements in the oil and gas industry. A high proportion of missing values can
result in deterioration of the predictive model ,hence having some prior knowledge
of the well data is critical in the performance of machine learning.

Possible future directions can be addresed according to testing the flexibility of machine
learning in real-field datasets corrupted with noise or in a more diverse dataset with
additional features that require different feature-engineering approaches. Furthermore,the
deep learning usage in oil and gas is just the tip of the iceberg as far as what complexity it
has to offer and what parameter optimization can be applied. Finally, the web application
is just a demonstration to utilize the machine learning model for well data, but it can be
improved with more functionalities and better user interface.

List of Figures

1.1 Reconstructed flow rate in synthetic (a) and real data (b) by Tian and
Horne 2015b . 3

1.2 LSTM predictions of flow rate in synthetic dataset (a),shown also in a
zoomed interval (b)by Heghedus et al. (2019) 4

2.1 Graph from first dataset . 7
2.2 Graph from second dataset. 8
2.3 RNN with LSTM deep learning architecture 13

3.1 Experiment workflow . 16
3.2 Convolution approach: Predictions of simple regression models 17
3.3 Convolution approach: RMSE for LSTM with different number of hidden

nodes . 19
3.4 Convolution approach: Kernel Ridge and LSTM with 200 hidden nodes . 20
3.5 Prediction graph of the best models for each feature transformation . . . 22
3.6 Performance comparison . 23
3.7 Using Kernel Ridge Regression to reconstruct missing flow rate values

with different splitting criterion . 24

4.1 [20] Initial process to train our ML model, integrate it with a web applica-
tion, and deploy into production . 25

4.2 [21] Initial process to train our ML model, integrate it with a web applica-
tion, and deploy into production . 26

4.3 Website: Step 1 . 27
4.4 Website: Step 2 . 28
4.5 Website: Step 3 . 28
4.6 Website: Step 4 . 28

31

List of Tables

2.1 Sample of first dataset . 6

3.1 Convolution approach: Data transformation 16
3.2 Convolution approach :Evaluation results for simple regression models . . 16
3.3 Convolution approach: Evaluation results for LSTM with different number

of hidden nodes . 19
3.4 Transient-wise approach: Data transformation 21
3.5 Comparison among best models for each feature transformation 21

32

Appendix A

Appendix

Feature transformation: Convolution method
def transform_conv (data_1):

feature1 =[]

feature2 =[]

feature3 =[]

for i in range (1, len(data_1)):

print (i,i/len(data_1))

if i %10==0:

clear_output ()

f1 =0

f2 =0

f3 =0

for j in range (1,i+1):

f1=f1 +(data_1 [2][j]- data_1 [2][j -1])

f2=f2 +((data_1 [2][j]- data_1 [2][j -1])*(math.log(data_1 [0][i]- data_1 [0][j -1])))

f3=f3 +((data_1 [2][j]- data_1 [2][j -1])*(data_1 [0][i]- data_1 [0][j -1]))

feature1 . append (f1)

feature2 . append (f2)

feature3 . append (f3)

data_conv =pd. Dataframe ()

data_conv [" feature_1 "]= feature1

data_conv [" feature_2 "]= feature2

data_conv [" feature_3 "]= feature3

data_conv [" flow_rate "]= data_1 [1: len(data_1)][1]

return data_conv

33

Appendix A Appendix 34

Feature transformation: Transient-wise approach

def transform_transient (data_1):

uniq_val ={}

for i in data_1 [1]. unique ():

data_temp = data_1 [data_1 [1] == i]

uniq_val [i]= data_temp . index . values

for key ,item in uniq_val . items ():

transient_time =[]

for k,g in groupby (enumerate (item), lambda x:x[0] -x [1]):

index = list (map(itemgetter (1) , g))

transient_time . append (data_1 .iloc[index][0]. values)

uniq_val [key]= transient_time

rate_const =[]

start_time =[]

pressure =[]

duration =[]

for key , items in uniq_val . items ():

for i in range (len(items)):

min_time =min(items [i])

max_time =max(items [i])

delta_time =max_time - min_time

min_pressure =data[data [0]== min_time][2]. values [0]

max_pressure =data[data [0]== max_time][2]. values [0]

delta_pressure = max_pressure - min_pressure

duration . append (delta_time)

start_time . append (min_time)

rate_const . append (key)

pressure . append (delta_pressure)

df_transient = pd. DataFrame ()

df_transient [" start_time "]= start_time

df_transient [" delta_time "]= duration

df_transient [" delta_pressure "]= pressure

df_transient [" constant_rate "]= rate_const

return (df_transient)

Appendix A Appendix 35

Linear Regression

from sklearn . linear_model import LinearRegression

clf = LinearRegression ()

Ridge Regression

from sklearn . linear_model import Ridge

params ={ ’alpha ’: np. logspace (-10, 2, 300) ," fit_intercept ":[True , False]}

rdg_reg = Ridge ()

clf = GridSearchCV (rdg_reg ,params ,cv=2, verbose = 1, scoring = ’neg_mean_squared_error ’)

ridge_model = Ridge (** clf. best_params_)

Kernel Ridge Regression

from sklearn . kernel_ridge import KernelRidge

kernel_rdg = KernelRidge (kernel ="rbf")

params ={" alpha ": np. logspace (-10, 2, 300) , " gamma ": np. logspace (-10, -1, 100)}

clf = GridSearchCV (kernel_rdg ,params ,cv=2, verbose = 1, scoring = ’neg_mean_squared_error ’)

kernel_ridge_model = KernelRidge (** clf. best_params_)

Gradient Boosting
from sklearn . ensemble import GradientBoostingRegressor

clf = GradientBoostingRegressor (n_estimators =1000 , learning_rate =0.5 ,

max_depth =2, random_state =0, loss=’ls ’)

LSTM
for lstmsize in range (20 ,200 ,10):

lstmdropout =0.4

generaldropout =0.5

reduce_lr = keras . callbacks . ReduceLROnPlateau (monitor =’loss ’,

factor =0.5 , patience =5, min_lr =0.001)

m = Sequential ()

m.add(LSTM(lstmsize , input_shape =(n ,19), recurrent_dropout = lstmdropout))

m.add(Dropout (generaldropout))

Appendix A Appendix 36

m.add(Dense (n, activation =’relu ’,kernel_regularizer = regularizers .l2 (0.001)))

m. compile (loss=’mse ’, optimizer =’adam ’,metrics =[’accuracy ’])

history =m.fit(train_X ,train_Y , epochs =1000 ,

batch_size =10 , verbose =0, callbacks =[NEpochsLogger (50) , reduce_lr])

Flask application instance
app = Flask (__name__)

model = pickle .load(open (’model .pkl ’, ’rb ’))

@app. route (’/’)

def home ():

return render_template (’index .html ’)

@app. route (’/ predict ’,methods =[’POST ’])

def predict ():

data = pd. read_csv (request . files .get(’data_file ’))

data_1 = transform_conv (data)

data_1 = data_1 . astype (’float32 ’)

scaler = MinMaxScaler (feature_range =(0 , 1))

dataset = scaler . fit_transform (data_1)

TESTx = dataset [: ,: -1]

TESTy = dataset [: , -1]

prediction = model . predict (TESTx)

score = model . score (TESTx , TESTy)

prediction = prediction . reshape ((prediction . shape [0] ,1))

prediction_results = concatenate ((TESTx , prediction), axis =1)

prediction_scaled = scaler . inverse_transform (prediction_results)

plt.plot(prediction_scaled [0] , prediction_scaled [1])

figfile =io. BytesIO ()

plt. savefig (figfile , format ="png")

figfile .seek (0)

figdata_png = base64 . b64encode (figfile . getvalue ()). decode (" ascii ")

prediction_scaled = prediction_scaled .head(n=10)

data. columns =["time","rate"," pressure "]

return render_template (’index .html ’,prediction_text = round (score ,4)*100 ,

tables =[prediction_results . to_html (classes =’data ’)],

titles =["time","rate"," pressure "], results = figdata_png)

if __name__ == ’__main__ ’:

app.run(debug =True)

Bibliography

[1] Exploring machine learning developments in the oil and gas industry. Project of
Harvard Businnes School, November 2018.

[2] Vinodkumar Raghothamarao. Machine learning and ai industry shaping the oil and
gas industry. Pipeline,oil and gas news, 2020.

[3] A. L. Samuel. Some studies in machine learning using the game of checkers. IBM
Journal of Research and Development, 44(1.2):206–226, January 2000. ISSN 0018-
8646. doi: 10.1147/rd.441.0206. Conference Name: IBM Journal of Research and
Development.

[4] Dan Hebert and Alex Misiti. The Growing Role of Artificial Intelligence in Oil
and Gas. Engineering360, 2016. doi: https://insights.globalspec.com/article/2772/
the-growing-role-of-artificial-intelligence-in-oil-and-gas.

[5] Chuan Tian and Roland N. Horne. Recurrent neural networks for permanent
downhole gauge data analysis. SPE Annual Technical Conference and Exhibition,
9-11 October, San Antonio, Texas, USA, . doi: https://doi.org/10.2118/187181-MS.

[6] Yang Liu and Roland N. Horne. Interpreting pressure and flow-rate data from
permanent downhole gauges by use of data-mining approaches. SPE Journal 18(1),
pages 69–82, 2012.

[7] Yang Liu and Roland N. Horne. Interpreting pressure and flow rate data from perma-
nent downhole gauges using convolution-kernel-based data mining approaches. SPE
Western Regional AAPG Pacific Section Meeting 2013 Joint Technical Conference,
Monterey, California, 2013a.

[8] Yang Liu and Roland N. Horne. Interpreting pressure and flow rate data from
permanent downhole gauges using convolution-kernel-based data mining approaches.
SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, 2013b.

[9] Chuan Tian and Roland N. Horne. Applying Machine Learning Techniques to
Interpret Flow Rate, Pressure and Temperature Data From Permanent Downhole
Gauges. April 2015. doi: 10.2118/174034-MS.

37

Bibliography 38

[10] Chuan Tian and Roland N. Horne. Machine Learning Applied to Multiwell Test
Analysis and Flow Rate Reconstruction. . ISBN 978-1-61399-376-7.

[11] A. Aggarwal and S. Agarwal. ANN Powered Virtual Well Testing. January 2014.
doi: 10.4043/24981-MS.

[12] M. Korjani, Andrei Popa, Eli Grijalva, Steve Cassidy, and I. Ershaghi. A New
Approach to Reservoir Characterization Using Deep Learning Neural Networks.
January 2016. doi: 10.2118/180359-MS.

[13] Cristina Heghedus, Anton Shchipanov, and Chunming Rong. Advancing Deep
Learning to Improve Upstream Petroleum Monitoring. IEEE Access, 7:106248–
106259, 2019. ISSN 2169-3536. doi: 10.1109/ACCESS.2019.2931990. Conference
Name: IEEE Access.

[14] Implementing Gradient Boosting Regression in Python | Paperspace Blog.

[15] George Loukas, Tuan Vuong, Ryan Heartfield, Georgia Sakellari, Yongpil Yoon, and
Diane Gan. Cloud-based cyber-physical intrusion detection for vehicles using Deep
Learning. IEEE Access, 6:3491–3508, December 2017. doi: 10.1109/ACCESS.2017.
2782159.

[16] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmidhuber.
Lstm: A search space odyssey. IEEE Transactions on Neural Networks and Learning
Systems, 28(10):2222–2232, 2017.

[17] Jason Brownlee. A gentle introduction to scikit-learn: A python machine learning
library. Machine Learning Mastery, 2014.

[18] François Chollet et al. Keras. https://keras.io, 2015.

[19] Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner, Vinay
Chaudhary, Michael Young, and Dan Dennison. Hidden technical debt in machine
learning systems. NIPS, pages 2494–2502, 01 2015.

[20] Christoph Windheuser Danilo Sato, Arif Wider. Automating the end-to-end lifecycle
of machine learning applications. September 2019.

[21] Bamigbade Opeyemi. Deployment of machine learning model demystified. Towards
Data Science, November 2019.

[22] Api platform: Api tools and solutions from postman. https://postman.com.

[23] Data is the new oil. ANA Senior marketer’s summit, Kellogg School, 2006.

https://keras.io
https://postman.com

	Abstract
	Acknowledgements
	1 Introduction
	1.1 Motivation
	1.2 Related work
	1.2.1 Feature-Based machine Learning for PDG Data Analysis
	1.2.2 Deep Learning for PDG Data Analysis

	2 Problem statement
	2.1 Dataset
	2.2 Data preparation
	2.3 Predictive modeling
	2.3.1 Evaluation metrics
	2.3.2 Model details

	3 Experimental Evaluation
	3.1 Experimental Setup
	3.2 Experimental Results
	3.2.1 Feature transformation: Convolution approach
	3.2.2 Feature transformation: Transient-wise approach & Original Features
	3.2.3 Model comparison
	3.2.4 Model application

	4 Machine Learning model deployment
	4.1 Requirement specifications
	4.2 Flask web application

	5 Conclusion and Future Work
	List of Figures
	List of Tables
	A Appendix
	Bibliography

