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Abstract

The spread of a virus or the outbreak of an epidemic are natural examples of stochastic
processes. Classical mathematical descriptions of such phenomenon include various
branching processes such as the SIR (Susceptible-Infected-Recovered) model and the
SIS (Susceptible-Infected-Susceptible) model. The basis of this thesis consists of giving
a comprehensive overview of the mathematical theory behind these models with an
emphasis on the SIR model and its evolution on complex networks. Further, following
[1],[2],[3], we consider the evoSIR on three network structures (Erdös Rényi Graph (ER
graph), configuration model network and the preferential attachment model) in which
a susceptible after learning the status of his neighbour breaks that connection at rate
ρ and rewire to a randomly chosen individual in the population. We show through
simulations that, delSIR can reduce the final size of an outbreak of a diseases with a
higher probability. Finally, we show that the network structure crucially influences the
measures to control the outbreak of diseases at the population level.
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Chapter 1

Introduction

Infectious diseases are responsible for significant health and economic problem in society.
Mathematical models use assumptions and statistical inferences in determining parameters
for the spread of diseases. Mathematical models in recent years have been used to guide
policy makers responding to the emergency of the diseases including Measles[4][5][6],
H1N1 influenza[7][8], Hepatitis C Virus (HCV)[9][10], Whooping cough[11], HIV[12][13],
Ebola[14][15][16], Coronavirus[17][18][19] and many others. For example, in 1760, Daniel
Bernoulli aimed at evaluating the effectiveness of inoculating against smallpox. Ross
(1911) modelled the transmission of malaria. The 1920s saw the emergence of the
compartmental model (deterministic). Kerneck-Mckendrick in 1927 studied rigorously the
general SIR model describing the relationship between susceptible, infection, and immune
individual in the population. The early models (deterministic) addresses questions like,
how many people in the population will get infected during an outbreak of an epidemic?
It is possible for a large proportion of the population to be infected? What is the effect
of vaccinating a fraction of the population prior to the arrival of the disease? As more
attention was given to this process, assumptions were made in several ways to make
it simple and realistic. Another generalization is the stochastic epidemic model which
was introduced by Bartlett (1947) who studied the stochastic version of the Kerneck-
Mckendrick model and Kendall (1956) who also studies both the deterministic and
stochastic epidemics in a closed population. Since then, there have been various reviews
in the modelling of stochastic epidemic models. [20] studied the variation of infection
rate where he suggested that infection rate acting upon each susceptible individual is
independent over time but varies between susceptible. [21] in a collection paper, provides
detailed analysis of the stochastic process in epidemics theory, [22] provides a review
of some epidemics model quantities providing different ways of combining them and
their relationship between epidemic models. [23], described epidemics spread in both
homogeneous and inhomogeneous population for deterministic and stochastic models
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2 Chapter 1 Introduction

in continuous and discrete-time. They also provide detailed methods for constructing
and analysing mathematical models of viral and bacterial diseases. [24], focused on
the epidemic process model on deterministic and stochastic, where model assumptions
were mostly stochastic. [25], explain three different types of stochastic epidemic models
(stochastic differential, discrete-time and continuous-time Markov chain) and properties
special to epidemic model. A very recent book by [26] provides a detailed understanding
to stochastic epidemic using various techniques in addressing epidemic spread problems.
This generalization (stochastic epidemic modelling) serves as a tool for estimating the
probability distribution of the potential outcomes. This model came into existence to
address questions like, What is the probability of major outbreak? What is the size
of the epidemics? What is the duration of the epidemics? and many more. The early
study of epidemiology models was assumed to be model in randomly mixing population
where individuals can contact any member in the population. However, in practice, each
individual has a finite number of individual (neighbours, family, friends, classmate e.t.c.)
he can contact. Diseases like HIV can only spread through a network of individuals having
sexual intercourse. In the mid-1980s and 2000s, network science became a well-established
and productive research area in modelling real-world phenomena ranging from biological
to social phenomena. These models lead to an improved understanding of the significance
of network properties on the evolving process on networks, including, the flow of rumours
and disease transmission. There is a closed relationship between epidemics spread models
and network theory; this is because the connections between the individual that allows
infection spread in a population define a network (family, friends, classmates, co-workers
e.t.c.) while the network generated provides insight on how epidemic evolves. Improving
the prediction of the infection degree distribution and the early growth of infection can
be well explained when the structure of the transmission network is well understood.
New infectious disease (SARS-CoV-2) have made it clear how the study of a network
can relate to the propagation of infectious disease. Contact tracing and breaking the
connection with an infected individual (isolation) are the highly effective public health
measures which use the underlying dynamics to control the effect infecting the majority
of a population[27][28]. In this thesis, we shall study the effect of stochastic modelling of
infectious diseases on a random network (closed population) where susceptible individual
breaks friendship with a neighbour after learning his status at a constant rate ρ.
This thesis is organized in five chapters. Chapter one is used to present background
and an introduction to the work. Chapter two introduces the branching process, which
serves as a tool in modelling the early stage of an epidemic. Chapter three explaining
the fundamentals of network theory and the relationship between network theory and
epidemiology. In Chapter four, we present how epidemic spread evolves on networks and
Chapter five laying a valid conclusion as well as capturing future works to the study.
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1.1 Why Stochastic Model

Both stochastic and deterministic models play an essential role in better understanding
the mechanism of infectious diseases. The deterministic model serves as an introductory
model when studying a new phenomenon[29]. One main advantage of the deterministic
over the stochastic lies in its simplicity. The model can be more complex but possible
to analyse when numerical solutions are available, for analysis of the stochastic model
to make possible, the model should be simple and does not entirely need to be realistic.
When the analysis is possible, the stochastic is preferred over the deterministic because
of the following reasons

1. The stochastic models show what the deterministic model converges to when the
size of the population is large[29]. The deterministic model, the spread of infectious
diseases is based on the assumption of large numbers.

2. In a large population, epidemic models may lead to either minor outbreak or
significant outbreak. The natural way to calculate the probability of the two events
is only mathematically possible in the stochastic setting.

3. Questions about uncertainty in estimates requires a stochastic model and an
estimate is not of much use without some knowledge of uncertainty.

1.2 Reed-Frost Model

During the 1920s, two researchers at the John’s Hopkins University, Lowel Reed and
Wade Frost develop a mathematical model to give the exact prediction of how infectious
diseases spread through a small population. The Reed-Frost model is one of the simplest
epidemic models which is usually specified using discrete time dynamics. Despite its
simplicity, it is sufficiently complicated that more tractable approximations are still
needed. The Reed-Frost model (S(t), I(t), R(t), t ≥ 0) is a discrete-time SIR model
which means that at time t = 0, an individual is either at the susceptible stage or infection
stage or recovered/removed stage. A susceptible individual at time t+ 1 after contacting
an infectious individual (infective) will develop the infection and will be infectious to
others within a period and become immune and recovered. In the discrete time, we
usually think of the infectious period as being short whiles the latent period (the period
between infection with a virus and the onset of symptoms) is assumed to be long. Each
individual in the population has a uniform probability of coming into contact with any
other specified individual in the group with time t+ 1 depend on the previous step t (i.e.
the process evolve to a Markovian recursive) and the binomial probability specifies the
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events.
Let S(t) and I(t) denote the number of susceptible and infective individuals in the
population at time t > 0 respectively. Then the chain-binomial Reed-Frost model in [30]
is given as

P (I(t+ 1) = it+1 | S(0) = s0, I(0) = i0, · · · , S(t) = st, I(t) = it) (1.1)

=P (I(t+ 1) = it+1 | S(t) = s0, I(t) = it, ) (1.2)

=
(

S(t)
I(t+ 1)

)
(1− qit)it+1(qit)si+it+1 (1.3)

and S(t+ 1) = S(t)− I(t+ 1). This can be explained as given a susceptible individual
at time t will remain susceptible at time t+ 1 if he escapes from all infectives at time t
where q is the event probability which is independent of each other. Now lets assume
that at the initial state, S(0) = n and I(0) = m then we can compute the probability of
the complete chain i1, · · · , ik+1 = 0 by conditioning sequentially and using the Markov
property of the chain. Then we have;

P (I(1) = i1, · · · , I(k) = ik, I(k + 1) = 0 | S(0) = n, I(0) = m)

= P (I(1) = i1 | S(0) = n, I(0) = m)× · · · × P (I(k + 1) = 0 | S(k) = sk, I(k) = ik)

=
(
n

i1

)
(1− qm)i1(qm)n−i1 × · · · ×

(
sk
0

)
(1− qik)0(qik)sk (1.4)

With probability 1− q, each individual who becomes infected has infectious contact with
any other individual in the population. Denote the final number of infected individual
by Z, then we can compute P (Z = z | S(0) = n, I(0) = m) by summing the probabilities
of all chains for which | i |= ∑

t≥1 it = z. It is seen from the equations that new infection
may only occur whenever there exist some infectious individual, thus, the length of a
chain cannot be longer than the total number of infected, which makes the number of
possible chain finite. Based on our findings, we can write the probability function for the
final number of infected as

P (Z = z | S(0) = n, I(0) = m)

=
∑
i:|i|=z

P (I(1) = i1, · · · , Ik = ik, Ik+1 = 0 | S(0) = n, I(0) = m) (1.5)

A typical example is given in [30] and [26] for S(0) = 1, 2, 3 and I(0) = 1, we can see that
computing number of infected becomes very complicated when the number of susceptible
individuals become very large.
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1.3 The Standard SIR Model

In this section, we define the stochastic SIR epidemic model. The stochastic SIR is
tough to analyse when the model is complicated. Several assumptions were made to
make the model manageable and realistic. The population is assumed to be closed and
homogeneously mixing, the effect of the latent period changes the behaviour, constant/-
exponential infective period and no partial immunity.
Consider a closed population n+m, where n is the total number of susceptible individuals
in the population and m is the initial infectives. At any given time t, each individual is
either susceptible (S), or infected (I), or Removed/Recovered(R). Let S(t), I(t) and R(t)
denote the number of individuals in the population such that S(t) + I(t) +R(t) =n+m

at any given time t. In this thesis, we shall assume that m= 1 (i.e. at time t= 0 we
have only one infected individual). While an individual is still susceptible, he contacts
an individual in the population according to a poison process with parameter µ. If the
individual is still susceptible, he becomes infected; otherwise, the infectious contact does
not affect the epidemic process (this will be referred to ghost contact throughout the
thesis). An individual becomes infectious for a duration F (independent and identically
distributed) with distribution FL after which they become recovered and immune for
the remaining time in our epidemic process. The epidemic continues to exist until time
tf when I(tf ) = 0. At this time, no individual can be infected. At the final stage,
the population will consist of susceptible and removed individuals. Then the final size
Z=n − S(tf ) The process described above is referred to as the standard SIR process,
which will be denoted as Bn>1,1(F, µ). Here we considered the two most studied cases of
the epidemic process infectious individual becomes active (infectious) for exponentially
distributed with mean one and random case where an individual becomes infectious at a
constant time 1 (i.e. F ≈ exp(1) or F ≈ 1).
Two key quantities that appear in the study of the spread of infectious disease is the
basic reproduction number R0 and the escaping probability which will be analyse in
detailed in chapter 4 and chapter 5. R0 denotes the mean number of infectious contact a
typical infected has during the early stage of an outbreak[26]. This quantity agrees with
the number of infection caused by a typical infectious individual when the population
becomes large.

1.3.1 Sellke Construction

The final size distribution of an epidemic in a closed population can be derived from the
Sellke construction. The process keeps track of the total infection pressure generated by
the infectious individual[30]. Let 1, 2, · · · , n and −(m− 1),− (m− 2), · · · , 0 denotes the
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initial susceptible and the initially infected individuals in the population, respectively.
F(m−1), F(m−2), · · · , Fn are independent and identically distributed random variable,
each following the distribution of F . Let F(m−1), F(m−2), · · · , F0 denote the length of the
infection period for the m initial infected. Again, let Q1, Q2, · · · , Qn be an independent
random variable, each exponentially distributed with mean 1. This represents the
threshold of the initial susceptible. The total infection pressure (cumulative force of
infection) exerted on a given susceptible up to time t is given as

A(t) = µ

∫ t

0
I(u)du (1.6)

where I(u) is the number of infected at time u. The infection pressure A(t) > 0 and is
increasing or constant. A susceptible individual i ever becomes infected at time t when
A(t) =Qi. The jth person to get infected will remain infected for the time period Fj (i.e.
F1, F2, · · · , Fn is used sequentially).

Proposition 1. The Sellke construction gives a process equivalent to the Standard SIR
epidemic

Proof. We have to show that the time when infection happens is the same for both
models. The proof was taken from [30]. Let I(t) =y and the ith individual is susceptible
at time t and becomes infected during (t, t + ∆t) with the probability ∆y∆t + o(∆t),
the probability of the complementary event (two outcomes of an event that are the only
possible outcome) is given by

P (susceptible i infected at t+ ∆t | not infected at t) = P (Qi < A(t+ ∆t) | Qi > A(t))

= P (A(t) < Qi < A(t+ ∆t)
P (Qi > A(t))

=

(
1− e−A(t+∆t)

)
−
(
1− e−A(t)

)
e−A(t)

= 1− eµy∆t+o(∆t)

= 1− (1− µy∆t+ o(∆t))

= µy∆t+ o(∆t) ≈ µI(t)dt

Now, let’s compute the exact result of the final size of the epidemic using the Sellke’s
construction. Let Z be the final size of the epidemic and A=A(∞) =µ

∫∞
0 I(u)du be the

total infection pressure. The integral is finite since the number of infected is finite, and
each recovers at a finite time. Then we can write the total infection pressure in terms of
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the infection period as

A =
Z∑

j=−(m−1)
Fj [30] (1.7)

We can also express the final size in terms of the infection period and the individual
threshold as

Z = min

i
∣∣∣∣∣∣ Q(i+1) > µ

Z∑
j=−(m−1)

Fj

 [30] (1.8)

WhereQ(1), Q(2), · · · , Q(n) are the order statics (smallest value) ofQ1, Q2, · · · , Qn because
epidemic ceases when infection pressure generated by a previously infected individual is
insufficient to infect any susceptible in the population.

1.3.2 Early Stage of an outbreak of infectious diseases

Now let us consider the standard SIR epidemic process Bn>1,1(F, µ) in a closed population
with n individuals (a population with no birth, death, immigration and emigration). We
study the epidemic process where less than k=k(n) individuals has been infected. We
know from the previous section that infectious contact between two individual in the
population happens independently. Future contact with an already infected individual
has no impact on the epidemic process, and in such situations, contact between individual
becomes dependent. In the early stage of an epidemic in a large population, it is
unlikely for two already infected individuals to have contact (i.e. at the beginning of an
epidemic, infectious contact occurs between infected and susceptible individuals in the
population). This suggests that the number of infected at the beginning of an epidemic
can be approximated by the Branching process where "giving birth" refers to infecting
an individual in the population and "being born" corresponds to be infected. Branching
processes are a class of stochastic processes that model the growth of populations. In
the next chapter, we describe the discrete-time and continuous-time Branching process
approximation and obtain an asymptotic result for the epidemic for a major and minor
outbreak.





Chapter 2

Branching processes

2.1 Introduction

In this section, we study single type branching processes which serve as toy models to
determine the number of infectious individuals in a large population and also as a tool
to determine the final behaviour of an epidemics (explode/extinct). Branching processes
play a central role in the theory of mathematical epidemiology. Branching processes are
stochastic process (The model becomes Markovian if F is exponentially distributed) in
which the size of a generation only depends on the size of the previous generation and
the number of their offspring. Following [31] branching processes can be define as follows:
Let {I(t)|t ∈ [0,∞)} taking the set of values {1, 2, 3, · · · } be discrete random variable
which has the Markov property. The process starts with a single individual m= 1 at
time t= 0. The time before an individual in the population dies out is i.i.d according
to a continuous random variable F with expectation τ and variance σ2. Denote the
branching process by B1(µ, F ) where an active individual gives birth at a time point of
a Poison process with intensity µ.

2.2 Discrete Time Branching Process

The number of newly infected persons j from a previously infected individual i at time
t ≥ 0 is a stochastic variable denoted as Yi(t). Then I(t) follows the recursive relation

Ij(t+ 1) =
It∑
i=1

Yi(t) (2.1)

Yi(t) are independent and identically distributed random variable according to the
distribution P(Yi(t) =j) =pj . We assume that individuals give birth independently of all

9



10 Chapter 2 Branching processes

others and the transitional probability must satisfy.

∞∑
j=0

Pi,j(t)sj =

 ∞∑
j=0

P1,j(t)sj
i , s ∈ [0, 1][31] (2.2)

Equation 2.2 implies the process starting from state I(0) = i is equivalent to the
sum of i independent processes beginning from state I(0) = 1. From equation 2.2, if
I(0) =∑i

l=0 Il(0) for Il(0) = 1, then the probability generating function of I(t) must
satisfies

E(sI(t)) =Πi
l=1E(sIlt)[31] (2.3)

2.2.1 Generating Function and Extinction Probability

Generating functions (GF’s) predict several properties about the initial phase of the
spread of epidemics. At the same time, the population is still effectively infinite, including
the probability of large epidemic, the size distribution after some number of generations,
and the cumulative size distribution of non-epidemic outbreaks[32]. Let G(s) denote the
generating function of the offspring random variable.

G(s) =
∞∑
j=0

pjs
j (2.4)

Now lets consider the event that the progeny of our process goes extinct (i.e. P(I(t)→
0) =limtP(I(t) = 0 | I(0) = 1). Let {I(t) | t ≥ 0} be the number of active individuals
in the population at time t> 0. As shown later in this section, the process will be
extinct if E(I(t)) ≤ 1 since there is an average E(Y1(t))t at any given discrete-time
point t. Considering the supercritical cases where E(Y1(t)) > 1, from [30], the extinction
probability q of the branching process is given as

q =
∞∑
k=0

P(extinction|Y ∗(0))P(Y ∗(0) = k)[30] (2.5)

where Y ∗(0) is the number of children of an ancestor, thus B1(µ, F ) dies out if and only
if all offspring generated by these children become extinct, q=∑∞k=0 q

kP(Y ∗(0) =k). The
prove of theorem 2.1 and 2.2 below are taken from [31] and [33]

Theorem 2.1 (uniqueness of extinction probability). If µ ≤ 1 then 1 is the only root of
G(s) in [0,1] and if µ > 1, then the extinction probability is a unique solution less than 1
of G(s) in [0,1].

Proof. From equation 2.4, it is easy to show that s = 1 is a fixed point thus G(1) =∑∞
j=0 pjs

j = ∑∞
j=0 pj = 1. Then 1 is a root of G(s)
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Now assuming µ ≤ 1, then p0 6= 0 taking s = 0 to be a fixed point of equation 2.4 which
implies G(0) = p0 = 0 but G(0) = p0 > 0 whenever µ ≤ 1. Thus 0 is not a fixed point
when µ ≤ 1. Now assume s ∈ (0, 1) is a root of G(s), then the inequality G′(s) < G′(1)
since f ′′(s) > 0 for any s. We know from the Mean Value theorem that for some c ∈ (s, 1),
G′(c) = G(1)−G(s)

1− s = 1 but this contradict the fact that for some c ∈ (0, 1) G′(c) < 1
thus 1 is the only root of G(x) whenever µ ≤ 1.
Next, µ > 1 then p0 = 0, G(0) = p0 = 0 clearly it can be seen that 0 is the smallest root
on [0, 1]. Now taking p0 > 0, G(s) < s when s is sufficiently close to 1 thus there is a at
least one solution in [0, 1) whenever p ≥ 0. Assuming s0 and s1 are the roots of G(s),
then the Rolle’s theorem implies that there exist ξ0 and x1, s0 < ξ0 < s1 < ξ1 such that
G′(ξ0) = G′(ξ1). But we know from above that G is strictly convex thus G′(ξ0) = G′(ξ1)
is not possible. Therefore there is a unique root s∗ ∈ [0, 1) of G(s).

Theorem 2.2. For any finite value m∗, if E(I1(t)) = m∗ then limt→∞ P(I1(t) = k) = 0
for k ∈ N. Again, I1(t) becomes extinct with probability q where q is the smallest root of
G(s) = s in [0, 1] or explode with probability 1− q.

Proof. Now assuming Rk = P(I(t+ ∆t) = k|I(t = k)=0 for some k = 1, 2, 3, · · · , then
we can show that at any given time t + ∆t the space k is transient thus Rk = 0. If
p0 = 0, then Rk = P(I(t) = 1) = pk1 < 1. Again if p0 > 0, Rk = 1 − Pk, 0 = 1 − pk0 <
1. Thus for each value of k ∈ Z, limt→∞ P(I1(t) = k) = 0 and limt→∞ P(I1(t) =
k, for infinitely many values of k) = 0. I(t) is either 0 or ∞ since it does not take same
values of k ∈ Z but we know from equation 2.5 that I(t)→ 0 with probability q.

Definition 2.3 (Martingales in Discrete Time). Let (Ω,F ,P) be the probability space
and Fn, n ≥ 0 be an increasing sequence of the sub-σ-algebras of F A sequence
{In, n ≥ 0} of random variables is called Martingale if

1. For all n ≥ 0, In if F-measurable and integrable

2. For all n ≥ 0, E(In+1 | Fn) ≤ In

A more detailed explanation of the Martingale can be found in [34] and [26]. The
following theorem follows from the Martingale convergence from [35]

Theorem 2.4 (Martingale convergence Theorem). For a branching process with i.i.d.
offspring (Yi(t)), lim

t
I(t)E(Yi(t))−1 → W almost surely, for some integrable random

variable W , where P(W > 0) > 0 iff E(Yi(t)) > 1
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2.3 Coupling Between Branching Process and SIR

Consider a sequence of Epidemics Bn>1,1(µ, F ). Denote {Yn(t) | t ≥ 0} the number of
susceptible individuals to have been infected at time t ≥ 0 in the nth epidemics and
{Y (t) | t ≥ 0} is the number of individuals alive in the branching process B1(µ, F ). This
section gives an intuitive explanation of why the limiting process of the {Yn(t);t ≥ 0}
is {Y (t);t ≥ 0}. Denote the numbering of individuals born into the population in the
branching process by −(m−1),−(m−1), · · · , 0. Assuming the probability space (Ω,F ,P)
holds for the individual life historiesH−(m−1),H−(m−2), · · · ,H0 of them ancestors and let
Hi, i ≥ 1, be the life history of the ith individual born. Let UN be i.d.d defined on (Ω,F ,P)
to be uniformly distributed on {1, 2, 3, 4, · · · , n,N |N= 1, 2, 3, 4, · · · , n, n + 1, · · · }. For
a fixed n label the initial susceptible of the process Bn>1,1(µ, F ) as 1, 2, 3, · · · , n. Birth
and death of non ghost individual in the branching process correspond to contact and
removal in the SIR epidemic process, respectively. The individual contacted at the
ith contact has the label Ci ∈ {1, 2, 3, 4, · · · , n,N | N= 1, 2, 3, 4, · · · , n, n + 1, · · · }. A
contacted individual becomes infected when still susceptible in the epidemic process;
otherwise, the individual and the descendants in the branching process is ignored[30].
The two processes agree until the first ghost at time T ′> 0. It is shown in [33] that as
n → ∞, the probability that there will be a ghost contact at any given time interval
[t, t+ ∆] is 0.

Theorem 1. Consider a sequence of Epidemics Bn>1,1(µ, F ). Denote {Yn(t) | t ≥ 0} the
number of susceptible individuals to have been infected at time t ≥ 0 in the nth epidemics
and Yn(∞) the total size of an epidemics, then for any fixed time t′, Yn(t′)→ Y (t′) and
Yn(∞)→ Y (∞) a.s. (almost surely), where {Y (t) | t ≥ 0} is the number of individuals
alive in the branching process B1(µ, F ).

2.4 The Threshold Limit Theorem of Epidemics

In this section, we study the asymptotic distribution of the final size of the general
stochastic epidemic model as n → ∞. We have noticed that the final size Zn of the
epidemic process Bn>1,1(µ, F ) converges a.s. to the branching process B1(µ, F ) when
the population is large. Let Zn=limt→∞R(t) − m be the size of the epidemics with
probability Pz=P(Z=z) where, {S(t), I(t) and R(t)} the number of susceptible, infected
and recovered/removed individuals respectively at any given time t. let µ and γ denoted
the rate of infection and recovery respectively, then the theorem below follows from [36]
which gives a general case of William’s threshold theorem.
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Theorem 2.5 (William’s threshold theorem). [37] Let θ = γ

nµ
denotes the relative

removal rate per initial susceptible, then the probability of true epidemic (i.e. infinitely
many susceptible are infected when n is sufficiently large) is 0 if θ ≥ 1 whilst if θ < 1 a
true epidemic occurs with the probability 1− θm.

Now we follow [30] to find the final size of an epidemic using the Infection process and the
threshold process. Let F(t) =λ

n

∑k−m
j=−(m−1) Fj , k ∈ [0,n + m] and Q(t) =∑n

j=1 1QJ<k,
k> 0 be the infection pressure process and the threshold process where Fj and Qj are the
infectious periods and individual threshold respectively. From the Selke’s construction, A
susceptible individual i becomes infected if the total infection pressure reaches Qi then
we have the final size of the epidemic as

Z = min{i ≥ 0 | Qi+1 >
µ

n

i∑
j=−(m−1)

Fj} (2.6)

We can see from equation 2.6 that I(i− 1 +m) can contact at least i individuals thus
expressing the threshold process in terms of the infection process we get

Z = min{k ≥ 0 | Q(F(k +m)) = k} (2.7)

Now consider the case mn=m for all n. let Z ′n=Zn + m and let z0 be a non-trivial
solution of

1− exp(−µτz0) = z0 (2.8)

where τ is the mean of the infection period, then we have the theorem below from [30].

Theorem 2.6. Consider the sequence of epidemic processes Bn>1,1(µ, F ) then

1. if µ ≤ 1 then Zn → Z a.s., where P(Z=k) = 1 for a finite value k, where Z is the
total offspring in a continuous-time branching process with m initial ancestors.

2. If µ> 1 then Zn → Z with probability P(Z=k) =qm for a finite value k and with
probability 1− qm the sequence

√
n
(
Z′

n − z0
)
converges to the normally distributed

random variable with mean 0 and variance ρbz0+µ2σ2z0ρ2
b

(1−µτρb)2 where ρb= 1− z0

3. For a large value of n the final size of our process falls in the range [nz0 −
cb
√
n, nz0 + cb

√
n] if the branching process approximation becomes extinct with a

higher probability for some fixed large value cb





Chapter 3

Random Graph Epidemic models

Real contact network data in the recent years has provide a strong case for the use
of networks in the modeling of disease epidemiology[38]. In situations where, the
infective profile is complicated, random network may be used to derived many results
of the SIR epidemic including the distribution of the final epidemic size and the basic
reproduction number[26]. A network consist of discrete elements (nodes) and connections
(edges)[39]. Attention has been given to the modeling of stochastic epidemics through
networks[39][40][34][41]. Understanding of how real-world network evolve and emerge
has led to the improvement of network models. Network theory enters epidemiology as
an attempt to relax the assumption that infection happens between each susceptible and
infection individual in the population at a constant rate (mass action)[34]. In network
epidemiology, each individual in the population is assigned to a neighbourhood and
can then contact her neighbour at a normal rate. Graph theory provides the tools and
mechanism for describing the application of epidemiology in networks[38].

3.1 Network Representation

A real world network can suitably be described by the means of a set of points together
with lines joining certain pair of the points[42]. A graph G is a pair (V,E) of set satisfying
E ⊆ [V ]2 (i.e. the element of E are 2 elements subset of V ). The elements in the set V are
called vertices or nodes and elements in E are called edges or lines. We denote the set ver-
tices and a the edges by V (G) and E(G) respectively. In this thesis we consider undirected
graphs thus all edges are bidirectional. For example figure 3.1 shows a simple undirected
graph with V = {1, 2, 3, 4, 5, 6} and E = {{1, 2}, {1, 3}, {1, 5}, {1, 6}, {2, 5}, {3, 5}, {4}}.
The order of a graph G is the number of vertices denoted as |G| = n and the number of
edges denoted as ||G|| (i.e.n = 6 and ||G|| = 7 ). A graph can either be finite or infinite

15
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Figure 3.1: Simple undirected random graph

according to the order. The set of all edges in the set E is denoted as (u, v). The set E
can be represented in an adjacency matrix where Guv is 1 if (u, v) ∈ E and 0 otherwise.
An graph is said to be undirected if any edge from u1 to u2 corresponds an edge from u2

to u1 (i.e. a graph G is said to be undirected if the adjacency matrix is symmetric). If
all the vertices are pairwise adjacent, the graph G is said to be complete.

3.1.1 Definition of terms

1. Subgraph: A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G)
(i.e. H ⊆ G). A spanning subgraph of G is a subgraph H with V (H) = V (G).
A subgraph induced by H ′ is a subgraph of G whose vertex set H ′ and edge set
is the edges of G that have both ends in H ′ where H ′ is a non empty subset of
V [42]. The neighbourhood of a vertex V is a subgraph of G induced by all vertices
adjacent to V .

2. Degree and Degree Distribution: The degree d(v) of a vertex is the number
of edges at v. The degree of deg(v) correspond to the number of neighbours
of v. The number of vertices of the graph G that lead to v in a single step is
given as deg(v)in = ∑

u∈V Guv and the number of vertices that can be reached
out in one step from v is given as deg(v)out = ∑

u∈V Gvu. For undirected graph
deg(v)in = deg(v)out. The part of a edge that is attached to a vertex is called a stub:
there are two stubs per edge and each vertex is attached to a number of stubs equal
to its degree. If the degree occurring in a graph denoted by d1, d2, d3, · · · , dn and nl
is the vertices with degree dl, then the degree distribution is given as Pl = nl/n[42].
A more general and detailed degree distribution of a finite graph can be found in
[26] on page 244.

3. Clustering and Higher Order Structure: These measure the probability that
two neighbors of a randomly chosen node share an edge to form a triangle (i.e.
Clustering form a complete subgraph). Clustering leads to a quicker depletion of
susceptible vertex around infected ones in network epidemiology[38].
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4 Paths and Connectivity: The path is a non empty graph PV,E of the form
V = {v0, v1, · · · , vm} and E = {v0v1, v1v2, · · · , vm−1vm}. The length of a path is
the number of edges. The path of a graph G is referred to as natural sequence of
its vertices. Two vertices v1 and v2 are connected if there is a path in G linking v1

to v2.

3.1.2 Erdös Rényi Graph

Let Gm,n denote the set of all graphs with vertices {v1, v2, · · · , vm} and n edges. A
graph belonging to Gm,n is obtain by choosing n out of

(m
2
)
possible edges such that

|Gm,n| =
((m2 )
n

)
. To avoid dependency, we picked

(m
2
)
independent vertice between the

nodes with probability p[43]. Erdös Rényi graph is social network consisting of n vertices
where each pair of vertices (u, v) ∈ V 2 is independently connected with a fixed probability
p. We denote the Erdös Rényi graph with probability p as Gn,p where its distribution is
defined as (Guv : u, v ∈ V, u < v) of i.i.d. random variables with Bernoulli distribution
Ber(p),p ∈ [0, 1][26]. One of the properties that emerged in the modelling epidemics is
the existence of giant component. The giant component refers to the largest component
of the network.

• If p = c/n, c < 1, then when n is large, most of the connected nodes/edges
of the graph are small with the largest having only O(logn) vertice with high
probability[44].

• if c > 1, there is a constant θ(c) > 0 such that, the largest component has ∼ θ(c)n
vertices and the second largest is O(logn) for a large n with high probability[44].

(a) (b)

Figure 3.2: Erdös Rényi Graph with (a) c = 0.9, (b) c = 5 using n = 100 vertice

Let p′ be the probability that a random chosen vertex v ∈ V does not belong to the giant
component. Then the probability that v ∈ V is not in the giant component of a very
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large Erdös Rényi graph is given as

p′ = e(p′−1)c[45] (3.1)

Erdös Rényi Graph can be well approximated by the branching process[44]. We initially
starts with a single vertex (m = 1) and is to be connected to Binomial(n−1, c/n) number
of neighbors which converges to a poison(c) as n → ∞. Suppose Ek is the number of
vertices at distance k then for a small k, Ek behaves like a branching process in which
each individual has independent of mean c number of offspring[44].

The Dynamics of Erdös Rényi Graph

The random variable {Gn,p(t), t ≥ 0} of the Erdös Rényi Graph Gn,p is a stochastic
process that evolves according to the dynamics below for any positive integer α1 and α2.

1. There is a fixed number of vertex n

2. Independently for any pair of vertices u, v ∈ V , an edge is added after Exp(α1/n− 1)
distributed time if no edge was present and Exp(−α2) distributed time to remove
an edge.

3.1.3 Configuration model graph

This is a social network that is generated from a given degree sequence. The network
consist of vertices labeled 1, 2, 3, · · · , n and a asymptotic degree of vertice denoted as D.
Let the probability that a given vertex has a degree k be denoted as pk = P(D = k), k =
0, , 2, · · · with mean µD and variance σ2

D of D. The Configuration graph model comes
in two ways, Newmann-Strogatz-Watt(NSW) and Molley-Reed(MR)[2]. In the NSW
model, a sequence of networks indexed by n vertices is constructed from the sequence
of degree D1, D2, · · · of i.i.d. copies of D which uses the first n random variable for the
network on n edges. We will often use the MR network model which is used to fit an
observed degree distribution. Here we used the power law distribution as the degree
distribution. The power law degree sequence is quite used density degree didtribution of
random networks though it has many drawbacks when the network under consideration is
not well studied. In the MR model, each vertex v ∈ V is associated with an independent
random variable Xv from the degree distribution which represent the number of stubs
attached to v such that ∑v∈V Xv is even[26]. Let d1, d2, · · · , dl and n1, n2, · · · , nl denote
the degrees of the graph and the number of nodes for each degree, then the average
degree is given as D̄ = 1/n∑L

l=1 nldl = ∑
k∈Z+ kpk[38]. In this network model, each
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(a) NSW (b) MR

Figure 3.3: Configuration Graphs using n = 100 vertice

vertex v1, v2, · · · , vn ∈ V gets a numbers of half edges(stubs) to its degree such that
the stubs are joined into pairs at random to form an edge. The defects (self loop and
multiple edges) associated with generating the configuration model becomes a sparse as
n → ∞ provides σ2

D < ∞[44]. The probability of a random chosen vertex v ∈ V will
have a self loop is 1/n as n→∞. When a stub of a vertex v ∈ V is joined to a neighbor,
the probability that it connect to a vertex u ∈ V of degree k is proportional to the total
number of stubs degree of edges. The probability of vertex v ∈ V joining to u ∈ V of
degree k is given as

P(D = k) = kpk

D̄
[38][26] (3.2)

which is refer to as the size degree distribution in [26] which plays a an essential roles in
disease epidemiology. The configuration model looks likes the Erdös Rényi Graph with
self loop when the degree distribution is Binomial with parameters n and pk/n.

3.1.4 Preferential attachment models

The Preferential attachment is a growing network such that the number of vertices
increase throughout the life time of the network[46]. This type of network expand
by adding new vertices. This type of network was first identified by Undy Yule[47]
who studied the increase in the number of species within genus using the power-law
distribution. Unlike the Erdös–Rényi graph and the configuration network model which
is static, the preferential model network sequentially add vertices having a fixed number
of edges to the network. The preferential attachment is a self organizing network with
high degree[46] which is formed by continuously adding new vertices to the existing
network. In this thesis we consider the Barabasi and Albert explanation to the preferential
attachment in which the probability that a vertex in the network interact with other
vertices decay as a power law following P (C) ≈ C−α where the exponent ranges between
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2.01 to 4[46]. Examples of network that poses this network properties include, the actor
network, WWW network and the citation network. There has been some authors which
suggest that the preferential attachment combined with growth to produce log–normal
in–degree distribution instead of power law[48].
In this network, we start with small number of vertices m0 at every time step, a new
vertex is added to v different vertex already present in the network[46]. Let Π be the
probability that a new vertex will connect to vertex v ∈ V depending on the connectivity
kv of the vertex, then

Π(kv) = kv∑
v∈V kv

[46] (3.3)

At any given time step the model leads to a random network with t+m0 vertices and vt

(a) m0=3 (b) m0 = 1

Figure 3.4: Preferential attachment model with n = 100 individuals

edges[46]. The rate at which a vertices acquired edges is ∂kv/∂t = kv/2t which integrates
to give kv = v (t/tv) where tv is the time at which v ∈ V was added to the network[46].
This network is normally referred to as the "Richer get Rich" network since edges with
the highest degree will get the highest connections.

3.2 SIR Epidemic Model on graphs

In modelling epidemic in networks, individuals are represented by vertices and the
patterns at which individuals get contact are represented by edges. At any given time
t > 0 a vertex v ∈ V is either susceptible (S), infected (I) or recovered (R). The state
(3nstates) of the network is given by the status of the n vertices. The rate at which
an individual becomes infected and recovered is independent of the status of any other
vertex v ∈ V . We assume the following;

• An infected individual infect each of its susceptible neighbor at the independent
poison process with rate µ.
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• An infectious individual recovers and becomes immune (independent of each other)
at rate γ

Individual base stochastic simulation is the very first step in studying the stochastic
process of disease spread in networks. The process involves keeping track of all 3n possible
events in the network and the rate at which each event occurs. One way to do this
simulation is the Gillespie Algorithm sometimes called Gillespie’s Stochastic Simulation
Algorithm.

3.2.1 Gillespie’s Stochastic Simulation Algorithm

This approach is a Markovian process[38] which assumes that all the 3n events occurs
independently with time. The algorithm computes the time until the next event(waiting
time) and then calculate the status of the event either susceptible, infective or recovery[38].
This process helps in determining the final epidemic size since at any given time t the
status of all the vertices are recorded. In this thesis our discussion and notations are
taken from [49]. Let Ω(t) be the set of transition process which changes independently
with time and t be the current time of our epidemic process. Here we assume a smaller
step time t+ T = t1 of the next 3n event which is exponentially distributed and each
transition happen with a probability proportional to its rate. Let m∗ be the transition
of a vertice then the probability that there is no transition of vertice v ∈ V from the
state m∗ after time T since the last transition is given as S∗m(T ) = exp(−λ∗mT ). Since
transition of each vertice happens independently of each other S∗m(T ) can be written as;

S(T ) = exp
(
−

M∑
m∗=1

λ∗mT

)
[49] (3.4)

where λ∗m ∈ {β, γ} is the transition rate from of the state m∗ and ∑M
m∗=1 λ

∗
m is the

cumulative transition rate. In the SIR model where a susceptible vertex v ∈ V ever
becomes infected only when he comes in contact with an infected vertex u ∈ V , then
equation 3.4 becomes.

S(T, t) = exp
(
−
∫ t1

t
Λ(t)dt

)
[49] (3.5)

where Λ(t) = ∑
m∗∈Ω 1m ∗ (t)λm and 1m ∗ (t) = 1 when the process m∗ takes place

(i.e. when there is a transition from one state to the other.) and 0 otherwise. Detailed
explanation of the Gillespie algorithm can be found in [49]. Figure 3.5 shows the Gillespie
simulation algorithm for the three networks described above with S = 1000, I = 1 and
R = 0. In the configuration model, we used the power law degree distribution with
exponent 3 for the preferential attachment model. A probability value of 0.004 was used
for the Erdös Rényi graph (i.e. G1000,0.004).
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Figure 3.5: Gillespie stochastic algorithm with µ = 1.5 and γ = 0.5

3.2.2 SIR on Erdös Rényi graph

Consider the sequence of the standard epidemic Bn>1,1(µ, F ). If the infectious period F
is constant then if an individual v ever gets infected he will then contact his neighbour
with probability pr = 1 − exp(−µF/n). Let n = n∗ + m where n∗ is the number of
susceptible individuals in the population and m is the initial invectives at t = 0 then
we get the Erdös Rényi random network G(n, p). The giant component above can be
used to derive results corresponding to the epidemic process. When c > 1 the asymptotic
probability of large outbreak is equal to the size of the giant component.
Lets consider the construction of epidemic on graph defined by [50]. Let S(0) =
{1, 2, · · · , n} and I(0) = {−(m− 1),−(m− 2), · · · , 0} be the set of initial susceptible and
infected individuals in the population. Let I(t+ 1) denotes the number of susceptible
individuals who are infected by the infective(s) I(t) at time t ≥ 0. At any given time
point t ≥ 0, I(t+ 1) ⊆ S(t). The set of susceptible individuals who remain susceptible at
least time t+ 1 is denoted as S(t+ 1) = S(t)/I(t+ 1). At time T , the epidemic ceases,
where T = {inf{t} | I(t) = 0}. For any given individual v ∈ I(t) and w ∈ S(t), where
0 ≤ t ≤ T , v infects u with the probability pcpr where pc denotes the probability that
there u and v are connected (neighbours). Then if follows that

S(t+ 1) ∼ Binomial(S(t),DI(t)) 0 ≤ t ≤ T − 1 (3.6)

where D = 1− pcpr. Thus for any given individual −(m− 1) ≤ v ≤ n, v ∈ I(t) has the
sampling distribution 1−D of making infectious contact with individual u ∈ S(t). This
process defines the Reed-Frost model described in chapter 1 since D is independently
and identically distributed according to the distribution DL = 1− pc(1− e−µF ).
Now consider the case where v ∈ I(t) and u ∈ S(t), t ≥ 0, and assume that there exist
an edge between v and u (i.e. Guv = 1) else set Guv = 1 with the probability

pce
−µF

1− pc + pce−µF
[50] (3.7)
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Equation 3.7 generates graph between infected individuals in the population in different
discrete time point t + 1. We can confirm that Guv = 1 with probability pc for v, u ∈
I(t), 0 ≤ t ≤ tT or v, u ∈ S(T ) thus

P (Guv = 1) = p(1− pc) + (1− pc(1− pc))
pce
−µF

1− pc(1− pc)
= pc[50] (3.8)

We generate exact results from the findings above following [30] and [50]. Consider the
standard SIR epidemic Bn>1,1(µ, F ). Let qk, k = 0, 1, 2, · · · , n denotes the probability
that an infective individual whiles infectious fails to contact the set of k susceptible. Let
φ(θ) = E(exp(−θF )), θ ≥ 0 denotes the Laplace transform of F , we have the

qk = E(Dk)

= E(((pce−µF ) + (1− pc))k)

=
k∑
i=0

k

(
k

i

)
picφ(i)(1− pc)k−i, k = 0, 1, · · · , n (3.9)

Let the probability that the final size of our epidemic process j be denoted Pnj 0 ≤ j ≤ n
then we have

j∑
k=0

(
n− k
j − k

)
Pnj

(qn−j)m+k =
(
n

j

)
0 ≤ j ≤ n[30][50] (3.10)

If we set pc = 1, equation 3.10, the term qn−j reduces to φ(µ(n− j/n))

Transmission Dynamics of the Epidemic Process

In general the state of a individual v is either S,I or R. We begin with m infected
individual(s) in the population. During the time period F , an infectious individual
contacted his neighbour according to the poison process with intensity λ. The contacted
individual becomes infected if he is still susceptible. The infected individual recovers and
become immune after his infectious period.
Let Av = 1 if the vth individual is of status A and Av = 0 otherwise. Using the above
notation to represent the number of individual connected pairs and connected triple, we
have

[A] =
∑
u

Av, [AB] =
∑
u,v

AuGuvBv and [ABC] =
∑
u,v,w

AuGuvBvGv,wCw

From 3.2.2, [AB] = [BA] since the studied network is undirected. The quantities above
are O(n) (proportional to the number of individual) when the total number of a given
individual is bounded[30]. If random chosen individual has c neighbours then the basic
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reproduction number is given as

R0 = cµ

µ+ γ
[30] (3.11)

where µ/µ+ γ is the probability of contacting an infected individual before he recovers.
Now describing the time dynamics of our model, let [SI] denotes the number of individual
u, v where u is susceptible and v is infectious at a given time t. The epidemic on the
network G(n, p) obeys exact but unclosed system of equation



[
Ṡ
]

= −µ [SI] ,
[
İ
]

= µ [SI]− γI,
[
Ṙ
]

= γ [I][
˙SS =

]
= −2µ [SSI][

ṠI
]

= µ ([SSI]− [ISI]− [SI])− γ [SI][
˙SR
]

= µ [ISR] + γ [SI][
˙II
]

= 2 ([ISR] + [SI])− 2γ [II][
˙IR
]

= µ [ISR] + ([II]− [IR])[
ṘR

]
= γ [IR]

[30][45] (3.12)

Writing the system above in triple in terms of higher order structure but allow the
equation to be close at the level of pairs lead to [ABC] = [AB] [BC]

[B] [30]. Manipulating
the closed system, the number of infectives in the early epidemics and the final proportion
of the population susceptible can be written as

I(t) ∝ exp(rt)[45] (3.13)

s =
(

1− R0
c

+ R0
c
s(n−1)/n

)n
[45] (3.14)

respectively where r = (n−2)µ−γ is the exponential growth rate of infectious individual.
The factor −2 existed because at the early stage of an epidemic in a large population, the
average infectious individual has already infected exactly one of it contacted individual
and also any individual at the susceptible state who becomes infected must have an
infectious contact with a individual in infectious state. In a complete graph, r = µ−γ[45].
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SIR Dynamics on Graph

Consider the sequence of the standard SIR epidemic Bn>1,1(µ, F ) where an infected
individual continues to be active (infectious) until time F with the distribution given by
FL.
We now describe an adaptation of the standard SIR model with dropping of S − I

connections. We begin with m initially infected individual (It= m) in the population.
During his active period, an infected individual will continue to spread the disease until
he recovers and become immune after a random time F with cumulative distribution
function given by FL. A susceptible neighbour of an active individual after learning the
status of his neighbour breaks their connection at rate ρ, and with probability pd he
reconnects with a randomly chosen individual in the population. The rate at which a
susceptible individual forms new edges in place of the previously deleted edge is ρpd.
The process described with the parameters µ and ρ will be referred to as evoSIR. We
shall also consider the case where after a susceptible individual breaks the connection
and never rewires with any individual in the population (i.e. ρ= 0). This process will be
referred to as delSIR. We focus on two (2) exceptional cases in the next section where
infected individual lasted for a constant time period and exponentially distributed time
with mean 1.
In this thesis, we focus on the dynamics of the Erdös Rényi graph, configuration graph
model and the Preferential Attachment model.

4.1 Critical Value

This quantity plays an exceptional role in disease modelling. Denote the number of
infected individual at time t during an epidemic by It, Then the final size of the epidemic
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can be written as
I∞ = lim

t→∞
It (4.1)

From equation 4.1, we have that a large epidemic occurs if I∞ is O(n). Then we can say
for any positive number ε a large epidemic occurs if

lim
n→∞

supP1

(
I∞
n

> ε

)
> 0[51] (4.2)

where P1 is when the process begins with one initially infected individual in the population
(i.e. (i.e. I0 = 1). Now fixing all parameters in our SIR process (i.e. µ, γ and ρ), the
critical value µc is the smallest value of µ for which we have a large epidemic. From 4.2
if µ < µc, then for any positive real number ε

lim
n→∞

supP1

(
I∞
n

> ε

)
= 0[51] (4.3)

4.2 SIR with fixed infection period on ER–graph

From the previous chapter, we know that if the infection period of a randomly chosen
individual in the population is constant, then the final set of infected individual becomes
the Erdös Rényi graph. Consider the case where an edge becomes S − I only once (i.e.
friendship between susceptible individual only last for time one) An infected individual
will transfer the infection to his neighbour with the probability

p = 1− e−µ (4.4)

a susceptible individual will escape from an infection with the probability e−µ. The
reduced graph after edges have been deleted gives the final epidemic size when a member
of the cluster is infected with mean degree cp where c is the mean degree of the original
graph. Therefore there is a positive probability of a large epidemic if cp> 1. Since
the number of infected at the early stage of the epidemic can be approximated by the
branching process, representing the generating function in equation 2.4 by

G(s) = e−cp(1−s) (4.5)

then the probability that an individual will start a large epidemic is 1 − q where q is
the smallest root of equation 4.5 .[1] described a more detailed approach by Martin Löf
by proofing the central limit theorem for the number of infected individual in a large
epidemics. The critical value of this process must satisfy the equation

cp = 1 =⇒ c
(
1− e−µc

)
= 1 (4.6)
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Now let us consider the case where infection can occur before an individual breaks
connection with an infected individual at rate ρ. Consider the process Bn>1,1(µ, ρ, F )
where S − I edges break the connection at rate ρ. For infection to cross an edge at
a constant rate 1, the infection must happen before rewiring and before an infected
individual gets immune or dies. S − I edge becomes I − I is exponentially distributed
with parameter µ (i.e. exp(µ)), and S − I breaks the connection and rewired with a
random individual in the population is exponentially distributed with parameter ρ (i.e.
exp(ρ)), then minimum becomes exp(µ+ ρ). Let T be the time until infection spreads
across an edge, and let Q be the time until the edge is removed, then the probability
that infection is transferred from an active individual to a susceptible before rewiring is
given by,

P(infection spread) = P(T < 1, T < Q) = prc = µ

µ+ ρ

(
1− e−(µ+ρ)

)
(4.7)

Let G̃(n, prc) be the graph generated after rewiring during the epidemic process. The
large epidemic occurs with positive probability if the reduced graph G̃(n, prc) has a giant
component.

Theorem 4.1 ([1]). Consider the evoSIR with parameters µ, γ and ρ where an S − I
edge becomes S − I only once,

1. If prc gives the transmission probability after rewiring, then the critical value of the
total infection rate must satisfy prc= 1.

2. As n→∞, the ratio of the expected epidemics in delSIR to the size in evoSIR in
the sub-critical case (when cp< 1) converges to 1.

Point two of theorem 4.1 can be explained as follows as given in [1]: From coupling
techniques, the final set of recovered/removed individuals in delSIR corresponds to the
set in evoSIR when same parameters are defined on each process thus

µc(evoSIR) ≤ µc(delSIR) (4.8)

To prove that the two are equal, we have to show that if µ ≤ µc(delSIR), then the evoSIR
will dies out. Also we can compare the evolution of the two processes by

1. Run the the delSIR to completion.

2. We randomly rewired all the deleted edges in the delSIR until no infection is created
after rewiring.
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Now Consider the Erdös Rényi graph G = G(n, cp/n), where p is the probability that
infection is transferred from an infected individual to a susceptible neighbour. Let the
probability of eliminating a successful infection due to rewiring be denoted as

α = 1− prc
p

(4.9)

We also interpreted equation 4.9 as; the probability of deleting edges from the graph
G. Edges are rewired in the evoSIR with the same probability value α. Let R′ and R
denotes the set of sites that are infected in the delSIR at t = ∞ and the set of sites
infected at time t =∞ in the evoSIR respectively. From lemma 4 in [1], If cpα < 1, then
there exist some positive constant C1 and C2 so that

P (R > C1 logn) ≤ C2n
−3/2 and E(R) = E(R′) + o(n) (4.10)

We can see from figure 4.4 below that if µ > µc, then the delSIR will have a large epidemic
with positive probability. Since the epidemic size in evoSIR couples to be large, we will
also have a large epidemic in the evoSIR. If µ < µc, the summable bond of equation 4.10
implies R ≤ C1 logn for a large enough n with higher probability. Thus the probability
of large epidemic converges to 0. [52] shows the proof of theorem 4.1 but this time they
considered the dynamics on the configuration model graph.
The equality of the two critical values for delSIR and evoSIR hold since the sub-critical
epidemics, delSIR dies out quickly, so rewiring has no significant effect. When the size of
the population is large, the degree distribution of the Erdös Rényi graph with parameter
n − 1 and c/n is approximately poison distribution with mean c. Then the limiting
generating function after rewiring can be written as

˜G(s) = eµp
r
c(1−s) (4.11)

where µprc is the mean of the asymptotic poison distribution.

Theorem 4.2 ([1]). If q is the fixed point of G̃(s) < 1, then 1− q gives the probability
of the large evoSIR and delSIR epidemics.

When cc= 1/prc= 1, the proportion of the fraction of infected individual in the large
epidemics is zero[1].
The left-hand side of figure 4 ((a)) shows a varying infection rate µ while the rate at which
a susceptible individual breaks friendship with an infected individual ρ= 4. The red plot
shows a simulation of the fraction of individuals infected during the epidemic in the
evoSIR. The blue curve shows the delSIR with the same parameters. The delSIR shows
a continuous transition since the final epidemic size is the size of the giant component
of the subgraph of the ER-graph obtained by deleting edges randomly. It can be seen
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(a) (b)

Figure 4.1: simulation of the constant time Evosir on the Erdös Rényi graph with c = 5
and n = 1000

from the figure that the final size of the epidemic increases as ρ increases. [1] also shown
that with the same parameters, the fraction of infected individual in the population is
seemingly discontinuous at the critical value (i. e. as the infection rate µ decreases to
µc, the final fraction of infected individuals does not converge to 0.). In right-hand side
((b)), µ= 1 while ρ varies. As ρ increases, the final size of the epidemic approaches 0.
Deleting edges reduces the ratio of infection by each active individual during epidemics.

4.3 SIR with exponential infection period on ER–graph

Now let’s consider the sequence of the standard SIR epidemic Bn>1,1(µ, F ) where the
infected individual recovers and becomes immune with an exponential distribution with
parameter 1 (i. e. exponential(1)). Then infection is transferred from an infected
individual during his time of infection with probability

pe = 1−
∫ ∞

0
e−te−µtdt = µ

µ+ 1[1] (4.12)

The critical infection rate must satisfy the equation cpe = 1 which gives

µc = 1
c− 1 (4.13)

If the infection times are assumed to exponential(α0) for any α0> 0, the infection status
of the edges going out of the vertex are correlated which makes it not easy to reduce
to percolation (the behaviour of connected clusters in the graph)[1]. The generating
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function of the number of infections directly caused by one infected individual is

G(s) = E
(
G
(
e−µF +

[
1− e−µF

]))
[1] (4.14)

Since when n is large, the degree distribution is approximately poison distributed with
the generating function G(s) =e(c(1−s)) then we have

Ĝ(s) = e−c(1−s)
∫ ∞

0
e−tec(1−s)e

−µt (4.15)

Theorem 4.3 ([1]). Consider the evoSIR with parameters µ and ρ where infection times
are exponentially distributed with mean 1, then

1. If q1 < 1 is a fixed point of equation 4.15, then 1 − q1 gives the probability of a
large epidemic.

2. If q2 < 1 is a fixed point of the the equation exp(−cp(1− q2)) = q2, the 1− q2 gives
the fraction of individual infected in a large evoSIR.

From theorem 4.3, we can see that the probability of large epidemic differs between the
delSIR and evoSIR. Figure 4.2 shows a pictorial view of 4.3. Here we can see that both

(a) (b)

Figure 4.2: Comparing the probability of large epidemic and fraction of individuals
infected in a large epidemic using c = 5 on the ER–graph

quantities increase when the infection rate µ increase in a giant ER-graph. For any giving
value µ, the fraction of individuals infected has a more substantial value compared to
the probability of large epidemics for the case of our chosen parameters.
Assuming that infected individual recovers and becomes immune with exp(1) and after a
susceptible individual learning the status of infected neighbour rewired with a randomly
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chosen individual in the population with exp(ρ). The minimum of the two exponential
distribution is exp(1 + ρ). The transition probability of this process is

pre = 1−
∫ ∞

0
(1 + ρ)e−(1+ρ)te(−µt)dt = µ

µ+ ρ+ 1[1] (4.16)

From the same reasoning from the previous sections, the critical value µc must satisfy
the equation cpre= 1. [1] proved that if the value ofT is conditioned (i.e. infection occurs
before rewiring and infection and rewiring times occurs before time T ), then the two
(delSIR and evoSIR) processes have equal critical value using the transmission probability
and the generating function below respectively

τ(T ) =
∫ ∞

0
µe−(µ+ρtdt = µ

µ+ ρ

(
1− e−(µ+ρ)T

)
[1] (4.17)

Ĝ(s) = e−µr(1−s)
∫ ∞

0
µe−t exp(µr(1− s)e−(µ+ρ)t)dt[1] (4.18)

where µr = c

µ+ ρ

Theorem 4.4 ([1]). If q is the fixed of Ĝ, 1−q gives the probability of the large epidemics
for delSIR and evoSIR when infection period is exponentially distributed with mean 1.

(a) (b)

Figure 4.3: simulation of the exponential time evoSIR on the Erdös Rényi graph with
c = 5 and n = 1000

The figure shows the fraction of individuals infected in a SIR epidemics. Here we consider
the case of a giant component graph c> 1. For the left-hand side (a) of figure 4.3 , µ
varies and ρ= 4. The red plot shows a simulation of the fraction of individuals infected
during a SIR epidemic. The blue curve shows the delSIR with the same parameters. It
can be seen from the figure that the final size of the epidemic increases as µ increases
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but the fraction of individuals infected is continuous at the critical value. In (b), µ= 1
while ρ varies. As ρ increases, the density decreases for a large µ

4.3.1 The basic reproduction number (R0)

This is the expected number of secondary infections caused by a newly infected individual
at the early stage of the epidemic. This is a threshold value that determines whether
there will be a major outbreak of an epidemic or dies out quickly. If R0> 1, there is
a positive probability of a major outbreak and if R0 ≤ 1, the epidemic dies out when
introducing in a finite population. [3][2] gives the general formal formulation for R0 on a
configuration graph model where the degree distribution has the parameters mean µD
and variance σ2 for preventing dropping edges as

R0 = β

β + ω + γ

(
µD + σ2/µD − 1

)
(4.19)

For our case β=µ, ω=ρ. Since the degree distribution of the Erdös-Rényi is approximately
poison(µD), which implies σD=µD thus, we have the following as our reproduction number

R0 = µ

µ+ ρ+ γ
(2µD − 1) (4.20)

The equation is independent of pd. This is because, at the early stage of the epidemic,
a susceptible individual after deleting his connection with an infected individual will
connect to a susceptible individual.
Figure 4.4 shows the plots of the delSIR dynamic on a giant component. We assumed

(a) ρ = 0 (b) ρ = 4

Figure 4.4: SIR dynamics on a giant component with µ = 2, c = 4 and n = 10000

that the epidemic started with 1 initial infected individual and the length at which
infected individual becomes infectious to his neighbour is exponentially distributed with
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mean 1. We see from our figure that, the fraction of epidemics that result in major
outbreaks decreases as the rate at which edges are deleted increases. The results show
that delSIR reduces the final size of the epidemic but takes a longer period for the
epidemic to dies out based on our chosen parameters.

4.4 SIR dynamics on Configuration graph model

Recall that a vertice v1 ∈ V connect with another vertex v2 ∈ V with probability
proportional to the degree, then the number of stubs attached to v1 is given as kpk/D
where D is the mean degree distribution. During an early stage of an epidemics,
individuals that get infected at the time of infection, have a sized biased degree distribution
of neighbours D∗ ∼ {p̃k} where p̃k = kpk/µD. Since the connection is made from a single
edge e1 ∈ E, the number of edges outgoing from all neighbours of v1 has the degree
distribution D∗−1. Assuming a neighbour of v1 is infected, and the remaining neighbour
(s), with positive probability during the early stage of an outbreak is (are) susceptible.
Since an infected individual cannot infect his infector, D∗ − 1 susceptible are of interest.
The mean number of susceptible neighbours a typical newly infected individual will have
during the early stage of an epidemic is given as

E(D − 1) = µD − 1 + σD/µD (4.21)

where µD and σ2
D are the mean and variance of D, respectively. Since a susceptible

individual may break the connection and rewire with a randomly chosen individual
in the population at rate ρ, we know from the previous section that with probability
µ/µ + γ + ρ, a newly infected individual can infect his neighbour. Now assuming a
susceptible neighbour after breaking the connection with an infected individual, do not
rewire (ρ= 0) then the basic reproduction number in equation 4.19 is given as

Rρ0 = E(D − 1) µ

µ+ γ
(4.22)

From equation 4.19 and 4.22, deleting an edge at a higher rate reduces the proportion
of the number of number of individual effected during an epidemic. At the early stage
of an epidemic, the number of infectives will asymptotically behave like the branching
process. The expected birth rate plays an essential role in determining the exponential
growth of an epidemics. To achieve the transmission from a newly infected individual to
his neighbour, the following conditions must be satisfied

• The newly infected individual must still be infectious.
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• The should be no rewiring from a susceptible neighbour away from the infectious
person..

Let µ(t) denote the expected birth rate of our branching process at time t, then from
[53] we have

µ(t) =
(
µD − 1 + σ2

D

µD

)
µe−(µ+γ+ρ)t (4.23)

The expected birth rate µ(t) determines the exponential growth of the epidemics and also
can be used in calculating the average number of births (i.e. R0 ) during an epidemic
by computing

∫∞
0 µ(t)dt. For equation 3.13, r= (n − 2)µ − γ, which is referred to as

Malthusian parameter for growth. In the case of evoSIR and delSIR, r is given by the
solution of the Lotka-Voltera equation 1 =

∫∞
0 e−rµ(t)dt. Then after integrating and

performing some algebra yields,

r = µE(D̄ − 2)− γ − β = µ

(
µD − 2 + σ2

D

µD

)
− γ − ρ[53] (4.24)

The equation 4.24 is also independent of pd.

4.4.1 Critical values and Generating functions

Let Vm be the number of vertices distance m from v1 ∈ V ; then the process converges to
the branching with V0 = 1 where D and D∗ represent the distribution of the initial and
future degree distribution respectively. Let mk, k> 1 be the kth moment of D, then the
limiting branching process will not go extinct if

1 < E(D∗ − 1) = m2 − µD
µD

(4.25)

From section 2.4, we let G(s) =∑∞k=0 pks
k denote the generating function of the degree

distribution D, then the distribution of the subsequent generation should satisfy

P(D∗ − 1 = k − 1) = kpk
µD

(4.26)

From equation 4.26, we can compute the generating function of the D∗ − 1 as

Gp(s) = E(sD∗−1) =
∞∑
k=1

kpk
µD

sj−1 = G′(s)
µD

(4.27)

For a fixed time delSIR, we know from the section 4.2 that infection will cross an S − I
edge (i.e. P(T < 1)) is given us µ/µ+ ρ, then using theorem 4.1, a large epidemic occurs
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if
µ

µ+ ρ

m2 − µD
µD

> 1 (4.28)

Theorem 4.5 ([52]). Let µcc denote the critical value of the delSIR and evoSIR, if the
third moment (skewness) of the degree distribution if finite (E(D3) <∞) then

1. delSIR and evoSIR have the same critical value given as µcc = ρµD
1

m2 − 2µD
.

2. Let α = ρµD/µ and αc = m2 − 2µD, then if α = αc, the probability of a large
epidemic is the same for both delSIR and evoSIR.

In the case of exponential infection period, there will be a large epidemic for the delSIR if

µ

µ+ ρ+ 1
µD

m2 − 2µD
> 1 (4.29)

then the critical value for exponential infection period is given as

µec = (1 + ρ) µD
m2 − 2µD

(4.30)

Figure 4.5 shows a simulation of the evoSIR on the configuration model network taking

(a) exponential infection period (b) constant infection period

Figure 4.5: Simulation of evoSIR on the configuration model with n = 10000

µ= 4 whiles varying the rate at which and S − I breaks the connection and connect
to a randomly chosen individual in the population. Here we use the power law as the
degree distribution with exponent 2.5. We can see from the figure that there is a positive
probability of large epidemic size if ρ→ 0 for the two infection period considered (i.e.
the fraction of epidemic resulted in a major outbreak decreases with increasing the
rate at which edges are deleted). Based on our parameters, the fraction of individual
infected during an epidemic of the exponential infection period is less as compared to the
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constant infection period as ρ increases. We can see a surprising result that the size of
the epidemic in the supercritical case in (b) of figure 4.5 is continuous but discontinuous
in 4.1 the critical value. [3] (figure 1) shows similar simulation by assuming that the
process starts with 10 initial infected individuals in the population. Another surprising
result is the simulation of the exponential infection time in figure 4.5 which needs to be
studied further.
Here we will follow [52] to compute the the size of the giant component in the delSIR.
Let η = µ/µ + ρ denotes the probability that infection will cross a S − I edges. The
generating function of the reduced graph after edges have been deleted is given as

G0(s) =
∞∑
k=0

∞∑
j=k

pj

(
j

k

)
ηk(1− η)j−ksk

=
∞∑
j=0

pj

j∑
k=0

(
j

k

)
(ηs)k

= G(sη + (1− η)) (4.31)

Thus, G0 is the distribution of the degree distribution thinned by flipping coins with
probability η of head to see the edges retained. Also we can compute the generating
function of the distribution (D∗−1) (i.e. distribution of the reduced graph of the offspring
distribution in the second phase of the branching process) as

G1(s) = Gp(s)(sη + (1− η)) (4.32)

There is the need to also compute the distribution of the deleted edges denoted in [52] as
(D∗ − 1)1−η which is given as

G2(s) = G∗(s(1− η) + η) (4.33)

To compute the size of the delSIR, we follow theorem 4.2 and 4.3. From chapter 2,
we know that the probability that a branching process started by a first generation
particle dies out is given by the smallest solution G1(q) = q. Also the probability that
the two-phase branching process dies out is given as G0(q). Since there is a unique
giant component in the configuration graph model, any vertices that start a supercritical
branching process must have the same component, thus giving the size of the giant
component in the delSIR as

1−G0(q) (4.34)
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4.5 SIR Dynamics on the Preferential Attachment Model

The canonical preferential attachment model discussed in chapter 3 begins with m nodes
all connected. This network sequentially adds nodes until there are n. For the preferential
attachment, each time a node joins the network, it connects to m existing node selecting
the neighbour with probability proportional to the current degree. The order of how
individual enters the network is required but not necessarily the same as the epidemic
order[54]. Let σ= (σ1, σ2, · · · , σ1n) define a random vector variable whose support (set of
indices i such that σi= 0) is all n! possible permutation of the set {1, 2, · · · , n}. Labelling
the individual σi(1 ≤ i ≤ n) by the epidemic order is the ith individual that enters
the network. Assume that, initially we have two individuals connected such that when
individual σi(3 ≤ i ≤ n) enters the network, it connects with Xi existing individual, where
Xi followed the censored poison distribution with mean µp and support {1, 2, · · · , i− 1}
that is

P (Xi = x) =


e−µp(1+µp) , x = 1
µpxe

µp

x! , 2 ≤ x ≤ i− 2∑∞
z=i−1

µze−µ

z! , x = i− 1

(4.35)

where Xi, Xj are independent if i 6= j. When individual σj(1 ≤ j<i) gets connected to
σi with a probability proportional to its current degree ∑i−1

k=1Gσkσj .
Epidemic studies on the preferential attachment have suggested that the epidemic
threshold for a large outbreak is zero[55]. In a large population, an infection can spread
and create a large epidemic no matter the value of the transmission probability.
Let’s consider epidemic dynamics on the preferential attachment with four individuals
{v1, v2, v3, v4} as given in [55] where the infected individual remains active for a constant
time h and let R∞ denote the number of individual recovered at time t =∞. Denote
the network by G with probability δ of each individual in the population attached to
I0=v1 to each i in the population such that

δ =


0 if i isolated in G

1/2 if i has one neighbor in G

1 if i has two neighbors in G
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then the probability that infection does not spread from v1 is given by a transmission
probability ph = 1− e−µh

Prob(R∞ = {v1}) =
∫ ∞

0
ρ−ρh

(
(1− δ)3 + 3/4(1− δ)2δ + 3/8(1− δ)δ2

+ (1− ph)(3/2(1− δ)2)δ + 9/8(1− δ)δ2

+ (1− ph)2(3/2(1− δ)2 + 9/8(1− δ)δ2)

+ (1− ph)3(3/8(1− δ)δ2 + δ3)
)
dh (4.36)

= 1
4(µ+ ρ)(2µ+ ρ)(3µ+ ρ)

(
µ3(24− 54δ + 45δ2)

+ 2µρ(22 + 27δ + 21δ2 − 12δ3)− 3µρ2(−8 + 4δ − 5δ2 + 5δ3)

+ ρ(4 + 3δ2 − 2δ3)
)

[55]

Figure 4.6 shows SIR dynamic on the preferential attachment, starting with three (3)

(a) exponential infection period (b) constant infection period

Figure 4.6: evoSIR simulation on the preferential attachment

initial individuals (i.e. the network was built by starting with 3 individuals connected to
each other as seen in figure 3.4). Individuals are added until the network had n= 100000
individuals. In both cases, We can see from the simulation that, the preferential
attachment for a smaller epidemic size the rate at which edges are deleted should
be much larger as compared to the other simulations in Erdös Rényi graph and the
configuration model graph. Most notably, the structure of the network plays a very
crucial role when determining the final epidemic size as we can see in figure 4.1, 4.3, 4.5
and 4.6 (i.e. individual preventive measures should differ based on the structure of the
population).
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Conclusion and Future Works

5.1 Conclusion

One reason for mathematical modelling is to analyze and predict the extent of emerging
diseases and develop proposed control measures. In this thesis, we studied the stochastic
SIR epidemic model on complex networks. The stochastic model studied captured the
randomness in disease transmission observed in a real-life epidemic which serves as a
model to influence the outcome of an emerging epidemic. The model studied combined
the contact structure and the properties of an infectious individual to give understanding
to the epidemic behaviour. We translated the observed population into three networks
(Erdös Rényi Graph, configuration model graph and the preferential attachment). We
devoted to making rigorous approximation and obtained asymptotic result of an epidemic
in regards to having major/minor outbreak. As the size of the population becomes large
(n→∞), the initial phase of the standard SIR can be approximated by the branching
process by using coupling technique.
After introducing the random network and describing how infection spread can be
modelled from such structure, we explained the dynamics and determining preventive
measures to reduce the spread of an epidemic. In the dynamics, changing a contact
pattern can have both negative and positive impact on the population during an outbreak.
The size of an epidemic can be reduced if an individual breaks connections with an
infected individual as seen in figure 4.1, 4.3 4.5 and 4.6. In [3], if a susceptible neighbour
is exposed to an infected individual and rewired with an unexposed susceptible, it
increases the probability of a larger epidemic. However, in our model, where susceptible
immediately breaks connection after getting information about infected neighbour reduces
the final size of the epidemic. These models serve as a preventive measure in sticking to
the public health advice concerning the SARS-CoV-2 and any other infectious diseases

39
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that spread through contact. We also showed in figure 4.1 and 4.3 that when susceptible
individual rewired to a randomly chosen individual in the population (evoSIR) will have
a larger epidemic size at the population level when compared to breaking the connection
and never rewired (delSIR). Further, from equation 4.20, we realised that deleting edges
reduced the basic reproduction number (R0), we also noticed that rewiring has no effect
at the beginning of an outbreak if rewired edges are dropped since R0 is independent of
pd (i.e. the probability that a susceptible individual will connect to a randomly chosen
individual in the population after breaking friendship with an infected person). This is
as a result of a susceptible individual connecting to a new susceptible individual after
deleting an edge.
Finally, Whether or not the evoSIR will have a larger epidemic size depends on the
social structure of the population. The assumption of constant and exponential infection
period also influence the fraction of individuals infected during an epidemic. From
our simulations for networks considered, we can see that probability of generating a
secondary infection is larger for constant infection period than the exponential time. The
results highlighted in this thesis shows the importance of modelling individual changes
in response to an epidemic and how individuals can play their roles in controlling the
spread of the diseases.

5.2 Future works

Future work concerns a more in-depth analysis of particular mechanisms, new proposals
to try different approaches/methods. Some essential ideas would have to be add up to
improve or extend further in this thesis. The following ideas could be used for more
in-depth analysis of infectious diseases:

1. Though the SIR model can serve as a preventive model for controlling infectious
diseases in the absence of a vaccine, since individual behaviours are far more
complex and not predictable, the SIS epidemic model can also be used in modelling
the dynamical system of infectious diseases.

2. The assumption of exponentially distributed infection period, constant infection
period and other parameters being constant in our model are not realistic. These
assumptions simplify our model; theoretically, there is the need to extend our model
to time-varying parameters.

3. This thesis provides a theoretical framework of the SIR dynamics to identify plans
for investigations and interpretation of the suggested findings. There is a need to
design deductive reasoning from real-world data to establish grounds for the study.
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Appendix A

Simulation of the evoSIR on
configuration graph model

This code generates the configuration graph model and run the SIR simulation on evolving
graph suggested by [1]. These are all built-in python ’networkx’ package. Here, we first
construct the structure of the network by assuming a population of 10000 individuals.
After constructing the network, we run the evoSIR as described in chapter 4 by assuming
a constant infection period. The code below generates the simulation of the right hand
side of figure 4.5. Figure 4.6, 4.1 and 4.3 can be done with the same codes by first
considering the structure of the network. This code generates an excel CSV file which
can be used for analysis in most programming languages.
import networkx as nx

import numpy as np

from random import *

from bisect import *

import matplotlib . pyplot as plt

from numpy import array

def inlist (a, x):

i = bisect_left (a, x)

if i != len(a) and a[i] == x:

return 1

return 0

while (1):

n = 10000

mu = 4

rho = round (100* random ())/10

time = 0

infected = []

si = []

while True:

z=[]

while len(z) <10000:
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44 Appendix A Simulation of the evoSIR on configuration graph model

# setting up the degree distribution using the power law

nextval = int(nx. utils . powerlaw_sequence (n, 2.5)[0])

if nextval !=0:

z. append ( nextval )

if sum(z)%2 == 0:

break

G = nx. configuration_model (z)

G=nx. Graph (G) # remove parallel edges

G. remove_edges_from (G. selfloop_edges ())

for i in range (len(G. nodes )):

G. nodes [i][’state ’] = ’s’

G. nodes [0][ ’ state ’] = ’i’

infected = [(0 , time +1)]

si = sorted (list(G. edges (0)))

while (len(si) > 0):

timetoevent = np. random . exponential (1/( len(si )*( mu+rho )))

if( timetoevent +time > infected [0][1]):

time = infected [0][1]

todie = infected [0][0]

G. nodes [ todie ][’state ’] = ’r’

del infected [0]

for node in G. neighbors ( todie ):

if( inlist (si ,( todie ,node ))):

del si[ bisect_left (si ,( todie ,node ))]

if( inlist (si ,( node , todie ))):

del si[ bisect_left (si ,( node , todie ))]

elif( random ()<mu /( rho+mu )):

cross = choice (si)

time += timetoevent

if(G. nodes [ cross [0]][ ’ state ’]== ’s ’):

G. nodes [ cross [0]][ ’ state ’] = ’i’

infected . append (( cross [0] , time +1))

for node in G. neighbors ( cross [0]):

if(G. nodes [node ][’state ’]== ’i ’):

if( inlist (si ,( cross [0] , node ))):

del si[ bisect_left (si ,( cross [0] , node ))]

if( inlist (si ,( node , cross [0]))):

del si[ bisect_left (si ,( node , cross [0]))]

if(G. nodes [node ][’state ’]== ’s ’):

insort (si ,( cross [0] , node ))

elif(G. nodes [ cross [1]][ ’ state ’]== ’s ’):

G. nodes [ cross [1]][ ’ state ’] = ’i’

infected . append (( cross [1] , time +1))

for node in G. neighbors ( cross [1]):

if(G. nodes [node ][’state ’]== ’i ’):

if( inlist (si ,( cross [1] , node ))):

del si[ bisect_left (si ,( cross [1] , node ))]

if( inlist (si ,( node , cross [1]))):

del si[ bisect_left (si ,( node , cross [1]))]

if(G. nodes [node ][’state ’]== ’s ’):

insort (si ,( cross [1] , node ))

else: # rewiring to a neighbour

time += timetoevent

rewire = choice (si)

del si[ bisect_left (si , rewire )]
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G. remove_edge ( rewire [0] , rewire [1])

if(G. nodes [ rewire [0]][ ’ state ’] == ’s ’):

svert = rewire [0]

else:

svert = rewire [1]

newvert = svert

while (( newvert == svert ) or ( newvert in G. neighbors ( svert ))):

newvert = int(n* random ())

G. add_edge (newvert , svert )

if(G. nodes [ newvert ][’state ’] == ’i ’):

insort (si ,( newvert , svert ))

survivors = 0

for i in range (len(list(G. nodes ))):

if(G. nodes [i][’state ’]== ’s ’):

survivors += 1

writefile = open (’/ Users / lenovo / OneDrive / Desktop / masters theis codes /Data.CM/ consttime .csv ’,’a ’)

writefile . write (str(n) + ’,’ + str(mu) + ’,’ + str(rho) + ’,’ + str( survivors /n) + ’\n ’)

writefile . close ()

print ( survivors /n)





Appendix B

Matlab code to generate delSIR on
the ER-graph

This code uses the fixed point method method to find all roots of the generating function
in equation 4.18. Theorem 4.4 is then apply to give the blue curves in figure 4.3 depending
on whether µ or ρ varies.
%rho = Rewiring rate

%mu = Critical value

%c = mean degree

clear ;clc; format (’short ’,’g ’)

c = 5;

%rho = 4

mu = 1

zvec = zeros (1 ,50);

xVec = zeros (1 ,50);

for l = 1:100

s = 0.1;

rho = l/10;

mu_r = c*mu /( mu+rho)

error = 0.1;

while error >= 0.1

zOld = s;

gs = @(t) exp(-t).* exp(mu_r .*(1 - zOld ).* exp (-(mu+rho ).*t));

intf = integral (gs , 0, inf)

% generatinf function

s = exp(-mu_r *(1 - zOld ))* intf;

error = abs ((s-zOld )/(s ))*100;

end

xVec(l) = rho;

zVec(l)=1 -s;

end

plot(xVec ,zVec );

hold on

data = xlsread (’ exprhovaries ’);

x = data (: ,4);
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48 Appendix B Matlab code to generate delSIR on the ER-graph

y = data (: ,5);

sz = 1;

scatter (x,1-y,sz)

xlabel (’\rho ’)

ylabel (’size of epidemic ’)

xlim ([0 5])

hold off
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