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1 Abstract

This thesis covers the mathematical foundations of supersymmetry, and looks at
the simplest non-trivial example of supersymmetry in physics, the Wess-Zumino
model. On the way we will also explicitly calculate the Poincaré and conformal
superalgebras.

2 Introduction

The enlightenment philosophers who started the scientific revolution formulated
the metaphor of the laws of nature, building on the image of a divine legislator,
judge and enforcer of natural laws. This metaphor slowly gave way to the more
metaphysically neutral concept of symmetry, which is the idea of quantities that
are conserved under transformation. In the early 20th century, Noether showed
that conservation laws of physics are always associated with symmetries of the
action. [9]

By the 1960s, the physicist community had become accutely interested in
the mathematics of symmetry, namely group theory, especially Lie groups and
their Lie algebras. (See Chapter 3.2) The mathematical basis for this research
was created and discovered by Lie in the late 19th century.

Physicists were hoping to be able to identify an overarching group structure
that related spacetime and internal symmetries. Coleman and Mandula poured
a bucket of ice into those ambitions by proving that any attempt at unifying the
symmetries in a Lie group beyond a direct product overconstrains the structure,
leading to unphysical behavior.



They showed that such additional constraints would cause the scattering
angle of two interacting particles to only take discrete values. This violates the
observed range of continuous scattering angles.

In practice, the commutator relation [Seqt, Sint] between an external and
internal symmetry Se,; andS;,; must equal 0.

Unfazed by this so-called "no-go” theorem, Haag, Sohnius, and Lopuszanski[11]
in 1975 proved that there was a backdoor around the problem. While Lie groups
and algebras are verboten, an anticommutator relation, which is the basis of
Clifford algebras, can circumvent the barrier while still respecting the Coleman-
Mandula Theorem.

They did this by constructing a Zs-graded superalgebra, which we will revisit
in chapter 5, exhibiting supersymmetry, lovingly called SUSY.

The key feature of supersymmetry is that it unifies the internal and space-
time symmetries by introducing a new fermionic charge Q, whose super-commutator
yields a spacetime translation [@Q, Q] «x P,. This is where the love happens. Su-
persymmetry is then guaranteed to impact all symmetries because everything
in physics is affected by translation.

As an extraordinary side-effect, by making the supersymmetry charge a func-
tion of spacetime coordinates Q(x) one gets a gauge theory of translations, which
is precisely General Relativity and gravity. Supersymmetric gravity (SUGRA)
is beyond the scope of this thesis as we will only be dealing with rigid (flat)
spacetime with a constant metric.

Supersymmetry is not without its problems. One of its predictions is that
every particle has a super-version of the same mass. No such super particle has
ever been observed. If history is a judge, this means that supersymmetry is
almost certainly false. In 2006, for instance, Lisi proposed an interesting model
[7] based on the exceptional Lie group E8. Initially, the model received a flurry
of interest because of its mathematical elegance and simplicity, but it predicts a
host of particles that have never been observed in nature and a decade later, his
theory is all but forgotten. Similar fates have befallen countless other hopeful
theories.

Supersymmetry still clings to the hope that it will be saved by a similar
mechanism of symmetry breaking that gives mass to particles in the Standard
Model at high energies, the Higgs mechanism. It has one piece of indirect
imperical evidence in its favor, namely the fact that all forces of nature unite
at the same energy level in supersymmetry models, whereas this does not occur
in the Standard Model. Also, some have proposed that the hypothesized dark
matter in the universe might in fact be stable superparticles.

However, even if it should turn out that supersymmetry is wrong, it might
very well be wrong in the right neighborhood. That is, it may have most of the
ingredients of the correct solution and its errors — if they exist — are constructive
and instructive, leading to the tweaks necessary to formulate a correct theory.

Such informative flaws are not at all uncommon in physics. In fact, they
are the norm. Consider the luminous ether. The popular story today is that it
has been falsified, discarded and replaced by something new and much shinier.
The truth is that the luminous ether is still mostly intact, but today we call it



a quantum field, which can be thought of as nothing other than an ether that
obeys special relativity.

Thus, even if supersymmetry is not without its problems, it has so many
attractive features that suggest that even if it should turn out to be wrong, it
can lead to the right solution.

3 Mathematical Preliminaries

3.1 Notation

I will be using standard index notation for tensors, with upper indexes X*
representing vectors and lower indexes X,, dual vectors. It will be useful to
reserve upper case letters for vectors (e.g. X,Y, Z), and lower case letters (e.g.
x,y,z) for points in a manifold, represented by calligraphic uppercase letters
(e.g. MIN,P).

Using the Einstein summation convention, the summation sign is dropped
on repeated upper and lower indices: ¥X, X" = X, X*.

By convention, the derivative operator 0/0x,, is written 0,,. 0" is shorthand
for g"”d,, where g is the metric. Derivative operators are coordinate basis
vectors, but will in most cases be omitted as the basis vectors can be restored
from the components. For instance, X*0,, will typically be abbreviated to X*.
0" is not to be confused with dz#*, which is the 1-form basis dual vector.

In the rare case of multiple coordinate systems in the same context, it may
be useful to write 0/dxz,, and the different coordinate basis 0/dy, as 0z, and
Jy, respectively.

A coordinate function is denoted by indexed lower case letters, mapping to
points in the manifold. For instance, X (z) should be read as ”"the vector X
at point 7 whereas X (z*) is to be read as "the vector X at coordinates z*.”
This in turn will typically be abbreviated to X*. Whenever there is a need
to distinguish between points and coordinates, explicit evaluation is used, e.g.
X (z")|, which reads ” X evaluated at point p with coordinates z/.”

In this thesis, the variable n is reserved for dimension. k is reserved for the
counter or length of a series.

We may define the signed n-dimensional diagonal matrix with signature (s,t)
as n(t, s) as:

n(t,s) = diag(—1,...,-1,1,...,1) (3.1)
—— N —

t s

3.2 Lie Algebras

Although we will not be working with Lie groups directly, all physics, including
supersymmetry is built on smooth manifolds and we will therefore briefly recap
its definition before we turn to Lie algebras[10, Ch. 1].



Definition 1. A Lie group G is a finite, n-dimensional smooth (=infinitely
differentiable, C*°) manifold. That is, every g € G can be mapped locally onto
R”™, C™, or H"” and group multiplication is a smooth, invertible function.

Definition 2. An vector space V on a field K is a set equipped with a
vector addition operation + : V x V — V and a scalar multiplication operation

K xV = V. a,y,z €V called vectors and a,b € K] called scalars satisfy
the following properties:

x + 0 = z (identity)

x + (-x) = 0 (inverse)

z +y =y +x (commutativity)

(r4+y)+2z=2z+ (y+ 2) (associativity)

(a+b)(z +y) = ax + ay + bx + by (distributivity)

Definition 3. [8, Ch. 5.6.2] An algebra A on a field is a linear vector space
equipped with a binary operation o: A x A — A.

Definition 4. A Lie algebra L is an algebra with the binary operation [—, —]
called the Lie bracket. It fulfills the properties that for z,y,z € L and a,b € R:

[ax + by, 2] = az, 2] + bly, 2] (bilinearity)
[z, ax + by] = a[z, x] + b[z, Y]

[,y] = —[y, 2] (anti-commutativity)

[z,

ly, z]] + [y, [, x]] + [z, [z, y]] = 0 (Jacobi identity)

Definition 5. Given a vector space V over a field K the dual vector space
V* of V is the set of linear functions f : V' — K. An element of V* is called a
dual vector.

Definition 6. A homomorphism is a map f of z,y € Ainto B, f: A — B
that preserves the operations of the algebra, ie. f(z-y) = f(z)- f(z). An
endomorphism is a map from V onto itself. f:V — V. If f is invertible, the
map is called an automorphism.

Definition 7. Let L(V) be the Lie algebra consisting of all linear endomor-
phisms of the vector space V. A representation of the Lie algebra A on V'
is the Lie algebra homomorphism f : A — L. The representation is said to be
faithful if its kernel is zero. Ado’s theorem ensures that every finite-dimensional
Lie algebra has a faithful representation on a finite-dimensional vector space|6].

To distinguish between vectors and dual vectors, vectors are given lower in-
dices and dual vectors upper indices. In index notation, the linear combination
of basis vectors e, is implemented with Einstein sum where the scalar compone-
nents ¢ € K are given opposite index position to indicate contraction: x = c%e,.
The same goes for dual vectors: x = c,e®. We may also combine vectors and
dual vectors with the tensor product. c%e® ® e;. For brevity, we often drop



the basis vectors because they can be recovered from the components. Familiar
operations and objects can now be written in index notation:

(A-v), = A%0b
(A )t = Al

(A-B)} = A%BS, (3.2)
1N = Nape® @ €
Napv” = v

A basis vector e, of a Lie algebra A is called a generator, and any element
x € A can be written as a linear combination of the generators. If the Lie
bracket of two generators is closed, it produces a linear combination of other
generators [eq, ep] = f,fec. f is called a structure constant and with its index
notation and Einstein sum, it facilitates the linear combination while conserving
free indices.

The faithful representation of the Lie algebra we will be encountering in this
thesis is the commutator [X,Y] = XY - Y X.

Let p be a map such that p(X)-Y is a a faithful representation of [X,Y].
Then p([X,Y]) = p(p(X) - Y) — p(p(Y) - X) This in turn equals p(X)p(Y) —
p(Y)p(X) = [p(X), p(Y)], i.e. the desired homomorphism.

3.2.1 Killing Vectors

In the context of spacetime symmetries, we define the basis vectors of a space-
time vector space as the partial derivative operators d, in each of the n direc-
tions, such that they span R™. A vector X is thereby given by X*0d,. The
commutator tof two vectors then become:

[X,Y] = X"0,Y"8, — Y"9,X"0, (3.3)

The metric tensor g, is an object that encodes the distance measurement of a
space. As such, the metric defines its geometrical shape. An isometry is a trans-
formation of the metric that keeps it unchanged along some direction. Isometries
therefore provide information about spatial symmetries. In general, the metric
tensor transforms as g,, = %% Jpo- Concretely, for an infinitesimal change
€ along some vector Y an isometry takes the following form:

(@™ + €Y )0, (27 + €YP) gup(2” + €Y?) = g ()

To solve for isometries, first expand each derivative term and approximate the
metric with a first order Taylor expansion, evaluated at coordinate z*:

(05 + €0, Y*)(6) + €0, Y ) (gap + €Y Dpgap)
Expand terms up to first order of e:

30, (9ap + €Y 0yg0p) + €(0,Y 5] + 8, Y 0 gas



Contract and simplify:

G + € (Y2000 + 0,Y * Go + 0, Y P g,0)

(CYQ)LW

The term in the bracket is the Lie derivative[8, Ch. 5.4.3] of the metric Ly g.
The expression will be equal to g, iff the Lie derivative vanishes. The vector
fields Y that satisfy this requirement are called Killing vector fields. Since the
derivatives of the metric in linear Minkowski space are zero, the Lie derivative
of the Killing vectors reduce to the Killing equation:

a,uyagal/ + 8uyﬁgu[3 = auYV + au)/u =0

The only way for the equation to be satisfied is for the solution to be anti-
symmetric in g and v.

In general, the Lie derivative of a smooth function f along a vector X is
defined as:

Lxf = lim L( +eX*) — f(a))
= X0, f = X[f

(3.4)

Thus, the commutator [X,Y]f is in fact Lx Ly f — Ly Lx f. First, let us see if
this bracket is closed:

(X, Y]f = X"9,(Y O, f) — Y"8,(X"D,f)
= X"(0,Y"0,f +Y"0,0,f)
—YY(0,X"0uf + X" 0,0, f)
= (*9,Y"d, —Y"9,X"d,)f

(3.5)

The result is a linear combination of first order partial derivatives, because those
nasty higher order terms cancels due to the commutativity of partial derivatives.
So [X,Y] is closed and does indeed form the product in a Lie algebra. A useful
identity is:

Lixyif=[XY]f=LxLyf—-LyLxf (3.6)
If X and Y are two Kkilling vectors, it follows that their Lie bracket must also
be a killing vector.
3.2.2 The Poincaré Algebra

Next we will identify the Killing vectors[8, Ch. 7.7] for M = R, g = n(t, s)).
We start by differentiating the Killing equation by d,.

0,0,Y, + 0,0,Y;, =0



Then cyclically permute the indexes to produce three equations[8, Ch. 5.4.3].

8,0,Y,, + =0

0,0,K, +0,0,Y, =0

0,0,V |+ 0,0.Y, =0

Add the two first and subtract the third equation and utilize that partial deriva-
tives commute to get:

0,0,Y, =0

Integrating over p yields 0,Y, = b,,, an anti-symmetric constant. Integrating
once more over p gives the Killing dual vector solutions in their most general
form:

Y, =a, +bya"

Setting b to zero, we find n Killing vectors a, corresponding to translations
along the coordinate basis vectors 0,. This implies that there are a total of
n symmetric and and n(n — 1)/2 anti-symmetric solutions, making a total of
n(n + 1)/2 linearly independent Killing vectors.

n-dimensional manifolds that have this number of Killing vectors are said to
be maximally symmetric. All flat spaces have this property, in addition to
spaces with constant positive curvature (S™) and constant negative curvature
(H"™). These are the only possible maximally symmetric spaces.

Setting a to 0, we find the Killing vectors corresponding to rotations and
boosts: Y, = by,x¥. This yields the Lorentz Lie algebra generator M,, =
2,0y — 0.

Similarly, the translation killing vector b0, gives the translation generator
P,=0,.

Together P, and M,,,, form what is called the Poincaré Lie algebra.

When investigating the commutator relations, we can exploit the fact that
higher order partial derivative terms cancel, as shown earlier.We can safely
ignore them in the calculations, which will greatly simplify the expressions. A
trivial example of this is [P,, P,] which only contain these commutative higher
order terms and therefore equals zero.

[P.,,P,]=0
[Py, M,o) = 0p(x,05 0,) = — Nuo Py
(M, Mpo| = (2,0, — 2,0,) (2,05 — T p) ( = 250,)(7,0) — ,0,,)
= (91906 = 9v00p) =20 (9up0o = 9uo0p) = (9ou 0y —gauc‘)u)Jrfﬂa (9100 = 9o Op)
= NvpMpuo = Mo Myup = NupMye + 1o My
To verify that they really form a Lie algebra we must check the Jacobi identity.



(P> [Pos Boll + [P, [Pps Pul] + [Py, [P, P
= [P, 0] + [P, 0] + [ 0] (3.7)
=0

[Pus [Pos Mpo]l + [Pus [Mpo, Pu]] + [Mpo, [Py, P]] 0 (3.8)
:[PAMO(P]“'[Pqu(P]"‘[Mme]_ .

[Py My Mol + [Myuws [Mpor, Pel] + [Mpors [P My ]

- [P/m nupM,u,a’ - nVJMp,p - np,pMuo' + np,a'Mup
FMyw, =11pPo + Nko Ppl + [Mpo, e Py — i Py

= nl/p(nmtpa - nﬁo'Pl,) — Nveo (nRHP - nﬁp
(3.9)
_nup(nm/ o — NroPy) + Nuo (nmf — Nkp
+771<&P(na,u 770'1/ )
»)

(
+ 7];11/(77 — Nuo

]
]
Py)

p,)

Mo (Mo Py — Npv Ppu)

N (NwpPo — Mo P, P,)
=0

[MHM [MW, M ” [Muw [Mpm M, ]] [Mpm [M,M, MWH
= [Mux, MopMuo — Mvo Mpup — NppMuo + 10 My ]
+HIM s Mo Mpx — NorxMpe — Mo Mox + 1pa Mo ]
+[ Moo, MMy — v My — MMy + Niew M)

= —Uup(anM = NoaMurx — NuMox + 77;L/\Map)
Fvo (Mo Mux — NpaMyue — N Mpx + 1ux M)
F0up (Mo Mux — NorxMy — Ny Mox + N Moy,)
Mo (Mo Myx = Nox My = o Mpx + ua M)
ok (nupMuA = A Mpup — MMy + 77;4>\Mup) (3'10)
X (MwpMur — Mo Mpup — 1pp My + 0 Myp)

_npn(nvaM;M = MuaMuo — Mo My + nuAMuo)

F1ox Mo Mux — MMy — Npe My + N Myo)

—u(MpMuo — Mo Myp — NepMyo + Mo My))

a0 (Mup Mo = Muo Mip — NepMyuo ~+ Mo Myp)

+"7:w(77 M/\U Mo Mxp — oMy +77)\0'M1/p)

*7751/(77 MAU UquAp - TM,;MW + 17>\O'M/Lp)

=0

It does indeed satisfy the Jacobi identity and we can therefore with certainty
say that P, and M, are the generators of a Lie algebra.
To summarize,



[Plu P,,} =0
[Puv Mpa} = NupPos — Mo Pp (3.11)
[M;wv Mpd} =MpMyuoc — Mo Myup — Npp Moo + Mo My,

3.2.3 Conformal Killing Vectors (CKVs)

It is sometimes useful to be able to formulate physical theories based on trans-
formations that preserve the metric up to some scale factor, typically encoded
as €27. The solution to such scale-relaxed isometries are called conformal Killing
vectors[8, Ch. 7.7.2] (CKVs), and they are solutions solutions of the form:

Du(x® + €Y )0, (2% + €Y P s (2P + €YP) = €2, (2)

Noting that € and o are proportional, it proves useful to set o = e)/2, where
1 is a scalar. We then repeat the calculation of expanding the equation and
Taylor expand e¥ up to first order in € to find:

Nuw + €(YPOpn + 0,Y, +0,Y,) = (1 + el)nu,

Lyn

Thus,
;CY?’] = Ypap'rhu/ + OMYD + 8y}/,u = ’l/)'f]uv (312)

We solve by multiplying both sides by ¢"” and note that g,.¢"" = o =
Dim(M) = n. We obtain:

g*YP0,g,, + 0 Y +0,YY  gMYPO,g,,, + 20, YH
n n

W=

For a metric where all components are constant, all partial derivatives are zero.
For the n-dimensional Minkowski metric the expression for v then reduces to:

20,Y°
=L (3.13)
n
Putting this back into (3.12) gives:
2
0 Xy +0, X, — 77,“,58po =0 (3.14)

The strategy for solving the equation is to repeat the steps from the Poincaré
solution, namely a specific linear combination of cyclic permutations v — p —
v — 7 of the derivative 0, of (3.14).

2
0,0, X, + 0,0, X, = Moy — 0,0, X"

2
00Xy + 040, Xy = 1y — 0,0, X" (3.15)

2
0,0, X, = 0,0, X = =1, —0,0,X"

10



Summing them yields:

1
0,0, X, = E(nw&Y + Moy Oy — Ny 0,) 0, X7 (3.16)

We can now constrain the solution by testing the order of derivatives. Act on
(3.14) with 0 and obtain:

2
OX, +0,0"X, — ~0,0,X" =0 (3.17)

Act again with 0":

2
0ovx, +0o"X, — -00°X,=0
n
(1-n)00°X,=0
Thus, if n # 1:
0oX,=0 (3.18)
Now, rearrange (3.17) to find for n # 2:

n
2—n
Acting on it with 9, gives an equation that is symmetric in ¢ and v because
partial derivatives commute.

8,0°X, = 0x, (3.19)

0,0,0° X, = %D&MXV (3.20)

We can exploit this by acting on (3.14) with OJ to obtain another equation which
therefore must also be symmetric in g and v:

2
00X, +00,X,, = g, =00 X,
1
00X, = 1,0, ~00°X,, (3.21)
Inserting (3.21) into (3.20) gives together with (3.18):
1 0
8M8y(9po = m’l’]uymal Xp =0 (322)
Relabeling p and v to x and A in (3.14) and acting with 0,0, yields:
2
00,0 X\ = —0,0,0h\ X, + n,i,\ﬁﬁuauﬁpo (3.23)
From (3.22) the last term is zero:
0,0,0: X\ = —0,0,0, X« (3.24)

With the third term gone, we now see that the index of the partial derivative
and X anticommute. Therefore,

11



0,000, X = —0,000, X,
= 0,000 X,
= —0,0,0,X, =0

So the third derivative of X is zero, and hence X is at most quadratic in x:
X, =ay, +b,2" + cupr’a’ (3.25)

3.2.4 The Conformal Algebra

Now it is time to see if the conformal Killing vectors form a Lie algebra. The
constants a and the antisymmetric part of b yield the same solutions as the
Poincaré algebra, P, and M, respectively. Therefore the Poincaré algebra
must be a sub-algebra of the conformal algebra.

Let us find the solution for the symmetric part of b by inserting b, .z into
(3.14).

2
Oubvax® + 0ubuar® = nﬂ,,ﬁapbmm“n””

2 loa
bup + b = nﬂ”ﬁbf’pnp

1 g
bMV = N Eba

Thus, b is proportional to the metric. The corresponding vector fields X*0,,is
therefore:

X#@H — n#VXuau — nm/nuaxaa —
218, = D (3.26)

D is called a dilatation generator. Next, we find ¢ by inserting cl,aﬁxamﬂ into
(3.16).

p_ 1

040uCrapr®e ﬁ(n,w(% + Doy O — Mypu0)BpCoapr®a’n®

1
0y (cvap®™ + cuppa’) = E(nwaw + My O = 10 ) (€42 + cgﬁxﬁ)

Coyp + Copy = (WV(C% + Cz'y) + Ny (CZp + Cg,u) - 77’7#(65;) + Cgu))

n
We see that if ¢ is antisymmetric in its two last indices, all terms cancel. The
surviving symmetric components yield:

1
FE— P L P
Covp (nlll/cp'y Nvy Cp,u 77’7#0,01/)
n

12



We can drop the constant 1/n and incorporate it into the ¢. It follows that
the vector fields are:

X"0x = 0" X0k = 0™ (Nuw Chey + MunyChyy — NyuChy )27 40,

— Y P P P Yk
=n (ancp’y+77V’chu n’Yllcpu)x €T 8ﬁ

— (58P Kep PR Y ot
= (6;ch, + 053¢k, — nyuch™)x xH 0,

= czvx'yx”&i + czum”xuan — cﬁ”xﬂxuan
Now, in the first term, relabel s to p and ~ to k. In the second term relabel s
to p and vice versa. We can safely do this because they are summed over.

= cﬁ”xnx“au + cZ”ac“x,{au — cz"gc#:r“a,i
= cz“(QxNx‘L8H — x,2"0y)
And therefore, the basis vector K, = 2z,2+9,, — 2%0,. K, is called a special

conformal transformation.
To summarize, the basis vectors of the conformal algebra are:

Py =0y
M., =x,0, —x,0,
2
D =z"0, (3.27)

K, =2x,2"0, — z2a,t
The non-vanishing commutator relations:
[P, D] = 0,20, =0, =P,
(P K] = 2gusa” + 2,800, — 2,0, = 29D — M)
D, K] = 2"2(g,,2” + ©,60)0, — /22,0, — 22,2650, + 22619,
=4x,2°0, — 2229, — 22,270, + 220, = K,
My, K] = 2, (2(gura’” +2,060)0, — 22,2, 0, —x,,(2(g,mx”+x,€5fb)8p+2xl,xuan

_Q-rnxp(gupal/ - gupau) + xz(g;uiau - gwcap)
= gunleﬂjpap - g;m%uﬂ?”@p + gunfEQ@y - gmchau = gvﬁKu - g/mKV

The vanishing relations:

(M., D] = 2,000,—2,0,,0,—1" pu 0y +1° gy 0, = 21,0, — 2,0, —1,0,+2,0, = 0
[D, D] = x"6,,0,, — 27650, = 0
(K, K] = 22,27 (2(9p0 2 + 2,07 )05 —27,0,) — 2%(2(g,2° + ,67,)05 —22,,0,)
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—22,87 (2(gop” + 2,00)0, — 2350,) + 2*(2(gyur” + ,00)0, — 22,,0,,)
= 8z,2,27 0, — 41‘“1‘23,, — 29629“,,96‘780 — 2w2x,,8u — 21‘29%3,,)
—8x,x,270, + 4‘%9323# + ZSCZgW:cpap + 2:52:%8” + 2:E2xy(3'“) =0

To summarize:

[Pw D] = Py
[Py K] = 20D — M)
[D,K,]| = KV (3.28)
(M, K] = 0Ky — 1 Ky
[MquD] [ ] [K;MKV} =0

We check if the conformal generators satisfy the Jacobi identity to see if they
form a Lie algebra.

[Py; [Py, DI} + [Py, [D, Pu]l + [D; [Py, P]]
=[Py, P) + [Py, =P, +0 (3.29)
=0

[Py [D, D] + [D, [D, P} + [D, [P, DI

=0+[D,-P,+[D,P,] (3.30)
-0
(M, [Mpo, D] + [Mpe, [D, My + [D, [My, Mys]]
=0+0+[D,xM)] (3.31)
=0
(M, [D, D]] + [D, [D, Myw]] + [D, [M,u, DJ]
=04+0+0 (3.32)
=0
[D,[D, D]+ [D,[D,D]] + [D,[D, DJ|
=0+0+0 (3.33)
=0
[Pus [Py Kpl] + [P, [Kp, Pul] + [Kp, [Py, P]]
= [PM72(77VpD - Mup)} + [PV’ - (npuD M, )} +0
=20y, Py — 21 Py 4 21, P, (3.34)
—20puPy — 20y, Py + 21, P,
=0
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[Py, (K, K] + [Ky, [Kp, Pul] + [Kp, [Py, K]
=0+[Ky, _Q(WWD - Mup)} + [Kpa 2(77WD - MW)]

= 2nupKl/ - 277puKu + 2nNVKp (335)
=20 Kp + 20y p Ky — 21 K,
=0
3[K,u7 [KIMK/)H =0 (336)
[Py, [D, K]l + [D, [Ky, Pu]] + [Ky, [Py, D]
= [Ppb?KV] + [D7 —2(77,“,D - Mul/)] + [KIMPH] (3'37)

(Mo, [D, Kl + [D, [Kp, My ] + [Kp, [My, D]
= [Myw, Kp] + [D, = (mup Ky — 0upK0)] + 0
= Nup Sy — Nup Ky — Mo Ky + 1up Ky

=0

(3.38)

Thus, all generators satisfy the Jacobi identity and the conformal algebra is
therefore closed.

3.3 Clifford Algebra
3.3.1 Introduction

When Hamilton discovered the third real normed division algebra, the quater-
nions ((H)), in 1843, efforts were made to generalize them to higher dimensions.
Clifford succeeded in creating an associative generalization which he called ge-
ometric algebra, but which later came to bear his name — Clifford algebras.
The quaternion famously gave rise to the notion of the dot product and the
cross product. Instead of the cross product, which only works in 3 and 7 di-
mensions, Clifford used the exterior (wedge) product A, which is the completely
generalized anti-symmetric binary product in any dimension.

In its modern incarnation, a Clifford algebra is defined as an associative
algebra over a vector space with a quadratic form ¢ with signature (s, t):

q(z) = af + a5+ ... a3 _$§+1 —w§+2+--- _xitt (3.39)
This vector space is real and of dimension n = s + ¢, R®!. A Clifford algebra
is said to be generated by m generators ,, called gamma matrices, and in
the olden days, this algebra was simply called Cl(n). Today, we conventinally
label it Cl(s,t) to not only reflect its dimension but also its signature. The n
generators of Cl(s,t) satisfy the Clifford relation:
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Definition 8.
Ya Vb + W Va = 21as 1 (3.40)

Hidden in this innocent-looking equation is the fact that these gamma ma-
trices contain a completely antisymmetric product, which conveniently cancels
in the in the Clifford relation. That is, for any a # b, Va7 = —7VYa. This is the
building block of the previously mentioned wedge product.

3.3.2 Some Instructive Examples

There are seven famous examples that satisfy the Clifford relation, namely the
real composition algebras[1], which should come as no surprise given the origins
of Clifford algebras. A composition algebra A over the field R has a non-
degenerate quadratic form N that satisfies the relation:

N(zy) = N(z)N(y),Vz,y € A (3.41)

N(z) is called the norm and is defined as x - x* where x* is the conjugate of x.

The trivial case is R. It is isomorphic to C1(0,0), i.e. the Clifford algebra
with zero generators, only equipped with the identity element, 1. The three next
ones are the complex numbers (C), quaternions (H) and, if we temporarily
relax the associativity requirement for the sake of completion, the octonions
(D). These four algebras are called the real normed division algebras and have a
positive definite norm. They have 0,1,2 and 3 generators respectively. The three
remaining algebras are the split-complex numbers (@), split-quaternions (]I:I)
and split-octonions ((IA))7 which have the same dimensions as the corresponding
division algebra, but with a split signature. They are sometimes colloquially
referred to as the split-algebras. For n = 1,2, 3 the composition algebras satisfy
the following special case of the Clifford relation:

YuYv + YoV = 205[1.1/]]- (342)

o = —1 yields to the three normed division algebras above the reals, whereas
o = 1 gives us the split-algebras. The case of n = 3 is included for completeness,
but the octonions and split-octonions do not correspond to C1(0,3) and CI(3,0)
due to their non-associativity, even if they satisfy the Clifford relation.

The most famous and well-known of these algebras apart from R is the
complex numbers, which corresponds to CI(0,1). It has only one generator,
7o corresponding to the complex root 2, whose signature is negative, such that
%= -1

Although most students of physics have not heard of split-complex num-
bers, which are isomorphic to CI(1,0), they should be deeply familiar with
them. throught their use of hyperbolic numbers with cosh and sinh. While
most textbooks gloss over the unnecessary complexity of defining a hyperbolic
imaginary j = o such that j2 = 8 = 1, it is sometimes explicitly used in
Lorentz transformations in undergraduate textbooks.
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The quaternions are less known but are of great importance in physics.
Notably, Maxwell used them to formulate his famous equations of electromag-
netism. After having been ousted during the vector wars in the late 19th century,
quaternions stubbornly reappeared in quantum mechanics in the form of Pauli
matrices to describe spin. Today they live happily on in physics and mathemat-
ics under the guise of C1(0,2), and in group theory as the Symplectic group.

Its unruly sibling, the split-quaternion, isomorphic to C1(2,0), is not used for
much, although the fact that they can perform both Lorentz transformations
and ordinary rotations, makes them of interest to some physicists. However,
they provide an instructive illustration of the machinations of Clifford algebras.

The two generators of CI(2,0) are 7 and 71 and square to 1. They corre-
spond to the split-quaternion basis vector J and k. The quaternion basis vector
% is a composite Jk: corresponding to yp7y;1. We can now show that 7 squares to
-1:

i = (7071)(om) = =100

(3.43)
= —1Ymn =-mn=-1
If we let @ = 1 + 201 + x33 + x412:, the norm is:
N(z) =zz* = x% + x% — x% — xi (3.44)

Thus, the split-quaternion has signature (2,2) and is isomorphic to CI(2,0).
Notice that the split-algebra has 22 elements while C1(2,0) has only 2. This is
no coincidence. Together with the identity and the n basis vectors of Cl(n), the
exterior product generates n? independent elements that form the basis of the
exterior algebra. Thus, H is the exterior algebra of Cl(2,0).

Amazingly, CI(1,1) also gives us the split-quaternion, except that here
corresponds to ¢ and y; to j . Therefore, all the six first Clifford algebras for
n = 0,1, 2 correspond exactly to the five associate real composition algebras.

That’s convenient, because with the following proposition, we can use them
to build Clifford algebras of any size.

Il

Cl(n,0) ® CI(0,2)
C1(0,n) ® C1(2,0)
Cl(s,t) ® Cl(1,1)

Cl(0,n +2)
Cln+2,s) (3.45)
Cl(s+1,t+1)

Il

1%

The proof is provided in the Appendix (8.1).

As a final note on the division algebras, Bott’s periodicity theorem[2] demon-
strates a deep relationship between them and the Clifford algebras. They exhibit
a periodicity of 8 ([4, Ch 3.]).

In this thesis we will only be working with n = 4 and so will not encounter
this periodicity.
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s,t mod 8 || Cl(s,t) | N

0,6 Maty (R) 2n/2

2,4 Mat v () 2(n=2)/2

1,5 Maty (C) 2(n=1)/2
3 Mat v (H) & Maty (H) | 2(»=3)/2
7 MatN(lR) @MatR(IEI) 2(n—1)/2

3.3.3 The k-Form

In the split-quaternion, % is a composite of two orthogonal basis vectors. Such
a composite is classically referred to as a bi-vector and is in Clifford algebra
interpreted as an oriented surface element. Similarly a composite of three or-
thogonal basis vectors is called a tri-vector and so forth. In modern language,
the completely anti-symmetrized binary combination of &k gamma matrices is
called a k-form +,, ,,.. ., and is defined as [3, A.4]:

1 .
7}11”2...Hk = E ZSlgn(U)’YU(l)’YUQ)-~-'Ycr(k) = ’Y[Ml’yﬂz""yuk] (346)

The sum is over all permutations of {1,2,...k}. If we had infinitely many
generators to choose from, we could create a k-form of any size. However,
with only n generators to play with, an immediate consequence is that an n-
dimensional Clifford algebra has no k-forms greater than k& = n. This follows
from the fact that a higher k-form would require repeated indices, which vanish
in the anti-symmetrization process. The n-form is called the volume form, and
also a pseudoscalar. In our context, it is also called the chirality matriz of the
n-dimensional Clifford algebra, conventionally named ~,,+1 and defined as:

Tn+1 = Y0V1---Vn—1 = Y01...(n—1) (3.47)
For 4-dimensionial spacetime, which is most relevant to this thesis, it be-
comes:
Y5 1= Y0Y17273

A useful identity for the k-form is:

(—1)FE=D2y (3.48)
This follows from the fact that reversing the order of <, ,,.. ., requires (k —
1)+ ...+ (k—n) =k/(k — 1)/2 anticommutating permutations.

Since the chirality matrix contains every gamma matrix of a Clifford algebra,
it has special properties. First, let is inquire 72 11

Ypapz...pe =

n(n—1)/

V21 = Y0V Yn—170Y1 V-1 = (—1) 2Y0Y1 - Yn—1Yn—1--Y0N1

First note that every gamma matrix «,, appears exactly twice in the expression.
By reversing the order of the second 7,41 using (3.48), we can rearrange the
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matrices so that note that the two v,_1 appear adjacent to each other by a
number of antisymmetric permutations. We evaluate this to 7(,—1)(n—1) and
iterate this for every remaining gamma matrix. This yields for n = n(¢, s):

Vo= (*1)71(”71)/277007711~~7I(n—1)(n—1)11
Thus,
Yagr = ()DL (3.49)

For 4-dimensional Minkowski spacetime this means:
7= (-1t = 1 (3.50)

Let us consider {v,,¥n+1}. We note that -, will match and contract with
exactly one of the y-elements of ~,,41. Suppose that it matches the rightmost
element,i.e. u = n — 1. Then, if we multiply v,41 with v, from the left, we
need n —1 = p antisymmetric permutations to make the two elements adjacent.
If we instead multiply v,4+1 with 7, from the right, it is already adjacent so we
need 0 = n — 1 — pu permutations to make them adjacent. This now also holds
for all other values of . The difference in the number of permutations to reach
the same position is: (n —1 — p) — pu = —2u +n — 1. Note that 2y is an even
number and it will therefore not contribute to a sign change. The number of
permutations separating 7y, ¥n+1 from 7,417, is therefore n—1 anticommutative
permutations. Thus,

Yt = (=) i1, (3.51)

For n=4 (and any other even dimension), which we will be working with in
this thesis:

{15} =0 (3.52)
A useful consequence of this in 4 dimensions is:
Yor Yz oYV = (—1)k'y5'ym'y#2...7#k, k=1,2,3,4 (3.53)

A corollary is that it is also true for the antisymmetrized version:

Yuippz...ux V5 = (_1)k757u1u2...uka k= 17 27 3a4 (354)

This follows from the definition of the antisymmetric matrix as the sum where
each of the k! terms in the sum is the product of k gamma matrices. Moving
the 75 to the other side therefore leads to a term-wise common factor of (—1)*
due to k permutations in each term.

A related useful identity is[3, A.4]:

7/1,1/1.2.../1.)6’)/1/ = rY;Lllu,Q...,u,kl/ + nyltk’}/pl/w...pk,l - 771/;%,17,““2,,,@;%

_ (3.55)
+ "'<_1)k 177Vu17ﬁ7u2~~.uk_1uk

The wide hat means that the index is omitted.
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There exists a long-winded algebraic proof, but it can more concisely be
formulated in words: All the indices in the k-form are different. ~, therefore
shares either zero or one index with it. In case v is different and k < n, the
product forms a new antisymmetric matrix v,, u,... 4, Otherwise it shares one
index in the ¢th position. ~, then anticommutes with all the other elements and
based on the same logic as in (3.54) we can permute it to become adjacent with
1; so that they can contract. This requires k — ¢ permutations. An odd number
of permutations gives a minus, and an even number gives a plus. The product
is then equal to sum of the k£ + 1 elements in the identity above.

3.3.4 Spinors

So why are Clifford algebras important in physics and supersymmetry? It turns
out by some possibly magical coincidence that they can be used to construct
half-spin representations of the Spin group[4, p.6], namely by the construction
>} whose elements are defined as:

1 1

E;w = 1[7#;71/] = 57;”/ (3~56)

Y satisfies the commutation relation:

[Epws Zpol = MupZpo = MvoLpp + MupSov — NMuo S py (3.57)

This is a representation of lie algebra so(s,t) found in (X). The proof is straight-
forward.

YuYp = 2Mup = VoV
= VYYo= 2MupVo = VpVuVo
= 2NupYo — 2MueVe T YpVo Yu
= s V0Ye] = 2oV — Mo Vp)

(3.58)

Since this expression anticommutes in p and o, it follows that [v,, [v,, V-]] =
2[Vu, VpYo|. Furthermore, the identity [AB, C| = A[B, C] + [A, C]B gives:

VYo [Vos Yoll = Yulvws Vos Yoll + s (Vo5 Yoll 7w

(3.59)
= 4(7714;7;1'70 — Mo YuYp + MupYo Vv — ﬂua%%)
Swapping p and v gives:
o s Dos Vol = 400w p VoY = o VoV + Mup YoV = Nuo Vv Vp) (3.60)

Thus,

[V vl s Yo ll = 400 [Vies Yol = Mo [Vias Vol + 1o [Vors Yol = 1o [V 1)) (3.61)
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When divided by 16, it equals (3.57).

A Clifford algebra of dimension n is isomorphic to the algebra of n x n real
matrices, meaning that it has a unique irreducible real n-dimensional represen-
tation[3, A.4] called Majorana spinors. That is, the spacetime Majorana spinor
is a 4-tuplet with real entries and can be thought of as a column vector. The
complexified Clifford algebra has a unique irreducible complex n-dimensional
representation called Dirac spinors. The spacetime Diract spinor is a duplet
with complex entries. We may recover one from the other by equating their
conjugates 1) := ¥p = 1y = ¢y = Y*C, where C is the charge conjugation
matriz. Although Dirac spinors are practical in many situations, this thesis will
only make use of the Majorana type.

3.3.5 The Charge Conjugation Matrix

Since the metric of a Clifford algebra is always diagonal, it follows from the Clif-
ford relation that there exists an algebra A with elements ~, that is isomorphic
to an algebra A’ with the elements ’ny. It satisfies the Clifford relation.

() + ()t = 20 1)

= .+ = 20l
= Y7+ = 20wl
= A=A

(3.62)

Since they are isomorphic, we can use a change of basis to transform -, into
*yf“ up to sign. We do this using a charge conjugation matriz C', which despite
its name is not a matrix but a bilinear form.

v, = +Cv,C7" (3.63)

We repeat the calculation using C.

W + V0 = (CruC™)(CnC™H + (Cr ™) (CyCTh
= 01 C™h + Oy Ct
= C(vuvw +1)C ! (3.64)
=C(2n1)C7!
=2n,,1
This proves that 'yft also satisfies the Clifford relation. Let us now do some
further manipulation.
= () = (O C ) = (OO =
:t(C_l)tvaCt = +(C™HH(£Cv,CHO! =
(€Y (e
= (CTICH) = (CTIC)
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Schur’s lemma[12] then implies that (C~1C?) is equal to the identity up to some
scalar o.

(c'ct) =ol
= C'=0C
(3.65)
= C=0C"=0(cC)
= o0 ==l
Let, 7 = 1. Then, (3.63) yields:
'y; = 7C7,C"
= 707, =7,C =7,C'o = (Cyu)'o (3.66)

= (C’fyu)ta2 = (C”yu)t =70C",

This means that C is either symmetric or skew-symmetric. In general, for an
antisymmetric gamma matrix with k elements, we find:

Vs pzeoin)’ = Vn Yoz o= Vis) " = Vo -+ Vi Vo]
=77 (CY C™1) e (CY, €1 (Cy C71)
= Tkay[Mk...’ymfym]C’fl = rh(—)kk-D20y, O (3.67)
= 'mem...ykc = U(C'Vumzmuk)t = Tk(_1)k(k_1)/207uwz~-uk

= (C’Ym#zm#k)t = U'rk(71)]6(’671)/207#1#2...%

We have a degree of freedom in choosing the value of 7 but based on foresight,

set 7 = —1 in 3 + 1-dimensional spacetime. The conjugation relation then
reduces to:
(C%nuzm#k)t = U(_l)k(k+1)/20'7u1uz~~~uk (3.68)
Concretely, for k = 1,2, 3,4 this becomes:
(C1)t =0C1
(Cyp)t = —aCr,
(C'Yuu)t = _O'C'Yuu (369)
(C'pr)t =0CVuwp
(C'Yw/pa)t = 0CYuwpo

In a Clifford algebra of dimension n, there are (Z) antisymmetric elements of
length k. For n=4, we get the following table of elements and the sign of the
conjugation.
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Element || Sign | Dimension
1 o 1
o —0 4
Vv —0 6
Ypvp o 4
Vv po o 1

In a Real 4-by-4 matrix antisymmetric matrices have 6 dimensions and sym-
metric dimensions have 10. To achieve this, we need to set ¢ = —1. Then,
1, Yuvps Yuvpo are antisymmetric, while v,,7y,, are symmetric. Thus, we have
proven that:

C'=-C
(Cy)' = C
(Crw)t = Cp (3.70)
(C%w/ﬂ)t =—CYup
(C'Vuww)t = —CYuvpo

First note that by limiting ourselves to four dimensions in the analysis above, we
are developing specialized mathematical tools that cannot be assumed to work
in other-dimension Clifford algebras. That is, whenever the charge conjugation
matrix is used, the result is only valid for n = 4.

Having made this choice, and worked out the values of 7 and o. let us now
investigate some of its consequences.

'YZ = Ct’YuCHl

t C — Ct
gl (3.71)
C'=-C
(€)' = O,
If we define C' with indices C, we notice that C* = —C}, and due to this

antisymmetry some care is needed in how we use C' to raise and lower indices.
We use the North-West and South-East conventions[3, A.4] such that ¥°C, =
(C*') o = 1o and CPey, = ((Cth)C~1)* = 1)@, Here the built in assumption is
that 1! = 9 since from (3.71) ¢! = CtpC 1.
Gamma matrices with indices can be defined as v, = (7,)% and from (3.71)
it follows that:
v = O 07 = C(1,) Cra = (V) (3.72)

We can now summarize the interaction of the k-forms with the charge conjugate
matrix using the convention that (C'x).» notationally can be written as (x)qb-
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]]- = _]]-ba

(V)ab = (Vu)ba

(Vav)ab = (Vv )ba (3.73)
(Ypvp)ab = = (YVpvp)ba
(’Yulfpo)ab ('pra)ba

Matrices with lowered (or raised) spinor indices have useful properties. One
of these is the clever use of transposition to cancel antisymmetric components.
Consider the product (X) £(T')ep = (XT)ap. Notice that from (refclifford-conjugate-
transpose-final3) (I') ., = k(L") where K = £1 if I is symmetric/antisymmetric.
Furthernore, decompose XI" into its symmetric and antisymmetric parts S and
A respectively: (XT)qp = (S + A)gp. Then we can show the following:

(S + A)ab

(X)a (@)eb
R(X) g (F)be
k(S + A)pa
K(S — A)ap

’—J

(3.74)

When x = +1 we find that S+ A=5—-A = A = 0. Similarly, when x = —1,
S = 0. Thus, parity is preserved under contraction when the indices are lowered.
This is a powerful technique to cancel terms in a complicated expression. An
important example which we will utilize later is:

(VW)QC(VM)CZ) = (’YI“/ +cl + 26[#«7 26{;’71;]7)(“)

(3.75)
- 2(5[;/71/] 5[;1‘71/] )ab

Since both (7,£7)ap and (1)ap are antisymmetric (and 77 is symmetric), they
vanish in the above equation.

3.3.6 Other Useful Identities

One common usage of gamma matrices in quantum field theory is the @ operator
defined as:

?:=~"0, (3.76)

One useful identity involving the ¢ is:
I =7"0,7" 0, = (V) +419)0,0, = 110,08, = O (3.77)

It follows from the fact that an antisymmetric tensor that contracts with a
symmetric one is zero. That is, fy[“v”]@,ﬁ,, = —’y[”'y”]&,au =0.
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We will also encounter composite conjugates of the form:

Vi Tz a1 Vie = Y Vynos -+ Vo Va ©
t t t t t t t
= Fyy,krYu,k,l st 7;12 (C’YNl) = ’yﬂk,yﬂk—l s 7#20’}/#1
= ’Y;ttk’)/ftk,l e (OFYLQ)LYAM = ’YZ,C’YZk,l e C’Yuzf}/ﬁh (378)

= ,sz C’yﬂk—l o Ve Y = YV Yoe—1 - - Y2 Vi

Finally, the k-forms can be expressed more compactly using the chirality
matrix. First let us (re)define 5 as %e“”p”'y,wpa and the totally antisymmetric
tensor e is initalized as €9123 = —¢p193 = 1. Then:

1
Yuv = — §6uupo—79075

Yuvp = 6;11/;)07075 (379)

Yuvpo = ~Cuvpo s

Again, this can be calculated by straightforward but longwinded calculations.
However, the sketch of the proof is that since 5 contains all 4 gamma basis
matrices, it will contract with a k-form in such a way that only the 4 — k non-
contained indices will remain. For the 4-form, the calculation is straightforward:
Yuvpo = 7€/wpai€lwm77/wpa = M%Vﬂupa-

Thus, a perfectly valid and equivalent basis for the exterior algebra is:

LI T T e P 3 (3.80)

4 Field Theory

All this work so far on describing and identifying the Poincaré and conformal
algebras is nice and dandy, but how does it relate to physics? The answer is
the principle of least action[8, Ch. 1.1.2]. This is where Noether’s theorem|9)
enter’s the picture. She discovered that every differential symmetry of the action
implies a conservation law.

The action, which is a functional, meaning that it takes a set of functions
(corresponding to different worldlines) as input and outputs a number. It is
done by integrating over the volume element in n-dimensional space, which is
an n-form. However, since we are limiting our analysis to flat space with a
constant metric, the volume element reduces to the familiar d"z.

The set of functions we feed the action is the Lagrangian density .. Much
of the murky business of theoretical physicists is to construct Lagrangians that
reproduce the known conservation laws of nature. A key ingredient, which is
the foundation of Quantum Field Theory (QFT), is that it has to be Lorentz
invariant, meaning that it must be a scalar.
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% is a function of a field (or fields) ® and its derivatives. @, in turn, is
a function of the spacetime coordinates x. In its most general form it can be
written as:

Z = f(®(x), 04, D(x),...,0u...0u, (z)) (4.1)
For brevity, I will write ®(z) as ®. The action on ® is then defined as :

S[g] = /M Ldve

For brevity, I also drop the M, d™x since they only add clutter. The action
is extremized if an infinitesimal deviation S[® + §®] from the wordline is zero.
Since the derivative is linear, the following holds:

0, ® — 0., @+ 00, P
P> D+0P —
Oy 0 ® = 0,4y .0 @ + 60,,...0,,, P

We then have that

S[® + 6] = /.,sf(@ 4 68,0, ® + 60, D, ..., 0yy...00, D + 60,,...0,,, D)

We define the variation of the action as:
dS[®@] := S[® + 6P] — S[P]

By first order Taylor expansion of the k + 1 variables in §® we obtain:

5.7 0. 0L
o5 = [0 50+ 00 5T B 0 00 5

(0., @)
It is now time to limit ® to scalar fields ¢, because integration by parts does
not work the same for fermionic fields. Utilizing integration by parts and the
Divergence theorem, meaning that the total derivative vanishes at the boundary,
we can effectively move the derivative from d¢ to the other term by a change of
sign. Doing this for each of the k derivatives and omitting higher order Taylor
terms in §¢ gives:

55/5¢{3‘$ a#1£+...(—1)ka .0 8‘2}

96 " 004, 0) R TG

In this thesis, we will never encounter more than first order derivatives (k = 1)
in the Lagrangian, and the variation of S therefore reduces to the familiar:

58 = /5¢{%’Z - 8”8(85’3} (4.2)

The fermionic Lagrangian density will be dealt with later.

+ O(69%)
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4.1 Dimensional Analysis

Dimensional analysis is the study of the relationship between physical quantities
as measured by base units. (meter, second, kilogram etc.) It can be a useful
tool in identifying and verifying the correct form of an equation.

Notationwise, square brackets are used to gauge the dimensionality of a
quantity. So if A is the quantity, [A] equals the dimension. The square bracket
can be thought of as a dimensional logarithm so that [A"] = n[A]. A mere
number ¢ has dimension [¢] = 0. In general,

In QFT the convention is to employ natural units where the action then becomes
unitless, [S] = 0. We may choose to set [0,] = 1. Then, since [0, 2"] =
[au] +[z¥] = [6}] = 0, it follows that [z¥] = —1. Consequently, [[ d"z] = —n.
— [ d"z2) = fd” L =0 = [Z]=n.
We can now use these numbers to deduce the dimension of ¢, ¥, and m from
the kinetic and mass terms.

[Liin] = [070%] = 2(0,] + 2[¢] = [¢] = (n—2)/2
[Lhin] = [0,9°] = [04] +2[¢] = [¢] = (n—1)/2 (4.4)
[Linass] = [m?¢%] = 2[m] + 2[¢] = [m] =1

For n = 4, this means that scalars and spinors have dimension 2 and 3/2,
respectively.

4.2 Free Massless Lagrangian
4.2.1 Scalar Fields

The free massless Lagrangian density . of a spin 0 scalar field ¢ is —famaw

This gives %g =0— 9" (—%(20"¢)) = O¢. Thus,

0S8 = / 0P
We now first investigate the variation of Poincare group symmetries:
0o = " P,¢ = a0,

Spp = b M,y = b (2,0, — 2,0,)6 = b 22(,0,1¢

Abbreviations in the following calculations: IBP = integration by parts. [0 =
0,0°,n = 8l = Dim(M).
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648 = / 5.60¢ = a* / 8,606

o Eoee
(4.5)
S [ (00
/ Wdp = 3,8 =0
5,8 = / Sy plep = b / (2(,0,10) 00
= —b“”/ap(Qx[uay]ng)aqu
= / 9”(2(Np(u0v) + 2(,0,10,)0) D
= b / (200,01 +8,0,10, + 11,0,) D)) (4.6)
—— ——
=0 IBP
= / (20010, — My O — 2,0, D))
-~ 7

- —/5b¢m¢: —6,5 =0

We have thus found that the Poincaré algebra extremizes the action, which
is great news because otherwise the universe would have been in dire straits.
Now, let us turn our attention to the conformal algebra. As we have already
established, the Poincaré algebra is a subalgebra of the conformal algebra so
this we have already checked. What is needed is to investigate D and K.

dep = cxt0),
0g¢ = d"K,, = 22,20, — x28u
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5.8 = /5C¢D¢ - c/(a:“aﬂ + A)gOo
= —c/ap((x”au + A)p)oP ¢
= c/ 9" (650, + 20,0, + AD,)¢)d

= c/(D + 970,00, + "0, 0+ AQ)p)o
IBP

_ c/(2 6 — 2, + A)D6)o

(4.8)

:_?/@W%+{n—2—A»@D¢

=A
:_/&wwz—&8=0
A =n—2— A implies that A = (n —2)/2.

0qS = /5d¢D¢ =d" /(2$#xyav — 22" Oy + Ex,)¢lo
= —d" /Bp((2xux”(“),, — 2,270, + Ex,)$)0" ¢

= qH / 0”((2g,px" 0y + 22,0, 0, + 22,27 0,0, — gpur" 0y

—2,0,0, — 2,27 0,0, + Egp, + Ex,0,)0)¢

g / (2828, + 28,0, + 628, + 2,0+ 28,0, + 2,0 + z,2* 8,0
— 0,0, — 20,0, — 2"0,0,) — x,2"0,0+ 2E0, + Ex,0¢)¢

=d+ /((4 —2m+2E)0, + (4 + E)z, 0+ 2z,2"0,0 — z,2"0,0)¢)¢

IBP

= d* /((4 —2m+2E)0, + (4 + E)z,0 — 29,20 — 22,0,0 — 22,2" 0,

+ g0+ 2,0,0 + 2,270,0)¢) ¢

=d" /((4 - 2TILO+ 2E)0, + (4 —2m+ E)z,0 — 2x,20,0 4+ z,2"0,0)¢) ¢
= —d" /(qux”&, — 2,270, + (—4+2m — E)x,)$)0¢

=F

_ —/5d¢D¢: 545 =0
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4 —2n + 2F = 0 is consistent with —4 4+ 2n — EF = E and implies that
E=n—-2=2A.
In summary, for n =4

0o = a"0,¢

o = b 2x1,0,¢

dep = c(z#0, + 1)

Sa = d"(2z,2"0, — 2°0, + 2)¢

(4.10)

So far, so good.

4.2.2 Fermionic Fields

Before venturing into spinor fields, some identities might be useful. Let x be
a rank 2 dual tensor, where x* = (=1)%x, and v = 0,1 if it symmetric or
antisymmetric under transposition respectively. 0" is shorthand for 9,,...0,, .
We assume that 9", 0%, and x together contract all indices so that the expression
is Lorentz invariant. Then:

/ Y s
(-1 [ orutnmdrs!
— (_1)?”+S+1/8T¢bxubaswa (411)

\:,./ (_1)?“+S+1/8T,¢}axbaaswb
relabel a&b
\\:// (_1)T+S+v+1/8r¢axbaas,(/)b

transpose a<b

”Permute” is shorthand for permuting the order of the fields, leading to a change
of sign. "Relabel” is shorthand for relabeling contracted indices such that they
harmonize with the labels of other similar terms. ” Transpose” is shorthand for
X!, which potentially leads to a sign change. In case of an even number of sign
changes, the integral does not vanish. If it is odd, it is identically zero.

r+s+v+1=even = /8T1/Jaxab83wb = /8T1/)axab85wb £0  (4.12)

r+s+v+1=odd = / O Y N b O’ = — / Y N0’ =0 (4.13)
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Let us just first give a brief dummy example for illustration. Consider [ ¢“('y“)ab3“z/}b.
Herer = 0,s = 1,v = 0.Thus, integration by parts yields (—1)(0F1F0+1) [apa (1) ,,9,4°.
Since it is even, the integral does not vanish.

We are now ready to consider the Poincaré algebras. First we note from
(3.70) that @ = (Cy") w0y = (CY*)pa0, = (@)'. We calculate 65 to the first
order in §7.

68 = S[th + d¢] — S[]
_ % / @+ 0B + 60) — bide)

— 5 [ @00+ Gas)
- (4.14)

_ %/(deaw + (71)0+1+0+1,¢3a5w)
~ [ si0s

0¥ = a"Pyyp = a0y
Sath = a0

(4.15)
Syt = b M 1p = 264, 8,1)
St — 200,00
.5 = [ b, = [ 0,500
= [ 000t < ~a [ (C b’ ag

(4.13)
:7/%ww:o

Thus, 6,7 is a symmetry of the Lagrangian. In premonition of the calculation
of 8,5, it is useful to note the following relation:

/wa(czwfyp)abapwb
1 a
= 5/@# ( O('Yuﬁ +05Yn _557u))abap¢b (4.17)
(4.13) = =0
:/¢a(07[y)abau]¢b
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Then:
55 = / R e / 2 D D) = 2 / 200 (C1P) Oy

—op / (M) Y (CY )t + Y (CYP)ap (.8, ) Opt)”
g

=0

\:’/217#”/8p¢a(07p)abx[ugu]7/}b + YCY* ) ab (O ¥
IBP (4.18)

- / 280 (CAP)as Bt — D (Cp s Doyl

Nigh’
IBP

— <20 [ 1,08 (€ )"~ (s’
= =55+ 2 [ 6T udp? £ 0

We try adding a term dx1) := b*¥3,,,1 to &3 to see if we can cancel the extra
term.

61,’(/} = b‘“’(2x[#8y] + ZMV)w

o oo (4.19)
optp = b (2$[u8u]w + EMV¢)
ostp := B = (8,9)'C =4¢'y],,C
— _ tzt t — _ t E 5 t
(3.70)
= _T;Z)tCE,uu = _&E,uu
Thus, ~ o

5171/) = bMU(ZIL‘[#au}w - 1/12#1,) (4.21)

We now only calculate the new part. We already found that without dx;e),
0p,,4 S = —20x5. For it to vanish we need to find that d5S = §xS.

5§ = / Sy = —b / P(CE )t
— _blw/'l/)a(c’)/[#%bau}wb

~—
(4.17)

= —pHv / Y (CY(p) abOu ¥ (4.22)
(4.12)

— / GOS0 ) B
_ / S
Thus, with this extra term 6,5 = dp,,,S + 0=S = —0,S = 0.
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dct) = cat 0,0
0cS = /5c1/_)¢¢ = C/xuaulwﬂi = C/Waﬂ/ﬂ(C’)’p)abaﬂﬁ’b

~ _C/aﬂ/’a(c"/p)abl[’b"‘xuaﬁtapwa(cwp)abwb

——
IBP
o [ 9OV B + 2 (O + B (O s Oy
IBP (4.23)

—c / POV )asDy 10 = mb (CAP)ap@pth® — 3D (CyP YDy

= e [ DU OO + 0, (O

relabel+transpose

- 5.5 c/(n 1Ot £ 0
Like before, we can anticipate what factor must be added to §.S for the

variation of the action to vanish, namely some constant A, multiplying the
variation: 0a% = cAy.

5AS = / 5T = ¢ / Ayl = ¢ / A (CA) D

) \ (4.24)
\:’, C/ Aa/ﬂ/J (Ovp)abapw = 5AS
(4.12)
Therefore:
8.S4+0a8 = —0.5—c [(n—1— Aw)w“(C'yP)abapd)b = 0 The action vanishes
—_————

=A,
if Ay = (n—1)/2. Since we have used relations from () which assumes n = 4,
Ay =3/2

dqtp = d, (22270, — x28u)¢
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045 = /5dz/_1$1/1 =d" /(Zx#x”al, — 3328#)1/_@1/) =
d /(2.%'#.%'1181, — xQGH)g[J“(Cv”)abapwb
—d* /(277,mx”81, + 22,0, — QnPnyﬁu)z/Ja(C’yp)ab¢b

+ (22,270, — 3328u)8p¢a(07p)ab7/1b

IBP(u,v)
= /(45””77/)[#81/] + 2wuap)1/’a(07p)ab¢b — 2z, + 22,0, — 2$u)6p¢a(c’yp)ab¢b
=0, (CY”)ap (222" 0, — 1‘26H)1/1b

= —d* / —4x”wb(07p)abnp[uay]wa + 22, (n — 1)°(C) ap0, 00"

permute

+(2z,2"0, — x28u)¢b(0’yp)ab6p¢a

=[O O + 2,0~ D (O

relabel+transpose
+(22,2"0) — $28u)¢a(07p)abapwb
= 648 — d" / 42" (C ) ab0p ¥’ + 22, (n — DY (CY?)ap0pth® # 0
(4.25)
We note that one of the non-vanishing terms is up to a constant the same as

(4.20) multiplied with z¥ and the other is also a familiar expression multiplied
with x,,. We therefore continue the strategy of adding terms.

590Aw = d#Ewauw _ L _
5@1/1 = duEﬁcExVZ;wd) 6:621;[} =d'Eysat) = 7d“ExEIV77/}ZHV

SonS = / Sondi = A", / 2,0 (C ) asDp”

e / ot (C)ant” + 2,0t (Co” Y (4.26)

= BaS- @B [0 (Cran!

comm.+relabel+transp.

dzAS on both sides of the equation implies that the extra integration term is
zero.

34



5o = / 5ondd = —d" Eys / P (C) Doy

1
\:/_,d#EwZ / 5(65¢a(0'7u)abwb - 6Z'¢a(cf}/u)abwb) + xua[uwa(cf)/ﬂ])abwb

IBP

") n— 1)
= (SwES —d ExE / _(Twa(c’}/p)abwb
comm.+relabel+transp.

(4.27)

0,55 on both sides of the equation implies that the extra integration term is
zero, but we will keep both these extra terms for consistency check.
045 = 5dﬂlds+5a:AS+5mES = —§45—d* f(—4 + Ezg)x”z/}a(CEu,,vp)abapwb—&—
E
=Lz

xu@(” - 1) - EzA)wa(C’Yp)abapi/Jb

T

The action vanishes if E,» = 2 and E,a = n —1 = 2A,. For consistency
we also check Ey;n — Exs(n —1)/2 = (n—1) — 2(n — 1)/2 = 0, which agrees
with the finding from the integration.

Setting n = 4, for which this calculation is valid, we find, in summary, that
the action is invariant for:

S = a*0uy

Spp = 0 (2(,0,) + By )Y

dct) = c(x#0u +3/2)¢

S0 = d* (224 3" 8, — 20, + 3z, + 22V, )0

(4.28)

We therefore conclude that the Poincaré and the conformal algebras are sym-
metries of the massless free Lagrangian for for both bosonic and fermionic fields.

4.3 Massive Lagrangian

The massive Lagrangian densities .Z of a spin 0 scalar field ¢ and a spin 1/2
fermionic field v are:

1

azﬂmass((b) = _§m2¢2 (429)
1_
og/ﬂmass('(/}) = —§¢m¢ (430)
This gives:
% = —0"(—3(20"¢)) = —m?$. Similar for ¢. Since the action is linear

and we have already investigated the kinetic terms, we can focus on only the
massive term.

Before we do so it is worth noting that integration by parts give the same
result for the massive scalar fields as for the fermionic fields. First we note that
by doing integration by parts r 4+ s times for the massive scalar term we obtain:
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/ 0" ¢m20° ¢ = (—1)"+0"¢m20°¢ (4.31)

Doing the same calculation using (4.11) and noting that 7]1 = ¢?Cyp and Cyp =
—Cha, i.e. v =1, we obtain:

/8rimasw _ (_1)r+s+1+18r&m6sw — (_1)T+sar,&mas,¢) (432)

Therefore, the scalar and fermionic mass terms will yield the same results except
for in the terms s, A, §,A%0, and J 5.

4.3.1 Scalar Fields
0SS = —/5¢m2¢)

We start by investigating the Poincaré algebra.
8a8 = 7/5a¢m2¢ =—a" /8#¢>m2¢

—at [ om0,6 = [ s.0m*s (4.33)
=—-0,5=0

05 = [ duomo = v [ ay,0,16m%

=0 / (M, +21,0,)) > (4.34)
———

=0
= /5b¢5m2¢) =—55=0

So the Poincaré algebra is invariant under the massive scalar action.

Let us now consider the conformal transformations.

First, note that 8, (z*¢m?¢) = (9,z")dpm2¢ + x*(d,¢)m?¢) + x+dm20,¢.
Thus, (210,0)m?¢ = (—m — 2#9,)¢m3¢ + 0, (x#¢m?¢). The total derivative
vanishes in the integral when evaluated at the boundary. Now,

0.8 = —/6c¢m2¢ = —c/(av“aM + A)pm?2¢
= c/(éﬁ + 210, + A)pm>¢
(4.35)

— [@9, + (n &)om®

=A

- /6C¢m2d) =—0.5=0
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0.5 only vanishes when n — A = A = A = n/2, which does not agree with
the value for the kinetic term A = (n —2)/2. Thus, the action is only invariant
under dilatation in the mass term when there is no kinetic component. Since it
is not invariant under 6.5, there is no need to investigate 64.5. The conformal
algebra is not invariant under the massive scalar action.

4.3.2 Fermions

For the fermionic case, J, is the same for ¢ as for ¢. Therefore, from (4.31) and
(4.32) it follows that 6,5 = 0. dptp has the extra term s, which needs to be
checked.

52'(/) = bﬂyzuuw

527;[; = bﬂyz/tuw < 7wa(02uy)ab (436)
(4.20)

558 = / Ssbmap = —b* / V(CS ) apmy)®

NP / (=1)0F OOy (OB, ) apm)” (4.37)
(4.11)

=—I05=0

Thus, 6,5 vanishes.

The only difference between d.¢ and d.1) is the value of the constant A versus
Ay. As with the scalar case, 6.5 will only vanish if Ay, = n/2, which does not
agree with the value (n — 1)/2 found in (4.28). Thus, the massive fermionic
Lagrangian is not conformally invariant.

4.4 Interaction terms

What about higher order interaction terms? We try:

Lint(9) = Ag” (4.38)

5Simt = / SoAGP !

We have already performed this calculation for p = 2 and now repeat the steps
for py2:

Ou(a AP ™) = (G’ + 20y + (p — 1)2"0,) pAP" ™
= 2"9uPAG" T = Ou(a AP T) — (n+ (p — 1)a", ) pAgr !

5.5 = / SupAe" ™ = ¢ / ("0, +D)pA" ! = —c / (n—2)+(p—1)a" 0, ) pr¢" !
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——clp—1) [@9, + C=FNor? = ~p- 1) [Beorer!

pé.S =0

Thus, §.5 = 0 if A = n/p. This agrees with the kinetic term if p = 2n/(n — 2).
As n — oo,p — 2 from above, but never reaches it, so for n > 2,p > 2.
Similarly, n > 6 = p < 3. Thus, for n > 6,2 < p < 3. Thus, p can only be a
whole number for n = 3,4,6 yielding p = 6,4, 3 respectively.

Let us now verify if we obtain a similar result for the special conformal
transformation. Again, we investigate the total derivatives:

0y (22, 2" pASP ™) = ((2 + 2n) ), + 22,270, + (p — 1)23,27 0, ) pAPP
= 21,2" 0,0 """ = 0, (2x,2" GNP ) —((2+2n)z,+(p—1)22,27 D, ) pAPP ™"
Op(—zpz” AP 1) = (=22, — 2,270, — (p — 1)7,270,) AP !
= —:c,,z"auqﬁ)\(bp*l = 0y (—z,z” gi))\gbp*l) —(—2z, — (p— l)xyz”au)qb)\d)pfl

Therefore,

84S = / SqpApP~t = d* / (22,270, — 2,370, + Ex,)pAP ™"

242n—2—F
-1

=F

=—(p—1)a" /(2%1”3” —z,2"0, + ( ), ) AP

= pédS

Thus, §45 = 0if E = 2n/p. This agrees with the kinetic term if p = 2n/(n —2),
the same solution as for 6.S. p is a whole number for n = 3,4,6 yielding
p = 6,4, 3 respectively.

4.4.1 Fermions

For fermions, .%;,; = A(¢)P. Since spinors anticommute there can for n = 4
be at most four different spinors with different indices in a product. There-
fore for all values of p > 2, anticommutativity ensures that the term will van-
ish. For p = 2 there is just enough room to squeeze in four different spinors.
C12C340 2%9p39*. We know that this contraction is non-zero because the Pfaf-
fian[5] squared of a skewsymmetric matrix equals the determinant. Since C is
invertible, its determinant is non-zero and hence also the Pfaffian is non-zero
and the expression does not vanish.

mt (1/}1/)) = )\,(z)acab,wbwcccdqu
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First we recall that C = —C*.We calcultate §S;,; to the first order in dv
using (4.11).
0Sint = Sint[ + 0] — Sint[V]
=M% + 09) (¥ + 59) (3 + 39) (¢ + 6¢) — Ppy))
= A9 Capt" 1) + 1 Capd 0t + P16t Cath? + Piptp°Ceadip?)
= ML (=1)0FOFH L (1)OFOROR ()OO 5y

= ANSYYipy)
(4.39)
Now we are ready to check the variation.
GuSios = [ N0 = " [ B,
= 00" [ UUCO B + B0, Coat + G0 Caa
— 0" () T + (DR C B (40

+ (=1)° 10 Caetp i)
N’ _4)“1”/38#1;1/”/;¢
relabel

== —3(5aSmt == O
Sy Simt = / ANy D) = AND / (20,1 — D )
_ / (s DD + 1 Capz Dyt
—

=0
+ P, 0P Cogth® + Ppp Coga,0,,9%)
+ wa(oz/ﬂ/)abwbiw (441)
— A\ / 2((—1) 2,0, Coatp ")
+ (=12, 09 Ceatr™tp + (=1)°T 21,0, Cacth Y1)
+ (_1)1+0wb(02uu)bawai}w

\:,/ — A\ /(63:[M8,,]1/3 - @EW)W%? =0

relabel
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SeSint = [ D000 = e [0, + 3w
= —4Xc / Shapipip + 9 Capat 0P
+ Ppat 0, Ceath® + Prpp Cogat 0, 1)"
- gy
= —4Xe / 2((—=1) 12k, Coatp i
+ (—1)2 20,1 Cogtp ™t + (—1)7 T2l 0,h A Cetp®))

(4.42)

(4= )y

= —axc [0, 4 3 )iviu £0
~~~ H 2
relabel ~~~
#3

0¢Sint does not vanish. Hence, S;,; is not invariant under conformal transfor-
mations.

5 Lie Superalgebras

A Lie superalgebra is a natural extension of the concept of Lie algebras consisting
of a Zy graded real vector space g = go @ g1 where go is said to be even, and
g1 is odd. The vector space is equipped with a bilinear operation called the Lie
superbracket:

(= =] 190 X g5 = Giyj (5.1)

where i, j,i + j € Zs. For the purposes of this thesis, we can limit the analysis
to elements that are homogenous. That is, elements only in either gg or in g;.
Bars are used to measure the grade of a homogeneous element.

X|=ieXey; (5.2)
The superbracket then satisfies the following relation:

(X, Y] = —(-)* My, X] (5.3)
In addition it also satisfied the superized Jacobi identity:

(DX, Y, 2]+ ()P WzZ, [ Y+ (MY [z, X =0 (5.4)

For convenient calculations, we can rearrange this using (5.3) to get:
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0=
()X X [y, 2] — (—)PIIXHIYDHZIVI X v, 2] — (—)2IXIEYIX Y, [ X, Z)]
= (X121, 1,21 - (P YL 2] - () 2] )

=X, [¥, 2] - [1X,Y], 2] - (-)V™y [x, 2] = 0

This gives use the form of the Jabobian used in ([3, App. A]).

X, [V, Z)) = [1X,Y], 2] + (=) IV, [X, Z] (5.6)

5.1 Poincaré Superalgebra

Let us now briefly consider the free massless Wess-Zumino model. The super-
charge transformations are given by [3]. Here we introduce a new field = which
is a pseudoscalar.

Qo9 =1,
Qo -m= (75500 = Y54 (5.7)
Qa . ¢b = _("Yp)abaqu + (7p75)ab8p7r
Lyin = ~5(06)? ~ 5(0)? ~ 5400 (53)
5. Siom = / 5:606 + Scxlm — 6.0 (5.9)
dep = &
6€7T = E'YS’(/}
561/) == a(¢ + 71-’75)6
i (5.10)
561/) = a(d) + 71-75)6
= —&dp — evsdn
= —&)(¢p — ysm)
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5. Som — / (606 + 4590 + F( — 75m)P0)
= / &((0)6 + 15(T)m —77(6 — 15m) D, 30)

(5.11)

S + 7570 — (¢ + v5m)F 1))

Ik
/ (BT + Y5 — (¢ + 75m) )
0

Indeed, the variation of the action vanishes. Let us now investigate the Poincaré
superalgebra. Since P, and M, are even, while ), is odd, we expect the
supercommutator between them to produce an odd generator. Since there is

only one such generator, Q, the commutator [4, Q,] should equal ¢2Qy, where
A is even.

[P/“ Qa] ’ ¢ = 3;4% - Qaauﬁzs =0
[PP«’ Qa] T = ’758;11&11 - Qa8u¢ =0
[Py, Qal - Vb = () ab0pO0u (= + 757) — QuOputhy

= (V")ab0p0u (=0 + v57) — 0 (V") ab0p(— + v5m) = 0
= [P,,Q.)- =0

(5.12)
For P,, we find that the bracket is closed and ¢ = 0.
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(Myy, Qal - ¢ = Myvtha — QaMun ¢
= (21,0, + L )a — Qa22(,0,)0
=YpVa = LuQa - @
My, Qo] - ™= M5t — QaMm
= (22,0,] + Zp)15%a — Q22,0
=YY% = Xy Qa - T
(M, Qal - Yy = (V") ab0p My (= + v57) — (227,0,) + X ) Q¥
= (7)) a2, 0] (=@ + Y57)
- (Elw)bc(_('yp)acap(b + (7p75)ac8p7r)
= 2(Vu)abOu) (=@ + ¥57)
+ (Z)5 (V) ealp® + (Y775)ca0p)
= Q(V[H)abal/] (=¢ +75m)

1
=+ 5(7;45 + 7#55 - ’Yuéz)baapd)

1
=+ 5(7/15’75 + '7;/7555 - 7u’7565)baap7r

= 2(Y(p)ab0u) (= + ¥57)

1
- 5(7;;5 - 7#55 + ’Vuéz)abapqs

1
+ 5(%575 — VY500 + V507, abOp
= 2(Vu)ab0u) (=@ + ¥57)

1
- 5((’7;“/7’) - ’Y,u(sle + 'Yu(sZ) - '7#55 + 7v5lp¢)abap¢

1
+ 5 (V75 = 13500 + 17507) = V507 + 1500 )abdpm

= 2(Yu)ab0u) (=@ + ¥57)
- (Elw'yp)abapq5 + (7[;A)ab3u]¢
+ (B 75)ab0pm + (’Y[M)abau]%iﬂ
= (Z;w)bc(_('yp)acap(b + ('Yp'YS)acapﬂ')
=X0Qa Vb
= M, Qal - ®=3,Qq
(5.13)

For M, , we find that the bracket is closed and ¢ = X,,. When both generators
are odd, we expect the bracket to produce an even generator. That is, [Qq, Q)
should equal some linear combination c(y*)qp Py + d(X°7)apMpo. Since this is
an anticommutator, we expect the result to be symmetrical in all its indices [13,
Ch. 2], indicating that d = 0. Using the super-Jacobian on Qq, Qs, P, we find
that:
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[P/M [Qaa Qb]] [[ Qa}a Qb] - [Qaa [Pua Qb”

= [ ey )abPu + d(zpa)abMpo] =0 (5.14)
= [P/“ d(z )abMPU] d( )ab(nl’«ﬁPH - nuaPp) =0
= d=0

Thus, [Qa, Qs] = c(v*)ap Py To find the value of ¢, we can investigate [dc,, dc,] -
o. [3, p. 11]

[0c,50e,] - @ = (6, - €5Qp — be, - €7Q,) -

(EQpeQa — €1QuesQp) - @

= (165QQa + €1€3QuQy) - @ (5.15)
= €165[Qu, Q] - @

== [551,552] = €€ [Qa Qb]

To find [Qq, @s] we can calculate [d,, d.,] using the Fierz identity.[3, A.4]

[Ocrs8ea] - & = be, - €540 — bey - €§ba
= Sd(p+ mys) el
— €4 (b + mys)eh
e5((1")ab0p®) + (V775 ) av0pm)el

— €1 (7" )ba0,p® + (7P75)ba8p7r)eg

= €1 ((7")ab0p®) + (Y*75)avdpm)eh
— et () abBpd — (7775)ab0p) €5
(v

= =261 (Y")ab 0, P65

(5.16)

= 6152( 2(y )abapd))
— [Qav Qb] . ¢ - _2(’7p)abap¢

Note that v5v,7v5 = =Y. 7575 = Vau-

44



[0c s 0ey] - ™ = Oe, - €355 — Oy - €150

= 356 + my5) el
— e{v5P(d + my5)eh

= &5 ((157)ab0p®) + (V7)) ap0pm) el
— €5 ((v57)ba0p® + (V)b 0, ) €5

= —e1 (17" ab0pd) + (V) ab,pm)€5
— (= (157 av0p® + (V) apOp) s

= —2€}(7")av0,pmel

= e} e5(—=2(7")ap0,p7)

= [Qa, Qv] - = —2(7")arOpm

(5.17)

[561 ’ 662] = 561 : a(qb =+ 7775)62
- 562 ! a(d) + 7T75)€1
=" €10,(¢ + 5 v5)€2
scalar
=7 &0,V + 59 5)er
scalar

=770,((e261 — €162) + y5(e261 — €162)75)7)
= vpap((%e’zv“ewu - ie’z’y‘“’ew,w)

+ vs(%ézv“elw - ie’ﬂ””eww)%)w

= vpap((%e’zv”ewu - ie’ﬂ””ew,w)

1_ ., 1_ .
+ (5627’ €1V, + 162’7” €1V ) )Y

=0, &7 €1 Y
——

scalar
= a7 a1 7.0,
= e"er (200 — v V)0
on-shell Jp=0
= 2é&7e1t

= e1e5(=2(y")apdpt
- [Qaa Qb] RUES _2(7p)abap7/}

= [Qanb} = _2('Yp)abpp
(5.18)
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Since we had to appeal to the equations of motions, the bracket is only valid
on-shell.

To verify that the Poincaré superalgebra is closed, we need to check the
super-Jacobi identity.

[Py [Py; Qall = [[Pus Pl Qa] = [P, [P, Qul]
=0-0-0 (5.19)
=0
[Pus [Qa; Qul] = [P, Qal, Qo] — [Qa, [P, Q]
= [Py, xP]]—0—0 (5.20)
=0
[Qav [Qba QC]] - [[Qaa Qb}a Qc] + [Qba [Qav Qc“
= [Qa, x P]] — [ P, Qc] + [Qp, x P]] (5.21)
=0
[PP? [MILV? Qa” - [[Ppa Mﬂu]yQa] - [M,uua [Ppa Qa]]
= [P, xQa] — [P, Qo] — 0 (5.22)
=0
[Muua [MpaaQaH - [[MmuMpo]aQa] - [Mpm [Muqua]]
= [M;Llfv EpUQa] - [E,LLIM Epa’]Qa - [Mp(M Z;wQa]
= (Zuuzpa - [E;uu an] - Epa'z,uy)Qa (5.23)
= [EMV) Epa] - [Z;uja Zpa]
=0
[M;w» [Qaa Qb]] - HM,UJM Qa]a Qb} - [Qm [M;wy Qb]]
= [lev 72(7p)abpp] - [ZuuQav Qb] - [Qa, E/}.VQb]
= =2 ab(=1pu P + NMpr Pp) + (7)2(7*) at Py (5.24)
=20y Py = 1w Pu) + 200,00 — wop) By
=0

All the super-Jacobians are zero. Thus, the Poincaré superalgebra is closed.

In the Appendix, the conformal superalgebra has also been calculated. All
the brackets are calculated, except [S,S] and [@,S] for which time became
an issue. All super-Jacobians are checked except the ones involves the two
mentioned brackets.

46



6 Avenues of Future Research

In the introduction, we discussed the disturbing fact that no super particle has
ever been observed, although dark matter has been speculated to be a potential
candidate. One distinct possibility is that supersymmetry is simply wrong, and
there is no guarantee that the supersymmetry breaking option that is pursued
by many researchers today will be fruitful.

There is, however, a third avenue out of the quagmire, namely some hiterto
undiscovered reality constraint which excludes the possibility of observing super
particles in ordinary spacetime.

If such a reality constraint exists, it would be nice if it had some familiar
overarching algebraic structure in which supersymmetry would coherently fit.
Let us briefly consider some candidates.

First, it is worth noting that all the composition algebras have a Z, graded
structure.

Let F=RT,R,C,and Q and é = —1,4, 5, and E. 4, j, F are (split-)complex,
quaternionic and octonionic imaginaries respectively, where the (split)-imaginaries
squared equal (-)+1. Then the composition algebras can be written as IF @ éFF.
Then, if a,b € Zs, F € gg and Fi € g1 they form a Zs graded structure where
Ja X @b = Ga+b-

Notice that the Zs structure is nested hierarchically with four levels at the
level of octonions. The composition algebras are therefore an obvious candidate
for an overarching algebraic structure of supersymmetry.

It is worth noting that Clifford algebras by the demand for associativity
somewhat unnaturally leave out the octonions for consideration.

As we already saw in the section on Clifford Algebras, the octonions fulfill
the Clifford relation. Due to the amazing spherical symmetry of S7, octo-
nionic bivectors and trivectors also function as vectors. The octonionic anti-
associativity can be described as a form of anti-commutativity between vectors
and bivectors. That is, v1273 = —7v3712 in the octonions, whereas in the as-
sociative Clifford algebras, y12v3 = 3712. Thus, the octonions are able to al-
gebraically distinguish between left-handed and right handed volume elements
whereas they are smeared together as one in the Clifford algebras. If algebraic
chirality is an important reality constraint, the octonions are potentially able to
weed out half of the solutions that are found using ordinary Clifford algebras.

Another possible avenue using octonions is to extend the commutator rela-
tions to also include associators and anti-associators. The octonions satisfy the
following anti-associator relation:

V(YY) + (VY)Y = (6o — Opp Ve + Oup Vi) (6.1)

For the split-octionons ¢ = 1 and -1 for the ordinary octionons. Granted, octo-
nions are far more difficult to work with than the other composition algebras, but
there exists only two real algebras that satisfy a completely antisymmetric triple
product (anti-associativity), namely the split-octonions and the octonions. This
promises that if there exists an octonionic solution, it will be unique and have
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a narrow solve path. That appears to be a worthy avenue of future research.

7  Summary

In this thesis, we've covered the mathematical preliminaries of supersymme-
tries and calculated the Poincaré and conformal superalgebras, and checked the
simplest non-trivial supersymmetry model, the Wess-Zumino model.

8 Appendix

8.1 Proof of Clifford Period

The following is a general proof. To find the proof of (), set s = n,t = 0 for
case 1, and s = 0,¢t = n for case 2.

1%

Cl(s,t) ® C1(0,2)
Cl(s,t) ® CI(2,0)
Cl(s,t) ® Cl(1,1)

Cl(t,s +2)
Cl(t+2,s) (8.1)
Cl(s+1,t+1)

1%

1%

We start by defining a set of matrices I' from two Clifford algebras, v =
Cl(s,t),s +t = n with a metric n = Diag(¢,s) and 0=Cl(a,b),a+b=2 with
metric ¢ = Diag(a,b), and o3 = ogoy, the chirality matrix of Cl(a,b). The
elements of I' are defined as follows:

F‘__{’Yi®0'3 0<i<n—-1

U 1In®oi—n n<i<n+1

The strategy is to prove that I';I'; + I';I'; satisfies the Clifford relation and
investigate its metric. The first step is to calculate I';I'; which is shown in the
table below. First note that o3 = (—1)2(2~1/2(-1)® = (—1)**!. Second, note
from (3.51) that 7,73 = —v37,-

[Ty [ 0<i<n-—1 \ n<i<n+l \
0<j<n—1] vy ()""ly=44; | 7,®0i_n,03 = AB;;
n S] S n+1 Yi X 0305 _n = BA” ]]-n ® 0j—n0j—n =: BB”

Let us now investigate the cross elements:

ABij + BAji = 7j ® 0403 + 7} ® 030 = 27 @ {0j—p, 03}
For Cl(a,b),{oi—n,03} = 0. Thus,

ABij + BAji =0
By index permutation, we therefore also have:

ABji + BAij =0
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AA;; + AAy, 20;; (1) 11,0 [ 0<4d,j <n—1
BBij + Ble 2g(i—n)(j—n) ]]-n+2 n < Za] <n+1
’ e + 41 I 2hi51 42 |0<i,j<n+1]

Notice that for b = 0,2 == (—1)"*! = —1. The effect is that Ci(0,2)
and C1(2,0) change the sign of the metric in AA, thereby mapping Ci(s,t) into
Cl(t,s) in this subsection of I'. Consequently, since (—1)**1 = 1 for b = 1,
Cl(s,t) remains unchanged for CI(1,1). Similarly, BB shows that the ¢ metric
is the same in all cases. Therefore, for b = 0,2 it follows that h = (—n) ® g =
Diag(s 4+ b,t 4+ a), while for a = 1,h = n ® g = Diag(t + b, s + a). Combining
these results proves proposition (8.1).

8.2 Conformal Superalgebra

0w = wm
0T = —wo
S — 1
ww - 5(*)751!} (82)
1
dutp = iw%w
1 -
= §w¢75

5.Skin = [ 706 - ¢0n — S sty

1
= 2w / B (157 a0t
1

—~— 2
IBP

1
- _§w/¢b(vmp)ab8ﬂ¢a

w / (157" ) apt)”

1
= 5 [ P05,

1
= / B (1577 as D"
=0
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Puzau

Mf,, = 27,0,
M, = My,
MY/™ = M, + Sy
D® = "0,
D™ = D® 41 (84)
DY = D® +3/2

K;f = 22,2"0, — %0,
Ko™ = K? + 22,
K} = K7 + 3, + 21",
[D,Q]-¢=D"Y -¢—Q-(D?¢)
= (D* +3/2)y — (D* + 1)9
1 1
= ?/J = 5@ : ¢
[D,Q]-7=D%ys5-1—Qq (D™ - )
= (D® +3/2)v5¢) — (D® + 1)y5¢)
= %751# = %Q T (8.5)
[D, Q) = D™ P~ +75m) = Q- (D¥ - 1))
= (J(D® +1) — (D* +3/2)@)(—¢p + v57)

= (07840, — 3~ +25m)

1 1
= 53(—¢+V57T) = 5@'1/}

Thus, [D,Q] = %Q
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(K Q- ¢ =K -4 —Q- (K- 0)
= (K, + 3, 4+ 22"5,,)0 — (K7 + 22,)1
= (zy +22"8,,)¢
= (zp +227%,,)Q - ¢

(K, Q-7 =Kjvs ¢ — Qo (K] - 7)
= (K + 3z, + 22" S )50 — (K7 + 22,) 750
= (zu + 225, )50
= (zp +227%,,)Q - ¢

(K Qal -ty = K7 - (= + 75m) — Q - (K - )
= (JKy; +2x,) — (K7 + 32, + 22"5,,)0) (¢ + 757)
= (v"(2npu (20, + 1) + 22,0, — 22,0, — x,0,) — 22"3,,,7°0,)(—¢ + V57)
= (21pu (2" 0y + 1) + 21,0y — 22,0,) (= (¥ )abd + (Y*¥5) abT)
- xuap(_("/uu'Vp)ab(b + ('Vuu'7p75)ab7r)
(8.6)

The -relation does not resolve into ), and so a new spinorial generator S is
needed. [3, Ch. 1] We define:

[Kana] = (’hb)ab‘gb (87)

To cancel v,, we first note that +(v")<(yu)e = %5%(1)@ = (Dap = Cup
and (%) E(Vu)eb(= =) = My — Oy = 3(7y)ab. We then note that
%(w);(%)g)sb = S,. Furthermore, it is useful to note that (v, 7Y")e =
(V) E(7”) ey which after a transpose equals (Yu)S(V?)oe = (VY )ba- SO
(YY) = (v ?)t. By a similar logic, (v, 7?75) = —(YuwY75)". Finally,
it is also useful to note that v,,7" =v,f, + Y08 — %55
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= LK. Q-

4
1

= M) Qe+ 207 (B Q) - 6

4

1 v
- 1(7“% + 32"y, )0

= .73”’}/”’(/}@

Sq-m= iVu[Kﬂan] t

Sa'd)b

1

= 2"v,Y5%q

1

= *(’Yﬂ)ac[Km Qcl - Yo

4
1

4

=70"a ((2%(90”(% + 1) + 2,05 = 22,0,)(=(7")eb® + (7775) o)

- ‘Tyaﬁ(_(’)’;Ll/}/p)bcq5 - ('YMV’YP’VS)ch)>

4

1
T4 <(2np#(xl’8u +1) + 2,0, — 22,0,) (—("* + ") apd + (V" + 0"*)¥5)ap™)

— 2" 0p (= (Y17’ ba® — (v“mwp%)baﬂ))

4 ((733”81/ + 8)(_Cab¢ + (’YS)abﬂ-)

+ 3$Map(_(7up)ab¢ + ('Y'up'}%)abﬂ')
— 2,0,(=(Y (=L + 7un” —70) )ba®d

= (M= ™ - 7”55)75)ba7r)>
= (720, 4 8)(~Curs + (o)

+ 3xﬂap(_(7up)ab¢ + (’YMP’YS)abﬂ-)
+2,0,(= (7" = 30°"))ap

(- 3nf'vm>m>)

= i ((4(1}”81/ + 8)(_Cab¢ + (’y5)0«bﬂ-)

T 2,0y~ (1) + (v"”%)aw))

= (2"0y +2)(—Cap® + (75)arT)
+ xuap(*('yﬂp)ab(b + ('Vup’YS)abﬂ')
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In summary,

Sa . ¢ = 3]”’)/#1/}(1
Sa T = 95#%757%

8.9
Sa . ’(/Jb = (xyal/ + 2)(_Cab¢ + (’75)(11)71-) ( )
+ xuap(_('yup)ab‘ls + (V*°75) ab)
[Pus Sa] - ¢ = Py - 2y — Sa - Pu¢
= xp'Ypauwa - 6u (xp%ﬂ/’a) (8.10)
= —Yu¥a
= _P/AQa(b
[Py, Sa) -7 =Py -2Py,v5%q — Sq - Py
= xp%'VSauwa - au(mp’)’p’75¢a) (8.11)
= —%751%
= 7P[LQB.7T
[P;u Sa] “thy = Py, - (xyau + 2)(_Cab¢ + ('75)ab7")
+ 2,0 (= (V") ab® + (77 75)abT)
- Sa : P;ﬂ/}b
- _8M(_Cab¢ + (VS)abﬂ-)
— 0 (=(vP)ab® + (7,0 v5)abm)
8.12
= —0u(=Cap® + (75)ab™) (812)
- ap(_(’y/fyp - 5Z)ab¢ + ((%ﬁp - 55)75)ab7r)

= =0p(Vu)a (=(V)cb® + (Y*75) b )
= 7P#Qa7/)b
= [PIM Sa} = _PuQa

First note that v, = Ve and YoYur = Yuvp + MouYy — Mo Yu- Then
Vo Vur = YurVp + 20puYv — 2Np Y- Similarly, V5 Vv = YurVs

(M, Sa] - ¢ = MY, - aPyptha — Sa - M2, ¢
= xPVpEuuwa - (230[#51/]56”)%%
= 2”2 YpVa + 22V Va — 22V Va (8.13)
= EWIP%%
- (EW)abSb ¢
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(M, Sa] - = MY, - 2Py,75%a — Sq - MJ,m
= 27,758 Va — (221042 )V V5P
= 2P V5%a + 22 [V Ve — 22 V) Pa (8.14)
= X2 5%
= (Zw)absb -

It will now be useful to recall from (3. 75) that (yw'y”")ab =257, 6’) V] ab
Therefore, (X777 )ap = (=277 + 2(5 26[u V])
(M, Sal -0 = MZJ™ - (P8, + 2)(=Capd + (75)ab)
+ 2,05 (= (Y77 )ab® + (Y77 ¥5)ab™) — Sa - My,
= (270,2(,0,)) (= Cap®d + (75)abT)
+ (2,00 2$[M 0u)(=(v")ap® + (V775 ) abT)
— (227,0,)2°0,)(=Cap® + (V5)abT)
- (2 9o )(—=(v"7)av® + (777 75) abT)
EWSaZZJb
= (227,0,1)(=Cap® + (V5) abT)
+ (xp2770[ual/])(_(7pg)ab¢ + (Y7 75)ab)
= (221,0)(=Cap® + (75)abT)
(22,106 ) (= (V7 )ab® + (V77 75)abT)
= (Buw)q (2P0, +2)(=Cep® + (75)ebT)
= 2p0 (= (27" )ab® + (Zuv " 75) abT)
= (—22,00M10) (VP )ab® — (V7 75) abT)
— (220,105 ) (= (777 )ab® + (V77 ¥5)abT)
+ (Zw)a (@P0, + 2)(—Ched + (75)pem)
— 205 (= (=377 + 25[#%] 25” Vol ab®
+ (=Zw7 s + 200,775 — 267,77 ¥5)abT)
= (270, +2)(=(Z)pa® + (X W%)baﬂ)
+ 2,05 (=277 )ab® + (X077 Y5 ) ab™)
= (2P0, +2)(=(Z0)ap® + (Xpu075) ab™)
+ xpag(( 2 vY g)ab(b"‘ (ZNVVPU’YS)abW)
= (Buw)aSe - o
= My, S.] = (E W)absb

(8.15)

o4



[D,S,] - ¢ = D" - 2Pyphg — S - D?¢
1
= §$p’7p¢a — (@ 0ux”)Vpta

1
= 555”%7/%1 - x“%% (8.16)

1
= _ixu'ﬁﬂ/}a

1

:_§Sa'¢

[D,S,) 7= DY . 2Py, v50q — S - D™

1
= 5258 — (% 8,2°)yp75¢a

(8.17)

1
= —§w“vwswa

[D, Sa] - 0 = D™ - (2”0, + 2)(—Capd + (75)abT)
+ mpaa(_('ypo)ab¢ + (’VPU'YS)abﬂ-) —Sa- wab
= (270, 2" 0p) (= Cap® + (75)abT)
+ (@002 0,) (= (V"7 )as® + (Y77 ¥5)abT)
— (2"0,2" 09, ) (= Capd + (75)ab™)
— (@ 0,290 ) (= (V") ab® + (V77 V5 ) abT) (8.18)

= [D,S,] = —
One useful observation is that x¥z” is symmetric in the indices v < p while

Ypvu is antisymmetric, and therefore «¥2*7,,,, vanishes. Also, note from (3.54)
that v5Yu = YuYs-
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[Kys Sal - & = K} - 2P yp0a — So - K%¢
= —(22,3"0, — °0)2 Ypta + (2 + 227 50) S0 - &
= —(2z,8" v — TY)Va + T (T + 28750 )
T2y, — 2 Yy — Y Yo p)Ya
i = 2u Y — 272 (Youp + Nov Vi — Nou ) )V
2

T Yy — xuxV'YV - -Tyxuly,u + fﬂy%%))iﬂa

—~~

—~

o

(8.19)
[Ku,Sa] -7 =K} - aPy,y500 — Sq - K™

—(2z,2 v, — 2°Y)V5%a + TPV Ys (T + 287 S )Ya
T2y — T Y — BT YY) Vs¥a

Y = 2u Y — 272 Vpwp + Npv Vi — Nout) )

T — muwy%} - xVxV'YM + xyxu%/))'(/)a

—~~

2

o/

Using (3.74) we can rewrite (2X,,,) S (—Cep+(75)eb) as (X0 ) £ (—Cep+(75) b )+
(Euu)ac(cbc —(75)be)- This equals (_Euu)ab + (Zuu)ba + (Zuu'}%)ab - (Zuu%’))ba =

0. Furthermore, for this calculation it is an advantage to rewrite (7,77 )ap =
2(5&%7 — 5@%‘}’)@ as 2(5[";%]7” — 5{’”%]7"),11, —2(5&51,‘]’ — (5[‘; lﬁ)ab.
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[Kus Sal -ty = K/ - (270, + 2)(—Capd + (35)ab)

+ 205 (— (V" )abd + (V77 ¥5)ab™)) — Sa - K9y

= ((z"0,)(2x 2" 0, — :L‘Z@M +2x,,)
— (22,278, — 2°0,,)(2"9,))(—=Car® + (V5)abT)
+ ((2,05)(2x 2" 0, — x28H +2x,)
— (22,37 0y — 2°0,)(2005)) (= (V" )as® + (V77 ¥5)abT))
— (2 4+ 227E,0) (@7 0p + 2)(=Capd + (75) )
+ 2,05 (= (V"7 )av® + (V77 V5) abT))

= (4z,2"0, — 22%0, + 2=,
- Zzpzuau + ‘T28H)(7Oab¢ + (75)0,(;71')
+ 2(Mopx” + 052,)x 0, — 22,%60, + 22y Moy
— (22,2505 — 2105 + 2,205)) (—(7*7)ab® + (77775 )abT))
— (2,270, + 27,) ((=Capd + (V5) ap™)
+ xyxpao(_(')/uu'}/pg)ab¢ + (7uu7p075)ab7r))

= (2,278, — 2°0,)(=Capd + (75)abT)
+ (2nopx”z,0, + 2,7,00 + 2200y
+ 33277#;080 = 2,206 ) (—(7"7)ab® + (V77 ¥5)abT))
_ (myxpag(—%mmp + 26[34%]'70 + 25@65 — 25@51,‘]7)@@

+ ((25@7,,]’)’0 _ 25@%/]7‘7 — 2(5&5,/’]) + 2(5{;611(]7)'75)(11771-))

= (2x”x[uau])(_cab¢ + (’75)ab77)
+ (2Nopx” 2,0, + 22 M0 p
=+ xznupaa)(*(vpg)abﬁb + (7p075)ab77))
— (22,05 (207,71, — 07, ] avd + 200677, — 07,77 )5) b))
=0
= [K,,5.,]=0
(8.20)

Sa ¢ =y,
Sa T =2 y,75%,
Sa -y = (270, 4 2)(=Cap® + (V5)abT)
+ xﬁacf(_('Vpa)ab(l5 + (Y77 5) ab)

For the next calculation it is again useful to employ (3.74), this time for the

(8.21)
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term (7,77 5)ab

C

(VY7 ¥5)ab = (Y57 )ab = (Vu¥5)ac (V77 )y
~(175)ea(Y?7 )y = = (V15777 )ba (8.22)
—(YY75)ba

So the term is antisymmetric. Since S, is odd, we will need to use the anticom-
mutator.

[Sa,Sp] - ¢ = 254 - Ty,
= 2((2") (20 + 2)) (V) (ba)® + (VuV5) (ab) )
+ 2((2")290) (= (1Y) (aby® + (Va7 V5) (ab) )
= 2(z" (2" 0y +2))((7ﬂ)ab¢)
+2(2" 2,00 ) (= (7,07 + 6577 = 06,7 ) (ab) @) (8.23)
= 2(z,2" 0, + 22,) (V") ap®
+2(=" 2,0, + 2,270,) (V") ap®
= 2(2x,2" 0, — 22,0, + 22,) (V) ap®
=2(v")a Ky - b

[Sa, Sp] - ™ =284 - Ty, v500)
=2((z") (20 +2))(— (W%) (ar)® — (Vu¥575) (ba) )
+ 2((2")2p00 ) (= (V15777 ) (ab) @ + (VY5777 V5) (ab) )
=2((z")(2" 0y + 2)) (u )azﬂr
(

(8.24)
+ 2((2") 2506 ) (= (77" (ab) )
=2(7")ap Ky -
5C¢ = E"Ep'Yp'lp
S = (a5 (8.25)

5ctp = =P+ my5)xty,¢ — 2(¢ — Ty5)C
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[6c1,6c5) -0 =8¢, - (=P + my5) 2" v,Ca — 2(d — 77y5)C2)
— 8¢, - (=P(D + 7y5) My C1 — 2(¢ — 7Y5) 1)
= (= (QrxPp0 + QY 15975) T Yl — 21y, — Gy, Y5975)Ca)
— (= a@zxmw + QY 5) T YuCr = 2(Ca Y — G YpsYys)G)

= (=770, (((2C1 — G2 Y0¥ + 5(CC — (1&2) 2Py Y5Y) 2y,
—2((¢261 — Q182)x 7,0 — 75(C2Ct — €162) T Y, 75%))
= "0, (C2Y" 1Y) Y Yy — 207" 1y )2 Y0
—(C27" ) (VW kO P T Y0y + 2702 Y pt))
= QY (VRO Y by + 272" ,1))

= —(1627" (0P xt 7y, )y + 8P ,1))
(8.26)

Qa- =g
Qa ™= (75)"06 = ¥5¢a (8.27)
Qa -y = _(7p)abap¢ + <7p75)abap7r

[Qa, Sb] - ¢ = Qa - 2"V, + Sptq
= 2" (= (7" )baOu® — (¥"75)ba )
+ (20 + 2)(=Cba® + (5 )baT)
+ 2,00 (= (" )ba® + (¥ ¥5)baT)
= 2,0, (= (V" + 0" )oa®d — (1" 5)baT))
+ (270, + 2)(Cap® — (75)abT)
+ 2,0, (= (7)) av9) (8.28)
= xl’au(('yuy + nuli)ab¢) + muau('%)ab¢)
+ (2”0, 4+ 2)(Capd — (75)ap™)
+ 2,00 (= (V") av®)
_(xuau - x,jau)((’y‘w)abgb)
+2(2"0y + 1)Capd — 2(75)ap™
=M, ("*)avd + 2D?Cap — 2(75)ap R?

To achieve algebraic closure we must define another generator R such that R-¢ =
.
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[Qa, Sb] - ™= Qa - "7 75%0 + SpY5¢a
= 2"%75 (= (V") 0u® + (757" )10 Ou)
+ 795 (20, + 2)(=Cad + (75)baT)
+ Y5200 (— (V" )ba® + (57" JpaT)
=2, O (0" 75)ba® — (1" + 7" )paT))
+ (270, +2)((75)ab® + Cap)
+ 2,0, (V5757 ) ab™) (8.29)
= 7$H8}L(75)ab¢ + xva/t (7711“ + 'Vuy)abﬂ
+ (20, + 2)((75)ab® + Cap)
+ 2,0, (= (Y")ab)
= — (.00 — 2, 0,) (V") apT)
+2(2"0, + 1)Cap + 2(75) ab®
=—Mj,(v")apm + 2D" Capm — 2(7¥5)ap "

To achieve algebraic closure we must define R™ such that R- 7 = —¢.

R-¢o=m
R-m=-¢ (8.30)
1
Rt = S5t
We need to check the brackets between R and the other generators to see if
they are closed. Since R maps spin 0/ % fields to spin 0/ % fields respectively, R

must therefore have spin 0, and belong to gg which means that only commutators
will be needed in the algebra involving R.

[P,,R]-¢=P, 7 —R-P,o

—0
[Py, R]-m=—F,-¢—R- Py
=0 (8.31)
[PuvR]'wzpu'%'VSw_R'Puw
=0
= [P,,R]=0
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[Myy,R]- ¢ =MJ, - 7—R-M,¢
=0

[Myy,R] -7 =—-M,-¢—R- M,
=0 (8.32)

1

(M, R] - = MY, - 5751/} —R- M},

=0
= [M,.,,R]=0

[D,R]-¢=D"-7—R-D%

=0
[D,R]-m=-D®-¢—R-D"r
=0 (8.33)
1
[DR]-¢ = DV - S5t = R- My
=0
— [D,R] =0
[Ku,R]-¢ =K -m—R-K/¢
=0
[KuRl-m=-K-¢—R-Kr
= (8.34)
1
[K/HR] w*Kﬁ) 575/¢)7R M;flﬂ/’
=0
= [K,,R] =0
[R,R]-¢=R"-m—R-R%
=0
[R,R]-m=—-R?-¢—R-R"r
=0 (8.35)
1
[R,R]~¢=Rw-§v5w—R-R%
=0
= [R,R]=0
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With all the bosonic generators G, G® = G™ and there are no spacetime
dependencies in any of the products of R. Therefore all brackets trivially equal
zero, including [R, R]. Things only get interesting with the fermionic super-
charges.

[R,Ql-¢=R"-¢—Q-R%
1 1
=55¢ — VY = —§V5¢
— Q-
= 2%
[R,Q]-m=R’ ¢ —Q-R'w

1 1
= 5’)’5757# +¢Y = 51/1

= —%%Q -
[R.Q] ¢ = RY™ - §(~¢+75m) — R+ R (8.56)
= J(m —50) ~ Q- 50
= P(—m —150) — %a(—w + 75757)
= S¥(-6 - )
= 5@
— [R.Ql =530
[R,Sa]- ¢ = R - a"~,ba — Sa - R%¢
= l‘“w%%wa — "%
= —%Jf“%%wa (8.37)
= %7593”%%
= %7562 ¢
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[R, Sa] T = Rw ' :CHFYIL’%wa - Sa “R™m
1
= x“7u75§’75'¢a + x“m%
1
= —x”%%?ﬂs% + "5 74 Y5 %0 (8.38)

1
= 575$“%75%

1
= 5758(1 -

[R,Sa] by = R?/™ - (270, + 2)(—Cap® + (75)a)
+ 2,0, (—(Y**)ap® + (7" 75)ab)) — Sa - RV tp
= (2”0, + 2)(—=Cav™ — (15)av®)
+ 2,05 (— ()b = (Y 75) abb)
)

— 53, + 2)(~(5)ars — Csm)
+ 2,0, (=(V*"75)ab® — (") b)) (8.39)
= 200 + D(~(15)asd + (3535 )am)
+ 2,0, (—(Y*?)ap® + (1577 ¥5) abT))
= %75&1 “thy
= [R,S4] = %’75&1
The super-Jacobi identity

[P;n [D,Qa]] - HP#’D]’Qa] - [Dv [P#’Qa]]

= [PuaO(Qa] - [Pana] -0 (8.40)
=0
[Myw, [D, Q Il = [[Myu, D, Qa] = [D, [Myu, Qal]
= My, 5 Q-0 (D, %00 Qul
) ) (8.41)
= §Zqua - ,U,I/§Qa

=0

[Dv [DﬂQaH - [[D7D]7Qa] - [D7 [DaQa]]
=D, 5@ 0~ [D,5Qu] (342
-0
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(D, [Qa, Qo] — [[D, Qal, @] — [Qa [D, Qu]]

D, =2()asPy]  [5Qus Qo] — [Qus 5Q0)
= 2(7p)apr - 2(7p>apr

[P;u [Km QaH - [[PlMKV]a Qa] - [Km [P;u QaH
= [P;u —YvSa) — [_Q(UNVD - M,W), Qal =0

= _’YV’V}I/QG + nqua - 7,uVQa
=0

[M;w, [Kpa QaH - [[M,uv»Kp]v Qa] - HKP’ [M;wa Qa]]
=M,

s =VpSal = [= (Mo Ky = 1puKy), Qal — [Kp, pvQal
= _'YpZ;wSa - (npu'm - npu'}/l/)sa + ZMV’YPSG

= MoV = Npu ) Sa — Mpv Y — MoV )Sa
=0

[Da [vaQaH - [[DaKp]an] - [Km [DaQaH

1
= [D7 _7pSa] - [_Km Qa] - [Km §Qa]

1 1
= §7p5a - ’YpSa + §7p5a
=0

[Km [vaQaH - [[Kpr]aQa]

= [Ky,xS4] — 0 — [K,, < Sa]
=0-0
=0

— [Kp, [Ko, Qall
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(K, [Qa, Qbl] — [[Kp, Qal, Qb] — [Qas [Kp, Q]

= [Kp, —2(v")ab o] — [~V Sa, Qb] — [Qa, =70 Sb]
=2(v")ab(20pe D — 2M ;)

= (2(v0)vaD = 2(vo¥5)0aRR + (V0Y
— (2(¥0)avD = 2(Yo75)ab R + (Yo
=4(vo)a D — 4(7")as M s
—4(Vo)abD + (657" — 057" )ab My
+ (657" = 057" ) ab M

= —4(v")as Mo

+2(7")ab Mo 4 2(v") ab Mo,

=0

)baM/w)

nyz
#U)abMyll)

[Pus [P, Sall = [[Pus P Sa] = [Pos [Py Sall
= [P/M%/Qa} —-0- [Puv'YuQa]

=0

The next is solved like (8.48).

[Pyus [Sas Sel] = [[Pus Sals Se] = [Sas [Py Sb]]
= [P;u 2y K] — ['Y#Qaa Sy — [Saa’Y;LQb]

= _4'755(77/LVD - QMHV) - [’Y;LQaa Sb] - [Scu’YMQb]
=0

[Se, [Sas So]] = [[Se, Sals Sb] + [Sa, [Se, Sb]]
= [Sm Q'ngKu] - [27:(1}{1/7 Sb] + [Sm Q'ngKV]
=0

This one is solved similarly to (8.45).

[Pm [Muw SaH - [[Pp’ M/W]7 Sa] - [M;w’ [va Sa]]
= [Pp, Xy Sa] = [Mpv P — Mpu Py Sa] — [Miw, 75 Qal

= E/w'Van - "7pu'7uQa + 77p//YVQa - PYpZ;wQa
=0

[(Mpos [Myuw, Sal] = [[Mpos M), Sa] = [Myuws [Mpo, S]]
= [Mpow Ep,usa] - [Zp0'7 Zuu]sa - [M;J,Va Epaa Sa]

= Euuzpvsa} - [Epcn E,uu]sa - Zpazpusa

=0
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Analogous to (5.24):

(Moo [Sas Sel] = [[Mpo, Sal, Sb] = [Sa, [Mpo, Sb]]
= [Mpoa 27#Ku] - [Epasm Sb] - [Say Epthb]
=My, 29" K] — X027 K, — Ep629" K,

= 2'7”(77puKa - naqu) = 29pe V" K,
=0

[Py 1D, Su]) = ([P DL, ,] = D[P, 5]
[Py =5 5u] — [=Pas Su] = [D,7,Qu]

1 1
= *5')’an + Van - 5’7an
=0

[M/tua [D7Sa]] - [[M,twu ]7Sa] - [D, [M Sa]]

[z
1
[le’ 7§Sa] —-0- [Da Euvsa]

[D7 [Sm Sb]] - [[D7 Sa]v Sb] - [Sm [D7 Sb”
= 1D, 29 K,] ~ [~ 550, 5] ~ [S0, ~ 351

2
=-29"K, + K, + K,
=0

[PIH [Kl/a Sa“ - Hpﬂa Kv]v Sa] - [Klﬁ [Pl“ SGH
=0- [—2(77,“,D - 2M;W)a Sa] - [Kua’YMQa]

= _nuusa - ’Yp,VSa + 'Y;J,’YVSa
=0

[(Mpo, Ky, Sal] = [[Mpe, K], Sa] = [Ku, [Mpe, Sal]
=0— [xK,,S] — [K,,x5]
—0
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[Da [Ku,SaH - [[D,KV], Sa] - [Kl/a [D,Sa]]

=0—[xK,,Sq] — [K,,xS] (8.61)
—0

[K;n [KVvSaH - [[K#,Kl,], Sa] - [Kuv [K;usa]]
=0-0-0

(8.62)
=0

[Kw [Sm Sb]] - [[Km Sa]7 Sb] - [Saa [K;m Sa”
= [va O<K—p] -0-0 (8.63)
—0

[va [Qav Sb]] - HP/J’ Qa]’ Sb] - [Qav [Pp’ Sb]]
= [Pp7 _(2CabD - 2(’75)abR + (’Yw>abMW)] -0 [Qaa '7pr]
= 2Capr - (’V}:))abpp, + (’Ypy)abpv + 2(7H7p)baPp,

= 2Capr - 2(7%)0‘1713;1 + 2(7‘;))abpp‘ - 2Capr
=0

(8.64)

[Mpo'7 [Qaa Sb” - [[Mpaa Qa]7 Sb] - [Qm [MPU’ S ]]
= [MPU’ _(2CabD - 2(’75)abR + (P)/I“j)abM;w)]
- [EpaQaa Sb} - [Qm Epszb]

» w 8.65
= _(’Yl )ab[Mpo; Mm/] + 'Ypa('yl )abMuu ( )

= _(2’ypuMlﬂ7 - 270VMVP) + (QWpMM/JU - 2IVJVMVP)
—0

[D7 [Qm Sb]] - [[Dv Qa]? Sb} - [Qm [Dv Sb]]

= [D7 _(2CabD - 2(75)abR + (’y“l[)abMp,V)]
~ (50, 5]~ [Qu, 5 5]

= _(’Yuy)ab[Mpcr; M;w] + Yoo (’Yuu)abM;w

== (27 Mo — 275y Myp) + (27} Mo — 27, M)
=0

(8.66)

67



[KP’ [Qm Sb]] - HKm Qa]7 Sb] - [Qaa [va Sb]]
= [Kp, —(2CapD = 2(v5)ab R + (7" ) ab M )]

- [77pSaa Sb] - O

=2Ca Kp — (V" )ab(Mpv Ky — 0pu o) + 207 %p)ba K (8.67)
=0

= QCapr — 2(7‘;)abKu + 2(7%)(1be — QCapr

=0

Qe [Qas Sb]] — [[Qc, Qal, Sl + [Qa, [Qc, Sb]]

= [Qc, —(2Cap D — 2(v5)ap R + (V") av M )]

— [=2(7")caPp, Sb]

+[Qa, —(2C D — 2(7v5) b B + (") o M) )]

= CapQc + (75)ab(75) Qe + (V") ab By ) Qe

+2(7"7p)caQo (8.68)
+ CepQa + (15)eb(75)Qa + (V") e L) Qa

= (V") abB Qe + (V") Xy Qa

= (0p %) — 7 avQe + (01,7, — 00, )b Qa
=0

[Qc; [Sa, So]] — [[Qc» Sals Sb] + [Sa, [Qe, Sb]]

= [Qc, (V") an K]

—[—(2CcaD = 2(75)ca R+ (W) caM 1), Sb)

+ [Sa, (20D = 2(75) e R+ (V") ep l“’)]

= (7#)ab”}/usc ) (8.69)
— CeaSy — (45)ea¥556 + (V") caXuv St

— CeapSa — (75) b5 + (V") eb X0 Sa

= (") eaXuSe + (V") e Xy Sa

= (00,7 — O] JabSe + (01,7, — 01,.7] )b Sa

=0

[P, [Py, R = [Py, Pu], R — [Py, [Py, Rl

=0-0-0 (8.70)
=0

[Py, [R, R]] — [Py, R], R] — [R, [Py, R]]

=0-0-0 (8.71)
=0
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[R7 [R7 R]] - HR7 R]a R] - [R’ [R’ RH
=0-0-0
=0

[P M, B]] = [Py M), R] = [Mpy, [P, R]]
—0—[xP,, R -0
—0

[Mum [Mpuv RH - [[M;wv Mpl/]v R} - [Mpl/a [M#Uv RH

=0—[xM,, R —0
=0

[M,uda [Rv R]] - HM,uavR]vR} - [R’ [MMCHR]]
=0-0-0
=0

[P, [D, R]] - [Py, D], R] — [D, [Py, R]]
=0—[x P,R] -0
=0

[M,uw [DvR]] - HM#V&DLR} - [Dﬂ [M,LW’RH
=0-0-0
=0

[Da[D7RH_[[D7D]7R]_[D7[D7R]]
—0-0-0
=0

[D7 [RvR]] - HD7R]’R] - [Dv [R)R]]
=0-0-0
=0

[Puv [KWRH - [[PAHKVLR} - [Ku, [PAHRH
=0—[xD+ xM,R] -0
=0
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(M [Kp, B| = [[Myo, K], B] = [Kp, [Myo, B]]

=0—[xK,R] -0 (8.81)
=0
(D, [K,, R]]| — [[D, K}, R] — [K,, [D, R]]
=0—[xK,R]—0 (8.82)
=0
(Ko, [Kp, Rl| = [[Ko, Ky, B] — [Kp, [Ko, R]]
=0-0-0 (8.83)
=0

(Ko, [R, R]] - [[Ko, R], R] - [R, [K,, R]]
=0-0-0 (8.84)
=0

[Pu: [Qa: R]] = [[Pu; Qal, R] = [Qa, [Py, R]]
= [P,uv(anH -0-0 (885)
=0

[M,uzu [Qaa RH - [[M;w, Qa]vR] - [Qa» [MMMR]]

1
= [Ml“’? §V5Qa] - [Equa,R] -0
(8.86)

1 1
= 5’}/52[“,@(1 - E,uui'YSQa

=0
[D’ [Qa, R]] - HD7 Qa}v R] - [Qav [D’ R]]
1 1
= D, 575Qu] ~ [5Qu ] ~ 0
= i’VSQa - %756211
-0

(8.87)

[Kﬂa [QaaRH - [[KﬂanLR] - [Qa’ [KAHRH

1
= [K;m 575@@] - [_'Yusaa R] -0
1

1
= _5757/#5’(1 - 'Yui'YSSa (8.88)

1 1
= 5’7//"755(1 - 77/1,75511

2
=0
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[Qa; [@Qv, Bl] = [[Qa; Qb], B] + [Qb, [Qa, B]]

= [Qus 575@4] — [Py B + @, 3750

. ) (8.89)
= 5(’)’5’)’”)abpu + 5(’75’7”)bapu
=0

[Qm [Rv R]] - [[Qaa R]v R} - [Rv [Qav R]]

1 1
=0- [5’}/5(2(17 R] - [R, 57562‘1]

. . (8.90)
= *1’7575@1 + Z%%Qa
=0
[Py [Say R]] = [Py Sals R] = [Sa, [Py, B]]
= [P;u _%75511]] - ['YHQaa R] -0
= _%75’}/#@@ - %’7;/755(1 (891)
1 1
= 5%/75@(1 - §7u’Y5Qa
=0
[Muw [Sav RH - HMHVa Sa]7 R} - [Sa, [Muu»RH
= [Mp,uv _175504]] - [ZMVSCHR] -0
L (8.92)
= _5752;4usa + iqu'YSSa
=0
[D’ [Sm R” - [[D7 Sa]v R] - [Sm [D’ R]]
— D, 2958 — [~2Su, B] 0
L2 2 (8.93)
= 57550, - 5’7550,
=0
[KM’ [SEH RH - [[Klu Sa]’ R] - [Sm [Ku’ R]]
= [K,,,xSa]] =00 (8.94)
—0
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[

Qaa [SIHR]] - HQ(L: SbLR] + [Sbv [Q(MR]]

1 1
= [Qa7 _5’75512]] - [_(2CabD - 2(75)abR + (’Vuy)abMp,V)7 R] + [Sb7 5’75@@}
1
= 5’75(20abD - 2(75)abR + (Vuy)abMp,V) -0
1 v
+ 5’75(2CbaD - 2(75)baR> + (,YH )baMuV)
=0
(8.95)
[Sav [Sbﬂ RH - [[Sm Sb]7 R] + [Sbﬂ [Sav RH
1 1
= [Sm 757551)” - [2(7H)abKu7 R} + [Sbv 575Sa]
1 1 (8.96)
= =5 (157" baKu = 29" Ky, Bl + 5 (157" Joa K
=0
[Sm [Rv R]] - HS@, R]’ R] - [R’ [SavR]]
1 1
=0- [—5755117 R] - [R, —5755a] (8.97)
1 1
= =755 + V5755
4V gl + 47 gl
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