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1 Abstract

This thesis covers the mathematical foundations of supersymmetry, and looks at
the simplest non-trivial example of supersymmetry in physics, the Wess-Zumino
model. On the way we will also explicitly calculate the Poincaré and conformal
superalgebras.

2 Introduction

The enlightenment philosophers who started the scientific revolution formulated
the metaphor of the laws of nature, building on the image of a divine legislator,
judge and enforcer of natural laws. This metaphor slowly gave way to the more
metaphysically neutral concept of symmetry, which is the idea of quantities that
are conserved under transformation. In the early 20th century, Noether showed
that conservation laws of physics are always associated with symmetries of the
action. [9]

By the 1960s, the physicist community had become accutely interested in
the mathematics of symmetry, namely group theory, especially Lie groups and
their Lie algebras. (See Chapter 3.2) The mathematical basis for this research
was created and discovered by Lie in the late 19th century.

Physicists were hoping to be able to identify an overarching group structure
that related spacetime and internal symmetries. Coleman and Mandula poured
a bucket of ice into those ambitions by proving that any attempt at unifying the
symmetries in a Lie group beyond a direct product overconstrains the structure,
leading to unphysical behavior.
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They showed that such additional constraints would cause the scattering
angle of two interacting particles to only take discrete values. This violates the
observed range of continuous scattering angles.

In practice, the commutator relation [Sext, Sint] between an external and
internal symmetry Sext andSint must equal 0.

Unfazed by this so-called ”no-go” theorem, Haag, Sohnius, and  Lopuszański[11]
in 1975 proved that there was a backdoor around the problem. While Lie groups
and algebras are verboten, an anticommutator relation, which is the basis of
Clifford algebras, can circumvent the barrier while still respecting the Coleman-
Mandula Theorem.

They did this by constructing a Z2-graded superalgebra, which we will revisit
in chapter 5, exhibiting supersymmetry, lovingly called SUSY.

The key feature of supersymmetry is that it unifies the internal and space-
time symmetries by introducing a new fermionic charge Q, whose super-commutator
yields a spacetime translation [Q,Q] ∝ Pµ. This is where the love happens. Su-
persymmetry is then guaranteed to impact all symmetries because everything
in physics is affected by translation.

As an extraordinary side-effect, by making the supersymmetry charge a func-
tion of spacetime coordinatesQ(x) one gets a gauge theory of translations, which
is precisely General Relativity and gravity. Supersymmetric gravity (SUGRA)
is beyond the scope of this thesis as we will only be dealing with rigid (flat)
spacetime with a constant metric.

Supersymmetry is not without its problems. One of its predictions is that
every particle has a super-version of the same mass. No such super particle has
ever been observed. If history is a judge, this means that supersymmetry is
almost certainly false. In 2006, for instance, Lisi proposed an interesting model
[7] based on the exceptional Lie group E8. Initially, the model received a flurry
of interest because of its mathematical elegance and simplicity, but it predicts a
host of particles that have never been observed in nature and a decade later, his
theory is all but forgotten. Similar fates have befallen countless other hopeful
theories.

Supersymmetry still clings to the hope that it will be saved by a similar
mechanism of symmetry breaking that gives mass to particles in the Standard
Model at high energies, the Higgs mechanism. It has one piece of indirect
imperical evidence in its favor, namely the fact that all forces of nature unite
at the same energy level in supersymmetry models, whereas this does not occur
in the Standard Model. Also, some have proposed that the hypothesized dark
matter in the universe might in fact be stable superparticles.

However, even if it should turn out that supersymmetry is wrong, it might
very well be wrong in the right neighborhood. That is, it may have most of the
ingredients of the correct solution and its errors – if they exist – are constructive
and instructive, leading to the tweaks necessary to formulate a correct theory.

Such informative flaws are not at all uncommon in physics. In fact, they
are the norm. Consider the luminous ether. The popular story today is that it
has been falsified, discarded and replaced by something new and much shinier.
The truth is that the luminous ether is still mostly intact, but today we call it
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a quantum field, which can be thought of as nothing other than an ether that
obeys special relativity.

Thus, even if supersymmetry is not without its problems, it has so many
attractive features that suggest that even if it should turn out to be wrong, it
can lead to the right solution.

3 Mathematical Preliminaries

3.1 Notation

I will be using standard index notation for tensors, with upper indexes Xµ

representing vectors and lower indexes Xµ dual vectors. It will be useful to
reserve upper case letters for vectors (e.g. X,Y, Z), and lower case letters (e.g.
x, y, z) for points in a manifold, represented by calligraphic uppercase letters
(e.g. M,N ,P ).

Using the Einstein summation convention, the summation sign is dropped
on repeated upper and lower indices: ΣXµX

µ = XµX
µ.

By convention, the derivative operator ∂/∂xµ is written ∂µ. ∂µ is shorthand
for gµν∂ν , where g is the metric. Derivative operators are coordinate basis
vectors, but will in most cases be omitted as the basis vectors can be restored
from the components. For instance, Xµ∂µ will typically be abbreviated to Xµ.
∂µ is not to be confused with dxµ, which is the 1-form basis dual vector.

In the rare case of multiple coordinate systems in the same context, it may
be useful to write ∂/∂xµ and the different coordinate basis ∂/∂yρ as ∂xµ and
∂yρ respectively.

A coordinate function is denoted by indexed lower case letters, mapping to
points in the manifold. For instance, X(x) should be read as ”the vector X
at point x” whereas X(xµ) is to be read as ”the vector X at coordinates xµ.”
This in turn will typically be abbreviated to Xµ. Whenever there is a need
to distinguish between points and coordinates, explicit evaluation is used, e.g.
X(xµ)|p which reads ”X evaluated at point p with coordinates xµ.”

In this thesis, the variable n is reserved for dimension. k is reserved for the
counter or length of a series.

We may define the signed n-dimensional diagonal matrix with signature (s,t)
as η(t, s) as:

η(t, s) = diag(−1, . . . ,−1︸ ︷︷ ︸
t

, 1, . . . , 1︸ ︷︷ ︸
s

) (3.1)

3.2 Lie Algebras

Although we will not be working with Lie groups directly, all physics, including
supersymmetry is built on smooth manifolds and we will therefore briefly recap
its definition before we turn to Lie algebras[10, Ch. 1].
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Definition 1. A Lie group G is a finite, n-dimensional smooth (=infinitely
differentiable, C∞) manifold. That is, every g ∈ G can be mapped locally onto
Rn,Cn, or Hn and group multiplication is a smooth, invertible function.

Definition 2. An vector space V on a field K is a set equipped with a
vector addition operation + : V × V → V and a scalar multiplication operation
· : K × V → V . x, y, z ∈ V called vectors and a, b ∈ K] called scalars satisfy
the following properties:

x+ 0 = x (identity)

x + (-x) = 0 (inverse)

x+ y = y + x (commutativity)

(x+ y) + z = x+ (y + z) (associativity)

(a+ b)(x+ y) = ax+ ay + bx+ by (distributivity)

Definition 3. [8, Ch. 5.6.2] An algebra A on a field is a linear vector space
equipped with a binary operation ◦: A×A→ A.

Definition 4. A Lie algebra L is an algebra with the binary operation [−,−]
called the Lie bracket. It fulfills the properties that for x, y, z ∈ L and a, b ∈ R:

[ax+ by, z] = a[x, z] + b[y, z] (bilinearity)

[z, ax+ by] = a[z, x] + b[z, y]

[x, y] = −[y, x] (anti-commutativity)

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (Jacobi identity)

Definition 5. Given a vector space V over a field K the dual vector space
V ∗ of V is the set of linear functions f : V → K. An element of V ∗ is called a
dual vector.

Definition 6. A homomorphism is a map f of x, y ∈ A into B, f : A → B
that preserves the operations of the algebra, i.e. f(x · y) = f(x) · f(x). An
endomorphism is a map from V onto itself. f : V → V . If f is invertible, the
map is called an automorphism.

Definition 7. Let L(V ) be the Lie algebra consisting of all linear endomor-
phisms of the vector space V . A representation of the Lie algebra A on V
is the Lie algebra homomorphism f : A → L. The representation is said to be
faithful if its kernel is zero. Ado’s theorem ensures that every finite-dimensional
Lie algebra has a faithful representation on a finite-dimensional vector space[6].

To distinguish between vectors and dual vectors, vectors are given lower in-
dices and dual vectors upper indices. In index notation, the linear combination
of basis vectors ea is implemented with Einstein sum where the scalar compone-
nents c ∈ K are given opposite index position to indicate contraction: x = caea.
The same goes for dual vectors: x = cae

a. We may also combine vectors and
dual vectors with the tensor product. cabe

a ⊗ eb. For brevity, we often drop
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the basis vectors because they can be recovered from the components. Familiar
operations and objects can now be written in index notation:

(A · v)a = Aabv
b

(A · v)b = A b
a vb

(A ·B)ab = AacB
c
b

η = ηabe
a ⊗ eb

ηabv
b = va

(3.2)

A basis vector ea of a Lie algebra A is called a generator, and any element
x ∈ A can be written as a linear combination of the generators. If the Lie
bracket of two generators is closed, it produces a linear combination of other
generators [ea, eb] = f c

ab ec. f is called a structure constant and with its index
notation and Einstein sum, it facilitates the linear combination while conserving
free indices.

The faithful representation of the Lie algebra we will be encountering in this
thesis is the commutator [X,Y ] = XY − Y X.

Let ρ be a map such that ρ(X) · Y is a a faithful representation of [X,Y ].
Then ρ([X,Y ]) = ρ(ρ(X) · Y ) − ρ(ρ(Y ) · X) This in turn equals ρ(X)ρ(Y ) −
ρ(Y )ρ(X) = [ρ(X), ρ(Y )], i.e. the desired homomorphism.

3.2.1 Killing Vectors

In the context of spacetime symmetries, we define the basis vectors of a space-
time vector space as the partial derivative operators ∂µ in each of the n direc-
tions, such that they span Rn. A vector X is thereby given by Xµ∂µ. The
commutator tof two vectors then become:

[X,Y ] = Xµ∂µY
ν∂ν − Y ν∂νXµ∂µ (3.3)

The metric tensor gµν is an object that encodes the distance measurement of a
space. As such, the metric defines its geometrical shape. An isometry is a trans-
formation of the metric that keeps it unchanged along some direction. Isometries
therefore provide information about spatial symmetries. In general, the metric
tensor transforms as gµν = ∂yρ

∂xµ
∂yσ

∂xν gρσ. Concretely, for an infinitesimal change
ε along some vector Y an isometry takes the following form:

∂µ(xα + εY α)∂ν(xβ + εY β)gαβ(xρ + εY ρ) = gµν(xρ)

To solve for isometries, first expand each derivative term and approximate the
metric with a first order Taylor expansion, evaluated at coordinate xρ:

(δαµ + ε∂µY
α)(δβν + ε∂νY

β)(gαβ + εY ρ∂ρgαβ)

Expand terms up to first order of ε:

δαµδ
β
ν (gαβ + εY ρ∂ρgαβ) + ε(∂µY

αδβν + ∂νY
αδβµ)gαβ
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Contract and simplify:

gµν + ε(Y ρ∂ρgµν + ∂µY
αgαν + ∂νY

βgµβ︸ ︷︷ ︸
(LY g)µν

)

The term in the bracket is the Lie derivative[8, Ch. 5.4.3] of the metric LY g.
The expression will be equal to gµν iff the Lie derivative vanishes. The vector
fields Y that satisfy this requirement are called Killing vector fields. Since the
derivatives of the metric in linear Minkowski space are zero, the Lie derivative
of the Killing vectors reduce to the Killing equation:

∂µY
αgαν + ∂νY

βgµβ = ∂µYν + ∂νYµ = 0

The only way for the equation to be satisfied is for the solution to be anti-
symmetric in µ and ν.

In general, the Lie derivative of a smooth function f along a vector X is
defined as:

LXf = lim
ε→0

1

ε
(f(xµ + εXµ)− f(xµ))

= Xµ∂µf = X[f ]
(3.4)

Thus, the commutator [X,Y ]f is in fact LXLY f − LY LXf . First, let us see if
this bracket is closed:

[X,Y ]f = Xµ∂µ(Y ν∂νf)− Y ν∂ν(Xµ∂µf)

= Xµ(∂µY
ν∂νf + Y ν∂µ∂νf)

− Y ν(∂νX
µ∂µf +Xµ∂ν∂µf)

= (µ∂µY
ν∂ν − Y ν∂νXµ∂µ)f

(3.5)

The result is a linear combination of first order partial derivatives, because those
nasty higher order terms cancels due to the commutativity of partial derivatives.
So [X,Y ] is closed and does indeed form the product in a Lie algebra. A useful
identity is:

L[X,Y ]f = [X,Y ]f = LXLY f − LY LXf (3.6)

If X and Y are two killing vectors, it follows that their Lie bracket must also
be a killing vector.

3.2.2 The Poincaré Algebra

Next we will identify the Killing vectors[8, Ch. 7.7] for M = Rs,t, g = η(t, s)).
We start by differentiating the Killing equation by ∂ρ.

∂ρ∂µYν + ∂ρ∂νYµ = 0
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Then cyclically permute the indexes to produce three equations[8, Ch. 5.4.3].

∂ρ∂µYν + ∂ρ∂νYµ = 0

∂µ∂νKρ + ∂µ∂ρYν = 0

∂ν∂ρYµ + ∂ν∂µYρ = 0

Add the two first and subtract the third equation and utilize that partial deriva-
tives commute to get:

∂ρ∂µYν = 0

Integrating over ρ yields ∂µYν = bµν , an anti-symmetric constant. Integrating
once more over µ gives the Killing dual vector solutions in their most general
form:

Yν = aν + bµνx
µ

Setting b to zero, we find n Killing vectors aν corresponding to translations
along the coordinate basis vectors ∂ν . This implies that there are a total of
n symmetric and and n(n − 1)/2 anti-symmetric solutions, making a total of
n(n+ 1)/2 linearly independent Killing vectors.

n-dimensional manifolds that have this number of Killing vectors are said to
be maximally symmetric. All flat spaces have this property, in addition to
spaces with constant positive curvature (Sn) and constant negative curvature
(Hn). These are the only possible maximally symmetric spaces.

Setting a to 0, we find the Killing vectors corresponding to rotations and
boosts: Yµ = bµνx

ν . This yields the Lorentz Lie algebra generator Mµν =
xµ∂ν − xν∂µ.

Similarly, the translation killing vector bµ∂µ gives the translation generator
Pµ = ∂µ.

Together Pµ and Mµν form what is called the Poincaré Lie algebra.
When investigating the commutator relations, we can exploit the fact that

higher order partial derivative terms cancel, as shown earlier.We can safely
ignore them in the calculations, which will greatly simplify the expressions. A
trivial example of this is [Pµ, Pν ] which only contain these commutative higher
order terms and therefore equals zero.

[Pµ, Pν ] = 0

[Pµ,Mρσ] = ∂µ(xρ∂σ − xσ∂ρ) = ηµρPσ − ηµσPρ
[Mµν ,Mρσ] = (xµ∂ν − xν∂µ)(xρ∂σ − xσ∂ρ)− (xρ∂σ − xσ∂ρ)(xµ∂ν − xν∂µ)

= xµ(gνρ∂σ−gνσ∂ρ)−xν(gµρ∂σ−gµσ∂ρ)−xρ(gσµ∂ν−gσν∂µ)+xσ(gρµ∂ν−gρν∂µ)

= ηνρMµσ − ηνσMµρ − ηµρMνσ + ηµσMνρ

To verify that they really form a Lie algebra we must check the Jacobi identity.
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[Pµ, [Pν , Pρ]] + [Pν , [Pρ, Pµ]] + [Pρ, [Pµ, Pν ]]

= [Pµ, 0] + [Pν , 0] + [Pρ, 0]

= 0

(3.7)

[Pµ, [Pν ,Mρσ]] + [Pν , [Mρσ, Pµ]] + [Mρσ, [Pµ, Pν ]]

= [Pµ,∝P ] + [Pν ,∝P ] + [Mρσ, 0]
= 0 (3.8)

[Pκ, [Mµν ,Mρσ]] + [Mµν , [Mρσ, Pκ]] + [Mρσ, [Pκ,Mµν ]]

= [Pκ, ηνρMµσ − ηνσMµρ − ηµρMνσ + ηµσMνρ]

+[Mµν ,−ηκρPσ + ηκσPρ] + [Mρσ, ηκµPν − ηκνPµ]

= ηνρ(ηκµPσ − ηκσPµ)− ηνσ(ηκµPρ − ηκρPµ)

−ηµρ(ηκνPσ − ηκσPν) + ηµσ(ηκνPρ − ηκρPν)

+ηκρ(ησµPν − ησνPµ)− ηκσ(ηρµPν − ηρνPµ)

−ηκµ(ηνρPσ − ηνσPρ) + ηκν(ηµρPσ − ηµσPρ)
= 0

(3.9)

[Mκλ, [Mµν ,Mρσ]] + [Mµν , [Mρσ,Mκλ]] + [Mρσ, [Mκλ,Mµν ]]

= [Mκλ, ηνρMµσ − ηνσMµρ − ηµρMνσ + ηµσMνρ]

+[Mµν , ησκMρλ − ησλMρκ − ηρκMσλ + ηρλMσκ]

+[Mρσ, ηλµMκν − ηλνMκµ − ηκµMλν + ηκνMλµ]

= −ηνρ(ησκMµλ − ησλMµκ − ηµκMσλ + ηµλMσρ)

+ηνσ(ηρκMµλ − ηρλMµκ − ηµκMρλ + ηµλMρλ)

+ηµρ(ησκMνλ − ησλMνκ − ηνκMσλ + ηνλMσκ)

−ηµσ(ηρκMνλ − ηρλMνκ − ηνκMρλ + ηνλMρκ)

+ησκ(ηνρMµλ − ηνλMµρ − ηµρMνλ + ηµλMνρ)

−ησλ(ηνρMµκ − ηνκMµρ − ηµρMνκ + ηµκMνρ)

−ηρκ(ηνσMµλ − ηνλMµσ − ηµσMνλ + ηµλMνσ)

+ηρλ(ηνσMµκ − ηνκMµσ − ηµσMνκ + ηµκMνσ)

−ηλµ(ηνρMκσ − ηνσMκρ − ηκρMνσ + ηκσMνρ)

+ηλν(ηµρMκσ − ηµσMκρ − ηκρMµσ + ηκσMµρ)

+ηκµ(ηνρMλσ − ηνσMλρ − ηλρMνσ + ηλσMνρ)

−ηκν(ηµρMλσ − ηµσMλρ − ηλρMµσ + ηλσMµρ)

= 0

(3.10)

It does indeed satisfy the Jacobi identity and we can therefore with certainty
say that Pµ and Mµν are the generators of a Lie algebra.

To summarize,
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[Pµ, Pν ] = 0

[Pµ,Mρσ] = ηµρPσ − ηµσPρ
[Mµν ,Mρσ] = ηνρMµσ − ηνσMµρ − ηµρMνσ + ηµσMνρ

(3.11)

3.2.3 Conformal Killing Vectors (CKVs)

It is sometimes useful to be able to formulate physical theories based on trans-
formations that preserve the metric up to some scale factor, typically encoded
as e2σ. The solution to such scale-relaxed isometries are called conformal Killing
vectors[8, Ch. 7.7.2] (CKVs), and they are solutions solutions of the form:

∂µ(xα + εY α)∂ν(xβ + εY β)ηαβ(xρ + εY ρ) = e2σηµν(xρ)

Noting that ε and σ are proportional, it proves useful to set σ = εψ/2, where
ψ is a scalar. We then repeat the calculation of expanding the equation and
Taylor expand eεψ up to first order in ε to find:

ηµν + ε(Y ρ∂ρηµν + ∂µYν + ∂νYµ︸ ︷︷ ︸
LY η

) = (1 + εψ)ηµν

Thus,
LY η = Y ρ∂ρηµν + ∂µYν + ∂νYµ = ψηµν (3.12)

We solve by multiplying both sides by gµν and note that gµνg
µν = δµµ =

Dim(M) = n. We obtain:

ψ =
gµνY ρ∂ρgµν + ∂µY

µ + ∂νY
ν

n
=
gµνY ρ∂ρgµν + 2∂µY

µ

n

For a metric where all components are constant, all partial derivatives are zero.
For the n-dimensional Minkowski metric the expression for ψ then reduces to:

ψ =
2∂ρY

ρ

n
(3.13)

Putting this back into (3.12) gives:

∂µXν + ∂νXµ − ηµν
2

n
∂ρX

ρ = 0 (3.14)

The strategy for solving the equation is to repeat the steps from the Poincaré
solution, namely a specific linear combination of cyclic permutations γ → µ→
ν → γ of the derivative ∂γ of (3.14).

∂γ∂µXν + ∂γ∂νXµ = ηµν
2

m
∂γ∂ρX

ρ

∂µ∂νXγ + ∂µ∂γXν = ηνγ
2

m
∂µ∂ρX

ρ

−∂ν∂γXµ − ∂ν∂µXγ = −ηγµ
2

m
∂ν∂ρX

ρ

(3.15)
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Summing them yields:

∂γ∂µXν =
1

n
(ηµν∂γ + ηνγ∂µ − ηγµ∂ν)∂ρX

ρ (3.16)

We can now constrain the solution by testing the order of derivatives. Act on
(3.14) with ∂µ and obtain:

�Xν + ∂ν∂
µXµ −

2

n
∂ν∂ρX

ρ = 0 (3.17)

Act again with ∂ν :

�∂νXν + �∂µXµ −
2

n
�∂ρXρ = 0

(1− n)�∂ρXρ = 0

Thus, if n 6= 1:
�∂ρXρ = 0 (3.18)

Now, rearrange (3.17) to find for n 6= 2:

∂ν∂
ρXρ =

n

2− n
�Xν (3.19)

Acting on it with ∂µ gives an equation that is symmetric in µ and ν because
partial derivatives commute.

∂µ∂ν∂
ρXρ =

n

2− n
�∂µXν (3.20)

We can exploit this by acting on (3.14) with � to obtain another equation which
therefore must also be symmetric in µ and ν:

�∂µXν + �∂νXµ = gµν
2

n
�∂ρXρ

�∂µXν = ηµν
1

n
�∂ρXρ (3.21)

Inserting (3.21) into (3.20) gives together with (3.18):

∂µ∂ν∂
ρXρ =

1

2− n
ηµν�∂

ρXρ = 0 (3.22)

Relabeling µ and ν to κ and λ in (3.14) and acting with ∂µ∂νyields:

∂µ∂ν∂κXλ = −∂µ∂ν∂λXκ + ηκλ
2

n
∂µ∂ν∂

ρXρ (3.23)

From (3.22) the last term is zero:

∂µ∂ν∂κXλ = −∂µ∂ν∂λXκ (3.24)

With the third term gone, we now see that the index of the partial derivative
and X anticommute. Therefore,
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∂µ∂ν∂κXλ = −∂µ∂λ∂νXκ

= ∂µ∂λ∂κXν

= −∂µ∂ν∂κXλ = 0

So the third derivative of X is zero, and hence X is at most quadratic in x:

Xµ = aµ + bµνx
ν + cµνρx

νxρ (3.25)

3.2.4 The Conformal Algebra

Now it is time to see if the conformal Killing vectors form a Lie algebra. The
constants a and the antisymmetric part of b yield the same solutions as the
Poincaré algebra, Pµ and Mµν respectively. Therefore the Poincaré algebra
must be a sub-algebra of the conformal algebra.

Let us find the solution for the symmetric part of b by inserting bναx
α into

(3.14).

∂µbναx
α + ∂νbµαx

α = ηµν
2

n
∂ρbσαx

αηρσ

bνµ + bµν = ηµν
2

n
bσρη

ρσ

bµν = ηµν
1

n
bσσ

Thus, b is proportional to the metric. The corresponding vector fields Xµ∂µis
therefore:

Xµ∂µ = ηµνXν∂µ = ηµνηναx
α∂µ =

xµ∂µ = D (3.26)

D is called a dilatation generator. Next, we find c by inserting cναβx
αxβ into

(3.16).

∂γ∂µcναβx
αxβ =

1

n
(ηµν∂γ + ηνγ∂µ − ηγµ∂ν)∂ρcσαβx

αxβησρ

∂γ(cναµx
α + cνµβx

β) =
1

n
(ηµν∂γ + ηνγ∂µ − ηγµ∂ν)(cραρx

α + cρρβx
β)

cνγµ + cνµγ =
1

n
(ηµν(cργρ + cρργ) + ηνγ(cρµρ + cρρµ)− ηγµ(cρνρ + cρρν))

We see that if c is antisymmetric in its two last indices, all terms cancel. The
surviving symmetric components yield:

cνγµ =
1

n
(ηµνc

ρ
ργ + ηνγc

ρ
ρµ − ηγµcρρν)

12



We can drop the constant 1/n and incorporate it into the c. It follows that
the vector fields are:

Xκ∂κ = ηκνXν∂κ = ηκν(ηµνc
ρ
ργ + ηνγc

ρ
ρµ − ηγµcρρν)xγxµ∂κ

= ηκν(ηµνc
ρ
ργ + ηνγc

ρ
ρµ − ηγµcρρν)xγxµ∂κ

= (δκµc
ρ
ργ + δκγ c

ρ
ρµ − ηγµcρκρ )xγxµ∂κ

= cρργx
γxκ∂κ + cρρµx

κxµ∂κ − cρκρ xµxµ∂κ
Now, in the first term, relabel κ to µ and γ to κ. In the second term relabel κ
to µ and vice versa. We can safely do this because they are summed over.

= cρκρ xκx
µ∂µ + cρκρ x

µxκ∂µ − cρκρ xµxµ∂κ
= cρκρ (2xκx

µ∂µ − xµxµ∂κ)

And therefore, the basis vector Kκ = 2xκx
µ∂µ−x2∂κ. Kκ is called a special

conformal transformation.
To summarize, the basis vectors of the conformal algebra are:

Pµ = ∂µ

Mµν = xµ∂ν − xν∂µ
D = xµ∂µ

Kµ = 2xµx
κ∂κ − x2∂µ

(3.27)

The non-vanishing commutator relations:

[Pµ, D] = ∂µx
ν∂ν = ∂µ = Pµ

[Pµ,Kν ] = 2(gµνx
ρ + xνδ

ρ
µ)∂ρ − 2xµ∂ν = 2(gµνD −Mµν)

[D,Kν ] = xµ2(gµνx
ρ + xνδ

ρ
µ)∂ρ − xµ2xµ∂ν − 2xνx

ρδµρ∂µ + x2δµν ∂µ

= 4xνx
ρ∂ρ − 2x2∂ν − 2xνx

ρ∂ρ + x2∂ν = Kν

[Mµν ,Kκ] = xµ(2(gνκx
ρ+xκδ

ρ
ν)∂ρ−2xµxν∂κ−xν(2(gµκx

ρ+xκδ
ρ
µ)∂ρ+2xνxµ∂κ

−2xκx
ρ(gµρ∂ν − gνρ∂µ) + x2(gµκ∂ν − gνκ∂µ)

= gνκ2xµx
ρ∂ρ − gµκ2xνx

ρ∂ρ + gµκx
2∂ν − gνκx2∂µ = gνκKµ − gµκKν

The vanishing relations:

[Mµν , D] = xµδ
ρ
ν∂ρ−xνδρµ∂ρ−xρgρµ∂ν+xρgρµ∂µ = xµ∂ν−xν∂µ−xµ∂ν+xν∂µ = 0

[D,D] = xµδνµ∂ν − xνδµν ∂µ = 0

[Kµ,Kν ] = 2xµx
ρ(2(gρνx

σ+xνδ
σ
ρ )∂σ−2xρ∂ν)−x2(2(gµνx

σ+xνδ
σ
µ)∂σ−2xµ∂ν)

13



−2xνx
σ(2(gσµx

ρ + xµδ
ρ
σ)∂ρ − 2xσ∂µ) + x2(2(gνµx

ρ + xµδ
ρ
ν)∂ρ − 2xν∂µ)

= 8xµxνx
σ∂σ − 4xµx

2∂ν − 2x2gµνx
σ∂σ − 2x2xν∂µ − 2x2xµ∂ν)

−8xνxµx
ρ∂ρ + 4xνx

2∂µ + 2x2gνµx
ρ∂ρ + 2x2xµ∂ν + 2x2xν∂µ) = 0

To summarize:

[Pµ, D] = Pµ

[Pµ,Kν ] = 2(ηµνD −Mµν)

[D,Kν ] = Kν

[Mµν ,Kκ] = ηνκKµ − ηµκKν

[Mµν , D] = [D,D] = [Kµ,Kν ] = 0

(3.28)

We check if the conformal generators satisfy the Jacobi identity to see if they
form a Lie algebra.

[Pµ, [Pν , D]] + [Pν , [D,Pµ]] + [D, [Pµ, Pν ]]

= [Pµ, Pν ] + [Pν ,−Pµ] + 0

= 0

(3.29)

[Pµ, [D,D]] + [D, [D,Pµ]] + [D, [Pµ, D]]

= 0 + [D,−Pµ] + [D,Pµ]

= 0

(3.30)

[Mµν , [Mρσ, D]] + [Mρσ, [D,Mµν ]] + [D, [Mµν ,Mρσ]]

= 0 + 0 + [D,∝M ]

= 0

(3.31)

[Mµν , [D,D]] + [D, [D,Mµν ]] + [D, [Mµν , D]]

= 0 + 0 + 0

= 0

(3.32)

[D, [D,D]] + [D, [D,D]] + [D, [D,D]]

= 0 + 0 + 0

= 0

(3.33)

[Pµ, [Pν ,Kρ]] + [Pν , [Kρ, Pµ]] + [Kρ, [Pµ, Pν ]]

= [Pµ, 2(ηνρD −Mνρ)] + [Pν ,−2(ηρµD −Mρµ)] + 0

= 2ηνρPµ − 2ηµνPρ + 2ηµρPν

−2ηρµPν − 2ηνρPµ + 2ηνµPρ

= 0

(3.34)
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[Pµ, [Kν ,Kρ]] + [Kν , [Kρ, Pµ]] + [Kρ, [Pµ,Kν ]]

= 0 + [Kν ,−2(ηµρD −Mµρ)] + [Kρ, 2(ηµνD −Mµν)]

= 2ηµρKν − 2ηρνKµ + 2ηµνKρ

−2ηµνKρ + 2ηνρKµ − 2ηµρKν

= 0

(3.35)

3[Kµ, [Kν ,Kρ]] = 0 (3.36)

[Pµ, [D,Kν ]] + [D, [Kν , Pµ]] + [Kν , [Pµ, D]]

= [Pµ,Kν ] + [D,−2(ηµνD −Mµν)] + [Kν , Pµ]

= 0

(3.37)

[Mµν , [D,Kρ]] + [D, [Kρ,Mµν ]] + [Kρ, [Mµν , D]]

= [Mµν ,Kρ] + [D,−(ηνρKµ − ηµρKν)] + 0

= ηνρKµ − ηµρKν − ηνρKµ + ηµρKν

= 0

(3.38)

Thus, all generators satisfy the Jacobi identity and the conformal algebra is
therefore closed.

3.3 Clifford Algebra

3.3.1 Introduction

When Hamilton discovered the third real normed division algebra, the quater-
nions ((H)), in 1843, efforts were made to generalize them to higher dimensions.
Clifford succeeded in creating an associative generalization which he called ge-
ometric algebra, but which later came to bear his name – Clifford algebras.
The quaternion famously gave rise to the notion of the dot product and the
cross product. Instead of the cross product, which only works in 3 and 7 di-
mensions, Clifford used the exterior (wedge) product ∧, which is the completely
generalized anti-symmetric binary product in any dimension.

In its modern incarnation, a Clifford algebra is defined as an associative
algebra over a vector space with a quadratic form q with signature (s, t):

q(x) = x2
1 + x2

2 + . . . x2
s − x2

s+1 − x2
s+2 + · · · − x2

s+t (3.39)

This vector space is real and of dimension n = s + t, Rs,t. A Clifford algebra
is said to be generated by n generators γa, called gamma matrices, and in
the olden days, this algebra was simply called Cl(n). Today, we conventinally
label it Cl(s, t) to not only reflect its dimension but also its signature. The n
generators of Cl(s, t) satisfy the Clifford relation:
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Definition 8.
γaγb + γbγa = 2ηab1 (3.40)

Hidden in this innocent-looking equation is the fact that these gamma ma-
trices contain a completely antisymmetric product, which conveniently cancels
in the in the Clifford relation. That is, for any a 6= b, γaγb = −γbγa. This is the
building block of the previously mentioned wedge product.

3.3.2 Some Instructive Examples

There are seven famous examples that satisfy the Clifford relation, namely the
real composition algebras[1], which should come as no surprise given the origins
of Clifford algebras. A composition algebra A over the field R has a non-
degenerate quadratic form N that satisfies the relation:

N(xy) = N(x)N(y),∀x, y ∈ A (3.41)

N(x) is called the norm and is defined as x · x∗ where x∗ is the conjugate of x.
The trivial case is R. It is isomorphic to Cl(0, 0), i.e. the Clifford algebra

with zero generators, only equipped with the identity element, 1. The three next
ones are the complex numbers (C), quaternions (H) and, if we temporarily
relax the associativity requirement for the sake of completion, the octonions
(O). These four algebras are called the real normed division algebras and have a
positive definite norm. They have 0,1,2 and 3 generators respectively. The three
remaining algebras are the split-complex numbers (Ĉ), split-quaternions (Ĥ)
and split-octonions (Ô), which have the same dimensions as the corresponding
division algebra, but with a split signature. They are sometimes colloquially
referred to as the split-algebras. For n = 1, 2, 3 the composition algebras satisfy
the following special case of the Clifford relation:

γµγν + γνγµ = 2σδµν1 (3.42)

σ = −1 yields to the three normed division algebras above the reals, whereas
σ = 1 gives us the split-algebras. The case of n = 3 is included for completeness,
but the octonions and split-octonions do not correspond to Cl(0, 3) and Cl(3, 0)
due to their non-associativity, even if they satisfy the Clifford relation.

The most famous and well-known of these algebras apart from R is the
complex numbers, which corresponds to Cl(0, 1). It has only one generator,
γ0 corresponding to the complex root i, whose signature is negative, such that
γ2

0 = −1.
Although most students of physics have not heard of split-complex num-

bers, which are isomorphic to Cl(1, 0), they should be deeply familiar with
them. throught their use of hyperbolic numbers with cosh and sinh. While
most textbooks gloss over the unnecessary complexity of defining a hyperbolic
imaginary j = γ0 such that j2 = γ2

0 = 1, it is sometimes explicitly used in
Lorentz transformations in undergraduate textbooks.

16



The quaternions are less known but are of great importance in physics.
Notably, Maxwell used them to formulate his famous equations of electromag-
netism. After having been ousted during the vector wars in the late 19th century,
quaternions stubbornly reappeared in quantum mechanics in the form of Pauli
matrices to describe spin. Today they live happily on in physics and mathemat-
ics under the guise of Cl(0, 2), and in group theory as the Symplectic group.

Its unruly sibling, the split-quaternion, isomorphic to Cl(2, 0), is not used for
much, although the fact that they can perform both Lorentz transformations
and ordinary rotations, makes them of interest to some physicists. However,
they provide an instructive illustration of the machinations of Clifford algebras.

The two generators of Cl(2, 0) are γ0 and γ1 and square to 1. They corre-
spond to the split-quaternion basis vector ĵ and k̂. The quaternion basis vector
i is a composite ĵk̂, corresponding to γ0γ1. We can now show that i squares to
-1:

i2 = (γ0γ1)(γ0γ1) = −γ1γ0γ0γ1

= −γ1γ
1
0γ1 = −γ1

1 = −1
(3.43)

If we let x = x1 + x2i + x3ĵ + x4k̂, the norm is:

N(x) = xx∗ = x2
1 + x2

2 − x2
3 − x2

4 (3.44)

Thus, the split-quaternion has signature (2, 2) and is isomorphic to Cl(2, 0).
Notice that the split-algebra has 22 elements while Cl(2, 0) has only 2. This is
no coincidence. Together with the identity and the n basis vectors of Cl(n), the
exterior product generates n2 independent elements that form the basis of the
exterior algebra. Thus, Ĥ is the exterior algebra of Cl(2, 0).

Amazingly, Cl(1, 1) also gives us the split-quaternion, except that here γ0

corresponds to i and γ1 to ĵ. Therefore, all the six first Clifford algebras for
n = 0, 1, 2 correspond exactly to the five associate real composition algebras.

That’s convenient, because with the following proposition, we can use them
to build Clifford algebras of any size.

Cl(n, 0)⊗ Cl(0, 2) ∼= Cl(0, n+ 2)

Cl(0, n)⊗ Cl(2, 0) ∼= Cl(n+ 2, s)

Cl(s, t)⊗ Cl(1, 1) ∼= Cl(s+ 1, t+ 1)

(3.45)

The proof is provided in the Appendix (8.1).
As a final note on the division algebras, Bott’s periodicity theorem[2] demon-

strates a deep relationship between them and the Clifford algebras. They exhibit
a periodicity of 8 ([4, Ch 3.]).

In this thesis we will only be working with n = 4 and so will not encounter
this periodicity.
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s, t mod 8 Cl(s, t) N

0, 6 MatN (R) 2n/2

2, 4 MatN (H) 2(n−2)/2

1, 5 MatN (C) 2(n−1)/2

3 MatN (H)⊕MatN (H) 2(n−3)/2

7 MatN (R)⊕MatR(H) 2(n−1)/2

3.3.3 The k-Form

In the split-quaternion, i is a composite of two orthogonal basis vectors. Such
a composite is classically referred to as a bi-vector and is in Clifford algebra
interpreted as an oriented surface element. Similarly a composite of three or-
thogonal basis vectors is called a tri-vector and so forth. In modern language,
the completely anti-symmetrized binary combination of k gamma matrices is
called a k-form γµ1µ2...µk and is defined as [3, A.4]:

γµ1µ2...µk :=
1

k!

∑
sign(σ)γσ(1)

γσ(2)
...γσ(k)

=: γ[µ1
γµ2

...γµk] (3.46)

The sum is over all permutations of {1, 2, . . . k}. If we had infinitely many
generators to choose from, we could create a k-form of any size. However,
with only n generators to play with, an immediate consequence is that an n-
dimensional Clifford algebra has no k-forms greater than k = n. This follows
from the fact that a higher k-form would require repeated indices, which vanish
in the anti-symmetrization process. The n-form is called the volume form, and
also a pseudoscalar. In our context, it is also called the chirality matrix of the
n-dimensional Clifford algebra, conventionally named γn+1 and defined as:

γn+1 := γ0γ1...γn−1 = γ01...(n−1) (3.47)

For 4-dimensionial spacetime, which is most relevant to this thesis, it be-
comes:

γ5 := γ0γ1γ2γ3

A useful identity for the k-form is:

γµ1µ2...µk = (−1)k(k−1)/2γµk...µ2µ1
(3.48)

This follows from the fact that reversing the order of γµ1µ2...µk requires (k −
1) + ...+ (k − n) = k/(k − 1)/2 anticommutating permutations.

Since the chirality matrix contains every gamma matrix of a Clifford algebra,
it has special properties. First, let is inquire γ2

n+1.

γ2
n+1 = γ0γ1...γn−1γ0γ1...γn−1 = (−1)n(n−1)/2γ0γ1...γn−1γn−1...γ0γ1

First note that every gamma matrix γµ appears exactly twice in the expression.
By reversing the order of the second γn+1 using (3.48), we can rearrange the
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matrices so that note that the two γn−1 appear adjacent to each other by a
number of antisymmetric permutations. We evaluate this to η(n−1)(n−1) and
iterate this for every remaining gamma matrix. This yields for η = η(t, s):

γ2
n+1 = (−1)n(n−1)/2η00η11...η(n−1)(n−1)1

Thus,
γ2
n+1 = (−1)n(n−1)/2+t1 (3.49)

For 4-dimensional Minkowski spacetime this means:

γ2
5 = (−1)4(4−1)/2+11 = −1 (3.50)

Let us consider {γµ, γn+1}. We note that γµ will match and contract with
exactly one of the γ-elements of γn+1. Suppose that it matches the rightmost
element,i.e. µ = n − 1. Then, if we multiply γn+1 with γµ from the left, we
need n−1 = µ antisymmetric permutations to make the two elements adjacent.
If we instead multiply γn+1 with γµ from the right, it is already adjacent so we
need 0 = n − 1 − µ permutations to make them adjacent. This now also holds
for all other values of µ. The difference in the number of permutations to reach
the same position is: (n − 1 − µ) − µ = −2µ + n − 1. Note that 2µ is an even
number and it will therefore not contribute to a sign change. The number of
permutations separating γµγn+1 from γn+1γµ is therefore n−1 anticommutative
permutations. Thus,

γµγn+1 = (−1)n−1γn+1γµ (3.51)

For n=4 (and any other even dimension), which we will be working with in
this thesis:

{γµ, γ5} = 0 (3.52)

A useful consequence of this in 4 dimensions is:

γµ1
γµ2

...γµkγ5 = (−1)kγ5γµ1
γµ2

...γµk , k = 1, 2, 3, 4 (3.53)

A corollary is that it is also true for the antisymmetrized version:

γµ1µ2...µkγ5 = (−1)kγ5γµ1µ2...µk , k = 1, 2, 3, 4 (3.54)

This follows from the definition of the antisymmetric matrix as the sum where
each of the k! terms in the sum is the product of k gamma matrices. Moving
the γ5 to the other side therefore leads to a term-wise common factor of (−1)k

due to k permutations in each term.
A related useful identity is[3, A.4]:

γµ1µ2...µkγν = γµ1µ2...µkν + ηνµkγµ1µ2...µk−1
− ηνµk−1

γµ1µ2...µ̂k−1µk

+ ...(−1)k−1ηνµ1γµ̂1µ2...µk−1µk

(3.55)

The wide hat means that the index is omitted.
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There exists a long-winded algebraic proof, but it can more concisely be
formulated in words: All the indices in the k-form are different. γν therefore
shares either zero or one index with it. In case ν is different and k < n, the
product forms a new antisymmetric matrix γµ1µ2...µkν . Otherwise it shares one
index in the ith position. γν then anticommutes with all the other elements and
based on the same logic as in (3.54) we can permute it to become adjacent with
µi so that they can contract. This requires k− i permutations. An odd number
of permutations gives a minus, and an even number gives a plus. The product
is then equal to sum of the k + 1 elements in the identity above.

3.3.4 Spinors

So why are Clifford algebras important in physics and supersymmetry? It turns
out by some possibly magical coincidence that they can be used to construct
half-spin representations of the Spin group[4, p.6], namely by the construction
Σ whose elements are defined as:

Σµν :=
1

4
[γµ, γν ] =

1

2
γµν (3.56)

Σ satisfies the commutation relation:

[Σµν ,Σρσ] = ηνρΣµσ − ηνσΣµρ + ηµρΣσν − ηµσΣρν (3.57)

This is a representation of lie algebra so(s,t) found in (X). The proof is straight-
forward.

γµγρ = 2ηµρ − γργµ
=⇒ γµγργσ = 2ηµργσ − γργµγσ

= 2ηµργσ − 2ηµσγρ + γργσγµ

=⇒ [γµ, γργσ] = 2(ηµργσ − ηµσγρ)

(3.58)

Since this expression anticommutes in ρ and σ, it follows that [γµ, [γρ, γσ]] =
2[γµ, γργσ]. Furthermore, the identity [AB,C] = A[B,C] + [A,C]B gives:

[γµγν , [γρ, γσ]] = γµ[γν , [γρ, γσ]] + [γµ, [γρ, γσ]]γν

= 4(ηνργµγσ − ηνσγµγρ + ηµργσγν − ηµσγργν)
(3.59)

Swapping µ and ν gives:

[γνγµ, [γρ, γσ]] = 4(ηνργσγµ − ηνσγργµ + ηµργνγσ − ηµσγνγρ) (3.60)

Thus,

[[γµ, γν ], [γρ, γσ]] = 4(ηνρ[γµ, γσ]−ηνσ[γµ, γρ]+ηµρ[γσ, γν ]−ηµσ[γρ, γν ]) (3.61)
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When divided by 16, it equals (3.57).
A Clifford algebra of dimension n is isomorphic to the algebra of n× n real

matrices, meaning that it has a unique irreducible real n-dimensional represen-
tation[3, A.4] called Majorana spinors. That is, the spacetime Majorana spinor
is a 4-tuplet with real entries and can be thought of as a column vector. The
complexified Clifford algebra has a unique irreducible complex n-dimensional
representation called Dirac spinors. The spacetime Diract spinor is a duplet
with complex entries. We may recover one from the other by equating their
conjugates ψ̄ := ψ̄D = ψ†iγ0 = ψ̄M = ψtC, where C is the charge conjugation
matrix. Although Dirac spinors are practical in many situations, this thesis will
only make use of the Majorana type.

3.3.5 The Charge Conjugation Matrix

Since the metric of a Clifford algebra is always diagonal, it follows from the Clif-
ford relation that there exists an algebra A with elements γµ that is isomorphic
to an algebra A′ with the elements γtµ. It satisfies the Clifford relation.

(γµγν)t + (γνγµ)t = (2ηµν1)t

=⇒ γtνγ
t
µ + γtµγ

t
ν = 2ηµν1

=⇒ γtµγ
t
ν + γtνγ

t
µ = 2ηµν1

=⇒ A ∼= A′

(3.62)

Since they are isomorphic, we can use a change of basis to transform γµ into
γtµ, up to sign. We do this using a charge conjugation matrix C, which despite
its name is not a matrix but a bilinear form.

γtµ = ±CγµC−1 (3.63)

We repeat the calculation using C.

γtµγ
t
ν + γtνγ

t
µ = (CγµC

−1)(CγνC
−1) + (CγνC

−1)(CγµC
−1)

= CγµγνC
−1 + CγνγµC

−1

= C(γµγν + γνγµ)C−1

= C(2ηµν1)C−1

= 2ηµν1

(3.64)

This proves that γtµ also satisfies the Clifford relation. Let us now do some
further manipulation.

γµ = (γtµ)t = ±(CγµC
−1)t = ±(C−1)tγtµC

t =

±(C−1)tγtµC
t = ±(C−1)t(±CγµC−1)Ct =

(C−1Ct)−1γµ(C−1Ct)

=⇒ γµ(C−1Ct) = (C−1Ct)γµ
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Schur’s lemma[12] then implies that (C−1Ct) is equal to the identity up to some
scalar σ.

(C−1Ct) = σ1

=⇒ Ct = σC

=⇒ C = σCt = σ(σC)

=⇒ σ = ±1

(3.65)

Let, τ = ±1. Then, (3.63) yields:

γtµ = τCγµC
−1

=⇒ τCγµ = γtµC = γtµC
tσ = (Cγµ)tσ

=⇒ (Cγµ)tσ2 = (Cγµ)t = τσCγµ

(3.66)

This means that C is either symmetric or skew-symmetric. In general, for an
antisymmetric gamma matrix with k elements, we find:

(γµ1µ2...µk)t = (γ[µ1
γµ2

...γµk])
t = γt[µk ...γ

t
µ2
γtµ1]

= τk(Cγ[µkC
−1)...(Cγµ2C

−1)(Cγµ1]C
−1)

= τkCγ[µk ...γµ2
γµ1]C

−1 = τk(−1)k(k−1)/2Cγµ1µ2...µkC
−1

=⇒ γtµ1µ2...µk
C = σ(Cγµ1µ2...µk)t = τk(−1)k(k−1)/2Cγµ1µ2...µk

=⇒ (Cγµ1µ2...µk)t = στk(−1)k(k−1)/2Cγµ1µ2...µk

(3.67)

We have a degree of freedom in choosing the value of τ but based on foresight,
set τ = −1 in 3 + 1-dimensional spacetime. The conjugation relation then
reduces to:

(Cγµ1µ2...µk)t = σ(−1)k(k+1)/2Cγµ1µ2...µk (3.68)

Concretely, for k = 1, 2, 3, 4 this becomes:

(C1)t = σC1

(Cγµ)t = −σCγµ
(Cγµν)t = −σCγµν

(Cγµνρ)
t = σCγµνρ

(Cγµνρσ)t = σCγµνρσ

(3.69)

In a Clifford algebra of dimension n, there are
(
n
k

)
antisymmetric elements of

length k. For n=4, we get the following table of elements and the sign of the
conjugation.
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Element Sign Dimension
1 σ 1
γµ −σ 4
γµν −σ 6
γµνρ σ 4
γµνρσ σ 1

In a Real 4-by-4 matrix antisymmetric matrices have 6 dimensions and sym-
metric dimensions have 10. To achieve this, we need to set σ = −1. Then,
1, γµνρ, γµνρσ are antisymmetric, while γµ, γµν are symmetric. Thus, we have
proven that:

Ct = −C
(Cγµ)t = Cγµ

(Cγµν)t = Cγµν

(Cγµνρ)
t = −Cγµνρ

(Cγµνρσ)t = −Cγµνρσ

(3.70)

First note that by limiting ourselves to four dimensions in the analysis above, we
are developing specialized mathematical tools that cannot be assumed to work
in other-dimension Clifford algebras. That is, whenever the charge conjugation
matrix is used, the result is only valid for n = 4.

Having made this choice, and worked out the values of τ and σ. let us now
investigate some of its consequences.

γtµ = CtγµC
−1

γtµC = Ctγµ

Ct = −C
(Cγµ)t = Cγµ

(3.71)

If we define C with indices Cab we notice that Ct = −Cba and due to this
antisymmetry some care is needed in how we use C to raise and lower indices.
We use the North-West and South-East conventions[3, A.4] such that ψbCba =
(Ctψ)a = ψa and Cabψb = ((Ctψ)C−1)a = ψa. Here the built in assumption is
that ψt = ψ since from (3.71) ψt = CtψC−1.

Gamma matrices with indices can be defined as γµ = (γµ)ab and from (3.71)
it follows that:

γtµ = CtγµC
−1 = Cac(γµ)dcCbd = (γµ) ba (3.72)

We can now summarize the interaction of the k-forms with the charge conjugate
matrix using the convention that (Cχ)ab notationally can be written as (χ)ab.
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1ab = −1ba
(γµ)ab = (γµ)ba

(γµν)ab = (γµν)ba

(γµνρ)ab = −(γµνρ)ba

(γµνρσ)ab = −(γµνρσ)ba

(3.73)

Matrices with lowered (or raised) spinor indices have useful properties. One
of these is the clever use of transposition to cancel antisymmetric components.
Consider the product (Σ) ca (Γ)cb = (ΣΓ)ab. Notice that from (refclifford-conjugate-
transpose-final3) (Γ)cb = κ(Γ)bc where κ = ±1 if Γ is symmetric/antisymmetric.
Furthernore, decompose ΣΓ into its symmetric and antisymmetric parts S and
A respectively: (ΣΓ)ab = (S +A)ab. Then we can show the following:

(S +A)ab = (Σ) ca (Γ)cb

= κ(Σ) ca (Γ)bc

= κ(S +A)ba

= κ(S −A)ab

(3.74)

When κ = +1 we find that S+A = S−A =⇒ A = 0. Similarly, when κ = −1,
S = 0. Thus, parity is preserved under contraction when the indices are lowered.
This is a powerful technique to cancel terms in a complicated expression. An
important example which we will utilize later is:

(γµν) ca (γρσ)cb = (γ ρσ
µν + c1+ 2δσ[µγ

ρ
ν] − 2δρ[µγ

σ
ν] )ab

= 2(δσ[µγ
ρ
ν] − δ

ρ
[µγ

σ
ν] )ab

(3.75)

Since both (γ ρσ
µν )ab and (1)ab are antisymmetric (and γρσ is symmetric), they

vanish in the above equation.

3.3.6 Other Useful Identities

One common usage of gamma matrices in quantum field theory is the /∂ operator
defined as:

/∂ := γµ∂µ (3.76)

One useful identity involving the /∂ is:

/∂
2

= γµ∂µγ
ν∂ν = (γ[µγν] + γ(µγν))∂µ∂ν = ηµν1∂µ∂ν = � (3.77)

It follows from the fact that an antisymmetric tensor that contracts with a
symmetric one is zero. That is, γ[µγν]∂µ∂ν = −γ[νγµ]∂ν∂µ = 0.
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We will also encounter composite conjugates of the form:

γµ1
γµ2

. . . γµk−1
γµk = γtµkγ

t
µk−1

. . . γtµ2
γtµ1

C

= γtµkγ
t
µk−1

. . . γtµ2
(Cγµ1

)t = γtµkγ
t
µk−1

. . . γtµ2
Cγµ1

= γtµkγ
t
µk−1

. . . (Cγµ2)tγµ1 = γtµkγ
t
µk−1

. . . Cγµ2γµ1

. . .

= γtµkCγµk−1
. . . γµ2

γµ1
= γµkγµk−1

. . . γµ2
γµ1

(3.78)

Finally, the k-forms can be expressed more compactly using the chirality
matrix. First let us (re)define γ5 as 1

4!ε
µνρσγµνρσ and the totally antisymmetric

tensor ε is initalized as ε0123 = −ε0123 = 1. Then:

γµν = −1

2
εµνρσγ

ρσγ5

γµνρ = εµνρσγ
σγ5

γµνρσ = −εµνρσγ5

(3.79)

Again, this can be calculated by straightforward but longwinded calculations.
However, the sketch of the proof is that since γ5 contains all 4 gamma basis
matrices, it will contract with a k-form in such a way that only the 4− k non-
contained indices will remain. For the 4-form, the calculation is straightforward:
γµνρσ = −εµνρσ 1

4!ε
µνρσγµνρσ = 4! 1

4!γµνρσ.
Thus, a perfectly valid and equivalent basis for the exterior algebra is:

{1, γµ, γµν , γµγ5, γ5} (3.80)

4 Field Theory

All this work so far on describing and identifying the Poincaré and conformal
algebras is nice and dandy, but how does it relate to physics? The answer is
the principle of least action[8, Ch. 1.1.2]. This is where Noether’s theorem[9]
enter’s the picture. She discovered that every differential symmetry of the action
implies a conservation law.

The action, which is a functional, meaning that it takes a set of functions
(corresponding to different worldlines) as input and outputs a number. It is
done by integrating over the volume element in n-dimensional space, which is
an n-form. However, since we are limiting our analysis to flat space with a
constant metric, the volume element reduces to the familiar dnx.

The set of functions we feed the action is the Lagrangian density L . Much
of the murky business of theoretical physicists is to construct Lagrangians that
reproduce the known conservation laws of nature. A key ingredient, which is
the foundation of Quantum Field Theory (QFT), is that it has to be Lorentz
invariant, meaning that it must be a scalar.
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L is a function of a field (or fields) Φ and its derivatives. Φ, in turn, is
a function of the spacetime coordinates x. In its most general form it can be
written as:

L = f(Φ(x), ∂µ1
Φ(x), . . . , ∂µ1···∂µkΦ(x)) (4.1)

For brevity, I will write Φ(x) as Φ. The action on Φ is then defined as :

S[φ] =

∫
M

L dnx

For brevity, I also drop the M, dnx since they only add clutter. The action
is extremized if an infinitesimal deviation S[Φ + δΦ] from the wordline is zero.
Since the derivative is linear, the following holds:

Φ→ Φ + δΦ =⇒

 ∂µ1
Φ→ ∂µ1

Φ + δ∂µ1
Φ

...
∂µ1···∂µkΦ→ ∂µ1···∂µkΦ + δ∂µ1···∂µkΦ

We then have that

S[Φ + δΦ] =

∫
L (Φ + δΦ, ∂µ1

Φ + δ∂µ1
Φ, ..., ∂µ1···∂µkΦ + δ∂µ1···∂µkΦ)

We define the variation of the action as:

δS[Φ] := S[Φ + δΦ]− S[Φ]

By first order Taylor expansion of the k + 1 variables in δΦ we obtain:

δS =

∫
δΦ

∂L

∂Φ
+ ∂µ1

(δΦ)
∂L

∂(∂µ1
Φ)

+ ...∂µ1...∂µk(δΦ)
∂L

∂(∂µ1...∂µkφ)
+ O(δΦ2)

It is now time to limit Φ to scalar fields φ, because integration by parts does
not work the same for fermionic fields. Utilizing integration by parts and the
Divergence theorem, meaning that the total derivative vanishes at the boundary,
we can effectively move the derivative from δφ to the other term by a change of
sign. Doing this for each of the k derivatives and omitting higher order Taylor
terms in δφ gives:

δS =

∫
δφ

{
∂L

∂φ
− ∂µ1

∂L

∂(∂µ1
φ)

+ ...(−1)k∂µ1...∂µk
∂L

∂(∂µ1...∂µkφ)

}
In this thesis, we will never encounter more than first order derivatives (k = 1)
in the Lagrangian, and the variation of S therefore reduces to the familiar:

δS =

∫
δφ

{
∂L

∂φ
− ∂µ

∂L

∂(∂µφ)

}
(4.2)

The fermionic Lagrangian density will be dealt with later.
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4.1 Dimensional Analysis

Dimensional analysis is the study of the relationship between physical quantities
as measured by base units. (meter, second, kilogram etc.) It can be a useful
tool in identifying and verifying the correct form of an equation.

Notationwise, square brackets are used to gauge the dimensionality of a
quantity. So if A is the quantity, [A] equals the dimension. The square bracket
can be thought of as a dimensional logarithm so that [An] = n[A]. A mere
number c has dimension [c] = 0. In general,

[cAn1
1 An2

2 ...Ankk ] = n1[A1] + n2[A2] + ...+ nk[Ak] (4.3)

In QFT the convention is to employ natural units where the action then becomes
unitless, [S] = 0. We may choose to set [∂µ] = 1. Then, since [∂µx

ν ] =
[∂µ] + [xν ] = [δνµ] = 0, it follows that [xν ] = −1. Consequently, [

∫
dnx] = −n.

[S] = [
∫
dnxL ] = [

∫
dnx] + [L ] = 0 =⇒ [L ] = n.

We can now use these numbers to deduce the dimension of φ, ψ, and m from
the kinetic and mass terms.

[Lkin] = [∂2
µφ

2] = 2[∂µ] + 2[φ] =⇒ [φ] = (n− 2)/2

[Lkin] = [∂µψ
2] = [∂µ] + 2[ψ] =⇒ [ψ] = (n− 1)/2

[Lmass] = [m2φ2] = 2[m] + 2[φ] =⇒ [m] = 1

(4.4)

For n = 4, this means that scalars and spinors have dimension 2 and 3/2,
respectively.

4.2 Free Massless Lagrangian

4.2.1 Scalar Fields

The free massless Lagrangian density L of a spin 0 scalar field φ is − 1
2∂µφ∂

µφ.

This gives δL
δφ = 0− ∂µ(− 1

2 (2∂µφ)) = �φ. Thus,

δS =

∫
δφ�φ

We now first investigate the variation of Poincare group symmetries:

δaφ = aµPµφ = aµ∂µφ

δbφ = bµνMµνφ = bµν(xµ∂ν − xν∂µ)φ = bµν2x[µ∂ν]φ

Abbreviations in the following calculations: IBP = integration by parts. � =
∂ρ∂

ρ, n = δµµ = Dim(M).

27



δaS =

∫
δaφ�φ = aµ

∫
∂µφ�φ

=︸︷︷︸
IBP×2

aµ
∫

(�∂µφ)φ

=︸︷︷︸
IBP

−aµ
∫

(�φ)∂µφ

= −
∫
δaφ�φ = −δaS = 0

(4.5)

δbS =

∫
δbφ�φ = bµν

∫
(x[µ∂ν]φ)�φ

= −bµν
∫
∂ρ(2x[µ∂ν]φ)∂ρφ

= bµν
∫
∂ρ(2(ηρ[µ∂ν] + x[µ∂ν]∂ρ)φ)φ

= bµν
∫

(2(∂[µ∂ν]︸ ︷︷ ︸
=0

+δρ[µ∂ν]∂ρ + x[µ∂ν]︸ ︷︷ ︸
IBP

�)φ)φ

= bµν
∫

(2(∂[ν∂µ]︸ ︷︷ ︸
=0

− η[νµ]︸︷︷︸
=0

�− x[µ∂ν]�)φ)φ

= −
∫
δbφ�φ = −δbS = 0

(4.6)

We have thus found that the Poincaré algebra extremizes the action, which
is great news because otherwise the universe would have been in dire straits.
Now, let us turn our attention to the conformal algebra. As we have already
established, the Poincaré algebra is a subalgebra of the conformal algebra so
this we have already checked. What is needed is to investigate D and Kµ.

δcφ = cxµ∂µ

δdφ = dµKµ = 2xµx
κ∂κ − x2∂µ

(4.7)
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δcS =

∫
δcφ�φ = c

∫
(xµ∂µ + ∆)φ�φ

= −c
∫
∂ρ((x

µ∂µ + ∆)φ)∂ρφ

= c

∫
∂ρ((δµρ∂µ + xµ∂µ∂ρ + ∆∂ρ)φ)φ

= c

∫
(� + gρµ∂µ∂ρ + xµ∂µ︸ ︷︷ ︸

IBP

� + ∆�)φ)φ

= c

∫
(2− δµµ − xµ∂µ + ∆)�φ)φ

= −c
∫

(xµ∂µ + (n− 2−∆︸ ︷︷ ︸
=∆

))φ)�φ

= −
∫
δcφ�φ = −δcS = 0

(4.8)

∆ = n− 2−∆ implies that ∆ = (n− 2)/2.

δdS =

∫
δdφ�φ = dµ

∫
(2xµx

ν∂ν − xνxν∂µ + Exµ)φ�φ

= −dµ
∫
∂ρ((2xµx

ν∂ν − xνxν∂µ + Exµ)φ)∂ρφ

= dµ
∫
∂ρ((2gρµx

ν∂ν + 2xµδ
ν
ρ∂ν + 2xµx

ν∂ν∂ρ − gρνxν∂µ

− xνδνρ∂µ − xνxν∂µ∂ρ + Egρµ + Exµ∂ρ)φ)φ

= dµ
∫

((2(δνµ∂ν + xν∂ν∂µ + δνµ∂ν + xµ� + xν∂ν∂µ + xµ� + xµx
ν∂ν�

− δνν∂µ − xν∂ν∂µ − xν∂ν∂µ)− xνxν∂µ� + 2E∂µ + Exµ�φ)φ

= dµ
∫

((4− 2m+ 2E)∂µ + (4 + E)xµ� + 2xµx
ν∂ν�− xνxν∂µ�︸ ︷︷ ︸

IBP

)φ)φ

= dµ
∫

((4− 2m+ 2E)∂µ + (4 + E)xµ�− 2gνµx
ν�− 2xµδ

ν
ν�− 2xµx

ν∂ν�

+ gµνx
ν� + xνδ

ν
µ� + xνx

ν∂µ�)φ)φ

= dµ
∫

((4− 2m+ 2E︸ ︷︷ ︸
=0

)∂µ + (4− 2m+ E)xµ�− 2xµx
ν∂ν� + xνx

ν∂µ�)φ)φ

= −dµ
∫

(2xµx
ν∂ν − xνxν∂µ + (−4 + 2m− E︸ ︷︷ ︸

=E

)xµ)φ)�φ

= −
∫
δdφ�φ = −δdS = 0

(4.9)
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4 − 2n + 2E = 0 is consistent with −4 + 2n − E = E and implies that
E = n− 2 = 2∆.

In summary, for n = 4

δaφ = aµ∂µφ

δbφ = bµν2x[µ∂ν]φ

δcφ = c(xµ∂µ + 1)φ

δdφ = dµ(2xµx
ν∂ν − x2∂µ + 2)φ

(4.10)

So far, so good.

4.2.2 Fermionic Fields

Before venturing into spinor fields, some identities might be useful. Let χ be
a rank 2 dual tensor, where χt = (−1)vχ, and v = 0, 1 if it symmetric or
antisymmetric under transposition respectively. ∂r is shorthand for ∂µ1 ...∂µr .
We assume that ∂r, ∂s, and χ together contract all indices so that the expression
is Lorentz invariant. Then:

∫
∂rψaχab∂

sψb

=︸︷︷︸
IBP×(r+s)

(−1)r+s
∫
∂sψaχab∂

rψb

=︸︷︷︸
permute

(−1)r+s+1

∫
∂rψbχab∂

sψa

=︸︷︷︸
relabel a⇔b

(−1)r+s+1

∫
∂rψaχba∂

sψb

=︸︷︷︸
transpose a⇔b

(−1)r+s+v+1

∫
∂rψaχba∂

sψb

(4.11)

”Permute” is shorthand for permuting the order of the fields, leading to a change
of sign. ”Relabel” is shorthand for relabeling contracted indices such that they
harmonize with the labels of other similar terms. ”Transpose” is shorthand for
χt, which potentially leads to a sign change. In case of an even number of sign
changes, the integral does not vanish. If it is odd, it is identically zero.

r + s+ v + 1 = even =⇒
∫
∂rψaχab∂

sψb =

∫
∂rψaχab∂

sψb 6= 0 (4.12)

r + s+ v + 1 = odd =⇒
∫
∂rψaχab∂

sψb = −
∫
∂rψaχab∂

sψb = 0 (4.13)
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Let us just first give a brief dummy example for illustration. Consider
∫
ψa(γµ)ab∂µψ

b.
Here r = 0, s = 1, v = 0.Thus, integration by parts yields (−1)(0+1+0+1)

∫
ψa(γµ)ab∂µψ

b.
Since it is even, the integral does not vanish.

We are now ready to consider the Poincaré algebras. First we note from
(3.70) that /∂ = (Cγµ)ab∂µ = (Cγµ)ba∂µ = (/∂)t. We calculate δS to the first
order in δψ.

δS = S[ψ + δψ]− S[ψ]

=
1

2

∫
((ψ + δψ)/∂(ψ + δψ)− ψ̄ /∂ψ)

=
1

2

∫
(δψ̄ /∂ψ + ψ̄ /∂δψ)︸ ︷︷ ︸

(4.11)

=
1

2

∫
(δψ̄ /∂ψ + (−1)0+1+0+1ψ̄ /∂δψ)

=

∫
δψ̄ /∂ψ

(4.14)

δaψ = aµPµψ = aµ∂µψ

δaψ̄ = aµ∂µψ̄

δbψ = bµνMµνψ = 2bµνx[µ∂ν]ψ

δbψ̄ = 2bµνx[µ∂ν]ψ̄

(4.15)

δaS =

∫
δaψ̄ /∂ψ = aµ

∫
∂µψ̄ /∂ψ

= aµ
∫
∂µψ

a(Cγρ)ab∂ρψ
b =︸︷︷︸

(4.13)

−aµ
∫
∂µψ

a(Cγρ)ab∂ρψ
b

= −
∫
δaψ̄ /∂ψ = 0

(4.16)

Thus, δaψ is a symmetry of the Lagrangian. In premonition of the calculation
of δbS, it is useful to note the following relation:

∫
ψa(CΣµνγ

ρ)ab∂ρψ
b

=
1

2

∫
ψa( C(γ ρ

µν︸ ︷︷ ︸
(4.13) =⇒ =0

+δρνγµ − δρµγν))ab∂ρψ
b

=

∫
ψa(Cγ[µ)ab∂ν]ψ

b

(4.17)
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Then:

δbS =

∫
δbψ̄ /∂ψ = 2bµν

∫
x[µ∂ν]ψ̄ /∂ψ = 2bµν

∫
x[µ∂ν]ψ

a(Cγρ)ab∂ρψ
b

=︸︷︷︸
IBP

−2bµν
∫

(η[µν]︸︷︷︸
=0

ψa(Cγρ)abψ
b + ψa(Cγρ)abx[µ∂ν])∂ρψ

b

=︸︷︷︸
IBP

2bµν
∫
∂ρψ

a(Cγρ)abx[µ∂ν]ψ
b + ψa(Cγρ)abηρ[µ∂ν]ψ

b

= −2bµν
∫
x[µ∂ν]ψ

b(Cγρ)ab∂ρψ
a − ψa(Cγ[µ)ab∂ν]ψ

b

= −2bµν
∫
x[µ∂ν]ψ

a(Cγρ)ab∂ρψ
b − ψa(Cγ[µ)ab∂ν]ψ

b

= −δbS + 2bµν
∫
ψa(CΣµνγ

ρ)ab∂ρψ
b 6= 0

(4.18)

We try adding a term δΣψ := bµνΣµνψ to δbψ to see if we can cancel the extra
term.

δbψ = bµν(2x[µ∂ν] + Σµν)ψ

δbψ̄ = bµν(2x[µ∂ν]ψ̄ + Σµνψ)
(4.19)

δΣψ̄ := Σµνψ = (Σµνψ)tC = ψtΣtµνC

= −ψtΣtµνCt = −ψt(CΣµν︸ ︷︷ ︸
(3.70)

)t

= −ψtCΣµν = −ψ̄Σµν

(4.20)

Thus,
δbψ̄ = bµν(2x[µ∂ν]ψ̄ − ψ̄Σµν) (4.21)

We now only calculate the new part. We already found that without δΣψ̄,
δbold

S = −2δΣS. For it to vanish we need to find that δΣS = δΣS.

δΣS =

∫
δΣψ̄ /∂ψ = −bµν

∫
ψa(CΣµνγ

ρ)ab∂ρψ
b

=︸︷︷︸
(4.17)

−bµν
∫
ψa(Cγ[µ)ab∂ν]ψ

b

=︸︷︷︸
(4.12)

−bµν
∫
ψa(Cγ[µ)ab∂ν]ψ

b

= −bµν
∫
ψa(CΣµνγ

ρ)ab∂ρψ
b

=

∫
δΣψ̄ /∂ψ

(4.22)

Thus, with this extra term δbS = δbold
S + δΣS = −δbS = 0.
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δcψ = cxµ∂µψ

δcS =

∫
δcψ̄ /∂ψ = c

∫
xµ∂µψ̄ /∂ψ = c

∫
xµ∂µψ

a(Cγρ)ab∂ρψ
b

=︸︷︷︸
IBP

−c
∫
∂ρψ

a(Cγρ)abψ
b + xµ∂µ∂ρψ

a(Cγρ)abψ
b

=︸︷︷︸
IBP

c

∫
ψb(Cγρ)ab∂ρψ

a + xµµ∂ρψ
a(Cγρ)abψ

b + ∂ρψ
a(Cγρ)abx

µ∂µψ
b

= c

∫
ψb(Cγρ)ab∂ρψ

a − nψb(Cγρ)ab∂ρψa − xµ∂µ(Cγρ)ab∂ρψ
aψb

=︸︷︷︸
relabel+transpose

−c
∫

(n− 1)ψa(Cγρ)ab∂ρψ
b + xµ∂µψ

a(Cγρ)ab∂ρψ
b

= −δcS − c
∫

(n− 1)ψa(Cγρ)ab∂ρψ
b 6= 0

(4.23)

Like before, we can anticipate what factor must be added to δcS for the
variation of the action to vanish, namely some constant ∆ψ multiplying the
variation: δ∆ψ = c∆ψψ.

δ∆S =

∫
δ∆ψ̄ /∂ψ = c

∫
∆ψψ̄ /∂ψ = c

∫
∆ψψ

a(Cγρ)ab∂ρψ
b

=︸︷︷︸
(4.12)

c

∫
∆ψψ

a(Cγρ)ab∂ρψ
b = δ∆S

(4.24)

Therefore:
δcS+δ∆S = −δcS−c

∫
(n− 1−∆ψ︸ ︷︷ ︸

=∆ψ

)ψa(Cγρ)ab∂ρψ
b = 0 The action vanishes

if ∆ψ = (n − 1)/2. Since we have used relations from () which assumes n = 4,
∆ψ = 3/2

δdψ = dµ(2xµxν∂ν − x2∂µ)ψ
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δdS =

∫
δdψ̄ /∂ψ = dµ

∫
(2xµx

ν∂ν − x2∂µ)ψ̄ /∂ψ =

dµ
∫

(2xµx
ν∂ν − x2∂µ)ψa(Cγρ)ab∂ρψ

b

=︸︷︷︸
IBP (ρ)

−dµ
∫

(2ηρµx
ν∂ν + 2xµ∂ρ − 2ηρνx

ν∂µ)ψa(Cγρ)abψ
b

+ (2xµx
ν∂ν − x2∂µ)∂ρψ

a(Cγρ)abψ
b︸ ︷︷ ︸

IBP (µ,ν)

= −dµ
∫

(4xνηρ[µ∂ν] + 2xµ∂ρ)ψ
a(Cγρ)abψ

b − (2xµ + 2xµδ
ν
ν − 2xµ)∂ρψ

a(Cγρ)abψ
b

−∂ρψa(Cγρ)ab(2xµx
ν∂ν − x2∂µ)ψb

=︸︷︷︸
permute

−dµ
∫
−4xνψb(Cγρ)abηρ[µ∂ν]ψ

a + 2xµ(n− 1)ψb(Cγρ)ab∂ρψ
a

+(2xµx
ν∂ν − x2∂µ)ψb(Cγρ)ab∂ρψ

a

=︸︷︷︸
relabel+transpose

−dµ
∫
−4xνψa(Cγ[µ)ab∂ν]ψ

b + 2xµ(n− 1)ψa(Cγρ)ab∂ρψ
b

+(2xµx
ν∂ν − x2∂µ)ψa(Cγρ)ab∂ρψ

b

= −δdS − dµ
∫
−4xνψa(CΣµνγ

ρ)ab∂ρψ
b + 2xµ(n− 1)ψa(Cγρ)ab∂ρψ

b 6= 0

(4.25)

We note that one of the non-vanishing terms is up to a constant the same as
(4.20) multiplied with xv and the other is also a familiar expression multiplied
with xµ. We therefore continue the strategy of adding terms.

δx∆ψ = dµEx∆xµψ
δxΣψ = dµExΣx

νΣµνψ δxΣψ̄ = dµExΣx
νΣψ = −dµExΣx

νψ̄Σµν

δx∆S =

∫
δx∆ψ̄ /∂ψ = dµEx∆

∫
xµψ

a(Cγρ)ab∂ρψ
b

=︸︷︷︸
IBP

−dµEx∆

∫
ηρµψ

a(Cγρ)abψ
b + xµ∂ρψ

a(Cγρ)abψ
b

=︸︷︷︸
comm.+relabel+transp.

δx∆S − dµEx∆

∫
ψa(Cγµ)abψ

b

(4.26)

δx∆S on both sides of the equation implies that the extra integration term is
zero.
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δxΣS =

∫
δx∆ψ̄ /∂ψ = −dµExΣ

∫
xνψa(Cγ[µ)ab∂ν]ψ

b

=︸︷︷︸
IBP

dµExΣ

∫
1

2
(δννψ

a(Cγµ)abψ
b − δνµψa(Cγν)abψ

b) + xν∂[νψ
a(Cγµ])abψ

b

=︸︷︷︸
comm.+relabel+transp.

δxΣS − dµExΣ

∫
− (n− 1)

2
ψa(Cγµ)abψ

b

(4.27)

δxΣS on both sides of the equation implies that the extra integration term is
zero, but we will keep both these extra terms for consistency check.

δdS = δdoldS+δx∆S+δxΣS = −δdS−dµ
∫

(−4 + ExΣ︸ ︷︷ ︸
=−ExΣ

)xνψa(CΣµνγ
ρ)ab∂ρψ

b+

xµ(2(n− 1)− Ex∆︸ ︷︷ ︸
=Ex∆

)ψa(Cγρ)ab∂ρψ
b

The action vanishes if ExΣ = 2 and Ex∆ = n − 1 = 2∆ψ. For consistency
we also check Ex∆ − ExΣ(n − 1)/2 = (n − 1) − 2(n − 1)/2 = 0, which agrees
with the finding from the integration.

Setting n = 4, for which this calculation is valid, we find, in summary, that
the action is invariant for:

δaψ = aµ∂µψ

δbψ = bµν(2x[µ∂ν] + Σµν)ψ

δcψ = c(xµ∂µ + 3/2)ψ

δdψ = dµ(2xµxν∂ν − x2∂µ + 3xµ + 2xνΣµν)ψ

(4.28)

We therefore conclude that the Poincaré and the conformal algebras are sym-
metries of the massless free Lagrangian for for both bosonic and fermionic fields.

4.3 Massive Lagrangian

The massive Lagrangian densities L of a spin 0 scalar field φ and a spin 1/2
fermionic field ψ are:

Lmass(φ) = −1

2
m2φ2 (4.29)

Lmass(ψ) = −1

2
ψ̄mψ (4.30)

This gives:
δL
δφ = −∂µ(− 1

2 (2∂µφ)) = −m2φ. Similar for ψ. Since the action is linear
and we have already investigated the kinetic terms, we can focus on only the
massive term.

Before we do so it is worth noting that integration by parts give the same
result for the massive scalar fields as for the fermionic fields. First we note that
by doing integration by parts r+ s times for the massive scalar term we obtain:
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∫
∂rφm2∂sφ = (−1)r+s∂rφm2∂sφ (4.31)

Doing the same calculation using (4.11) and noting that ψ̄ = ψaCab and Cab =
−Cba, i.e. v = 1, we obtain:

∫
∂rψ̄m∂sψ = (−1)r+s+1+1∂rψ̄m∂sψ = (−1)r+s∂rψ̄m∂sψ (4.32)

Therefore, the scalar and fermionic mass terms will yield the same results except
for in the terms δΣψ, δ∆ψ, δx∆ψ, and δxΣ.

4.3.1 Scalar Fields

δS = −
∫
δφm2φ

We start by investigating the Poincaré algebra.

δaS = −
∫
δaφm

2φ = −aµ
∫
∂µφm

2φ

= aµ
∫
φm2∂µφ =

∫
δaφm

2φ

= −δaS = 0

(4.33)

δbS = −
∫
δbφm

2φ = −bµν
∫
x[µ∂ν]φm

2φ

= bµν
∫

(η[νxµ]︸ ︷︷ ︸
=0

+x[µ∂ν])φm
2φ

=

∫
δbφm

2φ = −δbS = 0

(4.34)

So the Poincaré algebra is invariant under the massive scalar action.
Let us now consider the conformal transformations.
First, note that ∂µ(xµφm2φ) = (∂µx

µ)φm2φ + xµ(∂µφ)m2φ) + xµφm2∂µφ.
Thus, (xµ∂µφ)m2φ = (−m − xµ∂µ)φm2φ + ∂µ(xµφm2φ). The total derivative
vanishes in the integral when evaluated at the boundary. Now,

δcS = −
∫
δcφm

2φ = −c
∫

(xµ∂µ + ∆)φm2φ

= c

∫
(δµµ + xµ∂µ + ∆)φm2φ

=c

∫
(xµ∂µ + (n−∆︸ ︷︷ ︸

=∆

))φm2φ

=

∫
δcφm

2φ = −δcS = 0

(4.35)
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δcS only vanishes when n −∆ = ∆ =⇒ ∆ = n/2, which does not agree with
the value for the kinetic term ∆ = (n− 2)/2. Thus, the action is only invariant
under dilatation in the mass term when there is no kinetic component. Since it
is not invariant under δcS, there is no need to investigate δdS. The conformal
algebra is not invariant under the massive scalar action.

4.3.2 Fermions

For the fermionic case, δa is the same for ψ as for φ. Therefore, from (4.31) and
(4.32) it follows that δaS = 0. δbψ has the extra term δΣψ, which needs to be
checked.

δΣψ = bµνΣµνψ

δΣψ̄ = bµνΣµνψ =︸︷︷︸
(4.20)

−ψa(CΣµν)ab (4.36)

δΣS =

∫
δΣψ̄mψ = −bµν

∫
ψa(CΣµν)abmψ

b

=︸︷︷︸
(4.11)

−
∫

(−1)0+0+0+1ψa(CΣµν)abmψ
b

= −δΣS = 0

(4.37)

Thus, δbS vanishes.
The only difference between δcφ and δcψ is the value of the constant ∆ versus

∆ψ. As with the scalar case, δcS will only vanish if ∆ψ = n/2, which does not
agree with the value (n − 1)/2 found in (4.28). Thus, the massive fermionic
Lagrangian is not conformally invariant.

4.4 Interaction terms

What about higher order interaction terms? We try:

Lint(φ) = λφp (4.38)

δSint =

∫
δφλφp−1

We have already performed this calculation for p = 2 and now repeat the steps
for p¿2:

∂µ(xµφλφp−1) = (∂µx
µ + xµ∂µ + (p− 1)xµ∂µ)φλφp−1

=⇒ xµ∂µφλφ
p−1 = ∂µ(xµφλφp−1)− (n+ (p− 1)xµ∂µ)φλφp−1

δcS =

∫
δcφλφ

p−1 = c

∫
(xµ∂µ+∆)φλφp−1 = −c

∫
((n−∆)+(p−1)xµ∂µ)φλφp−1
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= −c(p− 1)

∫
(xµ∂µ + (

n−∆

p− 1︸ ︷︷ ︸
=∆

))φλφp−1 = −(p− 1)

∫
δcφλφ

p−1

pδcS = 0

Thus, δcS = 0 if ∆ = n/p. This agrees with the kinetic term if p = 2n/(n− 2).
As n → ∞, p → 2 from above, but never reaches it, so for n > 2, p > 2.
Similarly, n > 6 =⇒ p < 3. Thus, for n > 6, 2 < p < 3. Thus, p can only be a
whole number for n = 3, 4, 6 yielding p = 6, 4, 3 respectively.

Let us now verify if we obtain a similar result for the special conformal
transformation. Again, we investigate the total derivatives:

∂ν(2xµx
νφλφp−1) = ((2 + 2n)xµ + 2xµx

ν∂ν + (p− 1)2xµx
ν∂ν)φλφp−1

=⇒ 2xµx
ν∂νφλφ

p−1 = ∂ν(2xµx
νφλφp−1)−((2+2n)xµ+(p−1)2xµx

ν∂ν)φλφp−1

∂µ(−xνxνφλφp−1) = (−2xµ − xνxν∂µ − (p− 1)xνx
ν∂µ)φλφp−1

=⇒ −xνxν∂µφλφp−1 = ∂µ(−xνxνφλφp−1)− (−2xµ − (p− 1)xνx
ν∂µ)φλφp−1

Therefore,

δdS =

∫
δdφλφ

p−1 = dµ
∫

(2xµx
ν∂ν − xνxν∂µ + Exµ)φλφp−1

= −(p− 1)dµ
∫

(2xµx
ν∂ν − xνxν∂µ + (

2 + 2n− 2− E
p− 1︸ ︷︷ ︸

=E

)xµ)φλφp−1

= pδdS

Thus, δdS = 0 if E = 2n/p. This agrees with the kinetic term if p = 2n/(n−2),
the same solution as for δcS. p is a whole number for n = 3, 4, 6 yielding
p = 6, 4, 3 respectively.

4.4.1 Fermions

For fermions, Lint = λ(ψ̄ψ)p. Since spinors anticommute there can for n = 4
be at most four different spinors with different indices in a product. There-
fore for all values of p > 2, anticommutativity ensures that the term will van-
ish. For p = 2 there is just enough room to squeeze in four different spinors.
C12C34ψ

1ψ2ψ3ψ4. We know that this contraction is non-zero because the Pfaf-
fian[5] squared of a skewsymmetric matrix equals the determinant. Since C is
invertible, its determinant is non-zero and hence also the Pfaffian is non-zero
and the expression does not vanish.

Lint = λ(ψ̄ψ)2 = λψaCabψ
bψcCcdψ

d
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First we recall that C = −Ct.We calcultate δSint to the first order in δψ
using (4.11).

δSint = Sint[ψ + δψ]− Sint[ψ]

= λ((ψ + δψ)(ψ + δψ)(ψ + δψ)(ψ + δψ)− ψ̄ψψ̄ψ)

= λ(δψaCabψ
bψ̄ψ + ψaCabδψ

bψ̄ψ + ψ̄ψδψcCcdψ
d + ψ̄ψψcCcdδψ

d)

= λ(1 + (−1)0+0+1+1 + (−1)0+0+0+4 + (−1)0+0+1+5)δψ̄ψψ̄ψ

= 4λδψ̄ψψ̄ψ

(4.39)

Now we are ready to check the variation.

δaSint =

∫
4λδaψ̄ψψ̄ψ = 4λaµ

∫
∂µψ̄ψψ̄ψ

= −4λaµ
∫
ψaCab∂µψ

bψ̄ψ + ψ̄ψ∂µψ
cCcdψ

d + ψ̄ψψcCcd∂µψ
d

= −4λaµ
∫

(−1)1+1∂µψ
bCbaψ

aψ̄ψ + (−1)4∂µψ
cCcdψ

dψ̄ψ

+ (−1)5+1∂µψ
dCdcψ

cψ̄ψ

=︸︷︷︸
relabel

−4λaµ
∫

3∂µψ̄ψψ̄ψ

= −3δaSint = 0

(4.40)

δbSint =

∫
4λδbψ̄ψψ̄ψ = 4λbµν

∫
(2x[µ∂ν]ψ̄ − ψ̄Σµν)ψψ̄ψ

= −4λbµν
∫

2(η[νµ]︸︷︷︸
=0

ψ̄ψψ̄ψ + ψaCabx[µ∂ν]ψ
bψ̄ψ

+ ψ̄ψx[µ∂ν]ψ
cCcdψ

d + ψ̄ψψcCcdx[µ∂ν]ψ
d)

+ ψa(CΣµν)abψ
bψ̄ψ

= −4λbµν
∫

2((−1)1+1x[µ∂ν]ψ
bCbaψ

aψ̄ψ

+ (−1)4x[µ∂ν]ψ
cCcdψ

dψ̄ψ + (−1)5+1x[µ∂ν]ψ
dCdcψ

cψ̄ψ)

+ (−1)1+0ψb(CΣµν)baψ
aψ̄ψ

=︸︷︷︸
relabel

−4λbµν
∫

(6x[µ∂ν]ψ̄ − ψ̄Σµν)ψψ̄ψ = 0

(4.41)
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δcSint =

∫
4λδcψ̄ψψ̄ψ = 4λc

∫
(xµ∂µ +

3

2
)ψ̄ψψ̄ψ

= −4λc

∫
δµµψ̄ψψ̄ψ + ψaCabx

µ∂µψ
bψ̄ψ

+ ψ̄ψxµ∂µψ
cCcdψ

d + ψ̄ψψcCcdx
µ∂µψ

d

− 3

2
ψ̄ψψ̄ψ

= −4λc

∫
2((−1)1+1xµ∂µψ

bCbaψ
aψ̄ψ

+ (−1)4xµ∂µψ
cCcdψ

dψ̄ψ + (−1)5+1xµ∂µψ
dCdcψ

cψ̄ψ)

+ (4− 3

2
)ψ̄ψψ̄ψ

=︸︷︷︸
relabel

−4λc

∫
(3xµ∂µ +

5

2︸︷︷︸
6= 3

2

)ψ̄ψψ̄ψ 6= 0

(4.42)

δcSint does not vanish. Hence, Sint is not invariant under conformal transfor-
mations.

5 Lie Superalgebras

A Lie superalgebra is a natural extension of the concept of Lie algebras consisting
of a Z2 graded real vector space g = g0 ⊕ g1 where g0 is said to be even, and
g1 is odd. The vector space is equipped with a bilinear operation called the Lie
superbracket:

[−,−] : gi × gj → gi+j (5.1)

where i, j, i+ j ∈ Z2. For the purposes of this thesis, we can limit the analysis
to elements that are homogenous. That is, elements only in either g0 or in g1.
Bars are used to measure the grade of a homogeneous element.

|X| = i⇔ X ∈ gi (5.2)

The superbracket then satisfies the following relation:

[X,Y ] = −(−1)|X||Y |[Y,X] (5.3)

In addition it also satisfied the superized Jacobi identity:

(−)|X||Z|[X, [Y, Z]] + (−)|Z||Y |[Z, [X,Y ]] + (−)|Y ||X|[Y, [Z,X]] = 0 (5.4)

For convenient calculations, we can rearrange this using (5.3) to get:

40



0 =

(−)|X||Z|[X, [Y,Z]]− (−)|Z|(|X|+|Y |)+|Z||Y |[[X,Y ], Z]− (−)|Z||X|+|Y ||X|[Y, [X,Z]]

= (−)|X||Z|
(

[X, [Y, Z]]− (−)2|Z||Y |[[X,Y ], Z]− (−)|Y ||X|[Y, [X,Z]]

)
= [X, [Y,Z]]− [[X,Y ], Z]− (−)|Y ||X|[Y, [X,Z]] = 0

(5.5)

This gives use the form of the Jabobian used in ([3, App. A]).

[X, [Y,Z]] = [[X,Y ], Z] + (−1)|X||Y |[Y, [X,Z] (5.6)

5.1 Poincaré Superalgebra

Let us now briefly consider the free massless Wess-Zumino model. The super-
charge transformations are given by [3]. Here we introduce a new field π which
is a pseudoscalar.

Qa · φ = ψa

Qa · π = (γ5)baψb = γ5ψa

Qa · ψb = −(γρ)ab∂ρφ+ (γργ5)ab∂ρπ

(5.7)

Lkin = −1

2
(∂φ)2 − 1

2
(∂π)2 − 1

2
ψ̄ /∂ψ (5.8)

δεSkin =

∫
δεφ�φ+ δεπ�π − δεψ̄ /∂ψ (5.9)

δεφ = ε̄ψ

δεπ = ε̄γ5ψ

δεψ = /∂(φ+ πγ5)ε

δεψ̄ = /∂(φ+ πγ5)ε

= −ε̄/∂φ− ε̄γ5 /∂π

= −ε̄/∂(φ− γ5π)

(5.10)
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δεSkin =

∫
ε̄(ψ�φ+ γ5ψ�π + /∂(φ− γ5π)/∂ψ)

=︸︷︷︸
IBP

∫
ε̄((�ψ)φ+ γ5(�ψ)π − γρ(φ− γ5π)∂ρ /∂ψ)

=

∫
ε̄(φ�ψ + γ5π�ψ − (φ+ γ5π)/∂

2
ψ)

=

∫
ε̄(φ�ψ + γ5π�ψ − (φ+ γ5π)�ψ)

= 0

(5.11)

Indeed, the variation of the action vanishes. Let us now investigate the Poincaré
superalgebra. Since Pµ and Mµν are even, while Qa is odd, we expect the
supercommutator between them to produce an odd generator. Since there is
only one such generator, Q, the commutator [A,Qa] should equal c baQb, where
A is even.

[Pµ, Qa] · φ = ∂µψa −Qa∂µφ = 0

[Pµ, Qa] · π = γ5∂µψa −Qa∂µφ = 0

[Pµ, Qa] · ψb = (γρ)ab∂ρ∂µ(−φ+ γ5π)−Qa∂µψb
= (γρ)ab∂ρ∂µ(−φ+ γ5π)− ∂µ(γρ)ab∂ρ(−φ+ γ5π) = 0

=⇒ [Pµ, Qa] · Φ = 0

(5.12)

For Pµ, we find that the bracket is closed and c = 0.
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[Mµν , Qa] · φ = Mµνψa −QaMµνφ

= (2x[µ∂ν] + Σµν)ψa −Qa2x[µ∂ν]φ

= Σµνψa = ΣµνQa · φ
[Mµν , Qa] · π = Mµνγ5ψa −QaMµνπ

= (2x[µ∂ν] + Σµν)γ5ψa −Qa2x[µ∂ν]π

= Σµνγ5ψa = ΣµνQa · π
[Mµν , Qa] · ψb = (γρ)ab∂ρMµν(−φ+ γ5π)− (2x[µ∂ν] + Σµν)Qaψb

= (γρ)ab2ηρ[µ∂ν](−φ+ γ5π)

− (Σµν) cb (−(γρ)ac∂ρφ+ (γργ5)ac∂ρπ)

= 2(γ[µ)ab∂ν](−φ+ γ5π)

+ (Σµν) cb ((γρ)ca∂ρφ+ (γργ5)ca∂ρπ)

= 2(γ[µ)ab∂ν](−φ+ γ5π)

+
1

2
(γ ρ
µν + γµδ

ρ
ν − γνδρµ)ba∂ρφ

+
1

2
(γ ρ
µνγ5 + γµγ5δ

ρ
ν − γνγ5δ

ρ
µ)ba∂ρπ

= 2(γ[µ)ab∂ν](−φ+ γ5π)

− 1

2
(γ ρ
µν − γµδρν + γνδ

ρ
µ)ab∂ρφ

+
1

2
(γ ρ
µνγ5 − γµγ5δ

ρ
ν + γνγ5δ

ρ
µ)ab∂ρπ

= 2(γ[µ)ab∂ν](−φ+ γ5π)

− 1

2
((γµνγ

ρ − γµδρν + γνδ
ρ
µ)− γµδρν + γνδ

ρ
µ)ab∂ρφ

+
1

2
((γµνγ

ργ5 − γµγ5δ
ρ
ν + γνγ5δ

ρ
µ)− γµγ5δ

ρ
ν + γνγ5δ

ρ
µ)ab∂ρπ

= 2(γ[µ)ab∂ν](−φ+ γ5π)

− (Σµνγ
ρ)ab∂ρφ+ (γ[µ)ab∂ν]φ

+ (Σµνγ
ργ5)ab∂ρπ + (γ[µ)ab∂ν]γ5π

= (Σµν) cb (−(γρ)ac∂ρφ+ (γργ5)ac∂ρπ)

= ΣµνQa · ψb
=⇒ [Mµν , Qa] · Φ = ΣµνQa · Φ

(5.13)

For Mµν , we find that the bracket is closed and c = Σµν . When both generators
are odd, we expect the bracket to produce an even generator. That is, [Qa, Qb]
should equal some linear combination c(γµ)abPµ + d(Σρσ)abMρσ. Since this is
an anticommutator, we expect the result to be symmetrical in all its indices [13,
Ch. 2], indicating that d = 0. Using the super-Jacobian on Qa, Qb, Pµ, we find
that:

43



[Pµ, [Qa, Qb]] = [[Pµ, Qa], Qb]− [Qa, [Pµ, Qb]]

=⇒ [Pµ, c(γ
µ)abPµ + d(Σρσ)abMρσ] = 0

=⇒ [Pµ, d(Σρσ)abMρσ] = d(Σρσ)ab(ηµρPσ − ηµσPρ) = 0

=⇒ d = 0

(5.14)

Thus, [Qa, Qb] = c(γµ)abPµ. To find the value of c, we can investigate [δε1 , δε2 ] ·
Φ. [3, p. 11]

[δε1 , δε2 ] · Φ = (δε1 · εb2Qb − δε2 · εa1Qa) · Φ
= (εb2Qbε

a
1Qa − εa1Qaεb2Qb) · Φ

= (εa1ε
b
2QbQa + εa1ε

b
2QaQb) · Φ

= εa1ε
b
2[Qa,Qb] · Φ

=⇒ [δε1 , δε2 ] = εa1ε
b
2[Qa,Qb]

(5.15)

To find [Qa, Qb] we can calculate [δε1 , δε2 ] using the Fierz identity.[3, A.4]

[δε1 , δε2 ] · φ = δε1 · εb2ψb − δε2 · εa1ψa
= εb2 /∂(φ+ πγ5)εa1

− εa1 /∂(φ+ πγ5)εb2

= εb2((γρ)ab∂ρφ) + (γργ5)ab∂ρπ)εa1

− εa1((γρ)ba∂ρφ+ (γργ5)ba∂ρπ)εb2

= −εa1((γρ)ab∂ρφ) + (γργ5)ab∂ρπ)εb2

− εa1((γρ)ab∂ρφ− (γργ5)ab∂ρπ)εb2

= −2εb1(γρ)ab∂ρφε
b
2

= εb1ε
b
2(−2(γρ)ab∂ρφ)

=⇒ [Qa, Qb] · φ = −2(γρ)ab∂ρφ

(5.16)

Note that γ5γµγ5 = −γµγ5γ5 = γµ.
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[δε1 , δε2 ] · π = δε1 · εb2γ5ψb − δε2 · εa1γ5ψa

= εb2γ5 /∂(φ+ πγ5)εa1

− εa1γ5 /∂(φ+ πγ5)εb2

= εb2((γ5γ
ρ)ab∂ρφ) + (γρ)ab∂ρπ)εa1

− εa1((γ5γ
ρ)ba∂ρφ+ (γρ)ba∂ρπ)εb2

= −εa1((γ5γ
ρ)ab∂ρφ) + (γρ)ab∂ρπ)εb2

− εa1(−(γ5γ
ρ)ab∂ρφ+ (γρ)ab∂ρπ)εb2

= −2εb1(γρ)ab∂ρπε
b
2

= εb1ε
b
2(−2(γρ)ab∂ρπ)

=⇒ [Qa, Qb] · π = −2(γρ)ab∂ρπ

(5.17)

[δε1 , δε2 ] · ψ = δε1 · /∂(φ+ πγ5)ε2

− δε2 · /∂(φ+ πγ5)ε1

= γρ ε̄1∂ρ(ψ + γ5ψ︸ ︷︷ ︸
scalar

γ5)ε2

− γρ ε̄2∂ρ(ψ + γ5ψ︸ ︷︷ ︸
scalar

γ5)ε1

= γρ∂ρ((ε2ε̄1 − ε1ε̄2) + γ5(ε2ε̄1 − ε1ε̄2)γ5)ψ

= γρ∂ρ((
1

2
ε̄2γ

µε1γµ −
1

4
ε̄2γ

µνε1γµν)

+ γ5(
1

2
ε̄2γ

µε1γµ −
1

4
ε̄2γ

µνε1γµν)γ5)ψ

= γρ∂ρ((
1

2
ε̄2γ

µε1γµ −
1

4
ε̄2γ

µνε1γµν)

+ (
1

2
ε̄2γ

µε1γµ +
1

4
ε̄2γ

µνε1γµν))ψ

= γρ∂ρ ε̄2γ
µε1︸ ︷︷ ︸

scalar

γµψ

= ε̄2γ
µε1γ

ργµ∂ρψ

= ε̄2γ
µε1(2δρµ − γµ γρ)∂ρψ︸ ︷︷ ︸

on-shell /∂ψ=0

= 2ε̄2γ
ρε1ψ

= εb1ε
b
2(−2(γρ)ab∂ρψ

=⇒ [Qa, Qb] · ψ = −2(γρ)ab∂ρψ

=⇒ [Qa, Qb] = −2(γρ)abPρ
(5.18)
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Since we had to appeal to the equations of motions, the bracket is only valid
on-shell.

To verify that the Poincaré superalgebra is closed, we need to check the
super-Jacobi identity.

[Pµ, [Pν , Qa]]− [[Pµ, Pν ], Qa]− [Pν , [Pµ, Qa]]

= 0− 0− 0

= 0

(5.19)

[Pµ, [Qa, Qb]]− [[Pµ, Qa], Qb]− [Qa, [Pµ, Qb]]

= [Pµ,∝P ]]− 0− 0

= 0

(5.20)

[Qa, [Qb, Qc]]− [[Qa, Qb], Qc] + [Qb, [Qa, Qc]]

= [Qa,∝P ]]− [∝P,Qc] + [Qb,∝P ]]

= 0

(5.21)

[Pρ, [Mµν , Qa]]− [[Pρ,Mµν ], Qa]− [Mµν , [Pρ, Qa]]

= [Pρ,∝Qa]− [∝P,Qa]− 0

= 0

(5.22)

[Mµν , [Mρσ, Qa]]− [[Mµν ,Mρσ], Qa]− [Mρσ, [Mµν , Qa]]

= [Mµν ,ΣρσQa]− [Σµν ,Σρσ]Qa − [Mρσ,ΣµνQa]

= (ΣµνΣρσ − [Σµν ,Σρσ]− ΣρσΣµν)Qa

= [Σµν ,Σρσ]− [Σµν ,Σρσ]

= 0

(5.23)

[Mµν , [Qa, Qb]]− [[Mµν , Qa], Qb]− [Qa, [Mµν , Qb]]

= [Mµν ,−2(γρ)abPρ]− [ΣµνQa, Qb]− [Qa,ΣµνQb]

= −2(γρ)ab(−ηρµPν + ηρνPµ) + (γµν)2(γρ)abPρ

= −2(γµPν − γνPµ) + 2(γµδ
ρ
ν − γνδρµ)Pρ

= 0

(5.24)

All the super-Jacobians are zero. Thus, the Poincaré superalgebra is closed.
In the Appendix, the conformal superalgebra has also been calculated. All

the brackets are calculated, except [S, S] and [Q,S] for which time became
an issue. All super-Jacobians are checked except the ones involves the two
mentioned brackets.
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6 Avenues of Future Research

In the introduction, we discussed the disturbing fact that no super particle has
ever been observed, although dark matter has been speculated to be a potential
candidate. One distinct possibility is that supersymmetry is simply wrong, and
there is no guarantee that the supersymmetry breaking option that is pursued
by many researchers today will be fruitful.

There is, however, a third avenue out of the quagmire, namely some hiterto
undiscovered reality constraint which excludes the possibility of observing super
particles in ordinary spacetime.

If such a reality constraint exists, it would be nice if it had some familiar
overarching algebraic structure in which supersymmetry would coherently fit.
Let us briefly consider some candidates.

First, it is worth noting that all the composition algebras have a Z2 graded
structure.

Let F = R+,R,C, andQ and ê = −1, i, j, and E. i, j, E are (split-)complex,
quaternionic and octonionic imaginaries respectively, where the (split)-imaginaries
squared equal (-)+1. Then the composition algebras can be written as F⊕ êF.
Then, if a, b ∈ Z2, F ∈ g0 and Fî ∈ g1 they form a Z2 graded structure where
ga × gb = ga+b.

Notice that the Z2 structure is nested hierarchically with four levels at the
level of octonions. The composition algebras are therefore an obvious candidate
for an overarching algebraic structure of supersymmetry.

It is worth noting that Clifford algebras by the demand for associativity
somewhat unnaturally leave out the octonions for consideration.

As we already saw in the section on Clifford Algebras, the octonions fulfill
the Clifford relation. Due to the amazing spherical symmetry of S7, octo-
nionic bivectors and trivectors also function as vectors. The octonionic anti-
associativity can be described as a form of anti-commutativity between vectors
and bivectors. That is, γ12γ3 = −γ3γ12 in the octonions, whereas in the as-
sociative Clifford algebras, γ12γ3 = γ3γ12. Thus, the octonions are able to al-
gebraically distinguish between left-handed and right handed volume elements
whereas they are smeared together as one in the Clifford algebras. If algebraic
chirality is an important reality constraint, the octonions are potentially able to
weed out half of the solutions that are found using ordinary Clifford algebras.

Another possible avenue using octonions is to extend the commutator rela-
tions to also include associators and anti-associators. The octonions satisfy the
following anti-associator relation:

γµ(γνγρ) + (γµγν)γρ = σ(δµνγρ − δµργν + δνργµ) (6.1)

For the split-octionons σ = 1 and -1 for the ordinary octionons. Granted, octo-
nions are far more difficult to work with than the other composition algebras, but
there exists only two real algebras that satisfy a completely antisymmetric triple
product (anti-associativity), namely the split-octonions and the octonions. This
promises that if there exists an octonionic solution, it will be unique and have
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a narrow solve path. That appears to be a worthy avenue of future research.

7 Summary

In this thesis, we’ve covered the mathematical preliminaries of supersymme-
tries and calculated the Poincaré and conformal superalgebras, and checked the
simplest non-trivial supersymmetry model, the Wess-Zumino model.

8 Appendix

8.1 Proof of Clifford Period

The following is a general proof. To find the proof of (), set s = n, t = 0 for
case 1, and s = 0, t = n for case 2.

Cl(s, t)⊗ Cl(0, 2) ∼= Cl(t, s+ 2)

Cl(s, t)⊗ Cl(2, 0) ∼= Cl(t+ 2, s)

Cl(s, t)⊗ Cl(1, 1) ∼= Cl(s+ 1, t+ 1)

(8.1)

We start by defining a set of matrices Γ from two Clifford algebras, γ =
Cl(s, t), s + t = n with a metric η = Diag(t, s) and σ=Cl(a,b),a+b=2 with
metric g = Diag(a, b), and σ3 = σ0σ1, the chirality matrix of Cl(a, b). The
elements of Γ are defined as follows:

Γi :=

{
γi ⊗ σ3 0 ≤ i ≤ n− 1
1n ⊗ σi−n n ≤ i ≤ n+ 1

The strategy is to prove that ΓiΓj + ΓjΓi satisfies the Clifford relation and
investigate its metric. The first step is to calculate ΓiΓj which is shown in the
table below. First note that σ2

3 = (−1)2(2−1)/2(−1)b = (−1)b+1. Second, note
from (3.51) that γµγ3 = −γ3γµ.

ΓiΓj 0 ≤ i ≤ n− 1 n ≤ i ≤ n+ 1

0 ≤ j ≤ n− 1 γiγj ⊗ (−1)b+112 =: AAij γj ⊗ σi−nσ3 =: ABij
n ≤ j ≤ n+ 1 γi ⊗ σ3σj−n =: BAij 1n ⊗ σi−nσj−n =: BBij

Let us now investigate the cross elements:

ABij +BAji = γj ⊗ σi−nσ3 + γj ⊗ σ3σi−n = 2γj ⊗ {σi−n, σ3}

For Cl(a, b),{σi−n, σ3} = 0. Thus,

ABij +BAji = 0

By index permutation, we therefore also have:

ABji +BAij = 0
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AAij +AAji 2ηij(−1)b+11n+2 0 ≤ i, j ≤ n− 1
ABij +BAji +BAij +ABji 0 mixed

BBij +BBji 2g(i−n)(j−n)1n+2 n ≤ i, j ≤ n+ 1

ΓiΓj + ΓjΓi 2hij1n+2 0 ≤ i, j ≤ n+ 1

Notice that for b = 0, 2 =⇒ (−1)b+1 = −1. The effect is that Cl(0, 2)
and Cl(2, 0) change the sign of the metric in AA, thereby mapping Cl(s, t) into
Cl(t, s) in this subsection of Γ. Consequently, since (−1)b+1 = 1 for b = 1,
Cl(s, t) remains unchanged for Cl(1, 1). Similarly, BB shows that the σ metric
is the same in all cases. Therefore, for b = 0, 2 it follows that h = (−η) ⊗ g ∼=
Diag(s + b, t + a), while for a = 1, h = η ⊗ g ∼= Diag(t + b, s + a). Combining
these results proves proposition (8.1).

8.2 Conformal Superalgebra

δωφ = ωπ

δωπ = −ωφ

δωψ =
1

2
ωγ5ψ

δωψ̄ =
1

2
ωγ5ψ

=
1

2
ωψ̄γ5

(8.2)

δωSkin = ω

∫
π�φ− φ�π − 1

2
ψ̄γ5 /∂ψ

= −1

2
ω

∫
ψa(γ5γρ)ab∂ρψ

b

=︸︷︷︸
IBP

1

2
ω

∫
∂ρψ

a(γ5γ
ρ)abψ

b

= −1

2
ω

∫
ψb(γ5γ

ρ)ab∂ρψ
a

=
1

2
ω

∫
ψb(γ5γ

ρ)ba∂ρψ
a

=
1

2
ω

∫
ψa(γ5γ

ρ)ab∂ρψ
b

= 0

(8.3)
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Pµ = ∂µ

MΦ
µν = 2x[µ∂ν]

Mφ
µν = MΦ

µν

Mψ/π
µν = MΦ

µν + Σµν

DΦ = xµ∂µ

Dφ/π = DΦ + 1

Dψ = DΦ + 3/2

KΦ
µ = 2xµx

ν∂ν − x2∂µ

Kφ/π
µ = KΦ

µ + 2xµ

Kψ
µ = KΦ

µ + 3xµ + 2xνΣµν

(8.4)

[D,Q] · φ = Dψ · ψ −Q · (Dφ · φ)

= (DΦ + 3/2)ψ − (DΦ + 1)ψ

=
1

2
ψ =

1

2
Q · φ

[D,Q] · π = Dψγ5 · ψ −Qa · (Dπ · π)

= (DΦ + 3/2)γ5ψ − (DΦ + 1)γ5ψ

=
1

2
γ5ψ =

1

2
Q · π

[D,Q] · ψ = Dφ/π · /∂(−φ+ γ5π)−Q · (Dψ · ψ)

= (/∂(DΦ + 1)− (DΦ + 3/2)/∂)(−φ+ γ5π)

= (γρδµρ∂µ −
1

2
/∂)(−φ+ γ5π)

=
1

2
/∂(−φ+ γ5π) =

1

2
Q · ψ

(8.5)

Thus, [D,Q] = 1
2Q.
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[Kµ, Q] · φ = Kψ
µ · ψ −Q · (Kφ

µ · φ)

= (KΦ
µ + 3xµ + 2xνΣµν)ψ − (KΦ

µ + 2xµ)ψ

= (xµ + 2xνΣµν)ψ

= (xµ + 2xνΣµν)Q · φ
[Kµ, Q] · π = Kψ

µ γ5 · ψ −Qa · (Kπ
µ · π)

= (KΦ
µ + 3xµ + 2xνΣµν)γ5ψ − (KΦ

µ + 2xµ)γ5ψ

= (xµ + 2xνΣµν)γ5ψ

= (xµ + 2xνΣµν)Q · φ
[Kµ, Qa] · ψb = Kφ/π

µ · /∂(−φ+ γ5π)−Q · (Kψ
µ · ψ)

= (/∂(KΦ
µ + 2xµ)− (KΦ

µ + 3xµ + 2xνΣµν)/∂)(−φ+ γ5π)

= (γρ(2ηρµ(xν∂ν + 1) + 2xµ∂ρ − 2xρ∂µ − xµ∂ρ)− 2xνΣµνγ
ρ∂ρ)(−φ+ γ5π)

= (2ηρµ(xν∂ν + 1) + xµ∂ρ − 2xρ∂µ)(−(γρ)abφ+ (γργ5)abπ)

− xν∂ρ(−(γµνγ
ρ)abφ+ (γµνγ

ργ5)abπ)

(8.6)

The ψ-relation does not resolve into Q, and so a new spinorial generator S is
needed. [3, Ch. 1] We define:

[Kµ, Qa] = (γµ) ba Sb (8.7)

To cancel γµ, we first note that 1
4 (γµ) ca (γµ)cb = 1

4δ
µ
µ(1)ab = (1)ab = Cab

and (γµ) ca (γµν)cb(= −γµγνµ) = δµµγν − δµνγµ = 3(γν)ab. We then note that
1
4 (γµ) ca (γµ) bc Sb = Sa. Furthermore, it is useful to note that (γµνγ

ρ)ab =
(γµν) ca (γρ)cb which after a transpose equals (γµν) ca (γρ)bc = (γµνγ

ρ)ba. So
(γµνγ

ρ) = (γµνγ
ρ)t. By a similar logic, (γµνγ

ργ5) = −(γµνγ
ργ5)t. Finally,

it is also useful to note that γµνγ
ρ = γ ρµν + γµδ

ρ
ν − γνδρµ
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Sa · φ =
1

4
(γµ) ca [Kµ, Qc] · φ

=
1

4
(γµ) ca (xµQc + 2xν(Σµν) bc )Qb) · φ

=
1

4
(γµxµ + 3xνγν)ψ

= xµγµψa

Sa · π =
1

4
γµ[Kµ, Qa] · π

= xµγµγ5ψa

Sa · ψb =
1

4
(γµ) ca [Kµ, Qc] · ψb

=
1

4
(γµ) ca

(
(2ηρµ(xν∂ν + 1) + xµ∂ρ − 2xρ∂µ)(−(γρ)cbφ+ (γργ5)cbπ)

− xν∂ρ(−(γµνγ
ρ)bcφ− (γµνγ

ργ5)bcπ)

)
=

1

4

(
(2ηρµ(xν∂ν + 1) + xµ∂ρ − 2xρ∂µ)(−(γµρ + ηµρ)abφ+ ((γµρ + ηµρ)γ5)abπ)

− xν∂ρ(−(γµγµνγ
ρ)baφ− (γµγµνγ

ργ5)baπ)

)
=

1

4

(
(7xν∂ν + 8)(−Cabφ+ (γ5)abπ)

+ 3xµ∂ρ(−(γµρ)abφ+ (γµργ5)abπ)

− xν∂ρ(−(γµ(−γ ρνµ + γµη
ρν − γνδρµ))baφ

− (γµ(−γ ρνµ + γµη
ρν − γνδρµ)γ5)baπ)

)
=

1

4

(
(7xν∂ν + 8)(−Cabφ+ (γ5)abπ)

+ 3xµ∂ρ(−(γµρ)abφ+ (γµργ5)abπ)

+ xν∂ρ(−(γνρ − 3ηρν))abφ

+ ((γνρ − 3ηρν)γ5)abπ)

)
=

1

4

(
(4xν∂ν + 8)(−Cabφ+ (γ5)abπ)

+ 4xµ∂ρ(−(γµρ)abφ+ (γµργ5)abπ)

)
= (xν∂ν + 2)(−Cabφ+ (γ5)abπ)

+ xµ∂ρ(−(γµρ)abφ+ (γµργ5)abπ)

(8.8)
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In summary,

Sa · φ = xµγµψa

Sa · π = xµγµγ5ψa

Sa · ψb = (xν∂ν + 2)(−Cabφ+ (γ5)abπ)

+ xµ∂ρ(−(γµρ)abφ+ (γµργ5)abπ)

(8.9)

[Pµ, Sa] · φ = Pµ · xργρψa − Sa · Pµφ
= xργρ∂µψa − ∂µ(xργρψa)

= −γµψa
= −PµQaφ

(8.10)

[Pµ, Sa] · π = Pµ · xργργ5ψa − Sa · Pµπ
= xργργ5∂µψa − ∂µ(xργργ5ψa)

= −γµγ5ψa

= −PµQaπ

(8.11)

[Pµ, Sa] · ψb = Pµ · (xν∂ν + 2)(−Cabφ+ (γ5)abπ)

+ xν∂ρ(−(γνρ)abφ+ (γνργ5)abπ)

− Sa · Pµψb
= −∂µ(−Cabφ+ (γ5)abπ)

− ∂ρ(−(γ ρµ )abφ+ (γ ρµ γ5)abπ)

= −∂µ(−Cabφ+ (γ5)abπ)

− ∂ρ(−(γµγ
ρ − δρµ)abφ+ ((γµγ

ρ − δρµ)γ5)abπ)

= −∂ρ(γµ) ca (−(γρ)cbφ+ (γργ5)cbπ)

= −PµQaψb
=⇒ [Pµ, Sa] = −PµQa

(8.12)

First note that γρµν = γµνρ and γργµν = γµνρ + ηρµγν − ηρνγµ. Then
γργµν = γµνγρ + 2ηρµγν − 2ηρνγµ. Similarly, γ5γµν = γµνγ5

[Mµν , Sa] · φ = Mψ
µν · xργρψa − Sa ·Mφ

µνφ

= xργρΣµνψa − (2x[µ∂ν]x
ρ)γρψa

= xρΣµνγρψa + 2x[µγν]ψa − 2x[µγν]ψa

= Σµνx
ργρψa

= (Σµν) ba Sb · φ

(8.13)
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[Mµν , Sa] · π = Mψ
µν · xργργ5ψa − Sa ·Mπ

µνπ

= xργργ5Σµνψa − (2x[µ∂ν]x
ρ)γργ5ψa

= xρΣµνγργ5ψa + 2x[µγν]ψa − 2x[µγν]ψa

= Σµνx
ργργ5ψa

= (Σµν) ba Sb · π

(8.14)

It will now be useful to recall from (3.75) that (γµνγ
ρσ)ab = 2(δσ[µγ

ρ
ν]−δ

ρ
[µγ

σ
ν] )ab.

Therefore, (Σµνγ
ρσ)ab = (−Σµνγ

ρσ + 2δσ[µγ
ρ
ν] − 2δρ[µγ

σ
ν] )ab.

[Mµν , Sa] · ψb = Mφ/π
µν · (xρ∂ρ + 2)(−Cabφ+ (γ5)abπ)

+ xρ∂σ(−(γρσ)abφ+ (γρσγ5)abπ)− Sa ·Mψ
µνψb

= (xρ∂ρ2x[µ∂ν])(−Cabφ+ (γ5)abπ)

+ (xρ∂σ2x[µ∂ν])(−(γρσ)abφ+ (γρσγ5)abπ)

− (2x[µ∂ν]x
ρ∂ρ)(−Cabφ+ (γ5)abπ)

− (2x[µ∂ν]xρ∂σ)(−(γρσ)abφ+ (γρσγ5)abπ)

− ΣµνSaψb

= (2x[µ∂ν])(−Cabφ+ (γ5)abπ)

+ (xρ2ησ[µ∂ν])(−(γρσ)abφ+ (γρσγ5)abπ)

− (2x[µ∂ν])(−Cabφ+ (γ5)abπ)

− (2x[µην]ρ∂σ)(−(γρσ)abφ+ (γρσγ5)abπ)

− (Σµν) ca (xρ∂ρ + 2)(−Ccbφ+ (γ5)cbπ)

− xρ∂σ(−(Σµνγ
ρσ)abφ+ (Σµνγ

ρσγ5)abπ)

= (−2xρ∂[µην]σ)((γσρ)abφ− (γσργ5)abπ)

− (2x[µην]ρ∂σ)(−(γρσ)abφ+ (γρσγ5)abπ)

+ (Σµν) ca (xρ∂ρ + 2)(−Cbcφ+ (γ5)bcπ)

− xρ∂σ(−(−Σµνγ
ρσ + 2δσ[µγ

ρ
ν] − 2δρ[µγ

σ
ν] )abφ

+ (−Σµνγ
ρσγ5 + 2δσ[µγ

ρ
ν]γ5 − 2δρ[µγ

σ
ν]γ5)abπ)

= (xρ∂ρ + 2)(−(Σµν)baφ+ (Σµνγ5)baπ)

+ xρ∂σ((−Σµνγ
ρσ)abφ+ (Σµνγ

ρσγ5)abπ)

= (xρ∂ρ + 2)(−(Σµν)abφ+ (Σµνγ5)abπ)

+ xρ∂σ((−Σµνγ
ρσ)abφ+ (Σµνγ

ρσγ5)abπ)

= (Σµν) ca Sc · ψb
=⇒ [Mµν , Sa] = (Σµν) ba Sb

(8.15)
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[D,Sa] · φ = Dψ · xργρψa − Sa ·Dφφ

=
1

2
xργρψa − (xµ∂µx

ρ)γρψa

=
1

2
xµγµψa − xµγµψa

= −1

2
xµγµψa

= −1

2
Sa · φ

(8.16)

[D,Sa] · π = Dψ · xργργ5ψa − Sa ·Dππ

=
1

2
xργργ5ψa − (xµ∂µx

ρ)γργ5ψa

= −1

2
xµγµγ5ψa

= −1

2
Sa · π

(8.17)

[D,Sa] · ψb = Dφ/π · (xν∂ν + 2)(−Cabφ+ (γ5)abπ)

+ xρ∂σ(−(γρσ)abφ+ (γρσγ5)abπ)− Sa ·Dψψb

= (xν∂νx
µ∂µ)(−Cabφ+ (γ5)abπ)

+ (xρ∂σx
µ∂µ)(−(γρσ)abφ+ (γρσγ5)abπ)

− (xµ∂µx
ν∂ν)(−Cabφ+ (γ5)abπ)

− (xµ∂µxρ∂σ)(−(γρσ)abφ+ (γρσγ5)abπ)

− 1

2
Sa · ψb

= −1

2
Sa · ψb

=⇒ [D,Sa] = −1

2
Sa

(8.18)

One useful observation is that xνxρ is symmetric in the indices ν ↔ ρ while
γρνµ is antisymmetric, and therefore xνxργρνµ vanishes. Also, note from (3.54)
that γ5γµν = γµνγ5.
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[Kµ, Sa] · φ = Kψ
µ · xργρψa − Sa ·Kφφ

= −(2xµx
ν∂ν − x2∂µ)xργρψa + (xµ + 2xνΣµν)Sa · φ

= −(2xµx
νγν − x2γµ)ψa + xργρ(xµ + 2xνΣµν)ψa

= (x2γµ − xµxνγν − xνxργργνµ)ψa

= (x2γµ − xµxνγν − xνxρ(γρνµ + ηρνγµ − ηρµγν))ψa

= (x2γµ − xµxνγν − xνxνγµ + xνxµγν))ψa

= 0

[Kµ, Sa] · π = Kψ
µ · xργργ5ψa − Sa ·Kππ

= −(2xµx
νγν − x2γµ)γ5ψa + xργργ5(xµ + 2xνΣµν)ψa

= (x2γµ − xµxνγν − xνxργργνµ)γ5ψa

= (x2γµ − xµxνγν − xνxρ(γρνµ + ηρνγµ − ηρµγν))ψa

= (x2γµ − xµxνγν − xνxνγµ + xνxµγν))ψa

= 0

(8.19)

Using (3.74) we can rewrite (2Σµν) ca (−Ccb+(γ5)cb) as (Σµν) ca (−Ccb+(γ5)cb)+
(Σµν) ca (Cbc−(γ5)bc). This equals (−Σµν)ab+(Σµν)ba+(Σµνγ5)ab−(Σµνγ5)ba =
0. Furthermore, for this calculation it is an advantage to rewrite (γµνγ

ρσ)ab =
2(δσ[µγ

ρ
ν] − δ

ρ
[µγ

σ
ν] )ab as 2(δσ[µγν]γ

ρ − δρ[µγν]γ
σ)ab -2(δσ[µδ

ρ
ν] − δ

ρ
[µδ

σ
ν] )ab.
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[Kµ, Sa] · ψb = Kφ/π
µ · ((xρ∂ρ + 2)(−Cabφ+ (γ5)abπ)

+ xρ∂σ(−(γρσ)abφ+ (γρσγ5)abπ))− Sa ·Kψψb

= ((xρ∂ρ)(2xµx
ν∂ν − x2∂µ + 2xµ)

− (2xµx
ν∂ν − x2∂µ)(xρ∂ρ))(−Cabφ+ (γ5)abπ)

+ ((xρ∂σ)(2xµx
ν∂ν − x2∂µ + 2xµ)

− (2xµx
ν∂ν − x2∂µ)(xρ∂σ))(−(γρσ)abφ+ (γρσγ5)abπ))

− (xµ + 2xνΣµν)((xρ∂ρ + 2)(−Cabφ+ (γ5)abπ)

+ xρ∂σ(−(γρσ)abφ+ (γρσγ5)abπ))

= (4xµx
ν∂ν − 2x2∂µ + 2xµ

− 2xµx
ν∂ν + x2∂µ)(−Cabφ+ (γ5)abπ)

+ (2(ησµx
ν + δνσxµ)xρ∂ν − 2xρxσ∂µ + 2xρησµ

− (2xµxρ∂σ − x2ηµρ∂σ + xµxρ∂σ))(−(γρσ)abφ+ (γρσγ5)abπ))

− (xµx
ρ∂ρ + 2xµ)((−Cabφ+ (γ5)abπ)

+ xνxρ∂σ(−(γµνγ
ρσ)abφ+ (γµνγ

ρσγ5)abπ))

= (xµx
ν∂ν − x2∂µ)(−Cabφ+ (γ5)abπ)

+ (2ησµx
νxρ∂ν + xµxρ∂σ + 2xρησµ

+ x2ηµρ∂σ − xµxρ∂σ)(−(γρσ)abφ+ (γρσγ5)abπ))

− (xνxρ∂σ(−2δσ[µγν]γ
ρ + 2δρ[µγν]γ

σ + 2δσ[µδ
ρ
ν] − 2δρ[µδ

σ
ν] )abφ

+ ((2δσ[µγν]γ
ρ − 2δρ[µγν]γ

σ − 2δσ[µδ
ρ
ν] + 2δρ[µδ

σ
ν] )γ5)abπ))

= (2xνx[µ∂ν])(−Cabφ+ (γ5)abπ)

+ (2ησµx
νxρ∂ν + 2xρησµ

+ x2ηµρ∂σ)(−(γρσ)abφ+ (γρσγ5)abπ))

− (xνxρ∂σ(−2(δσ[µγ
ρ
ν] − δ

ρ
[µγ

σ
ν] )abφ+ 2((δσ[µγ

ρ
ν] − δ

ρ
[µγ

σ
ν] )γ5)abπ))

= 0

=⇒ [Kµ, Sa] = 0

(8.20)

Sa · φ = xµγµψa

Sa · π = xµγµγ5ψa

Sa · ψb = (xν∂ν + 2)(−Cabφ+ (γ5)abπ)

+ xρ∂σ(−(γρσ)abφ+ (γρσγ5)abπ)

(8.21)

For the next calculation it is again useful to employ (3.74), this time for the
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term (γµγ
ρσγ5)ab.

(γµγ
ρσγ5)ab = (γµγ5γ

ρσ)ab = (γµγ5)ac(γ
ρσ) cb

= −(γµγ5)ca(γρσ) cb = −(γµγ5γ
ρσ)ba

= −(γµγ
ρσγ5)ba

(8.22)

So the term is antisymmetric. Since Sa is odd, we will need to use the anticom-
mutator.

[Sa, Sb] · φ = 2S(a · xµγµψb)
= 2((xµ)(xν∂ν + 2))((γµ)(ba)φ+ (γµγ5)(ab)π)

+ 2((xµ)xρ∂σ)(−(γµγ
ρσ)(ab)φ+ (γµγ

ρσγ5)(ab)π)

= 2(xµ(xν∂ν + 2))((γµ)abφ)

+ 2(xµxρ∂σ)(−(γ ρσµ + δρµγ
σ − δσµγρ)(ab)φ)

= 2(xµx
ν∂ν + 2xµ)(γµ)abφ

+ 2(−xνxν∂µ + xµx
ν∂ν)(γµ)abφ

= 2(2xµx
ν∂ν − xνxν∂µ + 2xµ)(γµ)abφ

= 2(γµ)abKµ · φ

(8.23)

[Sa, Sb] · π = 2S(a · xµγµγ5ψb)

= 2((xµ)(xν∂ν + 2))(−(γµγ5)(ab)φ− (γµγ5γ5)(ba)π)

+ 2((xµ)xρ∂σ)(−(γµγ5γ
ρσ)(ab)φ+ (γµγ5γ

ρσγ5)(ab)π)

= 2((xµ)(xν∂ν + 2))(γµ)abπ

+ 2((xµ)xρ∂σ)(−(γµγ
ρσ)(ab)π)

= 2(γµ)abKµ · π

(8.24)

δζφ = ζ̄xργρψ

δζπ = ζ̄xµγµγ5ψ

δζψ = −/∂(φ+ πγ5)xµγµζ − 2(φ− πγ5)ζ

(8.25)
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[δζ1 , δζ2 ] · ψ = δζ1 · (−/∂(φ+ πγ5)xµγµζ2 − 2(φ− πγ5)ζ2)

− δζ2 · (−/∂(φ+ πγ5)xµγµζ1 − 2(φ− πγ5)ζ1)

= (−/∂(ζ̄1x
ργρψ + ζ̄1x

ργργ5ψγ5)xµγµζ2 − 2(ζ̄1x
ργρψ − ζ̄1xργργ5ψγ5)ζ2)

− (−/∂(ζ̄2x
ργρψ + ζ̄2x

ργργ5ψγ5)xµγµζ1 − 2(ζ̄2x
ργρψ − ζ̄2xργργ5ψγ5)ζ1)

= (−γν∂ν((ζ2ζ̄1 − ζ1ζ̄2)xργρψ + γ5(ζ2ζ̄1 − ζ1ζ̄2)xργργ5ψ)xµγµ

− 2((ζ2ζ̄1 − ζ1ζ̄2)xργρψ − γ5(ζ2ζ̄1 − ζ1ζ̄2)xργργ5ψ))

= −γν∂ν(ζ̄2γ
κζ1γκ)xργρψx

µγµ − 2ζ̄2γ
κζ1γκ)xργρψ

= −(ζ̄2γ
κζ1)(γνγκ∂νx

ρxµγρψγµ + 2γκx
ργρψ)

= ζ1ζ2γ
κ(γνγκ∂νx

ρxµγρψγµ + 2γκx
ργρψ)

= −ζ1ζ22γν(∂νx
ρxµγρ)ψγµ + 8xργρψ)

(8.26)

Qa · φ = ψa

Qa · π = (γ5)baψb = γ5ψa

Qa · ψb = −(γρ)ab∂ρφ+ (γργ5)ab∂ρπ

(8.27)

[Qa, Sb] · φ = Qa · xνγνψb + Sbψa

= xνγν(−(γµ)ba∂µφ− (γµγ5)ba∂µπ)

+ (xν∂ν + 2)(−Cbaφ+ (γ5)baπ)

+ xµ∂ν(−(γµν)baφ+ (γµνγ5)baπ)

= xν∂µ(−(γνµ + ηνµ)baφ− (ηνµγ5)baπ))

+ (xν∂ν + 2)(Cabφ− (γ5)abπ)

+ xµ∂ν(−(γµν)abφ)

= xν∂µ((γµν + ηνµ)abφ) + xµ∂µ(γ5)abφ)

+ (xν∂ν + 2)(Cabφ− (γ5)abπ)

+ xµ∂ν(−(γµν)abφ)

= −(xµ∂ν − xν∂µ)((γµν)abφ)

+ 2(xν∂ν + 1)Cabφ− 2(γ5)abπ

= −Mφ
µν(γµν)abφ+ 2DφCabφ− 2(γ5)abR

φ

(8.28)

To achieve algebraic closure we must define another generator R such that R·φ =
π.
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[Qa, Sb] · π = Qa · xνγνγ5ψb + Sbγ5ψa

= xνγνγ5(−(γµ)ba∂µφ+ (γ5γ
µ)ba∂µπ)

+ γ5(xν∂ν + 2)(−Cbaφ+ (γ5)baπ)

+ γ5xµ∂ν(−(γµν)baφ+ (γ5γ
µν)baπ)

= xν∂µ((ηνµγ5)baφ− (ηνµ + γνµ)baπ))

+ (xν∂ν + 2)((γ5)abφ+ Cabπ)

+ xµ∂ν(γ5γ5γ
µν)abπ)

= −xµ∂µ(γ5)abφ+ xν∂µ(ηνµ + γµν)abπ

+ (xν∂ν + 2)((γ5)abφ+ Cabπ)

+ xµ∂ν(−(γµν)abπ)

= −(xµ∂ν − xν∂µ)((γµν)abπ)

+ 2(xν∂ν + 1)Cabπ + 2(γ5)abφ

= −Mπ
µν(γµν)abπ + 2DπCabπ − 2(γ5)abR

π

(8.29)

To achieve algebraic closure we must define Rπ such that R · π = −φ.

R · φ = π

R · π = −φ

R · ψ =
1

2
γ5ψ

(8.30)

We need to check the brackets between R and the other generators to see if
they are closed. Since R maps spin 0/ 1

2 fields to spin 0/ 1
2 fields respectively, R

must therefore have spin 0, and belong to g0 which means that only commutators
will be needed in the algebra involving R.

[Pµ, R] · φ = Pµ · π −R · Pµφ
= 0

[Pµ, R] · π = −Pµ · φ−R · Pµπ
= 0

[Pµ, R] · ψ = Pµ ·
1

2
γ5ψ −R · Pµψ

= 0

=⇒ [Pµ, R] = 0

(8.31)
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[Mµν , R] · φ = Mπ
µν · π −R ·Mφ

µνφ

= 0

[Mµν , R] · π = −Mφ
µν · φ−R ·Mπ

µνπ

= 0

[Mµν , R] · ψ = Mψ
µν ·

1

2
γ5ψ −R ·Mψ

µνψ

= 0

=⇒ [Mµν , R] = 0

(8.32)

[D,R] · φ = Dπ · π −R ·Dφφ

= 0

[D,R] · π = −Dφ · φ−R ·Dππ

= 0

[D,R] · ψ = Dψ · 1

2
γ5ψ −R ·Mψ

µνψ

= 0

=⇒ [D,R] = 0

(8.33)

[Kµ, R] · φ = Kπ
µ · π −R ·Kφ

µφ

= 0

[Kµ, R] · π = −Kφ
µ · φ−R ·Kπ

µπ

= 0

[Kµ, R] · ψ = Kψ
µ ·

1

2
γ5ψ −R ·Mψ

µνψ

= 0

=⇒ [Kµ, R] = 0

(8.34)

[R,R] · φ = Rπ · π −R ·Rφφ
= 0

[R,R] · π = −Rφ · φ−R ·Rππ
= 0

[R,R] · ψ = Rψ · 1

2
γ5ψ −R ·Rψψ

= 0

=⇒ [R,R] = 0

(8.35)
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With all the bosonic generators G, Gφ = Gπ and there are no spacetime
dependencies in any of the products of R. Therefore all brackets trivially equal
zero, including [R,R]. Things only get interesting with the fermionic super-
charges.

[R,Q] · φ = Rψ · ψ −Q ·Rφφ

=
1

2
γ5ψ − γ5ψ = −1

2
γ5ψ

= −1

2
γ5Q · φ

[R,Q] · π = Rψ · γ5ψ −Q ·Rππ

=
1

2
γ5γ5ψ + ψ =

1

2
ψ

= −1

2
γ5Q · π

[R,Q] · ψ = Rφ/π · /∂(−φ+ γ5π)−R ·Rψψ

= /∂(−π − γ5φ)−Q · 1

2
γ5ψ

= /∂(−π − γ5φ)− 1

2
/∂(−γ5φ+ γ5γ5π)

=
1

2
/∂(−γ5φ− π)

= −1

2
γ5Q · ψ

=⇒ [R,Q] = −1

2
γ5Q

(8.36)

[R,Sa] · φ = Rψ · xµγµψa − Sa ·Rφφ

= xµγµ
1

2
γ5ψa − xµγµγ5ψa

= −1

2
xµγµγ5ψa

=
1

2
γ5x

µγµψa

=
1

2
γ5Sa · φ

(8.37)
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[R,Sa] · π = Rψ · xµγµγ5ψa − Sa ·Rππ

= xµγµγ5
1

2
γ5ψa + xµγµψa

= −xµγ5γµ
1

2
γ5ψa + xµγ5γµγ5ψa

=
1

2
γ5x

µγµγ5ψa

=
1

2
γ5Sa · π

(8.38)

[R,Sa] · ψb = Rφ/π · ((xν∂ν + 2)(−Cabφ+ (γ5)abπ)

+ xµ∂ρ(−(γµρ)abφ+ (γµργ5)abπ))− Sa ·Rψψb
= (xν∂ν + 2)(−Cabπ − (γ5)abφ)

+ xµ∂ρ(−(γµρ)abπ − (γµργ5)abφ)

− 1

2
((xν∂ν + 2)(−(γ5)abφ− Cabπ)

+ xµ∂ρ(−(γµργ5)abφ− (γµρ)abπ))

=
1

2
((xν∂ν + 2)(−(γ5)abφ+ (γ5γ5)abπ)

+ xµ∂ρ(−(γ5γ
µρ)abφ+ (γ5γ

µργ5)abπ))

=
1

2
γ5Sa · ψb

=⇒ [R,Sa] =
1

2
γ5Sa

(8.39)

The super-Jacobi identity

[Pµ, [D,Qa]]− [[Pµ, D], Qa]− [D, [Pµ, Qa]]

= [Pµ,∝Qa]− [Pµ, Qa]− 0

= 0

(8.40)

[Mµν , [D,Qa]]− [[Mµν , D], Qa]− [D, [Mµν , Qa]]

= [Mµν ,
1

2
Qa]− 0− [D,ΣµνQa]

=
1

2
ΣµνQa − Σµν

1

2
Qa

= 0

(8.41)

[D, [D,Qa]]− [[D,D], Qa]− [D, [D,Qa]]

= [D,
1

2
Qa]− 0− [D,

1

2
Qa]

= 0

(8.42)

63



[D, [Qa, Qb]]− [[D,Qa], Qb]− [Qa, [D,Qb]]

= [D,−2(γρ)abPρ]− [
1

2
Qa, Qb]− [Qa,

1

2
Qb]

= 2(γρ)abPρ − 2(γρ)abPρ

= 0

(8.43)

[Pµ, [Kν , Qa]]− [[Pµ,Kν ], Qa]− [Kν , [Pµ, Qa]]

= [Pµ,−γνSa]− [−2(ηµνD −Mµν), Qa]− 0

= −γνγµQa + ηµνQa − γµνQa
= 0

(8.44)

[Mµν , [Kρ, Qa]]− [[Mµν ,Kρ], Qa]− [[Kρ, [Mµν , Qa]]

= [Mµν ,−γρSa]− [−(ηρνKµ − ηρµKν), Qa]− [Kρ,ΣµνQa]

= −γρΣµνSa − (ηρνγµ − ηρµγν)Sa + ΣµνγρSa

= (ηρνγµ − ηρµγν)Sa − (ηρνγµ − ηρµγν)Sa

= 0

(8.45)

[D, [Kρ, Qa]]− [[D,Kρ], Qa]− [Kρ, [D,Qa]]

= [D,−γρSa]− [−Kρ, Qa]− [Kρ,
1

2
Qa]

=
1

2
γρSa − γρSa +

1

2
γρSa

= 0

(8.46)

[Kσ, [Kρ, Qa]]− [[Kσ,Kρ], Qa]− [Kρ, [Kσ, Qa]]

= [Kσ,∝Sa]− 0− [Kρ,∝Sa]

= 0− 0

= 0

(8.47)

64



[Kρ, [Qa, Qb]]− [[Kρ, Qa], Qb]− [Qa, [Kρ, Qb]]

= [Kρ,−2(γσ)abPσ]− [−γσSa, Qb]− [Qa,−γσSb]
= 2(γρ)ab(2ηρσD − 2Mρσ)

− (2(γσ)baD − 2(γσγ5)baR+ (γσγ
µν)baMµν)

− (2(γσ)abD − 2(γσγ5)abR+ (γσγ
µν)abMµν)

= 4(γσ)abD − 4(γρ)abMρσ

− 4(γσ)abD + (δµσγ
ν − δνσγµ)abMµν

+ (δµσγ
ν − δνσγµ)abMµν

= −4(γρ)abMρσ

+ 2(γν)abMσν + 2(γµ)abMσµ

= 0

(8.48)

[Pµ, [Pν , Sa]]− [[Pµ, Pν ], Sa]− [Pν , [Pµ, Sa]]

= [Pµ, γνQa]− 0− [Pν , γµQa]

= 0

(8.49)

The next is solved like (8.48).

[Pµ, [Sa, Sb]]− [[Pµ, Sa], Sb]− [Sa, [Pµ, Sb]]

= [Pµ, 2γ
ν
abKν ]− [γµQa, Sb]− [Sa, γµQb]

= −4γνab(ηµνD − 2Mµν)− [γµQa, Sb]− [Sa, γµQb]

= 0

(8.50)

[Sc, [Sa, Sb]]− [[Sc, Sa], Sb] + [Sa, [Sc, Sb]]

= [Sc, 2γ
ν
abKν ]− [2γνcaKν , Sb] + [Sa, 2γ

ν
cbKν ]

= 0

(8.51)

This one is solved similarly to (8.45).

[Pρ, [Mµν , Sa]]− [[Pρ,Mµν ], Sa]− [Mµν , [Pρ, Sa]]

= [Pρ,ΣµνSa]− [ηρνPµ − ηρµPν , Sa]− [Mµν , γρQa]

= ΣµνγρQa − ηρνγµQa + ηρµγνQa − γρΣµνQa
= 0

(8.52)

[Mρσ, [Mµν , Sa]]− [[Mρσ,Mµν ], Sa]− [Mµν , [Mρσ, Sa]]

= [Mρσ,ΣµνSa]− [Σρσ,Σµν ]Sa − [Mµν ,Σρσ, Sa]

= ΣµνΣρσSa]− [Σρσ,Σµν ]Sa − ΣρσΣµνSa

= 0

(8.53)
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Analogous to (5.24):

[Mρσ, [Sa, Sb]]− [[Mρσ, Sa], Sb]− [Sa, [Mρσ, Sb]]

= [Mρσ, 2γ
µKµ]− [ΣρσSa, Sb]− [Sa,ΣρσSb]

= [Mρσ, 2γ
µKµ]− Σρσ2γµKµ − Σρσ2γµKµ

= 2γµ(ηρµKσ − ησµKρ)− 2γρσγ
µKµ

= 0

(8.54)

[Pρ, [D,Sa]]− [[Pρ, D], Sa]− [D, [Pρ, Sa]]

= [Pρ,−
1

2
Sa]− [−Pµ, Sa]− [D, γρQa]

= −1

2
γρQa + γρQa −

1

2
γρQa

= 0

(8.55)

[Mµν , [D,Sa]]− [[Mµν , D], Sa]− [D, [Mµν , Sa]]

= [Mµν ,−
1

2
Sa]− 0− [D,ΣµνSa]

= −1

2
ΣµνSa +

1

2
ΣµνSa

= 0

(8.56)

[D, [D,Sa]]− [[D,D], Sa]− [D, [D,Sa]]

= [D,−1

2
Sa]− 0− [D,−1

2
Sa]

= 0

(8.57)

[D, [Sa, Sb]]− [[D,Sa], Sb]− [Sa, [D,Sb]]

= [D, 2γµKµ]− [−1

2
Sa, Sb]− [Sa,−

1

2
Sb]

= −2γµKµ + γµKµ + γµKµ

= 0

(8.58)

[Pµ, [Kν , Sa]]− [[Pµ,Kν ], Sa]− [Kν , [Pµ, Sa]]

= 0− [−2(ηµνD − 2Mµν), Sa]− [Kν , γµQa]

= −ηµνSa − γµνSa + γµγνSa

= 0

(8.59)

[Mρσ, [Kν , Sa]]− [[Mρσ,Kν ], Sa]− [Kν , [Mρσ, Sa]]

= 0− [∝Kρ, Sa]− [Kν ,∝Sa]

= 0

(8.60)
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[D, [Kν , Sa]]− [[D,Kν ], Sa]− [Kν , [D,Sa]]

= 0− [∝Kρ, Sa]− [Kν ,∝Sa]

= 0

(8.61)

[Kµ, [Kν , Sa]]− [[Kµ,Kν ], Sa]− [Kν , [Kµ, Sa]]

= 0− 0− 0

= 0

(8.62)

[Kµ, [Sa, Sb]]− [[Kµ, Sa], Sb]− [Sa, [Kµ, Sa]]

= [Kρ,∝Kρ]− 0− 0

= 0

(8.63)

[Pρ, [Qa, Sb]]− [[Pρ, Qa], Sb]− [Qa, [Pρ, Sb]]

= [Pρ,−(2CabD − 2(γ5)abR+ (γµν)abMµν)]− 0− [Qa, γρQb]

= 2CabPρ − (γµρ)abPµ + (γ νρ )abPν + 2(γµγρ)baPµ

= 2CabPρ − 2(γµρ)abPµ + 2(γµρ)abPµ − 2CabPρ

= 0

(8.64)

[Mρσ, [Qa, Sb]]− [[Mρσ, Qa], Sb]− [Qa, [Mρσ, Sb]]

= [Mρσ,−(2CabD − 2(γ5)abR+ (γµν)abMµν)]

− [ΣρσQa, Sb]− [Qa,ΣρσSb]

= −(γµν)ab[Mρσ,Mµν ] + γρσ(γµν)abMµν

= −(2γ µρ Mµσ − 2γ νσ Mνρ) + (2γ µρ Mµσ − 2γ νσ Mνρ)

= 0

(8.65)

[D, [Qa, Sb]]− [[D,Qa], Sb]− [Qa, [D,Sb]]

= [D,−(2CabD − 2(γ5)abR+ (γµν)abMµν)]

− [
1

2
Qa, Sb]− [Qa,−

1

2
Sb]

= −(γµν)ab[Mρσ,Mµν ] + γρσ(γµν)abMµν

= −(2γ µρ Mµσ − 2γ νσ Mνρ) + (2γ µρ Mµσ − 2γ νσ Mνρ)

= 0

(8.66)
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[Kρ, [Qa, Sb]]− [[Kρ, Qa], Sb]− [Qa, [Kρ, Sb]]

= [Kρ,−(2CabD − 2(γ5)abR+ (γµν)abMµν)]

− [−γρSa, Sb]− 0

= 2CabKρ − (γµν)ab(ηρνKµ − ηρµKν) + 2(γµγρ)baKµ

= 0

= 2CabKρ − 2(γµρ)abKµ + 2(γµρ)abKµ − 2CabKρ

= 0

(8.67)

[Qc, [Qa, Sb]]− [[Qc, Qa], Sb] + [Qa, [Qc, Sb]]

= [Qc,−(2CabD − 2(γ5)abR+ (γµν)abMµν)]

− [−2(γρ)caPρ, Sb]

+ [Qa,−(2CcbD − 2(γ5)cbR+ (γµν)cbMµν)]

= CabQc + (γ5)ab(γ5)Qc + (γµν)abΣµν)Qc

+ 2(γργρ)caQb

+ CcbQa + (γ5)cb(γ5)Qa + (γµν)cbΣµν)Qa

= (γµν)abΣµνQc + (γµν)cbΣµνQa

= (δν[µγ
µ
ν] − δ

µ
[µγ

ν
ν])abQc + (δν[µγ

µ
ν] − δ

µ
[µγ

ν
ν])cbQa

= 0

(8.68)

[Qc, [Sa, Sb]]− [[Qc, Sa], Sb] + [Sa, [Qc, Sb]]

= [Qc, (γ
µ)abKµ]

− [−(2CcaD − 2(γ5)caR+ (γµν)caMµν), Sb]

+ [Sa,−(2CcbD − 2(γ5)cbR+ (γµν)cbMµν)]

= (γµ)abγµSc

− CcaSb − (γ5)caγ5Sb + (γµν)caΣµνSb

− CcbSa − (γ5)cbγ5Sa + (γµν)cbΣµνSa

= (γµν)caΣµνSb + (γµν)cbΣµνSa

= (δν[µγ
µ
ν] − δ

µ
[µγ

ν
ν])abSc + (δν[µγ

µ
ν] − δ

µ
[µγ

ν
ν])cbSa

= 0

(8.69)

[Pµ, [Pν , R]]− [[Pµ, Pν ], R]− [Pν , [Pµ, R]]

= 0− 0− 0

= 0

(8.70)

[Pµ, [R,R]]− [[Pµ, R], R]− [R, [Pµ, R]]

= 0− 0− 0

= 0

(8.71)
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[R, [R,R]]− [[R,R], R]− [R, [R,R]]

= 0− 0− 0

= 0

(8.72)

[Pµ, [Mρν , R]]− [[Pµ,Mρν ], R]− [Mρν , [Pµ, R]]

= 0− [∝Pµ, R]− 0

= 0

(8.73)

[Mµσ, [Mρν , R]]− [[Mµσ,Mρν ], R]− [Mρν , [Mµσ, R]]

= 0− [∝Mµ, R]− 0

= 0

(8.74)

[Mµσ, [R,R]]− [[Mµσ, R], R]− [R, [Mµσ, R]]

= 0− 0− 0

= 0

(8.75)

[Pµ, [D,R]]− [[Pµ, D], R]− [D, [Pµ, R]]

= 0− [∝ P,R]− 0

= 0

(8.76)

[Mµν , [D,R]]− [[Mµν , D], R]− [D, [Mµν , R]]

= 0− 0− 0

= 0

(8.77)

[D, [D,R]]− [[D,D], R]− [D, [D,R]]

= 0− 0− 0

= 0

(8.78)

[D, [R,R]]− [[D,R], R]− [D, [R,R]]

= 0− 0− 0

= 0

(8.79)

[Pµ, [Kν , R]]− [[Pµ,Kν ], R]− [Kν , [Pµ, R]]

= 0− [∝D+ ∝M,R]− 0

= 0

(8.80)
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[Mµν , [Kρ, R]]− [[Mµν ,Kρ], R]− [Kρ, [Mµν , R]]

= 0− [∝K,R]− 0

= 0

(8.81)

[D, [Kρ, R]]− [[D,Kρ], R]− [Kρ, [D,R]]

= 0− [∝K,R]− 0

= 0

(8.82)

[Kσ, [Kρ, R]]− [[Kσ,Kρ], R]− [Kρ, [Kσ, R]]

= 0− 0− 0

= 0

(8.83)

[Kσ, [R,R]]− [[Kσ, R], R]− [R, [Kσ, R]]

= 0− 0− 0

= 0

(8.84)

[Pµ, [Qa, R]]− [[Pµ, Qa], R]− [Qa, [Pµ, R]]

= [Pµ,∝Qa]]− 0− 0

= 0

(8.85)

[Mµν , [Qa, R]]− [[Mµν , Qa], R]− [Qa, [Mµν , R]]

= [Mµν ,
1

2
γ5Qa]− [ΣµνQa, R]− 0

=
1

2
γ5ΣµνQa − Σµν

1

2
γ5Qa

= 0

(8.86)

[D, [Qa, R]]− [[D,Qa], R]− [Qa, [D,R]]

= [D,
1

2
γ5Qa]− [

1

2
Qa, R]− 0

=
1

4
γ5Qa −

1

4
γ5Qa

= 0

(8.87)

[Kµ, [Qa, R]]− [[Kµ, Qa], R]− [Qa, [Kµ, R]]

= [Kµ,
1

2
γ5Qa]− [−γµSa, R]− 0

= −1

2
γ5γµSa − γµ

1

2
γ5Sa

=
1

2
γµγ5Sa −

1

2
γµγ5Sa

= 0

(8.88)
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[Qa, [Qb, R]]− [[Qa, Qb], R] + [Qb, [Qa, R]]

= [Qa,
1

2
γ5Qb]− [∝Pµ, R] + [Qb,

1

2
γ5Qa]

=
1

2
(γ5γ

µ)abPµ +
1

2
(γ5γ

µ)baPµ

= 0

(8.89)

[Qa, [R,R]]− [[Qa, R], R]− [R, [Qa, R]]

= 0− [
1

2
γ5Qa, R]− [R,

1

2
γ5Qa]

= −1

4
γ5γ5Qa +

1

4
γ5γ5Qa

= 0

(8.90)

[Pµ, [Sa, R]]− [[Pµ, Sa], R]− [Sa, [Pµ, R]]

= [Pµ,−
1

2
γ5Sa]]− [γµQa, R]− 0

= −1

2
γ5γµQa −

1

2
γµγ5Sa

=
1

2
γµγ5Qa −

1

2
γµγ5Qa

= 0

(8.91)

[Mµν , [Sa, R]]− [[Mµν , Sa], R]− [Sa, [Mµν , R]]

= [Mµν ,−
1

2
γ5Sa]]− [ΣµνSa, R]− 0

= −1

2
γ5ΣµνSa +

1

2
Σµνγ5Sa

= 0

(8.92)

[D, [Sa, R]]− [[D,Sa], R]− [Sa, [D,R]]

= [D,−1

2
γ5Sa]]− [−1

2
Sa, R]− 0

=
1

2
γ5Sa −

1

2
γ5Sa

= 0

(8.93)

[Kµ, [Sa, R]]− [[Kµ, Sa], R]− [Sa, [Kµ, R]]

= [Kµ,∝Sa]]− 0− 0

= 0

(8.94)
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[Qa, [Sb, R]]− [[Qa, Sb], R] + [Sb, [Qa, R]]

= [Qa,−
1

2
γ5Sb]]− [−(2CabD − 2(γ5)abR+ (γµν)abMµν), R] + [Sb,

1

2
γ5Qa]

=
1

2
γ5(2CabD − 2(γ5)abR+ (γµν)abMµν)− 0

+
1

2
γ5(2CbaD − 2(γ5)baR) + (γµν)baMµν)

= 0

(8.95)

[Sa, [Sb, R]]− [[Sa, Sb], R] + [Sb, [Sa, R]]

= [Sa,−
1

2
γ5Sb]]− [2(γµ)abKµ, R] + [Sb,

1

2
γ5Sa]

= −1

2
(γ5γ

µ)baKµ − [2γµKµ, R] +
1

2
(γ5γ

µ)baKµ

= 0

(8.96)

[Sa, [R,R]]− [[Sa, R], R]− [R, [Sa, R]]

= 0− [−1

2
γ5Sa, R]− [R,−1

2
γ5Sa]

= −1

4
γ5γ5Sa +

1

4
γ5γ5Sa

(8.97)
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