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Comparison of facies models based on                                    

stochastic versus deterministic AVO inversion 

Adrian Pindel 

The University of Stavanger, 2020 

Supervisors: Nestor Cardozo, Lothar Schulte 

 

Abstract 

This thesis compares facies models based on deterministic AVO inversion – which is a standard 

approach in the industry, and stochastic AVO inversion – which is a newer, less popular 

approach, but according to literature, better for volumetric calculations. The thesis aims to 

understand the value of stochastic AVO inversion for facies modeling and showcase its 

superiority over deterministic AVO inversion. These two methods can lead to substantial 

differences in the estimated Gross Rock Volume of sandstone in a reservoir, which is critical 

for calculating hydrocarbon reserves. 

The study is applied to a dataset provided by Equinor ASA, covering the J-structure of the 

Oseberg Sør field in the northern North Sea. The reservoir is the Middle Jurassic Brent Group 

at an approximate depth of 2200-2800 m and consisting of sandstone, shale, and limestone. 

These are the main lithofacies modeled in the thesis. 

The deterministic AVO inversion allows to retrieve elastic properties such as P-impedance and 

Vp/Vs ratio from the seismic angle stacks. The vertical resolution of the deterministic AVO 

inversion is limited by the seismic bandwidth, therefore its result is smooth. The stochastic 

AVO inversion, on the other hand, uses the variogram model to simulate the thin layers below 

seismic resolution and allows catching the uncertainty of the inverse problem by generating 

multiple equiprobable realizations of the elastic parameters. 

The Bayesian classification algorithm is applied to the well log data to obtain the litho-

classification model, which is used to derive sandstone, shale, and carbonate probabilities from 

the deterministic AVO inversion. Then, facies probabilities are used to guide the sequential 

indicator simulation (SIS) to get many equiprobable facies models. The deterministic AVO 

inversion and the well logs are used to obtain the variogram model needed for the stochastic 

AVO inversion. The litho-classification model is directly applied to multiple realizations of the 

stochastic AVO inversion to obtain facies models. 

The workflow based on the stochastic AVO inversion results in less sandstone in the reservoir 

Brent-Drake zone than the workflow based on the deterministic AVO inversion. However, the 

stochastic AVO inversion workflow with a smaller lateral variogram range shifts the sandstone 

volume towards the results of the deterministic AVO inversion. A lower lateral variogram range 

introduces a larger variability in the sandstone probability which delivers a similar effect to SIS. 

Consequently, the lateral variogram range is of critical importance for facies modeling using 

stochastic AVO inversion, though it has a small impact on the P50 volume obtained from the 
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deterministic AVO inversion. A decrease of the variogram range decreases the spread of the 

volume distribution for both types of facies modeling. 

Since both workflows can be parametrized to deliver similar results by changing a highly 

uncertain lateral variogram range, the value of the stochastic AVO inversion for facies modeling 

is not yet fully understood and requires further research. 
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1. Introduction 

1.1. Geomodel conditioning using seismic data 

The conditioning of the reservoir model to high-quality 3D seismic data is a data-driven 

approach to the geological model design (Ringrose and Bentley, 2015). Conditioning utilizes 

the fact that seismic amplitudes contain information about the geological properties of the 

reservoir (Russell, 2016). Seismic inversion aims to retrieve the elastic properties of the 

geological layers contained in the seismic amplitudes. Elastic properties such as acoustic 

impedance, P-wave to S-wave velocity ratio, or density can be linked to reservoir properties 

such as facies, porosity and saturation using rock physics analysis. Incorporating seismic data 

into the modeling workflow is an alternative to the modeling based only on well data. The 

seismic-driven approach can potentially lead to a gain of information about reservoir properties 

between the well data such as porosity and permeability distribution, hydrocarbon volume or 

connectivity (Russel, 2016), and thus it can result in better decision making. 

 

Soft conditioning is an approach where information from seismic data can be used as a guide 

for probabilistic algorithms used in geomodelling (Ringrose and Bentley, 2015). The model 

from Figure 1-1 presents this approach. The Vp/Vs ratio retrieved from seismic data via seismic 

AVO inversion is resampled into the model cells (left-hand side image) and used to guide facies 

distribution (right-hand side image: facies model). High Vp/Vs ratio is attributed to shales, 

while lower Vp/Vs ratio is attributed to sandstones. A rock physics study was incorporated as 

the basis of this correlation. 

 

There are two general types of inversion, deterministic and stochastic. Deterministic inversion 

results in a unique optimal and smoothed solution of the elastic properties due to the band-

limitation of the seismic data, whereas stochastic inversion generates multiple realizations of 

the elastic parameters, all honoring the seismic data and allowing capturing the uncertainty 

related to the inversion process (Simm and Bacon, 2014). Inversion methods can be divided 

into post-stack and pre-stack methods. Post-stack methods invert full-stack seismic data, 

resulting in acoustic P-impedance. Pre-stack inversion, also called AVO inversion, uses 

multiple angle stacks to obtain P-impedance, shear-impedance, Vp/Vs ratio, density, and other 

elastic parameters (Doyen, 2007). It is based on the fact that the seismic amplitude depends on 

the reflection angle and the elastic properties of the reflector (Buland and Omre, 2003). 
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The focus of this thesis is to understand the gain in information and predictability when using 

stochastic AVO inversion in the modeling of the main facies, here understood as the main 

lithologies, constituting the reservoir. 

 

 

Figure 1-1. The concept of soft conditioning of a reservoir model using seismic data. Left-hand side image: Vp/Vs 

ratio obtained from seismic AVO inversion resampled into the model cells. Right-hand side image: facies model 

guided by Vp/Vs ratio. The high Vp/Vs ratio (red) is attributed to shales and lower Vp/Vs ratio (yellow, green) is 

attributed to sandstones 

 

1.2. Study objectives and motivations 

This thesis aims to compare the value of facies modeling guided by deterministic versus 

stochastic AVO inversion. Incorporating AVO inversion into the modeling workflow is 

supposed to give a better delineation of the facies and therefore a more precise estimation of 

the Gross Rock Volume, which is one of the most important parameters when calculating 

hydrocarbon reserves. In comparison to the deterministic AVO inversion, the stochastic AVO 

inversion captures the uncertainty in the facies volumes estimations and potentially better 

characterizes thin, sub-seismic layers due to the incorporation of information from well logs 

into the inversion while honoring the seismic data. The goal of this thesis is to provide a reliable 

estimation of the sandstone volume of the studied reservoir and showcase the superiority of 

stochastic AVO inversion over the deterministic AVO inversion in guiding facies models. In 

addition, the thesis provides a comprehensive workflow for stochastic AVO inversion and its 

application to facies simulation and facies uncertainty estimation. 

 

1.3. Study area 

This study addresses the Middle Jurassic Brent Group reservoir level of the J-structure in the 

Oseberg Sør field, North Sea. The reservoir zone lies approximately between 2200 to 2800 m 
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depth. The field is located on the eastern flank of the Viking Graben in the northern North Sea. 

The location of the field is shown in Figure 1-2. 

 

 

Figure 1-2. Location of the Oseberg Sør field. Study area (red square), available wells (black dots) and nearby 

fields (oil fields are in green and gas fields are in red). From Frette (2018) 
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1.4. Previous work 

Published work related to the modeling and the seismic inversion of the Oseberg Sør field 

includes three master theses at the University of Stavanger: Rotar (2019), Tayyaba (2018), and 

Frette (2018). 

 

Rotar (2019) compared the results of poststack deterministic and stochastic seismic inversion 

for facies modeling of the reservoir unit of the Oseberg Sør field J-structure. He used acoustic 

impedance values from well logs to differentiate between carbonates and siliciclastic facies, 

constructed a geological model for the reservoir zone, and populated it with facies predicted 

from the inverted acoustic impedance cube. He concluded that the poststack stochastic 

inversion is superior to the deterministic inversion since it captures the uncertainties of 

estimated elastic parameters and provides better delineation of thin, sub-seismic layers. In the 

case of thick (relatively to seismic resolution) layers, the poststack stochastic inversion 

superiority is related to capturing the non-uniqueness of the inverse problem. 

 

Tayyaba (2018) performed joint PP and PS deterministic AVO inversion, and derived seismic 

lithology maps for the reservoir zone in the Oseberg Sør field. She concluded that the joint 

AVO inversion of compressional PP and converted PS waves leads to a more precise estimation 

of elastic parameters than the AVO inversion of PP waves alone. The lithology maps derived 

in this work give a probabilistic estimation of encountering certain facies in the reservoir zone. 

 

Frette (2018) performed deterministic joint PP and PS AVO inversion to study the value of 

using converted waves in the seismic interpretation of the Oseberg Sør field. He derived rock 

physics cross-plots to differentiate between facies and suggested the use of acoustic impedance 

to predict facies distributions. 

 

No published works incorporate stochastic and deterministic AVO inversions into the facies 

modeling workflow of the Oseberg Sør field. This thesis uses stochastic AVO inversion for the 

first time in the Oseberg Sør field, which potentially can lead to a better estimation of the 

sandstone volume and showcase the superiority of stochastic over deterministic AVO inversion 

in guiding facies models. There are however studies from other fields discussing the results 

from stochastic and deterministic seismic AVO inversions. 
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Francis (2006b) calculated the volumes of shale and high-impedance sandstone for the Stratton 

field, USA, using deterministic and stochastic poststack seismic inversion for acoustic 

impedance. He concluded that the deterministic poststack inversion leads to a significant 

underestimation of sand volume, and because of its smoothness, it is generally unsuited for 

constraining reservoir models used for volumetric calculations. The deterministic poststack 

inversion might be suitable for modeling of a reservoir comprised of relatively thick layers in 

comparison to seismic resolution. Multiple realizations from a stochastic poststack inversion 

allowed a more accurate estimation of the reservoir volume and its uncertainty. 

 

Russel (2016) showcased the use of deterministic and stochastic AVO inversion to estimate the 

sandstone volume for a channel sand play from West Africa. He discriminated sandstones from 

shales using Vp/Vs ratio cutoffs. The sandstone volume distribution resulting from his 

stochastic AVO inversion was much higher than the volume estimated using the deterministic 

AVO inversion as shown in Figure 1-3.  

 

 

Figure 1-3. Sandstone volumes estimated using deterministic and stochastic AVO inversion. The histograms of 

sand volume (upper picture) show large differences in the outcome of the two methods. The deterministic AVO 

inversion produces one best estimate volume, whereas the stochastic AVO inversion produces a suite of 

equiprobable volumes. The sandstone volume obtained with the deterministic AVO inversion is underestimated. 

The lower part of the picture shows the sandstone volume from the deterministic AVO inversion (left-hand side) 

and the volume from one realization of the stochastic AVO inversion (right-hand side). Visual inspection allows 

evaluating which sandstone geobodies are connected to wells or with each other. Modified from Russel (2016) 

 

Sams et al. (2011) conducted a facies modeling study on a field in the Nam Con Son Basin in 

Vietnam using stochastic AVO inversion. Sandstones and shales in this field have similar P-

impedance values but differentiation between them was possible using the Vp/Vs ratio. These 
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authors emphasize that there must be a good separation between facies in the elastic domain to 

be able to perform proper seismic conditioning of the reservoir. 
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2. Geology of the area 

The Oseberg-Brage area is on the western margin of the Horda platform and the eastern flank 

of the Viking Graben. The Horda platform is an area of significant hydrocarbon accumulations 

including the giant Oseberg and Troll fields and several smaller fields such as Brage and 

Oseberg Sør (Johnsen et al., 1995; Løseth et al., 2009; Ravnås and Bondevik, 1997). 

 

The Viking Graben and adjacent platforms evolved as a result of at least two episodes of rifting 

during the Permian-Triassic and the Middle Jurassic to earliest Cretaceous. The second phase 

of rifting formed the present-day fault block structures separating the moderately faulted Horda 

platform to the east from the deeply subsided graben axis to the west. The main structural 

elements consist of N-S and NE-SW trending normal faults as shown in Figure 2-1 (Løseth et 

al., 2009; Ravnås and Bondevik, 1997). 

 

According to Faerseth and Ravnås (1998), the Permo-Triassic graben axis is situated below the 

western part of the Horda Platform and is now the footwall of the Jurassic Viking Graben as 

shown in Figure 2-2a. The Oseberg block decoupled from the Horda Platform along the Brage 

fault during the main rift stage in the Middle Jurassic. 

 

The lithostratigraphic chart of the area is shown in Figure 2-3. The Permo-Triassic syn-rift 

sequence in the Oseberg field was deposited on top of the metamorphic basement. Triassic 

interbedded sandstones, claystones and shales of the Hegre Group are overlain by massive, 

clean sandstones of the Upper Triassic to Early Jurassic Statfjord Group. The Early to Middle 

Jurassic Dunlin Group composed of siltstones, claystones, shales and sandstones is present 

above, followed by the Middle Jurassic Brent Group (Husmo et al., 2002; NPD, 2020a).  

 

The Brent Group contains substantial hydrocarbon reserves and is subdivided into the Broom, 

Rannoch, Etive, Ness and Tarbert formations along with the Oseberg Formation, which is 

equivalent to the Broom Formation in the Oseberg field area (Fig. 2.3, Norwegian quadrants 30 

and 31). The thickness of the Brent Group on and around the Horda Platform ranges from 78 

to 159 m. The Brent Group consists of sandstones, siltstones, shales, and conglomerates 

deposited in a deltaic setting and is also commonly defined as the top of the pre-rift sequence 

(NPD, 2020c; Faerseth and Ravnas, 1998; Loseth et al., 2009). 
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Figure 2-1. Structural map of the Oseberg-Brage area. The study zone is indicated by the gray rectangle along 

with the wells. From Frette (2018. Modified after Ravnås and Bondevik, 1997; Færseth and Ravnås, 1998). 
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Figure 2-2. a) Cross-section showing Jurassic and Permo-Triassic major fault-blocks with related faults across 

the central segment of the northern North Sea at the end of the Cretaceous (Frette, 2018 after Færseth, 1996). The 

red line (and the area beneath it) represents the study area within the structural map in Figure 2-1. The axis of 

the older Permo-Triassic rift is shifted eastwards relative to the younger Jurassic Viking Graben b) Schematic 

cross-section showing the strata deposited during the Jurassic. The Brage horst forms the J-structure of the 

Oseberg Sør field (Frette, 2018 after Færseth and Ravnås, 1998). See Figure 2-1 for the location of the cross-

sections 

 

The Brent Group is overlain by marine mudstones, shales, and sandstones of the Middle Jurassic 

to Lower Cretaceous Viking Group followed by the post-rift predominantly mudstone sequence 

of the Cretaceous Cromer Knoll Group. The Shetland Group above consist of limestones, marls, 

shales, and mudstones deposited in an open marine environment (Fig. 2.3; NPD, 2020c).  
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The Oseberg Sør field is located just south of the Oseberg field. The main reservoir units are in 

the Tarbert and Heather formations, but hydrocarbons are also found in the Cook and Ness 

formations (Fig. 2.3). The reservoir lies at an approximate depth of 2200-2800 m (NPD, 2020b). 

The J-structure of the Oseberg Sør field, which is the subject of this thesis, is a horst bounded 

by the Brage and Brage East faults. A cross-section through the structure is shown in Figure 2-

2b. 

 

High amplitudes and irregular seismic anomalies in Oligocene strata (Fig. 2.3) can be identified 

in the Oseberg area. These anomalies are recognized as carbonate-cemented sand injectites. 

Due to their abnormally high seismic velocity and reflection coefficients, sand injectites cause 

a variety of problems for seismic imaging and the amplitude analysis of the reservoir below. 

Consequently, the area below the injectites shows a lower S/N (Signal/Noise ratio) which 

increases the uncertainty of the seismic amplitude analysis (Frette, 2018). 
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Figure 2-3. The lithostratigraphic column from the northern North Sea. The stratigraphy of the study region is 

highlighted by the red box. Modified from NPD (2014) 
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3. Theory 

3.1. Rock physics for facies prediction 

Understanding seismic-to-rock-property relations is the focus of the rock physics study. The 

elastic properties of an isotropic medium can be described using three types of information: P-

wave velocity (Vp), S-wave velocity (Vs), and density. These parameters can be measured in 

the laboratory on a core, obtained using well logging or seismic AVO inversion. One of the 

most powerful uses of rock physics is the extrapolation of the information gained at the well 

location into the seismic volume. Rock physics analysis allows understanding how changes in 

lithology, porosity, or fluid saturation, especially away from the well, impact the seismic data 

(Avseth et al., 2005; Buland, 2019). 

 

Vp, Vs, and density completely define the seismic wave propagation and reflection amplitudes 

in an isotropic linear elastic medium. The combination of these parameters results in rock 

moduli, e.g. the Lamé elastic constants, Young, bulk, and shear modulus. The rock physics 

study for a facies modeling workflow often starts with cross-plotting the different elastic 

properties derived from well data to separate facies clusters. These clusters, defined by 

characteristic sedimentological and rock physics properties, are referred to as seismic 

lithofacies (Avseth et al., 2005; Buland, 2019).  

 

Acoustic impedance (abbreviated as AI or AIMP) is the product of P-wave velocity and density. 

It can be used to distinguish between lithofacies if their P-impedances do not overlap 

significantly. Francis (2006b) discriminated sandstones from shales using a simple cutoff after 

analyzing the histograms of acoustic impedance as shown in Figure 3-1. 

 

The use of the Vp/Vs ratio allows differentiating between facies when they have similar 

acoustic P-impedance but different S-impedance. An example based on log data is shown in 

Figure 3-2 (Sams et al., 2011). Higher Vp/Vs ratio in shales than sands is expected since the 

shear strength in shales is relatively low due to the platy shape of clay particles (Avseth et al., 

2005). Table 3-1 summarizes the ranges of selected rock physics parameters for common 

lithologies. 
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Figure 3-1. Histograms of acoustic impedance for sandstones and shales in the Stratton field with simple 

impedance cutoff to identify sandstones. The facies overlap for moderate acoustic impedance values, hence 

lithological classification using this cutoff predictor is biased. Modified from Francis (2006b) 

 

 

 

 

Figure 3-2. Crossplot of elastic properties color-coded by facies. Sandstones and shales have overlapping acoustic 

impedance but they can be distinguished using the Vp/Vs ratio (Sams et al., 2011) 
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Table 3-1. Compilation of selected rock physics parameters values for some common lithologies based on Ellis 

and Singer (2007), Jarzyna et al. (1999), Rider (2006), and Serra (1984). 

 
Acoustic impedance 

[kPa*s/m] 
Vp/Vs ratio 

Density 

[kg/m3] 

Sandstone 5700 – 16000 1.51 – 1.92 1900 – 2650 

Limestone 8600 – 19000 1.84 – 1.95 2200 – 2700 

Dolomite 10500 – 23000 1.76 – 2.00 2300 – 2870 

Shale 3200 – 16000 1.61 – 1.93 1800 – 2750 

 

3.2. Wavelet extraction 

The wavelet is a seismic signal of limited, short duration. It is convolved with the reflectivity 

from the inversion results to obtain a synthetic seismic trace that is checked against the 

measured seismic. Simm and Bacon (2014) emphasize the importance of the wavelet for the 

inversion. In AVO inversion, a wavelet is needed for each angle stack. The wavelet is extracted 

from the seismic data using the reflectivity information from the well logs. It is recommended 

to use the deterministic extraction method for seismic inversion purposes as it correctly 

estimates the amplitude and the phase spectrum of the wavelet, so the synthetic seismic is 

properly scaled to the measured seismic. The wavelet predictability is derived from the cross 

correlation between the reflectivity and the seismic trace used for the wavelet extraction. This 

parameter allows to select the best wavelet derived from traces in the vicinity of the well 

(Schlumberger, 2019; Simm and Bacon, 2014). 

 

The so-called ISIS frequency wavelet is the recommended type of wavelet for seismic AVO 

inversion. This wavelet extraction method minimizes the misfit between the seismic trace and 

the synthetic trace obtained as a convolution of the well log reflectivity and the wavelet. The 

optimum wavelet length is found by minimizing the Akaike’s final prediction error for a suite 

of lengths and initial delays. The resulting wavelet models the highest possible amount of 

coherent signal (Schlumberger, 2019). 

 

3.3. Seismic inversion 

Seismic inversion can be defined as finding the cause of a seismic observation. There are 

different types of seismic inversion methods such as travel time tomography utilizing ray 
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tracing or full waveform inversion where the information about amplitudes, phase, and 

attenuation is incorporated (Jones, 2018). A broad group of methods is based on an amplitude 

inversion, which requires true amplitude processed data, where the amplitudes represent the 

subsurface reflection coefficients migrated to their correct positions (Buland, 2019). The 

following paragraphs describe the amplitude inversion. 

 

Conventional seismic inversion is often referred to as deterministic or best estimate inversion. 

Typically, it results in a relatively smooth solution within the limits imposed by the bandwidth 

of the seismic data. In areas where the geology is layered on a scale below seismic resolution, 

the deterministic seismic inversion is generally unsuited for constraining geomodels for 

volumetric calculation or connectivity estimation. The stochastic or geostatistical seismic 

inversion generates multiple solutions (realizations) at the reservoir model scale. Each 

realization honors the seismic data. The set of realizations allows capturing the uncertainty or 

non-uniqueness of the seismic inversion process. The deterministic seismic inversion solution 

is the average of all possible realizations of the stochastic seismic inversion (Francis, 2006a; 

Simm and Bacon, 2014). 

 

3.3.1. Deterministic AVO inversion 

The seismic power spectrum is bandlimited, i.e. seismic data lacks both low and high 

frequencies. This imposes limitations to the seismic inversion process because the seismic data 

do not contain enough information to find the true model parameters. The lack of high 

frequencies makes difficult to record and resolve thin layers. The lack of low frequencies makes 

impossible to obtain the absolute value of a resolved parameter directly from the seismic data 

(Schlumberger, 2015a). The influence of a bandlimited seismic is shown in Figure 3-3. 
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Figure 3-3. The problem of bandlimited seismic data in the inversion process. The black curve represents the true 

acoustic impedance values. The red curve simulates the results of the inversion of seismic data with different 

frequency content. A) Seismic data lack both low and high frequencies – the inversion does not resolve the true 

value of the acoustic impedance of the layer and the resolved thickness of the layer is slightly biased; b) Seismic 

data are missing low frequencies – the true value of acoustic impedance is not fully recovered but the boundaries 

of the layer are properly mapped; c) The inclusion of low frequencies into the seismic data allows recovering the 

true value of acoustic impedance and the boundaries of the layer are reasonably well mapped (Schlumberger, 

2015a). 
 

To obtain absolute values of the elastic property from seismic inversion, the missing low-

frequency part of the seismic power spectrum is often introduced. It can be obtained by 

interpolation of the acoustic impedance logs, possibly guided by the interpreted seismic 

horizons (Simm and Bacon, 2014). A general flow-chart for a model-based seismic inversion 

is shown in Figure 3-4. The starting point of a model-based inversion are the individual traces 

of the low-frequency model. Each trace is perturbed and checked against the corresponding 

seismic trace until the misfit is minimized. The misfit is calculated between the observed 

seismic trace and the synthetic seismic trace obtained by convolving the reflectivity derived 
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from the perturbed trace with a seismic wavelet. The starting model is often called a low-

frequency model (LFM) or a trend. 

 

 

Figure 3-4. Generalized flow-chart for a model-based inversion. Well log data and seismic horizons are used to 

derive the low-frequency impedance model. Each model trace is converted to reflectivity and convolved with a 

wavelet to calculate the synthetic seismic trace. The synthetic trace is checked against the seismic trace and if the 

misfit is too large, the impedance model is updated in the next iteration until the misfit reaches a tolerable error 

level (Simm and Bacon, 2014) 
 

The amplitude of a seismic reflection depends on the angle of incidence of the seismic ray with 

the reflector and the elastic property contrasts at the reflector. This dependence is known as 

amplitude versus offset (AVO) or amplitude versus angle (AVA) effect since the offset can be 

transformed into an incidence angle and vice versa. AVO effects can be incorporated into the 

seismic inversion to learn more about the elastic properties of the subsurface. Figure 3-5 

conceptually shows the AVO/AVA effect for one seismic event. For non-zero angles, the P-

wave energy is split into the reflected P-wave, the reflected S-wave, the refracted (transmitted) 

P-wave, and the refracted (transmitted) S-wave. At the critical angle, the amplitude of the 

reflection changes dramatically and the refracted wave travels parallel to the boundary. The 

angle-dependent amplitude changes are described by the Zoeppritz equations. Because these 

equations are complicated and unintuitive, several authors derived approximations for pre-
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critical angles (Simm and Bacon, 2014). The popular three-terms approximation of the 

reflection coefficient 𝑅 as a function of the incidence angle 𝜃 was developed by Aki and 

Richards (1980) and rearranged by Shuey (1985) into the form: 𝑅(𝜃) ≈ 𝐴 + 𝐵 𝑠𝑖𝑛2𝜃 +

𝐶 𝑠𝑖𝑛2𝜃 𝑡𝑎𝑛2𝜃, where 𝐴 is the intercept, 𝐵 the gradient, and 𝐶 the curvature term of the 

equation (Buland, 2019). The intercept is the zero-angle reflection coefficient dependent on the 

contrast of acoustic impedance. The gradient introduces the effects of shear velocity at non-

zero angles, and the curvature determines the reflection coefficient near the critical angle. The 

A, B, and C terms can be expressed as functions of Vp, Vs, and density (Simm and Bacon, 

2014). Other popular names for these three terms are given in Figure 3-5b. AVO effects can be 

included in the interpretation by calculating angle stacks. The available incident angle range is 

often divided into three or more equal parts, resulting in e.g. near, mid, and far angle stacks or 

near, mid, far, and ultra-far angle stacks. The angle stacks allow maintaining proper signal-to-

noise ratio while making AVO interpretation possible (Simm and Bacon, 2014). 

 

Before the 1990s it was common to assume that the full-stack seismic data represents the normal 

incidence reflections and can be simply inverted to acoustic impedance with AVO effects 

ignored. This type of inversion was called post-stack inversion. Inversion of the data 

representing the zero-incidence reflection such as a near partial stack or AVO intercept results 

in acoustic impedance. Inversion of non-zero incidence data results in modified impedance. 

Pre-stack seismic inversion utilizes the fact that the reflection strength from a subsurface 

interface depends on the reflection angle and on the material properties where the reflection 

takes place. AVO inversion is a pre-stack inversion technique for estimating the elastic 

parameters of the subsurface (Buland, 2019; Buland and Omre, 2003; Simm and Bacon, 2014). 
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Figure 3-5. Effect of the angle-dependent amplitude of the reflected seismic P-wave. A) Seismic waves generated 

by the P-wave hitting the reflector. The amplitude of the reflection depends on the incidence angle and elastic 

properties of the layers (modified from Bjorlykke, 2010) b) The amplitude of the reflected P-wave for angles lower 

than the critical angle can be described by approximations of the Zoeppritz equations that incorporate three terms: 

the intercept, the gradient, and the curvature (Simm and Bacon, 2014) 
 

Simultaneous AVO inversion is a model-based inversion method that uses all seismic inputs 

(e.g. all angle stacks) at the same time – therefore its name. The input angle stacks are usually 

aligned before inversion. Seismic trace alignment is a data processing step, which adjusts for 

small residual mismatches between the stacks to optimize the data for the inversion workflow. 

The output of the inversion are the volumes of Vp, Vs, and density, which could be further used 

to create other elastic properties such as Vp/Vs ratio, Young and shear moduli (Schlumberger, 

2015a; Simm and Bacon 2014). The flow-chart of a simultaneous AVO inversion is shown in 

Figure 3-6. Each trace of the low-frequency models of Vp, Vs, and density is modified to 

include a high-frequency component. Then, using the Zoeppritz equations (or their 

approximations) it is transformed into an angle-dependent reflectivity, and by convolution with 

the wavelet derived for each angle stack, the synthetic seismic trace for each angle stack is 

obtained. All synthetic traces are checked against the corresponding measured seismic traces 

and if the difference is too large the low-frequency models are updated and checked until the 

error is minimized. 
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Figure 3-6. Flow-chart of simultaneous AVO inversion. Low-frequency models (here a priori models) are 

transformed into angle-dependent reflectivity traces, convolved with a wavelet, and checked against traces in the 

angle stacks. If the misfit between synthetic and observed traces is too big, the model is updated until the misfit is 

minimized (Simm and Bacon, 2014) 
 

3.3.2. Stochastic (geostatistical) AVO inversion 

Due to the non-unique character of seismic inversion, there is always uncertainty associated 

with an estimated elastic property. This uncertainty should be propagated through the inversion 

workflow and included in the inversion solution. A probabilistic setting is a natural choice to 

account for the non-uniqueness of the inversion. There are two main approaches to seismic 

inversion in a probabilistic framework: Bayesian inference, and iterative stochastic sequential 

simulations (Azevedo et al., 2018; Buland and Omre, 2003). The latter one is used in this thesis. 

 

The geostatistical inversion honors the seismic and the low-frequency component (LFM) – 

similarly to the deterministic inversion – but additionally it uses a variogram model to include 

high-frequency information into the solution as conceptually shown in Figure 3-7. The 

variogram model introduces high frequencies into the inversion solution, but it does not increase 

the seismic resolution, which is limited by the bandwidth of the seismic data. High frequencies 

are not inverted from seismic but simulated using a variogram model (Doyen, 2007). 
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Figure 3-7. Frequency spectra and data sources for a) deterministic seismic inversion and b) stochastic 

(geostatistical) seismic inversion. Low-frequency model (LFM) constructed by interpolation of filtered well logs 

controls the low frequencies, seismic controls the intermediate frequencies within seismic bandwidth, and vertical 

variogram controls the high frequencies (Doyen, 2007; Schlumberger, 2015b) 
 

The geostatistical AVO inversion is commonly done within a 3D geomodel grid in a trace-by-

trace approach, which can be summarized by the following workflow (Azevedo et al., 2018; 

Russel, 2016; Schlumberger, 2015b; Simm and Bacon, 2014): 

1) Upscale well logs of Vp, Vs, and density into the geomodel cells 

2) Populate geomodel cells with low-frequency models of Vp, Vs, and density 

3) Select a random path through all seismic trace locations (each location will have e.g. 

near, mid, and far trace). For each location perform a local optimization: 

a. Remove the trend from the upscaled log data through subtraction of the low 

frequency models to work with the residuals of Vp, Vs, density (part of 

sequential Gaussian simulation) 

b. Interpolate the residuals of Vp, Vs, density using sequential Gaussian simulation 

and add the low-frequency models to obtain the absolute value 

c. Convert Vp, Vs, and density into an angle-dependent reflectivity and convolve 

it with a wavelet from each angle stack to derive the synthetic trace for each 

angle stack 

d. Compare synthetic traces (near, mid, and far) with seismic traces (near, mid, and 

far) and iteratively update the model until the misfit is minimized and retain this 

model of Vp, Vs, density 

e. Go to the next trace and treat the already simulated trace location as an input 

(upscaled) data 

4) Select a different random path through trace locations to obtain next realization of the 

stochastic AVO inversion 
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The seed value controls the random path through the traces and the sequential Gaussian 

simulation. Figure 3-8 summarizes the parameters controlling the stochastic AVO inversion 

algorithm. It can be observed that with an increasing number of iterations, the correlation 

coefficient between the “truth” and fitted trace increases. 

 

 

Figure 3-8. The principle of the stochastic seismic inversion algorithm showcased on one seismic trace inversion 

for acoustic impedance (Schlumberger, 2015b) 

 

3.4. Simulation 

3.4.1. Sequential Gaussian simulation 

Sequential Gaussian simulation (SGS) is a stochastic simulation algorithm used for sparse, 

continuous data, e.g. modeling the porosity in the geomodel using well data and spatial 

continuity information – the variogram. It requires that the input data have a standard normal 

score distribution (the mean is zero and the standard deviation is one). It also assumes 

stationarity so the mean of the data does not change laterally and spatial statistics do not depend 

on location (Schlumberger, 2015b). 

 

The variogram 2𝛾 expresses the spatial variation of the input parameter. The experimental 

variogram is calculated as a squared difference between the pairs of data that are separated by 

a given distance. For convenience, the semivariogram function 𝛾 is used in practice, and often 

the name variogram refers to semivariogram. The experimental semivariogram 𝛾 of a variable 
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𝑍(𝑥) is expressed as 𝛾 =  
1

2𝑁
∑[𝑍(𝑥 + ℎ) − 𝑍(𝑥)]2, where 𝑁 is the number of all data pairs 

separated by a lag distance ℎ. Generally, 𝛾 is a measure of spatial dissimilarity and increases 

with distance because points that are closer to each other are more likely to have similar values. 

Fitting an analytical trend line through the experimental variogram points produces a variogram 

model function that can be used as an input to geostatistical algorithms such as kriging. The 

conceptual experimental and model variogram is shown in Figure 3-9. A variogram model has 

three defining features: the sill – a constant which approximates the variance of a dataset; the 

range – a distance at which the sill is reached; and the nugget – the extrapolated value at zero 

separation. The nugget informs about a sudden jump in dissimilarity between points or in other 

words, small-scale variation. It often arises due to measurement error or lack of data for small 

separation distances. It is assumed that the input log data is reliable and therefore the nugget 

should be set to zero when modeling the variogram for inversion or reservoir properties. The 

key measure for reservoir modeling is the range – it informs about the distance at which the 

pairs of data have no relationship to each other, that is they are not correlated. The influence of 

the variogram range on the simulation is shown in Figure 3-10. A large range means that data 

points remain correlated over large distances and areas. Variogram models for perpendicular 

horizontal directions can be established to capture a possible anisotropy. Variogram models can 

be expressed with various mathematical functions. Some of the popular variogram models are: 

spherical – which is a good general model; exponential – which produces the noisiest result; 

and Gaussian – which produces the smoothest result (Schlumberger, 2015b; Ringrose and 

Bentley, 2014). 
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Figure 3-9. Visualization of the semivariogram. In practice, the semivariogram is often called the variogram. The 

experimental variogram calculates the variance between data pairs in the dataset separated by a specific distance 

(lag). The variogram model is fitted to experimental points and is used by geostatistical algorithms (kriging, SGS, 

SIS, etc.). Modified from Schlumberger (2015b) 
 

 

Figure 3-10. The influence of a variogram range on one realization of a sequential Gaussian simulation. Higher 

range results in larger patches of high and low values. Modified from Schlumberger (2015b) 

 

Kriging aims to estimate a spatial property 𝑍∗ at the unmeasured location based on known 

values of 𝑍𝑖 at locations 𝑥𝑖. It is a weighted sum of the known values expressed as 𝑍∗ =
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 ∑ 𝜔𝑖 𝑍𝑖
𝑛
𝑖=1 , where 𝜔𝑖 are the weights that minimize the expected variance. The weights are 

calculated using the variogram model and depend on the spatial configuration of the data points. 

Kriging uses data points that are located within the range of the variogram, i.e. according to the 

geological knowledge, they are correlated with the estimated cell. If there are no data points 

within the variogram range, the mean value given by all data points will be assigned to the cell. 

Kriging delivers a kriged value and variance for each estimated point (Schlumberger 2015b; 

Ringrose and Bentley, 2014). 

 

The simulation principle is shown in Figure 3-11. After obtaining variograms and a normal 

score transformation of the input data, SGS uses kriging to calculate the estimated kriging value 

and the kriging variance at each grid point. The conditional cumulative distribution function 

(CCDF) is derived from the kriging variance and its inflection point moved over the kriged 

value as shown in Figure 3-11. Then a random number is drawn between zero and one and 

applied to the CCDF. This delivers the simulated value which is assigned to the grid cell. An 

important part of Gaussian simulation is that it utilizes already simulated cells in the kriging 

process (it treats them as new datapoints). Equiprobable realizations are obtained by the 

selection of a semi-random path through the model grid and providing different random 

numbers for each simulation. A specific parameter (called seed) controls the random path and 

the random number. This ensures that any simulation is reproducible as it is linked to a specific 

seed number (Schlumberger, 2015b).  

 

 

Figure 3-11. Simulation based on the SGS algorithm for one cell in a model. Kriging is used to calculate kriging 

value and variance at a simulated grid point using all data points and previously simulated grid points within the 

variogram range. Kriging deliver a kriged value and a distribution of its uncertainty, represented by the CCDF 
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(Conditional Cumulate Distribution Function). The CCDF is randomly sampled to deliver the simulated value. In 

the case of SGS, which is used for the geostatistical AVO inversion, the simulated parameters will be often P-

impedance, S-impedance, and density in the cells along the seismic trace. Modified from Schlumberger (2015b) 
 

3.4.2. Sequential indicator simulation for facies modeling 

Sequential indicator simulation (SIS) is a pixel-based simulation method used for a sparse, 

discrete property such as facies. SIS can be easily integrated with probability trends derived 

from seismic volumes. SIS is a generalization of the SGS algorithm and uses indicator kriging 

as a tool to derive the probability of facies occurrence at a given point, taking into account data 

points inside the variogram range (Schlumberger, 2016). 

 

The principle of SIS is given in Figure 3-12. The algorithm similarly to SGS uses variogram 

models, kriging and seed values which are used to generate pseudo-random paths over the grid. 

At each grid cell the probability of encountering specific facies is calculated using kriging. This 

is done in the following way: Let us assume that the probability of sand at a grid cell shall be 

calculated. Then all data points that show sand get the value 1 and the remaining data points 

get the value 0 – the probability of encountering sand at these points. Also, the grid points that 

already got a calculated sand probability will be taken into account. These probability values 

are interpolated and deliver the sand probability for the grid cell under consideration. This 

procedure is done for all facies of the model. These probability values are used to calculate the 

conditional cumulative distribution function (CCDF) for the grid cell. Then, the cumulative 

distribution is sampled using one random number controlled by the seed number to obtain the 

facies and the algorithm moves to the next random cell. The global fraction or the global 

distribution is an overall presumed percentage of facies constituting the reservoir and can be 

obtained using well data. If there are no data points within the range of the variograms, the 

global facies fraction given by the well data will be used to create the cumulative distribution 

function. The chosen variogram range will have an impact on how influential the global fraction 

is. Small ranges will increase the influence of the global fraction, whereas large ranges will 

diminish its influence (Schlumberger, 2016). 
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Figure 3-12. Facies simulation with sequential indicator simulation. The probability distribution of simulated 

facies is calculated using indicator kriging and randomly sampled to obtain the simulation outcome. Modified 

from Schlumberger (2016) 
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4. Data 

The dataset consists of seismic angle stacks, key horizon surfaces, and well log data. The 3D 

seismic survey ST0823D14 is an ocean bottom cable survey acquired over the J-structure in the 

Oseberg Sør field for Equinor ASA in 2008. In this thesis, P-wave angle stacks in time domain 

were used, near stack (0-15), mid stack (15-30), and far stack (30-45). The seismic was 

processed to zero-phase data with normal polarity, so a positive amplitude reflects an increase 

in acoustic impedance. A positive seismic amplitude is indicated by red color throughout this 

thesis. The sampling interval is 4 ms. The power spectrum of seismic data in the reservoir zone 

(-1800 to -2800 ms) is shown in Figure 4-1. The approximate seismic frequency range at -10 

dB is 4-40 Hz. 

 

 

Figure 4-1. Power spectrum of angle stacks. Approximate seismic bandwidth at -10 dB is 4-40 Hz 
 

Twelve wells with well log data and tops are available. Table 4-1 summarizes the most 

important well logging data available and Figure 4-2 shows their locations. A shear sonic log 

is available for the majority of the wells. Additionally, in all wells Vp/Vs ratio data are present. 

One of the limitations of the dataset is that only four wells have a facies log. 

 

Table 4-1. A summary of the most important well logging data available in the area 

 Checkshots P-sonic S-sonic Vp/Vs Density Facies log 

30/9-5S X X X X X X 

30/9-6 X X X X X  

30/9-9 X X X X X X 

30/9-11 X X X X X  
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30/9-11A X X  X X  

30/9-15 X X  X X X 

30/9-18  X X X X  

30/9-20S X X X X X  

30/9-25  X X X X  

30/9-J-12  X X X X  

30/9-J-13 X X X X X X 

30/9-J-16  X X X X  

 

The interpreted key surfaces for the thesis include the top Shetland Gp., top Brent Gp., top 

Drake Fm. and top Cook Fm. Other interpreted surfaces are also available. The horst structure 

is visible on the map of the top Brent Gp. in Figure 4-2. A near stack seismic section along the 

horst is shown in Figure 4-3. 

 

 

Figure 4-2. Interpretation of top Brent Group provided by Equinor ASA and location of the available wells. The 

contour interval is 50 ms. SW-NS seismic section is shown in Figure 4-3. Modified from Rotar (2019) 
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Figure 4-3. Seismic section showing the interpretation of the top Brent Group (dashed green) on the near angle 

stack. See Figure 4-2 for location. High amplitude seismic reflectors (yellow and light blue) are most likely related 

to carbonates 
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5. Methodology 

Obtaining facies models using the deterministic or the stochastic AVO inversion is presented 

below as two separate workflows. Before the execution of the workflows, the seismic-well ties 

were established and the geomodel was built to further populate it with facies. The details about 

each step are given in the following subsections. 

 

The general workflow for deriving facies models using the deterministic AVO inversion is 

shown in Figure 5-1. The starting point of facies modeling guided by the deterministic inversion 

is a rock physics study using the well data. Based on the rock-physics study, a litho-predictor 

is constructed in the form of probability density functions (PDFs) for each facies. It assigns the 

probability of encountering facies to the combination of acoustic impedance and Vp/Vs ratio. 

This litho-predictor is applied to the acoustic impedance and Vp/Vs ratio volumes obtained 

from the deterministic AVO inversion, which results in three new volumes: the sandstone, shale 

and carbonate probabilities. These volumes are resampled into the geomodel cells and used to 

guide the sequential indicator simulation (SIS), which delivers multiple, equiprobable 

realizations of facies distribution. Finally, in each model the volume of each facies is calculated 

to allow comparison with the stochastic AVO inversion. 

 

 

Figure 5-1. The workflow to obtain facies models using the deterministic AVO inversion. The well section includes 

the acoustic impedance log, the Vp/Vs ratio log, and the facies log. Well data are used to create probability density 

functions (PDFs) that can be applied to acoustic impedance and Vp/Vs ratio volumes from the deterministic AVO 

inversion to derive facies probabilities. The probabilities are then used to guide a sequential indicator simulation 

that delivers multiple, equiprobable realizations of facies distributions 
 

The facies modeling workflow utilizing the stochastic AVO inversion is shown in Figure 5-2. 

PDFs are derived in the same way as described above and they are directly applied to multiple 

realizations of the acoustic impedance and Vp/Vs ratio from the stochastic AVO inversion. This 
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results in multiple, equiprobable facies models. The volume of each facies for each model is 

calculated for comparison. 

 

 

Figure 5-2. The workflow to obtain multiple equiprobable facies models using the stochastic AVO inversion. The 

well section includes the acoustic impedance log, the Vp/Vs ratio log, and the facies log. Well data are used to 

create probability density functions (PDFs) that can be applied to multiple realizations of acoustic impedance and 

Vp/Vs ratio volumes from the stochastic AVO inversion. This results in multiple, equiprobable facies models 

 

5.1. Seismic-well ties 

Time-depth relationships between wells and seismic were established using checkshots and 

ISIS frequency wavelets. The important seismic reflectors were identified and the interpretation 

of the key surfaces provided by Equinor ASA were visually quality controlled to check if the 

surfaces follow the seismic reflectors. Figure 5-3 presents an example of a seismic-well tie for 

well 30/9-5S. The top Shetland Gp. surface was identified as a high-amplitude positive reflector 

(hard-kick), easy to correlate across the study area. The top Brent Gp. and top Drake Fm. were 

also identified as positive reflectors with a much smaller amplitude. The top Cook Fm. was 

identified as a negative reflector. The established time-depth relationship shows a good match 

of synthetic seismic to real seismic, however, due to large relative differences in the reflector 

amplitudes, the residual trace shows relatively large misfit between the top Shetland and top 

Drake horizons. 
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Figure 5-3. Seismic-well tie for well 30/9-5S 
 

5.2. Geomodel building 

The geomodel is needed to compare the results of the two approaches. In addition, it provides 

geostatistical tools essential for the workflows described above. The model was constructed 

using surfaces from the top Shetland Gp, top Brent Gp, top Drake Fm, and top Cook Fm, limited 

to the area of the horst structure, as shown in Figure 5-4. A 3D grid with a cell size of 50 m x 

50 m was set up. The model consists of three zones (Fig. 5-5). The layering in the zones is based 

on a proportional zone division. The model parameters are summarized in Table 5-1. 
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Figure 5-4. The extent of the model imposed on the map of the top Brent Gp. The model extent was limited to the 

horst structure 
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Figure 5-5. 3D geomodel of the J-structure of the Oseberg Sør field. The model is limited to the extent of the horst 

structure. The middle zone Brent-Drake is a reservoir zone 
 

Table 5-1. The statistics of the geomodel used in the thesis 

 Number of 

cells 

Volume of cells 

[*106 m3] 

Number of 

layers 

Avg. layer thickness 

[m] 

Shetland-Brent 1 247 400 2149 40 1.73 

Brent-Drake 623 700 1520 20 2.44 

Drake-Cook 1 247 400 4989 40 4.00 

In total: 3 118 500 8658 100  

 

5.3. Rock physics study and litho-classification 

The rock physics study on wells drilled through the modeled interval shows that cross-plotting 

Vp/Vs ratio vs acoustic impedance allows the separation of facies clusters with some 

overlapping (Fig. 5-6). Facies logs were available only for wells 30/9-5S, 30/9-9, 30/9-J-13, 

and 30/9-15. Three facies from the facies logs were identified on the crossplot: sandstones, 

shales, and carbonates. The facies statistics are summarized in Table 5-2. Sandstones and shales 

show similar ranges of P-impedance but different ranges of Vp/Vs ratio which is best visualized 

when comparing P10 and P90 values from Table 5-2. 90% of sandstones have Vp/Vs ratio 

lower than 1.81, and 90% of shales have Vp/Vs ratio higher than 1.89. However, the crossplot 
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in Figure 5-6 shows the overlapping of sandstones and shales in the P-impedance domain. 

Carbonates are characterized by high P-impedance values, above about 11 470 kPa s/m, which 

allows separating them from siliciclastic. The overlapping between siliciclastic and carbonates 

is less severe than between sandstones and shales. The main facies identified by wells in the 

modeled interval is shale, with about 85% contribution to the total facies distribution (based on 

the number of points in Table 5-2). 

 

 

Figure 5-6. Crossplot of Vp/Vs ratio vs P-impedance color-coded by facies constructed using well log data from 

the top Shetland Gp. – top Cook Fm. interval. The data come from wells with the facies logs available: 30/9-5S, 

30/9-9, 30/9-J-13, 30/9-15. The P10-P90 percentiles identified for each facies are consistent with values in Table 

5-2 

 

Table 5-2. Facies statistics derived from the rock physics analysis. P10, P50, and P90 are 10th, 50th, and 90th 

percentiles respectively  

Sandstones 

 P10 P50 P90 No. of points 

P-impedance [kPa.s/m] 6 239 7 607 9 795 
668 

Vp/Vs ratio [frac.] 1.65 1.73 1.81 

Shales 

 P10 P50 P90 No. of points 

P-impedance [kPa.s/m] 6 851 7 620 8 456 
7 864 

Vp/Vs ratio [frac.] 1.89 2.00 2.13 
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Carbonates 

 P10 P50 P90 No. of points 

P-impedance [kPa.s/m] 11 470 12 112 12 902 
805 

Vp/Vs ratio [frac.] 1.59 1.64 1.99 

 

The cluster analysis of the log data was used to construct the model that classifies the lithofacies 

based on P-impedance and Vp/Vs ratio. The frequency distributions of the samples in each 

cluster were used to create probability density functions (PDFs). The PDF represents the 

probability of facies occurring for a given combination of P-impedance and Vp/Vs ratio as 

shown in Figure 5-7. 

 

 

Figure 5-7. The lithofacies classification model derived from well log data. A) Probability density functions 

(PDFs) for each facies in P-impedance vs Vp/Vs ratio domain, b) PDFs as a function of P-impedance, severe 

overlapping of sandstones and shales is visible, carbonates can be identified by high impedance values, c) PDFs 

as a function of Vp/Vs ratio, overlapping of sandstones and shales is reduced, severe overlapping of siliciclastic 

and carbonates is visible 
 

The lithofacies classification model is derived using the Bayesian classification algorithm 

(Schlumberger, 2019). This is a supervised learning algorithm, that divides the training data (in 

this case the well log data) into the specified number of clusters (in this case three lithofacies). 

The prior information of facies probabilities has to be specified. In the creation of the lithofacies 

prediction model from Figure 5-7, equal prior probabilities were assigned to each facies. Prior 
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probabilities are updated according to the Bayes rule, resulting in PDFs which represent the 

conditional probabilities. In other words, for each combination of P-impedance and Vp/Vs-ratio 

the probability of each facies is derived. In general, PDFs may overlap as shown in Figure 5-

7b and c. In case of overlap, when applying the classification model to new data (e.g. to the 

results of seismic inversion), the algorithm will assign the facies with the higher conditional 

probability (PDF) to this set of P-impedance and Vp/Vs ratio values. Such an approach will not 

always result in a true classification for overlapping PDFs. Even though the algorithm assigns 

facies with a higher probability to a set of AI and Vp/Vs ratio values, there is still a probability 

that it can be the other overlapping facies (Avseth et al., 2005). To evaluate the quality of the 

classification algorithm, we can analyze the confusion matrices in Table 5-3. The confusion 

matrices can be derived using for example the bootstrapping method (Avseth et al., 2005). 

Using the upper part of the table, the probability of predicting a sandstone if it is truly a 

sandstone (according to the facies log) is 83%. However, the algorithm can also predict a shale 

with a probability of 13% and carbonate with a probability of 4%. Using the bottom part of the 

table, the probability that a sample is a shale if predicted as shale is 87%, however, if the 

algorithm predicts a sandstone it is possible that it is shale with a probability of 12%, or if a 

carbonate was predicted there is 1% of chance that it is a shale. A high-quality classification 

model should have confusion matrices with diagonal values close to 1.0 (Schlumberger, 2019). 

The classification model used in the thesis is of good quality since all diagonal values of the 

confusion matrix are greater than 0.8 (Table 5-3). 

 

Table 5-3. Confusion matrices for lithofacies classification model used in the thesis 

P (Prediction | True) 

Facies Sandstone Shale Carbonate 

Sandstone 0.83 0.13 0.03 

Shale 0.13 0.84 0.01 

Carbonate 0.04 0.03 0.96 

P (True | Prediction) 

Facies Sandstone Shale Carbonate 

Sandstone 0.83 0.12 0.04 

Shale 0.14 0.87 0.03 

Carbonate 0.03 0.01 0.93 
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Applying the litho-classification model to the volumes of P-impedance and Vp/Vs ratio from 

the AVO inversion results in probability cubes for each facies and the most probable lithofacies 

classification. The probability cubes were used as a guide for the SIS algorithm in the workflow 

based on the deterministic AVO inversion. In the workflow based on the stochastic AVO 

inversion, the lithofacies classifications were directly used to obtain facies distributions. 

 

5.4. Deterministic AVO inversion 

The deterministic AVO inversion workflow consists of the following phases: extraction of a 

wavelet, seismic angle stacks traces alignment, low-frequency model building, seismic 

inversion itself, and QC of the inversion. 

 

5.4.1. Wavelet selection 

The results of the seismic inversion using different deterministic wavelet extraction methods 

(extended white, signal/noise, ISIS time, ISIS frequency) were obtained and checked using the 

QC methods described in section 5.4.4. The best results were obtained using the average 

wavelet calculated from the ISIS frequency wavelets extracted from all wells inside the study 

area, as described in Chapter 6.  

 

5.4.2. Seismic trace alignment 

The alignment of the seismic traces in the near, mid, and far angle stack was done to properly 

represent the AVO effect in the data. Trace alignment is a key step in data preparation, and it 

was performed using the non-rigid matching (NRM) algorithm. This algorithm matches the 

individual traces across the angle stacks by vertical stretching within a gliding time window 

(Schlumberger, 2015a).  The near-angle stack was defined as a reference volume, to which the 

mid-stack was adjusted. The resultant displacement cube is automatically stored. Then the far-

stack was adjusted to the mid-stack and the result adjusted to the near-stack using the 

displacement cube of the mid-stack adjustment. The correlation between near and mid traces 

and near and far traces are derived for a time window around a user-defined surface and can be 

used to QC the results. These correlation maps are shown in Figure 5-8. The NRM algorithm 

increases the correlation between the traces in the angle stacks, making them more suitable for 

AVO inversion. 
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Figure 5-8. Correlation surfaces from the seismic trace alignment algorithm. The maps show the correlation 

coefficients between the traces before the alignment (a and c) and after the alignment (b and d). The algorithm 

results in higher correlation coefficients making the matched angle stacks appropriate for AVO inversion. The 

blue line indicates the extent of the geomodel 
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5.4.3. Low-frequency model (LFM) building 

The low-frequency model was constructed to introduce the missing low frequencies in the 

seismic spectrum. Three low-frequency models were set up, one for each parameter obtained 

from the seismic AVO inversion: P-impedance, Vp/Vs ratio, and density. The well logs for each 

property were low-pass filtered to 8 Hz and interpolated between the wells using the same 

surfaces that were used to create the geomodel (tops Shetland, Brent, Drake, and Cook). The 

following wells were used: 30/9-5S, 30/9-9, 30/9-11A, 30/9-15, 30/9-J-12, 30/9-J-13, and 30/9-

J-16 (Figure 5-4). A structural smoothing filter was applied to the resulting LFMs to remove 

minor artifacts. 

 

5.4.4. Seismic inversion and QC 

The deterministic AVO inversion is obtained by minimizing the cost function, which measures 

various quantities. The cost (or objective) function terms and their interpretation is given in 

Table 5-4. The inversion is based on finding the global minimum of the cost function. The 

algorithm defines how well the final model should fit the seismic data (controlled by the Signal 

to Noise Ratio - SNR), the degree of lateral variations (horizontal continuity parameter - R), 

and the allowed differences between the inversion result and the LFM (controlled by the tie to 

the LFM parameter - R). Finally, it influences the number of significant reflectors above a 

user-defined threshold level R1 (Schlumberger, 2015a). 

 

Table 5-4. The components of the cost function for deterministic AVO inversion and their interpretation 

(Schlumberger, 2015a) 

 

 

The AVO inversion results need to be transformed to a synthetic angle reflectivity that allow 

deriving synthetic angle-stacks. Theoretically this can be done using the Zoeppritz equation. 
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However, these equations are complex and therefore CPU-demanding. To increase 

performance two Zoeppritz equations approximations can be selected (Fatti and 

Aki&Richards). The algorithm can invert for acoustic impedance, Vp/Vs ratio, shear 

impedance, and density. 

 

The results of the seismic inversion were checked using two methods: examining the inversion 

using logs at a well location and examining the residual seismic volume (Figure 5-9).  

 

 

Figure 5-9. Example of quality checking of the seismic inversion result. The residual seismic is the difference 

between the measured seismic and the synthetic seismic from the inversion. The synthetic should be as similar as 

possible to the original seismic, therefore the residual values should be small. Modified from Rotar (2019) 
 

Many trials with different inversion parameters, wavelets, inversion methods, and versions of 

the low-frequency models were performed on a limited volume of seismic stacks to ensure the 

best output of the deterministic inversion. The best results were obtained using AVO inversion 

based on the Aki and Richards approximation and the average of ISIS frequency wavelets 

extracted from all wells inside the geomodel. This is described in Chapter 6. 

 

5.5. Stochastic AVO inversion  

The stochastic AVO inversion has some steps in common with the deterministic AVO 

inversion. These are the seismic trace alignment, wavelet extraction, and the low-frequency 

model building. The stochastic AVO inversion results are stored in the cells of the geomodel. 

This was performed in the following steps: upscaling the well logs into the geomodel, 

resampling the low-frequency models into the geomodel, variogram analysis, stochastic 

inversion itself, and quality control. 
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5.5.1. Well logs upscaling and LFMs resampling 

The well logs of P-impedance, Vp/Vs ratio, and density were upscaled into the geomodel cells. 

The stochastic simulation honors the upscaled values (it will not change them in the iterative 

updating of the model), which are needed for the SGS algorithm embedded into the inversion. 

The same low-frequency models used for the deterministic AVO inversion were resampled into 

the geomodel. 

 

5.5.2. Variogram analysis 

Vertical variograms are an essential part of the stochastic inversion since they control the high-

frequency content of the seismic spectrum. In the stochastic AVO inversion, three variograms 

for each zone were specified: vertical, horizontal in major direction, and horizontal in minor 

direction. The vertical variograms were derived using logs of P-impedance from the wells inside 

the geomodel. The parameters of the experimental variogram calculation such as the number of 

lags, lags distance, and lag tolerance, i.e. the percentage of overlapping of neighboring lags, 

were tested to obtain the most representative plot. The visualization of these parameters is 

shown in Figure 5-10. Figure 5-11 shows an example of a vertical variogram model in the 

Shetland-Brent zone. A spherical variogram model with zero nugget and the range of 10 m was 

fitted to the experimental variogram. The nugget is a measure of the uncertainty of the data and 

the data are not accurately honored when the nugget is larger than zero. The variogram models 

the well log data which are regarded to have only small error. Therefore, throughout this thesis, 

the variograms are modeled with zero nugget. 

 

The lateral variogram ranges were derived from the deterministic AVO inversion results. The 

P-impedance volume was resampled into the geomodel to allow a variogram analysis. The same 

variogram ranges, both vertical and lateral, were used in the facies simulation based on the 

deterministic AVO inversion workflow described in section 5.6. 
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Figure 5-10. Visualization of search cone parameters for calculating the experimental variograms 
 

 

 

Figure 5-11. Example of vertical variogram modeling in the Shetland-Brent zone. Grey dots indicate the 

experimental variogram, the blue line is the spherical variogram model fitted to the experimental variogram, the 

histogram shows the number of pairs used to calculate the experimental variogram for each lag distance 
 

5.5.3. Stochastic AVO inversion and QC 

The stochastic AVO inversion was performed to obtain many equiprobable realizations of P-

impedance, Vp/Vs ratio, and density. The input to the algorithm, as described above, are 

upscaled well logs for each elastic property, aligned seismic stacks, wavelets for each stack, the 

low-frequency model for each elastic property, and variogram models for each zone. 

Furthermore in each zone, the standard deviation for each elastic property and the correlation 

coefficients between elastic properties must be specified. They were estimated from the input 

upscaled well logs. The correlation matrix contains information about correlation coefficients 

between P-impedance, Vp/Vs ratio, and density. Usually, the elastic parameters are correlated 

to some degree and specifying the correlation matrix ensures that the algorithm does not change 

the elastic properties in a completely random way (Schlumberger, 2015b).  
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The cost function in the stochastic AVO inversion is defined as a correlation coefficient 

between observed seismic angle stacks and synthetic seismic angle stacks. The optimization 

stops when the value of the cost function exceeds the convergence criterion (Schlumberger, 

2019). The convergence criterion was set to 0.8, meaning that a minimum of 80% of the 

measured seismic traces must be explained by the inversion. The maximum number of iterations 

perturbing the initial model was set to one hundred to limit the computation time, in case the 

inversion would struggle to converge to the measured seismic trace. The number of realizations 

needed to capture the uncertainty in the seismic inversion and facies modeling are discussed in 

subsection 5.6. 

 

The methods to QC the stochastic AVO inversion include evaluating the diagnostic data output 

and the blind well test. The most important diagnostics are the cost function, the number of 

iterations and the convergence as visualized in Figure 5-12. The cost function informs about 

the value of the cost function after all iterations are performed. In Figure 5-12 the cost function 

in most nodes has a high value, above the convergence criterium, indicating a successful 

inversion. In these nodes, the other two diagnostics indicate a small number of iterations and 

positive (true) convergence. In the nodes where there is a high number of iterations and a small 

value of the normalized cost function (below the convergence criterium), the inversion did not 

converge to the seismic trace within the expected error. In the example of Figure 5-12, the areas 

where the inversion failed are related to fault zones and seismic anomalies induced by shallow 

gas (Schlumberger, 2015b). 
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Figure 5-12. Diagnostic output from seismic stochastic inversion (Schlumberger, 2015b) 
 

The blind well test allows to check the inversion at the well locations where logs were not 

upscaled and used in the inversion. In all other wells where well logs were upscaled and used 

in the inversion, the result of the stochastic AVO inversion will always be the same as the 

upscaled log. 

 

5.6. Facies simulation and volume calculation 

The litho-classification model from Figure 5-7 was applied to the 3D volumes of the P-

impedance and the Vp/Vs ratio from the deterministic AVO inversion. As a result, three 

probability volumes for sandstone, shale, and carbonate were generated. These probabilities 

were sampled into the geomodel to guide the SIS algorithm. The SIS algorithm calculates the 

conditional probability of facies occurrence based on the upscaled and simulated cells, 
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variogram models, and the probability volumes from the litho-classification. Then SIS samples 

the conditional probability in a stochastic way (Monte Carlo sampling). This means that even 

if facies has a small conditional probability of occurrence, they can be simulated by the SIS 

algorithm. 

 

Each realization of the stochastic AVO inversion was classified using the same litho-

classification model from Figure 5-7. The litho-classification model checks for each 

combination of P-impedance and Vp/Vs, the PDF functions of the three facies and assigns the 

facies with the highest PDF value. In this sense, the litho-classification is a deterministic 

process, that refers directly to the elastic properties. The litho-classification was run on each 

realization of the stochastic AVO inversion. It is important to note that all facies models are 

supported by the seismic data. 

 

The results from both the deterministic and stochastic workflows were depth-converted using 

the P-wave migration velocity volume from seismic processing. The facies volumes from these 

two methods were calculated and compared (Chapter 6). 

 

Another concern is the number of realizations of the facies models that allow fully capturing 

the uncertainty embedded into the workflows, and especially in the AVO inversion. Simm and 

Bacon (2014) indicate that the minimum number of realizations for the stochastic inversion 

should be one hundred, which is the number I used in each workflow. The results are shown in 

Chapter 6. 
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6. Results 

6.1. Deterministic AVO inversion 

The wavelets for near, mid, and far angle stacks were extracted using the reflectivity from all 

wells inside the study zone (inside the geomodel) and averaged (Figure 6-1). The following 

wells were used: 30/9-5S, 30/9-9, 30/9-11A, 30/9-15, 30/9-J-12, 30/9-J-13, 30/9-J-16 (Figure 

5-4). The deterministic extraction method using ISIS frequency wavelets with linear phase 

estimation was used.  

 

 

Figure 6-1. Average wavelets computed from ISIS frequency wavelets extracted from all wells inside the study 

area 
 

The low-frequency models (LFMs) were derived by interpolation of the well logs low-pass 

filtered by 8 Hz. The interpolation was guided by the horizons top Shetland Gp., top Brent Gp., 

top Drake Fm., and top Cook Fm., which were also used to create the geomodel. The 3D 

volumes of P-impedance, Vp/Vs ratio, and density were obtained using simultaneous AVO 

inversion of the aligned angle stacks (see section 3.3 and 5.4 for details). The results are 

presented in Figures 6-2 to 6-5.  
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Figure 6-2. Upper picture: the low-frequency model of P-impedance, bottom picture: the P-impedance resulting 

from the deterministic AVO inversion. See Figure 4-2 for the location of the section. 
 

The P-impedance section in Figure 6-2 shows strong amplitude anomalies at the top of the 

Shetland-Brent zone which is attributed to carbonate. The LFMs does not indicate these 

amplitude anomalies. The Brent-Drake zone shows very low P-impedance in comparison with 

the Shetland-Brent and the Drake-Cook zones. Low P-impedance values are attributed to sand 

and shale. 
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Figure 6-3. Upper picture: the low-frequency model of Vp/Vs ratio, bottom picture: the Vp/Vs ratio resulting from 

the deterministic AVO inversion. See Figure 4-2 for the location of the section. 
 

The Brent-Drake zone in Figure 6-3 shows lower values of Vp/Vs ratio in comparison with the 

Shetland-Brent and Drake-Cook zones. Lower Vp/Vs ratio values combined with relative low 

P-impedance values discussed above, are attributed to higher sandstone content than in the two 

other zones. Higher Vp/Vs ratio values combined with relative low P-impedance such as in the 

Drake-Cook zone are attributed to shale. 
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Figure 6-4. Upper picture: the low-frequency model of the density, bottom picture: the density resulting from the 

deterministic AVO inversion. See Figure 4-2 for the location of the section. 
 

The Shetland-Brent zone in Figure 6-4 shows high density anomalies, which are not visible on 

the LFM. High density anomalies are attributed to carbonates. The Brent-Drake zone shows 

lower values of density which are attributed to sandstone. The Drake-Cook zone shows higher 

density values than the Brent-Drake zone, however they are lower than the anomalies in the 

Shetland-Brent zone. Consequently, they are attributed to shales. 

 

The inversion results were quality controlled using a seismic inversion QC plot (Figure 6-5) 

and by investigating the synthetic and residual angle stacks (Figures 6-6 to 6-8).  
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Figure 6-5. Seismic inversion QC plot for well 30/9-5S. The plot shows for each elastic property derived from the 

deterministic AVO inversion (P-impedance, Vp/Vs ratio, and density) an inline section with the well log trace 

inside and the viewport with the well log (red), the elastic parameter from the AVO inversion (blue), and the LFM 

(green). 

 

Figure 6-5 shows for each parameter resulting from the deterministic AVO inversion an inline 

section of the elastic property with the corresponding log trace of well 30/9-5S. Next to it, a 

viewport with the well log (red), the result of the inversion (blue), and the LFM transformed 

into a log form along the wellbore (green). The seismic inversion QC plot allows checking on 

the inline section if the inversion results are consistent with the elastic property value from the 

well log. The well log tracks allow to easily compare the log data with the inversion result. The 

P-impedance from the deterministic AVO inversion closely mimics the well log but it is unable 

to reproduce the acoustic impedance anomaly in the lower part of the Shetland-Brent zone. The 

P-impedance in the Brent-Drake zone is slightly underestimated in the bottom part. The Vp/Vs 

ratio from the deterministic AVO inversion follows the shape of the Vp/Vs ratio from the well 

log, however, in some intervals the correlation between the inversion result and the Vp/Vs log 

is low. The density from the AVO inversion is the least reliable property as it does not show a 

good correlation with the well log in the Shetland-Brent and Brent-Drake zones. In the Drake-

Cook zone, the well logs show no major anomalies in all elastic parameters and therefore no 
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significant changes in the seismic amplitudes. In such case, the inversion reflects mainly the 

low-frequency model. 
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Figure 6-6. Upper picture: original near angle stack. Middle picture: synthetic near angle stack resulting from 

the deterministic AVO inversion. Bottom picture: residual near angle stack (the difference between original and 

synthetic stacks). See Figure 4-2 for the location of the section. 
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Figure 6-7. Upper picture: original mid angle stack. Middle picture: synthetic mid angle stack resulting from the 

deterministic AVO inversion. Bottom picture: residual mid angle stack (the difference between original and 

synthetic stacks). See Figure 4-2 for the location of the section. 
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Figure 6-8. Upper picture: original far angle stack. Middle picture: synthetic far angle stack resulting from the 

deterministic AVO inversion. Bottom picture: residual far angle stack (the difference between original and 

synthetic stacks). See Figure 4-2 for the location of the section. 
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The synthetic angle stacks in Figures 6-6 to 6-8 deliver a good match with the original seismic. 

The best result was obtained for the far angle stack, as documented by the residual stack. The 

residuals for near and mid angle stacks show higher amplitudes, meaning that the AVO 

inversion was not able to fully recover the original seismic amplitudes. All residual stacks show 

a coherent signal, that mimics the reflectors in the original seismic. Therefore, the amplitudes 

of the residuals represent not only noise but also a seismic signal. 

 

The original and synthetic stacks show a high similarity, and the P-impedance and Vp/Vs ratio 

cubes resulting from the deterministic AVO inversion correlate with the well logs. Therefore, 

these results can be regarded as sufficiently reliable for guiding the facies modeling. Due to the 

poor correlation between the calculated density in the vicinity of the wells and the well log 

density this inversion cube was not used as a facies guide. 

 

6.2. Stochastic AVO inversion 

The P-impedance cube from the deterministic AVO inversion was resampled into the geomodel 

to perform the horizontal variogram analysis. The vertical variogram modeling was performed 

on the upscaled P-impedance logs (see section 5.5.2). The results of the variogram modeling 

for the reservoir zone Brent-Drake are shown in Figure 6-9. The parameters of the experimental 

variogram were adjusted in a way that the ranges of the variogram model could be determined 

reliably. The spatial continuity in the Brent-Drake zone was modeled with a 10 m range vertical 

variogram, and a 2800 m range, laterally isotropic (the range in major direction is equal to the 

range in minor direction) variogram (Fig. 6-9). The same variogram models were used for the 

other two zones because of their good fit with the experimental variograms. All sample 

variograms were approximated by a spherical model with no nugget effect (blue line, Fig. 6-9). 

The vertical variogram range is based on the well data and is regarded as having small 

uncertainty. The influence of the lateral variogram range on the stochastic AVO inversion is 

discussed later in the thesis. 
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Figure 6-9. The results of the variogram analysis for the Brent-Drake zone of the geomodel. Grey dots indicate 

the experimental variogram, the blue line is the spherical variogram model fitted to the experimental variogram, 

and the histogram shows the number of pairs used to calculate the experimental variogram for each lag distance. 

The experimental variogram was fitted with a spherical variogram model with a vertical range of 10 m, and 

horizontal range of 2800 m in all lateral directions 

 

The low-frequency models used in the deterministic AVO inversion were resampled into the 

geomodel cells. The stochastic AVO inversion was performed using the same LFMs, aligned 

seismic angle stacks, and wavelets as in the deterministic AVO inversion. The correlation 

matrix and the standard deviation for each elastic parameter were estimated from the upscaled 

well logs. The blind well test was performed on the well 30/9-J-13 (Fig. 5-4) as discussed at the 

end of this subsection. The results of one realization of the stochastic AVO inversion are shown 

in Figure 6-10. The realization is embedded into the solution of the deterministic AVO 

inversion presented in subsection 6.1. 
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Figure 6-10. Section showing the results of one realization of the stochastic AVO inversion, embedded into the 

background of the deterministic AVO inversion. The extent of the stochastic AVO inversion is limited by the extent 

of the geomodel. The stochastic AVO inversion shows high-frequency vertical variability introduced by the vertical 

variogram model. See Figure 4-2 for the location of the section. 
 

The main difference between the stochastic and the deterministic AVO inversion lies in the 

increased variability of the stochastic inversion, which is controlled by the variogram model. 

The smoother result of the deterministic AVO inversion is controlled by the bandwidth of the 

seismic data. 

 

The stochastic AVO inversion results were quality checked by investigating the diagnostics of 

the inversion (Figure 6-11) and the blind well test (Figure 6-12). 
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Figure 6-11. The diagnostics for one realization of the stochastic AVO inversion, a) the cost function, b) the 

number of iterations, c) the convergence to the seismic trace 
 

Figure 6-11a shows that the cost function for most of the inverted traces is equal to or higher 

than the convergence criterion of 0.8. Consequently, for those traces, we can observe a low 

number of iterations (6-11b) and positive convergence to the seismic trace (6-11c). There are 

some zones, especially in the Northwestern part of the geomodel, where the stochastic AVO 

inversion failed. This is a zone of poor seismic imaging where the geomodel partially overlaps 

the Brage fault. 

 

The well 30/9-J-13 (Fig. 5-4) was used to perform the blind well test and compare the results 

of the stochastic and the deterministic AVO inversions (Figure 6-12). As described in section 

3.2, the stochastic AVO inversion should average the deterministic AVO inversion. This is best 

observed in the Drake-Cook zone (only the uppermost part of the zone is shown in Figure 6-

12). In the Shetland-Brent and Brent-Drake zones there are differences between the 

deterministic AVO inversion and the average of the stochastic AVO inversion realizations. 

These differences may arise from the uncertainty in the variogram model or a non-ideal 

parametrization of the deterministic AVO inversion. Despite these differences, the average of 

the stochastic AVO inversion mimics the result of the deterministic AVO inversion and the 

upscaled well log. Ten realizations of the stochastic AVO inversion roughly show the 
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uncertainty ranges embedded into the seismic AVO inversion. The upscaled well log in almost 

every layer lies within these uncertainty ranges. 

 

 

Figure 6-12. The blind well test of the stochastic AVO inversion using well 30/9-J-13 (Fig. 5-4). The thin black 

curves show ten realizations of the stochastic AVO inversion. The thick black curve shows the average of one 

hundred realizations of the stochastic AVO inversion. The deterministic AVO inversion result (red) and the 

upscaled well log (blue) are also plotted for comparison 

 

After the analysis of the diagnostics maps and the blind well test, the stochastic AVO inversion 

was assessed as being of sufficient quality to guide the facies modeling. 
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6.3. Facies modeling 

The results of the deterministic and the stochastic AVO inversion were used to guide the facies 

modeling as described in section 5.6. The results of facies modeling using these two approaches 

are shown in Figures 6-13 to 6-17. 

 

The sandstone probability from the deterministic AVO inversion (Figure 6-13a) is limited to 

the seismic bandwidth. It shows a lower vertical variability than the sandstone probability from 

the stochastic AVO inversion (Figure 6-13b). In the reservoir Brent-Drake zone, the probability 

of sandstone resulting from the deterministic AVO inversion is high along the entire cross-

section, whereas the stochastic AVO inversion shows lower sandstone continuity and thin 

layering. The extent of the layers is controlled by the horizontal variogram range. In Figure 6-

13c, there is much more sandstone in the Brent-Drake zone from the deterministic AVO 

inversion than from the stochastic AVO inversion (Figure 6-13d). In the bottom part of the 

Drake-Cook zone, the probability of sandstone from the deterministic AVO inversion (6-13a) 

is low but not zero. Therefore, the SIS algorithm simulates some sandstone there (6-13c). The 

probability of sandstone from the stochastic AVO inversion in some parts of the Drake-Cook 

zone has quite high values even approaching 0.5 (6-13b), but there is almost no sandstone 

predicted in that zone by this realization (6-13d). The facies distribution is different in each 

realization as shown in Figure 6-14. 

 

Figure 6-14 presents the comparison of facies predicted by the two workflows in the blind well 

30/9-J-13 (Fig. 5-4). The sandstone probability from the deterministic AVO inversion shows a 

smooth character reflecting the limitation of seismic resolution. The sandstone probability from 

the stochastic AVO inversion shows high-frequency variability resulting from the vertical 

sample variogram derived from the well logs. Different realizations of the stochastic AVO 

inversion give different sandstone probabilities which result in different facies distributions. 
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Figure 6-13. The cross-sections through the geomodel showing a) sandstone probability from the deterministic 

AVO inversion, b) sandstone probability from the stochastic AVO inversion (one realization), c) facies model 

guided by the deterministic AVO inversion (one realization), d) facies model guided by the stochastic AVO 

inversion (one realization). The reservoir Brent-Drake zone is highlighted by the thick black horizons. See Figure 

6-15 for the location of the cross-section. 
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Figure 6-14. A comparison between the facies models predicted by the two inversion workflows in the blind well 

30-9-J-13 (Fig. 5-4). Three facies models are compared along with the sandstone probabilities and the elastic 

parameters from the deterministic and the stochastic AVO inversions. 
 

Figure 6-15 shows the map view of the top of the Brent-Drake zone in the geomodel. The results 

were obtained using a lateral variogram range of 2800 m, based on the analysis of the P-

impedance volume from the deterministic AVO inversion. The same lateral variogram range 

was incorporated into the SIS simulation and the stochastic AVO inversion. However, the 

spatial distribution of the facies is different between the two methods (Fig. 6-15c and d). The 

SIS simulation guided by the deterministic AVO inversion results in a more irregular facies 

distribution. However, as mentioned earlier, the range of the lateral variogram is uncertain. The 

lateral variogram for the stochastic AVO inversion can be adjusted in a way, that the facies 

distribution mimics the deterministic AVO inversion (Figure 6-16). The facies model in Figure 

6-16b was guided by the stochastic AVO inversion with a lateral variogram range of 600 m.  
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Figure 6-15. The map view of the top of the Brent-Drake zone in the geomodel. a) The sandstone probability from 

the deterministic AVO inversion, b) the sandstone probability from the stochastic AVO inversion (one realization), 

c) the facies model guided by the deterministic AVO inversion (one realization of SIS with a horizontal variogram 

range of 2800 m), d) the facies model guided by the stochastic AVO inversion with the same horizontal variogram 

range of 2800 m (one realization) 
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Figure 6-16. The map view of the top of the Brent-Drake zone in the geomodel. a) the facies model guided by the 

deterministic AVO inversion (one realization of SIS with a horizontal variogram range of 2800 m), b) the facies 

model guided by the stochastic AVO inversion with a lower horizontal variogram range of 600 m (one realization). 
 

One hundred facies models were generated for the following four workflows: the deterministic 

AVO inversion followed by SIS with a lateral variogram range of 2800 m and 600 m, the 

stochastic AVO inversion with a lateral variogram range of 2800 m and 600 m, followed by the 

litho-classification. The sandstone volume in the Brent-Drake zone obtained from these 

workflows is shown in Figure 6-17. The P10, P50, and P90 volumes of sandstone, shale and 

carbonate are given in Table 6-1. 
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Figure 6-17. Sandstone volume in the Brent-Drake zone obtained from one hundred facies models guided by the 

deterministic (a and d) and stochastic (b and c) AVO inversions, with two different lateral variogram ranges of 

2800 m and 600 m. 



68 
 

 

Table 6-1. Comparison of facies volumes in the Brent-Drake zone from the workflows shown in Fig. 6-17 

Sandstone volume [m3 * 108] 

 P10 P50 P90 

Deterministic AVO inversion + SIS 

with lateral variogram range 2800m 
5.85 6.29 6.75 

Stochastic AVO inversion with lateral variogram range 

2800m + litho-classification 
3.62 4,33 5.28 

Stochastic AVO inversion with lateral variogram range 

600m + litho-classification 
5.01 5.58 6.03 

Deterministic AVO inversion + SIS 

with lateral variogram range 600m 
6.07 6.33 6.60 

Shale volume [m3 * 108] 

 P10 P50 P90 

Deterministic AVO inversion + SIS 

with lateral variogram range 2800m 
15.40 15.65 15.75 

Stochastic AVO inversion with lateral variogram range 

2800m + litho-classification 
15.73 15.75 15.77 

Stochastic AVO inversion with lateral variogram range 

600m + litho-classification 
15.67 15.70 15.71 

Deterministic AVO inversion + SIS 

with lateral variogram range 600m 
15.63 15.71 15.76 

Carbonate volume [m3 * 108] 

 P10 P50 P90 

Deterministic AVO inversion + SIS 

with lateral variogram range 2800m 
6.03 6.44 6.88 

Stochastic AVO inversion with lateral variogram range 

2800m + litho-classification 
3.64 4.37 5.30 

Stochastic AVO inversion with lateral variogram range 

600m + litho-classification 
5.17 5.66 6.15 

Deterministic AVO inversion + SIS 

with lateral variogram range 600m 
6.15 6.42 6.71 
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7. Discussion 

The blind well test in Figure 6-12 shows that the stochastic AVO inversion allows capturing to 

a large extent the uncertainty of the elastic parameters estimation. These parameters 

approximately average to the result of the deterministic AVO inversion. In this sense, the 

stochastic AVO inversion is superior to the deterministic AVO inversion as it allows obtaining 

additional information from the same input seismic data. However it needs a variogram model 

which is an additional uncertain input in comparison with the deterministic AVO inversion. 

The vertical variogram model is obtained from the well logs and is regarded as having a small 

uncertainty, but the lateral variogram range cannot be obtained reliably from a few wells that 

are usually available, and consequently is subject to a large uncertainty. 

 

The sandstone probabilities are controlled by the Vp/Vs ratio and therefore they inherit the 

properties of the inversion methods. The sandstone probability from the deterministic AVO 

inversion has a smooth character as results of the limited seismic bandwidth (Fig. 6-13a, 6-14), 

while the sandstone probabilities from the stochastic AVO inversion show high-frequency 

variability (Fig. 6-13b, 6-14) as result of the vertical variogram model supported by the well 

logs. The two workflows utilize the sandstone probability in different ways. The deterministic 

AVO inversion workflow uses the stochastic SIS simulation for soft conditioning of the 

reservoir model (Chapter 1). Even if the sandstone probability is low (e.g. in Fig. 6-13a), the 

SIS will still simulate sandstone (Fig. 6-13c) in a number of realizations proportional to the 

sandstone probability since it uses a Monte Carlo (stochastic) sampling of the CDF of the facies 

fractions. The stochastic AVO inversion workflow on the other hand, incorporates the 

stochastic part of the facies modeling into the inversion itself and the litho-classification is a 

deterministic procedure. For an individual stochastic inversion the sandstone probability must 

be dominant over the other facies to classify the cell of the geomodel as a sandstone. Therefore, 

the litho-classification results in less noisy facies distribution as it discriminates low facies 

probabilities (Fig. 6-13 – 6-15). 

 

Figure 6-14 shows that none of the two methods predict the existence of the two sandstone 

layers inside the Brent-Drake zone that are below seismic resolution. Thus, the methods have 

no predictive power for facies layers below seismic resolution, yet they can be used for 

estimating the uncertainty in volumetric calculations. 
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As shown in Figures 6-15d and 6-16b, the lateral variogram range has a large influence on the 

facies distributions from the stochastic AVO inversion. The large lateral variogram range (2800 

m, Fig. 6-15d) is based on the analysis of the deterministic AVO inversion of the bandlimited 

seismic. Therefore, this variogram range might be too large because of the limited lateral 

seismic resolution. The small lateral variogram range (600 m, Fig. 6-16b) is visually guided by 

the deterministic AVO inversion followed by the SIS, which is a common approach to condition 

the facies distribution. However, this small lateral variogram range is not supported by the 

variogram analysis. Probably, the true lateral variogram range lies within the values defined by 

these two cases. 

 

The workflow based on the stochastic AVO inversion results in much less sandstone and 

carbonate (Fig. 6-17b, Tab. 6-1) in the reservoir Brent-Drake zone than the workflow based on 

the deterministic AVO inversion (Fig. 6-17a, Tab. 6-1). However, the stochastic AVO inversion 

workflow with a small lateral variogram range of 600 m (Fig. 6-17c, Tab. 6-1) shifts the 

sandstone and carbonate volume towards the results of the deterministic AVO inversion 

workflow. A lower lateral variogram range introduces a larger variability in the sandstone 

probability which delivers a similar effect to SIS. Consequently, the lateral variogram range is 

of critical importance for facies modeling using stochastic AVO inversion (Fig. 6-17b-c), 

though it has a small impact on the P50 volume obtained from the deterministic AVO inversion 

(Fig. 6-17a and d, Tab. 6-1). The sandstone volume from the stochastic AVO inversion has a 

broader spread than the volume from the deterministic AVO inversion. A decrease of the 

variogram range decreases the spread of the volume distribution for both types of inversions 

and facies modeling (Fig. 6-17c-d as opposed to a-b). These results are somewhat surprising, 

and perhaps negatively surprising for the validity of the stochastic AVO inversion, which is 

heavily dependent on an often uncertain lateral variogram range. 
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8. Conclusions 

Facies modeling using the stochastic AVO inversion obviously needs more workload, is more 

CPU-demanding and it needs the results of the deterministic AVO inversion to approximate the 

lateral variogram range. The AVO stochastic inversion captures the uncertainty in the elastic 

parameters controlling the facies probabilities. The deterministic AVO inversion results in 

facies probabilities that are uncertain because of the non-uniqueness of the inverse problem and 

are smooth due to the limited seismic bandwidth, though it requires less work and is faster. Both 

inversion methods have no predictive power for thin layers below seismic resolution. 

 

The stochastic AVO inversion followed by the litho-classification can lead to substantial 

differences in the estimated sandstone volume in comparison with the deterministic AVO 

inversion followed by SIS. The variogram model largely impacts the facies distributions from 

the stochastic AVO inversion. The vertical variogram model is obtained from the well logs and 

its uncertainty is small. The lateral variogram range is highly uncertain as usually there are not 

enough wells in the study area to perform a reliable variogram analysis. A lower lateral 

variogram range in the stochastic AVO inversion shifts the sandstone volume towards the 

results of the deterministic AVO inversion. Consequently, the lateral variogram range is of 

critical importance for facies modeling using the stochastic AVO inversion, though it has a 

small impact on the P50 volume obtained from the deterministic AVO inversion. The sandstone 

volume from the stochastic AVO inversion has a broader spread than the volume from the 

deterministic AVO inversion. A decrease of the variogram range decreases the spread of the 

volume distribution for both types of facies modeling. Since both workflows can be 

parametrized (or adjusted) to deliver similar results by changing a highly uncertain parameter, 

the value of the stochastic AVO inversion for facies modeling is not yet fully understood and 

requires further research. 

 

The question which method leads to more realistic facies volumes spread is open. The stochastic 

AVO inversion gives a broader range of volume uncertainty and all volumes are supported by 

seismic, therefore could be regarded as more realistic. However, the volume spread from the 

stochastic inversion depends on the variogram range which is uncertain. Consequently the 

reliability of the volume spread, depends on the reliability of the horizontal variogram range. 
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Due to the large influence of the lateral variogram range on the facies models from the 

stochastic AVO inversion the reservoir conditioning using stochastic AVO inversion is 

probably more suited for mature oil and gas fields, where the lateral variogram range might be 

obtained directly from a large number of wells. 
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9. Recommendations for future work 

The stochastic AVO inversion can lead to substantial differences in the estimated sandstone 

volume, yet its value for facies modeling remains open. It is advisable to continue research on 

the best methods for utilizing the multiple facies probabilities from the stochastic AVO 

inversion. One possible alternative could be to incorporate the facies probabilities from each 

realization of the stochastic AVO inversion into the sequential indicator simulation.  

 

Because the lateral variogram range has a large impact on the facies distributions from the 

stochastic AVO inversion and this value is often highly uncertain, it is advisable to examine the 

reliability of the lateral variogram range obtained from the deterministic AVO inversion. Such 

investigation could be possible on a synthetic reservoir model populated with known elastic 

properties. 
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