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Abstract
This thesis investigates past performance of production forecasts provided by operators on
the NCS at the time of project sanction. Utilising a dataset comprising annual forecasted
and actual production from 1995 to 2017, we demonstrate that operators on the NCS exhibit
considerable optimism and overconfidence biases in their production forecasts. To debias
these production forecasts, we develop and implement a reference class forecasting (RCF)
methodology with the goal of producing well-calibrated forecasts. The debiased forecasts
that are generated from this process are evaluated through a series of tests, providing strong
evidence for bias reduction and enhanced forecasting performance. Prior to applying RCF
adjustments, only 33% of all observations of actual production in the first six years fall within
the 80% confidence interval defined by the forecasts. Applying RCF significantly reduces the
overconfidence bias as the adjusted 80% confidence interval now captures 77% of the actual
production levels. Moreover, RCF increases the fraction of fields whose actual production
exceed the P50 estimate from 37% to 47%, implying reduced optimism.
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1 Introduction
In the oil and gas industry, investment decisions require production forecasts. Together with
estimates of cost and completion time, these production forecasts are used to formulate value
estimates and, in turn, form the basis for deciding if and how fields should be developed. As
biased or poorly informed production forecasts may lead to suboptimal decisions and poor
capital efficiency, significant resources are devoted to forecasting future production in the oil
and gas industry.

Despite its importance, optimistic and overconfident production forecasts is the norm
rather than the exception for projects on the Norwegian Continental Shelf (NCS). In fact,
an evaluation of forecast performance for development projects on the NCS performed by
Bratvold et al. (2020) show that only around 30% of actual production outcomes in the
first four years after production start fall within the expected 80% range. Moreover, they
found that 84% of actual production outcomes for the same period was lower than the P50
production estimate, implying that production shortfalls are dominating on the NCS.

The key contribution of this thesis is to extend the work of Bratvold et al. in several ways.
First, the time period of interest will be expanded to cover the first six years of production.
Moreover, instead of solely evaluating the aggregated production within this time period,
attention will be directed to each individual year with the goal of answering the following
question:

Can reference class forecasting, when applied to each year individually,
successfully reduce bias related to optimism and overconfidence?

After presenting findings from a literature study on how production forecasts are generated
and on possible causes of underperformance in Section 2, we aim to answer this question by
following the procedure presented in Figure 1.1. First, verification of original production
forecasts for fields on the Norwegian continental shelf is conducted based on historical
production forecasts and reported actual production for 56 fields. This entails data
scrubbing and distribution fitting, which is discussed in Section 3 and Section 4,
respectively. Next, with intentions of debiasing the original forecasts, a methodology for
RCF is developed and implemented in Section 5. Finally, forecast calibration is evaluated
relative to perfect calibration and further supported by in-sample and out-of-sample tests.
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Figure 1.1: Overview of thesis procedure
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2 Production forecasts in the oil and gas industry
When an investment decision for a project is made, incurring costs are weighed against the
project’s expected cash flows. This amounts to expected revenue and profitability, which is
conventionally assessed by calculating the Internal Rate of Return (IRR) or the project’s
Net Present Value (NPV). For petroleum development projects, the profitability depends
strongly on forecasted production of oil and gas (Meddaugh et al., 2017). Together with
estimated costs and completion time, these forecasts represent the core of estimates for
future cash flows and are, therefore, central for decision making processes in the oil and gas
industry. Production excess or shortfall leads to suboptimal decisions and poor capital
efficiency, adversely affecting both companies and shareholders. As a result, generating
production forecasts that account for uncertainty related to actual production attainment
becomes crucial for providing a well-informed decision-making basis for the final investment
decision (FID). This section briefly describes how these forecasts traditionally are
generated, evaluate the general performance of today’s forecasts, and discuss possible
factors that contribute to production shortfalls. For future reference, this will be referred to
as underperformance.

2.1 Estimating future oil production
Due to the importance of well-informed production forecasts, companies in the oil and gas
industry devote enormous amounts of resources to develop and improve forecasting methods
(Nandurdikar et al., 2011). Estimates of future oil production from a particular reservoir
are heavily reliant on data acquired from sources like seismic surveys, well logs, drilling,
and core samples (PetroWiki, 2020). Knowledge generated by analysing data from these
sources is used as input to advanced computer models for reservoir simulation, generally
categorised as either static or dynamic models (Yeten et al., 2015). The former generally
consists of a stratigraphic framework described by reservoir parameters like porosity and
permeability distributions, fluid saturations, rock properties, and fluid contacts. Dynamic
models are more advanced and typically comprise upscaled versions of static models. These
models include additional input factors such as reservoir pressure, volume and temperature
characteristics, and flow rates of the reservoir fluid, thereby acting to coarsen the resolution
of the static model. For reliable production forecasts, both static and dynamic models that
are representative of the specific reservoir are required.
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2.1.1 Describing uncertainty

Approaches for describing uncertainty related to production forecasts generated by
reservoir models can broadly be categorized as either deterministic or probabilistic
(PetroWiki, 2016). Deterministic models are models where the output is fully determined
by the explanatory variables and the initial conditions of these parameters (Rey, 2015).
Probabilistic (or stochastic) models, on the other hand, incorporate ranges of values with
corresponding probability distributions for each variable (Renard et al., 2013) and, in turn,
yields a probability distribution for the model output. Based on the amount of available
data and the strength of knowledge judgments, which points to an analyst’s ability to
produce a reasonable prediction of future production, one may resort to several different
approaches for handling subsurface uncertainty. Bentley and Smith (2008) present three
contrasting approaches; Rationalist approaches (1), Multiple stochastic approaches (2), and
Multiple deterministic approaches (3). The rationalist approach is heavily shifted towards
determinism, which is outlined through the presentation of a unique output − a single best
guess − that may be accompanied by low and high estimates to account for uncertainty.
The multiple stochastic approach probabilistically generates a large number of possible
outcomes by assigning probability distributions to each input parameter. Each distribution
is constructed from gathered reservoir data and, together, produce a cumulative probability
curve for the model output, typically based on a Monte Carlo simulation approach. From
this distribution, percentiles like P90, P50 and P10 production estimates may be retrieved
(PetroWiki, 2016). For the final approach, multiple deterministic, a smaller number of
models that each reflect an explicitly defined physical representation of the reservoir are
created. Low, medium and high cases may, then, be retrieved by assigning probabilities to
the various outputs.

Despite its importance, uncertainty reflections of production forecasts has received a varying
degree of attention in the past. Dating back to the 1980’s, production forecasting for major
development projects on the NCS was performed following the rationalist approach, i.e. by
only expressing forecasted production by a single value. Yearly production forecasts for the
anticipated production life of 10 to 30 years was generated by this methodology. Since then,
a gradual shift towards probabilistic forecasting methods in the oil and gas industry has
occurred, both in study and application. In the 22 year time period from 1995 to 2017, the
number of published papers on the topic is found to grow more than 600%, as seen in Figure
2.1 (Bratvold et al., 2020).
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Figure 2.1: Overview over the growth of published papers on probabilistic
forecasting over a 22 year time period (Bratvold et al., 2020)

In terms of expressing the uncertainty ranges in relation to production forecasts on the
NCS, clear guidelines are provided by the Norwegian Petroleum Directorate (NPD). These
guidelines are detailed in Table 2.1, emphasising the use of a multiple stochastic approach.
This is also in alignment with guidelines provided by the Petroleum Resource Management
System (PRMS) and the Securities and Exchange Commission (SEC), both of which describe
the reserves and resources by low, medium and high estimates in terms of P90/P50/P10
ranges.

Following the guidelines provided by the NPD, this thesis expresses the low, base and high
production estimates by P90, mean and P10 values, respectively. Thus, the following
definitions of probabilistic forecasts apply:

• P90: There should be at least a 90% probability that the quantities actually recovered
will equal or exceed the low estimate.

• P50: There should be at least a 50% probability that the quantities actually recovered
will equal or exceed the best estimate.

• P10: There should be at least a 10% probability that the quantities actually recovered
will equal or exceed the high estimate.

5



Table 2.1: Overview of the Uncertainty category classifications and explanations provided by the
NPD (Norwegian Petroleum Directorate, 2019) (modified)

Uncertainty
Category

Definition Explanation

Low Estimate Low estimate of petroleum
volumes that are expected to be
recovered from a project.

The low estimate must be lower than the base estimate.
The probability of being able to recover the indicated
estimate or more must be shown (e.g. P90).
Compared with the base estimate, the low estimate
should express potential negative changes with regard
to mapping of the reservoir, reservoir/fluid parameters
and/or recovery rate.

Base Estimate Best estimate of petroleum
volumes that are expected to be
recovered from a project.

The base estimate must reflect the current understanding
of the scope, properties and recovery rate of the reservoir.
The base estimate will be calculated using a deterministic
or stochastic method. If the base estimate was calculated
using a stochastic method, the base estimate shall be
stated as the expected value.

High Estimate High estimate of petroleum
volumes that are expected to be
recovered from a project.

The high estimate must be higher than the base estimate.
The probability of being able to recover the indicated
estimate or more must be shown (e.g. P10).
Compared with the base estimate, the high estimate
should express potential positive changes with regard
to mapping of the reservoir, reservoir/fluid parameters
and/or recovery rate.

Figure 2.2 graphically illustrates the above definitions, showing the three percentile curves
for production estimates and the actual oil production profile for a typical field.

Figure 2.2: Overview of P90, P50 and P10 cases from probabilistic
forecasting from multiple stochastic models (Bentley, 2016)
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2.2 Current production forecast performance
In an ideal scenario, the forecasts fit the actual production profile without any deviations,
thereby creating a well-informed basis for field development. Due to the presence of
uncertainty, however, the majority of fields on the NCS fail to deliver on forecasted
production. This is shown by Bratvold et al. (2020), who recently performed a study on the
general forecast performance of fields on the NCS. Comparing historical actual production
for the first four years after production start for 32 fields to their respective original
production estimates, they found that only 31% of the fields had actual production that
fell within the 80% confidence interval defined by the P90 and P10 estimates. Figure 2.3,
showing actual production and the mean forecasted production for the same 55 fields
investigated by Bratvold et al., further illustrates that production shortfalls in the first
years of production has been the rule rather than the exception for fields on the NCS. For
the first six years, actual production is seen to fall significantly short of the mean estimate,
which is meant to reflect the expected value of future production volumes. Six years after
production start, however, one experiences a shift between the actual and estimated
production data. At this point, the former exceeds the latter, typically due to reinvestment
and implementation of improved recovery methods for production.

Figure 2.3: Forecasted vs. Actual production Figure 2.4: Cumulative Production

Figure 2.4 shows the cumulative actual and forecasted production for 22 years of production.
Although the yearly actual production eventually exceeds forecasted production, and the
cumulative actual production after 22 years of production is equal to that of the estimates,
emphasis should be put on the NPV of these production volumes. Cash flows in initial years
of a project carry more economical weight than those occurring at later stages of the project.
This follows from the core principle of finance, stating that a sum of money in the future
is worth less than the identical sum today − often referred to as the time value of money
(TVM) (Chen, James, 2020). The clear tendency of overestimating production in the early
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stages of the field’s lifetime may, thus, result in value erosion that is not in line with the
expectations of shareholders involved in the project.

2.3 Causes of underperformance
It is at least intuitively obvious that some of the deviation between forecasted and actual
production source back to the high degree of uncertainty and complexity related to
hydrocarbon production. Reservoirs on the NCS are typically heterogeneous and can reach
depths of 4000 meters (Norwegian Petroleum Directorate, 2017), introducing uncertainty to
the reservoir properties. Encapsulating the range of variation in all contributing variables
and developing well-informed prediction models for 10 to 30 years of future production,
thus, requires complex modelling of uncertainty. However, despite significantly increased
understanding of uncertainty modelling over the past two decades, production forecasts are
just as inaccurate today as they were 20 years ago (Bratvold et al., 2020). This may point
to biased production estimates, owing to the various psychological factors presented in this
section.

Aside from the forecasts themselves, the Oil and Gas Authority (2017) presents five key
contributing reasons for gaps between actual and estimated production in the oil and gas
industry. These are; project- and organisation management, front-end loading, execution,
and behaviour. Common for all these areas are incurring psychological and hierarchical
factors that tend to drag a project beyond its predetermined target on production.
Historically, these factors carry an undervalued perception. Rather than acknowledging the
presence of biases in production estimates, production shortfalls are often explained by bad
luck (Flyvbjerg et al., 2009). Goliat (Kongsnes, 2015), Martin Linge (Stangeland, 2015),
Glitne (Norwegian Petroleum Directorate, 2011) and Yme (Skodje and Steneberg, 2011)
are all fields that have expressed bad weather as explanation for cost overruns. Other
prevalent explanations provided by Norwegian leaders when expressing the reasoning for
failing to deliver on time and, in turn, expected production, are lack of quality from
suppliers and change of complexity in the reservoir. While not denying the validity of such
salient explanations, reported production data for fields on the NCS imply that these
excuses may overshadow the presence of psychological biases.

Optimism and overconfidence due to lack of regard to distributable information is argued
to be a common judgment trait of the human mind (Kahneman and Tversky, 1977;
Kahneman, 1979). The concept of ”planning fallacy” was introduced in the same papers,
and can be understood as the tendency to believe that your own project will proceed as

8



planned, despite previous instances of similar projects with comparable scope and
magnitude failing to perform according to expectations. A further expansion of the
concept, making it applicable for projects in the petroleum industry, includes the
underestimation of time and risk, which introduces a potential for production shortfalls
and cost overruns. Decision-makers and top management tend to pursue projects that are
unlikely to deliver on the trinity of estimated time, cost and returns (Flyvbjerg, 2007b).
This tendency is further discussed by Flyvbjerg et al. (2009), deducing two main sources of
biased forecast profiles; deception and delusion.

2.3.1 Deception

Deception is the term that is referred to whenever there is an advantage to be gained by a
strategic misinterpretation of the project at hand, and relates to motivational bias. A
project that falls under this category generally has an augmented perceived potential,
typically caused by a principal-agent (P-A) problem where the primary incentives of the
parties involved are although in alignment, not necessarily to the same degree (Flyvbjerg
et al., 2009). Projects that are big in magnitude and consists of multiple tiers, such as
offshore petroleum projects, are susceptible to P-A problems between every two levels of
the supply chain.

Figure 2.5: Illustration of P-A tiers for a megaproject (Flyvbjerg et al., 2009)
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Figure 2.5, presents a typical principal agent system. As one proceeds through the entire
system, there are clear benefits to gain through a strategic misinterpretation of the incentives
that relates a specific principal to another specific agent of a megaproject. For instance, the
first tier relating the taxpayers to the state government, the former may expect the latter
to maximise the benefits and gains through an economic scope when retaining approval for
the PDO. However, the state government may have other interests, such as only approving
projects within predetermined limits of climate pollution or aquaculture. The same conflict
may also be present between the operator and the government in the second tier. While the
operators are responsible for preparing the PDO, utilising resource information provided by
the government, one can suspect that the numbers may favour the incentives of the operators,
while barely satisfying the needs of the government. Obviously, these conflicting interests
affect the results that one perceived to gain before initiation. As the system comprise of more
tiers, deviations from initial expectations tend to grow correspondingly larger. However, the
tiers are necessary for the megaproject to initiate, survive and ultimately deliver.

2.3.2 Delusion

Delusion describes underlying psychological effects that eludes a task performer to
underestimate the upcoming workload and relates to cognitive bias. Flyvbjerg et al. (2009)
emphasise that managers often make delusional and highly optimistic decisions, rather
than basing decisions on a rational weighting of gains, losses and probabilities. Put in other
terms, delusion is an involuntary mistake that forecasters are prone to whenever estimates
are made. In hindsight, one finds that many mistakes source back to executives taking an
inside view on the decision at hand. Rather than grasping the entire picture of the project
with a long-term plan in mind, the focus is directed towards the specifics in a short-sighted
scope. As argued by Flyvbjerg (2007b) and Kahneman (1979), this leads to a constant
state of planning fallacy where the final output on cost, time and production are far off the
initial expectations. Assessments of distributions for variables such as average porosity,
net-to-gross, and formation volume factors are exposed to subjectivity and, thus,
susceptible to cognitive bias. The problem gets elevated for decisions related to large oil
and gas projects, because they are made on the basis of many subjective estimates, all of
which are likely to be affected by cognitive bias. Whenever there is a trace of a delusional
approach to a petroleum development project, it can be grouped into one or several of four
delusional bias categories; information availability, anchoring, overconfidence, and trust
heuristics.

10



Information availability
Information is the foundation of which any decision is made. It is therefore crucial to be
conscious about the source and, more importantly, the validity of the information at hand
− no information might be better than disinformation. Bratvold et al. (2010) describe the
human perception of reality as distorted due to the excess information available. Further, they
argue that there is a tendency to drift more towards most recent and vivid information. From
a decision-maker perspective in any industry, past proceedings may also have a significant
contributing psychological factor for the project at hand. If a project manager has recently
been involved in a successful project, he might find it easier to pass on that feeling to
upcoming projects. However, this induces a possibility for overconfidence and complacency,
in which case the project will be less likely to deliver at planned pace. On the other hand, if
a manager is taking up a new project after recently being involved in a failed one, he might
lack the confidence to run crucial operation procedures. In turn, this might make him unable
or reluctant to pass on crucial information to the right receivers at the right time. Also,
when creating a production forecast, technical information is key. The model can only be as
good as the information it is built on. Both reservoir data and information from comparable
projects are important to consider when generating a well-informed forecasting model.

Anchoring
Anchoring is another consequence of the inside view thinking that leads to optimistic
forecasts (Flyvbjerg et al., 2009), and can be understood as the tendency of putting too
much trust into base estimates for production forecasts in spite of wide uncertainty ranges
(Bentley and Smith, 2008). Once anchored, the willingness to explore uncertainty ranges
are sure to diminish, resulting in a prediction model that is overly influenced by the anchor
points without enough care for the ranges. Anchoring is therefore a well-understood
cognitive behaviour where the resulting estimates are more likely to be over- rather than
underconfident (Welsh et al., 2010). Figure 2.6 illustrates a typical case of anchoring in
reservoir modelling, showing that although low and high cases are provided, these may also
be anchored on the base estimate.
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Figure 2.6: Diagramatic representation of anchoring: (a) the extreme end-member
case is the single best guess; (b) even with the addition of a +/- spread, the approach
is still anchored on the initial best guess (Bentley and Smith, 2008)

Overconfidence
Overconfidence is perhaps cognitive bias at its most well-known form. The nature of this
bias is to cause an individual to overestimate the strength of knowledge that one possesses.
As a result, the bounds of the possibility range for any event or parameter are narrowed.
Welsh et al. (2007) investigated the economic impact of overconfidence on large development
decisions by assuming a triangular distribution model for the minimum, most likely and
maximum values of reservoir parameters like porosity, water saturation, net-to-gross, area,
thickness. Their results, which are presented in Figure 2.7, illustrate the clear impact of
overestimation on the project NPV.

Figure 2.7: Effect of Overconfidence on NPV (Welsh et al., 2007)
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It is observed that the expected value of the project remains constant at $346 million as
the expected value for the input distributions remained constant between each condition.
However, the results of the simulation model never reach the expected value of return. The
maximum value that the project can attain is an NPV of $246 million. This can be explained
by the non-linearity arising from the complexity of the model itself. Further, the results show
a clear profile of an accelerating decline in the NPV as the rate of overconfidence steadily
increases. At 5% overconfidence rate, the NPV drops to $224 million. Further extrapolation
to 30% overconfidence, the project retrieves a negative NPV of -$10 million. This implies that
a company that are 30% overconfident about their parametric input values compared to the
true underlying uncertainty values would predict an NPV of $246 million, whereas the actual
NPV would be -$10 million, resulting in an error of $256 million due to overconfidence. From
these results, the impact of overconfidence bias to the potential financial losses are evident
and are imperative to be accounted for and reduced to a minimal in any prediction model.

Trust heuristics
The last, and probably most overlooked, delusional bias affecting estimates is trust
heuristics, which can be understood as the tendency of managers to rely on the judgment
of the most trusted team member(s) when making a decision. By doing so, one may
overlook valuable expertise from other team members that might have provided important
input to the objective at hand. This contributes to estimation errors in the oil and gas
industry, simply by not utilising all expertise knowledge that is available.

Figure 2.8: Illustration of the knowledge of 5 different
experts and the composite knowledge following a triangular
distribution (Welsh et al., 2007)

13



Figure 2.8 illustrates the beliefs of five experts on the parametric value of area. As illustrated,
the beliefs are triangular distribution PDFs of equal shape, differing only in their ability to
reflect the differences between each expert opinion. The red distribution represents that of the
most trusted team member, which is noticeably narrower than the composite blue triangular
PDF distribution. The difference in range between the red and blue distributions may not
withhold crucial information about the true underlying parametric value of the area. This
particular, and perhaps crucial, information is not processed if only the expertise provided
by the most trusted team member is regarded.

Welsh et al. (2007) present a model that displays the effect of trust heuristics on
overconfidence. This model aims to show how multiple experts with varying information
input and varying degrees of agreement affects overconfidence. From the results presented
in Figure 2.9, it can be observed that including even a single additional expert in the
decision making process contributes to reducing the overconfidence by around 5 to 10% on
average, depending on whether there is a high or low degree of agreement amongst the
experts. Proceeding to add, say, 4 additional experts to the group of decision makers
induces an average reduction in overconfidence by 8 to 17%. The potential economic
impacts of trust heuristics can be retrieved by comparing Figure 2.9 with Figure 2.7.
Assuming the same scenario as was modelled in the discussion of overconfidence, a 5%
change in overconfidence equates to an error in calculating the project’s NPV of between
$22 and $75 million, depending on how overconfident the trusted expert was to start with.
While this research assumes a similar distribution for the individual knowledge of the
experts based on individual assessments rather than consensus, the results are important to
not overlook. It is apparent that the oil and gas industry have yet to become better at
exploiting the knowledge base of the experts at hand. Improvements on this area may yield
significantly better results in the economic and performance portfolios of the companies.
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Figure 2.9: Illustration of the impact of agreement among experts and
overconfidence (Welsh et al., 2007)

As presented in this section, the causes of underperformance are many and bear significant
impact when comparing the estimates to the actual production quantity. The NCS
production data utilised in this thesis may exhibit one or several of the presented elements
that translates to biased forecasts. In this work, focus is directed towards providing
relevant discussion on overconfidence and optimism debiasing.
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3 Data and data scrubbing
Forecast performance for fields on the Norwegian continental shelf is, in this thesis,
investigated based on the same dataset utilised by Bratvold et al. (2020), which was briefly
introduced in Section 2.2. While Bratvold et al. consistently focus on aggregated
production data for the first four years (F4Y) of production, our work extends this time
period to cover the first six years. Moreover, rather than studying the aggregated
production data for this time period, attention is directed to each individual year. This
section aims to provide a detailed description of the dataset, the operations applied for
eliminating the effect of schedule delays, and the process of data scrubbing utilised to filter
out unreliable data.

3.1 Data
Evaluating performance of production forecasts on the NCS requires actual and estimated
production data at field-level. While actual production data are acquired from the operators’
annual reporting to the revised national budget (Norwegian Petroleum Directorate, 2020),
estimated production data for fields on the NCS is not public information and, therefore, not
easily attainable. However, before a field is approved for development, operators on the NCS
are required to submit a report on the Plan for Development and Operations (PDO) to the
NPD. Furthermore, it is a prerequisite that the production forecasts supporting the FID is
included in this report. Estimated production data provided by operators at the time of FID
is acquired through a non-disclosure agreement with the NPD. Consequently, no actual field
name with production estimate will be presented. If a field name is used, it is to show public
data. Furthermore, axis-values are removed in cases that inherent revelation possibilities of
fields that are being discussed.

The dataset provided by the NPD comprises 85 oil and gas fields on the NCS, all approved
for development from 1995 to 2017. Excluding fields with either poor or missing data, as
well as forecasts for gas, natural gas liquids and condensate production, yields a final
dataset with 56 fields. For each of these fields, year-by-year low, medium and high
production estimates are provided for their projected lifetime. In total, this adds up to an
extensive dataset consisting of 602 production years. Guidelines provided by the NPD
suggests that medium estimates should reflect the expected value (mean), while low and
high estimates preferably should represent the P90 and P10 values, respectively. Although
the early PDO guidelines failed to rigidly specify corresponding probabilities for the low
and high estimates (Norwegian Petroleum Directorate, 2000; Ministry of Petroleum and
Energy, 2010), no additional information is given to contradict the current guidelines.
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Thus, it is assumed that the provided estimates are consistent with the NPD guidelines
presented in Section 2.1.1, i.e. that the low, medium and high production estimates reflect
P90, mean and P10 values, respectively. Production forecasts with these characteristics are
said to be well-calibrated − or unbiased − if; 1) 80% of the actual outcomes lie within the
forecasted P90/P10 range, and 2) 50% of the actual observations lie above the mean
estimate while the other 50% lie below it (assuming approximately normally distributed
data) (Bratvold et al., 2020).

3.1.1 Time shifting the data

Bratvold et al. (2020) found that 17 percent of the fields started production earlier than
scheduled, while 69 percent experienced schedule delays. With an average delay of 202 days
for development projects on the NCS (Mohus, 2018), schedule delays clearly have
ramifications on production shortfalls. As this thesis aims to evaluate the performance of
production forecasts in isolation, a process of eliminating the effect of schedule delays is
conducted. This entails time shifting the data to the point of actual production start, i.e.
setting the time of first oil to year zero, which enables estimated production for year i after
estimated production start to be compared to actual production for year i after actual
production start. By virtue of this operation, the total number of viable fields is reduced to
54, translating to a substantial reduction in total number of production years from 602 to
548. Figure 3.1 shows the effect of time shifting the actual production data.

Figure 3.1: Original versus time shifted actual production data
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Actual production for the 56 fields from original data is represented by the black line in Figure
3.1, while corresponding data for the remaining 54 fields after being time shifted to actual
production start is presented by the orange one. As expected, the time shifting procedure
yields a smaller tail production and a larger total production for the first 3 to 4 years
compared to the original production profile. This can be explained by an earlier encounter of
plateau production for fields whose production was time shifted, resulting in a larger portion
of total oil production occurring at earlier stages in the production cycle. Figure 3.2 compares
the yearly total production for all fields on the NCS to their corresponding estimates made
at the time of FID, after being time shifted.

Figure 3.2: Comparison of estimated and actual production after time shifting
data to actual production start

Figure 3.2 points to a clear trend of actual production falling short of estimated mean
production in the initial years, even after eliminating the effect of schedule delays. After
about 6 years, however, a shift occurs and actual production surpasses the estimates. From
a cumulative perspective, shown in Figure 3.3, the total actual production exceeds the total
estimated recovery from year 15 to 20.
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Figure 3.3: Cumulative estimated and actual production after time shifting data
to actual production start

3.1.2 Data scrubbing

After time shifting production to actual production start, the dataset contains up to 20 years
of reported production. However, attention is directed to a limited time period for several
reasons. First of all, because of the time value of money discussed in Section 2.2, initial years
of production carries the most economic impact on the project NPV. Consequently, from a
pure economic perspective, well-informed production forecasts are of more importance for the
first years after production start. Secondly, fields are commonly subject to redevelopments
where operators initiate reinvestments with intentions of increasing recovery, e.g. through
new technology or by implementing methods for enhanced oil recovery. Comparing estimates
made at the time of FID with production volumes after additional and often unforeseen
capital investments is misleading and gives an unfair edge towards the ultimate recoverable
reserves. Thus, when focusing solely on production forecasts reflecting the initial conditions,
years with reinvestments are undesirable. As the first instance of redevelopment for fields
in the dataset is reported in year 8 (Bratvold et al., 2020), the period constrained by all
prior years is a feasible starting point. Moreover, from Figure 3.2, it can be observed that
actual production falls short of the estimates from year 0 to year 5, before the annual actual
production proceeds to exceed the estimates. Rather than covering all years, this thesis
therefore directs its attention to this time period, which will from this point be denoted as
the first six years (F6Y) of production. For this time frame, the time shifted dataset comprise
278 production years and up to 54 fields.
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Forecast performance for each of the F6Y for fields on the NCS is directly evaluated by
comparing P90, mean and P10 production estimates on field-level with the reported actual
production. This process is graphically illustrated by the scatter plot in Figure 3.4, where
actual production is plotted against the mean estimate for all 54 fields in year 0. The blue
dots represent the mean estimate, while the 80% confidence range defined by the P90 and
P10 estimates for each field is illustrated by error bars. Further, the orange 45-degree line
reflects all points for which actual production exactly equals estimated production and acts
as a reference for evaluating forecast performance. To simplify interpretation of the cluster
of fields in the lower left corner, Figure 3.4 is supplemented by Figure 3.5, showing a similar
representation for fields with estimates below 1 million Sm3.

Figure 3.4: Scatter plot year 0 for all fields

Comparing Figures 3.4 and 3.5 provides no clear indication of differences between small and
large fields in terms of biased estimates. This is further strengthened by a sensitivity analysis
on field size with regard to optimism bias for the F4Y performed by Bratvold et al. (2020),
for which the results are provided in Figure 3.6. This graph shows the fraction of fields whose
actual production is less than or equal to the P50 and P10 production forecasts on the vertical
axis and field size on the horizontal axis. Note that Bratvold et al. described the low estimate
by a P10 fractile, while this thesis follows the NPD guidelines and therefore denotes the low
estimate as a P90 value. As the results clearly show, they found no correlation between bias
and field size for these years. It is reasonable to assume that the same holds for the F6Y.
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Figure 3.5: Scatter plot year 0 for fields with estimated production less than 1
million Sm3

Figure 3.6: Sensitivity analysis on field size with regard to
optimism bias performed by Bratvold et al. (2020)

For each of the F6Y, forecasts are evaluated in relation to the characteristics of unbiased
forecasts presented in Section 3.1. If forecasts are well-calibrated, unbiased and consistent
with the knowledge provided by the forecasters, approximately 80% of actual production
outcomes should lie within the forecasted P90/P10 range. This means that 80% of the error
bars in Figure 3.4 should touch the orange line. If not, the forecasts are overconfident.
Moreover, the average reported actual production should be approximately equal to the
average mean estimate. Put in other terms, 50% of the blue dots should lie to the left of the
orange line and the other 50% should lie to the right. If this is not the case, the forecasts
are either optimistic or pessimistic (Bratvold et al., 2020). Forecast calibration is therefore
evaluated by determining the fraction of fields whose actual production lie inside the 80%
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confidence interval defined by the P90 and P10 estimates and the fraction of fields whose
actual production exceed the P90, mean and P10 production estimates.

Table 3.1 summarises the annual calibration statistics after time shifting the entire dataset
for the F6Y, and provides the characteristics of unbiased forecast in the rightmost column
for comparison. For year 0, only 11% of the actual production data lie within the P90/P10
interval. Summarising the other statistics for year 0, 51% of the actual observations exceed
the P90 estimate, 39% exceed the mean estimate and 40% exceed the P10 estimate.
Noticeably, no particular year meet the well-calibrated criteria. Moreover, deviations from
the well-calibrated characteristics stating that 80% of the observations should lie between
the P90 and P10 estimate is most prominent for year 0 and, after that, diminishes with
time. The same is true for observations exceeding the P90 estimate. For the two other
criteria, covering the number of observations exceeding the mean and P10 estimates, no
clear relationship between forecast performance and year is found. Proceeding to study all
observations in the period of interest, only 33% of actual observations in the F6Y fall inside
the 80% confidence interval defined by the forecasts.

Table 3.1: Overview of the annual calibration statistics for the time shifted original data, compared
to unbiased characteristics provided in the rightmost column

Calibration Statistics for the Original Data

Actual Production Year 0 Year 1 Year 2 Year 3 Year 4 Year 5 F6Y Unbiased

Inside [P90:P10] 11% 25% 39% 44% 44% 45% 33% 80%
Over P90 51% 53% 63% 60% 63% 79% 60% 90%
Over mean 39% 31% 39% 36% 37% 42% 37% 50%
Over P10 40% 27% 24% 16% 20% 34% 27% 10%

A thorough study of the provided forecasts for each of the F6Y, the low and high estimates
given for some of the fields seem more or less arbitrarily chosen without adherence to a
distribution. This can also, to some extent, be seen from Figure 3.4, in which some of the
blue dots coincide with either the P90 or P10 estimate, whereas other points totally lack a
specification of uncertainty. As these shortcomings represent clear sources of limitations of
the production data at hand, data points within the dataset are neglected if:

• the mean estimate is lower than the P90 estimate
• the mean estimate is higher than the P10 estimate
• the P90 and P10 estimates are equal
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After time shifting and data scrubbing for the F6Y to exclude missing or inconsistent data,
which, in this work, be understood as data that fail to comply with the fundamental principles
of probabilistic distributions. The final set of data comprise 237 production years for up to
45 fields and will further be referred to as the ”reliable” set of data. Table 3.2 summarises
the extent of the dataset after time shifting and data scrubbing for each of the first six years
of production.

Table 3.2: Summary of how the data scrubbing process reduced the extent of the dataset

Number of Fields

Data Year 0 Year 1 Year 2 Year 3 Year 4 Year 5 F6Y

Original 56 54 51 49 45 41 296
Time Shifted 54 51 49 45 41 38 278
Reliable 35 43 45 42 39 33 237
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4 Fitting production estimates to a distribution
As part of this work requires the data to be fully described by a distribution, the reliable
forecasting data for fields on the NCS are first fitted to metalog distributions. This section
aims to provide an introduction to continuous distribution functions, the metalog
distribution, and the evolutionary solver utilised for fitting the provided data to
distributions. Finally, a detailed description of the metalog fitting procedure is presented.

4.1 Framework of data processing tools

4.1.1 Continuous distribution functions

Continuous distribution functions such as the PDF and the CDF for the estimated field data
is necessary to acquire a description of the distributions related to the NCS dataset. Figure
4.1 provides an illustration of typical PDFs and CDFs. The PDF is a function that describes
the relative likelihood for a random variable X to take on a given value x (Haslwanter, 2015).
The random variable in upcoming operations are estimated field data which are required to
exhibit a probabilistic value. Concurrently, there is no likelihood of taking a value less than
zero. Thus, the properties of a PDF become:

PDF (x) ≥ 0 ∀ x ∈ R ,

∫ ∞
−∞

PDF (x) dx = 1

Figure 4.1: Probability Density Function (left) and
Cumulative distribution function (right) of a normal
distribution (Haslwanter, 2015)
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The CDF of a random variable X, evaluated at x, is the probability that the random variable
will take on a value less or equal to that of x. In scalar continuous distributions, this represents
the area under the PDF from −∞ to x (Arora, 2016).

P (a ≤ x ≤ b) =

∫ ∞
−∞

PDF (x) dx = CDF (b)− CDF (a)

4.1.2 The metalog distribution

Data utilised in this work is fitted to a metalog distribution because it, compared to other
distributions such as Pearson, Johnson, and other more traditional data display methods,
offers almost unlimited shape flexibility through a system consisting of bounded,
semi-bounded and unbounded distributions. Further, the metalog quantile functions and
PDFs have simple closed-form expressions that are quantile-parameterized linearly by CDF
data (Keelin, 2016), making it especially convenient for decision analysis. The theoretical
framework from which the CDFs and PDFs for the three sets of bounds are generated is
presented in Appendix A. For ease of application, the metalog family is also implemented
in two separate pre-programmed Excel sheets − the ”SPT metalog” sheet and the
”metalog” sheet − that are both downloadable from; metalogdistributions.com.

The metalog sheet allows for up to 10 000 input parameters that can either be assigned
specific probabilities or defined as equally likely. In this sheet, the user can specify
boundedness and the number of terms used to generate the CDF and PDF. The SPT
(Symmetric Percentile Triplet) metalog sheet represents a special case of the metalog sheet
that is limited to 3-term metalogs, and takes a median as well as a low and high estimate
for a specified confidence level as inputs. In both sheets, lower and upper bounds may
naturally be specified to reflect the nature of the parameter being analysed. The metalog
distributions impose certain requirements on the input parameters to constitute the model.
They must:

1. lie within the interval defined by the lower and upper bounds of the distribution (if
specified)

2. be strictly increasing
3. be probabilistically defined
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4.1.3 Evolutionary Solver

The Evolutionary Solved add-in in Excel aids in the metalog fitting process to be performed
in Section 4.2. Evolutionary Solver uses an algorithm based on theory of natural selection and
is more likely to find globally optimum solutions for nonlinear equations than its counterpart
GRG-nonlinear. The Evolutionary solver algorithm is graphically illustrated in Figure 4.2
and is constructed as follows (Yound, 2020):

1. It starts with a random ”population” of sets of input values that are each plugged into
a model, from which a set of output values are retrieved.

2. Next, the selection of values whose output is closest to that of the target value are
selected to create a second set of ”offspring” values. These offspring values are essentially
”mutations” of the values retrieved in step 1.

3. The values retrieved in step 2 are then evaluated, and a ”winner” is once again chosen
to create a third population.

4. This process is repeated until no better solution for the objective function can be found
from one population to the next.

"Best" 
Solution

"Best" 
Solution

"Best" 
Solution

Final 
Solution

Population 1
Initial Population

Population 2
Offspring of "Best» Solution 
from Population 1

Population n
Offspring of "Best» Solution 
from Population n-1

Figure 4.2: Illustration of the evolutionary solver algorithm (Yound, 2020)
(Modified)

26



4.2 Metalog distribution fitting
Estimated production data for each of the F6Y is, in its current state, presented by P90, mean
and P10 production forecasts at field level, indicating an underlying distribution of outcomes
for each field. However, no further information beyond these three values are provided. The
first objective post time shifting and data scrubbing, is therefore to mathematically retrieve
distributions that describe the provided data. This is addressed by fitting the estimated
production data to metalog distributions by utilising the SPT metalog Excel sheet introduced
in Section 4.1.2.

Feasible metalog distributions can only be generated for fields whose estimates comply
with the criteria presented in Section 4.1.2. On rare occasions, the P90 estimate is reported
as zero. Since it is impossible to produce a negative volume of oil, the lower boundary of
the distribution can as a minimum be set to zero. In turn, a positive nonzero P90 estimate
is required for adherence to criterion 2. Furthermore, some years include fields where either
actual or mean estimated production is reported as zero, imposing problems on the
upcoming normalisation process to be performed in Section 5. For these fields, estimated
mean production is compared to an actual production of zero, or vice versa. Subsequently,
normalised production becomes either zero or undefined. Including these data points would
violate criteria 1 and 2. The final selection of fields after excluding fields whose P90, mean
estimate or actual production is reported as zero is provided in Table 4.1 and will further
be referred to as the ”ML consistent” set of data. To further enable comparison with
previously performed processes, results from the time shifting and data scrubbing processes
performed in Section 3 are also included.

Table 4.1: Extent of the dataset after data scrubbing and ensuring adherence of the
metalog distribution requirements

Number of Fields

Data Year 0 Year 1 Year 2 Year 3 Year 4 Year 5 F6Y

Original 56 54 51 49 45 41 296
Time Shifted 54 51 49 45 41 38 278
Reliable 35 43 45 42 39 33 237
ML consistent 35 43 45 42 37 31 233
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Proceeding to describe estimated production at field level for each of the F6Y, arguments
provided in Section 6.1.3 and 6.1.4 favour the use of bounded metalog distributions with 3
terms. Thus, the bounded member of the SPT metalog sheet, built on Equations A.5 and A.6
for n = 3 terms, is utilised. Recalling from Section 4.1.2, this model takes the median as well
as low and high estimates for a specified confidence level as inputs. Estimated P90 and P10
values for each field can, thus, be used directly as the 10th and 90th percentiles, respectively.
However, as the provided dataset contains no information about the P50 percentile, this is
determined through use of the Solver add-in in Excel. Solver is configured to let the mean
from the metalog distribution (ML mean) converge to the mean estimate given in the dataset
through an evolutionary genetic algorithm (see Section 4.1.3) that varies the metalog P50
percentile until a best match is obtained. The rationale of excluding no or infinite production
is exercised by setting lower and upper distribution boundaries fixed at 0.5 · P90 and 2 ·
P10, respectively. These particular bounds also appear reasonable for capturing the minimum
and maximum production capability of each field, considering the associated probabilities
for current estimation data.

Figure 4.3 illustrates a metalog fitting operation with synthetic data utilising the SPT
metalog sheet and Evolutionary Solver. For this example, reported P90, mean and P10
production estimates are 1.01, 1.48 and 2.01 million Sm3, respectively. Setup follows by
assigning a probability for the low estimate in column 2, and directly inserting the P90 and
P10 production estimates into columns 4 and 6 in Figure 4.3a. As the median specified in
column 5 is expected to equilibrate at a value close to the distribution mean, this is
temporarily set equal to the original mean estimate. Running Solver with the
configurations specified above results in the output illustrated in Figure 4.3b, returning a
metalog distribution that is consistent with the original P90 and P10 production estimates,
and the P50 percentile for which the distribution mean matches the closest adjacent value
to the original mean estimate. As shown in this example, the ML mean converges to a
value of 1.48, exactly matching the original mean estimate with 2 decimals of accuracy. To
capture marginal variations that may occasionally occur when utilising Evolutionary
Solver, the process is repeated three times for each field per year through a self-constructed
Excel Visual Basic for Application (VBA) program.
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(a) Before Evolutionary Solver is run

(b) After Evolutionary Solver is run

Figure 4.3: Mean matching operation through Evolutionary Solver in the SPT
bounded-metalog sheet with fixed lower and upper boundaries of 0.5 · low and 2 ·
high, respectively

As illustrated in Figure 4.3, the above steps provides a metalog distribution described by a
CDF profile containing data points for P90, P50, P10, restricted by the lower bound (LB)

and upper bound (UB), and a PDF with associated mean and standard deviation. Ideally,
the resulting metalog distribution mean equals the mean estimate provided in the original
dataset. However, the degree to which the ML mean converged to the mean estimate varies
among the different fields. This may point to an inconsistent relationship between the three
different estimates used as input for the fitting process which, in turn, indicate differences
in quality of the original distributions from which the P90, mean and P10 production
estimates are retrieved. For some fields, the mean estimate is heavily skewed towards either
the P90 or P10 value, which may result in difficulties when attempting to generate a
suitable metalog distribution. The relative error between the original mean estimate and
the metalog distribution mean, expressed by Equation 4.1, acts as an indicator of how well
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the generated metalog distribution represents original data. Table 4.2 provides an overview
of the number of ML consistent fields satisfying different limits for relative mean error for
each of the F6Y.

Relative mean error =
ML mean−Mean estimate

Mean estimate
(4.1)

Table 4.2: Number of fields for different relative mean errors for the
generated metalog distributions with fixed boundaries

Number of Fields

Relative error Year 0 Year 1 Year 2 Year 3 Year 4 Year 5

1% 19 27 29 27 28 25
2% 22 29 31 29 32 25
3% 22 30 31 30 33 26
5% 27 32 35 34 33 27
10% 31 36 41 39 35 30

No limit 35 43 45 42 37 31

Naturally, the number of ML consistent fields increases with acceptable relative mean error.
Table 4.2 illustrates that, for all relative errors in the mean, the number of ML consistent
fields is largest in year 2 and smallest in year 0 or 5. The year with the lowest number of
ML consistent fields is restricting in terms of statistical significance of the reference class.
Thus, when evaluating the trade-off between relative mean error and number of fields, the
point of initial enquiry falls on the year with the lowest number of included fields. In Figure
4.4, the minimum number of ML consistent fields for all years in the F6Y is plotted against
relative mean error. For the restricting year, 30 fields have an ML mean that deviates less
than 10% from the original mean estimate. Lowering the acceptable relative error from this
point induces a progressive reduction in number of fields until an acceptable relative mean
error of 1% is reached, leaving a selection of only 19 fields.
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Figure 4.4: Number of fields plotted against acceptable relative mean error for
the generated metalog distributions with fixed boundaries

Intending to enhance the metalog distribution’s ability to match the provided mean estimate
and, in turn, reduce the relative error between the metalog and original means, flexible
boundaries are introduced to the metalog fitting process. Rather than letting ML mean
converge towards the mean estimate by only varying the median, Evolutionary Solver is
now additionally allowed to change the lower and upper bounds of the distribution. This is
achieved by introducing the following boundary constraints:

0 ≤ LB ≤ 0.5 · P90

P10 ≤ UB ≤ 5 · P10

Once again, Evolutionary Solver is run three times for each field. Because solutions found
when using fixed boundaries are still valid after introducing more relaxed constraints, a
resulting total of 6 distributions are retrieved for each field. The distribution that best reflects
the mean estimate, i.e. has the lowest calculated relative error in the mean, is chosen. An
updated overview of the effect of acceptable mean error on the number of ML consistent
fields is provided in Table 4.3. It can be seen that the lowest number of ML consistent fields
for the various levels of relative mean errors is still constrained by year 0 and year 5.

31



Table 4.3: Number of fields for different relative mean errors for the
generated metalog distributions with flexible boundaries

Number of Fields

Relative error Year 0 Year 1 Year 2 Year 3 Year 4 Year 5

1% 25 33 35 31 30 28
2% 29 33 37 34 33 28
3% 29 33 37 35 33 28
5% 32 36 38 36 33 28
10% 34 38 43 40 36 30

No limit 35 43 45 42 37 31

Figure 4.5 shows the relationship between the minimum number of fields and acceptable
relative mean error for the metalog fitting process with flexible boundaries. The dark blue
columns represent the number of ML consistent fields for distributions with fixed boundaries
and corresponds to that of Figure 4.4, while the light blue columns represent the additional
number of ML consistent fields as a result of introducing flexible boundaries. As illustrated,
introducing more flexibility to the distribution by relaxing the boundary constraints increases
its ability to match the mean estimate. Furthermore, the number of ML consistent fields is
less affected by relative error in the mean. Similar to the distributions with fixed boundaries,
it is observed that the field count corresponding to a relative mean error of 10% is still 30.
However, reducing the acceptable relative error to 1% only reduces the minimum number of
fields to 25, compared to 19 when boundaries were held fixed.

Figure 4.5: Number of fields plotted against acceptable relative mean error for
the generated metalog distributions with flexible boundaries
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Summarised, introducing flexible boundaries for the production distributions at field level
generally reduces the relative mean error. This is seen by an increase in the number of
fields satisfying a given relative error, which, in turn, yields enhanced statistical
significance. Moreover, flexible boundaries enable the resulting distributions to better
reflect variations regarding field specific ranges for production capacity. The analyses
performed in this thesis therefore utilises the metalog distributions generated with flexible
boundaries. As the distributions are used as input for RCF, the choice of an acceptable
relative error between the metalog mean and the original mean comes down to an
evaluation of the quality of the resulting reference class. From discussion provided on this
topic in Section 6.1.5, up to 2% relative mean error is accepted.
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5 Debiasing production forecasts through RCF
Once distributions at field level for each of the F6Y are generated for all viable fields,
RCF is performed to correct the provided estimates by reducing or removing biases. This
method is generally utilised for the purpose of predicting future performance of a project
by gathering knowledge about actual performance from a collection of projects with similar
characteristics (Leleur et al., 2015). The ruling concept of RCF is that the project at hand
is expected to exhibit similarities to the projects in the reference class. For this to be true,
it is important that the reference class is well defined in the sense that it is 1) broad enough
to be statistically meaningful and, at the same time, 2) narrow enough to be representative
for the considered project (Flyvbjerg, 2006). Some of the uncertainty aspects related to the
current project performance may, then, be retrieved by studying past performance of the
projects that constitute the reference class. This is referred to as ”taking an outside view”
on the project being forecasted (Flyvbjerg, 2007a). For development projects on the NCS,
such a reference class may be constructed using the processed metalog consistent estimation
data for each of the F6Y.

This section thoroughly describes the methodology of applying RCF with intentions of
correcting the original production forecasts for overconfidence and optimism bias to provide
a better-informed decision making basis. The distributions from Section 4.2 are used to
generate suitable reference classes and, in turn, retrieve adjustments required to debias
original data. The results are evaluated by comparing model calibration of forecast
performance before and after correction, and through in-sample and out-of-sample tests
performed by applying the results to various test groups. This process is illustrated by the
dotted line in Figure 5.1.
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Figure 5.1: Overview of the RCF process and tests performed to evaluate the
resulting bias reduction

5.1 General methodology description
The RCF methodology developed and implemented in this thesis utilises normalised
production data to generate distributions of forecast performance for each of the F6Y, from
which the required adjustment to debias the original production forecasts are retrived.

5.1.1 Normalising the production data

Both estimated and actual production is reported in units of million Sm3. For the purpose of
this work, production is normalised following Equation 5.1. Here, Estimated Production is
the chosen base estimate, i.e. either the P90, mean, or P10 estimate provided in the dataset.

Normalised Production =
Actual Production

Estimated Production
(5.1)

This data normalisation process provides not only a common scale for evaluating the
relationship between actual and estimated production, which amounts to the forecast
performance, but also allows for direct comparison among different fields. A normalised
production of 1 translates to an exact match between the actual production and the base
estimate, whereas a normalised production greater than or less than 1 implies that actual
production is higher or lower than the base estimate, respectively.
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5.1.2 Generating normalised annual distributions

Production is normalised for all fields to be included in the reference class. This results in
a list of normalised production outputs for each year and essentially constitutes the basis
for generating distributions for normalised production on a year-to-year basis for each of the
F6Y. However, before annual distributions of outcomes can be obtained, the data is required
consistent with the metalog distribution input requirements described in Section 4.1.2. This is
achieved by sorting the normalised annual field data in ascending order and defining all input
parameters as equally likely. To limit the distribution to positive values only, semi-bounded
distributions with a lower bound of zero are utilised. A metalog distribution can then be
constructed using the metalog Excel sheet presented in section 4.1.2, yielding CDF and PDF
curves representative of the forecast performance for a given year after actual production
start. The CDF curve, as originally defined by the metalog distribution, is presented with
normalised production on the x-axis and the corresponding cumulative probability, P (X ≤
x), on the y-axis. Figure 5.2 shows the CDF for a reference class constructed from an arbitrary
selection of ML consistent fields from the dataset.

Figure 5.2: CDF curve for a reference class based on a random selection of ML
consistent fields. Normalised production is on the y-axis and the corresponding
probabilities is on the x-axis
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To make interpretation in line with the NPD guidelines of the P90, P50, and P10
percentiles, the probabilities are inverted. This results in a survival function (SF),
expressing the probability of normalised production being larger than or equal to a given
value, i.e. P (X ≥ x). Next, the axes are flipped, creating an inverse survival function (ISF)
with the survival probability, P (X ≥ x), on the x-axis and normalised production on the
y-axis (Haslwanter, 2015). The ISF derived from the CDF in Figure 5.2 is shown in Figure
5.3, for which the names of the axes are best explained through an example. Studying
Figure 5.3 shows that a survival probability of, say, 10% corresponds to a normalised
production of about 1.9, implying that 10% of all normalised productions on the NCS
exceed 1.9. Moreover, because normalised production equals actual production divided by
the base estimate, 10% of all reported data for actual production is, in this example, 1.9
times greater than their corresponding base estimate. Multiplying all base estimates with
1.9, therefore, gives a normalised production larger than 1.0 for 10% of the fields. In effect,
to be 10% confident that the production forecast is met, a correction factor equal to the
normalised production corresponding to a probability of 10% from Figure 5.3 had to be
applied to the base estimate. Thus, the ISF gives the required adjustment (or correction
factor) to be applied to the base estimate to achieve a certain confidence of meeting the
forecast. This translates to having the probability of meeting the forecast on the x-axis and
the required adjustment on the y-axis.

Figure 5.3: ISF curve for a reference class based on a random selection of ML
consistent fields. Normalised production is on the y-axis and the corresponding
probabilities is on the x-axis
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5.1.3 Performing correction

The required adjustment, i.e. correction factor to be applied to the base estimate, for
obtaining a specific probability of meeting the production forecast is found directly from
Figure 5.3. Here, ”meeting the production forecast” implies that the observed actual
production is equal to or greater than the forecasted production. It can be seen that to be
90% confident that the production forecast will be met, a correction factor of
approximately 0.32 needs to be applied to the base estimate. While this returns the P90
correction factor, P50 and P10 correction factors are found in a similar manner. Production
estimates for development projects on the NCS can then be corrected using these
correction factors. This is achieved by multiplying the correction factors for each year with
the base estimates for the corresponding year to find corrected P90, P50 and P10
production forecasts for the project at hand.

5.2 Applying RCF
The above description gives a basic outline of how RCF will be performed with purpose
of improving forecast performance for development projects on the NCS. Attention is first
directed towards the number represented by the mean estimate. However, to be consistent
with the generated metalog distributions, the ML mean is used as base estimate in the
normalisation process. With a minimum of 28 ML consistent fields for each year, a variety of
reference classes can be chosen. Fields to be included in the reference class can be filtered out
based on a specified set of criteria or conditions. When evaluating the forecast performance
of fields on the NCS, such criteria may be based on the technology used to generate forecasts,
type of depositional environment, how the forecasts are generated or effort put into generating
the forecasts. Other possible criteria include year of PDO approval, actual production start,
year of actual production, production volumes, or more technical conditions such as reservoir
size, depth, pressure or temperature. Due to limited information about the fields in the
provided dataset, they can only be distinguished by year of PDO approval, actual production
start or based on timing of actual production. As we wish the reference classes to reflect the
available information for RCF performed in a given year, this thesis makes distinctions
with respect to timing of actual production after production start. Furthermore, because
production is normalised, forecast performance is presented by a common scale based on the
relationship between actual and estimated production, rather than in terms of production
excess or shortfall volumes.
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5.2.1 Two different reference classes

For the purpose of studying the degree of consistency in results for reference classes built
on different sets of data, two possible methods for filtering out fields to be included in a
reference class is presented. These reference classes represent two thought scenarios where
a certain amount of historic data is available from previously performed similar projects.
Reference class 1 is the equivalent of facing an investment decision in year 2010 and basing
the uncertainty analysis on similar projects performed from 1997 to 2009. Reference class 2
is the thought scenario of utilising historic data from projects performed in the time frame
between 1997 to 2014 to aid decision making for a development project in 2015.

Reference class 1: Performing RCF in 2010
The first reference class (RC 1) to be considered representative for production forecasts on
the NCS is found by including all fields who initiated production in years prior to 2010 and
only considering production data for these fields up until 2009. These fields are retrieved
from the ML consistent set of data, arrived at in Section 4.2, whose relative error between
the metalog mean and the original mean is less than 2%. Figure 5.4 provides an overview of
the number of fields included in reference class 1 for each year.

Figure 5.4: Number of fields in reference class 1
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Proceeding to perform reference class forecasting for each of the first six years of production,
actual production is normalised by the ML mean according to the procedure in Section 5.1.1.
The sorted values for each year are, then, used as input in the semi-bounded member of the
metalog Excel sheet, with 3 terms and a lower bound of zero. From the resulting metalog ISF
for each year, the P90, P50 and P10 percentiles are retrieved. As described in Section 5.1.3,
these percentiles represent the required adjustment of the ML mean to achieve 90, 50 and 10
percent confidence of meeting the production forecast, respectively. Table 5.1 presents the
obtained correction factors for each of the first six years of production for RC 1.

Table 5.1: Yearly correction factors retrieved from reference class 1

Correction Factors for RC 1

Percentile Year 0 Year 1 Year 2 Year 3 Year 4 Year 5

P90 0.05 0.45 0.54 0.51 0.44 0.43
P50 0.69 0.78 0.81 0.78 0.74 0.94
P10 1.47 1.08 1.17 1.03 1.48 2.13

Reference class 2: RCF in 2015
Another possible reference class that can be extracted from the ML consistent set of data is
found by including fields with actual production start from 1997 to 2014 and, for these fields,
only including production data reported prior to 2015. Studying the time frame for which
this reference class is defined shows a significant overlap with reference class 1 for historic
observations from 1997 to 2009. Production data for years 2010 to 2014, however, is only
included in reference class 2, providing a larger selection of historical observations for this
reference class. An overview of the number of fields for each year for this specific reference
class can be found in Figure 5.5. Moreover, P90, P50 and P10 correction factors are listed in
Table 5.2, again representing required correction to achieve 90, 50 and 10 percent confident
of meeting the forecasted production. These are obtained following the same methodology
as described in detail for reference class 1.
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Figure 5.5: Number of fields in reference class 2

Table 5.2: Yearly correction factors retrieved from reference class 2

Correction Factors for RC 2

Percentile Year 0 Year 1 Year 2 Year 3 Year 4 Year 5

P90 0.06 0.38 0.41 0.56 0.47 0.33
P50 0.61 0.81 0.95 0.91 0.86 0.90
P10 1.80 1.40 1.65 1.66 1.79 2.05

Comparing RC 1 and RC 2
Studying Tables 5.1 and 5.2 demonstrates the implications of choosing different reference
classes. If the same project was to be evaluated based on both reference class 1 and 2, neither
the corrected P90, P50 nor the P10 estimate would coincide. This is graphically illustrated in
Figure 5.6, providing a side-by-side representation of the annual correction factors obtained
from both reference classes. The blue and orange solid lines represent the P50 correction
factor for RC 1 and RC 2, respectively. To investigate variations in the 80% confidence
interval, these are further accompanied by their respective P90 and P10 correction factors,
represented by the dotted lines. While only small variations can be observed for the P90
and P50 correction factors, the P10 correction differs significantly between the two reference
classes. Reference class forecasting performed for a given project would, thus, yield different
results depending on whether the project was under development in 2010 or in 2015. RC 2
is seen to generally result in a broader P90/P10 confidence interval. Moreover, the larger
P10 would assumably contribute to a larger mean estimate (or expected production) for
RCF performed on the basis of RC 2. Further, assuming that the expected present value
originating from production volumes are calculated based on the mean estimate, applying
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RCF based on RC 2 results in a higher present value compared to RCF based on RC 1. As this
present value is key in final investment decisions for development projects in the petroleum
industry, using the correction factors from RC 2 may result in a higher probability of project
acceptance.

Figure 5.6: Side-by-side representation of the P90, P50 and P10 correction factors resulting from
RC 1 and RC 2

For both reference classes, the retrieved P90 and P10 correction factors for year 0 are
markedly different compared to the other five years. This is assumed to be caused by
monthly schedule delays that were not accounted for in the time shifting procedure
performed in Section 3.1.1. Further elaboration of this notion is provided in Section 6.1.1.
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5.2.2 Progressive RCF

Differences in the correction factors retrieved from the two reference classes defined in the
previous section emphasise that the results from RCF are susceptible to variations
depending on what projects the analysis is based on. In turn, so is the project’s estimated
present value of cash inflows. This led to an interest in how the foundation for RCF has
developed through time. After the earliest production start is reported in 1997, new fields
are continuously put in production up until 2017. The effect of a larger selection of forecast
performance observations as progressively more historic data becomes available is
investigated by performing progressive annual RCF from 1998 to 2018. Reference class
forecasting performed in a given year is, then, restricted to the selection of fields with
actual production start before this year. Furthermore, to properly ensure that the reference
class only includes data that would actually be available in that specific year, constraints
are also put on production year. For example, when performing RCF in 2005, one will
naturally only have access to data for fields with actual production start before 2005, i.e.
from 1997 to 2004. Moreover, actual production data for these fields are only reported up
until 2004. Implementing these constraints, thus, enables RCF to be performed for all years
from 1998 to 2018 based on the available information in the year of interest. Note that, for
this operation, 2-term metalog distributions are utilised in instances where the 3-term
metalog fails to provide a feasible distribution. The results for year 1 are illustrated in
Figure 5.7, where the P90, P50 and P10 correction factors are represented by the green,
orange and blue lines, and the gray bars report the number of fields included in the
reference class. Similar results for the remaining years can be found in Figures B.1 and B.2
in Appendix B.

Figure 5.7: P90, P50 and P10 correction factors resulting from progressive
RCF from 1998 to 2018 for year 1
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Progressive RCF shows that all correction factors experience variations through time. The
P10 correction factor is proven to exhibit the most prominent variations and, although
remaining periodically stable, generally increases as the database of historic observations
grows larger. While both the P90 and P50 correction factors are subject to less significant
variations, they too fail to remain stable throughout the 20 year time period from 1998 to
2018. In an attempt to capture all possible reference classes and the corresponding variations
in the different correction factors for each year, this work is not limited to one single reference
class. Instead, iterative random sampling of reference classes is performed.

5.2.3 Random sampling of reference classes

Through programming in Excel VBA, random samples are drawn from the selection of
normalised production data for ML consistent fields until a desired reference class size is
obtained. For each iteration, the randomly chosen reference class is used as input to generate
a metalog distribution following the description given in Section 5.1.2. Next, P90, P50 and
P10 correction factors are retrieved from the ISF curve as described in Section 5.1.3. The
random sampling process takes reference class size and number of iterations as arguments. A
natural initial point of inquiry is determining the number of iterations required for producing
robust results that can be consistently reproduced.

Determining the number of iterations
To determine the necessary (and sufficient) number of iterations, the random sampling
simulation is initially run for a varying number of different reference classes. For a reference
class size of 80% of the total number of ML consistent fields, the simulation is run with 5,
10, 50 and 100 iterations, from which point 100 iterations are added for each run until a
maximum of 5000 different reference classes is reached. Average correction factors are
determined for each run. Furthermore, to quantify the variations in the distributions
represented by the mean of the three different correction factors for a given year, the
standard error of the mean is calculated according to Equation 5.2, where σ is the standard
deviation and n is the number of iterations. This is a measure of how well the sample mean
represents the data, providing a measure of the spread (Kenton, Will, 2020). A smaller
standard error signifies a more representative mean. From the inverse nature of this
relationship, a low standard error is desired.

SE =
σ√
n
, where σ =

√∑n
i=1(xi − x̄)

n− 1
(5.2)
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The results are plotted against the number of iterations in Figure 5.8 to find a possible value
of convergence for the correction factor means and to study how the related standard error
is affected by the number of iterations used in the random sampling of reference classes.

(a) P90 Correction Factor

(b) P50 Correction Factor

(c) P10 Correction Factor

Figure 5.8: Number of iterations plotted against the mean of each
correction factor and their related standard error
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For runs with less than about 2500 different reference classes, significant variations are
observed for all three correction factors. Further increasing the number of iterations from
this point, however, seems to have a negligible effect on the average, pointing to a clear
trend of convergence as the number of iterations increases beyond 2500. As for the
standard error, this reduces continuously as the number of iterations increases. Moreover,
the reduction is greatest for a smaller number of iterations and flattens out as a more
sufficient number of different reference classes is reached. This implies a more robust mean
estimate as the number of iterations increases. Based on these findings, 3000 iterations are
deemed sufficient for the purpose of this analysis.

Determining the reference class size
Recalling the definition of RCF provided in Section 5, the reference class should be broad
enough to be statistically meaningful but also sufficiently narrow to truly represent the
specific project. Including either 50, 60, 70 or 80% of all ML consistent fields in the reference
class, a smaller selection of fields in each reference class yields more possible unique and
different reference classes. However, this excludes a corresponding amount of relevant historic
data for each iteration. Hence, the second step of method development becomes determining
the number of fields to be included in each of the randomly sampled reference classes. To
achieve this, 3000 new iterations are run for randomly sampled reference classes comprising
50, 60, 70 and 80% of the total number of ML consistent fields. The results are shown in
Figure 5.9.

These three figures indicate that the final results, i.e. the average P90, P50 and P10
correction factors, are close to independent of the number of fields included in the reference
class. Comparing these results to those obtained through progressive RCF (see Appendix
B), random sampling reduces variations related to the size of the reference class. The
correction factor with the most prominent variations − the P90 correction factor − only
experiences minor differences in the magnitude of 0.01 at most. For this correction factor,
an evident trend of reductions in the mean when the amount of fields included in each
reference class increases is observed. Because there is no major differences in the results,
the choice of RC size is made considering the principles of RCF. Because a broad reference
class is desired, including as many fields as possible while still leaving room for random
sampling of different sets of reference classes is a natural approach. Moreover, because a
lower P90 yields a wider 90% confidence interval which, in turn, increases the probability of
covering unobserved actual production, a reference class size of 80% is chosen.
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(a) P50 Correction Factor

(b) P90 Correction Factor (c) P10 Correction Factor

Figure 5.9: P90, P50 and P10 correction factors as a function of reference class size

From the above, reference class forecasting is performed by randomly sampling 3000
different reference classes comprising 80% of the total number of ML consistent fields.
Following the justification provided in Section 6.2.2, the mean correction factors resulting
from these iterations are retrieved. Correction factors for each of the F6Y are given in
Table 5.3. Compared to the results obtained through progressive RCF performed in Section
5.2.2, the correction factors are seen to coincide with those found when performing RCF in
2018, in which all available data is used. For year 0, 50% confident of meeting the forecast
requires a correction factor of 0.62 to be applied to the mean estimate. Put in other terms,
this implies that the observed actual production, on average, falls short of the mean
estimate by 48%. Similar to the results obtained from performing RCF with the two
reference classes defined in Section 5.2.1, year 0 is observed to be an anomaly also for the
random sampling of reference classes. This strengthens the suspicion that monthly schedule
delays are present.

47



Table 5.3: P90, P50 and P10 correction factors for each of the F6Y for
ML mean-based RCF

Correction Factors

Percentile Year 0 Year 1 Year 2 Year 3 Year 4 Year 5

P90 0.07 0.37 0.35 0.31 0.37 0.38
P50 0.62 0.77 0.94 0.87 0.89 1.00
P10 2.20 1.38 1.69 1.60 1.79 2.10

For each field, these correction factors can now be applied to the estimates for the
corresponding year to generate corrected distributions of forecasted production. As the
actual production was normalised by the ML Mean, the correction also has to be
performed on this number. Note, however, that the metalog mean converged towards the
original mean estimate when the distributions were generated. This justifies performing
correction on the original mean estimate for fields who, for reasons described in Section 4.2,
were not included in the metalog fitting process.

5.3 Corrected forecast performance
Validity of the correction factors retrieved through random sampling of reference classes in
Section 5.2.3 is evaluated through a series of tests. First, a comparative model calibration
for the original and corrected production forecasts is performed, for which the root mean
squared error (RMSE) improvement related to a perfectly calibrated judge is retrieved. Next,
in-sample tests are performed by applying the obtained yearly correction factors to all ML
consistent fields that was included in the iterative random sampling of reference classes.
Finally, the corrected model performance is evaluated through testing on independent fields
that are not included in the reference class, through an out-of-sample test.

5.3.1 Forecast calibration

Model calibration is performed based on probability-probability plots, which is used to assess
a CDF distribution related to a perfectly calibrated reference and removes scaling issues
through the use of plotting positions (Gan et al., 1991). A perfectly calibrated estimation
model may be defined as the model whose cumulative probabilities of the observed values,
when sorted in ascending order, come from a plotting position formula (Cunnane, 1978). For
a given year with J number of fields and, thus, J observed values, the plotting position for
an observed actual production j is calculated from Equation 5.3. The parameter a can take
on different values between 0 and 0.5 and is used to specify the probability distribution. This
value is chosen based on the suggestion of Cunnane, who found that a = 0.4 is an unbiased
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quantile estimator with minimum variance.

pj =
j − a

1 + j − 2a
(5.3)

The plotting position is calculated for ML consistent fields j to J. Next, the actual production
percentile of the metalog distribution generated in Section 4.2, described by the P90, P50
and P10 percentiles together with the corresponding lower and upper bounds, is determined
for each field. This process is illustrated in Figure 5.10, showing the cumulative density
function for an arbitrary field and year within the F6Y. Note that this figure is unique
for each field for a given year. For this particular field, an actual production of 4 Sm3

corresponds to a cumulative probability of 0.2, while a production of 5 Sm3 corresponds to
a cumulative probability of 0.8. This is P (actual ≤ pp), and the value that eventually will
be plotted against the plotting position as part of the model calibration. For fields whose
actual production falls outside of the range defined by the lower and upper bounds of the
distributions, no actual production percentile could be extracted. Thus, in scenarios where
actual production exceeds the upper bound, the cumulative probability is set to 1. On the
contrary, when actual production lies below the lower bound, the cumulative probability is
set to 0.

Figure 5.10: Process of determining the actual production percentile from the
metalog CDF
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For the calibration procedure, the lower and upper bounds of the metalog distribution for
the original data were set equal to those determined in Section 4.2. For the corrected
distributions, however, no information about the boundaries could be retrieved. Although
the lower and upper bounds could have been obtained from correction factors
corresponding to the P100 and P0 percentiles, respectively, this would fail to take into
consideration the variation observed in the original distributions. Some distributions had
lower and upper bounds closer to the P90 and P10 estimates than other. It is only natural
that the corrected distributions also reflect these characteristics. Thus, the lower and upper
bounds for the corrected distributions are determined by matching the ratio between the
original P90/P10 estimates and the original lower and upper bounds. This is achieved
following Equation 5.4 and 5.5. In these equations, LB and UB denotes the lower and
upper bounds, and the subscripts i and corr are used to distinguish between parameters for
the original and corrected distributions, respectively.

LBcorr =
LBi

P90i

· P90corr (5.4)

UBcorr =
UBi

P10i

· P10corr (5.5)

After repeating the above process for all fields for a particular year, their actual production
percentiles are sorted in ascending order. The sorted values are then plotted against the
calculated plotting position, which is ascending by nature. Creating this plot for both the
original and the corrected distributions, the two models can be compared to each other and
to a perfectly calibrated judge. Figure 5.11 shows the resulting calibration plot for year
1. The blue and orange lines represent the model calibration of the original and corrected
forecasts, respectively. Their ability to predict future production is measured by the degree
to which they coincide with the perfectly calibrated judge for which the percentiles for actual
production equals the plotting position. This judge is represented by the black line.
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Figure 5.11: Forecast calibration plot for year 1, showing the original
(blue line) and corrected (orange line) forecasts in comparison to a
perfectly calibrated judge

Interpreting Figure 5.11 gives a solid indication of model performance, where good
performance is characterized by lines lying close to the perfectly calibrated judge. To
mathematically express this model performance, the RMSE between the model and the
judge is calculated following Equation 5.6 (obtained through modification of the general
equation for RMSE (Kim et al., 2012)). An RMSE of zero indicates perfect calibration.

RMSE =

√∑n
i=1(pp− P (actual ≤ pp))2

n
(5.6)

Calculating the RMSE for both models, i.e. before and after applying RCF, provides a
quantitative measure of how forecast performance is improved during this process. Figure
5.12 presents the calculated RMSE for each year and for both models. RMSE before and
RMSE after are the calculated RMSE before and after correction, respectively. Moreover,
the table also includes an overview of the number of fields and RMSE Improvement. As
this analysis consistently allows for a maximum of 2% deviation between the actual mean
estimates and the mean of the generated metalog distributions, this field count coincides
with that of Table 4.3 presented in Section 4.2. The RMSE improvement is calculated
using Equation 5.7. It is important to note that the RMSE, because the values are squared,
is restricted to positive values only. As a result, an RMSE improvement of 100% is only
achievable if the corrected model is perfectly calibrated. Seen from Figure 5.12, the
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correction procedure based on annual reference class forecasting yield significant
improvements for each of the F6Y, ranging from 63% to 88%.

RMSE Improvement =

(
1− RMSE After

RMSE Before

)
· 100 (5.7)

Figure 5.12: Calibration results from ML Mean-based RCF

Furthermore, field-by-field RMSE is calculated for the original and corrected models. Since
n in Equation 5.6 then becomes 1, leaving only the numerator inside of the square root,
this will further be referred to as the Root Squared Error (RSE). Next, RSE improvement
is calculated following Equation 5.7, and the results are plotted in Figure 5.14. For fields
whose original actual production percentile lies close to its plotting position, which imply an
initial RSE close to zero, the corrected actual production percentile is likely to deviate more
from the plotting position. This translates to a negative RSE improvement and a corrected
production forecast that is worse than the original one. Although this is expected to occur for
some fields, the very low initial RSE makes even minor changes largely affect the calculated
RSE improvement. The field marked by the red circle in the calibration plot for year 5,
presented in Figure 5.13, is a perfect example of this. For this field, the plotting position is
0.447, while the actual production percentile before and after correction is 0.443 and 0.387,
respectively. This amounts to an RSE of 1.36 ·10−5 before correction and 3.52 ·10−3 after
correction. Applying Equation 5.7 to this particular field yields a negative RSE improvement
of about -25800%.
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Figure 5.13: Forecast calibration plot for year 5, showing the original
(blue line) and corrected (orange line) forecasts in comparison to a
perfectly calibrated judge

Although this is a rather extreme case, similar behaviour is observed for several fields. As
including such values in the graph makes for difficult interpretation, Figure 5.14 is
restricted to RSE improvements between -100% and 100%, enhancing illustration of the
range of interest constrained by the two orange lines, i.e. how many fields had positive RSE
improvement. However, all fields are included when calculating the fraction of fields with a
positive RSE improvement. For year 1, 97% of all fields experienced a positive RSE
improvement. Figures showing yearly calibration for the other 5 years and year-by-year
RSE improvement related to these are presented in Figures B.3 and B.4 in Appendix B.
Ralted statistics are presented in Table 5.4.
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Figure 5.14: Field-by-field RSE improvement through the
process of RCF for year 1

Table 5.4: Overview of the total number of fields and the number of fields with
a positive and no or negative RSE improvement when applying RCF

Field-by-field RSE Improvement

Fields Year 0 Year 1 Year 2 Year 3 Year 4 Year 5
Total 29 33 37 34 33 28
Improvement > 0 27 32 32 30 31 24
Improvement ≤ 0 2 1 5 4 2 4

5.3.2 In-sample testing

Results from the calibration procedure indicate a significant improvement after correcting
the original estimates using the correction factors found from random sampling of reference
classes. To test the correction factors on the entire set of available data, correction is now
performed on all fields in the dataset − including those not found ML consistent. If
sufficiently defined, the correction factors derived from the random sampling procedure will
be representative of the forecast performance for all fields in the dataset. Applying the
determined correction factors to the entire set of data should, then, act to improve the
overall forecast performance of this selection of fields. Recalling from the correction
procedure provided in Section 5.1.3, correction is performed on the same estimate for which
production is normalised. Because the generated ML mean was used in the normalisation
process, correction is therefore performed by applying the correction factors to the mean
estimate provided for each field. Next, the forecast performance resulting from this
correction can be expressed through the calculation of certain calibration statistics. For
each field, actual production is compared to the original and corrected production forecast
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distributions by determining the calibration statistics presented in Section 3.1.2. Instead of
comparing actual production to the mean, like for the calibration statistics of the original
distributions, actual production is compared to the P50 value of the corrected
distributions. This is due to the lack of information about the corrected mean for fields
that are not ML consistent.

Calibration statistics for the corrected distribution are presented in Table 5.5. Studying the
results in relation to those obtained for the original distributions, provided in Table 3.1, it is
evident that the corrected production estimates exhibit characteristics that are more closely
aligned with the definitions of a well-calibrated (unbiased) forecast. This implies enhanced
forecast performance for the entire dataset after applying the correction factors to the mean
estimates.

Table 5.5: Overview of the annual calibration statistics for the corrected data, compared to
unbiased forecast characteristics provided in the rightmost column

Calibration Statistics for the Corrected Data

Actual Production Year 0 Year 1 Year 2 Year 3 Year 4 Year 5 F6Y Unbiased

Inside [P90:P10] 76% 76% 80% 78% 78% 74% 77% 80%
Over P90 93% 90% 92% 84% 88% 87% 89% 90%
Over P50 57% 53% 39% 44% 46% 39% 47% 50%
Over P10 17% 14% 12% 7% 10% 13% 12% 10%

5.3.3 Out-of-sample testing

Above is considered how forecast performance can be improved for the whole selection of
fields by applying reference class forecasting. However, a substantial number of these fields
were also utilised in the process of generating the correction factors. To truly investigate
the validity of the determined correction factors, tests should be performed on independent
fields. Such tests are performed by implementing out-of-sample tests in the random sampling
simulation. For each iteration in the random sampling of reference classes, fields that are not
included in the reference class forms a test group. For this test group, the calibration statistics
presented in Section 3.1.2 are calculated based on their original distributions. Next, correction
factors found representative for the reference class are then applied to the mean estimate of
each field in the test group to generate corrected distributions. Finally, calibration statistics
are calculated for the corrected distributions. Determining the average for 3000 iterations
enables comparison of forecast performance before and after correction. The results from the
out-of-sample test are provided in Table 5.6.
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Table 5.6: Average calibration statistics for test groups before and after ML mean-based
RCF, compared to unbiased forecast characteristics presented in the rightmost column

Average Calibration Statistics for TG Before ML mean-based RCF

Actual Production Year 0 Year 1 Year 2 Year 3 Year 4 Year 5 Unbiased

Inside [P90:P10] 14% 31% 44% 50% 42% 50% 80%
Over P90 41% 51% 65% 67% 63% 79% 90%
Over P50 34% 27% 35% 46% 45% 53% 50%
Over P10 27% 21% 22% 17% 21% 28% 10%

Average Calibration Statistics for TG After ML mean-based RCF

Actual Production Year 0 Year 1 Year 2 Year 3 Year 4 Year 5 Unbiased

Inside [P90:P10] 81% 82% 77% 77% 80% 79% 80%
Over P90 89% 92% 92% 85% 92% 91% 90%
Over P50 51% 47% 41% 51% 48% 47% 50%
Over P10 8% 11% 15% 8% 12% 12% 10%

Recalling the characteristics of well-calibrated estimation models, 80% of actual
observations should lie within the 80% confidence interval confined by the P90 and P10
estimates, and 90, 50 and 10% of actual observations should exceed the P90, P50 and P10
estimates, respectively. The out-of-sample test shows that, before correction, production
forecasts for the test group are not satisfying these characteristics. Moreover, the
probabilities experience significant variations among the different years. For example, it can
be seen that in year 5, 50% of all fields in the test group lie inside the 80% interval. In year
0, this number is as low as 14%. Regardless of these variations, applying RCF to the test
groups yields consistent improvements for all years. After correction, the calibration
statistics is seen to be closely aligned with those of well-calibrated forecasts. In effect, this
translates to an overall reduced overconfidence and optimism bias.

This can be even further illustrated by determining, for a particular year, the normalised
calibration statistics for the original and corrected distributions for each field.
Normalisation is performed by dividing each calibration statistic with its well-calibrated
percentage. Subsequently, each calibration statistic is equal to 1 if the production forecast
is well-calibrated. When evaluating production forecasts, values lower than 1 indicate over
estimation and, consequently, room for improvement. Values larger than 1 imply that
operators on the NCS, on average, produce more than what is estimated. Figure 5.15
graphically illustrates the normalised calibration statistics for year 1. The blue and orange
lines represent original and corrected production forecasts, respectively, while the black line
is the characteristics of well-calibrated forecasts. Evident from this graph, calibration
statistics for the corrected production forecasts are more closely aligned to the
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well-calibrated characteristics than the original production forecasts. Similar
interpretations can be made for the other years, for which identical plots are presented in
Figures B.1 and B.2 in Appendix B.

Figure 5.15: Normalised calibration statistics for year 1

5.4 Evaluating the low and high estimates
The above sections focus solely on the mean estimate in the process of correcting the
production forecasts. To discover possible inconsistencies in the relationships between the
low, medium and high estimates, the low and high estimates are now evaluated separately.
This means that actual production is normalised based on the P90 and P10 estimates
rather than on the ML Mean. New annual distributions that now express the forecast
performance with respect to the low and high estimates can, then, be generated. As before,
reference classes are constructed from random sampling of 80% of all fields, and 3000
different reference classes are selected for both sets of distributions. This results in new
histograms like those presented in Figure 6.4 for the three correction factors, from which
the average correction factors are extracted. The correction factors retrieved from P90- and
P10-based random sampling of reference classes are summarized in Table 5.7 and 5.8. As
before, the P90, P50 and P10 correction factors are the multipliers needed to be applied to
the estimated value to ensure 90, 50 or 10 percent confidence of meeting the production
forecast. Instead of applying these correction factors to the mean estimate to obtain the
corrected distributions described by P90, P50, and P10 percentiles, correction is now
performed on the original P90 and P10 estimates.
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Table 5.7: P90, P50 and P10 correction factors for each of the F6Y for
P90-based RCF

P90-Based Correction Factors

Percentile Year 0 Year 1 Year 2 Year 3 Year 4 Year 5

P90 0.09 0.48 0.48 0.51 0.61 0.66
P50 0.81 1.11 1.35 1.30 1.32 1.51
P10 3.08 2.08 3.02 2.82 4.50 5.22

Table 5.8: P90, P50 and P10 correction factors for each of the F6Y for
P10-based RCF

P10-Based Correction Factors

Percentile Year 0 Year 1 Year 2 Year 3 Year 4 Year 5

P90 0.06 0.30 0.24 0.20 0.25 0.25
P50 0.52 0.65 0.76 0.70 0.65 0.70
P10 1.84 1.14 1.26 1.15 1.24 1.48

Next, the same calibration test from Section 5.3.1 is performed on the distributions
generated by both the P90- and P10-based correction factors. These calibration plots and
corresponding plots for field-by-field RSE improvement are presented in Figures B.6 to B.9
in Appendix B. The RMSE before correction is based on the original distributions and is
thus independent of the method used to normalise actual production. However, correcting
the original estimates using the three different sets of correction factors naturally results in
three unique distributions. For a particular field, differences among these distributions will
affect the actual production percentile retrieved from its respective CDF. Thus, comparison
to the field’s plotting position differs between the three sets of distributions which,
ultimately, also affects the calculated RMSE. Figure 5.16 illustrates the above by
comparing the RMSE improvement for the ML Mean-, P90-, and P10-based corrections.
Despite the observable differences in RMSE improvement after performing correction with
the three different base estimates, these are minor and no clear trend is present.
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Figure 5.16: RMSE improvement for the F6Y related to perfect calibration, resulting
from ML Mean-, P90-, and P10-based RCF

Out-of-sample tests performed for P90- and P10-based RCF are provided in Tables B.2 and
B.4 in appendix B. These results show only small variations compared to those related to
ML mean-based RCF. Thus, neither base estimate can be argued preferable over the other
two, based on the results from this work. However, a significant number of production years
were excluded from the analysis due to inconsistency. This indicates unreliable information
in the P90 and P10 estimates, which will be further discussed in Section 6.4.
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6 Discussion

6.1 Data processing and distribution fitting

6.1.1 Elimination of schedule delays

In its original form, many of the fields in the NCS dataset was subject to schedule delays. As
a result, estimated production was compared to an actual production of zero until production
of first oil. Aiming to eliminate the effects of schedule delays, the time shifting procedure
described in section 3.1.1 was performed. Although this improved the basis for evaluating
current forecast performance, completely removing the effect of schedule delays is impossible
without more information. RCF performed in Section 5.2 show year 0 to be an anomaly,
indicating that monthly (or daily) schedule delays are still present. This can be observed by
studying the correction factors in Table 5.3, showing that year 0 has the lowest P50 correction
factor. Moreover, the P90 and P10 correction factors for year 0 results in a considerably
larger confidence interval for the corrected distribution compared to other years. While P90
correction factors for year 1 to year 5 all lie within the range of 0.3 to 0.4, the P90 correction
factor for year 0 is as low as 0.07. As uncertainty of production forecasts delivered at the
time of FID, in general, is expected to be larger for years later in the production cycle,
this behaviour is more likely to be explained by schedule delays. A monthly schedule delay
of, say, 6 months for a field with estimated production start in January, will not initiate
production before in July. As this is not detected by the yearly time shifting performed in
this work, actual production from July to December is compared to estimated production
from January to December. Potential production shortfalls are then contributed to poor
forecast performance, rather that the delayed production start. This is a perfect example
of how monthly schedule delays may result in a poor indication of forecast performance for
year 0. Consequently, development projects that deliver on time may be subject to excessive
correction if applying the correction factors determined through RCF performed in this work.
Although the effect of schedule delays is naturally also transferred to all following production
years, it is only year 0 that is prone to the initial months of zero production. Thus, the effect
of monthly schedule delays is significantly smaller for the other 5 years.
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6.1.2 Choice of FnY

Correction factors can, if desired, be found for each year for which historic data exists.
Although the dataset contains up to 20 years of reported production, this work restricts its
attention to the F6Y following the argumentation provided in Section 3.1.2. One natural
question that arises is whether the number of aggregation years (FnY) affects the results
related to total performance over the first n years. Figure 6.1 shows the results from a
sensitivity analysis performed by Bratvold et al. (2020) with intentions of answering this.
Because their work is based on the same set of data that is utilised in this thesis, their results
can be directly used to assist in this discussion. The sensitivity analysis shows the percentage
of fields whose cumulative actual production over the FnY does not exceed their respective
P90 and P50 estimates, denoted as Actual q ≤ P90 and Actual q ≤ P50. Evident from from
Figure 6.1, these percentages are not very sensitive to the number of aggregation years. This
argumentation is not important for year-on-year results presented for the F6Y but is highly
relevant for results related to the cumulative forecast performance.

Figure 6.1: Sensitivity analysis of how the number of aggregation years affects percentage of fields
whose cumulative actual production does not exceed their cumulative forecasted P90 or P50 (Bratvold
et al., 2020) (modified)
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6.1.3 Choice of n-term metalog

The number of metalog terms is chosen so that the distribution inherently imposes flexibility
beyond the traditional distributions, but at the same time does not include too many terms,
as this may lead to overfitting. In general, the use of 2 terms limits the metalog distribution
to a logistic distribution, which gives it enough flexibility to match the mean and standard
deviation, but not skewness or kurtosis. With 3 terms, the distribution can be additionally
described in terms of skewness, whereas 4 terms are required for kurtosis to be included
(Keelin, 2016).

The forecasts are probabilistic and, for each year, estimates production using three terms;
forecasted P90, mean and P10. The metalog distribution is related to the data through a set of
linear equations, which are solved using the input parameters. With m input parameters the
resulting metalog distribution can be described by n ≤ m terms (Keelin, 2016). Moreover,
the input parameters must be assigned a probability. Although the mean estimate lacks
a corresponding probability, this is used to find a feasible P50 percentile for the metalog
distribution by utilising the evolutionary algorithm in Excel. Thus, utilising the three terms
provided in the dataset, this work is restricted to the use of either 2- or 3-term metalog
distributions. Moreover, Keelin (2016) suggests that, for application in decision analysis
with three assessed data points, a 3-term metalog should be chosen. The resulting CDF
then passes through all three data points exactly, providing a complete representation of
the dataset at hand. Thus, a 3-term metalog distribution was chosen for the process of
obtaining field-by-field distributions representative of production estimates provided by the
NPD. For consistency, the 3-term metalog distribution was also chosen for generating annual
distributions as part of the random sampling of reference classes.
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6.1.4 Choice of metalog boundedness

The metalog family consists of distributions with three different specifications for
boundedness; unbounded, semi-bounded, and bounded. Because oil production cannot be
less than zero, the unbounded and semi-bounded (upper) distributions are not feasible for
this application. With intentions of avoiding subjective definitions of lower and upper
bounds for each distribution, preliminary testing was performed with semi-bounded (lower)
distributions with a lower bound of zero. This restricts production to positive values only.
However, the shape of the resulting CDF and PDF, then, essentially depends on the
magnitude of the production estimates relative to 0. This is illustrated in Figure 6.2. As
this behaviour is not desired, the bounded metalog distribution is chosen to enable the
definition of field-specific constraints for the lower and upper bounds. Implementation of
lower and upper bounds can also be justified in the sense that they, if properly defined,
better reflect the range of possible outcomes indicated by the P90 and P10 production
estimates. For the random sampling procedure, where actual production is normalised by a
base estimate, the semi-bounded metalog distribution with a lower bound of zero is utilised.

Figure 6.2: PDFs for two arbitrary sets of data with a lower bound of zero

6.1.5 Choice of acceptable relative mean error

Proceeding to study the choice of an acceptable relative error between the metalog mean
and the original mean estimate, reference is made to the theory of RCF described in
Section 5. Higher relative mean errors allow for more freedom in terms of the metalog
distribution’s ability to describe the mean estimate provided in the dataset. Thus, the
selection of fields satisfying a low relative mean error is more representative of the dataset
than selections constrained by a higher limit. This provides an argument for choosing a low
limit for acceptable relative error in the mean. However, seen from Figure 4.5, a lower limit
is accompanied by a smaller number of fields in the resulting reference class. Hence, the
choice reduces to an evident trade-off between the statistical significance of the resulting
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selection of fields and the degree to which they are representative of the original data. The
relative mean error deemed acceptable may therefore affect the quality of the reference
class. Studying Figure 4.5, the metalog mean for 25 fields deviates less than 1% from the
original mean for the year with the lowest number of fields. For 2 to 7%, the minimum
number of fields included in the reference classes for each year increases to 28. The value of
increased statistical significance obtained from 3 additional fields for the year with lowest
field count is perceived greater than the loss of comparability resulting from a 1% higher
relative error in the mean for these fields. Thus, the analyses performed in this work allows
for up to 2% error in the mean.

6.2 Reference class forecasting

6.2.1 The resulting reference class size distribution

The program used for random sampling of reference classes does not yield reference classes
of a fixed size. Instead, the desired size is specified as a percentage of the total number of
ML consistent fields. Next, for each iteration, all ML consistent fields are assigned a random
number between 0 and 1. Fields whose assigned value is less than the desired reference class
size will be included in the reference class. With the chosen reference class size of 80%,
fields whose assigned random value is less than 0.8 are included in the reference class. The
remaining fields form the test group. This means that, after 3000 iterations, the average
reference class size will equal the specified value of 80%. For each single iteration, however,
the reference class size may be smaller or larger than 80%. This functionality contributes to
the random sampling procedure in terms of increasing the number of unique reference classes
that can be defined for each year. The reference class size distribution observed for the ML
mean-based random sampling of reference classes is provided in Figure 6.3. This histogram
contains data for all first six years of production, amounting to 18 000 random samples.

Figure 6.3: Reference class size distribution for the F6Y
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6.2.2 Validity of using the mean correction factor

The random sampling of reference classes performed in Section 5.2.3 yields histograms for
P90, P50 and P10 correction factors with a corresponding mean and standard deviation.
Figure 6.4 shows the results for year 1.

(a) P50 Correction Factor

(b) P90 Correction Factor (c) P10 Correction Factor

Figure 6.4: Histogram showing the distribution of P90, P50 and P10 correction factors
for year 1 when running 3000 iterations with a reference class size of 80%

Studying these histograms, the P50 correction factor is approximately normally distributed
while the P90 and P10 correction factors are not symmetric. This is also demonstrated by
looking at the relationships between the calculated median, mode and mean. One property
of normally distributed data (and any other symmetrical distribution) is that the median,
mode and mean are equal. In Figure 6.4b, illustrating the statistics for the P50 correction
factor, little to no differences among the median, mode and mean are observed, strongly
confirming normal distribution. Calculated statistics for the P90 and P10 correction factors,
summarised in 6.4a and 6.4c, show that neither of these correction factors are normally
distributed among the 3000 different iterations. These characteristics are common for all
years in the F6Y. Although not identical for all years, the trend is clear; only the P50
correction factors can be characterized as normally distributed. Regardless, the differences
between the median, mode and mean are minor. In turn, these findings justify the retrieval
of the mean correction factors as robust and representative correction factors.
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6.3 Corrected forecast calibration
The feasibility of adopting an outside view by applying RCF is tested through a series of
tests. Results from the calibration procedure imply significantly enhanced model
performance when correction factors are applied to the base estimate. Moreover, these
results are also consistent with those retrieved through in-sample and out-of-sample
testing. These tests provide evidence that RCF significantly enhances forecast performance
and that the corrected distributions exhibit characteristics that are closely aligned with the
characteristics of unbiased forecasts. Moreover, the annual standard deviation for the
original and corrected distributions, obtained by summing the variance for each field and
then taking the square root, is shown in Figure 6.5. This clearly illustrates the lack of
regard given to uncertainty in the original production forecasts. Through assessing
uncertainty of forecasted output with a broader perspective, which is demonstrated to be
the result from RCF, development plans that are robust over a wide range of outcomes
may be constructed. It is important to note that the sum of the variance of all fields is only
equal to the annual variance if all forecasts are independent. However, production forecasts
may be correlated with the oil price, and forecasts for different fields may be generated by
the same forecaster and/or by the same software models. Due to lack of information on
these concerns, we treat forecasts as independent in this work.

Figure 6.5: Annual standard deviation for the original and corrected
distributions
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Although providing promising results, it is important to note that the correction procedure
performed in this thesis is performed with intentions of improving the overall forecast
performance of development projects on the NCS. As it is impossible to know in advance
which fields will successfully meet the original production forecasts and which fields will
not, some development projects on the NCS may be subject to excessive correction. For
these development projects, RCF results in corrected production forecasts that are lower
than what will actually be produced and may, in turn, result in potentially profitable
projects not getting accepted. However, looking at development projects on the NCS as a
whole, or at an operator’s portfolio of projects, the RCF methodology implemented in this
thesis provides an overall better-informed basis for decision making and, thus, increases
capital efficiency.

6.4 Base estimate sensitivity
Section 5.4 successfully illustrated that RCF yields approximately equal result whether it is
based on the ML mean or on the P90 or P10 estimates provided in the dataset. However,
these results are not representative of the dataset in its entirety. Recalling the results from the
data scrubbing process performed in Section 3.1.2, the extent of the dataset was significantly
reduced by 45 production years for the F6Y due to either inconsistent or missing data.
Some fields had P90 and P10 estimates equal to the mean, which is supposed to reflect the
expected value. For other fields, both P90 and P10 were reported as zero. Although removing
inconsistent data was necessary to proceed with the analysis, the result is that important
information may be ignored. The results would undoubtedly be different if no regard was
given to the statistical reliability of the data.

The above cases essentially imply a lack of probabilistic production forecasts and a FID
taken solely on the basis of the mean estimate with no regard to uncertainty ranges.
Moreover, despite the flexibility of the metalog distribution, only 194 out of the 278
production years for the time shifted dataset were consistent with metalog distributions
with an acceptable relative mean error of 2%. This may suggest that, for instances with
limited available information, forecasters tend to rely on the rationalist approach, in which
most of the effort is devoted to generating a base case in terms of a mean estimate.
Although P90 and P10 production forecasts are also provided, they seem to be based on
poor information. In fact, Figure 6.5 imply that the original uncertainty reflections, even
for fields that were successfully fitted to metalog distributions, are too narrow. This
signifies the need for stricter requirements for the probabilistic forecasts that are reported
to the national authorities at the time of project sanction. Uncertainty assessments of
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forecasts should be encouraged to be realistic (neither optimistic nor pessimistic) given the
knowledge of the forecaster. Furthermore, top management should encourage increased
uncertainty ranges related to production forecasts.
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7 Conclusion
In this thesis, we have demonstrated that over the past 22 years, operators on the NCS
exhibit significant optimism and overconfidence biases in their production forecasts.
Analysing production data for 56 fields that were approved for development in this time
period, we find that the forecasts provided at the time of FID are, as a general rule, both
optimistic and overconfident. For the first six years of production, only 33% of actual
observations fall inside the 80% confidence interval defined by the forecasted P90 and P10
fractiles, while 37% of actual observations exceed the P50 fractile − even after time shifting
the data to reduce the impact of schedule delays.

To debias the original production estimates, an outside view is implemented by applying
reference class forecasting. Correction factors for each of the F6Y are generated through
random sampling of 3000 different reference classes. RCF forecast evaluation relative to
perfect calibration shows that applying these correction factors to the original forecasts
reduces the RMSE by up to 88%. Furthermore, in-sample and out-of-sample tests provide
evidence that the corrected distributions are close to perfectly aligned with the characteristics
of unbiased and well-calibrated production forecasts. Compared to only 33% for the original
distributions, 77% of actual observations in the F6Y fall inside the 80% interval defined by
corrected P90 and P10 production estimates. Moreover, 47% of the reported production
data for the first six years of production exceed the corrected P50 estimate. Thus, the
methodology developed and implemented in this thesis significantly reduces both optimism
and overconfidence bias related to production forecasts for new development projects on the
NCS.

As poorly informed production forecasts that lead to suboptimal decisions are commonly
occurring in the oil and gas industry, this topic requires increased attention. For further
studies, elimination of monthly schedule delays before performing RCF is recommended.
Instead of issuing monthly production forecasts from the operators − which is a rather
demanding request − one possible approach is to assume a trend (for example linear) in
production for each year. Data of startup month for each field used in combination with
interpolation of yearly actual production data may, then, further reduce the effect of schedule
delays. Moreover, as this work has demonstrated that the required adjustment of forecasts
exhibits annual variations, it is recommended to continue studying annual forecasts.
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Appendices

A The metalog distribution
Field-by-field metalog distributions are generated in Section 5.2 using the bounded metalog
distribution, while random sampling of reference classes, and its related out-of-sample test,
performed in Section 5.2.3, utilises the semi-bounded metalog distribution to generate annual
distributions of normalised production. However, to simplify the derivation process, this
section will also present the unbounded metalog distribution.

Unbounded metalog distribution
Definition 1. metalog quantile function with n terms:

Mn(y;x,y) = (A.1)

a1 + a2 ln

(
y

1− y

)
n = 2

a1 + a2 ln

(
y

1− y

)
+ a3(y − 0.5) ln

(
y

1− y

)
n = 3

a1 + a2 ln

(
y

1− y

)
+ a3(y − 0.5) ln

(
y

1− y

)
+ a4(y − 0.5) n = 4

Terms beyond n = 4 can be added from the following:

Mn−1 + an(y − 0.5)
n−1
2 for odd

Mn−1 + an(y − 0.5)
n
2
−1 ln

(
y

1− y

)
for even

The cumulative probability y ranges from 0 < y < 1. The x and y coordinates of the CDF
data are found in column vectors x = (x1, ..., xm) and y = (y1, ..., ym) for length m ≥ n,
where at least n of the yi’s are distinct. The ai’s are real constants that are utilised as a
combination of parameter-substitutions and series expansion for adding more shape flexibility
as the number of terms (n) increases (Keelin, 2016).
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Definition 2. metalog PDF:
Differentiating Equation A.1 with respect to y and inverting the result yields the metalog
probability density function (PDF):

mn(y) = (A.2)

y(1− y)

a2
n = 2[

a2
y(1− y)

+ a3

( y − 0.5

y(1− y)
+ ln

( y

1− y
))]−1

n = 3[
a2

y(1− y)
+ a3

( y − 0.5

y(1− y)
+ ln

( y

1− y
))

+ a4

]−1
n = 4

Terms beyond n = 4 can be added from the following:

[
(mn−1(y))−1 + an

(n− 1

2

)
(y − o.5)

n−3
2

]−1
for odd[

(mn−1(y))−1 + an

(
(y − 0.5)

n
2
−1

y(1− y)
+
(n

2
− 1
)

(y − 0.5)
n
2
−2 ln

( y

1− y

))]−1
for even

It is noticable that the PDF mn(y) is expressed as a function of the cumulative probability y.
In the customary operation of plotting the PDF, the metalog sheet by Keelin is arranged so
that the horizontal axis presents production estimates Mn(y) while the vertical axis presents
the associated probability density, with y varying ∈ (0, 1) to retrieve the corresponding values
on both axes.
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Semi-bounded metalog distribution
To retrieve the log metalog quantile function with n terms for the semi-bounded metalog
distribution, one has to set a lower bound bl for x. Suppose that z = ln (x− bl) is metalog
distributed according to Equation A.1. Setting ln(x− bl) equal to Equation A.1 and solving
for x gives the following expression for the log metalog quantile function:

M log
n (y;x,y, bl) = bl + eMn(y) 0 < y < 1 (A.3)

z = (ln(x1 − bl), ..., ln(xm − bl)) is a column vector, where x = (x1, ..., xm), for all m ≥ n.
Further, each xi > bl, and y = (y1, ..., ym), where 0 < yi < 1 for each yi, at least n of the yi’s
are distinct. When y = 0, the expression retrieves bl.

Differentiating Equation A.3 with respect to y and inverting the result yields the log metalog
PDF:

mlog
n (y) = mn(y)e−Mn(y) 0 < y < 1 (A.4)

where mn(y) and Mn(y) is equations (A.2) (A.1), respectively. The log metalog feasibility
condition is mlog

n (y) > 0 for all y ∈ (0, 1). When y = 0, mlog
n (y) equals 0.
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Bounded metalog distribution
The logit metalog distribution to be utilised in the upcoming section, draws its benefits from
the possibility to define a lower and upper bound for estimated annual production. These
will be denoted by bl and bu, respectively, where bu > bl. The logit metalog distribution is the

metalog transform that corresponds to z = logit(x) = ln
( x− bl
bu − x

)
being metalog distributed.

Setting ln (
x− bl
bu − x

) equal to equation (A.1) and solving for x yields the logit metalog quantile

function with n terms:

M logit
n (y;x,y, bl, bu) =

bl + bue
Mn(y)

1 + eMn(y)
0 < y < 1 (A.5)

z =

(
ln
( x1 − bl
bu − x1

)
, ..., ln

( xm − bl
bu − xm

))
. Where x = (x1, ..., xm), bl < xi < bu for each xi, and

y = (y1, ..., ym), 0 < yi < 1 for each yi. Differentiating Equation A.5 with respect to y and
inverting the result yields the logit metalog PDF:

mlogit
n (y) = mn(y)

(1 + eMn(y))2

(bu − bl)eMn(y)
0 < y < 1 (A.6)

where mn(y) is Equation A.2 and Mn(y) is Equation A.1. The logit metalog feasibility
condition is mlogit

n (y) > 0 for all y.
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B Supplementary results

Figure B.1: Correction factors retrieved from progressive reference class
forecasting for year 0, 1 and 2
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Figure B.2: Correction factors retrieved from progressive reference class
forecasting for year 3, 4 and 5
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Figure B.3: Calibration plots for ML mean-based RCF
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Figure B.4: Field-by-field RSE improvement for ML mean-based RCF
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Figure B.5: Results from out-of-sample test for ML mean-based RCF, showing calibration statistics
normalised by the characteristics of unbiased forecasts
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Figure B.6: Calibration plots for P90-based RCF
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Figure B.7: Field-by-field RSE improvement for P90-based RCF
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Table B.1: Overview of the total number of fields and the number of fields with
a positive and no or negative RSE improvement when applying P90-based RCF

Field-by-field RSE Improvement (P90-based RCF)

Fields Year 0 Year 1 Year 2 Year 3 Year 4 Year 5
Total 29 33 37 34 33 28
Improvement > 0 26 30 33 30 31 22
Improvement ≤ 0 3 3 4 4 2 6

Table B.2: Results from out-of-sample test for P90-based RCF, showing the average
calibration statistics for the test group before and after correction

Average Calibration Statistics for TG Before P90-based RCF

Actual Production Year 0 Year 1 Year 2 Year 3 Year 4 Year 5 Unbiased

Inside [P90:P10] 13% 31% 44% 50% 43% 50% 80%
Over P90 42% 52% 65% 67% 64% 79% 90%
Over P50 35% 27% 35% 47% 46% 55% 50%
Over P10 28% 21% 21% 17% 21% 28% 10%

Average Calibration Statistics for TG After P90-based RCF

Actual Production Year 0 Year 1 Year 2 Year 3 Year 4 Year 5 Unbiased

Inside [P90:P10] 83% 76% 72% 74% 78% 83% 80%
Over P90 90% 92% 91% 87% 88% 93% 90%
Over P50 49% 42% 42% 47% 48% 52% 50%
Over P10 8% 16% 18% 14% 10% 11% 10%
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Figure B.8: Calibration plots for P10-based RCF
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Figure B.9: Field-by-field RSE improvement for P10-based RCF
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Table B.3: Overview of the total number of fields and the number of fields with
a positive and no or negative RSE improvement when applying P10-based RCF

Field-by-field RSE Improvement (P10-based RCF)

Fields Year 0 Year 1 Year 2 Year 3 Year 4 Year 5
Total 29 33 37 34 33 28
Improvement > 0 27 32 31 29 31 27
Improvement ≤ 0 2 1 6 5 2 1

Table B.4: Results from out-of-sample test for P10-based RCF, showing the average
calibration statistics for the test group before and after correction

Average Calibration Statistics for TG Before P10-based RCF

Actual Production Year 0 Year 1 Year 2 Year 3 Year 4 Year 5 Unbiased

Inside [P90:P10] 14% 30% 43% 50% 42% 50% 80%
Over P90 42% 52% 65% 67% 64% 78% 90%
Over P50 35% 28% 35% 46% 46% 54% 50%
Over P10 28% 22% 22% 18% 22% 29% 10%

Average Calibration Statistics for TG After P10-based RCF

Actual Production Year 0 Year 1 Year 2 Year 3 Year 4 Year 5 Unbiased

Inside [P90:P10] 80% 78% 78% 77% 78% 79% 80%
Over P90 88% 91% 90% 89% 93% 91% 90%
Over P50 52% 49% 45% 50% 54% 50% 50%
Over P10 9% 13% 12% 12% 16% 12% 10%
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