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Abstract 
 

In this work the aim is developing LSSVM-PSO model capable of capturing the interplay 

between the most influential parameters (mechanisms) and recovery factor (RF) of WAG process 

in layered reservoirs. In a previous work 1840 Black Oil Model simulations were run for a 2D 

model with multiple layers, an injector and a producer, and used to derive a dimensionless number 

correlating reservoir heterogeneity, WAG hysteresis, gravity, mobility ratio and WAG ratio to 

predict recovery factor (as measured after 1.5 injected pore volumes). Given that only one 

parameter, the dimensionless number, was used to correlate RF, a significant data scatter was 

observed.  

In this work the database is expanded by running 824 new simulations using new hysteresis 

parameters values. The Machine Learning algorithm Least Squares Support Vector Machine 

(LSSVM) is used to correlate RF with representative input parameters, such as characteristic 

mobility ratios, gravity numbers, heterogeneity factor and more. The appropriate number of 

effective input parameters was obtained by reducing the set of independent input parameters to 

dimensionless groups. Particle Swarm Optimization was used to optimize the LSSVM algorithm 

parameters.  

The trained LSSVM-PSO model could serve as an effective screening tool in uncovering 

important trends of parameter variation and improve the efficacy of uncertainty analyses. 
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Nomenclature 
 

   Subscripts and Superscripts 
𝜆𝐷 = mobility of the displacing fluid, (Pa ∗ s)−1  

𝜆𝑑    = mobility of the displaced fluid, (Pa ∗ s)−1 *      = characteristic value, 

𝜆𝑖 = phase mobility, (Pa ∗ s)−1 1𝑝𝑣   = 1 PV 

𝜎 = interfacial tension, IFT (N/m) 𝑎𝑟𝑖𝑡 = arithmetic 

𝑁𝑐𝑎 = capillary number 𝑔 = gas 

𝜗 = Darcy velocity (m/s) 𝐺 = gravity 

𝐸𝑑 = volumetric sweep efficiency ℎ𝑎𝑟𝑚 = harmonic 

𝐸𝜈 = volumetric (macroscopic) sweep efficiency 𝑖 = phase 

𝜇𝑖 = Viscosity, Pa ∗ s 𝑗 = layer 

𝜌𝑖 = phase density, kg/m3 𝑜 = oil 

𝛥𝜌 = density difference, kg/m3 𝑟𝑒𝑠 = residence 

𝐶 = Lands's trapping parameter 𝑖𝑛𝑖𝑡 = initial reservoir conditions 

𝐹𝐻 = heterogeneity multiplier 𝑠𝑒𝑔 = segregation 

𝐹𝐺 = gravity multiplier 𝑇 = total 

𝑘𝑟𝑖 = relative permeability 𝑤 = water 

𝑘𝑟𝑖
𝑚𝑎𝑥  = relative permeability endpoints    

𝐾𝑥 , 𝐾𝑧  horizontal and vertical absolute permeability, m    

𝐿𝑥 = distance from injector to producer, m    

𝐿𝑦 = width of reservoir, m    

𝐿𝑦 = total height of reservoir, m    

𝑀 = mobility ratio    

𝐻𝜙 = Pore volume, m3    

ℎ𝑖 = layer height, m    

𝑀𝑊𝐴𝐺  = simple characteristic three phase mobility ratio    

𝑀∗ = total injection time    

𝑛𝑖 = Corey exponents,     

𝑁𝐺 = gravity number    

𝑟𝑤 = water volume fraction in a wag cycle    

𝑠𝑖 = local phase saturation    

𝑠𝑖𝑟  = residual phase saturation    

𝑆𝑖 = normalized saturation    

𝑡 = time, seconds    

𝑇𝑔−ℎ𝑐  = gas half-cycle length, seconds    

𝑇𝑡𝑜𝑡 = Total injection time, seconds    

𝑇𝑐𝑦𝑐𝑙𝑒 = Total WAG cycle length, days    

𝑇𝑤−ℎ𝑐  = water half-cycle length, seconds    

𝛼 = hysteresis parameter    

𝜏 = time scale, seconds    

𝜑 = porosity    

𝑥 = horizontal direction towards producer, m    

𝑧 = vertical direction downwards, m    
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Chapter 1 

Introduction 

 

1.1 Background and Motivation 

About two thirds of worldwide oil production belongs to mature fields, and production 

amount from new discovered fields is on a steady decline (O’Brien et al. 2016). This makes 

reconsideration of mature fields’ potential more relevant. To optimize production of such fields, 

EOR technologies are widely applied across the world. Thermal and chemical EOR projects 

dominate in sandstone reservoirs while gas injection and water-based methods are primarily used 

in carbonates (Manrique et al. 2010). 

In Figure 1. 1 we see a resource overview for the largest oil fields on the Norwegian 

Continental Shelf (NCS), which comprises produced oil, remaining oil reserves, and (expected) 

amount of residual oil once planned production stage ends.  

 
Figure 1. 1 – Resource overview for fields, information by 31.12.2018 (NPD 2019) 

Many large fields on NCS are now in a mature phase and have produced large percentage 

of their original reserves. In Figure 1. 2 we see the proportion of remaining oil reserves for a 

number of fields relative to original. The size of the circles indicates remaining reserves. That 

means some greener fields as Johan Sverdrup and Johan Castberg in the North and Barents Seas 
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respectively appear on left side of the plot. They are under development and will contribute to a 

continued high level of production during the 2020s (NPD 2019). Mature fields took place on the 

right side of the graph and proportion of their remained reserves relative to initial ones has gone 

lower over the years. However, some fields such Snorre, Valhall, Heidun still have considerable 

reserves even relative to some of greener fields. 

 
Figure 1. 2– Remaining proportion of the original oil reserves and the size of remaining oil reserves (NPD 2019) 

 
Figure 1. 3 – Scaled EOR potential for method with uncertainty (NPD 2019) 
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In 2017 the technical potential in 27 fields was reported by Norwegian Petroleum 

Directorate (NPD) and that number was expanded till 46 fields in 2019 (NPD 2019). The technical 

potential of the implementation of EOR methods to adopt to an existing or planned facility on 

fields were ranked by operator companies. A flat oil price of 60 USD per barrel and discount rate 

of 7% has been used for economics analysis. Scaled EOR potential for each field is presented in 

Figure 1. 3. Scaling factor which is used for calculating scaled volumes is estimated by combining 

operational and economic factor with values from 0 to 1 for each of the methods. From the Figure 

1. 3 we can see that gas-based Water Alternating Gas (WAG) injection has high potential mainly 

for fields with existing equipment for its implementation. Also, low-salinity water and smart water 

injection are listed as high rank ones. 

With situation of oil price of USD 30 per barrel to date 14.04.2020, concentration on 

mature fields is reasonable. For example, one of the effects of the price decline is that in 2015, 

many international and independent projects struggled to generate enough cash to generate enough 

cash to cover their spending and dividends, even as they severely cut spending and greenfield 

projects. Four of the biggest oil companies (Royal Dutch Shell, BP LC, Exxon Mobil Corp. and 

Chevron Corp.), outstripped cash flow by more than a combined USD 20 billion during the first 

half of 2015 (Sarah Kent, Justin Scheck 2015).  

Based on facts described above, studying EOR methods and developing tools for 

diminishing complexity of decision-making process on implementing them are actual these days.  

1.2 Thesis objectives and novelty 

The objectives correspond to answering the following questions: 

• How well can the LSSVM-PSO model predict WAG performance in comparison to model 

of previous work based on one dimensionless number?   

• How does convergence behavior depend on the number of selected dataset fractions for 

LSSVM-PSO model? 

• How good is the prediction efficiency when previously constant WAG cycle length 

changes? 

• How can hysteresis parameters be chosen to achieve desired hysteresis effect?  

The novelty characteristics of this work can be summarized in these forms: 

• Creation of LSSVM algorithm-based model for the WAG efficiency evaluation purpose. 

• The trained LSSVM model could be an effective tool in uncovering important trends of 

parameter variation and improve the efficacy of uncertainty analyses. 
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Chapter 2 

Theoretical part of work 

2.1 Introduction to WAG process 

Conventional water and gas injection methods are well known as secondary recovery 

methods. At the same time, those methods can lack of efficiency that lead to major problems in 

conditions of unfavorable mobility ratio between oil and displacing phase or low displacement 

effectiveness. During the displacement process of gasflooding gas fingering can be caused by 

inefficient mobility ratio leading to reduction of sweep efficiency. Also, presence of indications of 

heterogeneity as fractures, high permeable layers might cause early breakthrough of gas into 

production wells. Therefore, cyclic injection of water slugs along with gas slugs helps to maintain 

front stability and improve volumetric sweep efficiency.  

One of the important mechanisms in displacing process is gravity segregation. It is very 

high for gasflooding process due to high difference between densities of the phases, which 

negatively affects volumetric sweep efficiency even microscopic sweep is higher in zones 

contacted by the displacing flood than that for waterflooding. For waterflooding gravity 

segregation has less effect because of less difference between water and oil densities in comparison 

to previous case. WAG injection process limits the negative effect of gravity segregation and it is 

not that severe as in pure gasflooding process and still allows to have higher displacement 

efficiency than in waterflooding process. 

Water Alternating Gas (WAG) method was introduced to overcome problems with 

mobility ratio between oil and injected gas in gas flooding due to low viscosity and high relative 

permeability of gas (Green and Willhite 2018).  Injection of water helps to stabilize the flooding 

front through enhancing macroscopic sweep efficiency, while injection of gas contributes to 

improved microscopic sweep efficiency of the contacted reservoir regions (Christensen, Stenby’, 

and Skauge 2001). In other words, WAG utilizes the advantages of two traditional methods whilst 

minimizing their individual downsides.  

WAG method has different types based on process driving mechanism and fluids 

implementation. The  Figure 2. 1 shows water alternating gas method types based on variation of 

different attributes.  

Based on process, this EOR method is separated into three types. Conventional WAG 

involves cycles of water and gas alternately injected as shown in Figure 2. 2. In hybrid CO2 

+WAG, the conventional WAG process is modified with cycles of CO2 injection. Simultaneous 
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Water and Gas injection (SWAG) encompasses a surface-prepared mixture of water and gas that 

is injected into the reservoir. Despite their differences SWAG is still classified as a WAG process 

type. 

 
Figure 2. 1– Variations of WAG processes based on different attributes (Afzali, Rezaei, and Zendehboudi 2018) 

 
Figure 2. 2– Schematic representation of immiscible WAG injection in a reservoir (Bourgeois, Joubert, and 

Dominguez 2019) 

There are multiple WAG types as dependent on fluid type and composition. However, 

the most relevant classification is whether the injected gas cycles experience miscibility conditions 

or not. Hence, they are commonly referred to as miscible WAG (MWAG) or immiscible WAG 

(IWAG) processes. Schematic illustrations of both methods are shown in Figure 2. 2 and Figure 

2. 3. The main difference of two figures is presence of miscible zone for MWAG.  WAG 

miscibility is highly dictated by reservoir conditions (temperature, pressure, and depth) and the 

properties of the displaced phase (oil) and injected fluids (water and gas). As oil and gas approach 

miscibility, significant mass transfer occurs. While mass transfer in immiscible process is limited 

to gas being dissolved in oil, in the miscible process both gas and oil have mass transfer with each 

other, thus ultimately becoming practically the same phase. The conditions that enables miscibility 

during WAG injection involves increasing the concentration of light components in the injected 

gas to reach the Minimum Miscibility Concentration (MMC), or by maintaining a sufficiently high 
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pressure above the Minimum Miscibility Pressure (MMP), or a combination of these (Green and 

Willhite 2018).  

 
Figure 2. 3– Schematic representation of miscible WAG injection in a reservoir (modified after Luis et al.) 

To successfully design any EOR strategy, understanding the main mechanisms is highly 

important not only in terms of resulting recovery factor but also economic feasibility of overall 

project. The WAG mechanisms, and the underlying processes, can be quite comprehensive in 

terms of its physics and subsurface uncertainties. Moreover, its overall efficiency depends on when 

it was implemented, ie. whether it was implemented as a secondary or tertiary process of the 

lifecycles of the field.  

There are mechanisms of WAG process, which can improve oil recovery factor 

• Improved volumetric sweep by water following gas. 

• Oil viscosity reduction resulting from gas dissolution. 

• Oil swelling by dissolved gas. 

• Interfacial tension (IFT) reduction. 

• Residual oil saturation reduction due to three-phase and hysteresis effects. 

The intended purpose of WAG mechanisms is to improve displacement efficiency of 

reservoir fluids, as compared to single phase flooding processes.  This can happen by decreasing 

the mobility ratio M (normally M>>1 for gas flooding), which is defined as follows:  

𝑀 =
𝜆𝐷

𝜆𝑑
                             (1.1) 

where 𝜆𝐷 is the mobility of the displacing fluid (water or gas) and 𝜆𝑑 is the mobility of the 

displaced fluid (e.g., oil). M affects both macro- and micro- sweep efficiencies. This is important 

parameter as it directly affects to the volumetric (macroscopic) sweep efficiency (𝐸𝜈). 

 The improvement in displacement efficiency can also happen by increasing the capillary 

number (𝑁𝑐𝑎), which is given by:  

𝑁𝑐𝑎 =
𝜗𝜇

𝜎
                             (1.2) 
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where 𝜎 is the interfacial tension, IFT (N/m), μ refers to the viscosity of the displacing fluid (Pa.s), 

and 𝜗 is the Darcy velocity (m/s). The capillary number is connected to microscopic 

(displacement) sweep efficiency (𝐸𝑑), as high  𝑁𝑐𝑎 contributes to easier displacement of residual 

oil from the pores (Afzali, Rezaei, and Zendehboudi 2018). 

Most of the EOR methods that aim to increase the capillary number is focused on 

decreasing the interfacial tension between the displacing and displaced fluids. Examples of where 

this happens is for surfactant and thermal EOR methods. In case of miscible WAG displacement, 

capillary number can go towards infinity as complete miscibility assumes almost zero interfacial 

tension between gas and oil. The total oil recovery efficiency (𝐸) results from a combination of 

both microscopic displacement efficiency (𝐸𝑑) and volumetric sweep efficiency (𝐸𝑣): 

𝐸 = 𝐸𝑑 ∗ 𝐸𝑣                       (1.3) 

In this thesis IWAG process is considered for simplification purpose. Injecting water and 

gas in an alternating way will result in complicated saturation behavior in the reservoir, since gas 

and water saturations will tend to fluctuate as they are cyclically injected. This gives rise to three 

phase relative permeability behavior (oil, gas and water), which will need to be described through 

various correlations. The relative permeability can also be cycle dependent. (Larsen and Skauge 

1998). 

There are variety of reservoir properties and parameters influencing the WAG process 

efficiency according to literature. Common factors presented in the literature are reservoir 

heterogeneity, relative permeability, hysteresis, wettability, and gravity. The failure of EOR 

projects are often connected to reservoirs with high heterogeneity. High stratification of reservoirs 

makes gas injection process uneconomical in majority of cases because of problems of early gas 

breakthrough. Properties as flow connection between reservoir layers, stratification, relation of 

viscous -to-gravity forces mainly control vertical displacement efficiency. The cross flow usually 

negatively affects the displacement process and recovery factor Gravity segregation in 

homogeneous models has adversary effect and leads to low recovery efficiency when single phase 

injection is used. Immiscible WAG is applied in that situation. (Christensen, Stenby’, and Skauge 

2001). In highly heterogeneous reservoirs, gravity effect can divert flow from high permeable 

layers to low permeable layers. So, in heterogenous models low gravity effect can be basis of a 

scenario when low permeable reservoir layers stay upswept. Also, ordinary techniques to calculate 

relative permeability data is not correct to use in WAG due to its cyclic hysteresis nature. The 

relative permeability gas, which is non-wetting phase, is more affected by the hysteresis (Afzali, 

Rezaei, and Zendehboudi 2018). Hysteresis decreases gas mobility and gas-oil mobility ratio also 

gets lower positively affecting recovery factor. Moreover, hysteresis reduced negative effect of 

gravity segregation in homogeneous reservoirs. Land (1968) and Carlson (1980) models are widely 

used to model relative permeability hysteresis. The wettability has been defined as a parameter 

influencing as it impacts parameters like capillary pressure, relative permeability, dispersion, and 

electrical properties (resistivity and conductivity). It is the most important for planning tertiary oil 

recovery as surfactant flooding, miscible injections, alkaline flooding, and hot water flooding. 
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2.2 Existing WAG experience 

The first WAG field experience reported in literature was in 1957 in Canada according to Arne 

Skauge, 2003. He wrote that preliminary portion of early projects including both MWAG and 

IWAG were applied in territory of Canada, USA and former USSR. Recovery factor in 72 fields 

reviewed by him are reported to have increased by 5 to 15 % of OIIP (Oil Originally In Place). It 

was reported that 80% of the USA WAG field projects are positive (Sanchez 1999). In practice it 

is quite hard to differentiate miscible and immiscible injection because of uncertainties in the 

process itself when applied on field scale, however many cases were defined as miscible, referring 

to multiple contact miscibility (Christensen, Stenby’, and Skauge 2001). 

WAG is a difficult process, which may not be practical in reducing the fluids front 

instabilities due to high completion costs, operational complexities. In case of alternating injection 

of water after gas technique, water (higher density) will sweep the bottom part of the reservoir and 

provides more stabilized flooding front by correcting mobility ratio. This is economically 

profitable as it lowers gas volume required to be injected into the reservoir in comparison to pure 

gas flooding method  (Afzali, Rezaei, and Zendehboudi 2018).  

WAG was successfully applied in many fields of Norwegian Continental Shelf (NSC) as 

Gullfaks, Statfjord, South Brage, Snorre and Oseberg Øst. WAG is more complicated in terms of 

design and operational requirements in comparison to traditional water or gas injection. WAG 

performance is highly sensitive to the injection strategies as injection well pattern, WAG ratio, 

number of WAG cycles, volume of each cycle, and injection rate and pressure.  

Different aspects considered during WAG design are injection gas type, injection pattern 

and tapering. Gas type is mostly classified into three groups: CO2, hydrocarbons (HC) and non-

hydrocarbons. The most popular well pattern is “5 spots” for offshore projects, while for onshore 

projects the placement of wells can be more flexible. Tapering means to increase or decrease the 

WAG ratio as more WAG cycles are injected. but in most of the cases that was not planned, but 

the result of unfavorable change of cycles duration while process management. 

One of the operational problems, described in literature (Christensen, Stenby’, and 

Skauge 2001) is early breakthrough in production wells, which usually happens as a result of lack 

of understanding in terms of reservoir geology. Such that, ie. with "wrong" placement of wells, 

gas channelling occurs. In some cases, failure to maintain high enough pressures lead to loss of 

miscibility, and consequently quicker breakthrough of gas phase and lower than expected recovery 

factor. Early breakthrough happened in Snorre field due to uncertainties in geology (Stenmark and 

O. Andfossen 1995). Structural definition and degree of communication through faults and vertical 

transmissibilities are the most influential reservoir data for the WAG pilot carried out at Gullfaks 

(Dalen, Instefjord, and Kristensen 1995). Another is reduced injectivity of injection wells, which 

can happen due to three-phase flow, reduced effect of thermal fractures during gas injection or 

precipitates (hydrates and asphaltenes) formed in the near well zone. This becomes the reason for 

the fast drop in pressures in the reservoir. Furthermore, severe corrosion problems are related with 

CO2 injection WAG. In most cases these have been solved by using high-quality steel (different 

kinds of stainless steels or ferritic steel), coating the pipes, and by better treatment of the 
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equipment. Asphaltene and hydrate formation can lead to problems both during injection and 

production. However, the factors influencing the formation are better known for hydrates than for 

asphaltenes. In addition, temperature differences in water and gas injection in WAG process have 

resulted in stress related tubing failures at Rangely Weber and Brage fields (A. Skauge and A. 

Berg 1997). 

Summarizing the main parameters influenced to the success or failure of field WAG trails were: 

• Lack of experience. 

• Uncertainties in geology or poor knowledge about reservoir properties.  

• Inappropriate parameters as injection well pattern, WAG ratio, number of WAG cycles, 

volume of each cycle, and injection rate and pressure. 

• Brine composition and salinity are important. 

• Five-spot pattern is the most common strategy. 

• The most common challenges in the WAG operation are early gas breakthrough, injectivity 

loss, corrosion, and the chance of asphaltene precipitation and hydrates formation 

(Christensen, Stenby’, and Skauge 2001); 

• The most preferred WAG ratio is 1:1 in terms of optimal oil production. However, it 

doesn’t make much influence on WAG performance in mixed wet reservoirs; 

• Accurate three phase relative permeability model is required both for miscible and 

immiscible gas injection processes; 

• Wettability controls WAG performance. Optimal values of injection rate, WAG ratio, 

number of cycles, brine salinity, and polymer additive concentration will be significantly 

affected by the wettability (Afzali, Rezaei, and Zendehboudi 2018). 

2.3 Applications of ML in Reservoir Engineering 

Machine learning is described as a subfield of computer science that concentrates on 

solving two types of practical problems by collecting the dataset and algorithmically building a 

statistical model based on the dataset (Burkov 2019). Machine learning algorithms are categorized 

as either using supervised, unsupervised or reinforced learning processes. Supervised learning is 

the first category of ML, which finds relationship between the variables by dealing with labeled 

datasets. As output and input data features are known initially makes dataset “labeled”. ML 

algorithm uses input data with “X” features and has known corresponding output value as “Y”. 

After algorithm captures patterns in a dataset, it generates a model. Then the model is tested on a 

new dataset (testing dataset) to predict outputs using the same paternal laws/rules/behavior from 

the previous dataset (training dataset) for evaluating its predictive power and accuracy (Theobald 

2017). Finally, after training and testing parts have been successfully accomplished, the model can 

be used for prediction in the world with unknown outputs (other datasets).  Simplified schematic 

illustration of forward model is presented on Figure 2. 4. 
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Figure 2. 4– Scheme of prediction model 

If the data is not fully classified or labeled, unsupervised learning algorithms are 

implemented that will uncover patterns by itself. The most common technique is k-means 

clustering, which groups data points that have similar features, ie. as illustrated in Figure 2. 5. 

 
Figure 2. 5– k-means clustering algorithm example 

Reinforcement learning is the most advanced method among the ML categories, which is 

due to its key feature of improving non-stop by getting information from the previous iterations. 

In cases of supervised or unsupervised learning types, the final model is created after training and 

test parts, which can be considered as an endpoint. Another feature of reinforcement learning is 

performance assessment set in a way that grades the output as positive or negative depending on 

the (desired) outcome, as opposed to tagging data as in cases of previously described ML 

algorithms types. The model learns continuously, so in example of self-driving cars avoiding crash 

will be evaluated as a positive grade and in case of chess game avoiding losing will be regarded 

as a positive grade.  

Machine learning (ML) tools are becoming more popular in the petroleum industry, 

especially in geoscience (Lary et al. 2016) and reservoir engineering. The power of ML algorithms 

can be useful for understanding the trends in complex dataset and provide multivariate (multi-input 
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and one output), nonlinear, nonparametric regression or classification. It can take form of a variety 

of algorithms as support vector machines (SVM), artificial neural networks (ANN), decision trees 

(DT), random forests (RF), Genetic Algorithm (GA), case-based reasoning, self-organizing map 

(SOM) etc. 

ML based approach was used in many petroleum and reservoir engineering problems. 

LSSVM (Least Squares Support Vector Machines) regression with radial basis kernel (RBK) and 

GA (Generic Algorithms) for optimization was applied in estimation of gas hydrates formation 

temperature  (Baghban et al. 2016).  

LSSVM regression with RBK and simplex optimization was used for determining the 

natural gas density as function of pressure, temperature and molecular weight of gas. (Razavi et 

al. 2018). They collected 1240 gas density points from the literature. The results showed low error 

and deviation from actual data, which makes the model useful tool for engineers for estimation of 

gas density in pipeline and dry gas reservoir calculations.  

LSSVM regression with PSO (Particle Swarm Optimization) was implemented for 

asphaltene precipitation prediction (Chamkalani et al. 2014). The main input parameters to the 

prediction model were temperature, molecular weight, and dilution rate. The study also discussed 

three other regression scaling models from works of Rassamdana and Sahimi (1996), Hu and Guo 

(2001) and Ashoori et al (2003). In comparison to all three other models, prediction model 

performed more accurately because of ability to fit high non-linearity in process. It was also 

proposed to integrate LSSVM-PSO model with black oil simulators to increase the accuracy of the 

prediction.  

Multi-classifier LSSVM with RBK was used to capture  high non-linear mapping 

relationship between the well logging data and the lithology categories (Cheng, Guo, and Wu 

2010). Kernel parameter and slack variables were optimized using PSO algorithm. The training 

set consisted of 240 samples and 23 samples were used for testing.  

With the rising interest in shale gas reservoirs due to technological and research 

improvements of last decades, ML tools also started to be widely used in unconventional (non-

traditional) reserves development direction. One such work was provided by Tahmasebi, 

Javadpour, and Sahimi, 2017. As shale gas reservoir projects involve more wells to be drilled, the 

development complexities rise and in turn the economic prospects of such projects become 

comprised of riskier investments. As such, identifying the most favorable spots for drilling 

production wells (sweet spots) is of high importance. Sweet spots were considered in terms of 

TOC (Total Hydrocarbon Content) and FI (Fracable Index) as high TOC ranging from 2% to 10% 

correspond to high organic content and FI controls wells gas production capacity drilled on a shale 

reservoir. Two ML methods as Multiple Linear Regression (MLR) and Neural Networks integrated 

with fuzzy systems, resulting hybrid machine learning technique (HML) were used to predict TOC 

and FI of shales based on wells logs. GA was used as an optimization algorithm as it can be used 

when is discontinuous, non-differentiable, highly nonlinear, and even stochastic. HML technique 

was observed to make much more accurate predictions for the TOC and FI, when compared with 

those of the MLR method, However, both of proposed methods could not capture the whole 
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complexity of shale reservoirs as they show highly non-linear behavior. HML method was 

designed to minimize the required knowledge as ML process can get not so optimistic with rising 

complexity of models and computational burden following it. 

These days ways of efficiently screening approaches for IOR/EOR selection 

opportunities are widely discussed. ML based methods are also mentioned to be promising tools 

and Neural Networks, Fuzzy Logic and Expert systems are often proposed for using exploration 

and production operations (Alvarado et al. 2002).  
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Chapter 3 

Methodology 

3.1 WAG efficiency characterization using dimensionless number 

A study on WAG performance prediction was provided by Nygård and Andersen, 2020, 

where 1600 Black Oil Model simulations were run for a 2D model with multiple layers, an injector 

and a producer. The results were used to derive a dimensionless number correlating reservoir 

heterogeneity, WAG hysteresis, gravity, mobility ratio and WAG ratio to predict recovery factor 

(as measured after 1.5 injected pore volumes). Since reservoirs are involved with complicated 

physical behavior, the idea was to use the knowledge about these mechanisms to analyze the WAG 

process and related properties to ultimately develop a universal formula for mobility ratio  𝑀∗ for 

prediction of recovery factor. A more general parameter 𝑀𝑊𝐴𝐺 was used as starting point. The 

development of  𝑀∗ was done in a stepwise process whereby the model complexity would 

gradually increase as the model included more mechanisms. The mathematical description of the 

scaling process is shown in Table 3.1. 

 Some constant parameters, also known as tuning parameters were developed to account 

for uncertain (missing) knowledge about the processes and correlations, which is the common 

practice in physics. This will be the basis for further works provided in this thesis. 

 

Table 3. 1– Summary of mathematical description of mobility ratio based on key parameters and dependencies 

Initial simplified Mobility ratio 

𝑴𝑾𝑨𝑮 = (
𝑟𝑤
𝑀𝑤/𝑜
∗ +

1 − 𝑟𝑤
𝑀𝑔/𝑜
∗ )

−1

                                                  (3.1) 

where, 

Oil/Water:   𝑀𝑤/𝑜
∗ =

𝜆𝑤
∗

𝜆𝑜𝑤
∗ =

𝜇𝑜

𝜇𝑤

𝑘𝑟𝑤
𝑚𝑎𝑥

𝑘𝑟𝑜𝑤
𝑚𝑎𝑥

(𝑛𝑜𝑤+1)

(𝑛𝑤+1)

(1−
𝑠𝑤𝑟

𝑠𝑤,𝑚𝑎𝑥
)

(1−
𝑠𝑜𝑟𝑤

𝑠𝑜𝑤,𝑚𝑎𝑥
)
      (3.2) 

Oil/Gas:      𝑀𝑔/𝑜
∗ =

𝜆𝑔
∗

𝜆𝑜𝑔
∗ =

𝜇𝑜

𝜇𝑔

𝑘𝑟𝑔
𝑚𝑎𝑥

𝑘𝑟𝑜𝑔
𝑚𝑎𝑥

(𝑛𝑜𝑔+1)

(𝑛𝑔+1)

(1−
𝑠𝑔𝑟

𝑠𝑔,𝑚𝑎𝑥
)

(1−
𝑠𝑜𝑟𝑔

𝑠𝑜𝑔,𝑚𝑎𝑥
)
          (3.3) 

 

Heterogeneity scaling 
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𝑭𝑯 =
𝐾𝑥
𝑎𝑟𝑖𝑡

𝐾𝑥
ℎ𝑎𝑟𝑚

≥ 1                     (3.4) 

where, 

𝐾𝑥
𝑎𝑟𝑖𝑡 =

1

𝐿𝑧
∑ℎ𝑗𝐾𝑥,𝑗

𝑁𝐿

𝑗=1

  (3.5),           𝐾𝑥
ℎ𝑎𝑟𝑚 = 𝐿𝑧, (∑

ℎ𝑗

𝐾𝑥,𝑗

𝑁𝐿

𝑗=1

)

−1

 (3.6),            𝐿𝑧 =∑ℎ𝑗

𝑁𝐿

𝑗=1

    (3.7) 

Gravity scaling 

𝑭𝑮
𝒘/𝒐

=
1 + 𝑎1(𝑁𝐺

𝑤/𝑜
)
𝑎2

1 + 𝑎1(𝐹𝐻 − 1)(𝑁𝐺
𝑤/𝑜

)
𝑎2
  (3.8),            𝑭𝑮

𝒈/𝒐
=

1 + 𝑎1(𝑁𝐺
𝑔/𝑜
)
𝑎2

1 + 𝑎1(𝐹𝐻 − 1)(𝑁𝐺
𝑔/𝑜
)
𝑎2
      (3.9)  

where, 

𝑁𝐺
𝑤/𝑜

=
𝑡𝑟𝑒𝑠
𝑤/𝑜

𝑡𝑠𝑒𝑔
𝑤/𝑜   (3.10),                           𝑁𝐺

𝑔/𝑜
=

𝑡𝑟𝑒𝑠
𝑔/𝑜

𝑡𝑠𝑒𝑔
𝑔/𝑜  (3.11) 

𝑡𝑟𝑒𝑔
𝑤 =

𝐿𝑥𝐿𝑦 ∑ 𝜙𝑗ℎ𝑗
𝑁𝐿
𝑗=1

𝑄𝑤
   (3.12),                 𝑡𝑟𝑒𝑔

𝑔
=
𝐿𝑥𝐿𝑦 ∑ 𝜙𝑗ℎ𝑗

𝑁𝐿
𝑗=1

𝑄𝑔
    (3.13)  

𝑡𝑠𝑒𝑔
𝑤/𝑜

=
𝐻𝜙

𝐾𝑧
ℎ𝑎𝑟𝑚∆𝜌𝑤𝑜𝑔

(
1

𝜆𝑤
∗
+

1

𝜆𝑜𝑤
∗
) (3.14),            𝑡𝑠𝑒𝑔

𝑔/𝑜
=

𝐻𝜙

𝐾𝑧
ℎ𝑎𝑟𝑚∆𝜌𝑔𝑜𝑔

(
1

𝜆𝑔
∗
+

1

𝜆𝑜𝑔
∗
) (3.15) 

Hysteresis scaling 

𝒔𝒈𝒓
𝒘𝒂𝒈

= 𝑠𝑔𝑟(1 − 𝑟𝑤) + 𝑟𝑤𝑠𝑔𝑟
ℎ𝑦𝑠𝑡

   (1.18) 

𝒌𝒓𝒈,𝑴
𝒘𝒂𝒈

= (
1 − 𝑟𝑤
𝑘𝑟𝑔
𝑚𝑎𝑥

+
𝑟𝑤

𝑘𝑟𝑔,𝑀
𝑚𝑎𝑥,ℎ𝑦𝑠𝑡)

−1

   (3.16),        𝒌𝒓𝒈,𝑵𝑮
𝒘𝒂𝒈

= (
1 − 𝑟𝑤
𝑘𝑟𝑔
𝑚𝑎𝑥

+
𝑟𝑤

𝑘𝑟𝑔,𝑁
𝑚𝑎𝑥,ℎ𝑦𝑠𝑡)

−1

    (3.17) 

where, 

𝑠𝑔𝑟
ℎ𝑦𝑠𝑡

= 𝑠𝑔𝑟 +
𝑠𝑔,𝑚𝑎𝑥 − 𝑠𝑔𝑟

1 + 𝐶(𝑠𝑔,𝑚𝑎𝑥 − 𝑠𝑔𝑟)
   (3.18) 

𝑘𝑟𝑔,𝑀
𝑚𝑎𝑥,ℎ𝑦𝑠𝑡

=
𝑘𝑟𝑔
𝑚𝑎𝑥

1 + 𝑏1𝐹𝐻
𝑏2𝛼

  (3.19),         𝑘𝑟𝑔,𝑁𝐺
𝑚𝑎𝑥,ℎ𝑦𝑠𝑡

=
𝑘𝑟𝑔
𝑚𝑎𝑥

1 + 𝑏3𝐹𝐻
𝑏4𝛼

  (3.20) 

Mobility terms: 

𝜆𝑔,𝑀
∗ =

1

𝜇𝑔
(1 −

𝑠𝑔𝑟
𝑤𝑎𝑔

𝑠𝑔,𝑚𝑎𝑥
+)

𝑘𝑟𝑔,𝑀
𝑚𝑎𝑥

𝑛𝑔 + 1
     (3.21),          𝜆𝑔,𝑁𝐺

∗ =
1

𝜇𝑔
(1 −

𝑠𝑔𝑟
𝑤𝑎𝑔

𝑠𝑔,𝑚𝑎𝑥
+)

𝑘𝑟𝑔,𝑁𝐺
𝑚𝑎𝑥

𝑛𝑔 + 1
       (3.22) 

 

𝜆𝑔,𝑀
∗  and 𝜆𝑔,𝑁𝐺

∗  replace 𝜆𝑔
∗  in 𝑀𝑔/𝑜

∗  for (3.3) and 𝑡𝑠𝑒𝑔
𝑔/𝑜

 for (3.15), respectively. 𝑠𝑔𝑟
𝑤𝑎𝑔

 replaces 𝑠𝑔𝑟  and 𝑘𝑟𝑔,𝑀
𝑚𝑎𝑥,ℎ𝑦𝑠𝑡

 or 

𝑘𝑟𝑔,𝑁𝐺
𝑚𝑎𝑥,ℎ𝑦𝑠𝑡

replaces 𝑘𝑟𝑔
𝑚𝑎𝑥in 𝑀𝑔/𝑜

∗ , respectively (3.3). 

 

Scaled Mobility ratio M* 

𝑀∗ = (
𝑟𝑤

𝑀𝑤/𝑜
∗ 𝐹𝐻𝐹𝐺

𝑤/𝑜
+

1 − 𝑟𝑤

𝑀𝑔/𝑜
∗ 𝐹𝐻𝐹𝐺

𝑔/𝑜
)

−1

  (3.23) 

 

 
Table 3. 2 – The tuning parameters that were determined from scaled simulation results 

𝑎1 , -   3 𝑏1 , -  1 𝑏3 , -  10 

𝑎2 , -   0.5 𝑏2 , -  0.5 𝑏4 , -  2 

 

Nygård and Andersen, 2020 collected all of their simulation results as in Figure 3. 1, were 

Recovery Factor (RF) was plotted against 𝑀𝑊𝐴𝐺 (left) and 𝑀∗ (right). Comparing them, we see 

that by only using 𝑀𝑊𝐴𝐺 there is high variation of RF for a given value of of 𝑀𝑊𝐴𝐺 (a range of 

0.40 for 𝑀𝑊𝐴𝐺 ≈ 1 and a range of 0.20 for 𝑀𝑊𝐴𝐺 ≈ 100). This is because it does not account for 
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heterogeneity, gravity or hysteresis, whereas dimensionless scaled 𝑀∗effects accounts for these 

effects, which is why we can observe that the data is much more collected, with RF scatter ranges 

between 0.15 and 0.25. The values of M cover three orders of magnitude (original values of  𝑀𝑊𝐴𝐺 

cover two) indicating the shift along the axis to compensate for the stated effects.  

  

 
Figure 3. 1– Overview of all simulation results plotted vs MWAG (left) and M∗ (right) (Nygård and Andersen 2020)  

𝑀∗ was more effective in correlating the RF trends (Figure 3. 1), we can still observe 

significant data scatter. Therefore, one of the objectives of the current work is to reduce this scatter 

further by applying a model.  

3.2 Work principle of Machine Learning and Optimization algorithms to be 

applied on the problem 

3.2.1. Least Squares Support Vector Machines (regression) 

Support Vector Machines (SVM) is a supervised ML algorithm that has been widely used 

in classification and nonlinear function estimation. However, the major disadvantage of SVM is 

its higher computational load for the constrained optimization programming. This drawback has 

been lowered with the Least Squares Support Vector Machine (LSSVM), which solves linear 

equations instead of a quadratic programming problem.  

Support vector machine (SVM) was developed by Vapnik, 1995 and was originally used 

to solve classification problems by building hyperplanes in multidimensional spaces that separated 

data which belong to different class labels. After proving itself useful the area of its application 

was extended to cover regression problems. The solution of the SVM is unique and absent from 

local minimums under some limited conditions. The algorithm maps the input vector, x, into a 

high dimensional feature space, z, by building optimal separating hyperplanes in this higher 

dimensional space. The mathematical description by is provided below. 
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The support vector machine (SVM) is generally known as a strong mathematical approach 

to create accurate and comprehensive correlation between the variables (or parameters) of a certain 

mathematical problem. 

A modified version of SVM named least squares-SVM(LS-SVM) was introduced by Suykens and 

Vandewalle (1999). Like SVM, LS-SVM has a variety of applications in both regression and 

classification cases. LSSVM normally lowers the run time and exhibits more adaptivity. 

Key differences with between SVM and LSSVM:  

• ε - insensitive cost replaced by quadratic error cost. 

• Inequality constraint replaced by equality constraint. 

The given finite sample data is represented as an array of  𝐷 = {(𝑥1, 𝑦1), …… , (𝑥
𝑛, 𝑦𝑛)}, 𝑥𝑖 ∈

𝑅𝑛, 𝑦𝑖 ∈ 𝑅 (Hou, Yang, and An, 2009). 

 In LSSVM, the regression is expressed as a feature space representation (Suykens 2002): 

𝑦𝑖 = 𝑤𝑇𝜑(𝑥𝑖) + 𝑏 𝑤ℎ𝑒𝑟𝑒 𝑥𝑖 ∈ 𝑅
𝑝 𝑎𝑛𝑑 𝑦𝑖 ∈ 𝑅      (3.1) 

For a given training set {𝑥𝑖 , 𝑦𝑖}𝑖=1
𝑁  the optimization problem is described as: 

min
𝑤,𝑒

𝐽(𝜔, 𝑒) =
1

2
𝑤𝑇𝑤 + 𝛾

1

2
∑ 𝑒𝑖

2𝑁
𝑖=1          (3.2)  

𝑦𝑘 = 𝑤𝑇𝜑(𝑥𝑖) + 𝑏 + 𝑒𝑖 , 𝑖 = 1,… . , 𝑁 

𝐿(𝑤, 𝑏, 𝑒; 𝛼) = 𝐽(𝑤, 𝑒) − ∑ 𝛼𝑖{𝑤
𝑇𝜑(𝑥𝑖) + 𝑏 + 𝑒𝑖 − 𝑦𝑖}

𝑁
𝑘=1        (3.3)  

with Lagrange multipliers 𝛼𝑖. 

 

Conditions for optimality: 

 

{
 
 
 
 
 

 
 
 
 
 𝑑𝐿

𝑑𝑤
= 0 → 𝑤 =∑𝛼𝑖𝜑(𝑥𝑖)

𝑁

𝑘=1

𝑑𝐿

𝑑𝑏
= 0 →∑𝛼𝑖

𝑁

𝑘=1

= 0

𝑑𝐿

𝑑𝑒𝑖
= 0 → 𝛼𝑖 = 𝛾𝑒𝑖,                           𝑖 = 1,… ,𝑁

𝑑𝐿

𝑑𝛼𝑖
= 0 → =  𝑤𝑇𝜑(𝑥𝑖) + 𝑏 + 𝑒𝑖 − 𝑦𝑖 = 0, 𝑖 = 1,… ,𝑁

                    (3.3)  

 

Solution is 

 [
0

1
→|

1
→𝑇

𝛺 + 𝛾−1𝐼
] [
𝑏

𝛼
] = [

0

𝑦
]         (3.3)  

 

with 
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𝑦 = [𝑦1; … ; 𝑦𝑁],1⃗ = [1;… ; 1], 𝛼 = [𝛼1; … ; 𝛼𝑁] 

and by applying Mercer's condition: 

Ω𝑘𝑗 = 𝜑(𝑥𝑖)
𝑇𝜑(𝑥𝑗) = 𝐾(𝑥𝑖, 𝑥𝑗)  ,   𝑖, 𝑗 = 1,… ,𝑁      (3.4) 

Resulting LS-SVM model for function estimation: 

 

𝑦(𝑥) = ∑𝛼𝑘𝐾(𝑥𝑖 , 𝑥) + 𝑏

𝑁

𝑘=1

        (3.5) 

 

The final form of LSSVM is given by  

 

[
 
 
 
 
0 1 ⋯ 1

1 𝐾(𝑥1, 𝑥1) +
1

𝛾
… 𝐾(𝑥1, 𝑥𝑁)

⋮ ⋮ ⋱ ⋮

1 𝐾(𝑥𝑁, 𝑥1) ⋯ 𝐾(𝑥𝑁 , 𝑥𝑁) +
1

𝛾]
 
 
 
 

(𝑁+1)𝑋(𝑁+1)      

[

𝑏
𝛼1
⋮
𝛼𝑁

]

(𝑁+1)𝑋1

=[

0
𝑦1
⋮
𝑦𝑁

]

(𝑁+1)𝑋1

     (3.6) 

 

𝐾(𝑥1, 𝑥1) is a kernel function. Radial Basis Kernel function was selected for the problem in this 

thesis: 

  𝐾(𝑥𝑖 , 𝑥𝑗) = exp (−
‖𝑥𝑖 − 𝑥,‖

2

𝜎2
)      (3.7) 

Particle swarm optimization (PSO) 

The LSSVM regularization parameter, 𝛾, and kernel parameter, 𝜎2 can be determined 

through optimization technique such as Generic Algorithm (GA), Particle Swarm Optimization 

(PSO), and Simulated Annealing (SA) by minimizing the objective function. In this study, Root 

Mean Square Error (RMSE) between simulated "real" values and model-predicted values from 

LSSVM is considered as objective function with PSO routine. 

The Particle Swarm optimization is a meta-heuristic algorithm, which was inspired by 

the social behavior of birds. It is an example of swarm intelligence, that can be used for optimizing 

the LSSVM algorithm. The basic principle of PSO’s work is described according to Bozorg-

Haddad, Solgi, and Loáiciga (2017).  

Creating the population of particles.  In an N-dimensional optimization problem a particle is 

specified as an array of size 1 × N, which is each possible solution of the optimization problem as 

a particle: 

𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒 = 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑖, … , 𝑥𝑁)          (3.8) 

where 𝑋 = 𝑎 possible solution of the optimization problem, 𝑥𝑖 = 𝑖th decision variable of solution 

𝑋, and 𝑁 = number of decision variables. The PSO algorithm starts by generating a matrix of 

particles 
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𝑆𝑤𝑎𝑟𝑚 =

[
 
 
 
 
 
𝑋1
𝑋2
⋮
𝑋𝑗
⋮
𝑋𝑀]
 
 
 
 
 

=

[
 
 
 
 
 
𝑥1,1 𝑥1,2 ⋯ 𝑥1,𝑖 … 𝑥1,𝑁
𝑥2,1 𝑥2,2 … 𝑥2,𝑖 … 𝑥2,𝑁

⋮
𝑥𝑗,1 𝑥𝑗,2 … 𝑥𝑗,𝑖 … 𝑥𝑗,𝑁

⋮ ⋮
𝑥𝑀,1 𝑥𝑀,2 ⋯ 𝑥𝑀,𝑖 𝑥𝑀,𝑁]

 
 
 
 
 

         (3.9) 

where 𝑋𝑗 = 𝑖th solution 𝑥𝑗,𝑖 = 𝑖th decision variables of the 𝑗th solution, and 𝑀 = population size. 

Each particle moves through the decision space based on the individual best (𝑃𝑏𝑒𝑠𝑡) and global 

best (𝐺𝑏𝑒𝑠𝑡) positions: 

𝑃𝑏𝑒𝑠𝑡 = (𝑝𝑗,1, 𝑝𝑗,2, … , 𝑝𝑗,𝑖, … , 𝑝𝑗,𝑁),     𝑗 = 1,2, … ,𝑀    (3.10)  

where 𝑃𝑏𝑒𝑠𝑡𝑗 = the best position of the 𝑗th particle and 𝑝𝑗,𝑖= the best position of the 𝑗th particle 

in the 𝑖th dimension. The graphical illustration of the concept is shown in Figure 3. 2. 

 
Figure 3. 2 – The best individual position in a two‐dimensional maximization problem (Bozorg-Haddad, Solgi, and 

Loáiciga (2017) 

𝐺𝑏𝑒𝑠𝑡 is an array 1× 𝑁 whose elements define the best position achieved in the swarm: 

𝐺𝑏𝑒𝑠𝑡 = (𝑔1, 𝑔2, … , 𝑔𝑖, … , 𝑔𝑁), 𝑎𝑙𝑙 𝑗        (3.11) 

where 𝐺𝑏𝑒𝑠𝑡 = the best position in the swarm’s history and 𝑔1 = the best position in the swarm’s 

history in the 𝑖th dimension. The graphical illustration of the concept is shown in Figure 3. 3. 

 

 
Figure 3. 3– The global best position in a maximization problem (Bozorg-Haddad, Solgi, and Loáiciga (2017) 

Calculation of velocities.  To update the position of each particle the particles’ velocities are used, 

which are calculated based on 𝐺𝑏𝑒𝑠𝑡 and 𝑃𝑏𝑒𝑠𝑡. 
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The previous velocity of the 𝑗th particle (𝑉𝑗) is: 

𝑉𝑗 = (𝑣𝑗,1, 𝑣𝑗,2, … , 𝑣𝑗,𝑖, … , 𝑣𝑗,𝑁), 𝑗 = 1,2, … ,𝑀       (3.12) 

where 𝑣𝑗,𝑖 = the velocity of the 𝑗th particle in the 𝑖th dimension that is calculated as follows: 

𝑣𝑗,𝑖
(𝑛𝑒𝑤) = 𝑤 × 𝑣𝑗,𝑖 + 𝐶1 × 𝑅𝑎𝑛𝑑 × (𝑝𝑗,𝑖 − 𝑥𝑗,𝑖) + 𝐶2 × 𝑅𝑎𝑛𝑑 × (𝑔𝑖 − 𝑥𝑗,𝑖)     (3.13)  

 𝑗 = 1,2, . . , 𝑀,    𝑖 = 1,2, … ,𝑁 

where 

 𝑣𝑗,𝑖
(𝑛𝑒𝑤) = the new velocity of the 𝑗th particle in the 𝑖th dimension; 

 𝑣𝑗,𝑖 = the previous velocity of the 𝑗th particle in the 𝑖th dimension; 

 𝑤 = inertia weight parameter; 

𝑅𝑎𝑛𝑑 = a random value in the range [0,1]; 

𝐶1 = cognitive parameter, and 𝐶2 =social parameter (𝐶1 and 𝐶2 control the movement of 𝑃𝑏𝑒𝑠𝑡 

and 𝐺𝑏𝑒𝑠𝑡 toward an optimal point. 𝐶1 = 𝐶2 = 2 can be used.. Movement along different 

directions towards 𝐺𝑏𝑒𝑠𝑡 and 𝑃𝑏𝑒𝑠𝑡 is possible if 𝐶1 and 𝐶2 are larger than one.  

 The particle’s velocity is limited by lower and upper bounds in the following manner: 

𝑉𝑖 ≤ 𝑣𝑗,𝑖
(𝑛𝑒𝑤) ≤ 𝑉𝑖

(𝑢),    𝑗 = 1,2, … ,𝑀,   𝑖 = 1,2, … ,𝑁     (3.14) 

where 𝑉𝑖
(𝐿)

 and 𝑉𝑖
(𝑢)

corresponds to the lower and upper bound of the velocity along the 𝑖th 

dimension, respectively. 

 The inertia weight parameter may change as the algorithm progresses as follows: 

𝑤𝑜 = 𝑤0 − [(𝑤0 − 𝑤𝑇) ×
𝑡

𝑇
] ,     𝑡 = 1,2, … , 𝑇      (3.15)  

where 𝑤𝑜 refers to initial inertia weight, 𝑤𝑇 is inertia weight for the last iteration, and 𝑇 is total 

number of iterations. The values of 𝑤 changes through the iterations. 

The inertia weight parameter w has an important role in swarm convergence and affects the 

velocity of individual particles in the swarm. Large or small values of 𝑤 cause searching in a wide 

or narrow space, respectively (Bozorg-Haddad, Solgi, and Loáiciga (2017). 

Updating of particles positions.  

𝑋𝑗
(𝑛𝑒𝑤)

= (𝑥𝑗,1́ , 𝑥𝑗,2́ , … , 𝑥𝑗,𝑖́ , … , 𝑥𝑗,𝑁́ ),        𝑗 = 1,2, … ,𝑀     (3.16) 

𝑥𝑗,𝑖́ = 𝑥𝑗,𝑖 + 𝑣𝑗,𝑖
(𝑛𝑒𝑤),   𝑗 = 1,2, … ,𝑀,    𝑖 = 1,2, , … , 𝑁    (3.17) 

where 𝑋𝑗
(𝑛𝑒𝑤)

= 𝑗th new solution and 𝑥𝑗,𝑖́ = new value of 𝑖th decision variable of the jth new 

solution. The 𝑀 newly generated solutions replace all the old solutions. 

Goodness of fit can be determined by one of these methods: 
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1. The coefficient of determination (𝑅2): 

𝑅2 = 1 −

∑ (𝑦𝑜𝑏𝑠,𝑖 − 𝑦𝑚𝑜𝑑𝑒𝑙,𝑖)
2𝑛

𝑖=1

∑ ((
1
𝑛
∑ 𝑦𝑜𝑏𝑠,𝑖)

𝑛

𝑖=1
− 𝑦𝑚𝑜𝑑𝑒𝑙,𝑖)

2
𝑛

𝑖=1

        (3.18) 

The values of 𝑅2 range from 0 to 1, corresponding to the worst and the best fit.  

2. Root Mean Square Error (RMSE), which is square root of Mean Squared Error (MSE): 

𝑀𝑆𝐸 =
∑ (𝑦𝑜𝑏𝑠,𝑖 − 𝑦𝑚𝑜𝑑𝑒𝑙,𝑖)

2𝑛
𝑖=1

𝑛
           (3.19) 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸        (3.60) 

𝑦𝑒𝑥𝑝 and 𝑦𝑚𝑜𝑑𝑒𝑙 are the experimental and modeled values, respectively. 
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3.3 Workflow 

The proposed workflow for building LSSVM-PSO model is presented in Figure 3. 4. 

Initially data analysis was provided to build the dataset which was used for creating LSSVM-PSO 

model. Original dataset from previous work by was expanded (see more in Chapter 0).   

 
Figure 3. 4– LSSVM-PSO model building workflow 
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Afterwards the randomized expanded dataset was divided into training, validation and 

testing parts by fractions of 70, 15 and 15 %, respectively. Normalization of data was applied to 

keep input data compatible to calculated RMSE values for each part of the dataset. Random initial 

values were selected for hyperparameters (𝜎, 𝛾) values. The training dataset was utilized to train 

the LSSVM model by capturing patterns and rule in it. PSO was applied on LSSVM algorithm for 

optimizing hyperparameter values by minimizing Root Mean Square Error (RMSE) between real 

validation data output and predicted output by LSSVM. Instead of using RMSE value as stopping 

criteria the optimization algorithm was tested with different numbers of iterations. That was a 

decision made based on lack of knowledge about value of RMSE for validation dataset when 

optimization process can be stopped. The optimal number of iterations was defined to be 50 with 

10 particles based on stabilization of hyperparameters and RMSE curves. 𝜎, 𝛾 values were selected 

by analyzing RMSE curves behavior when different hyperparameters are were implemented. 

Testing data is used to observe the model for predictive capability. 

Then LSSVM is returned using the optimum values for hyperparameters. LSSVM-PSO 

model is in the output. 
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Chapter 4 

Creating the dataset and building LSSVM-PSO model 

4.1 Identification of the dataset 

The reservoir model (system) that is used for simulations is stratified and contains layers 

that align with the horizontal x-axis, which goes from injector to producer well. This is illustrated 

in Figure 4. 1, where layering is distinguished by differences in horizontal permeability values. 

The specific layered setup can be read from Table 4. 3. The layers are internally homogeneous 

(uniform height, porosity, and permeability). The z-axis points downwards along the direction of 

gravity, normal to the injector-producer path. Both wells are perforated along the entire reservoir 

section. The applied grid properties and operational parameters are provided in Table 4. 1, while 

fluid flow properties and input relative permeability functions can be seen from  

Table 4. 2 and Figure 4. 2, respectively. The properties described herein remain the same 

throughout the study. 

   

 
Figure 4. 1– System geometry scheme (upper) and illustration of permeability in reservoir model (lower) 
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Table 4. 1– Rock/grid properties and operational parameters 

Nx, 

Ny, 

- 

- 

100 

1 

Lx, 

Ly, 

m 

m 

1000 

100 

φj,- 

hj, m 

0.30 

3 

Qw, m3/d 

Qg, m
3/d 

1014.6 

1014.6 

Tw−hc, d 

Tg−hc, d 
45 

45 

Nz, - 81 Lz, m 81 NL,- 9   T tot, PVs 1.5 

 

Table 4. 2– Reservoir flow properties 

𝑘𝑟𝑜𝑤
𝑚𝑎𝑥 = 𝑘𝑟𝑜𝑤(𝑆𝑤𝑖),  - 0.25 𝑛𝑜𝑤 , - 2 

𝑘𝑟𝑜𝑔
𝑚𝑎𝑥 = 𝑘𝑟𝑜𝑔(𝑆𝑔𝑖), - 0.25 𝑛𝑜𝑔 , - 2 

𝑘𝑟𝑤
𝑚𝑎𝑥 = 𝑘𝑟𝑤(1 − 𝑆𝑜𝑟𝑤), - 0.05 𝑛𝑤 , - 2 

𝑘𝑟𝑔
𝑚𝑎𝑥 = 𝑘𝑟𝑔(1 − 𝑆𝑜𝑟𝑔), - 0.005 𝑛𝑔 , - 2 

𝑆𝑜𝑖 , - 0.842 𝑆𝑜𝑟𝑤, - 0.20 

𝑆𝑤𝑖 = 𝑆𝑤𝑟  ,- 0.158 𝑆𝑜𝑟𝑔, - 0.10 

𝑆𝑔𝑖 = 𝑆𝑔𝑟 , - 0.00   

 
Table 4. 3– Specification of model heterogeneities. Patterns are indicated from to (j = 1) layer. 

Model 𝐾𝑥,𝑗  [𝑚𝐷] 𝐾𝑧,𝑗 𝑖  [𝑚𝐷] 𝐹𝐻  

1 (base) [300] x9 [300] x9 1.0 

2 [300, 100, 900] x3 [300, 100, 900] x3 2.1 

3 [500, 50] x4, [500] [500, 50] x4, [500] 3.0 

4 [1000, 20] x4, [1000] [1000, 20] x4, [1000] 12.9 

 

 
Figure 4. 2– Input oil-water (left) and gas-oil (right) relative permeability functions 

The main assumptions made regarding input parameters are: 

• Compressibility and miscibility effects are ignored in the study 

• WAG is applied as a non-tertiary method, without any prior injection stage. 

The data from 1648 WAG simulations of previous work (Nygård and Andersen 2020) was used, 

together with 192 single-phase injection simulations, as an initial dataset. Both in previous and 

current work, Eclipse was used for these simulation runs. The parameter combinations that was 

used to produce these results (total 1840 simulations) are shown in  
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Table 4. 4, which cover changes to heterogeneity, gravity and hysteresis effects.  

Table 4. 4– Overview table of simulation experiments  

Purpose Types 
Changing parameters values (in different combinations) 

Number of 

runs 

FH 𝜟𝝆, kg/m3 rw C 𝜶 𝝁𝒘 𝝁𝒈  

Scaling 

heterogeneity 
 

1.00 

1 

0.33 

1000000 0 

20 4 

460 

2.09 0.50 4 1 

3.00 0.67 1 0.5 

12.86 0 0.5 0.25 

 1   

Scaling gravity no heterogeneity 1 400 

0.33 

1000000 0 

20 4 

115 

0.50 4 1 

0.67 1 0.5 

0 0.5 0.25 

1   

Scaling gravity 
with 

heterogeneity 

2.09 

400 

0.33 

100000  

20 4 

345 
3.00 0.50 4 1 

12.86 0.67 1 0.5 

  0.5 0.25 

Scaling WAG 

hysteresis 

No gravity+ 

heterogeneity 

1 

1 

0.33 

1 

0 20 4 

460 

2.09 0.50 2.5 4 1 

3.00 0.67  1 0.5 

12.86 0  0.5 0.25 

 1    

with gravity 

+heterogeneity 

1 

400 

0.33 

1 

0 20 4 

460 

2.09 0.50 2.5 4 1 

3.00 0.67  1 0.5 

12.86 0  0.5 0.25 

 1    

Total         1840 

 

Approach used for selection of input parameters for LSSVM-PSO model 

The main idea for selecting input parameters was to consider all mechanisms that was 

observed to have significant influence on recovery factor of WAG process. It was done in two 

phases: 

1. Formation of dataset based on simulations provided in previous study and main processes used 

for scaling  (Nygård and Andersen 2020); 

2. Extending the dataset after dataset analysis by running additional simulations, to cover 

parameter combinations that in previous work was not fully explored 

For having the dataset sufficiently representing the key processes in the WAG process and limiting 

number input parameters relating to the same output, effect of some process parameters must be 

grouped into dimensionless numbers. That will allow the LSSVM model input parameters to be 

not dependent on unit systems and efficiently represent maximum information with minimum 

space and computational power consumed. The parameters for the initial dataset with justification 

of their purpose is presented in Table 4. 5. 
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Table 4. 5– Overview table of simulation experiments 

# Parameter Symbol Purpose Type Scaling formula 

1 

Heterogeneity factor Log10Fh 

Describes effect of 

changing 

heterogeneity 

Scaled 

dimensionless 

𝒍𝒐𝒈𝑭𝑯 = 𝑙𝑜𝑔
𝐾𝑥
𝑎𝑟𝑖𝑡

𝐾𝑥
ℎ𝑎𝑟𝑚

   (4.1) 

𝐾𝑥
𝑎𝑟𝑖𝑡 =

1

𝐿𝑧
∑ℎ𝑗𝐾𝑥,𝑗

𝑁𝐿

𝑗=1

  (4.2) 

𝐾𝑥
ℎ𝑎𝑟𝑚 = 𝐿𝑧 , (∑

ℎ𝑗

𝐾𝑥,𝑗

𝑁𝐿

𝑗=1

)

−1

(4.3),   𝐿𝑧 =∑ℎ𝑗   (4.4)

𝑁𝐿

𝑗=1

 

2 Hysteresis parameter 𝛼 Contribution of 

hysteresis 
Single 

dimensionless 

Used directly 

3 Land trapping parameter Log10C Used directly 

4 

WAG ratio rw 

Input of altering 

water or gas 

fraction. 

Used directly 

5 
Mobility ratio of water and 

gas 
Log10(Mw/o) 

Mobility of oil, gas 

and water 

Scaled 

dimensionless 

 𝑴𝒘/𝒐
∗ =

𝜆𝑤
∗

𝜆𝑜𝑤
∗
=
𝜇𝑜
𝜇𝑤

𝑘𝑟𝑤
𝑚𝑎𝑥

𝑘𝑟𝑜𝑤
𝑚𝑎𝑥

(𝑛𝑜𝑤 + 1)

(𝑛𝑤 + 1)

(1 −
𝑠𝑤𝑟
𝑠𝑤,𝑚𝑎𝑥

)

(1 −
𝑠𝑜𝑟𝑤
𝑠𝑜𝑤,𝑚𝑎𝑥

)
 (4.5) 

6 

Mobility ratio of gas and oil Log10(Mg/o)  𝑴𝒈/𝒐
∗ =

𝜆𝑔
∗

𝜆𝑜𝑔
∗
=
𝜇𝑜
𝜇𝑔

𝑘𝑟𝑔
𝑚𝑎𝑥

𝑘𝑟𝑜𝑔
𝑚𝑎𝑥

(𝑛𝑜𝑔 + 1)

(𝑛𝑔 + 1)

(1 −
𝑠𝑔𝑟
𝑠𝑔,𝑚𝑎𝑥

)

(1 −
𝑠𝑜𝑟𝑔
𝑠𝑜𝑔,𝑚𝑎𝑥

)
 (4.6) 

7 

Gravity number of water/gas Log10(Ng.w/o) 

𝑵𝑮
𝒘/𝒐

=
𝑡𝑟𝑒𝑠
𝑤/𝑜

𝑡𝑠𝑒𝑔
𝑤/𝑜

 (4.7)       𝑡𝑟𝑒𝑔
𝑤 =

𝐿𝑥𝐿𝑦 ∑ 𝜙𝑗ℎ𝑗
𝑁𝐿
𝑗=1

𝑄𝑤
  (4.8) 

𝑡𝑠𝑒𝑔
𝑤/𝑜

=
𝐻𝜙

𝐾𝑧
ℎ𝑎𝑟𝑚∆𝜌𝑤𝑜𝑔

(
1

𝜆𝑤
∗
+

1

𝜆𝑜𝑤
∗
) (4.9) 

8 

Gravity number of gas/oil Log10(Ng.g/o) 

𝑵𝑮
𝒈/𝒐

=
𝑡𝑟𝑒𝑠
𝑔/𝑜

𝑡𝑠𝑒𝑔
𝑔/𝑜

 (4.10)     𝑡𝑟𝑒𝑔
𝑔

=
𝐿𝑥𝐿𝑦 ∑ 𝜙𝑗ℎ𝑗

𝑁𝐿
𝑗=1

𝑄𝑔
(4.11) 

𝑡𝑠𝑒𝑔
𝑔/𝑜

=
𝐻𝜙

𝐾𝑧
ℎ𝑎𝑟𝑚∆𝜌𝑔𝑜𝑔

(
1

𝜆𝑔
∗
+

1

𝜆𝑜𝑔
∗
) (4.12) 
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Logarithm was used for some of the input parameters presented in Table 4. 5 to keep 

compatibility with other parameters values. 

To understand the distribution of selected input parameters and to estimate its quality, 

paired scatter plots of initial input parameters was created (Figure 4. 3). They show the relation of 

parameters between each other in all combinations. The plotted parameters are given by the top 

column box and the right-most row box, which correspond to the plotted property on the y- and x-

axis, respectively.  

For most parameters there is a uniform distribution in their value ranges, especially for 

combinations concerning M and Ng parameters, as seen in Figure 4. 3. In the previous study, 

hysteresis parameters C and 𝛼 were selected primarily to cover two edge cases, namely "no 

hysteresis" (𝛼 =2.5, C=0) and "strong hysteresis" (𝛼 =0, C=100000) scenarios. This is why we see 

parameter combinations for C and 𝛼 not giving as good distribution as for other parameters. We 

could use this opportunity to extend the dataset with some intermediate values for C and alpha, 

that are within the previously used edge case values.  

When preparing the input matrix for LSSVM, there was a challenge in defining 

appropriate values for mobility and gravity numbers for the cases of single-phase injection of gas 

or water. This was due to that at rw=1 values for Ng.g/o and Mg/o did not exist, similarly for 

Ng.w/o and Mw/o at rw=0. This would create "gaps" in the dataset (the matrix used in ie. Eq. 3.6) 

and require the LSSVM to handle those scenarios in some way, which might have made it biased 

to our choices. Instead, to preserve LSSVM functionality as-is, "fake" values were introduced 

while keeping the RF value identical to that of the non-fake values, at the rw=1 and rw=0 

endpoints. Basically, it meant that a scatter of "fake" values was used together with the same RF 

value, to try to make the LSSVM disregard somewhat the existence of ie. Ng.g/o and Mg/o at 

rw=1. This is explained in detail below. 

For each datapoint where Ng.g/o and Mg/o (or Ng.w/o and Mw/o) did not exist, four 

datapoints were used. These were created in the following manner, where i=w or i=g: 

• Log(Mi/o_ref)+1, Log(Ng.i/o_ref)+1 

• Log(Mi/o_ref) -1, Log(Ng.i/o_ref)+1 

• Log(Mi/o_ref)+1, Log(Ng.i/o_ref)-1 

• Log(Mi/o_ref)-1, Log(Ng.i/o_ref)-1 

Where phase-specific reference values from that of the WAG cases were used since both 

gas and water exist there. Letting the rw approach but never become rw=1, we could select the 

correct reference values for the gas phase. Similarly, for the water phase. While the actual single-

phase injection simulations ran at exactly rw=1 or rw=0, this allowed some reference value 

selection to complete the 8-input dataset where data for both WAG, gas and waterflooding exists.  

Ultimately, this meant that the dataset was extended with 576 "fake" datapoints created 

based on 192 non-fake datapoints for rw=1 and rw=0, and hence 768 datapoints in total represent 

water and gas flooding. 
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Figure 4. 3– Paired scatter plots of the input parameters 

In total Figure 4. 3 contains overall 1840+576 =2416 datapoints. 

4.2 Extension of the dataset 

As it was mentioned before in previous work hysteresis effect was used in terms of “no 

hysteresis” and “strong hysteresis”. In simulation hysteresis effect was set using WAGHYSTR 

keyword in Eclipse (E100) and in case of absence of that effect this keyword was not used. For 

scaling process based on theoretical knowledge extremely high C=1000000 and 𝛼 = 0 were used 

for “no hysteresis” cases. However, in this work hysteresis effect will be varied to train the ML 

model. Previously set value of C for “no hysteresis” case stands out most among other parameters 

ranges as it is large number even in logarithmic scale (Figure 4. 4). So, perhaps it is possible to 

identify a lower value of C (than 1000000) that practically has the same effect of C hysteresis 

effect vanishing, where this new C would be used for new simulations. The formula used to 
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calculate trapped gas saturation  𝑠𝑔,ℎ𝑦𝑠𝑡 is based on combined Land (1968) and Carlson (1981) 

elements.  

By setting limit to 𝑠𝑔,𝑚𝑎𝑥 − 𝑠𝑔𝑟 = 0.05 (5%) in (4.13) and 𝑠𝑔,ℎ𝑦𝑠𝑡 was plotted against 

different C values (Figure 4. 4). From the plot it can be seen that 𝑠𝑔,ℎ𝑦𝑠𝑡 approaches zero by 

increasing Land’s parameter values and by accepting the accuracy when trapping of gas becomes 

less than 1%, the highest value for C was set to be 1000 or logC = 3.  

𝑠𝑔,ℎ𝑦𝑠𝑡 = 𝑠𝑔𝑟 +
𝑠𝑔,𝑚𝑎𝑥 − 𝑠𝑔𝑟

1 + 𝐶(𝑠𝑔,𝑚𝑎𝑥 − 𝑠𝑔𝑟)
             (4.13) 

𝐶 =
1 − 𝑠𝑤𝑐
(𝑠𝑔𝑟)𝑚𝑎𝑥

− 1                (4.14) 

 
Figure 4. 4– Impact of C value on Sg,hyst 

To identify C and 𝛼 values combination which can effectively represent desired degree 

of hysteresis effect and avoid running too many new simulations, the impact of those values on 

degree of hysteresis effect must be studied.  

To study influence of hysteresis in terms of different 𝛼 and C values sensitivity test was 

carried out. Overall 308 cases with 77 (C, 𝛼) combinations  were run on Eclipse based on extreme 

scenarios of “homogeneous” (Fh=1) and “highly heterogeneous” (Fh=12.9), “no gravity” and 

“with gravity” with 1:1 WAG, when 𝜇𝑤 = 4 and 𝜇𝑔 = 4 . That was provided to understand 

behavior of recovery efficiency in from low hysteresis to moderate and highly hysteresis cases. C 

and  𝛼 values tested for all cases are shown in Table 4. 6 and Figure 4. 5 (black dots). Results were 

plotted relating hysteresis values to scaled RF (color bar), where the lowest RF (purple) and the 

highest RF (red) for each special scenario correspond to 0 and 1, respectively (Figure 4. 5). The 

recovery factor (RF) is used as an indicator of how strong the hysteresis is, based on C and alpha 

choices. However, one could plausibly use Sor instead if these and other parameter values are 

easily available for export (and analysis) from all reservoir sections. To exclude influence of other 

factors such as gravity and heterogeneity, scaled RF values was used. C values were plotted using 

logarithmic scale to keep compatibility with 𝛼values. The values that were used in all combinations 

with existing parameters are highlighted with white circles (C=1000, 𝛼 = 0 and C=0, 𝛼 = 2.5).  
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Various combinations of C and 𝛼 can be seen from the plots in  Figure 4. 5. The behavior 

in different cases from Figure 4. 5 (a-c) show overall similar trends, changing from no hysteresis 

to strong hysteresis zones which correspond to low and high scaled RF values, respectively. 

Figure 4. 5(a) illustrates homogeneous (Fh=1) reservoir, no gravity case where 

improvement in scaled RF values are gradual from high C and low  𝛼 values to low C and high 𝛼 

values. In case of “homogeneous” (Fh=1) reservoir with gravity effect in Figure 4. 5(b), green 

zone corresponding to moderate hysteresis effect is smaller than in (a) and does not exist in upper 

right corner of the map. That means that some of the positive effects of hysteresis are neutralized 

by gravity effect and higher hysteresis effect is needed to get similarly higher RF values, in 

comparison to lower hysteresis effect cases. 

Figure 4. 5 (c) represents heterogeneous (Fh=12.9) reservoir - no gravity case which is 

similar to Figure 4. 5 (a) but with thinner moderate and high hysteresis zones. In “heterogeneous” 

(Fh=12.9) reservoir with gravity case in Figure 4. 5 (d) low hysteresis zone (light blue) is repeated 

twice, which makes it  

We assume that the red and purple zones correspond to the higher and lower hysteresis 

effect zones, where existing extreme and no hysteresis values were already explored. Two zones 

unexplored in previous studies are the moderate (green) and moderate-to-low (blue) hysteresis 

effect, we are interested in those ones. All patterns of previous maps for individual cases are well 

overlapping in Figure 4. 5 (c). The only difference between the maps plotted for individual cases 

is that the area of various color zones is changing to thinner or thicker, or slightly shifting their 

locations when the characteristics of WAG process vary in terms of heterogeneity and gravity. 

This confirms possibility to select one combination of hysteresis parameters representing all 

individual cases.  

To narrow the area of interest of the hysteresis parameter values, we compare with values 

used in the literature, such as C in range 0.7-16.7 and 𝛼 in range 0.01-2.8 as seen from Table 4. 7.  

That narrows the area of the study to within black dashed line square. Finally values for adding to 

the existing dataset are C= 10 (logC=1) and 𝛼=1 (red point in Figure 4. 5). 

Table 4. 6– C and 𝛼 values used for test simulations 

# Parameters 

 C 𝛼 

1 1 0 

2 2 0.5 

3 5 1.0 

4 10 1.5 

5 17.8 2.0 

6 50 2.5 

7 100 3.0 

8 178  

9 316  

10 562  

11 1000  

Overall combinations C and 𝛼  77 
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a.   Homogeneous without gravity effect                     b. Homogeneous with gravity effect                                                                      

  
   c.  Heterogeneous without gravity effect                     d. Heterogeneous with gravity effect                                                                      

 
e. overlapped maps from a to d 

 

Figure 4. 5– Study of hysteresis influence on recovery factor using scaled RF values (color bar), C values 
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Table 4. 7– C and 𝛼 values used in literature 

C 𝛼 Reference 

History-matched: 16.7 History-matched :1.8 
(Mahzari and Sohrabi 2016) 

Experimental: 7 Experimental: 0.5 

2.7, 1.4 2.8,2.4 (Talabi et al. 2019) 

0.7-2.2 0.01 (Spiteri and Juanes 2006) 

 

4.2.1. Quality check of the results 

Quality check was provided using cumulative gas and water injection volumes in reservoir 

conditions and injection rates to have constant reference for comparing cases. Combinations, 

which were removed in the previous work and have not been included in the previous dataset due 

to not meeting quality check criteria are shown in  Overall number of combinations when altering 

5 different combinations of rw, 𝜇𝑔, 𝜇𝑤, 4 different values of heterogeneity factor and 2 values of 

density difference is 80. 

Table 4. 8– Removed combinations of viscosity values in the dataset Table 4. 8. Overall number of 

combinations when altering 5 different combinations of rw, 𝜇𝑔, 𝜇𝑤, 4 different values of 

heterogeneity factor and 2 values of density difference is 80. 

Table 4. 8– Removed combinations of viscosity values in the dataset  

# rw 𝝁𝒈 𝝁𝒘 Fh 
C, 𝛼 

combination 
𝜟𝝆 

1 0.33 20 20 1 0, 1000 1 

2 0.5 20 4 2.1 2.5, 1 400 

3 0.5 20 20 3   

4 0.67 20 4 12.9   

5 0.67 20 20    

Combinations 5 4 1 2 

Overall number simulations 80 

 

To avoid the same problems with new runs the same combinations of viscosity values 

with new 𝛼 and C values were not used. Overall, 824 simulation runs were performed with new C 

and 𝛼 values combination with existing parameters values. All new runs do meet quality check 

criteria as all of them have the same cumulative gas and water injection volumes curves in reservoir 

conditions (Figure 4. 6) and injection rates (Figure 4. 7). The cumulative injection volumes value 

is 3.7MMm3 and injection rate is 1014Sm3/d.  
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Figure 4. 6– Cumulative gas and water injection volumes in reservoir conditions for new simulation cases 

 

 
Figure 4. 7– Water/Gas injection rates for new simulation cases 

824 simulation runs generated 824 new datapoints. With purpose of teaching LSSVM-

PSO model to disregard C and 𝛼 values when single phase flooding is applied 768 datapoints (with 

real and “fake” values) of previous study wad added with changing logC =3 to logC=1 and 𝛼=0 to  

Cumulative gas and water injection 

volumes in reservoir conditions for 

simulation cases overlap in one line  

Constant gas and water injection rates are maintained 

throughout WAG process  
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𝛼 =1 values. Recovery factors are kept the same as in single phase flooding hysteresis does not 

exist and C and 𝛼 can be combination of any values. So, the dataset was expanded to additional 

1592 data points (Figure 4. 8). Red points were generated from new runs and blue points are from 

existing dataset. Some points are created by new runs overlap with existing ones for some 

parameters, which can be seen from the red boarders outside of blue points.  

The Figure 4. 8 has all 4008 data points including 2416 datapoints regarding to previous 

work’s dataset (2416 datapoints) and 1592 datapoints created with new simulation runs. The 

dataset was randomized in order to ensure a good distribution of the data, and then it was split into 

training (80%) and testing (20%) parts. Afterwards normalization the dataset was normalized so 

that the LSSVM could operate with input values within 0 to 1, rather than specific low or specific 

high non-normalized input values. 

 
Figure 4. 8– Paired scatter plots of the input parameters (extended dataset) 
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4.3 Development of LSSVM-PSO algorithm from scratch 

LSSVM with RBK algorithm code was written from scratch on Python 3.7.7 using Visual 

Studio Code editor. The LSSVM code integrated with PSO algorithm is presented in Appendix.  

In this work the PSO algorithm is used to optimize 𝜎 and 𝛾 values for the LSSVM 

algorithm. As it was mentioned before the PSO algorithm is sensitive to the initial value of inertia 

weight parameter (𝑤), 𝐶1 and 𝐶2, which play significant role in swarm convergence. Specifically, 

𝑤 controls the size of the searching space. To make the algorithm more robust in that regard, 

random selection was used from range [0,2] for 𝐶1, 𝐶2 and [0,1] for 𝑤.  

One of the difficult parts in setting up PSO is defining the stopping criteria for the 

process to be finished. It is hard to know what value for RMSE will be acceptable for 𝜎 and 𝛾 

values before running the LSSVM-PSO code on the dataset. Therefore, there was no RMSE 

stopping criteria, and instead only the number of iterations that would be run. The PSO objective 

function was set to minimize the RMSE error between the predicted and real RF values of the 

training dataset. This leads to overfitting issues as illustrated in Figure 4. 9, where we can see that 

there is a good match with the prediction from the training data, but a poor prediction based on the 

testing data.  

 

Figure 4. 9 – Data overfitting: RF predicted vs. RF real 

To understand which parameter was crucial in facing this kind of problem behavior of 

hyperparameters and their influence on the error for testing data was studied. By running PSO 

cases with 5, 10, 20 particles, the same behavior of  𝛾 was observed. The algorithm starts 

developing very high values corresponding to lower 𝜎, which ensures good fit on training data but 

poor prediction quality as it was demonstrated in Figure 4. 9. 

𝜎  controls the width of the ε-insensitive zone, used to fit the training data. According 

the tests, it becomes either very low or stabilizes around 0.5-0.6 when model becomes overfitted. 

As 𝛾 balances the model complexity and the training error. The higher  𝛾 gives better fit 

on training dataset, but at some stage, it stops influencing much on prediction accuracy if 𝜎 remains 

constant. The Figure 4. 9 shows how increasing 𝛾 value affects fitting in training and testing 

dataset when  𝜎 is kept constant at 0.5. Very little improvement in fitness of the results is observed 

between cases when 𝛾 = 10 and 𝛾 = 100. So, that means no need in choosing very high 𝛾 value. 
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Figure 4. 10 – RF predicted vs. RF real for different  𝛾 values with constant 𝜎 

Previously the training (80 %) dataset was only validated against itself, which lead to 

overfitting issues. To solve this, we split the dataset instead by three fractions: training (70%), 

validation (15%) and testing (15%). The LSSVM model is trained on the training data, where the 

PSO objective function now instead is set to minimize the RMSE error between the predicted and 

real RF values of the validation dataset. The prediction error of the testing part is also calculated, 

but not used. This is to observe how it develops in comparison to the controlled prediction errors, 

as can be seen from Figure 4. 11. The behavior of various key parameters optimization process 

such as RMSE for training, validation and testing datasets; Difference between RMSE of training 

and validation dataset; γ and σ values is presented in Figure 4. 11, Figure 4. 12, Figure 4. 13. The 

algorithm was run 3 times to compensate for randomness of C1, C2 and w value. 
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Figure 4. 11 – Comparison of RMSE for training, validation and testing with 50 iterations, 10 particles runs 

 
Figure 4. 12 – Difference between RMSE of raining and validation dataset for 3 runs (50 iterations, 10 particles)  
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Figure 4. 13 – Evolution of 𝛾 and 𝜎 values for 3 runs (50 iterations, 10 particles) 

From the  Figure 4. 11 it is quite clear that all errors are following the same downwards trends. By 

minimizing the RMSE for a smaller part of the dataset, we see that the RMSE for training and 

testing parts will be also minimized, until they all eventually stabilize at a relatively constant 

RMSE value. The observed downwards trend in all of them seems to have been made possible due 

to the data being well distributed (or randomized) across the training, validation and testing 

datasets. It is likely that, whatever pattern or behavior that underlines all of these, that it has been 

preserved for all of the fractioned dataset. These similar patterns therefore make it possible for the 

non-linear model to improve prediction efficiency on the 15 % testing data that it has not "seen", 

even though the dataset was trained and validated on other parts of the dataset. Moreover, despite 

random C1, C2 and w values used for individual particles (and for each iteration) in PSO algorithm, 

they converge (individually) to roughly the same values of RMSE values. In other words, the 

results for the training, validation and testing parts seem representative, despite the random 

features introduced to the PSO algorithm. According to the Figure 4. 13 𝛾 increases to higher value 

than 𝜎. However, they both stabilize to the end of runs at value 𝛾 = 78 and 𝜎 = 0.62. As it was 

demonstrated before, when 𝛾 reaches some value at constant 𝜎, the error stops evolving 

The whole purpose of studying PSO performance was to choose optimal values for value 𝛾 and 𝜎, 

which will improve non-linear model accuracy. Decision on optimal values of hyperparameters 

was made based on analysis on |𝑅𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛 − 𝑅𝑀𝑆𝐸𝑣𝑎𝑙𝑖𝑑| evolution for three PSO algorithm runs 

(Figure 4. 12). The graphs in Figure 4. 12 have 3 stages that happen at different number of 

solutions as they have random C1, C2 and w values: 1. decrease in difference between RMSE of 

training dataset and validation dataset (all three RMSE value follow downward trend in Figure 4. 

11); 2. Stabilization stage when the curves are constant, so RMSE for both datasets are decreasing; 

3. The difference starts rising until it stabilizes. The points before the differences in RMSE for 

training and validation dataset start rising correspond to solution numbers 16, 45 and 32 for runs 
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1, 2 and 3, respectively. The points marked by red “x” signs.  Corresponding 𝛾, 𝜎 can be observed 

from Figure 4. 13 and  to confirm correctness of our setups. 

Table 4. 9. From those values in  to confirm correctness of our setups. 

Table 4. 9 𝛾 = 9.95, 𝜎 = 0.7 were taken as optimal as they correspond to the lowest value of 

 |𝑅𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛 − 𝑅𝑀𝑆𝐸𝑣𝑎𝑙𝑖𝑑|. I also can be seen that those values regard to the lowest 𝑅𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛, 

but we should stay unbiased to that. That is shown only for observation purpose to confirm 

correctness of our setups. 

Table 4. 9 - Properties of chosen optimal 𝛾,  𝜎  from each of runs 

Runs 𝛾 𝜎 |𝑅𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛 − 𝑅𝑀𝑆𝐸𝑣𝑎𝑙𝑖𝑑| 𝑅𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛 

Run 1 12.8 0.62 0.009564 0.050268731 

Run 2 7.8 0.66 0.008215 0.051256 

Run 3 9.95 0.7 0.008028 0.050855 

 

As a part of study small experiment was provided with value of w, which was set to be decreasing 

through the iterations (2.34, Chapter 2). The results are demonstrated in Figure 4. 14. 

 

 
Figure 4. 14– RMSE for training, validation, and testing data with decreasing w 

With systematic lowering of w value, the convergence is accelerated, and the algorithm 

finds the lowest error value for validation and training dataset 4-5 times faster. However, there is 

behavior of the graphs in the few iterations (spike), which makes this plot less convenient even it 

gives similar results with cases when w was selected randomly in each iteration. It is quite hard to 

see the process of swarm convergence using PSO, as it was shown in  Figure 4. 11. As it was 

mentioned before, w influences on size of the searching space. That could be the reason why it 

converges faster with systematic decreasing inertia weight.  
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Chapter 5 

Results and discussions 

5.1 Analysis of results generated by LSSVM-PSO model 

Predicted recovery factor values using LSSVM-PSO model plotted against real recovery 

factor values are demonstrated in Figure 5. 1. Training, validation, and testing dataset parts are 

included in the same graph. Output generated by LSSVM-PSO model shows overall good fit of 

real data with low scatter. Goodness of fit is estimated using the coefficient of determination R2.  

|  
Figure 5. 1 – RF predicted by LSSVM-PSO vs. real RF for the whole dataset 

In previous work by Nygård and Andersen 2020 the dimensionless number M* was 

obtained by manual stepwise scaling of key mechanisms and properties influencing WAG process, 

so it can be linearly related to RF. However, some scatter was observed when plotting the M* 

values against the real RF values.   Initial idea of this work was developing a non-linear model 

(LSSVM-PSO) trained on many input parameters related to WAG simulation cases data which 

potentially can perform better than previous model based on only one input parameter.  

The performance LSSVM-PSO model in this work using 8 dimensionless input 

parameters was expected to show better accuracy in predicting RF values for WAG process as 
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LLSVM algorithm has more freedom in relating the given parameters to each other, so more 

complicated patterns can be captured, if they exist.  

Direct comparison of two models’ accuracy is not possible as the LSSVM-PSO model is 

not linear and more complex. To provide comparison on accuracy of two models, LSSVM 

algorithm was implemented using M* as a single input parameter for RF (output) values to get the 

most optimal line relating real RF values to M* values. The dataset with one input and one output 

parameter was divided to training, testing and validation parts, in similar way as 8 input parameter 

dataset was divided before. Then M*-based (1 parameter) model was used to predict of RF values 

for each of those dataset parts and results were plotted against real RF values. They are presented 

in Figure 5. 2 on the first column. Prediction results for 8 parameter LSSVM-PSO model is shown 

in the same figure (the column). 

 
Figure 5. 2 - Comparison of 8 parameter LSSVM-PSO and 1 parameter (M*) models results 
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As it can be seen from Figure 5. 2 the LSSVM-PSO model (8 parameter) shows very 

good match to training data, which is expected outcome because the model was trained on that part 

of the dataset. The one parameter model has less accuracy reflected in higher scatter, corresponding 

to R2 = 0.9288. Scatter has increased when moving to validation and training part for 8 parameter 

model, leading to a lower R2 value. However, for M*-input model the prediction power has not 

much changed with using another part of the dataset.  

Overall, two models demonstrated good prediction capability level, with slightly better 

performance of 8 input model. 8 parameters model was able to capture the main patterns in the 

dataset as it showed convenient prediction power when applied to testing dataset.   

To observe prediction efficiency of the LSSVM-PSO model for each of the individual 

cases plots Figure 5. 3 were created. 

 
Figure 5. 3– RF predicted by LSSVM-PSO vs. real RF for the whole dataset for individual cases 
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Figure 5. 3 demonstrates that non-linear model was able to capture the trends precise 

enough in all cases. Less accuracy is observed for in highly heterogeneous cases in comparison to 

less heterogeneous and homogenous ones, but it is still high level of predictive capability. That 

means the model is applicable for all considered cases.  

 

5.2 Testing LSSVM-PSO model on a new dataset 

6.2.1. Introducing a special case by adding a new parameter 

In the previous study by limitations were fixed horizontal inclination and fixed WAG 

cycle frequency (Nygård and Andersen 2020), which can be interesting parameters to be studied. 

In this work a new parameter WAG cycle frequency was considered to study its effect on overall 

process and understand the scope of applicability of created LSSVM-PSO model. The model was 

trained on the dataset, which is related to constant WAG cycle length equal to 90 days. Also, it 

was not introduced in input parameters, consequently, was not part of the dataset.  

Values 45 and 180 days for WAG cycle length the same for gas and water phases were 

implemented in special cases with new simulations. Adding a new parameter with 2 values, that 

will be changed in new simulations is always challenging decision due to rising number of overall 

combinations with other parameters. Based on that in new simulation cases only 2 values of 

heterogeneity factor (FH) representing “homogeneous” and “highly heterogeneous” reservoirs 

were utilized. All unique values of other parameters are kept the same as in the dataset simulations 

used as the basis of LSSVM-PSO dataset and used when defining combinations with new 

parameter values. Overall, 1648 runs were performed. Values for all parameters can be seen from 

Table 5. 1. 

Table 5. 1– Parameters used in extra cases  

Changing parameters values introduced in previous dataset  
New parameter 

altered 

Overall number of 

runs with all 

combinations 

FH 𝜟𝝆, kg/m3 rw C 𝜶 𝝁𝒘 𝝁𝒈 𝑻𝒄𝒚𝒄𝒍𝒆, days 

1648 

1.00 1  1 2.5 20 20 45 

12.86 

400 

0.33 

1000000 0 

4 4 180 

 0.50 1 1  

 0.67 0.5 0.5  

 0 0.25 0.25  

 1 0.1 0.1  

 

All new runs do meet quality check criteria as all of them have the same cumulative gas 

and water injection volumes curves in reservoir conditions and injection rates equal to 1014Sm3/d. 

The cumulative injection volumes value is 3.7MMm3. 
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6.2.2. Results of testing LSSVM-PSO model on a new dataset 

The LLSVM-PSO model was tested on new dataset with 1648 datapoints. The results 

plotted in a form of output of LSSVM-PSO (predicted RF) vs. results of simulations (real RF) can 

be observed from Figure 5. 4. 

 
Figure 5. 4 – Comparison of real RF and predicted (using LSSVM-PSO model) RF values for cases when WAG 

cycles legth are 180 (left) and 45 days (right) 

Apparently non-linear model was able to capture the main trends in WAG process as it 

was able to perform prediction with decent accuracy on completely new dataset that was created 

by altering a new parameter, not introduced to it before.  

To explore the match above (Figure 5. 4) in a more detailed manner, we plot the different 

cases individually, as seen from Figure 5. 5 and Figure 5. 6.   

 
Figure 5. 5 - Comparison of real RF and predicted RF values no hysteresis cases when WAG cycles length are 180 

and 45 days 
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Figure 5. 5  illustrates individual cases for homogeneous and heterogenous reservoirs in presence 

(columns 3,4) and absence (columns 1,2) of gravity effect. The LSSVM-PSO model can be very 

precise in prediction recovery factor of WAG applied in no hysteresis conditions regardless the 

change in WAG cycle length expect the cases corresponding to gravity cases when 𝑇𝑐𝑦𝑐𝑙𝑒=180 

days. Those ones were predicted with relatively low accuracy, and higher scatter in comparison to 

the other ones in the same figure.  

When the conditions get more complicated with hysteresis effect as in Figure 5. 6, the predictive 

power of the model decreases, and it becomes less convenient.  

 

Figure 5. 6– Comparison of real RF and predicted RF values with hysteresis cases when WAG cycles length are 180 

and 45 days 

From combination of Figure 5. 5  and Figure 5. 6 For case when 𝑇𝑐𝑦𝑐𝑙𝑒=45 days, overall 

good match is observed from all individual cases, which leads to a suggestion that there is not 

much effect on WAG efficiency when WAG cycle length was changed from 180 to 45 days, in 

other words, cycle frequency was lowered two times. However, in case of 𝑇𝑐𝑦𝑐𝑙𝑒=90 days, it shows 

higher scatter in prediction results for “with hysteresis” models, especially for heterogeneous ones. 

That probably can refer to that influence of WAG half cycle on WAG efficiency is not linear and 

LSSVM-PSO model has to be trained on cases with new input parameter to improve prediction 

results.  
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Chapter 7 

Conclusion 

The overall conclusions to this work can be summarized as this: 

• In previous work performed by Nygård and Andersen 2020 dimensionless number M* was 

developed by incorporating key parameters of WAG process and relating to RF linearly. The 

dataset from the previous work was extended by running a new combination of C and 𝛼, 

which was selected by studying impact of those parameters on hysteresis degree based on 

analysis of 77 combinations of (C, 𝛼)  in different cases of reservoir conditions. Input 

parameters for LSSVM were created based on grouping WAG process parameters into 8 

dimensionless numbers. The final dataset that was used for developing LSSVM-PSO model 

contained 4008 data points, corresponding to labeled 8 input parameters and one output 

parameter (RF). 

• It is important to select enough dataset fractions when using PSO to optimize LSSVM. 

• Using only 2 dataset fractions (ie. training 80 % and testing 20 % parts) resulted in overfitness 

issues, which was due to that the model only was checked against itself. 

• Overfitness issues was resolved by using 3 dataset fractions (ie. training 70 %, validation 15 

% and testing 15 % parts), where the trained model checked itself against validation dataset. 

• The LSSVM-PSO model’s predictive power was compared to that of the previous model, 

with the goal of checking how well the main trends were captured. The non-linear model 

proved itself to be effective on WAG performance efficiency prediction, however previous 

model has shown also compatible match with real data. 

• The LSSVM model was tested on new simulations where the previously constant WAG cycle 

length was changed. The model was still able to predict the main trends but had some trouble 

especially with doubled WAG cycle when heterogeneity and hysteresis effects were applied. 

• Having tested the model on WAG cycle length, which it was not calibrated or trained against, 

proves that it could potentially be used in a broader scope as well. More work should be 

made to discover how universal the model could be. 

 



55 

 

Appendix  

LSSVM-PSO code 

1. import os   
2. import numpy as np   
3. import numpy   
4. import pandas as pd   
5. import matplotlib.pyplot as plt   
6. import time   
7. import datetime   
8. import multiprocessing   
9. import concurrent.futures   
10. import random   
11. import math   
12. from sklearn.utils import shuffle   
13. from sklearn import preprocessing   
14.    
15.    
16. # from numba import jit, autojit, prange   
17. from multiprocessing import cpu_count   
18. import cProfile, pstats, io   
19. from pstats import SortKey   
20.    
21. np.set_printoptions(linewidth=200, edgeitems=5)   
22. pd.set_option("display.max_columns", 500)   
23. pd.set_option("display.width", 2000)   
24.    
25. # pylint: disable=unused-variable   
26. # pylint: disable=unbalanced-tuple-unpacking   
27. # pylint: disable=anomalous-backslash-in-string   
28. # pylint: disable=abstract-class-instantiated   
29.    
30.    
31. class LSSVM:   
32.     def __init__(self, gamma, sigma):   
33.         lists = [], [], [], [], []   
34.         self.x_train, self.y_train, self.train_range, self.train_Mwag, self.train_Mstar = 

lists   
35.         self.x_valid, self.y_valid, self.valid_range, self.valid_Mwag, self.valid_Mstar = 

lists   
36.         self.x_test, self.y_test, self.test_range, self.test_Mwag, self.test_Mstar = lists

   
37.         self.gamma, self.sigma = gamma, sigma   
38.         self.alphas, self.bias = [], []   
39.         self.train_prediction = []   
40.         self.valid_prediction = []   
41.         self.test_prediction = []   
42.    
43.     def import_and_separate_data(self, path, sheets, fractions):   
44.         data = pd.read_excel(path, sheet_name=sheets[0])   
45.         dataframe = shuffle(data)   
46.         frac_rows_valid = math.ceil(fractions[1]*len(dataframe))   
47.         frac_rows_test = math.ceil(fractions[2]*len(dataframe))   
48.         frac_rows_train =len(dataframe) - frac_rows_valid-frac_rows_test   
49.         valid =dataframe[0:frac_rows_valid]   
50.         test = dataframe[frac_rows_valid:frac_rows_valid + frac_rows_test]   
51.         train = dataframe[frac_rows_valid + frac_rows_test:]   



56 

 

52.         len_train, len_valid, len_test = len(train), len(valid), len(test)   
53.         all_train, all_valid, all_test = len_train, len_valid, len_test   
54.         print(f"train:{len_train}, valid:{len_valid}, test:{len_test}")   
55.         print(f"Cumulative train:{all_train}, valid:{all_valid}, test:{all_test}")   
56.    
57.         # train, valid, test= np.array_split(dataframe, (fractions[:-

1].cumsum() * len(dataframe)).astype(int))   
58.         train_init = SplitFractionedData([], train, sheets[0], [], [], [], 0, {}, 7)   
59.         input_tr, rf_tr, logMwag_tr, logMstar_tr, Ranges_tr, number_tr = train_init   
60.         valid_init = SplitFractionedData([], valid, sheets[0], [], [], [], 0, {}, 7)   
61.         input_v, rf_v, logMwag_v, logMstar_v, Ranges_v, number_v = valid_init   
62.         test_init = SplitFractionedData([], test, sheets[0], [], [], [], 0, {}, 7)   
63.         input_ts, rf_ts, logMwag_ts, logMstar_ts, Ranges_ts, number_ts = test_init   
64.         print(number_tr, number_v, number_ts)   
65.    
66.         train_sep, valid_sep, test_sep = [], [], []   
67.         for (i, sheetname) in enumerate(sheets[1:]):   
68.             data = pd.read_excel(path, sheet_name=sheetname)   
69.             data = data.replace(np.nan, '', regex=True)   
70.             dataframe = shuffle(data)   
71.             frac_rows_valid = math.ceil(fractions[1]*len(dataframe))   
72.             frac_rows_test = math.ceil(fractions[2]*len(dataframe))   
73.             frac_rows_train =len(dataframe) - frac_rows_valid-frac_rows_test   
74.             valid =dataframe[0:frac_rows_valid]   
75.             test = dataframe[frac_rows_valid:frac_rows_valid + frac_rows_test]   
76.             train = dataframe[frac_rows_valid + frac_rows_test:]   
77.             len_train, len_valid, len_test = len(train), len(valid), len(test)   
78.             all_train, all_valid, all_test = all_train + len_train, all_valid + len_valid,

 all_test + len_test   
79.    
80.             #training   
81.             train_sep, number_tr = SplitFractionedData(   
82.                 input_tr, train, sheetname, rf_tr, logMwag_tr, logMstar_tr, number_tr, Ran

ges_tr, 666,   
83.             )   
84.             input_tr, rf_tr, Ranges_tr, logMwag_tr, logMstar_tr = train_sep   
85.             #training   
86.             valid_sep, number_v = SplitFractionedData(   
87.                 input_v, valid, sheetname, rf_v, logMwag_v, logMstar_v, number_v, Ranges_v

, 999   
88.             )   
89.             input_v, rf_v, Ranges_v, logMwag_v, logMstar_v = valid_sep   
90.             #testing   
91.             test_sep, number_ts = SplitFractionedData(   
92.                 input_ts, test, sheetname, rf_ts, logMwag_ts, logMstar_ts, number_ts, Rang

es_ts, 666,   
93.             )   
94.             input_ts, rf_ts, Ranges_ts, logMwag_ts, logMstar_ts = test_sep   
95.    
96.         self.x_train, self.y_train, self.train_range, self.train_Mwag, self.train_Mstar = 

train_sep   
97.         self.x_valid, self.y_valid, self.valid_range, self.valid_Mwag, self.valid_Mstar = 

valid_sep   
98.         self.x_test, self.y_test, self.test_range, self.test_Mwag, self.test_Mstar = test_

sep   
99.    
100.     def normalize_data(self):   
101.         scalar = preprocessing.MinMaxScaler()   
102.         self.x_train = scalar.fit_transform(self.x_train)   
103.         self.y_train = scalar.fit_transform(self.y_train)   
104.         self.x_valid = scalar.fit_transform(self.x_valid)   
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105.         self.y_valid = scalar.fit_transform(self.y_valid)   
106.         self.x_test = scalar.fit_transform(self.x_test)   
107.         self.y_test = scalar.fit_transform(self.y_test)   
108.            
109.    
110.     def import_sheet_indexes(self, base_path, filenames, sheets):   
111.         file_train, file_valid, file_test = filenames["train"], filenames["valid"], filena

mes["test"]   
112.         path_train = os.path.realpath(f"{base_path}\\{file_train}.xlsx")   
113.         path_valid = os.path.realpath(f"{base_path}\\{file_valid}.xlsx")   
114.         path_test = os.path.realpath(f"{base_path}\\{file_test}.xlsx")   
115.         data_train, data_valid, data_test = pd.read_excel(path_train), pd.read_excel(path_

valid), pd.read_excel(path_test)   
116.         data_train, data_valid, data_test = (   
117.             data_train.replace(np.nan, "", regex=True),   
118.             data_valid.replace(np.nan, "", regex=True),   
119.             data_test.replace(np.nan, "", regex=True),   
120.         )   
121.         train_indexes, valid_indexes, test_indexes = {}, {}, {}   
122.         for sheet in sheets:   
123.             current_train = [int(item) for item in data_train[sheet].tolist() if str(item)

 != ""]   
124.             current_valid = [int(item) for item in data_valid[sheet].tolist() if str(item)

 != ""]   
125.             current_test = [int(item) for item in data_test[sheet].tolist() if str(item) !

= ""]   
126.             train_indexes[sheet], valid_indexes[sheet], test_indexes[sheet] = current_trai

n, current_valid, current_test   
127.         self.train_range, self.valid_range, self.test_range = train_indexes, valid_indexes

, test_indexes   
128.    
129.     def export_sheet_indexes(self, base_path, filenames):   
130.         file_train, file_valid, file_test = filenames["train"], filenames["valid"], filena

mes["test"]   
131.         path_train = os.path.realpath(f"{base_path}\\{file_train}.xlsx")   
132.         path_valid = os.path.realpath(f"{base_path}\\{file_valid}.xlsx")   
133.         path_test = os.path.realpath(f"{base_path}\\{file_test}.xlsx")   
134.         indexes_train, indexes_valid, indexes_test = pd.DataFrame({}), pd.DataFrame({}), p

d.DataFrame({})   
135.    
136.         for column in self.train_range.keys():   
137.             dataframe = pd.DataFrame(data=self.train_range[column], columns=[column])   
138.             indexes_train = pd.concat([indexes_train, dataframe], axis=1)   
139.    
140.         for column in self.valid_range.keys():   
141.             dataframe = pd.DataFrame(data=self.valid_range[column], columns=[column])   
142.             indexes_valid = pd.concat([indexes_valid, dataframe], axis=1)   
143.            
144.         for column in self.test_range.keys():   
145.             dataframe = pd.DataFrame(data=self.test_range[column], columns=[column])   
146.             indexes_test = pd.concat([indexes_test, dataframe], axis=1)   
147.    
148.         with pd.ExcelWriter(path_train) as writer:   
149.             indexes_train.to_excel(writer, index=False, sheet_name="Indexes_train")   
150.    
151.         with pd.ExcelWriter(path_valid) as writer:   
152.             indexes_valid.to_excel(writer, index=False, sheet_name="Indexes_test")   
153.    
154.         with pd.ExcelWriter(path_test) as writer:   
155.             indexes_test.to_excel(writer, index=False, sheet_name="Indexes_test")   
156.    
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157.     def export_train_valid_test_data(self, base_path, filenames):   
158.         file_train, file_valid, file_test = filenames["train"], filenames["valid"], filena

mes["test"]   
159.         path_train = os.path.realpath(f"{base_path}\\{file_train}.xlsx")   
160.         path_valid = os.path.realpath(f"{base_path}\\{file_valid}.xlsx")   
161.         path_test = os.path.realpath(f"{base_path}\\{file_test}.xlsx")   
162.         columns = ["logFh", "α", "logC", "logMg/o*", "logMw/o*", "logNg,w/o", "logNg,g/o",

 "rw"]   
163.         columns += ["logMwag", "logM*", "RF"]   
164.         #training files   
165.         train_data = np.hstack((self.x_train, self.train_Mwag, self.train_Mstar, self.y_tr

ain))   
166.         train = pd.DataFrame(data=train_data, columns=columns)   
167.         #validation files   
168.         valid_data = np.hstack((self.x_valid, self.valid_Mwag, self.valid_Mstar, self.y_va

lid))   
169.         valid = pd.DataFrame(data=valid_data, columns=columns)   
170.         #testing files   
171.         test_data = np.hstack((self.x_test, self.test_Mwag, self.test_Mstar, self.y_test))

   
172.         test = pd.DataFrame(data=test_data, columns=columns)   
173.    
174.            
175.         with pd.ExcelWriter(path_train) as writer:   
176.             train.to_excel(writer, index=False, sheet_name="All data train")   
177.    
178.         with pd.ExcelWriter(path_valid) as writer:   
179.             valid.to_excel(writer, index=False, sheet_name="All data valid")   
180.    
181.         with pd.ExcelWriter(path_test) as writer:   
182.             test.to_excel(writer, index=False, sheet_name="All data test")   
183.    
184.     def export_after_lssvm_prediction(self, base_path, filenames):   
185.         file_train, file_valid, file_test = filenames["train"], filenames["valid"], filena

mes["test"]   
186.         path_train = os.path.realpath(f"{base_path}\\{file_train}.xlsx")   
187.         path_valid = os.path.realpath(f"{base_path}\\{file_valid}.xlsx")   
188.         path_test = os.path.realpath(f"{base_path}\\{file_test}.xlsx")   
189.         columns = ["logFh", "α", "logC", "logMg/o*", "logMw/o*", "logNg,w/o", "logNg,g/o",

 "rw"]   
190.         bias = np.zeros((np.shape(self.x_train)[0], 1))   
191.         bias[0, 0] = self.bias   
192.         print(bias)   
193.         # temp_list = [self.x_train, self.train_Mwag, self.train_Mstar, self.y_train, self

.train_prediction, self.b_alpha[1:, 0], bias]   
194.         train_results = np.hstack((self.x_train, self.train_Mwag, self.train_Mstar, self.y

_train, self.train_prediction, self.b_alpha[1:, 0], bias))   
195.         train = pd.DataFrame(   
196.             data=train_results, columns=columns + ["logMwag", "logM*", "RF", "RFpred", "al

phas", "bias"],   
197.         )   
198.    
199.         valid_results = np.hstack((self.x_valid, self.valid_Mwag, self.valid_Mstar, self.y

_valid, self.valid_prediction))   
200.         valid = pd.DataFrame(data=valid_results, columns=columns + ["logMwag", "logM*", "R

F", "RFpred"])   
201.            
202.         test_results = np.hstack((self.x_test, self.test_Mwag, self.test_Mstar, self.y_tes

t, self.test_prediction))   
203.         test = pd.DataFrame(data=test_results, columns=columns + ["logMwag", "logM*", "RF"

, "RFpred"])   
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204.    
205.         with pd.ExcelWriter(path_train) as writer:   
206.             train.to_excel(writer, index=False, sheet_name="All data train results")   
207.    
208.         with pd.ExcelWriter(path_valid) as writer:   
209.             valid.to_excel(writer, index=False, sheet_name="All data valid results")   
210.    
211.         with pd.ExcelWriter(path_test) as writer:   
212.             test.to_excel(writer, index=False, sheet_name="All data test results")   
213.    
214.     def export_after_lssvm_prediction_as_sheets(self, base_path, filenames, sheets):   
215.         file_train, file_valid, file_test = filenames["train"], filenames["valid"], filena

mes["test"]   
216.         path_train = os.path.realpath(f"{base_path}\\{file_train}.xlsx")   
217.         path_valid = os.path.realpath(f"{base_path}\\{file_valid}.xlsx")   
218.         path_test = os.path.realpath(f"{base_path}\\{file_test}.xlsx")   
219.         columns = ["logFh", "α", "logC", "logMg/o*", "logMw/o*", "logNg,w/o", "logNg,g/o",

 "rw"]   
220.         bias = np.zeros((np.shape(self.x_train)[0], 1))   
221.         bias[0, 0] = self.bias   
222.         train_results = np.hstack(   
223.             (   
224.                 self.x_train,   
225.                 self.train_Mwag,   
226.                 self.train_Mstar,   
227.                 self.y_train,   
228.                 self.train_prediction,   
229.                 self.b_alpha[1:, 0],   
230.                 bias,   
231.             )   
232.         )   
233.         train = pd.DataFrame(   
234.             data=train_results, columns=columns + ["logMwag", "logM*", "RF", "RFpred", "al

phas", "bias"],   
235.         )   
236.            
237.         valid_results = np.hstack((self.x_valid, self.valid_Mwag, self.valid_Mstar, self.y

_valid, self.valid_prediction))   
238.         valid = pd.DataFrame(data=valid_results, columns=columns + ["logMwag", "logM*", "R

F", "RFpred"])   
239.    
240.         test_results = np.hstack((self.x_test, self.test_Mwag, self.test_Mstar, self.y_tes

t, self.test_prediction))   
241.         test = pd.DataFrame(data=test_results, columns=columns + ["logMwag", "logM*", "RF"

, "RFpred"])   
242.    
243.         with pd.ExcelWriter(path_train) as writer:   
244.             for item in sheets:   
245.                 indexes = self.train_range[item]   
246.                 data = pd.DataFrame(   
247.                     data=train_results[indexes, :],   
248.                     columns=columns + ["logMwag", "logM*", "RF", "RFpred", "alphas", "bias

"],   
249.                 )   
250.                 data.to_excel(writer, index=False, sheet_name=item)   
251.    
252.         with pd.ExcelWriter(path_valid) as writer:   
253.             for item in sheets:   
254.                 indexes = self.valid_range[item]   
255.                 data = pd.DataFrame(   
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256.                     data=valid_results[indexes, :], columns=columns + ["logMwag", "logM*",
 "RF", "RFpred"],   

257.                 )   
258.                 data.to_excel(writer, index=False, sheet_name=item)   
259.            
260.         with pd.ExcelWriter(path_test) as writer:   
261.             for item in sheets:   
262.                 indexes = self.test_range[item]   
263.                 data = pd.DataFrame(   
264.                     data=test_results[indexes, :], columns=columns + ["logMwag", "logM*", 

"RF", "RFpred"],   
265.                 )   
266.                 data.to_excel(writer, index=False, sheet_name=item)   
267.    
268.     def use_already_separated_data(self, path_train, path_valid, path_test,  x_cols, y_col

s, col_Mwag, col_Mstar, mode):   
269.         if mode == "single":   
270.             prep_train = pd.read_excel(path_train)   
271.             prep_valid = pd.read_excel(path_valid)   
272.             prep_test = pd.read_excel(path_test)   
273.             self.x_train, self.x_valid, self.x_test = np.mat(prep_train[x_cols]), np.mat(p

rep_valid[x_cols]), np.mat(prep_test[x_cols])   
274.             self.y_train, self.y_valid, self.y_test = (   
275.                 np.mat(prep_train[[y_cols[0]]]),   
276.                 np.mat(prep_valid[[y_cols[0]]]),   
277.                 np.mat(prep_test[[y_cols[0]]]),   
278.             )   
279.             self.train_Mwag, self.valid_Mwag, self.test_Mwag = (   
280.                 np.mat(prep_train[col_Mwag]),   
281.                 np.mat(prep_valid[col_Mwag]),   
282.                 np.mat(prep_test[col_Mwag]),   
283.             )   
284.             self.train_Mstar, self.valid_Mstar, self.test_Mstar = (   
285.                 np.mat(prep_train[col_Mstar]),   
286.                 np.mat(prep_valid[col_Mstar]),   
287.                 np.mat(prep_test[col_Mstar]),   
288.             )   
289.    
290.     def calculate(self):   
291.         self.alphas, self.bias = np.mat(np.zeros((np.shape(self.x_train)[0], 1))), 0   
292.         length = np.shape(self.x_train)[0]   
293.         kernel = np.mat(np.zeros((length, length)))   
294.         with concurrent.futures.ProcessPoolExecutor(max_workers=cpu_count()) as executor: 

  
295.             results = [executor.submit(kernelTrans, self.x_train, self.x_train[i], sigma, 

i) for i in range(length)]   
296.             for f in concurrent.futures.as_completed(results):   
297.                 kernel[:, f.result()[1]] = f.result()[0]   
298.         # Prepare matrix parts   
299.         leftOnes = np.mat(np.ones((length, 1)))   
300.         innerMatrix = kernel + np.identity(length) * (1 / gamma)   
301.         zeroEntry = np.mat(np.zeros((1, 1)))   
302.         topOnes = leftOnes.T   
303.    
304.         # Create final matrices   
305.         topPart = np.hstack((zeroEntry, topOnes))   
306.         botPart = np.hstack((leftOnes, innerMatrix))   
307.         matrix = np.vstack((topPart, botPart))   
308.         solution = np.vstack((zeroEntry, self.y_train))   
309.    
310.         # Calculate bias and alpha values   
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311.         b_alpha = matrix.I * solution   
312.         self.bias = b_alpha[0, 0]   
313.         self.alphas = b_alpha[1:, 0]   
314.         self.b_alpha = b_alpha   
315.    
316.     def predict(self, x_ref, x_check):   
317.         m = np.shape(x_check)[0]   
318.         predict_result = np.mat(np.zeros((m, 1)))   
319.         with concurrent.futures.ProcessPoolExecutor(max_workers=cpu_count()) as executor: 

  
320.             results = [executor.submit(kernelTrans, x_ref, x_check[i, :], sigma, i) for i 

in range(m)]   
321.             for f in concurrent.futures.as_completed(results):   
322.                 Kx = f.result()[0]   
323.                 predict_result[f.result()[1], 0] = Kx.T * self.alphas + self.bias   
324.         return predict_result   
325.    
326.     def train(self):   
327.         self.train_prediction = self.predict(self.x_train, self.x_train)   
328.    
329.     def validate(self):   
330.         self.valid_prediction = self.predict(self.x_train, self.x_valid)   
331.    
332.     def check(self):   
333.         self.test_prediction = self.predict(self.x_train, self.x_test)   
334.    
335.    
336. class Particle:   
337.     def __init__(self, values, setup, index, index_max, it_max):   
338.         # Runs only at initialization of particle   
339.         self.position = []   
340.         self.velocity = []   
341.         self.best_positions = []   
342.         self.best_error = -1.0   
343.         self.error_train = -1.0   
344.         self.error_valid = -1.0   
345.         self.error_test = -1.0   
346.         self.dimensions = len(values)   
347.         self.w_range = setup[2]   
348.         self.c1_range = setup[0]   
349.         self.c2_range = setup[1]   
350.         self.w = 0.0   
351.         self.c1 = 0.0   
352.         self.c2 = 0.0   
353.         self.c1c2s = [[0.0, 0.5],[0.5,1.0],[1.0,1.5],[1.5,2.0]]   
354.         self.best_w = 0.0   
355.         self.best_c1 = 0.0   
356.         self.best_c2 = 0.0   
357.         self.setup = setup   
358.         self.index = index   
359.         self.index_max = index_max   
360.         self.iterations = it_max   
361.    
362.         for i in range(self.dimensions):   
363.             self.velocity.append(random.uniform(-1, 1))   
364.             self.position.append(values[i])   
365.    
366.     def check_fitness(self, error_function, param, iteration):   
367.         self.error_train, self.error_valid, self.error_test = error_function(self.position

, param)[:]   
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368.         print(f"I{iteration+1} of {self.iterations}. P{self.index+1} of {self.index_max}. 
Train Error: {self.error_train}. Validation error: {self. 
error_valid}. Testing error: {self.error_test}.")   

369.    
370.         # Initial values are best automatically   
371.         if self.best_error == -1:   
372.             self.best_positions = self.position   
373.             self.best_error = self.error_valid   
374.    
375.         # Did I improve my score?   
376.         if self.error_valid < self.best_error and self.best_error>=0:   
377.             self.best_w = self.w   
378.             self.best_c1 = self.c1   
379.             self.best_c2 = self.c2   
380.             self.best_positions = self.position   
381.             self.best_error = self.error_valid   
382.    
383.     def update_velocity(self, global_positions):   
384.         self.w = random.uniform(self.w_range[0], self.w_range[1])   
385.         c1_range = random.choice(self.c1c2s)   
386.         c2_range = random.choice(self.c1c2s)   
387.         self.c1 = random.uniform(c1_range[0], c1_range[1])   
388.         self.c2 = random.uniform(c2_range[0], c2_range[1])   
389.    
390.         for i in range(0, self.dimensions):   
391.             r1 = random.random()   
392.             r2 = random.random()   
393.    
394.             current_position = self.position[i]   
395.             current_velocity = self.velocity[i]   
396.             my_best_position = self.best_positions[i]   
397.             best_global_position = global_positions[i]   
398.    
399.             inertia = self.w * current_velocity   
400.             ego_velocity = self.c1 * r1 * (my_best_position - current_position)   
401.             collective_velocity = self.c2 * r2 * (best_global_position - current_position)

   
402.             self.velocity[i] = inertia + ego_velocity + collective_velocity   
403.    
404.     def update_positions(self):   
405.         for i in range(0, self.dimensions):   
406.             self.position[i] = self.position[i] + self.velocity[i]   
407.    
408.    
409. class PSO:   
410.     def __init__(self, minimization_function, values, param, setup, number_of_particles, m

ax_iterations):   
411.         self.best_global_error = -1.0   
412.         self.best_global_error_train = -1.0   
413.         self.best_global_error_valid = -1.0   
414.         self.best_global_error_test = -1.0   
415.         self.best_global_positions = []   
416.         self.best_global_setup = []   
417.         self.best_global_w = 0.0   
418.         self.best_global_c1 = 0.0   
419.         self.best_global_c2 = 0.0   
420.         self.max_iterations = max_iterations   
421.         self.error_fx = minimization_function   
422.         self.nparticles = number_of_particles   
423.         self.logs, self.swarm = [], []   
424.         self.param = param   
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425.         self.max_iter = max_iterations   
426.         for i in range(number_of_particles):   
427.             particle = Particle(values, setup[i], i, number_of_particles, max_iterations) 

  
428.             self.swarm.append(particle)   
429.    
430.     def optimize(self):   
431.         # Begin optimization   
432.         i = 0   
433.         count = 0   
434.         start_time = datetime.datetime.now()   
435.         while i < self.max_iterations:   
436.             swarm = []   
437.             with concurrent.futures.ProcessPoolExecutor(max_workers=cpu_count()) as execut

or:   
438.                 results = [   
439.                     executor.submit(remote_check_fitness, self.param, self.swarm[pindex], 

self.error_fx, i)   
440.                     for pindex in range(self.nparticles)   
441.                 ]   
442.                 for f in concurrent.futures.as_completed(results):   
443.                     d = f.result()   
444.                     swarm.append(f.result())   
445.             self.swarm = swarm   
446.    
447.             for pindex in range(self.nparticles):   
448.                 particle = self.swarm[pindex]   
449.                 if self.best_global_error == -1:   
450.                     self.best_global_positions = list(particle.position)   
451.                     self.best_global_error = particle.best_error   
452.                     self.best_global_error_train = particle.error_train   
453.                     self.best_global_error_valid = particle.error_valid   
454.                     self.best_global_error_test = particle.error_test   
455.                     strings = ["-" for _ in range(9)]   
456.                     values = [count + 1] + strings + [i, self.max_iter, self.best_global_e

rror_train]   
457.                     values += [self.best_global_error_valid, self.best_global_error_test] 

  
458.                     values += self.best_global_positions   
459.                     self.do_logging(values)   
460.                     count += 1   
461.    
462.                 # Check if current particle is best globally   
463.                 if (   
464.                     (particle.best_error < self.best_global_error)   
465.                     and particle.position[0] > 0   
466.                     and particle.position[1] > 0   
467.                 ):   
468.                     self.best_global_positions = list(particle.best_positions)   
469.                     self.best_global_error = particle.best_error   
470.                     self.best_global_error_train = particle.error_train   
471.                     self.best_global_error_valid = particle.error_valid   
472.                     self.best_global_error_test = particle.error_test   
473.                     self.best_global_setup = particle.setup   
474.                     self.best_global_w = particle.best_w   
475.                     self.best_global_c1 = particle.best_c1   
476.                     self.best_global_c2 = particle.best_c2   
477.                     time_passed = datetime.datetime.now() - start_time   
478.                     seconds = time_passed.total_seconds()   
479.                     values = [count + 1] + particle.w_range + [particle.w]   
480.                     values += particle.c1_range + [particle.c1]   
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481.                     values += particle.c2_range + [particle.c2]   
482.                     values += [i, self.max_iter, self.best_global_error_train]   
483.                     values += [self.best_global_error_valid, self.best_global_error_test] 

  
484.                     values += self.best_global_positions   
485.                     self.do_logging(values)   
486.                     print("-------------------------------")   
487.                     print(f"Count: {count+1}")   
488.                     print(f"Global training error: {self.best_global_error_train}")   
489.                     print(f"Global validation error: {self.best_global_error_valid}")   
490.                     print(f"Global testing error: {self.best_global_error_test}")   
491.                     print(f"Global positions: {self.best_global_positions[0]}, {self.best_

global_positions[1]}")   
492.                     print(f"Global setup: {self.best_global_setup}")   
493.                     print(f"w: {self.best_global_w:.2f}, c1: {self.best_global_c1:.2f}, c2

: {self.best_global_c2:.2f}")   
494.                     print(f"Time passed: {time_passed}. Seconds: {seconds}")   
495.                     print("-------------------------------")   
496.                     count += 1   
497.    
498.             for pindex in range(self.nparticles):   
499.                 self.swarm[pindex].update_velocity(self.best_global_positions)   
500.                 self.swarm[pindex].update_positions()   
501.             i += 1   
502.         final_time_passed = datetime.datetime.now() - start_time   
503.         final_seconds = final_time_passed.total_seconds()   
504.         print("-------------------------------")   
505.         print(f"Count: {count}")   
506.         print(f"Final positions: {self.best_global_positions[0]}, {self.best_global_positi

ons[1]}")   
507.         print(f"Final training error: {self.best_global_error_train}")   
508.         print(f"Final validation error: {self.best_global_error_valid}")   
509.         print(f"Final testing error: {self.best_global_error_test}")   
510.         print(f"Final setup: {self.best_global_setup}")   
511.         print(f"w: {self.best_global_w:.2f}, c1: {self.best_global_c1:.2f}, c2: {self.best

_global_c2:.2f}")   
512.         print(f"Time passed: {time_passed}. Seconds: {final_seconds}")   
513.         print("-------------------------------")   
514.    
515.     def do_logging(self, data):   
516.         self.logs.append(data)   
517.    
518.    
519. def SplitFractionedData(dataset, sheetdata, sheetname, rf, logMwag, logMstar, lastrow, she

etindex, option):   
520.     sheetdata = sheetdata.replace(np.nan, '', regex=True)   
521.     inputs = np.mat(sheetdata[["logFh", "α", "logC", "logMg/o*", "logMw/o*", "logNg,w/o", 

"logNg,g/o", "rw"]])   
522.     rf_new = np.mat(sheetdata[["RF"]])   
523.     logMwag_new = np.mat(sheetdata[["logMwag"]])   
524.     logMstar_new = np.mat(sheetdata[["logM*"]])   
525.     sheetindex[sheetname] = list(range(lastrow, lastrow + len(sheetdata)))   
526.     lastrow = lastrow + len(sheetdata)   
527.    
528.     if option == 7:   
529.         return inputs, rf_new, logMwag_new, logMstar_new, sheetindex, lastrow   
530.     else:   
531.         rf = np.vstack((rf, rf_new))   
532.         logMwag = np.vstack((logMwag, logMwag_new))   
533.         logMstar = np.vstack((logMstar, logMstar_new))   
534.         dataset = np.vstack((dataset, inputs))   
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535.    
536.         return [dataset, rf, sheetindex, logMwag, logMstar], lastrow   
537.    
538.    
539. def kernelTrans(X, A, sigma, index):   
540.     K = kernelTransInner(X, A, sigma)   
541.     return K, index   
542.    
543.    
544. def kernelTransInner(X, A, sigma):   
545.     temp = X - A   
546.     factor = 1 / (-1 * sigma ** 2)   
547.     K = np.exp(np.array([np.inner(x, x) for x in temp]) * factor).reshape(len(X), 1)   
548.     return K   
549.    
550. def calculatev2(param, gamma, sigma):   
551.     # Getting the data   
552.     xparam, yparam = param[0], param[1]   
553.     xtrain = np.memmap(xparam[0], dtype=xparam[1], shape=xparam[2], mode="r")   
554.     ytrain = np.memmap(yparam[0], dtype=yparam[1], shape=yparam[2], mode="r")   
555.    
556.     # Initializing   
557.     length = np.shape(xtrain)[0]   
558.     kernel = [kernelTrans(xtrain[:], xtrain[i], sigma, i)[0][:, 0] for i in range(length)]

   
559.    
560.     # Prepare full matrix   
561.     matrix = np.ones((length + 1, length + 1))   
562.     matrix[0, 0] = 0   
563.     matrix[1:, 1:] = kernel + np.identity(length) * (1 / gamma)   
564.     solution = np.zeros((length + 1, 1))   
565.     solution[1:, 0] = ytrain[:, 0]   
566.    
567.     # Calculate bias and alpha values   
568.     b_alpha = np.dot(np.linalg.inv(matrix), solution)   
569.     bias = b_alpha[0, 0]   
570.     alphas = b_alpha[1:, 0]   
571.     b_alpha = b_alpha   
572.     return alphas, bias   
573.    
574. def predict(alphas, b, xref_xcheck, sigma):   
575.     xref = np.memmap(xref_xcheck[0][0], dtype=xref_xcheck[0][1], shape=xref_xcheck[0][2], 

mode="r")   
576.     xcheck = np.memmap(xref_xcheck[1][0], dtype=xref_xcheck[1][1], shape=xref_xcheck[1][2]

, mode="r")   
577.     m = np.shape(xcheck)[0]   
578.     predict_result = np.mat(np.empty((m, 1)))   
579.     for i in range(m):   
580.         Kx = kernelTrans(xref, xcheck[i, :], sigma, i)[0][:, 0]   
581.         predict_result[i, 0] = np.dot(Kx, alphas) + b   
582.     return predict_result   
583.    
584. def prediction_error(values, param):   
585.     y_train = np.memmap(param[1][0], dtype=param[1][1], shape=param[1][2], mode="r")   
586.     y_valid = np.memmap(param[3][0], dtype=param[3][1], shape=param[3][2], mode="r")   
587.     y_test = np.memmap(param[5][0], dtype=param[5][1], shape=param[5][2], mode="r")   
588.     gamma, sigma = values   
589.     alphas, bias = calculatev2(param, gamma, sigma)   
590.     y_pred_train = predict(alphas, bias, [param[0], param[0]], sigma)   
591.     y_pred_valid = predict(alphas, bias, [param[0], param[2]], sigma)   
592.     y_pred_test = predict(alphas, bias, [param[0], param[4]], sigma)   
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593.     error_train = np.sqrt(np.sum(np.square(y_train-y_pred_train))/len(y_train))   
594.     error_valid = np.sqrt(np.sum(np.square(y_valid-y_pred_valid))/len(y_valid))   
595.     error_test = np.sqrt(np.sum(np.square(y_test-y_pred_test))/len(y_test))   
596.     return [error_train, error_valid, error_test]   
597.    
598.    
599. def remote_check_fitness(param, particle, function, iteration):   
600.     particle.check_fitness(function, param, iteration)   
601.     return particle   
602.    
603.    
604. def setup(particles):   
605.     #c1c2s = [[0.0, 2.0]]   
606.     c1c2s = [[0.0, 0.5],[0.5,1.0],[1.0,1.5],[1.5,2.0]]   
607.     ws = [[0.0, 1.0]]   
608.     setup = []   
609.     for i in range(len(c1c2s)):   
610.         c1 = c1c2s[i]   
611.         for j in range(len(c1c2s)):   
612.             c2 = c1c2s[j]   
613.             for k in range(len(ws)):   
614.                 w = ws[k]   
615.                 addition = [c1, c2, w]   
616.                 for _ in range(particles):   
617.                     setup.append(addition)   
618.     return setup   
619.    
620.    
621. if __name__ == "__main__":   
622.     print("--------------------Parameter Setup------------------")   
623.    
624.     print("-------------------Save LSSVM Model-----------------")   
625.    
626.     fractions = np.array([0.7, 0.15, 0.15])   
627.    
628.     base_path = "C:\\Users\\aizha\\PycharmProjects\\HelloWorld\\Output LSSVM\\Results"   
629.     
630.     base = "C:\\Users\\aizha\\PycharmProjects\\HelloWorld\\Input LSSVM"   
631.     filename = "Dataset_v13"   
632.     path = os.path.realpath(f"{base}\{filename}.xlsx")   
633.     Sheets = [   
634.         "Fh=1 | Δρ=1",   
635.         "Fh=2.1 | Δρ=1",   
636.         "Fh=3 | Δρ=1",   
637.         "Fh=12.9 | Δρ=1",   
638.         "Fh=1 | Δρ=400",   
639.         "Fh=2.1 | Δρ=400",   
640.         "Fh=3 | Δρ=400",   
641.         "Fh=12.9 | Δρ=400",   
642.         "Fh=1 | Δρ=1 | Hyst",   
643.         "Fh=2.1 | Δρ=1 | Hyst",   
644.         "Fh=3 | Δρ=1 | Hyst",   
645.         "Fh=12.9 | Δρ=1 | Hyst",   
646.         "Fh=1 | Δρ=400 | Hyst",   
647.         "Fh=2.1 | Δρ=400 | Hyst",   
648.         "Fh=3 | Δρ=400 | Hyst",   
649.         "Fh=12.9 | Δρ=400 | Hyst",   
650.     ]   
651.    
652.     gamma, sigma = 9.95, 0.7   
653.    



67 

 

654.     start_time_original = datetime.datetime.now()   
655.     lssvm = LSSVM(gamma, sigma)   
656.    
657.    
658.     print("--------------------------------Import and split the data----------------------

--")   
659.     start_time = datetime.datetime.now()   
660.     lssvm.import_and_separate_data(path, Sheets, fractions)   
661.     time_passed = datetime.datetime.now() - start_time   
662.     deltatime = datetime.timedelta(seconds=time_passed.total_seconds())   
663.     print(f"Duration: {deltatime}")   
664.     print("--------------------------------Import and split the data: done----------------

--")   
665.        
666.        
667.     print("--------------------------------Exporting split data---------------------------

--")   
668.     filenames_split = {"train": f"combined_train_{fractions[0]}ratio_v13", "valid": f"comb

ined_valid_{fractions[1]}ratio_v13", "test": f"combined_test_{fractions[2]}ratio_v13"}   
669.     start_time = datetime.datetime.now()   
670.     lssvm.export_train_valid_test_data(base_path, filenames_split)   
671.     time_passed = datetime.datetime.now() - start_time   
672.     deltatime = datetime.timedelta(seconds=time_passed.total_seconds())   
673.     print(f"Duration: {deltatime}")   
674.     print("--------------------------------Exporting split data: done---------------------

--")   
675.    
676.    
677.     print("--------------------------------Exporting indexes------------------------------

--")   
678.     filenames_indexes = {"train": "0.7_train_indexes_v13", "valid": "0.15_valid_indexes_v1

3", "test": "0.15_test_indexes_v13"}   
679.     start_time = datetime.datetime.now()   
680.     lssvm.export_sheet_indexes(base_path, filenames_indexes)   
681.     time_passed = datetime.datetime.now() - start_time   
682.     deltatime = datetime.timedelta(seconds=time_passed.total_seconds())   
683.     print(f"Duration: {deltatime}")   
684.     print("--------------------------------Exporting indexes: done------------------------

--")   
685.    
686.    
687.     print("--------------------------------Importing indexes------------------------------

--")   
688.     start_time = datetime.datetime.now()   
689.     lssvm.import_sheet_indexes(base_path, filenames_indexes, Sheets)   
690.     time_passed = datetime.datetime.now() - start_time   
691.     deltatime = datetime.timedelta(seconds=time_passed.total_seconds())   
692.     print(f"Duration: {deltatime}")   
693.    
694.     print("--------------------------------Using constant reference data------------------

--")   
695.     filenames_split = {"train": f"combined_train_{fractions[0]}ratio_v13", "valid": f"comb

ined_valid_{fractions[1]}ratio_v13", "test": f"combined_test_{fractions[2]}ratio_v13"}   
696.     file_train, file_valid, file_test = filenames_split["train"], filenames_split["valid"]

, filenames_split["test"]   
697.     path_train = os.path.realpath(f"{base_path}\\{file_train}.xlsx")   
698.     path_valid = os.path.realpath(f"{base_path}\\{file_valid}.xlsx")   
699.     path_test = os.path.realpath(f"{base_path}\\{file_test}.xlsx")   
700.     colm_x = ["logFh", "α", "logC", "logMg/o*", "logMw/o*", "logNg,w/o", "logNg,g/o", "rw"

]   
701.     start_time = datetime.datetime.now()   
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702.     lssvm.use_already_separated_data(path_train,path_valid, path_test, colm_x, ["RF"], ["l
ogMwag"], ["logM*"], "single")   

703.     time_passed = datetime.datetime.now() - start_time   
704.     deltatime = datetime.timedelta(seconds=time_passed.total_seconds())   
705.     print(f"Duration: {deltatime}")   
706.    
707.     print("--------------------------------Starting LSSVM run-----------------------------

--")   
708.    
709.     print("--------------------------------Normalizing constant reference data------------

--")   
710.    
711.     start_time = datetime.datetime.now()   
712.     lssvm.normalize_data()   
713.     time_passed = datetime.datetime.now() - start_time   
714.     deltatime = datetime.timedelta(seconds=time_passed.total_seconds())   
715.     print(f"Duration: {deltatime}")   
716.    
717.     print("--------------------------------Normalizing constant reference data: done------

--")   
718.    
719.     #Make mmap files   
720.     optimize_these_numbers = [0.5, 0.5]   
721.     xtrain, ytrain = lssvm.x_train[:, :], lssvm.y_train[:, :]   
722.     xvalid, yvalid = lssvm.x_valid[:, :], lssvm.y_valid[:, :]   
723.     xtest, ytest = lssvm.x_test[:, :], lssvm.y_test[:, :]   
724.    
725.     xtrain_shape, ytrain_shape = np.shape(xtrain), np.shape(ytrain)   
726.     xvalid_shape, yvalid_shape = np.shape(xvalid), np.shape(yvalid)   
727.     xtest_shape, ytest_shape = np.shape(xtest), np.shape(ytest)   
728.    
729.     xtrain_name, ytrain_name = "mmap_xtrain", "mmap_ytrain"   
730.     xvalid_name, yvalid_name = "mmap_xvalid", "mmap_yvalid"   
731.     xtest_name, ytest_name = "mmap_xtest", "mmap_ytest"   
732.    
733.     path_mmap_xtrain = os.path.realpath(rf"{base_path}\{xtrain_name}")   
734.     path_mmap_xvalid = os.path.realpath(rf"{base_path}\{xvalid_name}")   
735.     path_mmap_xtest = os.path.realpath(rf"{base_path}\{xtest_name}")   
736.     path_mmap_ytrain = os.path.realpath(rf"{base_path}\{ytrain_name}")   
737.     path_mmap_yvalid = os.path.realpath(rf"{base_path}\{yvalid_name}")   
738.     path_mmap_ytest = os.path.realpath(rf"{base_path}\{ytest_name}")   
739.    
740.     mmap_xtrain = np.memmap(path_mmap_xtrain, dtype="float64", shape=xtrain_shape, mode="w

+")   
741.     mmap_xvalid = np.memmap(path_mmap_xvalid, dtype="float64", shape=xvalid_shape, mode="w

+")   
742.     mmap_xtest = np.memmap(path_mmap_xtest, dtype="float64", shape=xtest_shape, mode="w+")

   
743.    
744.     mmap_ytrain = np.memmap(path_mmap_ytrain, dtype="float64", shape=ytrain_shape, mode="w

+")   
745.     mmap_yvalid = np.memmap(path_mmap_yvalid, dtype="float64", shape=yvalid_shape, mode="w

+")   
746.     mmap_ytest = np.memmap(path_mmap_ytest, dtype="float64", shape=ytest_shape, mode="w+")

   
747.    
748.     mmap_xtrain[:], mmap_ytrain[:] = xtrain[:], ytrain[:]   
749.     mmap_xvalid[:], mmap_yvalid[:] = xvalid[:], yvalid[:]   
750.     mmap_xtest[:], mmap_ytest[:] = xtest[:], ytest[:]   
751.    
752.     del mmap_xtrain   
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753.     del mmap_xvalid   
754.     del mmap_xtest   
755.     del mmap_ytrain   
756.     del mmap_yvalid   
757.     del mmap_ytest   
758.    
759.     param = [   
760.         [path_mmap_xtrain, "float64", xtrain_shape],   
761.         [path_mmap_ytrain, "float64", ytrain_shape],   
762.         [path_mmap_xvalid, "float64", xvalid_shape],   
763.         [path_mmap_yvalid, "float64", yvalid_shape],   
764.         [path_mmap_xtest, "float64", xtest_shape],   
765.         [path_mmap_ytest, "float64", ytest_shape],   
766.     ]   
767.    
768.     print("--------------------------------PSO run----------------------------------------

--")   
769.     n_particles, n_iterations = 10, 50   
770.     setup = setup(n_particles)   
771.     start_time = datetime.datetime.now()   
772.     pso = PSO(   
773.         prediction_error,   
774.         optimize_these_numbers,   
775.         param,   
776.         setup,   
777.         number_of_particles=n_particles,   
778.         max_iterations=n_iterations,   
779.     )   
780.     try:   
781.         pso.optimize()   
782.     except KeyboardInterrupt:   
783.         print("sun")   
784.    
785.     time_passed = datetime.datetime.now() - start_time   
786.     deltatime = datetime.timedelta(seconds=time_passed.total_seconds())   
787.     print(f"Duration: {deltatime}")   
788.     columns = ["Count", "w_min", "w_max", "w", "C1_min", "C1_max", "C1", "C2_min"]   
789.     columns += ["C2_max", "C2", "Iteration", "max_iteration", "Global train Error"]   
790.     columns += [ "Global validation error", "Global test error", "gamma", "sigma"]   
791.     df = pd.DataFrame(data=np.mat(pso.logs), columns=columns)   
792.     filename = f"PSO_log_iter{n_iterations}_par{n_particles}_v13_rand_w03"   
793.     path = os.path.realpath(f"{base_path}\{filename}.xlsx")   
794.     with pd.ExcelWriter(path) as writer:   
795.         df.to_excel(writer, sheet_name="PSO Logs", index=False)   
796.    
797.     print("--------------------------------PSO run: done----------------------------------

--")   
798.      
799.     print("--------------------------------LSSVM run--------------------------------------

--")   
800.     start_time = datetime.datetime.now()   
801.     lssvm.calculate()   
802.     time_passed = datetime.datetime.now() - start_time   
803.     deltatime = datetime.timedelta(seconds=time_passed.total_seconds())   
804.     print(f"Duration: {deltatime}")   
805.     print("--------------------------------LSSVM run: done--------------------------------

--")      
806.    
807.     print("--------------------------------Training run-----------------------------------

--")   
808.     start_time = datetime.datetime.now()   
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809.     lssvm.train()   
810.     time_passed = datetime.datetime.now() - start_time   
811.     deltatime = datetime.timedelta(seconds=time_passed.total_seconds())   
812.     print(f"Duration: {deltatime}")   
813.     print("--------------------------------Trainig run: done------------------------------

----")    
814.    
815.     print("--------------------------------Validation process-----------------------------

--")   
816.     start_time = datetime.datetime.now()   
817.     lssvm.validate()   
818.     time_passed = datetime.datetime.now() - start_time   
819.     deltatime = datetime.timedelta(seconds=time_passed.total_seconds())   
820.     print(f"Duration: {deltatime}")   
821.     print("--------------------------------Validation process: done-----------------------

--")   
822.    
823.     print("--------------------------------Testing process--------------------------------

--")   
824.     lssvm.x_train = lssvm.x_train[:,:]   
825.     lssvm.y_train = lssvm.y_train[:,:]   
826.     start_time = datetime.datetime.now()   
827.     lssvm.check()   
828.     time_passed = datetime.datetime.now() - start_time   
829.     deltatime = datetime.timedelta(seconds=time_passed.total_seconds())   
830.     print(f"Duration: {deltatime}")   
831.     print("--------------------------------Testing process: done--------------------------

--")   
832.    
833.     print("--------------------------------Exporting the results--------------------------

--")   
834.     filenames_combined = {"train": f"0.7_train_results_v13_{gamma}_{sigma}","valid": f"0.1

5_valid_results_v13_{gamma}_{sigma}", "test": f"0.15_test_results_v13_{gamma}_{sigma}"}   
835.     lssvm.export_after_lssvm_prediction(base_path, filenames_combined)   
836.     filenames_split = {"train": f"split_0.7_train_results_v13_{gamma}_{sigma}", "valid": f

"split_0.15_valid_results_v13_{gamma}_{sigma}", "test": f"split_0.15_test_results_v13_{gam
ma}_{sigma}"}   

837.     start_time = datetime.datetime.now()   
838.     lssvm.export_after_lssvm_prediction_as_sheets(base_path, filenames_split, Sheets)   
839.     time_passed = datetime.datetime.now() - start_time   
840.     deltatime = datetime.timedelta(seconds=time_passed.total_seconds())   
841.     print(f"Duration: {deltatime}")   
842.     print("--------------------------------Exporting the results: done--------------------

--")   
843.     print("-------------------------------- Summary --------------------------------------

--")   
844.     time_passed_total = datetime.datetime.now() - start_time_original   
845.     deltatime = datetime.timedelta(seconds=time_passed_total.total_seconds())   
846.     print(f"Duration: {deltatime}")   
847.     print("---------------------------------- End ----------------------------------------

--")   
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