

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER'S THESIS

Study programme/specialisation:

Master of Science in Petroleum Engineering

Reservoir Engineering

Spring / Autumn semester, 2020

Open/Confidential

Author: Aizhan Kengessova
…………………………………………

(signature of author)

Programme coordinator:

Supervisor(s): Pål Østebø Andersen

 Dag Chun Standnes

 Jan Inge Nygård

Title of master's thesis:

Prediction efficiency of immiscible Water Alternating Gas Performance by LSSVM-PSO

algorithms

Credits: 30

Keywords:

Water Alternating Gas Injection, Least Squares

Support Vector Machines (LSSVM), Particle

Swarm Optimization (PSO), Recovery

Performance Prediction.

Number of pages: …………………

+ supplemental material/other: …………

Stavanger, ……………………….

date/year

Title page for Master's Thesis

Faculty of Science and Technology

2

Contents

Abstract .. 4

Acknowledgements ... 5

1. Introduction ... 9

1.1 Background and Motivation .. 9

1.2 Thesis objectives and novelty ... 11

2. Theoretical part of work .. 12

2.1 Introduction to WAG process .. 12

2.2 Existing WAG experience .. 16

2.3 Applications of ML in Reservoir Engineering ... 17

3. Methodology .. 21

3.1 WAG efficiency characterization using dimensionless number 21

3.2 Work principle of Machine Learning and Optimization algorithms to be

applied on the problem ... 23

3.2.1. Least Squares Support Vector Machines (regression) 23

3.3 Workflow ... 29

4. Creating the dataset and building LSSVM-PSO model .. 31

4.1 Identification of the dataset.. 31

4.2 Extension of the dataset .. 36

4.2.1. Quality check of the results .. 40

4.3 Development of LSSVM-PSO algorithm from scratch 43

5. Results and discussions ... 48

3

5.1 Analysis of results generated by LSSVM-PSO model 48

5.2 Testing LSSVM-PSO model on a new dataset ... 51

6.2.1. Introducing a special case by adding a new parameter 51

6.2.2. Results of testing LSSVM-PSO model on a new dataset 52

6. Conclusion ... 54

Appendix .. 55

References .. 71

4

Abstract

In this work the aim is developing LSSVM-PSO model capable of capturing the interplay

between the most influential parameters (mechanisms) and recovery factor (RF) of WAG process

in layered reservoirs. In a previous work 1840 Black Oil Model simulations were run for a 2D

model with multiple layers, an injector and a producer, and used to derive a dimensionless number

correlating reservoir heterogeneity, WAG hysteresis, gravity, mobility ratio and WAG ratio to

predict recovery factor (as measured after 1.5 injected pore volumes). Given that only one

parameter, the dimensionless number, was used to correlate RF, a significant data scatter was

observed.

In this work the database is expanded by running 824 new simulations using new hysteresis

parameters values. The Machine Learning algorithm Least Squares Support Vector Machine

(LSSVM) is used to correlate RF with representative input parameters, such as characteristic

mobility ratios, gravity numbers, heterogeneity factor and more. The appropriate number of

effective input parameters was obtained by reducing the set of independent input parameters to

dimensionless groups. Particle Swarm Optimization was used to optimize the LSSVM algorithm

parameters.

The trained LSSVM-PSO model could serve as an effective screening tool in uncovering

important trends of parameter variation and improve the efficacy of uncertainty analyses.

5

Acknowledgements

I would like to express my gratitude to my supervisor, Pål Østebø Andersen for his overall

guidance and support in theoretical questions throughout this work. He is an inexhaustible source

of good ideas and thoughtful mentor. I am also grateful for my co-supervisor Dag Chun Standnes

reviewing this work and for sharing his practical experience in specific questions. I wish to thank

my co-supervisor Jan Inge Nygård for his generous help, time and for giving me the learning

opportunity while implementing LSSVM-PSO code on Python. This thesis was not as nearly as

possible without his great contribution.

I wish to appreciate all my friends at UiS who spend with me two amazing years in

Stavanger and contributed in my growth as a person. Also, I wish to thank my dearest friend and

mentor at work Zhakashev Ganiyet who encouraged me to take a Master’s degree in Norway at

first place.

Last but not least, my master program could not have been completed without

unconditional love and support of my family. No words describe my appreciation for their support

and love to me.

6

Nomenclature

 Subscripts and Superscripts
𝜆𝐷 = mobility of the displacing fluid, (Pa ∗ s)−1

𝜆𝑑 = mobility of the displaced fluid, (Pa ∗ s)−1 * = characteristic value,

𝜆𝑖 = phase mobility, (Pa ∗ s)−1 1𝑝𝑣 = 1 PV

𝜎 = interfacial tension, IFT (N/m) 𝑎𝑟𝑖𝑡 = arithmetic

𝑁𝑐𝑎 = capillary number 𝑔 = gas

𝜗 = Darcy velocity (m/s) 𝐺 = gravity

𝐸𝑑 = volumetric sweep efficiency ℎ𝑎𝑟𝑚 = harmonic

𝐸𝜈 = volumetric (macroscopic) sweep efficiency 𝑖 = phase

𝜇𝑖 = Viscosity, Pa ∗ s 𝑗 = layer

𝜌𝑖 = phase density, kg/m3 𝑜 = oil

𝛥𝜌 = density difference, kg/m3 𝑟𝑒𝑠 = residence

𝐶 = Lands's trapping parameter 𝑖𝑛𝑖𝑡 = initial reservoir conditions

𝐹𝐻 = heterogeneity multiplier 𝑠𝑒𝑔 = segregation

𝐹𝐺 = gravity multiplier 𝑇 = total

𝑘𝑟𝑖 = relative permeability 𝑤 = water

𝑘𝑟𝑖
𝑚𝑎𝑥 = relative permeability endpoints

𝐾𝑥 , 𝐾𝑧 horizontal and vertical absolute permeability, m

𝐿𝑥 = distance from injector to producer, m

𝐿𝑦 = width of reservoir, m

𝐿𝑦 = total height of reservoir, m

𝑀 = mobility ratio

𝐻𝜙 = Pore volume, m3

ℎ𝑖 = layer height, m

𝑀𝑊𝐴𝐺 = simple characteristic three phase mobility ratio

𝑀∗ = total injection time

𝑛𝑖 = Corey exponents,

𝑁𝐺 = gravity number

𝑟𝑤 = water volume fraction in a wag cycle

𝑠𝑖 = local phase saturation

𝑠𝑖𝑟 = residual phase saturation

𝑆𝑖 = normalized saturation

𝑡 = time, seconds

𝑇𝑔−ℎ𝑐 = gas half-cycle length, seconds

𝑇𝑡𝑜𝑡 = Total injection time, seconds

𝑇𝑐𝑦𝑐𝑙𝑒 = Total WAG cycle length, days

𝑇𝑤−ℎ𝑐 = water half-cycle length, seconds

𝛼 = hysteresis parameter

𝜏 = time scale, seconds

𝜑 = porosity

𝑥 = horizontal direction towards producer, m

𝑧 = vertical direction downwards, m

7

Table of Figures

Figure 1. 1 – Resource overview for fields, information by 31.12.2018 (NPD 2019) 9

Figure 1. 2– Remaining proportion of the original oil reserves and the size of remaining oil

reserves (NPD 2019) ... 10

Figure 1. 3 – Scaled EOR potential for method with uncertainty (NPD 2019) 10

Figure 2. 1– Variations of WAG processes based on different attributes (Afzali, Rezaei, and

Zendehboudi 2018) ... 13
Figure 2. 2– Schematic representation of immiscible WAG injection in a reservoir (Bourgeois,

Joubert, and Dominguez 2019) ... 13
Figure 2. 3– Schematic representation of miscible WAG injection in a reservoir (modified after

Luis et al.) ... 14
Figure 2. 5– Scheme of prediction model ... 18
Figure 2. 6– k-means clustering algorithm example ... 18

Figure 3. 1– Overview of all simulation results plotted vs MWAG (left) and M ∗ (right) (Nygård

and Andersen 2020) .. 23
Figure 3. 2 – The best individual position in a two‐dimensional maximization problem (Bozorg-

Haddad, Solgi, and Loáiciga (2017) ... 26
Figure 3. 3– The global best position in a maximization problem (Bozorg-Haddad, Solgi, and

Loáiciga (2017) ... 26
Figure 3. 4– LSSVM-PSO model building workflow .. 29

Figure 4. 1– System geometry scheme (upper) and illustration of permeability in reservoir model

(lower) ... 31
Figure 4. 2– Input oil-water (left) and gas-oil (right) relative permeability functions 32
Figure 4. 3– Paired scatter plots of the input parameters .. 36
Figure 4. 4– Impact of C value on Sg,hyst ... 37
Figure 4. 5– Study of hysteresis influence on recovery factor using scaled RF values (color bar),

C values ... 39
Figure 4. 6– Cumulative gas and water injection volumes in reservoir conditions for new

simulation cases .. 41
Figure 4. 7– Water/Gas injection rates for new simulation cases ... 41
Figure 4. 8– Paired scatter plots of the input parameters (extended dataset) 42
Figure 4. 9 – Data overfitting: RF predicted vs. RF real .. 43
Figure 4. 10 – RF predicted vs. RF real for different 𝛾 values with constant 𝜎 44
Figure 4. 11 – Comparison of RMSE for training, validation and testing with 50 iterations, 10

particles runs ... 45
Figure 4. 12 – Difference between RMSE of raining and validation dataset for 3 runs (50

iterations, 10 particles) .. 45
Figure 4. 13 – Evolution of 𝛾 and 𝜎 values for 3 runs (50 iterations, 10 particles) 46
Figure 4. 15– RMSE for training, validation, and testing data with decreasing w 47

Figure 5. 1 – RF predicted by LSSVM-PSO vs. real RF for the whole dataset 48
Figure 5. 2 - Comparison of 8 parameter LSSVM-PSO and 1 parameter (M*) models results ... 49

8

Figure 5. 3– RF predicted by LSSVM-PSO vs. real RF for the whole dataset for individual cases

... 50
Figure 5. 4 – Comparison of real RF and predicted (using LSSVM-PSO model) RF values for

cases when WAG cycles legth are 180 (left) and 45 days (right) ... 52
Figure 5. 5 - Comparison of real RF and predicted RF values no hysteresis cases when WAG

cycles length are 180 and 45 days ... 52
Figure 5. 6– Comparison of real RF and predicted RF values with hysteresis cases when WAG

cycles length are 180 and 45 days ... 53

List of Tables

Table 4. 1– Rock/grid properties and operational parameters .. 32
Table 4. 2– Reservoir flow properties ... 32
Table 4. 3– Specification of model heterogeneities. Patterns are indicated from to (j = 1) layer. 32
Table 4. 4– Overview table of simulation experiments .. 33
Table 4. 5– Overview table of simulation experiments .. 34
Table 4. 6– C and 𝛼 values used for test simulations ... 38
Table 4. 7– C and 𝛼 values used in literature.. 40
Table 4. 8– Removed combinations of viscosity values in the dataset ... 40
Table 4. 10 - Properties of chosen optimal 𝛾, 𝜎 from each of runs... 47

Table 5. 1– Parameters used in extra cases ... 51

9

Chapter 1

Introduction

1.1 Background and Motivation

About two thirds of worldwide oil production belongs to mature fields, and production

amount from new discovered fields is on a steady decline (O’Brien et al. 2016). This makes

reconsideration of mature fields’ potential more relevant. To optimize production of such fields,

EOR technologies are widely applied across the world. Thermal and chemical EOR projects

dominate in sandstone reservoirs while gas injection and water-based methods are primarily used

in carbonates (Manrique et al. 2010).

In Figure 1. 1 we see a resource overview for the largest oil fields on the Norwegian

Continental Shelf (NCS), which comprises produced oil, remaining oil reserves, and (expected)

amount of residual oil once planned production stage ends.

Figure 1. 1 – Resource overview for fields, information by 31.12.2018 (NPD 2019)

Many large fields on NCS are now in a mature phase and have produced large percentage

of their original reserves. In Figure 1. 2 we see the proportion of remaining oil reserves for a

number of fields relative to original. The size of the circles indicates remaining reserves. That

means some greener fields as Johan Sverdrup and Johan Castberg in the North and Barents Seas

10

respectively appear on left side of the plot. They are under development and will contribute to a

continued high level of production during the 2020s (NPD 2019). Mature fields took place on the

right side of the graph and proportion of their remained reserves relative to initial ones has gone

lower over the years. However, some fields such Snorre, Valhall, Heidun still have considerable

reserves even relative to some of greener fields.

Figure 1. 2– Remaining proportion of the original oil reserves and the size of remaining oil reserves (NPD 2019)

Figure 1. 3 – Scaled EOR potential for method with uncertainty (NPD 2019)

11

In 2017 the technical potential in 27 fields was reported by Norwegian Petroleum

Directorate (NPD) and that number was expanded till 46 fields in 2019 (NPD 2019). The technical

potential of the implementation of EOR methods to adopt to an existing or planned facility on

fields were ranked by operator companies. A flat oil price of 60 USD per barrel and discount rate

of 7% has been used for economics analysis. Scaled EOR potential for each field is presented in

Figure 1. 3. Scaling factor which is used for calculating scaled volumes is estimated by combining

operational and economic factor with values from 0 to 1 for each of the methods. From the Figure

1. 3 we can see that gas-based Water Alternating Gas (WAG) injection has high potential mainly

for fields with existing equipment for its implementation. Also, low-salinity water and smart water

injection are listed as high rank ones.

With situation of oil price of USD 30 per barrel to date 14.04.2020, concentration on

mature fields is reasonable. For example, one of the effects of the price decline is that in 2015,

many international and independent projects struggled to generate enough cash to generate enough

cash to cover their spending and dividends, even as they severely cut spending and greenfield

projects. Four of the biggest oil companies (Royal Dutch Shell, BP LC, Exxon Mobil Corp. and

Chevron Corp.), outstripped cash flow by more than a combined USD 20 billion during the first

half of 2015 (Sarah Kent, Justin Scheck 2015).

Based on facts described above, studying EOR methods and developing tools for

diminishing complexity of decision-making process on implementing them are actual these days.

1.2 Thesis objectives and novelty

The objectives correspond to answering the following questions:

• How well can the LSSVM-PSO model predict WAG performance in comparison to model

of previous work based on one dimensionless number?

• How does convergence behavior depend on the number of selected dataset fractions for

LSSVM-PSO model?

• How good is the prediction efficiency when previously constant WAG cycle length

changes?

• How can hysteresis parameters be chosen to achieve desired hysteresis effect?

The novelty characteristics of this work can be summarized in these forms:

• Creation of LSSVM algorithm-based model for the WAG efficiency evaluation purpose.

• The trained LSSVM model could be an effective tool in uncovering important trends of

parameter variation and improve the efficacy of uncertainty analyses.

12

Chapter 2

Theoretical part of work

2.1 Introduction to WAG process

Conventional water and gas injection methods are well known as secondary recovery

methods. At the same time, those methods can lack of efficiency that lead to major problems in

conditions of unfavorable mobility ratio between oil and displacing phase or low displacement

effectiveness. During the displacement process of gasflooding gas fingering can be caused by

inefficient mobility ratio leading to reduction of sweep efficiency. Also, presence of indications of

heterogeneity as fractures, high permeable layers might cause early breakthrough of gas into

production wells. Therefore, cyclic injection of water slugs along with gas slugs helps to maintain

front stability and improve volumetric sweep efficiency.

One of the important mechanisms in displacing process is gravity segregation. It is very

high for gasflooding process due to high difference between densities of the phases, which

negatively affects volumetric sweep efficiency even microscopic sweep is higher in zones

contacted by the displacing flood than that for waterflooding. For waterflooding gravity

segregation has less effect because of less difference between water and oil densities in comparison

to previous case. WAG injection process limits the negative effect of gravity segregation and it is

not that severe as in pure gasflooding process and still allows to have higher displacement

efficiency than in waterflooding process.

Water Alternating Gas (WAG) method was introduced to overcome problems with

mobility ratio between oil and injected gas in gas flooding due to low viscosity and high relative

permeability of gas (Green and Willhite 2018). Injection of water helps to stabilize the flooding

front through enhancing macroscopic sweep efficiency, while injection of gas contributes to

improved microscopic sweep efficiency of the contacted reservoir regions (Christensen, Stenby’,

and Skauge 2001). In other words, WAG utilizes the advantages of two traditional methods whilst

minimizing their individual downsides.

WAG method has different types based on process driving mechanism and fluids

implementation. The Figure 2. 1 shows water alternating gas method types based on variation of

different attributes.

Based on process, this EOR method is separated into three types. Conventional WAG

involves cycles of water and gas alternately injected as shown in Figure 2. 2. In hybrid CO2

+WAG, the conventional WAG process is modified with cycles of CO2 injection. Simultaneous

13

Water and Gas injection (SWAG) encompasses a surface-prepared mixture of water and gas that

is injected into the reservoir. Despite their differences SWAG is still classified as a WAG process

type.

Figure 2. 1– Variations of WAG processes based on different attributes (Afzali, Rezaei, and Zendehboudi 2018)

Figure 2. 2– Schematic representation of immiscible WAG injection in a reservoir (Bourgeois, Joubert, and

Dominguez 2019)

There are multiple WAG types as dependent on fluid type and composition. However,

the most relevant classification is whether the injected gas cycles experience miscibility conditions

or not. Hence, they are commonly referred to as miscible WAG (MWAG) or immiscible WAG

(IWAG) processes. Schematic illustrations of both methods are shown in Figure 2. 2 and Figure

2. 3. The main difference of two figures is presence of miscible zone for MWAG. WAG

miscibility is highly dictated by reservoir conditions (temperature, pressure, and depth) and the

properties of the displaced phase (oil) and injected fluids (water and gas). As oil and gas approach

miscibility, significant mass transfer occurs. While mass transfer in immiscible process is limited

to gas being dissolved in oil, in the miscible process both gas and oil have mass transfer with each

other, thus ultimately becoming practically the same phase. The conditions that enables miscibility

during WAG injection involves increasing the concentration of light components in the injected

gas to reach the Minimum Miscibility Concentration (MMC), or by maintaining a sufficiently high

14

pressure above the Minimum Miscibility Pressure (MMP), or a combination of these (Green and

Willhite 2018).

Figure 2. 3– Schematic representation of miscible WAG injection in a reservoir (modified after Luis et al.)

To successfully design any EOR strategy, understanding the main mechanisms is highly

important not only in terms of resulting recovery factor but also economic feasibility of overall

project. The WAG mechanisms, and the underlying processes, can be quite comprehensive in

terms of its physics and subsurface uncertainties. Moreover, its overall efficiency depends on when

it was implemented, ie. whether it was implemented as a secondary or tertiary process of the

lifecycles of the field.

There are mechanisms of WAG process, which can improve oil recovery factor

• Improved volumetric sweep by water following gas.

• Oil viscosity reduction resulting from gas dissolution.

• Oil swelling by dissolved gas.

• Interfacial tension (IFT) reduction.

• Residual oil saturation reduction due to three-phase and hysteresis effects.

The intended purpose of WAG mechanisms is to improve displacement efficiency of

reservoir fluids, as compared to single phase flooding processes. This can happen by decreasing

the mobility ratio M (normally M>>1 for gas flooding), which is defined as follows:

𝑀 =
𝜆𝐷

𝜆𝑑
 (1.1)

where 𝜆𝐷 is the mobility of the displacing fluid (water or gas) and 𝜆𝑑 is the mobility of the

displaced fluid (e.g., oil). M affects both macro- and micro- sweep efficiencies. This is important

parameter as it directly affects to the volumetric (macroscopic) sweep efficiency (𝐸𝜈).

 The improvement in displacement efficiency can also happen by increasing the capillary

number (𝑁𝑐𝑎), which is given by:

𝑁𝑐𝑎 =
𝜗𝜇

𝜎
 (1.2)

15

where 𝜎 is the interfacial tension, IFT (N/m), μ refers to the viscosity of the displacing fluid (Pa.s),

and 𝜗 is the Darcy velocity (m/s). The capillary number is connected to microscopic

(displacement) sweep efficiency (𝐸𝑑), as high 𝑁𝑐𝑎 contributes to easier displacement of residual

oil from the pores (Afzali, Rezaei, and Zendehboudi 2018).

Most of the EOR methods that aim to increase the capillary number is focused on

decreasing the interfacial tension between the displacing and displaced fluids. Examples of where

this happens is for surfactant and thermal EOR methods. In case of miscible WAG displacement,

capillary number can go towards infinity as complete miscibility assumes almost zero interfacial

tension between gas and oil. The total oil recovery efficiency (𝐸) results from a combination of

both microscopic displacement efficiency (𝐸𝑑) and volumetric sweep efficiency (𝐸𝑣):

𝐸 = 𝐸𝑑 ∗ 𝐸𝑣 (1.3)

In this thesis IWAG process is considered for simplification purpose. Injecting water and

gas in an alternating way will result in complicated saturation behavior in the reservoir, since gas

and water saturations will tend to fluctuate as they are cyclically injected. This gives rise to three

phase relative permeability behavior (oil, gas and water), which will need to be described through

various correlations. The relative permeability can also be cycle dependent. (Larsen and Skauge

1998).

There are variety of reservoir properties and parameters influencing the WAG process

efficiency according to literature. Common factors presented in the literature are reservoir

heterogeneity, relative permeability, hysteresis, wettability, and gravity. The failure of EOR

projects are often connected to reservoirs with high heterogeneity. High stratification of reservoirs

makes gas injection process uneconomical in majority of cases because of problems of early gas

breakthrough. Properties as flow connection between reservoir layers, stratification, relation of

viscous -to-gravity forces mainly control vertical displacement efficiency. The cross flow usually

negatively affects the displacement process and recovery factor Gravity segregation in

homogeneous models has adversary effect and leads to low recovery efficiency when single phase

injection is used. Immiscible WAG is applied in that situation. (Christensen, Stenby’, and Skauge

2001). In highly heterogeneous reservoirs, gravity effect can divert flow from high permeable

layers to low permeable layers. So, in heterogenous models low gravity effect can be basis of a

scenario when low permeable reservoir layers stay upswept. Also, ordinary techniques to calculate

relative permeability data is not correct to use in WAG due to its cyclic hysteresis nature. The

relative permeability gas, which is non-wetting phase, is more affected by the hysteresis (Afzali,

Rezaei, and Zendehboudi 2018). Hysteresis decreases gas mobility and gas-oil mobility ratio also

gets lower positively affecting recovery factor. Moreover, hysteresis reduced negative effect of

gravity segregation in homogeneous reservoirs. Land (1968) and Carlson (1980) models are widely

used to model relative permeability hysteresis. The wettability has been defined as a parameter

influencing as it impacts parameters like capillary pressure, relative permeability, dispersion, and

electrical properties (resistivity and conductivity). It is the most important for planning tertiary oil

recovery as surfactant flooding, miscible injections, alkaline flooding, and hot water flooding.

16

2.2 Existing WAG experience

The first WAG field experience reported in literature was in 1957 in Canada according to Arne

Skauge, 2003. He wrote that preliminary portion of early projects including both MWAG and

IWAG were applied in territory of Canada, USA and former USSR. Recovery factor in 72 fields

reviewed by him are reported to have increased by 5 to 15 % of OIIP (Oil Originally In Place). It

was reported that 80% of the USA WAG field projects are positive (Sanchez 1999). In practice it

is quite hard to differentiate miscible and immiscible injection because of uncertainties in the

process itself when applied on field scale, however many cases were defined as miscible, referring

to multiple contact miscibility (Christensen, Stenby’, and Skauge 2001).

WAG is a difficult process, which may not be practical in reducing the fluids front

instabilities due to high completion costs, operational complexities. In case of alternating injection

of water after gas technique, water (higher density) will sweep the bottom part of the reservoir and

provides more stabilized flooding front by correcting mobility ratio. This is economically

profitable as it lowers gas volume required to be injected into the reservoir in comparison to pure

gas flooding method (Afzali, Rezaei, and Zendehboudi 2018).

WAG was successfully applied in many fields of Norwegian Continental Shelf (NSC) as

Gullfaks, Statfjord, South Brage, Snorre and Oseberg Øst. WAG is more complicated in terms of

design and operational requirements in comparison to traditional water or gas injection. WAG

performance is highly sensitive to the injection strategies as injection well pattern, WAG ratio,

number of WAG cycles, volume of each cycle, and injection rate and pressure.

Different aspects considered during WAG design are injection gas type, injection pattern

and tapering. Gas type is mostly classified into three groups: CO2, hydrocarbons (HC) and non-

hydrocarbons. The most popular well pattern is “5 spots” for offshore projects, while for onshore

projects the placement of wells can be more flexible. Tapering means to increase or decrease the

WAG ratio as more WAG cycles are injected. but in most of the cases that was not planned, but

the result of unfavorable change of cycles duration while process management.

One of the operational problems, described in literature (Christensen, Stenby’, and

Skauge 2001) is early breakthrough in production wells, which usually happens as a result of lack

of understanding in terms of reservoir geology. Such that, ie. with "wrong" placement of wells,

gas channelling occurs. In some cases, failure to maintain high enough pressures lead to loss of

miscibility, and consequently quicker breakthrough of gas phase and lower than expected recovery

factor. Early breakthrough happened in Snorre field due to uncertainties in geology (Stenmark and

O. Andfossen 1995). Structural definition and degree of communication through faults and vertical

transmissibilities are the most influential reservoir data for the WAG pilot carried out at Gullfaks

(Dalen, Instefjord, and Kristensen 1995). Another is reduced injectivity of injection wells, which

can happen due to three-phase flow, reduced effect of thermal fractures during gas injection or

precipitates (hydrates and asphaltenes) formed in the near well zone. This becomes the reason for

the fast drop in pressures in the reservoir. Furthermore, severe corrosion problems are related with

CO2 injection WAG. In most cases these have been solved by using high-quality steel (different

kinds of stainless steels or ferritic steel), coating the pipes, and by better treatment of the

17

equipment. Asphaltene and hydrate formation can lead to problems both during injection and

production. However, the factors influencing the formation are better known for hydrates than for

asphaltenes. In addition, temperature differences in water and gas injection in WAG process have

resulted in stress related tubing failures at Rangely Weber and Brage fields (A. Skauge and A.

Berg 1997).

Summarizing the main parameters influenced to the success or failure of field WAG trails were:

• Lack of experience.

• Uncertainties in geology or poor knowledge about reservoir properties.

• Inappropriate parameters as injection well pattern, WAG ratio, number of WAG cycles,

volume of each cycle, and injection rate and pressure.

• Brine composition and salinity are important.

• Five-spot pattern is the most common strategy.

• The most common challenges in the WAG operation are early gas breakthrough, injectivity

loss, corrosion, and the chance of asphaltene precipitation and hydrates formation

(Christensen, Stenby’, and Skauge 2001);

• The most preferred WAG ratio is 1:1 in terms of optimal oil production. However, it

doesn’t make much influence on WAG performance in mixed wet reservoirs;

• Accurate three phase relative permeability model is required both for miscible and

immiscible gas injection processes;

• Wettability controls WAG performance. Optimal values of injection rate, WAG ratio,

number of cycles, brine salinity, and polymer additive concentration will be significantly

affected by the wettability (Afzali, Rezaei, and Zendehboudi 2018).

2.3 Applications of ML in Reservoir Engineering

Machine learning is described as a subfield of computer science that concentrates on

solving two types of practical problems by collecting the dataset and algorithmically building a

statistical model based on the dataset (Burkov 2019). Machine learning algorithms are categorized

as either using supervised, unsupervised or reinforced learning processes. Supervised learning is

the first category of ML, which finds relationship between the variables by dealing with labeled

datasets. As output and input data features are known initially makes dataset “labeled”. ML

algorithm uses input data with “X” features and has known corresponding output value as “Y”.

After algorithm captures patterns in a dataset, it generates a model. Then the model is tested on a

new dataset (testing dataset) to predict outputs using the same paternal laws/rules/behavior from

the previous dataset (training dataset) for evaluating its predictive power and accuracy (Theobald

2017). Finally, after training and testing parts have been successfully accomplished, the model can

be used for prediction in the world with unknown outputs (other datasets). Simplified schematic

illustration of forward model is presented on Figure 2. 4.

18

Figure 2. 4– Scheme of prediction model

If the data is not fully classified or labeled, unsupervised learning algorithms are

implemented that will uncover patterns by itself. The most common technique is k-means

clustering, which groups data points that have similar features, ie. as illustrated in Figure 2. 5.

Figure 2. 5– k-means clustering algorithm example

Reinforcement learning is the most advanced method among the ML categories, which is

due to its key feature of improving non-stop by getting information from the previous iterations.

In cases of supervised or unsupervised learning types, the final model is created after training and

test parts, which can be considered as an endpoint. Another feature of reinforcement learning is

performance assessment set in a way that grades the output as positive or negative depending on

the (desired) outcome, as opposed to tagging data as in cases of previously described ML

algorithms types. The model learns continuously, so in example of self-driving cars avoiding crash

will be evaluated as a positive grade and in case of chess game avoiding losing will be regarded

as a positive grade.

Machine learning (ML) tools are becoming more popular in the petroleum industry,

especially in geoscience (Lary et al. 2016) and reservoir engineering. The power of ML algorithms

can be useful for understanding the trends in complex dataset and provide multivariate (multi-input

19

and one output), nonlinear, nonparametric regression or classification. It can take form of a variety

of algorithms as support vector machines (SVM), artificial neural networks (ANN), decision trees

(DT), random forests (RF), Genetic Algorithm (GA), case-based reasoning, self-organizing map

(SOM) etc.

ML based approach was used in many petroleum and reservoir engineering problems.

LSSVM (Least Squares Support Vector Machines) regression with radial basis kernel (RBK) and

GA (Generic Algorithms) for optimization was applied in estimation of gas hydrates formation

temperature (Baghban et al. 2016).

LSSVM regression with RBK and simplex optimization was used for determining the

natural gas density as function of pressure, temperature and molecular weight of gas. (Razavi et

al. 2018). They collected 1240 gas density points from the literature. The results showed low error

and deviation from actual data, which makes the model useful tool for engineers for estimation of

gas density in pipeline and dry gas reservoir calculations.

LSSVM regression with PSO (Particle Swarm Optimization) was implemented for

asphaltene precipitation prediction (Chamkalani et al. 2014). The main input parameters to the

prediction model were temperature, molecular weight, and dilution rate. The study also discussed

three other regression scaling models from works of Rassamdana and Sahimi (1996), Hu and Guo

(2001) and Ashoori et al (2003). In comparison to all three other models, prediction model

performed more accurately because of ability to fit high non-linearity in process. It was also

proposed to integrate LSSVM-PSO model with black oil simulators to increase the accuracy of the

prediction.

Multi-classifier LSSVM with RBK was used to capture high non-linear mapping

relationship between the well logging data and the lithology categories (Cheng, Guo, and Wu

2010). Kernel parameter and slack variables were optimized using PSO algorithm. The training

set consisted of 240 samples and 23 samples were used for testing.

With the rising interest in shale gas reservoirs due to technological and research

improvements of last decades, ML tools also started to be widely used in unconventional (non-

traditional) reserves development direction. One such work was provided by Tahmasebi,

Javadpour, and Sahimi, 2017. As shale gas reservoir projects involve more wells to be drilled, the

development complexities rise and in turn the economic prospects of such projects become

comprised of riskier investments. As such, identifying the most favorable spots for drilling

production wells (sweet spots) is of high importance. Sweet spots were considered in terms of

TOC (Total Hydrocarbon Content) and FI (Fracable Index) as high TOC ranging from 2% to 10%

correspond to high organic content and FI controls wells gas production capacity drilled on a shale

reservoir. Two ML methods as Multiple Linear Regression (MLR) and Neural Networks integrated

with fuzzy systems, resulting hybrid machine learning technique (HML) were used to predict TOC

and FI of shales based on wells logs. GA was used as an optimization algorithm as it can be used

when is discontinuous, non-differentiable, highly nonlinear, and even stochastic. HML technique

was observed to make much more accurate predictions for the TOC and FI, when compared with

those of the MLR method, However, both of proposed methods could not capture the whole

20

complexity of shale reservoirs as they show highly non-linear behavior. HML method was

designed to minimize the required knowledge as ML process can get not so optimistic with rising

complexity of models and computational burden following it.

These days ways of efficiently screening approaches for IOR/EOR selection

opportunities are widely discussed. ML based methods are also mentioned to be promising tools

and Neural Networks, Fuzzy Logic and Expert systems are often proposed for using exploration

and production operations (Alvarado et al. 2002).

21

Chapter 3

Methodology

3.1 WAG efficiency characterization using dimensionless number

A study on WAG performance prediction was provided by Nygård and Andersen, 2020,

where 1600 Black Oil Model simulations were run for a 2D model with multiple layers, an injector

and a producer. The results were used to derive a dimensionless number correlating reservoir

heterogeneity, WAG hysteresis, gravity, mobility ratio and WAG ratio to predict recovery factor

(as measured after 1.5 injected pore volumes). Since reservoirs are involved with complicated

physical behavior, the idea was to use the knowledge about these mechanisms to analyze the WAG

process and related properties to ultimately develop a universal formula for mobility ratio 𝑀∗ for

prediction of recovery factor. A more general parameter 𝑀𝑊𝐴𝐺 was used as starting point. The

development of 𝑀∗ was done in a stepwise process whereby the model complexity would

gradually increase as the model included more mechanisms. The mathematical description of the

scaling process is shown in Table 3.1.

 Some constant parameters, also known as tuning parameters were developed to account

for uncertain (missing) knowledge about the processes and correlations, which is the common

practice in physics. This will be the basis for further works provided in this thesis.

Table 3. 1– Summary of mathematical description of mobility ratio based on key parameters and dependencies

Initial simplified Mobility ratio

𝑴𝑾𝑨𝑮 = (
𝑟𝑤
𝑀𝑤/𝑜
∗ +

1 − 𝑟𝑤
𝑀𝑔/𝑜
∗)

−1

 (3.1)

where,

Oil/Water: 𝑀𝑤/𝑜
∗ =

𝜆𝑤
∗

𝜆𝑜𝑤
∗ =

𝜇𝑜

𝜇𝑤

𝑘𝑟𝑤
𝑚𝑎𝑥

𝑘𝑟𝑜𝑤
𝑚𝑎𝑥

(𝑛𝑜𝑤+1)

(𝑛𝑤+1)

(1−
𝑠𝑤𝑟

𝑠𝑤,𝑚𝑎𝑥
)

(1−
𝑠𝑜𝑟𝑤

𝑠𝑜𝑤,𝑚𝑎𝑥
)
 (3.2)

Oil/Gas: 𝑀𝑔/𝑜
∗ =

𝜆𝑔
∗

𝜆𝑜𝑔
∗ =

𝜇𝑜

𝜇𝑔

𝑘𝑟𝑔
𝑚𝑎𝑥

𝑘𝑟𝑜𝑔
𝑚𝑎𝑥

(𝑛𝑜𝑔+1)

(𝑛𝑔+1)

(1−
𝑠𝑔𝑟

𝑠𝑔,𝑚𝑎𝑥
)

(1−
𝑠𝑜𝑟𝑔

𝑠𝑜𝑔,𝑚𝑎𝑥
)
 (3.3)

Heterogeneity scaling

22

𝑭𝑯 =
𝐾𝑥
𝑎𝑟𝑖𝑡

𝐾𝑥
ℎ𝑎𝑟𝑚

≥ 1 (3.4)

where,

𝐾𝑥
𝑎𝑟𝑖𝑡 =

1

𝐿𝑧
∑ℎ𝑗𝐾𝑥,𝑗

𝑁𝐿

𝑗=1

 (3.5), 𝐾𝑥
ℎ𝑎𝑟𝑚 = 𝐿𝑧, (∑

ℎ𝑗

𝐾𝑥,𝑗

𝑁𝐿

𝑗=1

)

−1

 (3.6), 𝐿𝑧 =∑ℎ𝑗

𝑁𝐿

𝑗=1

 (3.7)

Gravity scaling

𝑭𝑮
𝒘/𝒐

=
1 + 𝑎1(𝑁𝐺

𝑤/𝑜
)
𝑎2

1 + 𝑎1(𝐹𝐻 − 1)(𝑁𝐺
𝑤/𝑜

)
𝑎2
 (3.8), 𝑭𝑮

𝒈/𝒐
=

1 + 𝑎1(𝑁𝐺
𝑔/𝑜
)
𝑎2

1 + 𝑎1(𝐹𝐻 − 1)(𝑁𝐺
𝑔/𝑜
)
𝑎2
 (3.9)

where,

𝑁𝐺
𝑤/𝑜

=
𝑡𝑟𝑒𝑠
𝑤/𝑜

𝑡𝑠𝑒𝑔
𝑤/𝑜 (3.10), 𝑁𝐺

𝑔/𝑜
=

𝑡𝑟𝑒𝑠
𝑔/𝑜

𝑡𝑠𝑒𝑔
𝑔/𝑜 (3.11)

𝑡𝑟𝑒𝑔
𝑤 =

𝐿𝑥𝐿𝑦 ∑ 𝜙𝑗ℎ𝑗
𝑁𝐿
𝑗=1

𝑄𝑤
 (3.12), 𝑡𝑟𝑒𝑔

𝑔
=
𝐿𝑥𝐿𝑦 ∑ 𝜙𝑗ℎ𝑗

𝑁𝐿
𝑗=1

𝑄𝑔
 (3.13)

𝑡𝑠𝑒𝑔
𝑤/𝑜

=
𝐻𝜙

𝐾𝑧
ℎ𝑎𝑟𝑚∆𝜌𝑤𝑜𝑔

(
1

𝜆𝑤
∗
+

1

𝜆𝑜𝑤
∗
) (3.14), 𝑡𝑠𝑒𝑔

𝑔/𝑜
=

𝐻𝜙

𝐾𝑧
ℎ𝑎𝑟𝑚∆𝜌𝑔𝑜𝑔

(
1

𝜆𝑔
∗
+

1

𝜆𝑜𝑔
∗
) (3.15)

Hysteresis scaling

𝒔𝒈𝒓
𝒘𝒂𝒈

= 𝑠𝑔𝑟(1 − 𝑟𝑤) + 𝑟𝑤𝑠𝑔𝑟
ℎ𝑦𝑠𝑡

 (1.18)

𝒌𝒓𝒈,𝑴
𝒘𝒂𝒈

= (
1 − 𝑟𝑤
𝑘𝑟𝑔
𝑚𝑎𝑥

+
𝑟𝑤

𝑘𝑟𝑔,𝑀
𝑚𝑎𝑥,ℎ𝑦𝑠𝑡)

−1

 (3.16), 𝒌𝒓𝒈,𝑵𝑮
𝒘𝒂𝒈

= (
1 − 𝑟𝑤
𝑘𝑟𝑔
𝑚𝑎𝑥

+
𝑟𝑤

𝑘𝑟𝑔,𝑁
𝑚𝑎𝑥,ℎ𝑦𝑠𝑡)

−1

 (3.17)

where,

𝑠𝑔𝑟
ℎ𝑦𝑠𝑡

= 𝑠𝑔𝑟 +
𝑠𝑔,𝑚𝑎𝑥 − 𝑠𝑔𝑟

1 + 𝐶(𝑠𝑔,𝑚𝑎𝑥 − 𝑠𝑔𝑟)
 (3.18)

𝑘𝑟𝑔,𝑀
𝑚𝑎𝑥,ℎ𝑦𝑠𝑡

=
𝑘𝑟𝑔
𝑚𝑎𝑥

1 + 𝑏1𝐹𝐻
𝑏2𝛼

 (3.19), 𝑘𝑟𝑔,𝑁𝐺
𝑚𝑎𝑥,ℎ𝑦𝑠𝑡

=
𝑘𝑟𝑔
𝑚𝑎𝑥

1 + 𝑏3𝐹𝐻
𝑏4𝛼

 (3.20)

Mobility terms:

𝜆𝑔,𝑀
∗ =

1

𝜇𝑔
(1 −

𝑠𝑔𝑟
𝑤𝑎𝑔

𝑠𝑔,𝑚𝑎𝑥
+)

𝑘𝑟𝑔,𝑀
𝑚𝑎𝑥

𝑛𝑔 + 1
 (3.21), 𝜆𝑔,𝑁𝐺

∗ =
1

𝜇𝑔
(1 −

𝑠𝑔𝑟
𝑤𝑎𝑔

𝑠𝑔,𝑚𝑎𝑥
+)

𝑘𝑟𝑔,𝑁𝐺
𝑚𝑎𝑥

𝑛𝑔 + 1
 (3.22)

𝜆𝑔,𝑀
∗ and 𝜆𝑔,𝑁𝐺

∗ replace 𝜆𝑔
∗ in 𝑀𝑔/𝑜

∗ for (3.3) and 𝑡𝑠𝑒𝑔
𝑔/𝑜

 for (3.15), respectively. 𝑠𝑔𝑟
𝑤𝑎𝑔

 replaces 𝑠𝑔𝑟 and 𝑘𝑟𝑔,𝑀
𝑚𝑎𝑥,ℎ𝑦𝑠𝑡

 or

𝑘𝑟𝑔,𝑁𝐺
𝑚𝑎𝑥,ℎ𝑦𝑠𝑡

replaces 𝑘𝑟𝑔
𝑚𝑎𝑥in 𝑀𝑔/𝑜

∗ , respectively (3.3).

Scaled Mobility ratio M*

𝑀∗ = (
𝑟𝑤

𝑀𝑤/𝑜
∗ 𝐹𝐻𝐹𝐺

𝑤/𝑜
+

1 − 𝑟𝑤

𝑀𝑔/𝑜
∗ 𝐹𝐻𝐹𝐺

𝑔/𝑜
)

−1

 (3.23)

Table 3. 2 – The tuning parameters that were determined from scaled simulation results

𝑎1 , - 3 𝑏1 , - 1 𝑏3 , - 10

𝑎2 , - 0.5 𝑏2 , - 0.5 𝑏4 , - 2

Nygård and Andersen, 2020 collected all of their simulation results as in Figure 3. 1, were

Recovery Factor (RF) was plotted against 𝑀𝑊𝐴𝐺 (left) and 𝑀∗ (right). Comparing them, we see

that by only using 𝑀𝑊𝐴𝐺 there is high variation of RF for a given value of of 𝑀𝑊𝐴𝐺 (a range of

0.40 for 𝑀𝑊𝐴𝐺 ≈ 1 and a range of 0.20 for 𝑀𝑊𝐴𝐺 ≈ 100). This is because it does not account for

23

heterogeneity, gravity or hysteresis, whereas dimensionless scaled 𝑀∗effects accounts for these

effects, which is why we can observe that the data is much more collected, with RF scatter ranges

between 0.15 and 0.25. The values of M cover three orders of magnitude (original values of 𝑀𝑊𝐴𝐺

cover two) indicating the shift along the axis to compensate for the stated effects.

Figure 3. 1– Overview of all simulation results plotted vs MWAG (left) and M∗ (right) (Nygård and Andersen 2020)

𝑀∗ was more effective in correlating the RF trends (Figure 3. 1), we can still observe

significant data scatter. Therefore, one of the objectives of the current work is to reduce this scatter

further by applying a model.

3.2 Work principle of Machine Learning and Optimization algorithms to be

applied on the problem

3.2.1. Least Squares Support Vector Machines (regression)

Support Vector Machines (SVM) is a supervised ML algorithm that has been widely used

in classification and nonlinear function estimation. However, the major disadvantage of SVM is

its higher computational load for the constrained optimization programming. This drawback has

been lowered with the Least Squares Support Vector Machine (LSSVM), which solves linear

equations instead of a quadratic programming problem.

Support vector machine (SVM) was developed by Vapnik, 1995 and was originally used

to solve classification problems by building hyperplanes in multidimensional spaces that separated

data which belong to different class labels. After proving itself useful the area of its application

was extended to cover regression problems. The solution of the SVM is unique and absent from

local minimums under some limited conditions. The algorithm maps the input vector, x, into a

high dimensional feature space, z, by building optimal separating hyperplanes in this higher

dimensional space. The mathematical description by is provided below.

24

The support vector machine (SVM) is generally known as a strong mathematical approach

to create accurate and comprehensive correlation between the variables (or parameters) of a certain

mathematical problem.

A modified version of SVM named least squares-SVM(LS-SVM) was introduced by Suykens and

Vandewalle (1999). Like SVM, LS-SVM has a variety of applications in both regression and

classification cases. LSSVM normally lowers the run time and exhibits more adaptivity.

Key differences with between SVM and LSSVM:

• ε - insensitive cost replaced by quadratic error cost.

• Inequality constraint replaced by equality constraint.

The given finite sample data is represented as an array of 𝐷 = {(𝑥1, 𝑦1), …… , (𝑥
𝑛, 𝑦𝑛)}, 𝑥𝑖 ∈

𝑅𝑛, 𝑦𝑖 ∈ 𝑅 (Hou, Yang, and An, 2009).

 In LSSVM, the regression is expressed as a feature space representation (Suykens 2002):

𝑦𝑖 = 𝑤𝑇𝜑(𝑥𝑖) + 𝑏 𝑤ℎ𝑒𝑟𝑒 𝑥𝑖 ∈ 𝑅
𝑝 𝑎𝑛𝑑 𝑦𝑖 ∈ 𝑅 (3.1)

For a given training set {𝑥𝑖 , 𝑦𝑖}𝑖=1
𝑁 the optimization problem is described as:

min
𝑤,𝑒

𝐽(𝜔, 𝑒) =
1

2
𝑤𝑇𝑤 + 𝛾

1

2
∑ 𝑒𝑖

2𝑁
𝑖=1 (3.2)

𝑦𝑘 = 𝑤𝑇𝜑(𝑥𝑖) + 𝑏 + 𝑒𝑖 , 𝑖 = 1,… . , 𝑁

𝐿(𝑤, 𝑏, 𝑒; 𝛼) = 𝐽(𝑤, 𝑒) − ∑ 𝛼𝑖{𝑤
𝑇𝜑(𝑥𝑖) + 𝑏 + 𝑒𝑖 − 𝑦𝑖}

𝑁
𝑘=1 (3.3)

with Lagrange multipliers 𝛼𝑖.

Conditions for optimality:

{

 𝑑𝐿

𝑑𝑤
= 0 → 𝑤 =∑𝛼𝑖𝜑(𝑥𝑖)

𝑁

𝑘=1

𝑑𝐿

𝑑𝑏
= 0 →∑𝛼𝑖

𝑁

𝑘=1

= 0

𝑑𝐿

𝑑𝑒𝑖
= 0 → 𝛼𝑖 = 𝛾𝑒𝑖, 𝑖 = 1,… ,𝑁

𝑑𝐿

𝑑𝛼𝑖
= 0 → = 𝑤𝑇𝜑(𝑥𝑖) + 𝑏 + 𝑒𝑖 − 𝑦𝑖 = 0, 𝑖 = 1,… ,𝑁

 (3.3)

Solution is

 [
0

1
→|

1
→𝑇

𝛺 + 𝛾−1𝐼
] [
𝑏

𝛼
] = [

0

𝑦
] (3.3)

with

25

𝑦 = [𝑦1; … ; 𝑦𝑁],1⃗ = [1;… ; 1], 𝛼 = [𝛼1; … ; 𝛼𝑁]

and by applying Mercer's condition:

Ω𝑘𝑗 = 𝜑(𝑥𝑖)
𝑇𝜑(𝑥𝑗) = 𝐾(𝑥𝑖, 𝑥𝑗) , 𝑖, 𝑗 = 1,… ,𝑁 (3.4)

Resulting LS-SVM model for function estimation:

𝑦(𝑥) = ∑𝛼𝑘𝐾(𝑥𝑖 , 𝑥) + 𝑏

𝑁

𝑘=1

 (3.5)

The final form of LSSVM is given by

[

0 1 ⋯ 1

1 𝐾(𝑥1, 𝑥1) +
1

𝛾
… 𝐾(𝑥1, 𝑥𝑁)

⋮ ⋮ ⋱ ⋮

1 𝐾(𝑥𝑁, 𝑥1) ⋯ 𝐾(𝑥𝑁 , 𝑥𝑁) +
1

𝛾]

(𝑁+1)𝑋(𝑁+1)

[

𝑏
𝛼1
⋮
𝛼𝑁

]

(𝑁+1)𝑋1

=[

0
𝑦1
⋮
𝑦𝑁

]

(𝑁+1)𝑋1

 (3.6)

𝐾(𝑥1, 𝑥1) is a kernel function. Radial Basis Kernel function was selected for the problem in this

thesis:

 𝐾(𝑥𝑖 , 𝑥𝑗) = exp (−
‖𝑥𝑖 − 𝑥,‖

2

𝜎2
) (3.7)

Particle swarm optimization (PSO)

The LSSVM regularization parameter, 𝛾, and kernel parameter, 𝜎2 can be determined

through optimization technique such as Generic Algorithm (GA), Particle Swarm Optimization

(PSO), and Simulated Annealing (SA) by minimizing the objective function. In this study, Root

Mean Square Error (RMSE) between simulated "real" values and model-predicted values from

LSSVM is considered as objective function with PSO routine.

The Particle Swarm optimization is a meta-heuristic algorithm, which was inspired by

the social behavior of birds. It is an example of swarm intelligence, that can be used for optimizing

the LSSVM algorithm. The basic principle of PSO’s work is described according to Bozorg-

Haddad, Solgi, and Loáiciga (2017).

Creating the population of particles. In an N-dimensional optimization problem a particle is

specified as an array of size 1 × N, which is each possible solution of the optimization problem as

a particle:

𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒 = 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑖, … , 𝑥𝑁) (3.8)

where 𝑋 = 𝑎 possible solution of the optimization problem, 𝑥𝑖 = 𝑖th decision variable of solution

𝑋, and 𝑁 = number of decision variables. The PSO algorithm starts by generating a matrix of

particles

26

𝑆𝑤𝑎𝑟𝑚 =

[

𝑋1
𝑋2
⋮
𝑋𝑗
⋮
𝑋𝑀]

=

[

𝑥1,1 𝑥1,2 ⋯ 𝑥1,𝑖 … 𝑥1,𝑁
𝑥2,1 𝑥2,2 … 𝑥2,𝑖 … 𝑥2,𝑁

⋮
𝑥𝑗,1 𝑥𝑗,2 … 𝑥𝑗,𝑖 … 𝑥𝑗,𝑁

⋮ ⋮
𝑥𝑀,1 𝑥𝑀,2 ⋯ 𝑥𝑀,𝑖 𝑥𝑀,𝑁]

 (3.9)

where 𝑋𝑗 = 𝑖th solution 𝑥𝑗,𝑖 = 𝑖th decision variables of the 𝑗th solution, and 𝑀 = population size.

Each particle moves through the decision space based on the individual best (𝑃𝑏𝑒𝑠𝑡) and global

best (𝐺𝑏𝑒𝑠𝑡) positions:

𝑃𝑏𝑒𝑠𝑡 = (𝑝𝑗,1, 𝑝𝑗,2, … , 𝑝𝑗,𝑖, … , 𝑝𝑗,𝑁), 𝑗 = 1,2, … ,𝑀 (3.10)

where 𝑃𝑏𝑒𝑠𝑡𝑗 = the best position of the 𝑗th particle and 𝑝𝑗,𝑖= the best position of the 𝑗th particle

in the 𝑖th dimension. The graphical illustration of the concept is shown in Figure 3. 2.

Figure 3. 2 – The best individual position in a two‐dimensional maximization problem (Bozorg-Haddad, Solgi, and

Loáiciga (2017)

𝐺𝑏𝑒𝑠𝑡 is an array 1× 𝑁 whose elements define the best position achieved in the swarm:

𝐺𝑏𝑒𝑠𝑡 = (𝑔1, 𝑔2, … , 𝑔𝑖, … , 𝑔𝑁), 𝑎𝑙𝑙 𝑗 (3.11)

where 𝐺𝑏𝑒𝑠𝑡 = the best position in the swarm’s history and 𝑔1 = the best position in the swarm’s

history in the 𝑖th dimension. The graphical illustration of the concept is shown in Figure 3. 3.

Figure 3. 3– The global best position in a maximization problem (Bozorg-Haddad, Solgi, and Loáiciga (2017)

Calculation of velocities. To update the position of each particle the particles’ velocities are used,

which are calculated based on 𝐺𝑏𝑒𝑠𝑡 and 𝑃𝑏𝑒𝑠𝑡.

27

The previous velocity of the 𝑗th particle (𝑉𝑗) is:

𝑉𝑗 = (𝑣𝑗,1, 𝑣𝑗,2, … , 𝑣𝑗,𝑖, … , 𝑣𝑗,𝑁), 𝑗 = 1,2, … ,𝑀 (3.12)

where 𝑣𝑗,𝑖 = the velocity of the 𝑗th particle in the 𝑖th dimension that is calculated as follows:

𝑣𝑗,𝑖
(𝑛𝑒𝑤) = 𝑤 × 𝑣𝑗,𝑖 + 𝐶1 × 𝑅𝑎𝑛𝑑 × (𝑝𝑗,𝑖 − 𝑥𝑗,𝑖) + 𝐶2 × 𝑅𝑎𝑛𝑑 × (𝑔𝑖 − 𝑥𝑗,𝑖) (3.13)

 𝑗 = 1,2, . . , 𝑀, 𝑖 = 1,2, … ,𝑁

where

 𝑣𝑗,𝑖
(𝑛𝑒𝑤) = the new velocity of the 𝑗th particle in the 𝑖th dimension;

 𝑣𝑗,𝑖 = the previous velocity of the 𝑗th particle in the 𝑖th dimension;

 𝑤 = inertia weight parameter;

𝑅𝑎𝑛𝑑 = a random value in the range [0,1];

𝐶1 = cognitive parameter, and 𝐶2 =social parameter (𝐶1 and 𝐶2 control the movement of 𝑃𝑏𝑒𝑠𝑡

and 𝐺𝑏𝑒𝑠𝑡 toward an optimal point. 𝐶1 = 𝐶2 = 2 can be used.. Movement along different

directions towards 𝐺𝑏𝑒𝑠𝑡 and 𝑃𝑏𝑒𝑠𝑡 is possible if 𝐶1 and 𝐶2 are larger than one.

 The particle’s velocity is limited by lower and upper bounds in the following manner:

𝑉𝑖 ≤ 𝑣𝑗,𝑖
(𝑛𝑒𝑤) ≤ 𝑉𝑖

(𝑢), 𝑗 = 1,2, … ,𝑀, 𝑖 = 1,2, … ,𝑁 (3.14)

where 𝑉𝑖
(𝐿)

 and 𝑉𝑖
(𝑢)

corresponds to the lower and upper bound of the velocity along the 𝑖th

dimension, respectively.

 The inertia weight parameter may change as the algorithm progresses as follows:

𝑤𝑜 = 𝑤0 − [(𝑤0 − 𝑤𝑇) ×
𝑡

𝑇
] , 𝑡 = 1,2, … , 𝑇 (3.15)

where 𝑤𝑜 refers to initial inertia weight, 𝑤𝑇 is inertia weight for the last iteration, and 𝑇 is total

number of iterations. The values of 𝑤 changes through the iterations.

The inertia weight parameter w has an important role in swarm convergence and affects the

velocity of individual particles in the swarm. Large or small values of 𝑤 cause searching in a wide

or narrow space, respectively (Bozorg-Haddad, Solgi, and Loáiciga (2017).

Updating of particles positions.

𝑋𝑗
(𝑛𝑒𝑤)

= (𝑥𝑗,1́ , 𝑥𝑗,2́ , … , 𝑥𝑗,𝑖́ , … , 𝑥𝑗,𝑁́), 𝑗 = 1,2, … ,𝑀 (3.16)

𝑥𝑗,𝑖́ = 𝑥𝑗,𝑖 + 𝑣𝑗,𝑖
(𝑛𝑒𝑤), 𝑗 = 1,2, … ,𝑀, 𝑖 = 1,2, , … , 𝑁 (3.17)

where 𝑋𝑗
(𝑛𝑒𝑤)

= 𝑗th new solution and 𝑥𝑗,𝑖́ = new value of 𝑖th decision variable of the jth new

solution. The 𝑀 newly generated solutions replace all the old solutions.

Goodness of fit can be determined by one of these methods:

28

1. The coefficient of determination (𝑅2):

𝑅2 = 1 −

∑ (𝑦𝑜𝑏𝑠,𝑖 − 𝑦𝑚𝑜𝑑𝑒𝑙,𝑖)
2𝑛

𝑖=1

∑ ((
1
𝑛
∑ 𝑦𝑜𝑏𝑠,𝑖)

𝑛

𝑖=1
− 𝑦𝑚𝑜𝑑𝑒𝑙,𝑖)

2
𝑛

𝑖=1

 (3.18)

The values of 𝑅2 range from 0 to 1, corresponding to the worst and the best fit.

2. Root Mean Square Error (RMSE), which is square root of Mean Squared Error (MSE):

𝑀𝑆𝐸 =
∑ (𝑦𝑜𝑏𝑠,𝑖 − 𝑦𝑚𝑜𝑑𝑒𝑙,𝑖)

2𝑛
𝑖=1

𝑛
 (3.19)

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 (3.60)

𝑦𝑒𝑥𝑝 and 𝑦𝑚𝑜𝑑𝑒𝑙 are the experimental and modeled values, respectively.

29

3.3 Workflow

The proposed workflow for building LSSVM-PSO model is presented in Figure 3. 4.

Initially data analysis was provided to build the dataset which was used for creating LSSVM-PSO

model. Original dataset from previous work by was expanded (see more in Chapter 0).

Figure 3. 4– LSSVM-PSO model building workflow

30

Afterwards the randomized expanded dataset was divided into training, validation and

testing parts by fractions of 70, 15 and 15 %, respectively. Normalization of data was applied to

keep input data compatible to calculated RMSE values for each part of the dataset. Random initial

values were selected for hyperparameters (𝜎, 𝛾) values. The training dataset was utilized to train

the LSSVM model by capturing patterns and rule in it. PSO was applied on LSSVM algorithm for

optimizing hyperparameter values by minimizing Root Mean Square Error (RMSE) between real

validation data output and predicted output by LSSVM. Instead of using RMSE value as stopping

criteria the optimization algorithm was tested with different numbers of iterations. That was a

decision made based on lack of knowledge about value of RMSE for validation dataset when

optimization process can be stopped. The optimal number of iterations was defined to be 50 with

10 particles based on stabilization of hyperparameters and RMSE curves. 𝜎, 𝛾 values were selected

by analyzing RMSE curves behavior when different hyperparameters are were implemented.

Testing data is used to observe the model for predictive capability.

Then LSSVM is returned using the optimum values for hyperparameters. LSSVM-PSO

model is in the output.

31

Chapter 4

Creating the dataset and building LSSVM-PSO model

4.1 Identification of the dataset

The reservoir model (system) that is used for simulations is stratified and contains layers

that align with the horizontal x-axis, which goes from injector to producer well. This is illustrated

in Figure 4. 1, where layering is distinguished by differences in horizontal permeability values.

The specific layered setup can be read from Table 4. 3. The layers are internally homogeneous

(uniform height, porosity, and permeability). The z-axis points downwards along the direction of

gravity, normal to the injector-producer path. Both wells are perforated along the entire reservoir

section. The applied grid properties and operational parameters are provided in Table 4. 1, while

fluid flow properties and input relative permeability functions can be seen from

Table 4. 2 and Figure 4. 2, respectively. The properties described herein remain the same

throughout the study.

Figure 4. 1– System geometry scheme (upper) and illustration of permeability in reservoir model (lower)

32

Table 4. 1– Rock/grid properties and operational parameters

Nx,

Ny,

-

-

100

1

Lx,

Ly,

m

m

1000

100

φj,-

hj, m

0.30

3

Qw, m3/d

Qg, m
3/d

1014.6

1014.6

Tw−hc, d

Tg−hc, d
45

45

Nz, - 81 Lz, m 81 NL,- 9 T tot, PVs 1.5

Table 4. 2– Reservoir flow properties

𝑘𝑟𝑜𝑤
𝑚𝑎𝑥 = 𝑘𝑟𝑜𝑤(𝑆𝑤𝑖), - 0.25 𝑛𝑜𝑤 , - 2

𝑘𝑟𝑜𝑔
𝑚𝑎𝑥 = 𝑘𝑟𝑜𝑔(𝑆𝑔𝑖), - 0.25 𝑛𝑜𝑔 , - 2

𝑘𝑟𝑤
𝑚𝑎𝑥 = 𝑘𝑟𝑤(1 − 𝑆𝑜𝑟𝑤), - 0.05 𝑛𝑤 , - 2

𝑘𝑟𝑔
𝑚𝑎𝑥 = 𝑘𝑟𝑔(1 − 𝑆𝑜𝑟𝑔), - 0.005 𝑛𝑔 , - 2

𝑆𝑜𝑖 , - 0.842 𝑆𝑜𝑟𝑤, - 0.20

𝑆𝑤𝑖 = 𝑆𝑤𝑟 ,- 0.158 𝑆𝑜𝑟𝑔, - 0.10

𝑆𝑔𝑖 = 𝑆𝑔𝑟 , - 0.00

Table 4. 3– Specification of model heterogeneities. Patterns are indicated from to (j = 1) layer.

Model 𝐾𝑥,𝑗 [𝑚𝐷] 𝐾𝑧,𝑗 𝑖 [𝑚𝐷] 𝐹𝐻

1 (base) [300] x9 [300] x9 1.0

2 [300, 100, 900] x3 [300, 100, 900] x3 2.1

3 [500, 50] x4, [500] [500, 50] x4, [500] 3.0

4 [1000, 20] x4, [1000] [1000, 20] x4, [1000] 12.9

Figure 4. 2– Input oil-water (left) and gas-oil (right) relative permeability functions

The main assumptions made regarding input parameters are:

• Compressibility and miscibility effects are ignored in the study

• WAG is applied as a non-tertiary method, without any prior injection stage.

The data from 1648 WAG simulations of previous work (Nygård and Andersen 2020) was used,

together with 192 single-phase injection simulations, as an initial dataset. Both in previous and

current work, Eclipse was used for these simulation runs. The parameter combinations that was

used to produce these results (total 1840 simulations) are shown in

33

Table 4. 4, which cover changes to heterogeneity, gravity and hysteresis effects.

Table 4. 4– Overview table of simulation experiments

Purpose Types
Changing parameters values (in different combinations)

Number of

runs

FH 𝜟𝝆, kg/m3 rw C 𝜶 𝝁𝒘 𝝁𝒈

Scaling

heterogeneity

1.00

1

0.33

1000000 0

20 4

460

2.09 0.50 4 1

3.00 0.67 1 0.5

12.86 0 0.5 0.25

 1

Scaling gravity no heterogeneity 1 400

0.33

1000000 0

20 4

115

0.50 4 1

0.67 1 0.5

0 0.5 0.25

1

Scaling gravity
with

heterogeneity

2.09

400

0.33

100000

20 4

345
3.00 0.50 4 1

12.86 0.67 1 0.5

 0.5 0.25

Scaling WAG

hysteresis

No gravity+

heterogeneity

1

1

0.33

1

0 20 4

460

2.09 0.50 2.5 4 1

3.00 0.67 1 0.5

12.86 0 0.5 0.25

 1

with gravity

+heterogeneity

1

400

0.33

1

0 20 4

460

2.09 0.50 2.5 4 1

3.00 0.67 1 0.5

12.86 0 0.5 0.25

 1

Total 1840

Approach used for selection of input parameters for LSSVM-PSO model

The main idea for selecting input parameters was to consider all mechanisms that was

observed to have significant influence on recovery factor of WAG process. It was done in two

phases:

1. Formation of dataset based on simulations provided in previous study and main processes used

for scaling (Nygård and Andersen 2020);

2. Extending the dataset after dataset analysis by running additional simulations, to cover

parameter combinations that in previous work was not fully explored

For having the dataset sufficiently representing the key processes in the WAG process and limiting

number input parameters relating to the same output, effect of some process parameters must be

grouped into dimensionless numbers. That will allow the LSSVM model input parameters to be

not dependent on unit systems and efficiently represent maximum information with minimum

space and computational power consumed. The parameters for the initial dataset with justification

of their purpose is presented in Table 4. 5.

34

Table 4. 5– Overview table of simulation experiments

Parameter Symbol Purpose Type Scaling formula

1

Heterogeneity factor Log10Fh

Describes effect of

changing

heterogeneity

Scaled

dimensionless

𝒍𝒐𝒈𝑭𝑯 = 𝑙𝑜𝑔
𝐾𝑥
𝑎𝑟𝑖𝑡

𝐾𝑥
ℎ𝑎𝑟𝑚

 (4.1)

𝐾𝑥
𝑎𝑟𝑖𝑡 =

1

𝐿𝑧
∑ℎ𝑗𝐾𝑥,𝑗

𝑁𝐿

𝑗=1

 (4.2)

𝐾𝑥
ℎ𝑎𝑟𝑚 = 𝐿𝑧 , (∑

ℎ𝑗

𝐾𝑥,𝑗

𝑁𝐿

𝑗=1

)

−1

(4.3), 𝐿𝑧 =∑ℎ𝑗 (4.4)

𝑁𝐿

𝑗=1

2 Hysteresis parameter 𝛼 Contribution of

hysteresis
Single

dimensionless

Used directly

3 Land trapping parameter Log10C Used directly

4

WAG ratio rw

Input of altering

water or gas

fraction.

Used directly

5
Mobility ratio of water and

gas
Log10(Mw/o)

Mobility of oil, gas

and water

Scaled

dimensionless

 𝑴𝒘/𝒐
∗ =

𝜆𝑤
∗

𝜆𝑜𝑤
∗
=
𝜇𝑜
𝜇𝑤

𝑘𝑟𝑤
𝑚𝑎𝑥

𝑘𝑟𝑜𝑤
𝑚𝑎𝑥

(𝑛𝑜𝑤 + 1)

(𝑛𝑤 + 1)

(1 −
𝑠𝑤𝑟
𝑠𝑤,𝑚𝑎𝑥

)

(1 −
𝑠𝑜𝑟𝑤
𝑠𝑜𝑤,𝑚𝑎𝑥

)
 (4.5)

6

Mobility ratio of gas and oil Log10(Mg/o) 𝑴𝒈/𝒐
∗ =

𝜆𝑔
∗

𝜆𝑜𝑔
∗
=
𝜇𝑜
𝜇𝑔

𝑘𝑟𝑔
𝑚𝑎𝑥

𝑘𝑟𝑜𝑔
𝑚𝑎𝑥

(𝑛𝑜𝑔 + 1)

(𝑛𝑔 + 1)

(1 −
𝑠𝑔𝑟
𝑠𝑔,𝑚𝑎𝑥

)

(1 −
𝑠𝑜𝑟𝑔
𝑠𝑜𝑔,𝑚𝑎𝑥

)
 (4.6)

7

Gravity number of water/gas Log10(Ng.w/o)

𝑵𝑮
𝒘/𝒐

=
𝑡𝑟𝑒𝑠
𝑤/𝑜

𝑡𝑠𝑒𝑔
𝑤/𝑜

 (4.7) 𝑡𝑟𝑒𝑔
𝑤 =

𝐿𝑥𝐿𝑦 ∑ 𝜙𝑗ℎ𝑗
𝑁𝐿
𝑗=1

𝑄𝑤
 (4.8)

𝑡𝑠𝑒𝑔
𝑤/𝑜

=
𝐻𝜙

𝐾𝑧
ℎ𝑎𝑟𝑚∆𝜌𝑤𝑜𝑔

(
1

𝜆𝑤
∗
+

1

𝜆𝑜𝑤
∗
) (4.9)

8

Gravity number of gas/oil Log10(Ng.g/o)

𝑵𝑮
𝒈/𝒐

=
𝑡𝑟𝑒𝑠
𝑔/𝑜

𝑡𝑠𝑒𝑔
𝑔/𝑜

 (4.10) 𝑡𝑟𝑒𝑔
𝑔

=
𝐿𝑥𝐿𝑦 ∑ 𝜙𝑗ℎ𝑗

𝑁𝐿
𝑗=1

𝑄𝑔
(4.11)

𝑡𝑠𝑒𝑔
𝑔/𝑜

=
𝐻𝜙

𝐾𝑧
ℎ𝑎𝑟𝑚∆𝜌𝑔𝑜𝑔

(
1

𝜆𝑔
∗
+

1

𝜆𝑜𝑔
∗
) (4.12)

35

Logarithm was used for some of the input parameters presented in Table 4. 5 to keep

compatibility with other parameters values.

To understand the distribution of selected input parameters and to estimate its quality,

paired scatter plots of initial input parameters was created (Figure 4. 3). They show the relation of

parameters between each other in all combinations. The plotted parameters are given by the top

column box and the right-most row box, which correspond to the plotted property on the y- and x-

axis, respectively.

For most parameters there is a uniform distribution in their value ranges, especially for

combinations concerning M and Ng parameters, as seen in Figure 4. 3. In the previous study,

hysteresis parameters C and 𝛼 were selected primarily to cover two edge cases, namely "no

hysteresis" (𝛼 =2.5, C=0) and "strong hysteresis" (𝛼 =0, C=100000) scenarios. This is why we see

parameter combinations for C and 𝛼 not giving as good distribution as for other parameters. We

could use this opportunity to extend the dataset with some intermediate values for C and alpha,

that are within the previously used edge case values.

When preparing the input matrix for LSSVM, there was a challenge in defining

appropriate values for mobility and gravity numbers for the cases of single-phase injection of gas

or water. This was due to that at rw=1 values for Ng.g/o and Mg/o did not exist, similarly for

Ng.w/o and Mw/o at rw=0. This would create "gaps" in the dataset (the matrix used in ie. Eq. 3.6)

and require the LSSVM to handle those scenarios in some way, which might have made it biased

to our choices. Instead, to preserve LSSVM functionality as-is, "fake" values were introduced

while keeping the RF value identical to that of the non-fake values, at the rw=1 and rw=0

endpoints. Basically, it meant that a scatter of "fake" values was used together with the same RF

value, to try to make the LSSVM disregard somewhat the existence of ie. Ng.g/o and Mg/o at

rw=1. This is explained in detail below.

For each datapoint where Ng.g/o and Mg/o (or Ng.w/o and Mw/o) did not exist, four

datapoints were used. These were created in the following manner, where i=w or i=g:

• Log(Mi/o_ref)+1, Log(Ng.i/o_ref)+1

• Log(Mi/o_ref) -1, Log(Ng.i/o_ref)+1

• Log(Mi/o_ref)+1, Log(Ng.i/o_ref)-1

• Log(Mi/o_ref)-1, Log(Ng.i/o_ref)-1

Where phase-specific reference values from that of the WAG cases were used since both

gas and water exist there. Letting the rw approach but never become rw=1, we could select the

correct reference values for the gas phase. Similarly, for the water phase. While the actual single-

phase injection simulations ran at exactly rw=1 or rw=0, this allowed some reference value

selection to complete the 8-input dataset where data for both WAG, gas and waterflooding exists.

Ultimately, this meant that the dataset was extended with 576 "fake" datapoints created

based on 192 non-fake datapoints for rw=1 and rw=0, and hence 768 datapoints in total represent

water and gas flooding.

36

Figure 4. 3– Paired scatter plots of the input parameters

In total Figure 4. 3 contains overall 1840+576 =2416 datapoints.

4.2 Extension of the dataset

As it was mentioned before in previous work hysteresis effect was used in terms of “no

hysteresis” and “strong hysteresis”. In simulation hysteresis effect was set using WAGHYSTR

keyword in Eclipse (E100) and in case of absence of that effect this keyword was not used. For

scaling process based on theoretical knowledge extremely high C=1000000 and 𝛼 = 0 were used

for “no hysteresis” cases. However, in this work hysteresis effect will be varied to train the ML

model. Previously set value of C for “no hysteresis” case stands out most among other parameters

ranges as it is large number even in logarithmic scale (Figure 4. 4). So, perhaps it is possible to

identify a lower value of C (than 1000000) that practically has the same effect of C hysteresis

effect vanishing, where this new C would be used for new simulations. The formula used to

37

calculate trapped gas saturation 𝑠𝑔,ℎ𝑦𝑠𝑡 is based on combined Land (1968) and Carlson (1981)

elements.

By setting limit to 𝑠𝑔,𝑚𝑎𝑥 − 𝑠𝑔𝑟 = 0.05 (5%) in (4.13) and 𝑠𝑔,ℎ𝑦𝑠𝑡 was plotted against

different C values (Figure 4. 4). From the plot it can be seen that 𝑠𝑔,ℎ𝑦𝑠𝑡 approaches zero by

increasing Land’s parameter values and by accepting the accuracy when trapping of gas becomes

less than 1%, the highest value for C was set to be 1000 or logC = 3.

𝑠𝑔,ℎ𝑦𝑠𝑡 = 𝑠𝑔𝑟 +
𝑠𝑔,𝑚𝑎𝑥 − 𝑠𝑔𝑟

1 + 𝐶(𝑠𝑔,𝑚𝑎𝑥 − 𝑠𝑔𝑟)
 (4.13)

𝐶 =
1 − 𝑠𝑤𝑐
(𝑠𝑔𝑟)𝑚𝑎𝑥

− 1 (4.14)

Figure 4. 4– Impact of C value on Sg,hyst

To identify C and 𝛼 values combination which can effectively represent desired degree

of hysteresis effect and avoid running too many new simulations, the impact of those values on

degree of hysteresis effect must be studied.

To study influence of hysteresis in terms of different 𝛼 and C values sensitivity test was

carried out. Overall 308 cases with 77 (C, 𝛼) combinations were run on Eclipse based on extreme

scenarios of “homogeneous” (Fh=1) and “highly heterogeneous” (Fh=12.9), “no gravity” and

“with gravity” with 1:1 WAG, when 𝜇𝑤 = 4 and 𝜇𝑔 = 4 . That was provided to understand

behavior of recovery efficiency in from low hysteresis to moderate and highly hysteresis cases. C

and 𝛼 values tested for all cases are shown in Table 4. 6 and Figure 4. 5 (black dots). Results were

plotted relating hysteresis values to scaled RF (color bar), where the lowest RF (purple) and the

highest RF (red) for each special scenario correspond to 0 and 1, respectively (Figure 4. 5). The

recovery factor (RF) is used as an indicator of how strong the hysteresis is, based on C and alpha

choices. However, one could plausibly use Sor instead if these and other parameter values are

easily available for export (and analysis) from all reservoir sections. To exclude influence of other

factors such as gravity and heterogeneity, scaled RF values was used. C values were plotted using

logarithmic scale to keep compatibility with 𝛼values. The values that were used in all combinations

with existing parameters are highlighted with white circles (C=1000, 𝛼 = 0 and C=0, 𝛼 = 2.5).

0

0.01

0.02

0.03

0.04

0.05

0.06

0 100 200 300 400 500 600 700 800 900 1000

S
g

,h
y

st

C

38

Various combinations of C and 𝛼 can be seen from the plots in Figure 4. 5. The behavior

in different cases from Figure 4. 5 (a-c) show overall similar trends, changing from no hysteresis

to strong hysteresis zones which correspond to low and high scaled RF values, respectively.

Figure 4. 5(a) illustrates homogeneous (Fh=1) reservoir, no gravity case where

improvement in scaled RF values are gradual from high C and low 𝛼 values to low C and high 𝛼

values. In case of “homogeneous” (Fh=1) reservoir with gravity effect in Figure 4. 5(b), green

zone corresponding to moderate hysteresis effect is smaller than in (a) and does not exist in upper

right corner of the map. That means that some of the positive effects of hysteresis are neutralized

by gravity effect and higher hysteresis effect is needed to get similarly higher RF values, in

comparison to lower hysteresis effect cases.

Figure 4. 5 (c) represents heterogeneous (Fh=12.9) reservoir - no gravity case which is

similar to Figure 4. 5 (a) but with thinner moderate and high hysteresis zones. In “heterogeneous”

(Fh=12.9) reservoir with gravity case in Figure 4. 5 (d) low hysteresis zone (light blue) is repeated

twice, which makes it

We assume that the red and purple zones correspond to the higher and lower hysteresis

effect zones, where existing extreme and no hysteresis values were already explored. Two zones

unexplored in previous studies are the moderate (green) and moderate-to-low (blue) hysteresis

effect, we are interested in those ones. All patterns of previous maps for individual cases are well

overlapping in Figure 4. 5 (c). The only difference between the maps plotted for individual cases

is that the area of various color zones is changing to thinner or thicker, or slightly shifting their

locations when the characteristics of WAG process vary in terms of heterogeneity and gravity.

This confirms possibility to select one combination of hysteresis parameters representing all

individual cases.

To narrow the area of interest of the hysteresis parameter values, we compare with values

used in the literature, such as C in range 0.7-16.7 and 𝛼 in range 0.01-2.8 as seen from Table 4. 7.

That narrows the area of the study to within black dashed line square. Finally values for adding to

the existing dataset are C= 10 (logC=1) and 𝛼=1 (red point in Figure 4. 5).

Table 4. 6– C and 𝛼 values used for test simulations

Parameters

 C 𝛼

1 1 0

2 2 0.5

3 5 1.0

4 10 1.5

5 17.8 2.0

6 50 2.5

7 100 3.0

8 178

9 316

10 562

11 1000

Overall combinations C and 𝛼 77

39

a. Homogeneous without gravity effect b. Homogeneous with gravity effect

 c. Heterogeneous without gravity effect d. Heterogeneous with gravity effect

e. overlapped maps from a to d

Figure 4. 5– Study of hysteresis influence on recovery factor using scaled RF values (color bar), C values

40

Table 4. 7– C and 𝛼 values used in literature

C 𝛼 Reference

History-matched: 16.7 History-matched :1.8
(Mahzari and Sohrabi 2016)

Experimental: 7 Experimental: 0.5

2.7, 1.4 2.8,2.4 (Talabi et al. 2019)

0.7-2.2 0.01 (Spiteri and Juanes 2006)

4.2.1. Quality check of the results

Quality check was provided using cumulative gas and water injection volumes in reservoir

conditions and injection rates to have constant reference for comparing cases. Combinations,

which were removed in the previous work and have not been included in the previous dataset due

to not meeting quality check criteria are shown in Overall number of combinations when altering

5 different combinations of rw, 𝜇𝑔, 𝜇𝑤, 4 different values of heterogeneity factor and 2 values of

density difference is 80.

Table 4. 8– Removed combinations of viscosity values in the dataset Table 4. 8. Overall number of

combinations when altering 5 different combinations of rw, 𝜇𝑔, 𝜇𝑤, 4 different values of

heterogeneity factor and 2 values of density difference is 80.

Table 4. 8– Removed combinations of viscosity values in the dataset

rw 𝝁𝒈 𝝁𝒘 Fh
C, 𝛼

combination
𝜟𝝆

1 0.33 20 20 1 0, 1000 1

2 0.5 20 4 2.1 2.5, 1 400

3 0.5 20 20 3

4 0.67 20 4 12.9

5 0.67 20 20

Combinations 5 4 1 2

Overall number simulations 80

To avoid the same problems with new runs the same combinations of viscosity values

with new 𝛼 and C values were not used. Overall, 824 simulation runs were performed with new C

and 𝛼 values combination with existing parameters values. All new runs do meet quality check

criteria as all of them have the same cumulative gas and water injection volumes curves in reservoir

conditions (Figure 4. 6) and injection rates (Figure 4. 7). The cumulative injection volumes value

is 3.7MMm3 and injection rate is 1014Sm3/d.

41

Figure 4. 6– Cumulative gas and water injection volumes in reservoir conditions for new simulation cases

Figure 4. 7– Water/Gas injection rates for new simulation cases

824 simulation runs generated 824 new datapoints. With purpose of teaching LSSVM-

PSO model to disregard C and 𝛼 values when single phase flooding is applied 768 datapoints (with

real and “fake” values) of previous study wad added with changing logC =3 to logC=1 and 𝛼=0 to

Cumulative gas and water injection

volumes in reservoir conditions for

simulation cases overlap in one line

Constant gas and water injection rates are maintained

throughout WAG process

42

𝛼 =1 values. Recovery factors are kept the same as in single phase flooding hysteresis does not

exist and C and 𝛼 can be combination of any values. So, the dataset was expanded to additional

1592 data points (Figure 4. 8). Red points were generated from new runs and blue points are from

existing dataset. Some points are created by new runs overlap with existing ones for some

parameters, which can be seen from the red boarders outside of blue points.

The Figure 4. 8 has all 4008 data points including 2416 datapoints regarding to previous

work’s dataset (2416 datapoints) and 1592 datapoints created with new simulation runs. The

dataset was randomized in order to ensure a good distribution of the data, and then it was split into

training (80%) and testing (20%) parts. Afterwards normalization the dataset was normalized so

that the LSSVM could operate with input values within 0 to 1, rather than specific low or specific

high non-normalized input values.

Figure 4. 8– Paired scatter plots of the input parameters (extended dataset)

43

4.3 Development of LSSVM-PSO algorithm from scratch

LSSVM with RBK algorithm code was written from scratch on Python 3.7.7 using Visual

Studio Code editor. The LSSVM code integrated with PSO algorithm is presented in Appendix.

In this work the PSO algorithm is used to optimize 𝜎 and 𝛾 values for the LSSVM

algorithm. As it was mentioned before the PSO algorithm is sensitive to the initial value of inertia

weight parameter (𝑤), 𝐶1 and 𝐶2, which play significant role in swarm convergence. Specifically,

𝑤 controls the size of the searching space. To make the algorithm more robust in that regard,

random selection was used from range [0,2] for 𝐶1, 𝐶2 and [0,1] for 𝑤.

One of the difficult parts in setting up PSO is defining the stopping criteria for the

process to be finished. It is hard to know what value for RMSE will be acceptable for 𝜎 and 𝛾

values before running the LSSVM-PSO code on the dataset. Therefore, there was no RMSE

stopping criteria, and instead only the number of iterations that would be run. The PSO objective

function was set to minimize the RMSE error between the predicted and real RF values of the

training dataset. This leads to overfitting issues as illustrated in Figure 4. 9, where we can see that

there is a good match with the prediction from the training data, but a poor prediction based on the

testing data.

Figure 4. 9 – Data overfitting: RF predicted vs. RF real

To understand which parameter was crucial in facing this kind of problem behavior of

hyperparameters and their influence on the error for testing data was studied. By running PSO

cases with 5, 10, 20 particles, the same behavior of 𝛾 was observed. The algorithm starts

developing very high values corresponding to lower 𝜎, which ensures good fit on training data but

poor prediction quality as it was demonstrated in Figure 4. 9.

𝜎 controls the width of the ε-insensitive zone, used to fit the training data. According

the tests, it becomes either very low or stabilizes around 0.5-0.6 when model becomes overfitted.

As 𝛾 balances the model complexity and the training error. The higher 𝛾 gives better fit

on training dataset, but at some stage, it stops influencing much on prediction accuracy if 𝜎 remains

constant. The Figure 4. 9 shows how increasing 𝛾 value affects fitting in training and testing

dataset when 𝜎 is kept constant at 0.5. Very little improvement in fitness of the results is observed

between cases when 𝛾 = 10 and 𝛾 = 100. So, that means no need in choosing very high 𝛾 value.

44

Figure 4. 10 – RF predicted vs. RF real for different 𝛾 values with constant 𝜎

Previously the training (80 %) dataset was only validated against itself, which lead to

overfitting issues. To solve this, we split the dataset instead by three fractions: training (70%),

validation (15%) and testing (15%). The LSSVM model is trained on the training data, where the

PSO objective function now instead is set to minimize the RMSE error between the predicted and

real RF values of the validation dataset. The prediction error of the testing part is also calculated,

but not used. This is to observe how it develops in comparison to the controlled prediction errors,

as can be seen from Figure 4. 11. The behavior of various key parameters optimization process

such as RMSE for training, validation and testing datasets; Difference between RMSE of training

and validation dataset; γ and σ values is presented in Figure 4. 11, Figure 4. 12, Figure 4. 13. The

algorithm was run 3 times to compensate for randomness of C1, C2 and w value.

45

Figure 4. 11 – Comparison of RMSE for training, validation and testing with 50 iterations, 10 particles runs

Figure 4. 12 – Difference between RMSE of raining and validation dataset for 3 runs (50 iterations, 10 particles)

46

Figure 4. 13 – Evolution of 𝛾 and 𝜎 values for 3 runs (50 iterations, 10 particles)

From the Figure 4. 11 it is quite clear that all errors are following the same downwards trends. By

minimizing the RMSE for a smaller part of the dataset, we see that the RMSE for training and

testing parts will be also minimized, until they all eventually stabilize at a relatively constant

RMSE value. The observed downwards trend in all of them seems to have been made possible due

to the data being well distributed (or randomized) across the training, validation and testing

datasets. It is likely that, whatever pattern or behavior that underlines all of these, that it has been

preserved for all of the fractioned dataset. These similar patterns therefore make it possible for the

non-linear model to improve prediction efficiency on the 15 % testing data that it has not "seen",

even though the dataset was trained and validated on other parts of the dataset. Moreover, despite

random C1, C2 and w values used for individual particles (and for each iteration) in PSO algorithm,

they converge (individually) to roughly the same values of RMSE values. In other words, the

results for the training, validation and testing parts seem representative, despite the random

features introduced to the PSO algorithm. According to the Figure 4. 13 𝛾 increases to higher value

than 𝜎. However, they both stabilize to the end of runs at value 𝛾 = 78 and 𝜎 = 0.62. As it was

demonstrated before, when 𝛾 reaches some value at constant 𝜎, the error stops evolving

The whole purpose of studying PSO performance was to choose optimal values for value 𝛾 and 𝜎,

which will improve non-linear model accuracy. Decision on optimal values of hyperparameters

was made based on analysis on |𝑅𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛 − 𝑅𝑀𝑆𝐸𝑣𝑎𝑙𝑖𝑑| evolution for three PSO algorithm runs

(Figure 4. 12). The graphs in Figure 4. 12 have 3 stages that happen at different number of

solutions as they have random C1, C2 and w values: 1. decrease in difference between RMSE of

training dataset and validation dataset (all three RMSE value follow downward trend in Figure 4.

11); 2. Stabilization stage when the curves are constant, so RMSE for both datasets are decreasing;

3. The difference starts rising until it stabilizes. The points before the differences in RMSE for

training and validation dataset start rising correspond to solution numbers 16, 45 and 32 for runs

47

1, 2 and 3, respectively. The points marked by red “x” signs. Corresponding 𝛾, 𝜎 can be observed

from Figure 4. 13 and to confirm correctness of our setups.

Table 4. 9. From those values in to confirm correctness of our setups.

Table 4. 9 𝛾 = 9.95, 𝜎 = 0.7 were taken as optimal as they correspond to the lowest value of

 |𝑅𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛 − 𝑅𝑀𝑆𝐸𝑣𝑎𝑙𝑖𝑑|. I also can be seen that those values regard to the lowest 𝑅𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛,

but we should stay unbiased to that. That is shown only for observation purpose to confirm

correctness of our setups.

Table 4. 9 - Properties of chosen optimal 𝛾, 𝜎 from each of runs

Runs 𝛾 𝜎 |𝑅𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛 − 𝑅𝑀𝑆𝐸𝑣𝑎𝑙𝑖𝑑| 𝑅𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛

Run 1 12.8 0.62 0.009564 0.050268731

Run 2 7.8 0.66 0.008215 0.051256

Run 3 9.95 0.7 0.008028 0.050855

As a part of study small experiment was provided with value of w, which was set to be decreasing

through the iterations (2.34, Chapter 2). The results are demonstrated in Figure 4. 14.

Figure 4. 14– RMSE for training, validation, and testing data with decreasing w

With systematic lowering of w value, the convergence is accelerated, and the algorithm

finds the lowest error value for validation and training dataset 4-5 times faster. However, there is

behavior of the graphs in the few iterations (spike), which makes this plot less convenient even it

gives similar results with cases when w was selected randomly in each iteration. It is quite hard to

see the process of swarm convergence using PSO, as it was shown in Figure 4. 11. As it was

mentioned before, w influences on size of the searching space. That could be the reason why it

converges faster with systematic decreasing inertia weight.

48

Chapter 5

Results and discussions

5.1 Analysis of results generated by LSSVM-PSO model

Predicted recovery factor values using LSSVM-PSO model plotted against real recovery

factor values are demonstrated in Figure 5. 1. Training, validation, and testing dataset parts are

included in the same graph. Output generated by LSSVM-PSO model shows overall good fit of

real data with low scatter. Goodness of fit is estimated using the coefficient of determination R2.

|
Figure 5. 1 – RF predicted by LSSVM-PSO vs. real RF for the whole dataset

In previous work by Nygård and Andersen 2020 the dimensionless number M* was

obtained by manual stepwise scaling of key mechanisms and properties influencing WAG process,

so it can be linearly related to RF. However, some scatter was observed when plotting the M*

values against the real RF values. Initial idea of this work was developing a non-linear model

(LSSVM-PSO) trained on many input parameters related to WAG simulation cases data which

potentially can perform better than previous model based on only one input parameter.

The performance LSSVM-PSO model in this work using 8 dimensionless input

parameters was expected to show better accuracy in predicting RF values for WAG process as

49

LLSVM algorithm has more freedom in relating the given parameters to each other, so more

complicated patterns can be captured, if they exist.

Direct comparison of two models’ accuracy is not possible as the LSSVM-PSO model is

not linear and more complex. To provide comparison on accuracy of two models, LSSVM

algorithm was implemented using M* as a single input parameter for RF (output) values to get the

most optimal line relating real RF values to M* values. The dataset with one input and one output

parameter was divided to training, testing and validation parts, in similar way as 8 input parameter

dataset was divided before. Then M*-based (1 parameter) model was used to predict of RF values

for each of those dataset parts and results were plotted against real RF values. They are presented

in Figure 5. 2 on the first column. Prediction results for 8 parameter LSSVM-PSO model is shown

in the same figure (the column).

Figure 5. 2 - Comparison of 8 parameter LSSVM-PSO and 1 parameter (M*) models results

50

As it can be seen from Figure 5. 2 the LSSVM-PSO model (8 parameter) shows very

good match to training data, which is expected outcome because the model was trained on that part

of the dataset. The one parameter model has less accuracy reflected in higher scatter, corresponding

to R2 = 0.9288. Scatter has increased when moving to validation and training part for 8 parameter

model, leading to a lower R2 value. However, for M*-input model the prediction power has not

much changed with using another part of the dataset.

Overall, two models demonstrated good prediction capability level, with slightly better

performance of 8 input model. 8 parameters model was able to capture the main patterns in the

dataset as it showed convenient prediction power when applied to testing dataset.

To observe prediction efficiency of the LSSVM-PSO model for each of the individual

cases plots Figure 5. 3 were created.

Figure 5. 3– RF predicted by LSSVM-PSO vs. real RF for the whole dataset for individual cases

51

Figure 5. 3 demonstrates that non-linear model was able to capture the trends precise

enough in all cases. Less accuracy is observed for in highly heterogeneous cases in comparison to

less heterogeneous and homogenous ones, but it is still high level of predictive capability. That

means the model is applicable for all considered cases.

5.2 Testing LSSVM-PSO model on a new dataset

6.2.1. Introducing a special case by adding a new parameter

In the previous study by limitations were fixed horizontal inclination and fixed WAG

cycle frequency (Nygård and Andersen 2020), which can be interesting parameters to be studied.

In this work a new parameter WAG cycle frequency was considered to study its effect on overall

process and understand the scope of applicability of created LSSVM-PSO model. The model was

trained on the dataset, which is related to constant WAG cycle length equal to 90 days. Also, it

was not introduced in input parameters, consequently, was not part of the dataset.

Values 45 and 180 days for WAG cycle length the same for gas and water phases were

implemented in special cases with new simulations. Adding a new parameter with 2 values, that

will be changed in new simulations is always challenging decision due to rising number of overall

combinations with other parameters. Based on that in new simulation cases only 2 values of

heterogeneity factor (FH) representing “homogeneous” and “highly heterogeneous” reservoirs

were utilized. All unique values of other parameters are kept the same as in the dataset simulations

used as the basis of LSSVM-PSO dataset and used when defining combinations with new

parameter values. Overall, 1648 runs were performed. Values for all parameters can be seen from

Table 5. 1.

Table 5. 1– Parameters used in extra cases

Changing parameters values introduced in previous dataset
New parameter

altered

Overall number of

runs with all

combinations

FH 𝜟𝝆, kg/m3 rw C 𝜶 𝝁𝒘 𝝁𝒈 𝑻𝒄𝒚𝒄𝒍𝒆, days

1648

1.00 1 1 2.5 20 20 45

12.86

400

0.33

1000000 0

4 4 180

 0.50 1 1

 0.67 0.5 0.5

 0 0.25 0.25

 1 0.1 0.1

All new runs do meet quality check criteria as all of them have the same cumulative gas

and water injection volumes curves in reservoir conditions and injection rates equal to 1014Sm3/d.

The cumulative injection volumes value is 3.7MMm3.

52

6.2.2. Results of testing LSSVM-PSO model on a new dataset

The LLSVM-PSO model was tested on new dataset with 1648 datapoints. The results

plotted in a form of output of LSSVM-PSO (predicted RF) vs. results of simulations (real RF) can

be observed from Figure 5. 4.

Figure 5. 4 – Comparison of real RF and predicted (using LSSVM-PSO model) RF values for cases when WAG

cycles legth are 180 (left) and 45 days (right)

Apparently non-linear model was able to capture the main trends in WAG process as it

was able to perform prediction with decent accuracy on completely new dataset that was created

by altering a new parameter, not introduced to it before.

To explore the match above (Figure 5. 4) in a more detailed manner, we plot the different

cases individually, as seen from Figure 5. 5 and Figure 5. 6.

Figure 5. 5 - Comparison of real RF and predicted RF values no hysteresis cases when WAG cycles length are 180

and 45 days

53

Figure 5. 5 illustrates individual cases for homogeneous and heterogenous reservoirs in presence

(columns 3,4) and absence (columns 1,2) of gravity effect. The LSSVM-PSO model can be very

precise in prediction recovery factor of WAG applied in no hysteresis conditions regardless the

change in WAG cycle length expect the cases corresponding to gravity cases when 𝑇𝑐𝑦𝑐𝑙𝑒=180

days. Those ones were predicted with relatively low accuracy, and higher scatter in comparison to

the other ones in the same figure.

When the conditions get more complicated with hysteresis effect as in Figure 5. 6, the predictive

power of the model decreases, and it becomes less convenient.

Figure 5. 6– Comparison of real RF and predicted RF values with hysteresis cases when WAG cycles length are 180

and 45 days

From combination of Figure 5. 5 and Figure 5. 6 For case when 𝑇𝑐𝑦𝑐𝑙𝑒=45 days, overall

good match is observed from all individual cases, which leads to a suggestion that there is not

much effect on WAG efficiency when WAG cycle length was changed from 180 to 45 days, in

other words, cycle frequency was lowered two times. However, in case of 𝑇𝑐𝑦𝑐𝑙𝑒=90 days, it shows

higher scatter in prediction results for “with hysteresis” models, especially for heterogeneous ones.

That probably can refer to that influence of WAG half cycle on WAG efficiency is not linear and

LSSVM-PSO model has to be trained on cases with new input parameter to improve prediction

results.

54

Chapter 7

Conclusion

The overall conclusions to this work can be summarized as this:

• In previous work performed by Nygård and Andersen 2020 dimensionless number M* was

developed by incorporating key parameters of WAG process and relating to RF linearly. The

dataset from the previous work was extended by running a new combination of C and 𝛼,

which was selected by studying impact of those parameters on hysteresis degree based on

analysis of 77 combinations of (C, 𝛼) in different cases of reservoir conditions. Input

parameters for LSSVM were created based on grouping WAG process parameters into 8

dimensionless numbers. The final dataset that was used for developing LSSVM-PSO model

contained 4008 data points, corresponding to labeled 8 input parameters and one output

parameter (RF).

• It is important to select enough dataset fractions when using PSO to optimize LSSVM.

• Using only 2 dataset fractions (ie. training 80 % and testing 20 % parts) resulted in overfitness

issues, which was due to that the model only was checked against itself.

• Overfitness issues was resolved by using 3 dataset fractions (ie. training 70 %, validation 15

% and testing 15 % parts), where the trained model checked itself against validation dataset.

• The LSSVM-PSO model’s predictive power was compared to that of the previous model,

with the goal of checking how well the main trends were captured. The non-linear model

proved itself to be effective on WAG performance efficiency prediction, however previous

model has shown also compatible match with real data.

• The LSSVM model was tested on new simulations where the previously constant WAG cycle

length was changed. The model was still able to predict the main trends but had some trouble

especially with doubled WAG cycle when heterogeneity and hysteresis effects were applied.

• Having tested the model on WAG cycle length, which it was not calibrated or trained against,

proves that it could potentially be used in a broader scope as well. More work should be

made to discover how universal the model could be.

55

Appendix

LSSVM-PSO code

1. import os
2. import numpy as np
3. import numpy
4. import pandas as pd
5. import matplotlib.pyplot as plt
6. import time
7. import datetime
8. import multiprocessing
9. import concurrent.futures
10. import random
11. import math
12. from sklearn.utils import shuffle
13. from sklearn import preprocessing
14.
15.
16. # from numba import jit, autojit, prange
17. from multiprocessing import cpu_count
18. import cProfile, pstats, io
19. from pstats import SortKey
20.
21. np.set_printoptions(linewidth=200, edgeitems=5)
22. pd.set_option("display.max_columns", 500)
23. pd.set_option("display.width", 2000)
24.
25. # pylint: disable=unused-variable
26. # pylint: disable=unbalanced-tuple-unpacking
27. # pylint: disable=anomalous-backslash-in-string
28. # pylint: disable=abstract-class-instantiated
29.
30.
31. class LSSVM:
32. def __init__(self, gamma, sigma):
33. lists = [], [], [], [], []
34. self.x_train, self.y_train, self.train_range, self.train_Mwag, self.train_Mstar =

lists
35. self.x_valid, self.y_valid, self.valid_range, self.valid_Mwag, self.valid_Mstar =

lists
36. self.x_test, self.y_test, self.test_range, self.test_Mwag, self.test_Mstar = lists

37. self.gamma, self.sigma = gamma, sigma
38. self.alphas, self.bias = [], []
39. self.train_prediction = []
40. self.valid_prediction = []
41. self.test_prediction = []
42.
43. def import_and_separate_data(self, path, sheets, fractions):
44. data = pd.read_excel(path, sheet_name=sheets[0])
45. dataframe = shuffle(data)
46. frac_rows_valid = math.ceil(fractions[1]*len(dataframe))
47. frac_rows_test = math.ceil(fractions[2]*len(dataframe))
48. frac_rows_train =len(dataframe) - frac_rows_valid-frac_rows_test
49. valid =dataframe[0:frac_rows_valid]
50. test = dataframe[frac_rows_valid:frac_rows_valid + frac_rows_test]
51. train = dataframe[frac_rows_valid + frac_rows_test:]

56

52. len_train, len_valid, len_test = len(train), len(valid), len(test)
53. all_train, all_valid, all_test = len_train, len_valid, len_test
54. print(f"train:{len_train}, valid:{len_valid}, test:{len_test}")
55. print(f"Cumulative train:{all_train}, valid:{all_valid}, test:{all_test}")
56.
57. # train, valid, test= np.array_split(dataframe, (fractions[:-

1].cumsum() * len(dataframe)).astype(int))
58. train_init = SplitFractionedData([], train, sheets[0], [], [], [], 0, {}, 7)
59. input_tr, rf_tr, logMwag_tr, logMstar_tr, Ranges_tr, number_tr = train_init
60. valid_init = SplitFractionedData([], valid, sheets[0], [], [], [], 0, {}, 7)
61. input_v, rf_v, logMwag_v, logMstar_v, Ranges_v, number_v = valid_init
62. test_init = SplitFractionedData([], test, sheets[0], [], [], [], 0, {}, 7)
63. input_ts, rf_ts, logMwag_ts, logMstar_ts, Ranges_ts, number_ts = test_init
64. print(number_tr, number_v, number_ts)
65.
66. train_sep, valid_sep, test_sep = [], [], []
67. for (i, sheetname) in enumerate(sheets[1:]):
68. data = pd.read_excel(path, sheet_name=sheetname)
69. data = data.replace(np.nan, '', regex=True)
70. dataframe = shuffle(data)
71. frac_rows_valid = math.ceil(fractions[1]*len(dataframe))
72. frac_rows_test = math.ceil(fractions[2]*len(dataframe))
73. frac_rows_train =len(dataframe) - frac_rows_valid-frac_rows_test
74. valid =dataframe[0:frac_rows_valid]
75. test = dataframe[frac_rows_valid:frac_rows_valid + frac_rows_test]
76. train = dataframe[frac_rows_valid + frac_rows_test:]
77. len_train, len_valid, len_test = len(train), len(valid), len(test)
78. all_train, all_valid, all_test = all_train + len_train, all_valid + len_valid,

 all_test + len_test
79.
80. #training
81. train_sep, number_tr = SplitFractionedData(
82. input_tr, train, sheetname, rf_tr, logMwag_tr, logMstar_tr, number_tr, Ran

ges_tr, 666,
83.)
84. input_tr, rf_tr, Ranges_tr, logMwag_tr, logMstar_tr = train_sep
85. #training
86. valid_sep, number_v = SplitFractionedData(
87. input_v, valid, sheetname, rf_v, logMwag_v, logMstar_v, number_v, Ranges_v

, 999
88.)
89. input_v, rf_v, Ranges_v, logMwag_v, logMstar_v = valid_sep
90. #testing
91. test_sep, number_ts = SplitFractionedData(
92. input_ts, test, sheetname, rf_ts, logMwag_ts, logMstar_ts, number_ts, Rang

es_ts, 666,
93.)
94. input_ts, rf_ts, Ranges_ts, logMwag_ts, logMstar_ts = test_sep
95.
96. self.x_train, self.y_train, self.train_range, self.train_Mwag, self.train_Mstar =

train_sep
97. self.x_valid, self.y_valid, self.valid_range, self.valid_Mwag, self.valid_Mstar =

valid_sep
98. self.x_test, self.y_test, self.test_range, self.test_Mwag, self.test_Mstar = test_

sep
99.
100. def normalize_data(self):
101. scalar = preprocessing.MinMaxScaler()
102. self.x_train = scalar.fit_transform(self.x_train)
103. self.y_train = scalar.fit_transform(self.y_train)
104. self.x_valid = scalar.fit_transform(self.x_valid)

57

105. self.y_valid = scalar.fit_transform(self.y_valid)
106. self.x_test = scalar.fit_transform(self.x_test)
107. self.y_test = scalar.fit_transform(self.y_test)
108.
109.
110. def import_sheet_indexes(self, base_path, filenames, sheets):
111. file_train, file_valid, file_test = filenames["train"], filenames["valid"], filena

mes["test"]
112. path_train = os.path.realpath(f"{base_path}\\{file_train}.xlsx")
113. path_valid = os.path.realpath(f"{base_path}\\{file_valid}.xlsx")
114. path_test = os.path.realpath(f"{base_path}\\{file_test}.xlsx")
115. data_train, data_valid, data_test = pd.read_excel(path_train), pd.read_excel(path_

valid), pd.read_excel(path_test)
116. data_train, data_valid, data_test = (
117. data_train.replace(np.nan, "", regex=True),
118. data_valid.replace(np.nan, "", regex=True),
119. data_test.replace(np.nan, "", regex=True),
120.)
121. train_indexes, valid_indexes, test_indexes = {}, {}, {}
122. for sheet in sheets:
123. current_train = [int(item) for item in data_train[sheet].tolist() if str(item)

 != ""]
124. current_valid = [int(item) for item in data_valid[sheet].tolist() if str(item)

 != ""]
125. current_test = [int(item) for item in data_test[sheet].tolist() if str(item) !

= ""]
126. train_indexes[sheet], valid_indexes[sheet], test_indexes[sheet] = current_trai

n, current_valid, current_test
127. self.train_range, self.valid_range, self.test_range = train_indexes, valid_indexes

, test_indexes
128.
129. def export_sheet_indexes(self, base_path, filenames):
130. file_train, file_valid, file_test = filenames["train"], filenames["valid"], filena

mes["test"]
131. path_train = os.path.realpath(f"{base_path}\\{file_train}.xlsx")
132. path_valid = os.path.realpath(f"{base_path}\\{file_valid}.xlsx")
133. path_test = os.path.realpath(f"{base_path}\\{file_test}.xlsx")
134. indexes_train, indexes_valid, indexes_test = pd.DataFrame({}), pd.DataFrame({}), p

d.DataFrame({})
135.
136. for column in self.train_range.keys():
137. dataframe = pd.DataFrame(data=self.train_range[column], columns=[column])
138. indexes_train = pd.concat([indexes_train, dataframe], axis=1)
139.
140. for column in self.valid_range.keys():
141. dataframe = pd.DataFrame(data=self.valid_range[column], columns=[column])
142. indexes_valid = pd.concat([indexes_valid, dataframe], axis=1)
143.
144. for column in self.test_range.keys():
145. dataframe = pd.DataFrame(data=self.test_range[column], columns=[column])
146. indexes_test = pd.concat([indexes_test, dataframe], axis=1)
147.
148. with pd.ExcelWriter(path_train) as writer:
149. indexes_train.to_excel(writer, index=False, sheet_name="Indexes_train")
150.
151. with pd.ExcelWriter(path_valid) as writer:
152. indexes_valid.to_excel(writer, index=False, sheet_name="Indexes_test")
153.
154. with pd.ExcelWriter(path_test) as writer:
155. indexes_test.to_excel(writer, index=False, sheet_name="Indexes_test")
156.

58

157. def export_train_valid_test_data(self, base_path, filenames):
158. file_train, file_valid, file_test = filenames["train"], filenames["valid"], filena

mes["test"]
159. path_train = os.path.realpath(f"{base_path}\\{file_train}.xlsx")
160. path_valid = os.path.realpath(f"{base_path}\\{file_valid}.xlsx")
161. path_test = os.path.realpath(f"{base_path}\\{file_test}.xlsx")
162. columns = ["logFh", "α", "logC", "logMg/o*", "logMw/o*", "logNg,w/o", "logNg,g/o",

 "rw"]
163. columns += ["logMwag", "logM*", "RF"]
164. #training files
165. train_data = np.hstack((self.x_train, self.train_Mwag, self.train_Mstar, self.y_tr

ain))
166. train = pd.DataFrame(data=train_data, columns=columns)
167. #validation files
168. valid_data = np.hstack((self.x_valid, self.valid_Mwag, self.valid_Mstar, self.y_va

lid))
169. valid = pd.DataFrame(data=valid_data, columns=columns)
170. #testing files
171. test_data = np.hstack((self.x_test, self.test_Mwag, self.test_Mstar, self.y_test))

172. test = pd.DataFrame(data=test_data, columns=columns)
173.
174.
175. with pd.ExcelWriter(path_train) as writer:
176. train.to_excel(writer, index=False, sheet_name="All data train")
177.
178. with pd.ExcelWriter(path_valid) as writer:
179. valid.to_excel(writer, index=False, sheet_name="All data valid")
180.
181. with pd.ExcelWriter(path_test) as writer:
182. test.to_excel(writer, index=False, sheet_name="All data test")
183.
184. def export_after_lssvm_prediction(self, base_path, filenames):
185. file_train, file_valid, file_test = filenames["train"], filenames["valid"], filena

mes["test"]
186. path_train = os.path.realpath(f"{base_path}\\{file_train}.xlsx")
187. path_valid = os.path.realpath(f"{base_path}\\{file_valid}.xlsx")
188. path_test = os.path.realpath(f"{base_path}\\{file_test}.xlsx")
189. columns = ["logFh", "α", "logC", "logMg/o*", "logMw/o*", "logNg,w/o", "logNg,g/o",

 "rw"]
190. bias = np.zeros((np.shape(self.x_train)[0], 1))
191. bias[0, 0] = self.bias
192. print(bias)
193. # temp_list = [self.x_train, self.train_Mwag, self.train_Mstar, self.y_train, self

.train_prediction, self.b_alpha[1:, 0], bias]
194. train_results = np.hstack((self.x_train, self.train_Mwag, self.train_Mstar, self.y

_train, self.train_prediction, self.b_alpha[1:, 0], bias))
195. train = pd.DataFrame(
196. data=train_results, columns=columns + ["logMwag", "logM*", "RF", "RFpred", "al

phas", "bias"],
197.)
198.
199. valid_results = np.hstack((self.x_valid, self.valid_Mwag, self.valid_Mstar, self.y

_valid, self.valid_prediction))
200. valid = pd.DataFrame(data=valid_results, columns=columns + ["logMwag", "logM*", "R

F", "RFpred"])
201.
202. test_results = np.hstack((self.x_test, self.test_Mwag, self.test_Mstar, self.y_tes

t, self.test_prediction))
203. test = pd.DataFrame(data=test_results, columns=columns + ["logMwag", "logM*", "RF"

, "RFpred"])

59

204.
205. with pd.ExcelWriter(path_train) as writer:
206. train.to_excel(writer, index=False, sheet_name="All data train results")
207.
208. with pd.ExcelWriter(path_valid) as writer:
209. valid.to_excel(writer, index=False, sheet_name="All data valid results")
210.
211. with pd.ExcelWriter(path_test) as writer:
212. test.to_excel(writer, index=False, sheet_name="All data test results")
213.
214. def export_after_lssvm_prediction_as_sheets(self, base_path, filenames, sheets):
215. file_train, file_valid, file_test = filenames["train"], filenames["valid"], filena

mes["test"]
216. path_train = os.path.realpath(f"{base_path}\\{file_train}.xlsx")
217. path_valid = os.path.realpath(f"{base_path}\\{file_valid}.xlsx")
218. path_test = os.path.realpath(f"{base_path}\\{file_test}.xlsx")
219. columns = ["logFh", "α", "logC", "logMg/o*", "logMw/o*", "logNg,w/o", "logNg,g/o",

 "rw"]
220. bias = np.zeros((np.shape(self.x_train)[0], 1))
221. bias[0, 0] = self.bias
222. train_results = np.hstack(
223. (
224. self.x_train,
225. self.train_Mwag,
226. self.train_Mstar,
227. self.y_train,
228. self.train_prediction,
229. self.b_alpha[1:, 0],
230. bias,
231.)
232.)
233. train = pd.DataFrame(
234. data=train_results, columns=columns + ["logMwag", "logM*", "RF", "RFpred", "al

phas", "bias"],
235.)
236.
237. valid_results = np.hstack((self.x_valid, self.valid_Mwag, self.valid_Mstar, self.y

_valid, self.valid_prediction))
238. valid = pd.DataFrame(data=valid_results, columns=columns + ["logMwag", "logM*", "R

F", "RFpred"])
239.
240. test_results = np.hstack((self.x_test, self.test_Mwag, self.test_Mstar, self.y_tes

t, self.test_prediction))
241. test = pd.DataFrame(data=test_results, columns=columns + ["logMwag", "logM*", "RF"

, "RFpred"])
242.
243. with pd.ExcelWriter(path_train) as writer:
244. for item in sheets:
245. indexes = self.train_range[item]
246. data = pd.DataFrame(
247. data=train_results[indexes, :],
248. columns=columns + ["logMwag", "logM*", "RF", "RFpred", "alphas", "bias

"],
249.)
250. data.to_excel(writer, index=False, sheet_name=item)
251.
252. with pd.ExcelWriter(path_valid) as writer:
253. for item in sheets:
254. indexes = self.valid_range[item]
255. data = pd.DataFrame(

60

256. data=valid_results[indexes, :], columns=columns + ["logMwag", "logM*",
 "RF", "RFpred"],

257.)
258. data.to_excel(writer, index=False, sheet_name=item)
259.
260. with pd.ExcelWriter(path_test) as writer:
261. for item in sheets:
262. indexes = self.test_range[item]
263. data = pd.DataFrame(
264. data=test_results[indexes, :], columns=columns + ["logMwag", "logM*",

"RF", "RFpred"],
265.)
266. data.to_excel(writer, index=False, sheet_name=item)
267.
268. def use_already_separated_data(self, path_train, path_valid, path_test, x_cols, y_col

s, col_Mwag, col_Mstar, mode):
269. if mode == "single":
270. prep_train = pd.read_excel(path_train)
271. prep_valid = pd.read_excel(path_valid)
272. prep_test = pd.read_excel(path_test)
273. self.x_train, self.x_valid, self.x_test = np.mat(prep_train[x_cols]), np.mat(p

rep_valid[x_cols]), np.mat(prep_test[x_cols])
274. self.y_train, self.y_valid, self.y_test = (
275. np.mat(prep_train[[y_cols[0]]]),
276. np.mat(prep_valid[[y_cols[0]]]),
277. np.mat(prep_test[[y_cols[0]]]),
278.)
279. self.train_Mwag, self.valid_Mwag, self.test_Mwag = (
280. np.mat(prep_train[col_Mwag]),
281. np.mat(prep_valid[col_Mwag]),
282. np.mat(prep_test[col_Mwag]),
283.)
284. self.train_Mstar, self.valid_Mstar, self.test_Mstar = (
285. np.mat(prep_train[col_Mstar]),
286. np.mat(prep_valid[col_Mstar]),
287. np.mat(prep_test[col_Mstar]),
288.)
289.
290. def calculate(self):
291. self.alphas, self.bias = np.mat(np.zeros((np.shape(self.x_train)[0], 1))), 0
292. length = np.shape(self.x_train)[0]
293. kernel = np.mat(np.zeros((length, length)))
294. with concurrent.futures.ProcessPoolExecutor(max_workers=cpu_count()) as executor:

295. results = [executor.submit(kernelTrans, self.x_train, self.x_train[i], sigma,

i) for i in range(length)]
296. for f in concurrent.futures.as_completed(results):
297. kernel[:, f.result()[1]] = f.result()[0]
298. # Prepare matrix parts
299. leftOnes = np.mat(np.ones((length, 1)))
300. innerMatrix = kernel + np.identity(length) * (1 / gamma)
301. zeroEntry = np.mat(np.zeros((1, 1)))
302. topOnes = leftOnes.T
303.
304. # Create final matrices
305. topPart = np.hstack((zeroEntry, topOnes))
306. botPart = np.hstack((leftOnes, innerMatrix))
307. matrix = np.vstack((topPart, botPart))
308. solution = np.vstack((zeroEntry, self.y_train))
309.
310. # Calculate bias and alpha values

61

311. b_alpha = matrix.I * solution
312. self.bias = b_alpha[0, 0]
313. self.alphas = b_alpha[1:, 0]
314. self.b_alpha = b_alpha
315.
316. def predict(self, x_ref, x_check):
317. m = np.shape(x_check)[0]
318. predict_result = np.mat(np.zeros((m, 1)))
319. with concurrent.futures.ProcessPoolExecutor(max_workers=cpu_count()) as executor:

320. results = [executor.submit(kernelTrans, x_ref, x_check[i, :], sigma, i) for i

in range(m)]
321. for f in concurrent.futures.as_completed(results):
322. Kx = f.result()[0]
323. predict_result[f.result()[1], 0] = Kx.T * self.alphas + self.bias
324. return predict_result
325.
326. def train(self):
327. self.train_prediction = self.predict(self.x_train, self.x_train)
328.
329. def validate(self):
330. self.valid_prediction = self.predict(self.x_train, self.x_valid)
331.
332. def check(self):
333. self.test_prediction = self.predict(self.x_train, self.x_test)
334.
335.
336. class Particle:
337. def __init__(self, values, setup, index, index_max, it_max):
338. # Runs only at initialization of particle
339. self.position = []
340. self.velocity = []
341. self.best_positions = []
342. self.best_error = -1.0
343. self.error_train = -1.0
344. self.error_valid = -1.0
345. self.error_test = -1.0
346. self.dimensions = len(values)
347. self.w_range = setup[2]
348. self.c1_range = setup[0]
349. self.c2_range = setup[1]
350. self.w = 0.0
351. self.c1 = 0.0
352. self.c2 = 0.0
353. self.c1c2s = [[0.0, 0.5],[0.5,1.0],[1.0,1.5],[1.5,2.0]]
354. self.best_w = 0.0
355. self.best_c1 = 0.0
356. self.best_c2 = 0.0
357. self.setup = setup
358. self.index = index
359. self.index_max = index_max
360. self.iterations = it_max
361.
362. for i in range(self.dimensions):
363. self.velocity.append(random.uniform(-1, 1))
364. self.position.append(values[i])
365.
366. def check_fitness(self, error_function, param, iteration):
367. self.error_train, self.error_valid, self.error_test = error_function(self.position

, param)[:]

62

368. print(f"I{iteration+1} of {self.iterations}. P{self.index+1} of {self.index_max}.
Train Error: {self.error_train}. Validation error: {self.
error_valid}. Testing error: {self.error_test}.")

369.
370. # Initial values are best automatically
371. if self.best_error == -1:
372. self.best_positions = self.position
373. self.best_error = self.error_valid
374.
375. # Did I improve my score?
376. if self.error_valid < self.best_error and self.best_error>=0:
377. self.best_w = self.w
378. self.best_c1 = self.c1
379. self.best_c2 = self.c2
380. self.best_positions = self.position
381. self.best_error = self.error_valid
382.
383. def update_velocity(self, global_positions):
384. self.w = random.uniform(self.w_range[0], self.w_range[1])
385. c1_range = random.choice(self.c1c2s)
386. c2_range = random.choice(self.c1c2s)
387. self.c1 = random.uniform(c1_range[0], c1_range[1])
388. self.c2 = random.uniform(c2_range[0], c2_range[1])
389.
390. for i in range(0, self.dimensions):
391. r1 = random.random()
392. r2 = random.random()
393.
394. current_position = self.position[i]
395. current_velocity = self.velocity[i]
396. my_best_position = self.best_positions[i]
397. best_global_position = global_positions[i]
398.
399. inertia = self.w * current_velocity
400. ego_velocity = self.c1 * r1 * (my_best_position - current_position)
401. collective_velocity = self.c2 * r2 * (best_global_position - current_position)

402. self.velocity[i] = inertia + ego_velocity + collective_velocity
403.
404. def update_positions(self):
405. for i in range(0, self.dimensions):
406. self.position[i] = self.position[i] + self.velocity[i]
407.
408.
409. class PSO:
410. def __init__(self, minimization_function, values, param, setup, number_of_particles, m

ax_iterations):
411. self.best_global_error = -1.0
412. self.best_global_error_train = -1.0
413. self.best_global_error_valid = -1.0
414. self.best_global_error_test = -1.0
415. self.best_global_positions = []
416. self.best_global_setup = []
417. self.best_global_w = 0.0
418. self.best_global_c1 = 0.0
419. self.best_global_c2 = 0.0
420. self.max_iterations = max_iterations
421. self.error_fx = minimization_function
422. self.nparticles = number_of_particles
423. self.logs, self.swarm = [], []
424. self.param = param

63

425. self.max_iter = max_iterations
426. for i in range(number_of_particles):
427. particle = Particle(values, setup[i], i, number_of_particles, max_iterations)

428. self.swarm.append(particle)
429.
430. def optimize(self):
431. # Begin optimization
432. i = 0
433. count = 0
434. start_time = datetime.datetime.now()
435. while i < self.max_iterations:
436. swarm = []
437. with concurrent.futures.ProcessPoolExecutor(max_workers=cpu_count()) as execut

or:
438. results = [
439. executor.submit(remote_check_fitness, self.param, self.swarm[pindex],

self.error_fx, i)
440. for pindex in range(self.nparticles)
441.]
442. for f in concurrent.futures.as_completed(results):
443. d = f.result()
444. swarm.append(f.result())
445. self.swarm = swarm
446.
447. for pindex in range(self.nparticles):
448. particle = self.swarm[pindex]
449. if self.best_global_error == -1:
450. self.best_global_positions = list(particle.position)
451. self.best_global_error = particle.best_error
452. self.best_global_error_train = particle.error_train
453. self.best_global_error_valid = particle.error_valid
454. self.best_global_error_test = particle.error_test
455. strings = ["-" for _ in range(9)]
456. values = [count + 1] + strings + [i, self.max_iter, self.best_global_e

rror_train]
457. values += [self.best_global_error_valid, self.best_global_error_test]

458. values += self.best_global_positions
459. self.do_logging(values)
460. count += 1
461.
462. # Check if current particle is best globally
463. if (
464. (particle.best_error < self.best_global_error)
465. and particle.position[0] > 0
466. and particle.position[1] > 0
467.):
468. self.best_global_positions = list(particle.best_positions)
469. self.best_global_error = particle.best_error
470. self.best_global_error_train = particle.error_train
471. self.best_global_error_valid = particle.error_valid
472. self.best_global_error_test = particle.error_test
473. self.best_global_setup = particle.setup
474. self.best_global_w = particle.best_w
475. self.best_global_c1 = particle.best_c1
476. self.best_global_c2 = particle.best_c2
477. time_passed = datetime.datetime.now() - start_time
478. seconds = time_passed.total_seconds()
479. values = [count + 1] + particle.w_range + [particle.w]
480. values += particle.c1_range + [particle.c1]

64

481. values += particle.c2_range + [particle.c2]
482. values += [i, self.max_iter, self.best_global_error_train]
483. values += [self.best_global_error_valid, self.best_global_error_test]

484. values += self.best_global_positions
485. self.do_logging(values)
486. print("-------------------------------")
487. print(f"Count: {count+1}")
488. print(f"Global training error: {self.best_global_error_train}")
489. print(f"Global validation error: {self.best_global_error_valid}")
490. print(f"Global testing error: {self.best_global_error_test}")
491. print(f"Global positions: {self.best_global_positions[0]}, {self.best_

global_positions[1]}")
492. print(f"Global setup: {self.best_global_setup}")
493. print(f"w: {self.best_global_w:.2f}, c1: {self.best_global_c1:.2f}, c2

: {self.best_global_c2:.2f}")
494. print(f"Time passed: {time_passed}. Seconds: {seconds}")
495. print("-------------------------------")
496. count += 1
497.
498. for pindex in range(self.nparticles):
499. self.swarm[pindex].update_velocity(self.best_global_positions)
500. self.swarm[pindex].update_positions()
501. i += 1
502. final_time_passed = datetime.datetime.now() - start_time
503. final_seconds = final_time_passed.total_seconds()
504. print("-------------------------------")
505. print(f"Count: {count}")
506. print(f"Final positions: {self.best_global_positions[0]}, {self.best_global_positi

ons[1]}")
507. print(f"Final training error: {self.best_global_error_train}")
508. print(f"Final validation error: {self.best_global_error_valid}")
509. print(f"Final testing error: {self.best_global_error_test}")
510. print(f"Final setup: {self.best_global_setup}")
511. print(f"w: {self.best_global_w:.2f}, c1: {self.best_global_c1:.2f}, c2: {self.best

_global_c2:.2f}")
512. print(f"Time passed: {time_passed}. Seconds: {final_seconds}")
513. print("-------------------------------")
514.
515. def do_logging(self, data):
516. self.logs.append(data)
517.
518.
519. def SplitFractionedData(dataset, sheetdata, sheetname, rf, logMwag, logMstar, lastrow, she

etindex, option):
520. sheetdata = sheetdata.replace(np.nan, '', regex=True)
521. inputs = np.mat(sheetdata[["logFh", "α", "logC", "logMg/o*", "logMw/o*", "logNg,w/o",

"logNg,g/o", "rw"]])
522. rf_new = np.mat(sheetdata[["RF"]])
523. logMwag_new = np.mat(sheetdata[["logMwag"]])
524. logMstar_new = np.mat(sheetdata[["logM*"]])
525. sheetindex[sheetname] = list(range(lastrow, lastrow + len(sheetdata)))
526. lastrow = lastrow + len(sheetdata)
527.
528. if option == 7:
529. return inputs, rf_new, logMwag_new, logMstar_new, sheetindex, lastrow
530. else:
531. rf = np.vstack((rf, rf_new))
532. logMwag = np.vstack((logMwag, logMwag_new))
533. logMstar = np.vstack((logMstar, logMstar_new))
534. dataset = np.vstack((dataset, inputs))

65

535.
536. return [dataset, rf, sheetindex, logMwag, logMstar], lastrow
537.
538.
539. def kernelTrans(X, A, sigma, index):
540. K = kernelTransInner(X, A, sigma)
541. return K, index
542.
543.
544. def kernelTransInner(X, A, sigma):
545. temp = X - A
546. factor = 1 / (-1 * sigma ** 2)
547. K = np.exp(np.array([np.inner(x, x) for x in temp]) * factor).reshape(len(X), 1)
548. return K
549.
550. def calculatev2(param, gamma, sigma):
551. # Getting the data
552. xparam, yparam = param[0], param[1]
553. xtrain = np.memmap(xparam[0], dtype=xparam[1], shape=xparam[2], mode="r")
554. ytrain = np.memmap(yparam[0], dtype=yparam[1], shape=yparam[2], mode="r")
555.
556. # Initializing
557. length = np.shape(xtrain)[0]
558. kernel = [kernelTrans(xtrain[:], xtrain[i], sigma, i)[0][:, 0] for i in range(length)]

559.
560. # Prepare full matrix
561. matrix = np.ones((length + 1, length + 1))
562. matrix[0, 0] = 0
563. matrix[1:, 1:] = kernel + np.identity(length) * (1 / gamma)
564. solution = np.zeros((length + 1, 1))
565. solution[1:, 0] = ytrain[:, 0]
566.
567. # Calculate bias and alpha values
568. b_alpha = np.dot(np.linalg.inv(matrix), solution)
569. bias = b_alpha[0, 0]
570. alphas = b_alpha[1:, 0]
571. b_alpha = b_alpha
572. return alphas, bias
573.
574. def predict(alphas, b, xref_xcheck, sigma):
575. xref = np.memmap(xref_xcheck[0][0], dtype=xref_xcheck[0][1], shape=xref_xcheck[0][2],

mode="r")
576. xcheck = np.memmap(xref_xcheck[1][0], dtype=xref_xcheck[1][1], shape=xref_xcheck[1][2]

, mode="r")
577. m = np.shape(xcheck)[0]
578. predict_result = np.mat(np.empty((m, 1)))
579. for i in range(m):
580. Kx = kernelTrans(xref, xcheck[i, :], sigma, i)[0][:, 0]
581. predict_result[i, 0] = np.dot(Kx, alphas) + b
582. return predict_result
583.
584. def prediction_error(values, param):
585. y_train = np.memmap(param[1][0], dtype=param[1][1], shape=param[1][2], mode="r")
586. y_valid = np.memmap(param[3][0], dtype=param[3][1], shape=param[3][2], mode="r")
587. y_test = np.memmap(param[5][0], dtype=param[5][1], shape=param[5][2], mode="r")
588. gamma, sigma = values
589. alphas, bias = calculatev2(param, gamma, sigma)
590. y_pred_train = predict(alphas, bias, [param[0], param[0]], sigma)
591. y_pred_valid = predict(alphas, bias, [param[0], param[2]], sigma)
592. y_pred_test = predict(alphas, bias, [param[0], param[4]], sigma)

66

593. error_train = np.sqrt(np.sum(np.square(y_train-y_pred_train))/len(y_train))
594. error_valid = np.sqrt(np.sum(np.square(y_valid-y_pred_valid))/len(y_valid))
595. error_test = np.sqrt(np.sum(np.square(y_test-y_pred_test))/len(y_test))
596. return [error_train, error_valid, error_test]
597.
598.
599. def remote_check_fitness(param, particle, function, iteration):
600. particle.check_fitness(function, param, iteration)
601. return particle
602.
603.
604. def setup(particles):
605. #c1c2s = [[0.0, 2.0]]
606. c1c2s = [[0.0, 0.5],[0.5,1.0],[1.0,1.5],[1.5,2.0]]
607. ws = [[0.0, 1.0]]
608. setup = []
609. for i in range(len(c1c2s)):
610. c1 = c1c2s[i]
611. for j in range(len(c1c2s)):
612. c2 = c1c2s[j]
613. for k in range(len(ws)):
614. w = ws[k]
615. addition = [c1, c2, w]
616. for _ in range(particles):
617. setup.append(addition)
618. return setup
619.
620.
621. if __name__ == "__main__":
622. print("--------------------Parameter Setup------------------")
623.
624. print("-------------------Save LSSVM Model-----------------")
625.
626. fractions = np.array([0.7, 0.15, 0.15])
627.
628. base_path = "C:\\Users\\aizha\\PycharmProjects\\HelloWorld\\Output LSSVM\\Results"
629.
630. base = "C:\\Users\\aizha\\PycharmProjects\\HelloWorld\\Input LSSVM"
631. filename = "Dataset_v13"
632. path = os.path.realpath(f"{base}\{filename}.xlsx")
633. Sheets = [
634. "Fh=1 | Δρ=1",
635. "Fh=2.1 | Δρ=1",
636. "Fh=3 | Δρ=1",
637. "Fh=12.9 | Δρ=1",
638. "Fh=1 | Δρ=400",
639. "Fh=2.1 | Δρ=400",
640. "Fh=3 | Δρ=400",
641. "Fh=12.9 | Δρ=400",
642. "Fh=1 | Δρ=1 | Hyst",
643. "Fh=2.1 | Δρ=1 | Hyst",
644. "Fh=3 | Δρ=1 | Hyst",
645. "Fh=12.9 | Δρ=1 | Hyst",
646. "Fh=1 | Δρ=400 | Hyst",
647. "Fh=2.1 | Δρ=400 | Hyst",
648. "Fh=3 | Δρ=400 | Hyst",
649. "Fh=12.9 | Δρ=400 | Hyst",
650.]
651.
652. gamma, sigma = 9.95, 0.7
653.

67

654. start_time_original = datetime.datetime.now()
655. lssvm = LSSVM(gamma, sigma)
656.
657.
658. print("--------------------------------Import and split the data----------------------

--")
659. start_time = datetime.datetime.now()
660. lssvm.import_and_separate_data(path, Sheets, fractions)
661. time_passed = datetime.datetime.now() - start_time
662. deltatime = datetime.timedelta(seconds=time_passed.total_seconds())
663. print(f"Duration: {deltatime}")
664. print("--------------------------------Import and split the data: done----------------

--")
665.
666.
667. print("--------------------------------Exporting split data---------------------------

--")
668. filenames_split = {"train": f"combined_train_{fractions[0]}ratio_v13", "valid": f"comb

ined_valid_{fractions[1]}ratio_v13", "test": f"combined_test_{fractions[2]}ratio_v13"}
669. start_time = datetime.datetime.now()
670. lssvm.export_train_valid_test_data(base_path, filenames_split)
671. time_passed = datetime.datetime.now() - start_time
672. deltatime = datetime.timedelta(seconds=time_passed.total_seconds())
673. print(f"Duration: {deltatime}")
674. print("--------------------------------Exporting split data: done---------------------

--")
675.
676.
677. print("--------------------------------Exporting indexes------------------------------

--")
678. filenames_indexes = {"train": "0.7_train_indexes_v13", "valid": "0.15_valid_indexes_v1

3", "test": "0.15_test_indexes_v13"}
679. start_time = datetime.datetime.now()
680. lssvm.export_sheet_indexes(base_path, filenames_indexes)
681. time_passed = datetime.datetime.now() - start_time
682. deltatime = datetime.timedelta(seconds=time_passed.total_seconds())
683. print(f"Duration: {deltatime}")
684. print("--------------------------------Exporting indexes: done------------------------

--")
685.
686.
687. print("--------------------------------Importing indexes------------------------------

--")
688. start_time = datetime.datetime.now()
689. lssvm.import_sheet_indexes(base_path, filenames_indexes, Sheets)
690. time_passed = datetime.datetime.now() - start_time
691. deltatime = datetime.timedelta(seconds=time_passed.total_seconds())
692. print(f"Duration: {deltatime}")
693.
694. print("--------------------------------Using constant reference data------------------

--")
695. filenames_split = {"train": f"combined_train_{fractions[0]}ratio_v13", "valid": f"comb

ined_valid_{fractions[1]}ratio_v13", "test": f"combined_test_{fractions[2]}ratio_v13"}
696. file_train, file_valid, file_test = filenames_split["train"], filenames_split["valid"]

, filenames_split["test"]
697. path_train = os.path.realpath(f"{base_path}\\{file_train}.xlsx")
698. path_valid = os.path.realpath(f"{base_path}\\{file_valid}.xlsx")
699. path_test = os.path.realpath(f"{base_path}\\{file_test}.xlsx")
700. colm_x = ["logFh", "α", "logC", "logMg/o*", "logMw/o*", "logNg,w/o", "logNg,g/o", "rw"

]
701. start_time = datetime.datetime.now()

68

702. lssvm.use_already_separated_data(path_train,path_valid, path_test, colm_x, ["RF"], ["l
ogMwag"], ["logM*"], "single")

703. time_passed = datetime.datetime.now() - start_time
704. deltatime = datetime.timedelta(seconds=time_passed.total_seconds())
705. print(f"Duration: {deltatime}")
706.
707. print("--------------------------------Starting LSSVM run-----------------------------

--")
708.
709. print("--------------------------------Normalizing constant reference data------------

--")
710.
711. start_time = datetime.datetime.now()
712. lssvm.normalize_data()
713. time_passed = datetime.datetime.now() - start_time
714. deltatime = datetime.timedelta(seconds=time_passed.total_seconds())
715. print(f"Duration: {deltatime}")
716.
717. print("--------------------------------Normalizing constant reference data: done------

--")
718.
719. #Make mmap files
720. optimize_these_numbers = [0.5, 0.5]
721. xtrain, ytrain = lssvm.x_train[:, :], lssvm.y_train[:, :]
722. xvalid, yvalid = lssvm.x_valid[:, :], lssvm.y_valid[:, :]
723. xtest, ytest = lssvm.x_test[:, :], lssvm.y_test[:, :]
724.
725. xtrain_shape, ytrain_shape = np.shape(xtrain), np.shape(ytrain)
726. xvalid_shape, yvalid_shape = np.shape(xvalid), np.shape(yvalid)
727. xtest_shape, ytest_shape = np.shape(xtest), np.shape(ytest)
728.
729. xtrain_name, ytrain_name = "mmap_xtrain", "mmap_ytrain"
730. xvalid_name, yvalid_name = "mmap_xvalid", "mmap_yvalid"
731. xtest_name, ytest_name = "mmap_xtest", "mmap_ytest"
732.
733. path_mmap_xtrain = os.path.realpath(rf"{base_path}\{xtrain_name}")
734. path_mmap_xvalid = os.path.realpath(rf"{base_path}\{xvalid_name}")
735. path_mmap_xtest = os.path.realpath(rf"{base_path}\{xtest_name}")
736. path_mmap_ytrain = os.path.realpath(rf"{base_path}\{ytrain_name}")
737. path_mmap_yvalid = os.path.realpath(rf"{base_path}\{yvalid_name}")
738. path_mmap_ytest = os.path.realpath(rf"{base_path}\{ytest_name}")
739.
740. mmap_xtrain = np.memmap(path_mmap_xtrain, dtype="float64", shape=xtrain_shape, mode="w

+")
741. mmap_xvalid = np.memmap(path_mmap_xvalid, dtype="float64", shape=xvalid_shape, mode="w

+")
742. mmap_xtest = np.memmap(path_mmap_xtest, dtype="float64", shape=xtest_shape, mode="w+")

743.
744. mmap_ytrain = np.memmap(path_mmap_ytrain, dtype="float64", shape=ytrain_shape, mode="w

+")
745. mmap_yvalid = np.memmap(path_mmap_yvalid, dtype="float64", shape=yvalid_shape, mode="w

+")
746. mmap_ytest = np.memmap(path_mmap_ytest, dtype="float64", shape=ytest_shape, mode="w+")

747.
748. mmap_xtrain[:], mmap_ytrain[:] = xtrain[:], ytrain[:]
749. mmap_xvalid[:], mmap_yvalid[:] = xvalid[:], yvalid[:]
750. mmap_xtest[:], mmap_ytest[:] = xtest[:], ytest[:]
751.
752. del mmap_xtrain

69

753. del mmap_xvalid
754. del mmap_xtest
755. del mmap_ytrain
756. del mmap_yvalid
757. del mmap_ytest
758.
759. param = [
760. [path_mmap_xtrain, "float64", xtrain_shape],
761. [path_mmap_ytrain, "float64", ytrain_shape],
762. [path_mmap_xvalid, "float64", xvalid_shape],
763. [path_mmap_yvalid, "float64", yvalid_shape],
764. [path_mmap_xtest, "float64", xtest_shape],
765. [path_mmap_ytest, "float64", ytest_shape],
766.]
767.
768. print("--------------------------------PSO run--

--")
769. n_particles, n_iterations = 10, 50
770. setup = setup(n_particles)
771. start_time = datetime.datetime.now()
772. pso = PSO(
773. prediction_error,
774. optimize_these_numbers,
775. param,
776. setup,
777. number_of_particles=n_particles,
778. max_iterations=n_iterations,
779.)
780. try:
781. pso.optimize()
782. except KeyboardInterrupt:
783. print("sun")
784.
785. time_passed = datetime.datetime.now() - start_time
786. deltatime = datetime.timedelta(seconds=time_passed.total_seconds())
787. print(f"Duration: {deltatime}")
788. columns = ["Count", "w_min", "w_max", "w", "C1_min", "C1_max", "C1", "C2_min"]
789. columns += ["C2_max", "C2", "Iteration", "max_iteration", "Global train Error"]
790. columns += ["Global validation error", "Global test error", "gamma", "sigma"]
791. df = pd.DataFrame(data=np.mat(pso.logs), columns=columns)
792. filename = f"PSO_log_iter{n_iterations}_par{n_particles}_v13_rand_w03"
793. path = os.path.realpath(f"{base_path}\{filename}.xlsx")
794. with pd.ExcelWriter(path) as writer:
795. df.to_excel(writer, sheet_name="PSO Logs", index=False)
796.
797. print("--------------------------------PSO run: done----------------------------------

--")
798.
799. print("--------------------------------LSSVM run--------------------------------------

--")
800. start_time = datetime.datetime.now()
801. lssvm.calculate()
802. time_passed = datetime.datetime.now() - start_time
803. deltatime = datetime.timedelta(seconds=time_passed.total_seconds())
804. print(f"Duration: {deltatime}")
805. print("--------------------------------LSSVM run: done--------------------------------

--")
806.
807. print("--------------------------------Training run-----------------------------------

--")
808. start_time = datetime.datetime.now()

70

809. lssvm.train()
810. time_passed = datetime.datetime.now() - start_time
811. deltatime = datetime.timedelta(seconds=time_passed.total_seconds())
812. print(f"Duration: {deltatime}")
813. print("--------------------------------Trainig run: done------------------------------

----")
814.
815. print("--------------------------------Validation process-----------------------------

--")
816. start_time = datetime.datetime.now()
817. lssvm.validate()
818. time_passed = datetime.datetime.now() - start_time
819. deltatime = datetime.timedelta(seconds=time_passed.total_seconds())
820. print(f"Duration: {deltatime}")
821. print("--------------------------------Validation process: done-----------------------

--")
822.
823. print("--------------------------------Testing process--------------------------------

--")
824. lssvm.x_train = lssvm.x_train[:,:]
825. lssvm.y_train = lssvm.y_train[:,:]
826. start_time = datetime.datetime.now()
827. lssvm.check()
828. time_passed = datetime.datetime.now() - start_time
829. deltatime = datetime.timedelta(seconds=time_passed.total_seconds())
830. print(f"Duration: {deltatime}")
831. print("--------------------------------Testing process: done--------------------------

--")
832.
833. print("--------------------------------Exporting the results--------------------------

--")
834. filenames_combined = {"train": f"0.7_train_results_v13_{gamma}_{sigma}","valid": f"0.1

5_valid_results_v13_{gamma}_{sigma}", "test": f"0.15_test_results_v13_{gamma}_{sigma}"}
835. lssvm.export_after_lssvm_prediction(base_path, filenames_combined)
836. filenames_split = {"train": f"split_0.7_train_results_v13_{gamma}_{sigma}", "valid": f

"split_0.15_valid_results_v13_{gamma}_{sigma}", "test": f"split_0.15_test_results_v13_{gam
ma}_{sigma}"}

837. start_time = datetime.datetime.now()
838. lssvm.export_after_lssvm_prediction_as_sheets(base_path, filenames_split, Sheets)
839. time_passed = datetime.datetime.now() - start_time
840. deltatime = datetime.timedelta(seconds=time_passed.total_seconds())
841. print(f"Duration: {deltatime}")
842. print("--------------------------------Exporting the results: done--------------------

--")
843. print("-------------------------------- Summary --------------------------------------

--")
844. time_passed_total = datetime.datetime.now() - start_time_original
845. deltatime = datetime.timedelta(seconds=time_passed_total.total_seconds())
846. print(f"Duration: {deltatime}")
847. print("---------------------------------- End --

--")

71

References

Afzali, Shokufe, Nima Rezaei, and Sohrab Zendehboudi. 2018. ‘A Comprehensive Review on Enhanced

Oil Recovery by Water Alternating Gas (WAG) Injection’. Fuel 227: 218–46.

Alvarado, Vladimir et al. 2002. ‘Selection of EOR/IOR Opportunities Based on Machine Learning’. SPE

13th European Petroleum Conferece: 11.

Baghban, Alireza et al. 2016. ‘Phase Equilibrium Modelling of Natural Gas Hydrate Formation

Conditions Using LSSVM Approach’. Petroleum Science and Technology 34(16): 1431–38.

Bourgeois, M., T. Joubert, and V.E. Dominguez. 2019. ‘Analysis of 3-Phase Behavior in WAG Injections

for Various Wettabilities’. 2019(1): 1–16.

Bozorg-Haddad, Omid, Mohammad Solgi, and Hugo A. Loáiciga. 2017. Meta-Heuristic and

Evolutionary Algorithms for Engineering Optimization. Newark, UNITED STATES: John Wiley

& Sons, Incorporated. http://ebookcentral.proquest.com/lib/uisbib/detail.action?docID=5015534.

Burkov, Andriy. 2019. ‘“All Models Are Wrong, but Some Are Useful.” — George Box’. : 152.

Chamkalani, Ali et al. 2014. ‘Integration of LSSVM Technique with PSO to Determine Asphaltene

Deposition’. Journal of Petroleum Science and Engineering 124: 243–53.

Cheng, Guojian, Ruihua Guo, and Wenhai Wu. 2010. ‘Petroleum Lithology Discrimination Based on

PSO-LSSVM Classification Model’. In 2010 Second International Conference on Computer

Modeling and Simulation, Sanya, China: IEEE, 365–68.

http://ieeexplore.ieee.org/document/5421448/ (February 4, 2020).

Christensen, R, E H Stenby’, and A Skauge. 2001. ‘Review of WAG Field Experience’. : 14.

Dalen, Vilgeir, Rune Instefjord, and Reidar Kristensen. 1995. ‘A WAG Injection Pilot in the Lower Brent

Formation at the Gullfaks Field’. Geological Society, London, Special Publications 84(1): 143–

52.

Green, Don W., and G. Paul Willhite. 2018. Enhanced Oil Recovery. Second edition. Richardson, Texas,

USA: Society of Petroleum Engineers.

Hou, Likun, Qingxin Yang, and Jinlong An. 2009. ‘An Improved LSSVM Regression Algorithm’. In

2009 International Conference on Computational Intelligence and Natural Computing, Wuhan,

China: IEEE, 138–40. http://ieeexplore.ieee.org/document/5231009/ (April 1, 2020).

Larsen, J.A., and Arne Skauge. 1998. ‘Methodology for Numerical Simulation With Cycle-Dependent

Relative Permeabilities’. SPE Journal 3(02): 163–73.

Lary, David J., Amir H. Alavi, Amir H. Gandomi, and Annette L. Walker. 2016. ‘Machine Learning in

Geosciences and Remote Sensing’. Geoscience Frontiers 7(1): 3–10.

Mahzari, Pedram, and Mehran Sohrabi. 2016. ‘An Improved Approach for Estimation of Flow and

Hysteresis Parameters Applicable to WAG Experiments’. : 20.

72

Manrique, Eduardo Jose et al. 2010. ‘EOR: Current Status and Opportunities’. In SPE Improved Oil

Recovery Symposium, Tulsa, Oklahoma, USA: Society of Petroleum Engineers.

http://www.onepetro.org/doi/10.2118/130113-MS (February 4, 2020).

NPD. 2019. ‘Resource 2019 - Fields and Discoveries. Big Opportunities’. Norwegian Petroleum

Directorate. https://www.npd.no/en/facts/publications/reports2/resource-report/resource-report-

2019/fields/ (April 16, 2020).

Nygård, Jan Inge, and Pål Østebø Andersen. 2020. ‘Simulation of Immiscible Water-Alternating-Gas

Injection in a Stratified Reservoir: Performance Characterization Using a New Dimensionless

Number’. SPE Journal. http://www.onepetro.org/doi/10.2118/200479-PA (April 17, 2020).

O’Brien, Jeremy et al. 2016. ‘Maximizing Mature Field Production - A Novel Approach to Screening

Mature Fields Revitalization Options’. In SPE-180090-MS, Vienna, Austria: Society of

Petroleum Engineers, 11. https://doi.org/10.2118/180090-MS.

Razavi, Razieh et al. 2018. ‘Utilization of LSSVM Algorithm for Estimating Synthetic Natural Gas

Density’. Petroleum Science and Technology 36(11): 807–12.

Sanchez, Nestor L. 1999. ‘Management of Water Alternating Gas (WAG) Injection Projects’. In SPE-

53714-MS, SPE: Society of Petroleum Engineers, 8. https://doi.org/10.2118/53714-MS.

Sarah Kent, Justin Scheck. 2015. ‘Cash Crunch Clouds Future for Oil Firms: Spending on New Projects,

Share Buybacks and Dividends Outstrips Cash Flow’. Wall Street Journal.

https://www.wsj.com/articles/cash-crunch-clouds-future-for-oil-firms-

1445816429?mod=wsj_nview_latest (April 17, 2020).

Skauge, A., and E. A. Berg. 1997. ‘Immiscible WAG Injection in the Fensfjord Formation of the Brage

Oil Field’. https://www.earthdoc.org/content/papers/10.3997/2214-4609.201406788.

Skauge, Arne. 2003. ‘REVIEW OF WAG FIELD EXPERIENCE’. 1st International Conference and

Exhibition Modern Challenges in Oil Recovery: 11.

Spiteri, Elizabeth J., and Ruben Juanes. 2006. ‘Impact of Relative Permeability Hysteresis on the

Numerical Simulation of WAG Injection’. Journal of Petroleum Science and Engineering 50(2):

115–39.

Stenmark, H., and P. O. Andfossen. 1995. ‘Snorre WAG Pilot - A Case Study’.

https://www.earthdoc.org/content/papers/10.3997/2214-4609.201406924.

Suykens, Johan A. K., ed. 2002. Least Squares Support Vector Machines. River Edge, NJ: World

Scientific.

Talabi, Oluwole A., Jaime E. Moreno, Ruppa K. Malhotra, and Yunlong Liu. 2019. ‘Practical Upscaling

of WAG Hysteresis Parameters from Core to Full-Field Scale Part II’. In SPE/IATMI Asia Pacific

Oil & Gas Conference and Exhibition, Bali, Indonesia: Society of Petroleum Engineers.

http://www.onepetro.org/doi/10.2118/196286-MS (June 12, 2020).

Theobald, Oliver. 2017. ‘Machine Learning for Absolute Beginners’. : 52.

Vapnik, Vladimir N. 1995. The Nature of Statistical Learning Theory. Berlin, Heidelberg: Springer-

Verlag.

