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Preface
This thesis is submitted as partial fulfilment of the requirements for the
degree of Philosophiae Doctor at the University of Stavanger, Norway. The
research has been carried out at the Department of Electrical Engineering
and Computer Science, University of Stavanger, and at Laerdal Medical
AS in the period of July 2016 to November 2019. The compulsory courses
attended have been given at the University of Stavanger.

The thesis is based on a collection of six papers - five published and one
currently under review. For increased readability, the papers have been
reformatted for alignment with the format of the thesis and are included
as chapters.

Øyvind Meinich-Bache, January 2020
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Abstract
This thesis investigates possibilities for applying automatic video analysis in
the medical context of resuscitation of a patient. Two situations are investi-
gated: 1) Out-of-hospital cardiac arrest (OHCA) where there is a need for
cardiopulmonary resuscitation (CPR) and 2) newborn resuscitation where
the newborn is in need of various resuscitation activities, such as stimulation
and ventilation support. Both situations suffer from high mortality rates
and measurement of resuscitation parameters and activities to evaluate
if the performed resuscitation complies with the recommended guidelines,
could contribute to ensure provision of quality treatment. Currently there
are no clinical solutions utilizing automatic video analysis to improve the
quality of the resuscitation in the two situations approached in this thesis.

In this work, conventional image processing methods, such as segmen-
tation and frequency analysis approaches have been used to perform mea-
surement of the CPR quality during simulated OHCA situations. The
methods for measurement of chest compression rate and CPR summary
parameters are implemented in a smartphone app which performs real-time
measurements and communicate the information to a webserver that could
be monitored by the emergency unit. The system performance is satisfac-
tory with accurate measurements and could add valuable information to
the communication between the caller and the emergency unit in OHCA
situations.

Deep learning and convolutional neural network (CNN) approaches have
been used for activity recognition from newborn resuscitation videos. The
proposed system, ORAA-net, is a two-step approach consisting of 1) Object
detection and Region proposal using a 2D CNN and post-processing, and 2)
Activity recognition and generation of Activity timelines using 3D CNNs.
The system provides promising results on a dataset of noisy low quality
newborn resuscitation videos. By detecting and quantifying the amount
of the relevant activities for each episode, a better understanding of the
effect of the different resuscitation activities can be achieved, and poten-
tially contribute to optimize patient treatment in newborn resuscitations
situations.
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Glossary
OHCA - Out-of-hospital Cardiac Arrest.

CPR - Cardiopulmonary Resuscitation.

T-CPR - Telephone Assisted Cardiopulmonary Resuscitation.

CC - Chest Compressions.

ECG - Electrocardiography - Electrical activity of the heart.

DNN - Deep Neural Networks.

CNN - Convolutional Neural Networks.

HRS - Hearth Rate Sensor.

SD - Suction Device.

BMR - Bag-Mask Resuscitator.

HCP - Health Care Provider.

HCPH - Health Care Provider Hand.
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Chapter 1

Introduction
Everywhere we go we are practically surrounded by cameras. Statistics
from 2019 show that there are around 3.3 billion smartphones in the world
[1]. Most of the users of these devices carry them at all times making it
possible to video record whatever he or she might come across. In addition
to smartphone cameras we are also surrounded by closed-circuit television
(CCTV) cameras, especially in larger cities where you are likely to find one
on every corner. According to a BBC report, the Republic of China had
170 million CCTV cameras in 2017, with a plan of more than tripling the
amount of cameras by the end of 2020 [2].

With this huge amount of cameras, or sensors, and the computational
power currently available, the possibilities of retrieving information from
images and image sequences are exceedingly large. In a short sequence of
images recorded with a standard smartphone camera, or a CCTV camera,
one could for example extract information that is impossible for the naked
eye to see. Freeman et al. demonstrated that conventional signal processing
methods, such as frequency analysis and frequency altering, could be used
to reveal subtle changes, e.g skin color changes due to the pulsating blood
flow under the skin [3, 4] and sound recovery from video recordings of small
object vibrations caused by sound waves [5].

In recent years other less conventional methods for image and video
analysis have become extremely popular in the community. Deep learning
with large neural networks has demonstrated its ability to outperform
conventional image processing methods in fields such as object detection
[6, 7], the task of recognizing and localizing objects in a image, and activity
recognition [8, 9], the task of recognizing the content in a video. Although
the concept of neural networks has been around for several decades, it was in
2012 when a deep neural network (DNN) proposed by Krizhevsky et al. [10]
won the ImageNet competition1 by a significant margin over conventional

1http://image-net.org/challenges/LSVRC/
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1. Introduction

image processing and machine learning methods, the popularity of DNNs
really escalated in the image processing community. Krizhevsky‘s paper
now has over 50 000 citations.

1.1 Video Analysis in Medicine

Cameras have a long history in the field of medicine. For decades they have
been actively used in surgery, with the aim of providing decision support
by visualizing the inside of the patient [11, 12]. Medical imaging can also
be considered as a type of video analysis when you study a sequence of
images to capture temporal changes. One example is angiography where we
could visualize the blood flow through arteries by injecting a contrast fluid
into the blood stream and by studying sequential medical images, such
as X-rays. This allows us to estimate the velocity of blood streams [13]
and to diagnose and treat blockages in the arteries. Another example is
Computed Tomography (CT) perfusion where the aim could be to recognize
ischemic stroke in the brain [14]. Here, contrast fluids are injected to the
cubital vein, and by analyzing CT images and the passage of contrast fluid
over time in different sections of the brain, potential stroke areas could be
recognized.

Video cameras also play an important part in patient and scene monitor-
ing. Monitoring a patient or a scene and recognizing relevant activities can
be used to ensure that the patient is provided with quality treatment at
any time, or to recognize if the patient is in need of immediate assistance.
In addition, if the video recordings are collected and stored they could be
used in further analysis to develop automatic systems that could optimize
simulation, practice and guidelines for similar situations. Such automatic
systems, e.g an annotation tool, could make it possible to quantify large
amounts of data and information that could be impossible or very difficult
to extract manually. As an example of patient monitoring, in Tveit et
al. our research group demonstrated that small respiratory motions on
newborns can be captured by estimating the local phase and amplitude
of an image using the Riesz transform [15]. This allows us to monitor
the respiratory rate and to detect if the newborn stops breathing without
the use of expensive medical equipment. In the topic of scene monitoring
in medicine, passive radio-frequency identification (RFID) tags attached
to relevant objects have been suggested for object tracking and activity
recognition by others [16, 17, 18]. As suggested by Chakraborty et.al, a

2



1. Introduction

similar activity recognition and scene analysis could also be carried out
using video cameras and conventional signal processing methods such as
object segmentation and a Markov Logic Network model [19].

1.2 Video Analysis in Resuscitation

A medical context where automatic video analysis could be highly beneficial
is during resuscitation - the process of correcting physiological disorder,
such as lack of breathing or circulation of blood, in a patient. When
resuscitating a patient it is crucial to constantly provide the patient with
quality treatment to have a chance of preventing a negative outcome. Using
a camera as a sensor to recognize activities related to the resuscitation
situation, could contribute to ensure this.

In this thesis two different situations where it is crucial to provide the
patient with quality resuscitation have been investigated:

• Out-of-hospital cardiac arrest resuscitation - The patient suffers from
loss of mechanical cardiac function and the absence of blood cir-
culation. This causes lack of oxygen supply to vital organs, such
as the brain, and can quickly lead to brain damage or death. The
resuscitation normally involves basic life support and a defibrillator to
shock the hearth to restore its normal rhythm. The basic life support
consists of continuous chest compressions (CCs) to circulate blood
and rescue breaths to provide the patient with oxygen.

• Newborn resuscitation - Complications during birth, such as a com-
promised placenta during uterus contractions, or the umbilical cord
being squeezed, could cause insufficient oxygen supply to the fetus.
As a consequence, the newborn may suffer from hypoxia, the newborn
being deprived of oxygen, which could further lead to asphyxia, the
loss of consciousness due to lack of adequate oxygen delivery to the
tissue [20]. This is often referred to as birth asphyxia or perinatal
asphyxia and can quickly lead to organ failure, brain damage or death.
The resuscitation involves opening airways (suctioning), stimulation,
bag-mask ventilations, chest compressions and adrenaline injection.

3



1. Introduction

1.3 Out-of-hospital Cardiac Arrest Resuscitation

This section presents the motivation, background, previous work, and the
objective for automatic video analysis in out-of-hospital cardiac arrest
situations.

Figure 1.1: A bystander performing cardiopulmonary resuscitation (CPR) in a simulated
patient cardiac arrest situation. Image reproduced with permission from Laerdal Medical
(www.laerdal.com).

1.3.1 Motivation

One of the major mortality challenges globally is out-of-hospital cardiac
arrest (OHCA) [21]. Between 370,000-740,000 OHCA incidents occur each
year in Europe alone, and only 7.6 % survive [22]. It is crucial to limit
the time from collapse to the patient being resuscitated for survival, and
there is a high focus on low response times of emergency medical services
(EMS) [23]. A majority of EMS treated OHCAs are bystander witnessed
[24] and if the bystander initiate cardiopulmonary resuscitation (CPR)
with correct chest compression rate and correct chest compression depth
in the first few minutes of the cardiac arrest, the probability of patient
survival can be doubled or tripled [25]. Statistics show that 70 % of the
OHCAs happen in homes [25], meaning the bystander is often in close
relation with the patient and could experience the situation as extremely
stressful [26]. As a consequence, the bystander could find it very difficult to
perform quality CPR, even though he or she is familiar with, and trained
in CPR. Studies have shown that telephone-assisted CPR (T-CPR), where
the bystander communicates with a dispatcher at the emergency unit, has
a positive effect by getting more callers to start CPR and by coaching

4



1. Introduction

callers to provide quality CPR [27, 28, 29]. Furthermore, by letting the
bystander receive feedback on his own CPR performance has been shown to
improve CPR quality [30, 31, 32, 33]. Thus, it is highly reasonable to think
that combining T-CPR with CPR feedback may improve CPR quality and
survival from OHCA.

The high density of smartphones and smartphone users in the world [1]
makes these devices a good candidate as a tool for assistance in OHCA
situations. The smartphone camera can be used as a sensor measuring the
CPR quality of the resuscitation performed by the bystander, and provide
valuable additional information to the dispatcher.

1.3.2 Background and Previous Work

In a recent statement from the American Heart Association (AHA), the use
of digital strategies to improve healthcare in general and to document its
effect is encouraged [34, 35]. Hand held devices providing the bystander with
CPR quality measurement by utilizing an accelerometer to measure CPR
metrics, are currently available [36, 37, 38]. A challenge with these devices
is to get the users to carry it with them at all times. Smartwatches have a
built-in accelerometer, and has been suggested as a tool for measuring CPR
metric [39, 40, 41]. However, a very small percentage of the population wears
a smartwatch at all times. The smartphone, on the contrary, does not suffer
from these limitations. In recent years, smartphone applications have been
developed for CPR quality measurement and to support learning [42, 43],
and to help communicate the location of an emergency to the emergency
unit [44]. In addition, there are publications describing the use of the
accelerometer in smartphones to measure CPR metrics [43, 45, 46, 47, 48].
Smartphone solutions utilizing the accelerometer require the smartphone
to be held on the patient‘s chest or strapped to the bystander‘s arm while
performing CPR. These solutions may be more suited for training than for
actual emergencies since buttons causing phone connection interruptions
with the emergency unit can accidentally be pressed when performing the
chest compressions. Using the smarthpone camera as the sensor allows the
smartphone to be placed safely on the ground. This avoid the risk of phone
call interruptions, but also ensures that the microphone and loud speaker
is not covered.

Besides from a small off-line study by Frisch et al. [49] we have found no
other published work or products from other groups that utilize the smart-
phone camera when measuring compression rate. Frisch et al. proposed

5



1. Introduction

to position the smartphone between the bystander and the patient when
measuring the compression rate. Since the bystander usually positions
his body and knees as close to the patient as possibly in order to more
easily provide quality chest compressions, we consider this smartphone
position less suited for real emergencies. Frisch‘s solution for measuring
the compression rate is also based on analyzing changes in the whole image
frames instead of using a region of interest that only include the bystander
performing the CPR. This is a very simple approach that would have large
difficulties measuring compression rate from other smartphone positions in
situations where disturbances, such as other bystanders, are present.

Our research group has earlier presented an application utilizing the
smartphone camera to estimate the compression rate and provide feedback
to both the bystander and the dispatcher [50]. The solution is based on
positioning the smartphone flat on the ground on the opposite side of the
patient. The application performs detection in a dynamic region of interest,
but suffered from accuracy issues when challenged with disturbances, like
bystanders having long loose hair and in cases of other bystanders moving
around the emergency scene.

In the topic of measuring chest compression depth, we have found no
other work that attempts to model the bystander movement and measure
the compression depth using a smartphone-on-the-floor solution.

1.3.3 Objective

The main objectives of implementing smartphone camera video analysis in
out-of-hospital cardiac arrest resuscitation are to investigate the possibilities
of:

• accurately measuring the CPR quality in real-time using a smart-
phone on-the-floor solution. This includes the chest compression rate
and the chest compression depth, meaning how fast and hard the
bystander compresses the patient‘s chest. The guidelines recommend
the compression rate to be in the range of 100-120 compression per
minute (cpm) and the compression depth to be between 50 and 60
mm [51].

• implement methods for noise handling, i.e when the bystander per-
forming the chest compression has long loose hair or if other by-
standers are moving around in the scene.

6
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• providing visual feedback to both the bystander and the dispatcher
in real-time.

• estimation of CPR summary parameters, like time to first compres-
sions, total compression time, time without compressions, average
compression rate and the total number of compressions

Figure, 1.2 gives an overview of the proposed solutions for the listed
objectives using a smartphone lying on the ground. Video frames from the
camera are utilized in algorithms for measurement of chest compression
rate, chest compression depth and CPR summary parameters. The real-
time feedback section illustrates how the feedback can be received by the
bystander through a smartphone application and on a webserver for the
dispatcher at the emergency unit. The solution for measurement of chest
compression rate handles the issues with the previous proposed methods
[49] [50], discussed in the Background and Previous Work section, by
implementing methods for noise handling. As indicated with the arrows,
the proposed solution for chest compression depth is not implemented in
the feedback system.

Figure 1.2: An overview of the proposed system for automatic video analysis in out-
of-hospital cardiac arrest situations. Video frames from the smartphone camera are
utilized in algorithms for measurement of chest compression rate, chest compression
depth and CPR summary parameters, and the real-time feedback section illustrates how
the feedback can be received by the bystander through a smartphone application and on
a webserver for the dispatcher at the emergency unit.
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1. Introduction

1.4 Newborn Resuscitation

This section presents the motivation, background, previous work and the
objective for automatic video analysis in newborn resuscitation.

Figure 1.3: Image example from a video recording of a newborn resuscitation.

1.4.1 Motivation

Globally, one million newborns die within the first 24 hours of life each
year. Most of these deaths are caused by complications during birth and
birth asphyxia, and the mortality rates are highest in low-income countries
[52]. As many as 10-20 % of newborns require assistance to begin breathing
and recognition of birth asphyxia and initiation of newborn resuscitation
is crucial for survival [52, 53, 54]. The treatment could include bag-mask
ventilations, stimulation, suction, and chest compressions. International
guidelines on newborn resuscitation exist, however, the importance and
effect of the different treatments are not fully explored. A thorough analysis
of the effect the different resuscitation activities have on the newborn
outcome could potentially allow us to optimize treatment guidelines.

Safer Births2 is a research project aiming to establish new knowledge
on how to save lives at birth, and as a part of the project data have
been collected during newborn resuscitation episodes at Haydom Lutheran
Hospital in Tanzania since 2013. The collected data contain video recordings,
ECG and accelerometer measurements from a heart rate sensor (HRS)
attached to the newborn, measurements of pressure, flow and expired CO2

2www.saferbirths.com
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1. Introduction

from a bag-mask resuscitator (BMR) and information on the newborn,
like outcome and the type of birth. The data material make it possible
to develop an automatic system for recognition of newborn resuscitation
activities, and for creating activity timelines with information on when the
different activities occur in each resuscitation episode. Further, a thorough
analysis of the created timelines together with the condition of the newborn
during resuscitation and knowing the outcome, could provide important
insight about different effects of the resuscitation. In addition, other
implementations of such a system could be used on-site as a i) debriefing
tool, summarizing the activities with no need to study video recordings
and ii) as a real-time feedback system.

1.4.2 Background and Previous Work

Our research group has previously proposed an activity detector for the
newborn resuscitation episodes based on the recorded HRS and BMR
signals [55, 56]. The detector discriminated the activities stimulation,
chest compressions and other with a accuracy of 78.7 %. Stimulation and
chest compressions are therapeutic activities, whereas other would include
moving and drying the baby, touching the HRS etc. These activities would
result in movement in the HRS, and thus be visible in both the ECG and
the accelerometer signals, but are not considered therapeutic activities or
treatment of the newborn. Using automatic video analysis of the video
recordings during the resuscitation episodes could potentially improve the
performance achieved using the HRS and BMR signals. Furthermore, video
analysis could possibly detect activities and information that are difficult or
impossible to detect from the ECG and accelerometer signals. One example
is the important therapeutic activity is suction where a suction device is
used to remove mucus from the nose and mouth of the newborn. Other
examples can be if the HRS is attached to the newborn or not, and how
many health care providers (HCPs) are present.

The importance of video analysis of newborn resuscitation episodes has
been well documented for both evaluation and training purposes [57, 58,
59, 60, 61]. However, manual inspection and annotation are very time
consuming, and limit the amount of data that can be thoroughly analyzed.
In addition, a manual inspection entails privacy issues. Thus, there is
a need for automatic video analysis of such resuscitation episodes. In
the topic of activity recognition in newborn resuscitation, Guo et.al [62]
proposed an activity detection system for newborn resuscitation videos

9



1. Introduction

based on DNN and linear Support-Vector Machines (SVMs). Their dataset
included 17 videos recorded with a frame rate of 25 frames per second (FPS)
at a hospital in Nepal, and the group aimed to recognize the activities
stimulation, suction, ventilation and crying by performing analysis on
individual frames. The pre-trained Faster RCNN network and the object
class People were used to propose areas involving the newborn, and motion
salient areas were further used as input to two pre-trained Convolutional
Neural Networks (CNN) from [63] designed to extract motion and spatial
features. Further, the features were combined and used as input to linear
SVMs, trained on their own dataset, to detect the activities.

The proposed method in Guo et. al. [62] would suffer from limitations
when the newborn is covered and in recognition of activities that are not
newborn position dependent. In addition, some activities require a temporal
analysis to be recognized and analyzing individual frames would most likely
not be sufficient for these cases.

1.4.3 Objective

The collected video recordings can be used in automatic video analysis
and the main objective is to quantify the sequence of activities, especially
therapeutic activities, performed from the time of birth until the end of
resuscitation. This would make it possible to compare and evaluate a
large amount of resuscitation videos. To be able to do that we need to
automatically recognize the ongoing activities in the videos, and create
activity timelines. The activities of interest include:

• Bag-mask ventilations: Respiratory support by using the BMR.

• Suction: Removal of mucus from nasal and oral cavities using a
suction device (SD).

• HRS attached to newborn or not.

• Stimulation: Warming, drying, and rubbing the newborns‘s back.

• Chest compressions. Keep oxygenated blood flowing to the brain and
other vital organs.

• Number of health care providers present.

• Newborn wrapped in blanket or not.
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1. Introduction

Figure 1.4 illustrates how these activity timelines are generated in this
thesis work using DNNs in a two-step approach; 1) by detecting objects
relevant for the activities and proposing regions for further temporal analysis,
and 2) by using other DNNs to perform activity recognition on the detected
regions. The proposed system and architecture is named ORAA-net - short
for the 4 main steps in Figure 1.4. The ORAA-net architecture could allow
us to recognize activities overlapping in time and to handle the challenges
with the previous proposed solution for activity recognition in newborn
resuscitation, discussed in the Background and Previous Work section. In
addition, by searching for activities in regions surrounding the objects
that are specific for the activities, we could, potentially, recognize activity
sequences that would else be difficult to detect.

Figure 1.4: An overview of the proposed system, ORAA-net, for activity recognition
and timeline generation from newborn resuscitation videos. Step 1: An object detector
detects relevant objects in the video frames and regions to further analyze are proposed
by post processing the detections. Step 2: activity recognition is performed by analyzing
the regions over time and activity timelines for each activity are generated as the final
output.
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1. Introduction

1.5 Contributions and Thesis Outline

1.5.1 Main Contributions

The contributions from this 3,5-year work are presented in 6 scientific papers
- 3 conference papers and 3 journal papers. An overview of the papers and
the connection between them are shown in Figure 1.5. The approach for
video analysis in out-of-hospital cardiac arrest (OHCA) resuscitation is to
utilize conventional signal and image processing methods well suited for real-
time analysis, such as frequency analysis and segmentation. The approach
for video analysis in the newborn resuscitation utilizes less conventional
methods like DNN approaches to solve the task.

To the left in Figure 1.5 we have the four papers involving the video anal-
ysis in OHCA resuscitation situations. In paper 1 (conference, ISPA 2017) a
system for robust measurement of chest compression rate is presented. This
system handles different types of noise, i.e. long loose hair and disturbing
bystanders walking in the scene, which was seen to produce problems in [50],
the previous work of our research group. Paper 2 (Journal of Healthcare
Engineering, 2018) describes the complete feedback system, the estimation
of the CPR summary parameters and a large validation test for chest com-
pression rate measurement. Paper 3 and 4 (conferences, SCIA 2017, ICIP
2018) investigate the potential in using a smartphone camera on-the-floor
solution for extracting chest compression depth information. Paper 3 is
a proof of concept study for chest compression depth measurement using
motion segmentation, based on a single bystander. Paper 4 investigate
if the method presented in paper 3 is generalizable for other bystanders
and suited for real emergencies by studying variations in bystander chest
compression techniques.

To the right in Figure 1.5 the 2 papers involving video analysis in
newborn resuscitation are listed. Paper 5 (Journal of Biomedical and
Health Informatics, 2019) presents the first step, seen as a green box in
Figure 1.4, of activity recognition in the noisy newborn resuscitation videos.
This step includes object detection, tracking and region proposal using a
convolutional neural network and post-processing. Paper 6 (Journal paper
under review) present a comparison of different object detectors and a
proposed solution for the temporal activity recognition, step two, seen as a
blue box in Figure 1.4, using 3D convolutional networks to analyze short
video sequences.
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1. Introduction

1.5.2 Thesis outline

The remaining content in this thesis is organized as follows: Chapter 2
includes Background theory and provide a brief introduction to some of the
terms and methods that are used in this work. Chapter 3 describes the
material and methods for the video analysis in out-of-hospital cardiac arrest
resuscitation. This includes the work presented in paper 1-4. Chapter
4 describes the material and methods for the video analysis of newborn
resuscitation, and includes the work presented in paper 5 and 6. In chapter 5
the results and findings from both cardiac arrest resuscitation and newborn
resuscitation are discussed. This chapter also contains a conclusion and
propose future work in the two resuscitation fields investigated. Further,
the published articles are presented as chapters to give figures, tables and
references individual numbering. The published articles are reformatted to
the thesis format and all references are listed in a common bibliography
list at the end of the thesis to increase readability.
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1. Introduction

Figure 1.5: An overview of the main contributions of the thesis. The out-of-hospital
cardiac arrest resuscitation section includes 4 papers - proposed system describing the
estimation of robust chest compression rate measurement (paper 1), the complete feedback
system with CPR summary parameter estimation (paper 2), a proof of concept study for
chest compression depth measurement (paper 3) and a larger feasibility study for chest
compression depth measurement (paper 4). The newborn resuscitation section includes 2
papers describing the activity recognition - the description of the object detection and
tracking for region proposal (paper 5) and the description of the temporal analysis of the
proposed regions and the generation of the activity timelines (paper 6).
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Chapter 2

Background Theory
In this chapter the central background methodology is covered. For the
work video analysis in out-of-hospital cardiac arrest resuscitation, the
principles of camera to world modelling and motion segmentation are
covered. Furthermore, for the work videos analysis in newborn resuscitation,
the principles of optical flow, deep neural networks, object detection and
activity recognition are covered.

2.1 Camera to World Modelling

When we use a camera to describe a world scene, we are doing a 2D imaging
of a 3D world scene. To be able to say something about the physical world,
like distances etc. based on the image pixels, it is necessary to know the
geometric properties. i.e. the focal length, skew and image center, of the
camera. These properties are called intrinsic parameters and together form
a camera matrix, Kcam. A model of the connection between the camera
center, image plane and world coordinates can be seen in Figure 2.1.

If the world coordinate system has the same orientation and origin as
the camera coordinate system, the conversion between the systems can be
expressed as follows:
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where λ = zw, P0 a projection matrix, fx and fy the focal length of the
camera, θ the skew and x0 and y0 the principal point offset from the image
center [64].
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2. Background Theory

Figure 2.1: A model of the connection between the camera center, image plane and
world coordinates. fx and fy is the focal length of the camera, x0 and y0 the principal
point offset from the image center, pw a point in the real world and pc the point in the
image plane.

The intrinsic parameters are often unknown, but camera calibration
procedures for finding these parameters have been applied for decades [65].
The procedures typically involves capturing multiple images from different
angles of a known object and pattern, e.g a chess board where the size of the
squares are fixed. The calibration procedure finds the intrinsic parameters
by evaluating how the object is captured by the camera [66].

2.2 Motion Segmentation

A simple approach for capturing a motion from a series of video frames with
a static background is accumulative difference images (ADI) [67]. Let f
indicate a NxM video frame where N is number of rows and M is number
of columns, and fl(n, m) corresponds to row, n, and column, m, in the
frame with index l. An ADI is initialized by generating a N × M sized
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2. Background Theory

frame of zeros. Further a reference frame is chosen, fl0(n, m), and the ADI
is generated from the subsequent frames, fl0+p(n, m) by:

A(n, m) =

⎧⎨
⎩A(n, m) + 1 if |fl0(n, m) − fl0+p(n, m)| > T

A(n, m) otherwise
(2.2)

where T is a threshold value and p is an index for the subsequent frames.
The result is an image with values > 0 in areas where the pixel values
have changed significantly. An example of a generated ADI from an image
sequence of a moving bystander captured using a smartphone-on-the-floor
can be seen in Figure 2.2. This motion band of white pixels can be further
measured and provide information on the size of the object‘s movement.

Figure 2.2: A generated ADI from an image sequence of a moving bystander captured
using a smartphone-on-the-floor.

2.3 Optical Flow

Optical flow field, or the image velocity field, is the detected motion in images
and is typically estimated between two subsequent image frames. Ideally,
the optical flow field is a dense field of displacement vectors representing
the pixel translations from pixel locations in the first image to the their
corresponding location in the second image. An example of a generated

17



2. Background Theory

optical flow field between two subsequent frames in a newborn resuscitation
video is illustrated in Figure 2.3.

Figure 2.3: An example of a generated optical flow field between two subsequent frames
in a newborn resuscitation video.

Variational methods, first proposed by Horn and Schnuck [68], comprise
the most dominant approaches for optical flow estimation [69]. The methods
are based on the brightness constancy assumption and assumes that the
brightness of corresponding pixels do not change during motion. Since Horn
and Schnuck first introduced their solution, many modifications have been
proposed. One popular variant is the Total Variation (TV) - L1 method
[70]. This method is based on the minimization of a functional containing
a data term using the L1 norm and a regularization term using the total
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2. Background Theory

variation of the flow. A disadvantage with the TV-L1 algorithm is that a
GPU is required in order to perform real-time estimations [70].

2.4 Deep Neural Networks

In traditional image- and signal processing and machine learning methodol-
ogy, it has been common to have an element of handcrafting of features,
based on assumptions on what is relevant information in the images or
signals. This can be straightforward in some cases where the features
defining the objective are easy to distinguish, but in some cases this can be
very challenging. One example is the task of object detection where you
could be interested in detecting objects that may look similar to each other,
such as separating a dog from a cat. Representation learning deal with this
problem by learning the features explaining the variation behind the data
instead of manually designing them [71].

Deep neural networks (DNN) perform representation learning by using
multiple layers between the input and the output. One example of a simple
DNN structure is a a fully connected neural network (FCNN) where the
hidden layers have multiple units, or neurons, and each neuron is connected
to all the neurons in the previous and the following layer [72]. An example
of a shallow FCNN is shown in Figure 2.4. In a FCNN each neuron has
three tasks: 1) multiply each input with their weighs, 2) sum them up
and 3) apply an activation function to the sum [72]. Since all neurons are
connected, the number of weights and parameters to learn quickly become
exceedingly large, especially when working with images which easily contain
hundred thousands of pixels.

A DNN could learn its task by undergoing a training procedure where
the network tries to make accurate predictions on different labelled training
examples. After a prediction, a loss function representing the prediction
error is estimated and back-propagated through the network to make small
adjustments to the weights that contributed to the error. This is repeated
with many training examples and performed multiple times on the whole
dataset. This procedure of learning from labelled data is refereed to as
supervised learning [72]. If provided with enough training examples that
well represent the variation in the data the network will be predicting
on, the network could learn the features explaining these variations. In
many tasks, such as health related applications, it could be difficult to have
enough labelled data to train a network that performs accurate predictions.
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Figure 2.4: A simple fully connected neural network with one hidden layer.

For such cases it would be beneficial to do transfer learning where the
network and its weights are pre-trained on a larger dataset of for example
natural images to learn fundamental data features [72]. Another approach
that is very common and could increase the variations in the training data
is data augmentation where new data are created by for example randomly
rotate, crop, shift and color adjust the original data [72].

2.5 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) is a class of deep neural networks
specially designed for analysis of 2D data structures, such as images. CNNs
are powerful mainly because of two important reasons: it studies sparse
interactions in the data and it utilizes weight sharing. A typical CNN
architecture consists of multiple convolutional layers, activation functions
and pooling layers [72]. Each convolutional layer consists of filters, or
kernels, of different size, and the filters analyze regions in a input volume
and provides a neuron in the output volume. Thus, the region analyzed by
the filter can be referred to as the neuron‘s receptive field in the previous
layer [73].
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2.5.1 Image Classification

Image classification is the task of recognizing the category of the dominant
object in an image. Multiple CNN architectures have been proposed for
solving this task and one sucessfull approach is the Inception architecture
[74]. Very deep CNNs are prone to overfitting and could suffer from
exploding/vanishing gradients [72]. In addition, they are very computational
expensive. Inception aims to tackle these challenges by letting filters
with different sizes operate on the same level, or layer. This makes the
architecture a bit wider and reduce the need for very deep models. An
example of an Inception module can bee seen in Figure 2.5. As can be
seen, the filters are used in parallel and the network can choose the filter
size that is most relevant for learning the required information. The 1x1
convolutional filters are used to achieve dimensionality reduction before
the more computational expensive 3x3 and 5x5 convolutions [74].

Figure 2.5: Example of an Inception module [74] where the authors propose to use
layers with different sized convolutional filters in parallel instead of only stacking them
in series.

2.5.2 Object Detection

Object detection is the task of recognizing the category and the location of
multiple objects in an image.
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2. Background Theory

Two-Stage Approach

Object detectors are typically divided into two classes: one-stage and
two-stage approaches. Two-stage detectors consist of a region proposal
step and a region classification step. These approaches make accurate
predictions, but have some major drawbacks: They have a complicated
training procedure which typically involves training the two steps separately,
thus leading to a longer training time. In addition, the two-stage approach is
also quite computationally slow during predictions, limiting the possibilities
for real-time analysis, which often could be important in an object detection
task.

One-Stage Approach

One-stage detectors aim to detect multiple objects in one shot. The de-
tectors are more efficient and could perform predictions in real-time. A
popular one-stage approach is You Only Look Once v3 (YOLOv3) [7].
YOLOv3 performs detection on three different sized feature maps, or scales,
by utilizing a Feature pyramid network (FPN) in its architecture [75]. Each
scale is divided into grids, and a prediction is performed on each grid. To
handle cases where multiple object could have its center point in the same
grid, each grid has pre defined anchor boxes which will be assigned to the
object that best fits the anchor [76]. This allows the network to detect as
many objects as there are anchor boxes, in each grid. The FPN architecture
allows YOLOv3 to better recognize object of different sizes. Grids of a
high level feature map covers larger regions of the original image and are
more suited for detecting larger object. Similar, grids from a low level
feature map cover a smaller region of the input image and are suited for
detection of smaller objects. The output of each grid on each detection
scale is a vector containing all the prediction information, i.e class, center
coordinates, heigh and width of the objects.

YOLOv3 is trained by supervised learning, and prior to training, all the
training examples are accurately labelled with bounding boxes surrounding
the objects of interest. During training, training examples are forwarded
through the network and a loss function estimates the error by comparing
the predicted class and coordinates with the example‘s true labels. The error
is then back-propagated through the network and weights, i.e. convolution
filters, are adjusted accordingly.
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YOLOv3 is very fast, but its accuracy is poorer compared to the best
two-stage approach - Faster R-CNN [77]. The reason why one-stage ap-
proaches do not perform as good as two-stage approaches is the class
imbalance problem during training. Analyzing all the regions in an image
and predicting a fixed number of anchor boxes assigned to each grid, creates
a lot of predictions of negatives/background class. This will greatly effect
the estimation of the loss function and the gradient during training [6].

Recently, a one-stage detector that handles the class imbalance problem
and outperforms two-stage detectors have been proposed [6]. The detector
is called RetinaNet and have two main features that differ from YOLOv3:
1) RetinaNet perform predictions using a five-scale-FPN instead of a three-
scale-FPN and 2) RetinaNet uses a novel focal loss function instead of a
binary cross entropy loss function when estimating the class prediction error
[6, 7]. In the latter, RetinaNet‘s focal loss function introduces a weight
term, (1 − p)γ , that down-weights easy training examples, i.e. examples
where the predicted confidence score, p, is high, during training. Thus, the
main contributions in the estimated loss come from predictions with low
confidence score. The focal loss is defined as:

FL(p) = −(1 − p)γlogp (2.3)

where γ is a hyper parameter that can modulate the effect of the down-
weighing term. In [6], γ = 2 worked best in the experiments.

2.6 Activity Recognition

Activity recognition is the task of recognizing an action or actions from
a series of observations, e.g. a video clip consisting of several subsequent
video frames.

2.6.1 3D Convolutional Neural Networks

Since CNNs has had a great success in image classification and object detec-
tion it has also been suggested for usage in spatio-temporal models. Instead
of repeating the trial and error of developing new model architectures, it
has been proposed to simply covert successful 2D models to 3D CNNs.
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Inception 3D Network

A sucessfull 3D CNN architecture used in activity recognition is the In-
ception 3D (I3D) developed by Deepmind1 and Carreira et. al [9]. I3D is
a two-stream activity recognition network based on the well-known CNN
Inception v1 [74] architecture. I3D recognizes activities by analyzing the
temporal changes in RGB representation and optical flow representation of
images in short video clips. The architecture of I3D is created by inflating
all the filters and pooling kernels in Inception v1 into a 3D CNN. Squared
filters of size NxN is made cubic and becomes NxNxN filters. The pre-
trained ImageNet weights from Inception v1 is repeated along the inflated
time dimension and rescaled by normalization over N. The inflated version
is further trained on the large activity recognition dataset, Kinetics 4002

Dataset which has 400 different classes and over 400 clips per class. During
training, each clip is forwarded trough the network and the class prediction
is compared to the clip‘s true label. A separate I3D model is trained for
the two data representations optical flow (TV-L1 algorithm [70]) and RGB.
During testing I3D average the output from the two networks.

Carreira et. al demonstrated that 3D CNN can benefit from pre-trained
2D CNN, and that transfer learning is highly efficient also in activity
recognition. The network provided state-of-the-art results on the activity
recognition dataset UCF-101, and recently the authors have released their
pre-trained models3.

1https://deepmind.com/
2https://deepmind.com/research/open-source/kinetics
3https://github.com/deepmind/kinetics-i3d
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Chapter 3

Video analysis in
out-of-hospital cardiac arrest
resuscitation
In section 1.3 the ideas for video analysis during OHCA resuscitation using
a smartphone camera were introduced. These ideas involve the smartphone
being placed flat on the ground next to the patient, as can be seen in Figure
3.1. This chapter presents the materials and methods for the proposed
video analysis solutions.

Figure 3.1: The CPR measurement and feedback system for the bystander performing
the CPR and the dispatcher at the emergency unit.

3.1 Materials

The materials used to develop the methods and to evaluate the results
were collected in collaboration with Laerdal Medical1 using a Laerdal

1https://www.laerdal.com/us/
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Resusci Anne manikin2. The parts of Figure 1.2 involving the CPR quality
measurements, i.e. chest compression rate, chest compression depth and
CPR summary parameters, illustrate different experiments conducted at
different times, thus involving different data materials:

(i) Seven test persons of different gender, hair length and age were
included in the material involving the evaluation of the methods for
compression rate measurement. Each test persons performed several
different tests to simulate different OHCA settings and challenges.

(ii) For the evaluation of the CPR summary parameters five different test
persons of different gender, hair length and age were included.

(iii) The proposed method for compression depth measurement is devel-
oped, adapted and evaluated for one bystander.

(iv) An experiment for analyzing the bystander movement during CPR, a
feasibility study for compression depth measurement, is also performed
and involves 13 different test persons of different gender, hair length
and age.

The test persons in experiment i-iii were trained in CPR, but none of them
were health care workers or professionals in the performance of CPR. In
experiment iv, 5 of the 13 participants were unknown to CPR and the rest
had some prior knowledge on how to perform CPR.

3.2 Methods

The main idea for the setup of video analysis in OHCA situations was
introduced in Figure 1.2. This section presents the methods for the four
parts chest compression rate, chest compression depth, CPR summary
parameters and Real-time feedback. The measurements are performed by
analyzing changes between sequential video frames in specific regions of
interest (ROIs) including the bystander, or relevant areas of the bystander,
performing the resuscitation. The methods for determining the quality
metrics of chest compression rate and CPR summary parameters developed
as a part of this thesis work are implemented in a smartphone application

2https://www.laerdal.com/us/products/simulation-training/resuscitation-
training/resusci-anne-qcpr/
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developed by Laerdal Medical, TCPR Link3 4, which communicates with a
webserver in real-time. The proposed solution for measurement of chest
compression depth is not implemented in TCPR Link. The webserver is
also developed by Laerdal Medical and illustrate how the CPR quality
measures can be visualized for the dispatcher at the emergency unit. Figure
3.1 is an illustration of the proposed feedback system. The TCPR Link
and the webserver is currently only released for training purposes. The
methods are presented in brief in the following. For more details, see paper
1-4.

3.2.1 Measurement of Chest Compression Rate (Paper 1)

Figure 3.2: An overview of the proposed system for automatic video analysis in out-
of-hospital cardiac arrest situations. This is a repetition of Figure 1.2 with the part
presented in this section, chest compression rate measurement, boxed in pink.

The topic of this subsection, measuring chest compression rate from a
smartphone camera on the floor, is highlighted in Figure 3.2. The chest com-
pression rate is measured by analyzing pixel differences between subsequent
video frames in a dynamic ROI surrounding the bystander performing the
chest compressions. The analysis involves studying the different frequency
components of a generated difference signal, and the potential compression
rate is detected by performing different steps of noise identification and
filtering.

3https://play.google.com/store/apps/details?id=no.laerdal.global.health.tcprlink&hl=
no

4https://apps.apple.com/no/app/tcpr-link/id1314904593
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Difference signal and ROI

Let fl(i, j) represent a gray scale video frame with the time index l, where
(i, j) corresponds to row index i and column index j. A difference signal,
d(l), that forms the basis for the chest compression rate analysis is generated
from f(i, j) as illustrated at the top row of Figure 3.3 and is explained in
short in the following.

difference images difference signal

40-160 cpm
freq. region of interest

STFT specter

video frames  

output comp.rate

Sliding 
Hanning 
window,
STFT

2

1

dynamic
ROI

finder

PSD model

Decision 
tree:
(noise / hair / 
OK comp.)

3 4

Post-
processing

Figure 3.3: Simplified block scheme of measurement of chest compression rate. Input:
image frames from the smartphone camera. Output: the detected comp. rate, CRf (n).

For two consecutive frames in f(i, j), define the difference image gl(i, j)
as:

gl(i, j) =
{

0, if |fl(i, j) − fl−1(i, j)| <= ε

fl(i, j) − fl−1(i, j), otherwise
(3.1)

where ε is a chosen threshold. Second, the difference image gl(i, j) is divided
into non-overlapping blocks, and blocks with significant activity over time
are connected to establish a region of interest ROIn. This step is illustrated
in Figure 3.4
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Figure 3.4: Example of an established ROIn (green blocks) surrounding the bystander
performing the CPR.

When a ROIn is established, the difference signal at time point l is found:

d(l) =
∑

(i,j)∈ROIn

g(i, j) (3.2)

Frequency analysis

The difference signal is analyzed by looking at the different frequency
components of the signal. This step corresponds to block 2 in Fig. 3.3.
A Short-Time-Fourier-Transform (STFT) is found over a sliding window,
ds(l), of the three last seconds of d(l) at 2 Hz, i.e. updated each half second.
Prior to the transform a Hanning window, H, is applied to ds(l). The
power spectral density (PSD) is found by

Dn(w) =
1

Lf
|FM {H{ds(l)}}|2 , (3.3)

where FM denotes M points FFT and Lf is the length of a window.

Noise handling

To handle estimation of the compression rate in high noise situations, the
PSD is modelled during three cases, a) no compression/random movements,
b) high noise compression due to long loose hair situations and c) low noise
compression. This corresponds to block 3 in Fig. 3.3.

Fig. 3.5 shows four examples of the PSD for each case a), b) and c), and
the actual compression rate is here indicated by a red line. As seen in Fig.
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3.5 b), long loose hair creates more frequency peaks in the PSDs compared
to the low noise case, c). The loose hair results in increased power in the
harmonic multiples of the compression frequency, and the first harmonic
peak can have a higher PSD value than the actual compression frequency.
For the no compression case, observed in Fig. 3.5 a), random movements
can cause different shaped PSDs, but all have in common that the power is
more spread out compared to when compressions are performed.

Attributes found from the PSD is used in a decision tree to distinguish
the three cases, and thereafter to estimate the compression rate, CR(n).
The attributes used in the decision tree are:

1) Amplitude of the first significant peak, ap1(n),
2) Amplitude of the second significant peak, ap2(n),
3) Frequency of the first significant peak, fp1(n),
4) Frequency of the second significant peak, fp2(n), and
5) Mean amplitude hight of PSD, aP SD(n).

Figure 3.5: PSD examples for the three cases, a) noise, b) long loose hair and c) low
noise, in the spectrum modelling. X-axis: 0-5 hz. Y-axis: Dn(w).

ROI update procedure

The ROIn is updated at a frequency of 2 Hz by checking the surrounding
blocks that are directly connected to the existing ROI for significant activity.
Blocks with activity smaller than a dynamic threshold, α, are excluded
from the ROIn and blocks with activity larger than α are included. If the
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ROIn is split into multiple parts, p, a signal, dROI,p(l), is created for each
p and undergoes the frequency and noise analysis explained in the two
previous sections. If the analysis of a dROI,p(l) shows a distinct repetitive
movement in the desired rate range, dROI,p(l) is kept in the ROIn. This
procedure allows other bystanders to move around and be part of the image
frame, without affecting the d(l) or taking over the ROI. An example can
be seen in Figure 3.6, where in spite of the disturbance entering the frame
is large, the strict update procedure limits the possibilities for including
blocks that contain the disturbing bystander.

Figure 3.6: Illustration of the ROI update procedure. The established ROI is indicated
with green blocks and the blocks that are candidates to include in the updated ROI is
indicated with red blocks. All the candidates have a direct connection with the existing
ROI, and this procedure limits the interference of other disturbances in the detection
area.

Post-processing

Three post-processing steps are performed on the detected compression
rate before it is displayed on the webserver for the dispatcher. The post
processing removes redundant information and makes the signal easier for
the dispatcher to interpret visually. The steps are:

(i) A spike/drop removal filter. If a large rapid change in CR(n) occur
after a stable detection period, we check if the change is caused by a
short peak/drop or by an actual change in compression rate before
displaying it on the webserver.

(ii) A smoothing filter. This filter is an adaptive mean filter where the
filter length varies depending on the stability of the previous values
compared to the current value. The adaptive mean filter ensures that
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real changes are preserved, but that smoothing is applied on small
rapid changes.

(iii) A dynamic rate range. In Dn(ω) we look for possible compression
rate peaks in the range 40-160 cpm as shown in Fig. 3.3 step 2.
Disturbances from random movements, i.e. no actual compressions,
tend to be below rates of 70 cpm and for rates as low as 40-70 cpm
to be showed to the dispatcher, the detections have to be proven
stable for a period of at least 10 detections (5 seconds). By doing
this we prevent some disturbance due to random movements to be
interpreted by the algorithm as compressions, but still allowing the
dispatcher to see if the bystander is compressing steadily with a very
low compression rate.

The filtered rate, i.e. the CRf (n), is the final compression rate shown to
the dispatcher, and logged in the system. To avoid delays in the displayed
rate, the current CRf (n) is firstly plotted, and the history is rewritten
when necessary.

3.2.2 Measurement of Chest Compression Depth (Paper 3)

Figure 3.7: An overview of the proposed system for automatic video analysis in out-
of-hospital cardiac arrest situations. This is a repetition of Figure 1.2 with the part
presented in this section, chest compression depth measurement, boxed in pink.

The topic of this subsection, measuring chest compression depth from a
smartphone camera on the floor, is highlighted in Figure 3.7. A method
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that utilize motion segmentation and accumulative difference images (ADIs)
to study bystander shoulder movements has been proposed for measurement
of chest compression depth during CPR. This method is not implemented in
the TCPR Link and the real-time feedback system as indicated by the arrows
in Figure 3.7. The proposed chest compression depth measurement utilize
knowledge of the arm length of the person performing the compressions in
order to perform the measurements, and the method can be divided into
two main steps: 1) detection of bystander and 2) detection of compression
depth. Both steps are shown in Figure 3.8 and are explained in the following
two sections.

Figure 3.8: Proposed system for detection of compression depth. Top: detecting
bystander and regions of interest (ROIs). Bottom: detection of compression depth.

Detection of Bystander Position

The detection of the bystander position can be seen in Figure 3.8, 1. An
ADI is generated by using three frames from the middle section of the
episode, where the first frame is the reference frame and frame two and
three generates the ADI image as defined in Eq. 2.2. Once the motion
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segmented ADI image is generated, it is further correlated with a template
of a bystander, and the best match indicates the position of the bystander
in the image frame, illustrated in Figure 3.8, 1.B.

Detection of chest compression depth

Once the bystander is located, compensation for bystander position in
the image frame, i.e. where the smartphone is placed on the ground, is
performed. This step is important since the observed motion from a camera
point of view are greatly impacted by the camera‘s position on the ground,
i.e the angle of the point of view. This step is performed using inverse
linear approximations of Eq. 2.1 and a camera angle model, found from
experiments, that compensate for the camera position relative to a desired
position.

At 2 Hz a new ADI is generated from the last 15 frames, and the size of
the bystander movement is measured in the shoulder areas as can be seen
in Figure 3.8, 2.B. The final step is to convert the measured motion band
in pixels, CDdet(n), where n indicates the analysis number, to depth of
millimetres using a linear regression model found from analyzing different
recordings:

CDconv(n) = 2.7285 · CDdet(n) − 13.9692 (3.4)

The data spread found from the recordings and the linear conversion model
is shown in Figure, 3.9.

Figure 3.9: The association between detected motion band in pixels and the actual
compression depth at that time. Linear regression model is shown in purple. Different
colors correspond to different recordings.
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3.2.3 Chest Compression Movement Modelling (Paper 4)

Figure 3.10: An overview of the proposed system for automatic video analysis in
out-of-hospital cardiac arrest situations. This is a repetition of Figure 1.2 with the part
presented in this section, chest compression depth measurement, boxed in pink.

Chest compression movement modelling is performed to measure the varia-
tions in different bystanders‘ chest compression techniques. This allows us
to evaluate the reliability of bystander movement dependent methods for
compression depth measurement, such as the method presented in section
3.2.2, but also accelerometer based methods presented by others.

A Microsoft Kinect camera is used to provide infrared images and depth
maps of a scene of different bystanders performing chest compressions. The
set-up and the proposed method for the modelling can be seen in Figure
3.11. The modelling is carried out by using reflective markers attached
to the bystander‘s shoulders, elbows and wrist to track the movements
while performing chest compressions on a manikin. The markers appear as
very bright spots in the infrared images, and by performing thresholding
and noise removal, other informations from pixels not containing a marker
is removed from the infrared frames. The spots are further dilated and
multiplied with the depth map, of the same pixel size, to capture depth
information around each marker. This depth information is further averaged
for each tracker, thus providing us with information on zw, the distance
from the camera to each of markers attached to the bystander. Further,
the two last world coordinates, xw and yw, are found by locating the
centroid of each marker in the infrared image, and converting the image
coordinates, x and y, to world coordinates using a camera matrix found
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from calibrating the Kinect camera. Here, the world coordinate system has
the same orientation and origin as the camera coordinate system. Once
all world coordinates are found for each image and each marker, we could
model the bystander movements in world, as illustrated in the bottom 3D
plot in Figure 3.11

Figure 3.11: Block scheme of 3D chest compression modelling using Microsoft Kinect.
IIR,l(x, y) and IDM,l(x, y) are frames provided by the Kinect camera.
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3.2.4 Measurement of CPR Summary Parameters (Paper
2)

Figure 3.12: An overview of the proposed system for automatic video analysis in
out-of-hospital cardiac arrest situations. This is a repetition of Figure 1.2 with the part
presented in this section, measurement of CPR summary parameters, boxed in pink.

The topic of this subsection, measurement of cardiopulmonary resuscitation
parameters, performed using a smartphone camera on the floor, is high-
lighted in Figure 3.12. In addition to the chest compression rate, CRf (n),
and chest compression depth, CDconv(n), there are also CPR summary pa-
rameters that are of significance when evaluating the treatment the patient
has received. The parameters are found from the chest compression rate
signal, CRf (n), stored on the webserver, and these are defined:

• TFSCR [s]: Time From Start of phone call to start of first stable Com-
pression Rate. A compression rate is defined as stable if CRf (n) > 40
and |CRf (n) − CRf (n − 1 )| < 20 is true for at least 6 seconds.

• TC [s]: Total active Compression time. The time where CRf (n) > 0 ,
for t(n) > TFSCR.

• TWC [s]: Time Without Compressions. TDPC − TC , where TDPC [s]
is the duration of the phone call.

• ACR [min-1]: Average Compression Rate. An average of all CRf (n) > 0 ,
for t(n) > TFSCR.

• NC: Total Number of Compressions. Estimated by: ACR ∗ (TC/60 ).
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3.2.5 Real-time feedback (Paper 1 & 2)

Figure 3.13: An overview of the proposed system for automatic video analysis in
out-of-hospital cardiac arrest situations. This is a repetition of Figure 1.2 with the part
presented in this section, real-time feedback, boxed in pink.

The topic of this subsection, real time feedback during chest compressions,
measured by the movements of the bystander captured by a smartphone on
the floor, is highlighted in Figure 3.13. Both the bystander performing the
CPR and the dispatcher at the emergency receive real-time feedback on the
chest compression rate from the proposed system. The chest compression
depth measurement is not implemented in this system.

Bystander Feedback - Smartphone App

The bystander establishes the phone connection to the emergency unit and
automatically turns on the speakers by pressing the green button to the left
in Figure 3.14. Next, the smartphone should be placed safely on the ground
on the opposite side of the patient, and the bystander can start performing
CPR and communicate with the dispatcher. Further, an automatic analysis
of chest compression rate starts, and the bystander receives feedback on his
own compression rate and his position in the image frame, as seen to the
right in Figure 3.14. The speedometer indicates the desired compression rate
range with a green field, and the arrow shows the bystander‘s compression
rate. To avoid confusion caused by feedback time delay, the compression
rate shown does not undergo the post-processing filter steps explained in
section 3.2.1. If the bystander stops performing compressions, a timer starts
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counting the hands-off-time and shows it on the app above the speedometer.
By providing feedback directly to the bystander, the bystander becomes
less dependent on the information received from the dispatcher in the other
end of the emergency call, and could potentially provide good quality CPR
to the patient more quickly.

Figure 3.14: Smartphone app for establishing the emergency call and for bystander
feedback during CPR.

Dispatcher Feedback - Webserver

The dispatcher receives information on the location of the caller and on
the bystander‘s chest compression rate measurements on the webserver in
real-time, as seen in Figure 3.15. Color indicators on the detections make
it easier to interpret if the bystander is performing chest compression in
the desired compression rate range. An indicator in the upper left corner
also provides information on how certain the algorithm is on its detections,
by shifting between yellow and green, where the colors represent high and
low noise cases respectively. After a session, all the data is stored on the
webserver.
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Figure 3.15: Proposed webserver for the dispatcher at the emergency unit.
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3.3 Contributions

This section summarizes the main contributions of the 4 papers involving
video analysis in out-of-hospital cardiac arrest resuscitation.

3.3.1 Paper 1 - Robust Real-Time Chest Compression Rate
Detection from Smartphone Video

This is a conference paper published by IEEE in the Proceedings of the 10th
International Symposium on Image and Signal Processing and Analysis
(ISPA), 2017. The paper won the conference‘s best paper award.

Objectives

The previous work on chest compression rate measurement from our research
group was presented in [50]. The proposed method revealed shortcomings
in high noise situations, such as if the bystander had long loose hair or if
there were disturbing bystanders in the scene. In this paper the objective
is to develop methods for handling such cases, and to compare the results
with the results from the previous work [50].

Methods

We propose methods where we have modelled and parametrized the power
spectral density to distinguish between noisy situations, improved the up-
date procedure for the dynamic region of interest and added post-processing
steps to suppress noise.

Results

The proposed methods provide excellent results with acceptable performance
at 99.8% of the time testing different chest compression rates in high and
low noise situations (Ex. 1), 99.5% in a disturbance test (Ex. 2), and
92.5% of the time during random movements (Ex. 3). The results for the
proposed solution in this paper, v2, compared to the previous proposed
solution in [50], v1, are presented in Table 3.1.
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Table 3.1: The results for the comparison of the proposed method in [50], v1, and the
methods proposed in paper 5, v2, for the detection and measurement of chest compression
rate. The results are shown for three different experiments: 1) different compression
rates in high and low noise situations (Ex. 1), 2) a disturbance test (Ex. 2) and 3) a
random movements test (Ex. 3).

Version Ex. 1 (%) Ex 2 (%) Ex 3 (%)

Mean error v2 1.3 1.6 -
v1 20.3 29.4 -

Performance v2 99.8 99.5 92.5
v1 68.1 58.0 84.0

Conclusion

The results illustrate that the proposed methods are able to accurately
measure the chest compression rate during CPR also in cases of high noise.

3.3.2 Paper 2 - Real-Time Chest Compression Quality Mea-
surements by Smartphone Camera

This is a journal paper published in the Journal of Healthcare Engineering
in 2018.

Objectives

The work presented in this paper aims to document that our proposed
solution for chest compression rate is reliable under a range of conditions
that could occur in real emergencies. The paper also propose methods for
estimation of the CPR summary parameters, in addition to focus on the
proposed feedback system.

Methods

With the use of a web-connected smartphone application which utilizes the
smartphone camera, we detect inactivity and chest compressions, and mea-
sure chest compression rate with real-time feedback to both the caller who
performs chest compressions and over the web to the dispatcher who coaches
the caller on chest compressions. The application estimates compression
rate with 0.5 sec update interval, time to first stable compression rate
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(TFSCR), active compression time (TC), hands-off time (TWC), average
compression rate (ACR) and total number of compressions (NC).

Results

Four experiments were performed to test the accuracy of the calculated
chest compression rate under different conditions and a fifth experiment
was done to test the accuracy of the CPR summary parameters TFSCR,
TC, TWC, ACR and NC. Average compression rate detection error was
2.7 compressions per minute (± 5.0 cpm), the calculated chest compression
rate was within ± 10 cpm in 98 % (± 5.5) of the time and the average error
of the summary CPR parameters were 4.5 % (± 3.6).

The results also revealed that the proposed solution had some difficulties
detecting the chest compression rate in cases where the bystander had long
loose hair, compressed with a high chest compression rate and was visible
in only a small part of the image frame.

Conclusion

The results show that real-time chest compression quality measurement
by smartphone camera in simulated cardiac arrest is feasible under the
conditions tested.

3.3.3 Paper 3 - Detecting Chest Compression Depth Using
a Smartphone Camera and Motion Segmentation

This is a conference paper published by Springer, Lecture Notes in Computer
Science book series, Scandinavian Conference on Image Analysis (SCIA),
2017

Objectives

This paper investigates the possibilities of providing the dispatcher with
more information by also measuring the chest compression depth using
a camera on the floor solution; same as for the measurement of chest
compression rate.
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Methods

The method is bystander specific and involves detection of bystander‘s po-
sition in the image frame and detection of compression depth by generating
Accumulative Difference Images (ADIs). The method also compensates for
the camera angle of view.

Results

The proposed method measured the chest compression depth with a mean
error of 6.1 mm and a standard deviation of 3.8 mm.

Conclusion

The method compensated well for the camera angle of view and shows
promising results when adapted for a specific bystander. This gives reason
to further investigate if the method could be developed into a generalized so-
lution for chest compression depth measurement that could be implemented
into the previously proposed feedback system.

3.3.4 Paper 4 - Kinect Modelling of Chest Compressions
- A Feasibility Study for Chest Compression Depth
Measurement Using Digital Strategies

This is a conference paper published by IEEE in the proceedings of the
25th IEEE International Conference on Image Processing (ICIP), 2018

Objectives

In this paper we aimed to investigate if bystander movement dependent
methods, such as our proposed method in paper 3, but also accelerometer
based methods proposed by others, are feasible for chest compression depth
measurement.
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Methods

A chest compression modelling experiment is performed using Microsoft
Kinect to measure the degree of variations in chest compression techniques,
providing knowledge on limitations when considering digital strategies for
chest compression depth measurements. Reflective markers are attached to
the bystander‘s shoulders elbow and wrist, and a Kinect camera records the
movements of the bystander while performing compressions with a compres-
sion rate in the range 95-125 cpm and with increasing chest compression
depths.

Results

The results show large variations in bystanders chest compression technique
for both up-and-down movements (Y) and for back-and-forth movements
(Z), as can be seen in Figure 3.16. Some bystanders also tends to lift the
back of their hands from the chest between chest compressions. This is
illustrated in the wrist movement plot for movement in Y-direction (bottom
center plot) where the vertical movement is fairly larger than the actual
compression depth for some of the test persons.

Figure 3.16: Median movement [mm] as a function of chest compression depth [mm]
for each test person‘s (TP) chest compression movement in X (horizontal), Y (vertical)
and Z (back and forth) direction.

Figure 3.17 illustrates the variation in the direction of the motion vector,
generated from Y and Z movement, for the different test persons chest
compression technique. Because of a blindspot problem indicated by the
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red L1 line, the proposed solution from paper 3 measures chest compression
depth with large variations between the different test persons. This is
illustrated in the plots in the top left corner. When the shoulder movement
has a motion vector that points exactly at the camera, the method is unable
to distinguish shallow from deep chest compressions.

Figure 3.17: Illustration of motion vectors (arrows) of shoulder movement for each test
person when chest compression depth is in the range of 50-55 mm. Upper left, plot of
motion band measurements using the method proposed in paper 3.

Conclusion

The large variations indicate that the method proposed in paper 3 would
require individual person calibration making it unsuited for usage in real
emergencies. However, this method could potentially be suitable for train-
ing where it is possible to do calibrations in advance. The observation
of bystanders lifting the back of their hands from the chest in between
chest compressions also implies that other bystander movement dependent
methods, such as smartwatch or smartphones attached to the bystanders
arm, could suffer from inaccurate measurements.
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Chapter 4

Video analysis in newborn
resuscitation
In section 1.4 the ideas for video analysis during newborn resuscitation
were introduced. The ideas involve the usage of deep learning approaches
to detect objects and recognize relevant activities from videos of newborn
resuscitation. This chapter presents the materials and methods for the
proposed video analysis solutions.

4.1 Materials

The materials used to develop the methods and to evaluate the results
were collected at Haydom Lutheran Hospital in Tanzania using cameras
mounted over newborn resuscitation tables. The cameras record newborn
resuscitation episodes where the health care providers (HCP) performs the
resuscitation activities, which include the usage of devices such as the heart
rate sensor (HRS) and the bag-mask resuscitator (BMR), both connected
to the Laerdal Newborn Resuscitation Monitor (LNRM). An example of a
resuscitation table and the LNRM is shown in Figure 4.1.
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Figure 4.1: A newborn resuscitation station at Haydom Hospital in Tanzania [78]. The
Laerdal Newborn Resuscitation Monitor (LNRM) is mounted on the wall and attached is
the devices Bag-Mask Resuscitator (BMR) and a Heart Rate Sensor (HRS). The camera
is mounted on the wall above the resuscitation table. Image reproduced with permission
from Safer Births (www.saferbirths.com) and modified by the author.

The materials includes 481 resuscitation episodes with both video and
corresponding LNRM data. The recorded videos were not intended for
automatic video analysis, but rather as support material for human in-
terpretation when needed, and therefore a strict protocol for the video
collection was not implemented. As a consequence, no standardisation
in camera type or camera setting were applied. The videos are recorded
with different kinds of low quality cameras and have variable frame rates -
ranging from 0.5-30 fps, as well as different resolution, focus settings and
quality. In addition, there are also variations in the position of the mounted
cameras and in the light settings in the labour rooms. The mothers also
bring their own blanket to wrap the newborn in, thus the blankets used in
the videos are of different colors and patterns, adding additional variations
to the scene. All these variations makes it more challenging to perform
object detection and activity recognition. Examples from variations can be
seen in Figure 4.2.
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Figure 4.2: Examples of variations in data material: A) Motion blurring due to low
frame rate, 1024 x 1280 pixels. B) Camera far away, 1200 x 1600 pixels. C) Occlusion
(ventilating newborn behind health care provider), 1024 x 1280 pixels. D) Poor lighting,
720 x 1280 pixels. E) Suboptimal camera position (newborn being ventilated outside
the image frame), 1024 x 1280 pixels. F) Motion blurring and colorful and patterned
blanket. 1024 x 1280 pixels. G) Poor lighting, suboptimal camera position and colorful
and patterned blanket. 1024 x 1280 pixels. H) Occlusion, 1024 x 1280 pixels.
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Different data materials are used to develop and evaluate the two steps
of the ORAA-net repeated in Figure 4.3:

(i) In step 1, object detection and region proposal, a dataset, ImData, of
3093 manually labelled images is created by selecting evenly spread
video frames from 21 randomly selected videos. ImData is further
augmented using histogram matching [79] to a dataset, AugData
of 24023 images. In addition, a synthetic dataset, SynthData, of
30000 images is also created and utilized in the training of the object
detectors.

(ii) In step 2 of Figure 4.3, activity recognition and generation of activity
timelines, 76 videos are manually annotated to create a dataset for
training. The total length of the activities uncovered, stimulation,
ventilation, suction, attaching/adjusting ECG and removing ECG
from the 76 videos are 17612, 3729, 8823, 2707, 446 and 172 seconds
respectively.

The test set for both step 1 and step 2 of Figure 4.3 are the same and
consist of 20 manually labelled videos, different from the videos used in the
training of the two steps.

Figure 4.3: An repetition of Figure 1.4. An overview of the proposed system, ORAA-
net, for activity recognition and timeline generation from newborn resuscitation videos.
Step 1: An object detector detects relevant objects in the video frames and regions
to further analyze are proposed by post processing the detections. Step 2: activity
recognition is performed by analyzing the regions over time and activity timelines for
each activity are generated as the final output.
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4.2 Methods

The main idea for the setup of video analysis in newborn resuscitation
was introduced in Figure 1.4. This section presents the methods for the
four parts; object detection, region proposal, activity recognition, and
activity timelines. The idea is to look for activities in relevant areas of the
video. Analyzing relevant areas instead of the whole video frames could
increase the chances of detecting activities, possibly overlapping in time,
in these noisy real-world resuscitation videos. This is performed by first
detecting objects of interest using a CNN, and further by analyzing the
regions surrounding the objects with 3D CNNs - trained to recognize the
specific activities. Different from the proposed method in the paper of Guo
et.al. [62] where they analyzed individual frames to recognize activities,
the proposed regions are here instead analyzed over time. This allows us
to recognize activities with typical movements, e.g. the activity ventilation
which involves the object BMR to be both in correct position and be
squeezed in order to be assigned to the activity class.

The methods are presented in brief in the following. For more details,
see paper 5 and 6.

4.2.1 Data pre-processing (Paper 6)

An important step in activity recognition is to ensure that the data is of
sufficient quality. This is especially important in this case where the videos‘
frame rate range from 0.5-30 fps. For videos with very low frame rate it is
difficult to separate the repetitive activities we are searching for, such as
stimulation, were the HCP typically rubs the newborns‘s back, from random
movements. We have observed that for frame rates below 5 fps it can be
very difficult to identify stimulations even by careful visual inspection, thus
all videos with lower frame rates than 5 fps is excluded from the data used
in training. This accounts for 27% of the dataset, as can be seen in the
video frame rate distribution in Figure 4.4.

Thereafter, a pre-processing step is performed to convert the videos
now ranging from 5-30 fps to a fixed and adequate frame rate. Although
videos with frame rate below 5 fps are now removed, many of the remaining
videos are still of low quality. Thus, advanced up-sampling techniques that
includes motion analysis and require a certain frame rate, would not be
well-suited, and a simple Linear Frame Interpolation (LFI) [80] technique
is chosen for the up-sampling. The artefacts from the LFI have a visual
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appearance similar to the blurring in some of the videos. Let f(t) be a
frame at time t from the original video. Given frames at times t1 and t2
we construct a new frame for time ti (t1 < ti < t2) by:

f(ti) = c1 · ft1 + c2 · ft2 (4.1)

where
c1 =

δt1
T12

, c2 =
δt2
T12

, (4.2)

and where δt1 = ti − t1, δt2 = t2 − ti and T12 = t2 − t1.
This re-sampling procedure makes it easier for the networks to analyze

fix-length-sequences from the videos without experiencing the sequences as
played at a unnatural speed, i.e in fast forward or in slow motion.

Figure 4.4: Average fps for the 481 videos in the dataset. X-axis is the fps-groups with
frame rate interval of five, and Y-axis is the number of videos.
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4.2.2 Object Detection (Paper 5 & 6)

Figure 4.5: An overview of the proposed system, ORAA-net, for activity recognition
and timeline generation from newborn resuscitation videos. This is a repetition of Figure
1.4 with the part presented in this section, object detection, boxed in pink.

The topic of this subsection, object detection in newborn resuscitation
videos, is highlighted in Figure 4.5. The object detection is performed using
a CNN and creates the foundation for the proposal of regions to be further
analyzed over time in the activity recognition. The object classes in the
detection include HRS BMR, SD and HCP hands (HCPHs), all shown in
Figure 4.6. Object detection using DNN requires a lot of training examples,
especially when working with data with large variations and of poor quality.
Three approaches are used to create the necessary data for training: 1)
Manually labelled images with bounding boxes accurately surrounding the
object of interest, 2) a synthetic dataset created from video recordings of
the objects and 3) augmentation of the manually labelled images using
Histogram matching [79], where both 2) and 3) are explained further in
the following.
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Figure 4.6: Detected object in the newborn resuscitation videos. Upper left: a health
care provider hand (HCPH). Upper right: the heart rate sensor (HRS). Lower left: the
suction device (SD) used to remove mucus from nasal and oral cavities. Bottom right: a
bag-mask resuscitator (BMR).

Synthetic Dataset

As a part of this thesis work, a synthetic dataset, SynthData, was created.
Firstly the objects were video recorded in all possible angles in front of a
blue wall. Secondly, image processing techniques were applied to extract the
object masks and to randomly position the objects on different background
images. Because of the colorful and patterned blankets used to wrap the
newborn in, the objects can appear on all kinds of backgrounds. Thus,
thousands of different backgrounds, both natural images and texture images,
are used in this step to create the large background variations that could
occur in the videos. In the generation of an synthetic image, one image
example from the object‘s video recording in front of the blue wall are used
for the objects BMR, HRS and SD and 1-3 image examples are used for the
object HCPH. The image examples are randomly placed on the background
and the generated images is further filtered with a small motion blur to
make them appear more realistic. An illustration of the scene for recording,
the objects, and a generated example can be seen in Figure 4.7.
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Figure 4.7: Illustration of the generation of synthetic images used in object detection
training. Top left: Scene for video recording the different objects, top right: Extracted
object template examples from the recordings and bottom: a generated synthetic image
example.

Augmentation

The manually labelled images, ImData, are further augmented by histogram
matching [79], providing a new dataset, AugData. The augmentation results
in images with variations similar to the variations of the original video
frames. By including them in the training, the object detector becomes
more generalized, thus better equipped to handle large data variations. A
frame from 10 randomly selected videos are used as histogram reference
frames, and each of the images in ImData are augmented with each of the
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reference frames. 6 of 10 examples of the histogram match augmentation is
shown for one of the frames in Figure 4.8.

Figure 4.8: Histogram match augmented image examples used in object detection
training.

Convolutional Neural Networks

Different state-of-the-art CNN object detector architectures and their pre-
trained weights are further trained on the presented dataset to evaluate
which architecture is best suited for object detection on our classes and
dataset. The architectures we have used and compared in this thesis work
are YOLOv3 [7], RetinaNet [6], SSD MultiBox [81] and Faster R-CNN
[77] and the significant architectural features for each of them are listed in
Table 4.1.
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Table 4.1: Comparison of significant architectural features of the object detection
networks. * Base CNN proposed in the original design.

YOLOv3 [7] RetinaNet [6] SSD
MultiBox [81]

Faster
R-CNN [82]

Base CNN Darknet53* Optional
ResNet-50

VGG-16* Optional
ResNet-50

Approach One-stage One-stage One-stage Two-stage
Feature
Pyramid
Network

Yes Yes No No

# Feature
map scales

3 5 6 1

Anchors 9 9 6 9
Hard Neg.

Mining
No No Yes No

Cls. loss
function

Binary
crossentropy

Focal loss Categorical
crossentropy

Categorical
crossentropy

Reg. loss
function

Sum of
squared errors

Smooth L1 Smooth L1 Smooth L1

4.2.3 Region Proposal (Paper 5 & 6)

Figure 4.9: An overview of the proposed system, ORAA-net, for activity recognition
and timeline generation from newborn resuscitation videos. This is a repetition of Figure
1.4 with the part presented in this section, region proposal, boxed in pink.
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The topic of this subsection, region proposal in newborn resuscitation
videos, is highlighted in Figure 4.9. Once objects have been detected, the
object classes BMR, SD and HRS undergo further processing to perform
object tracking and region proposal. The processing consists of 6 main
steps:

(i) Localize the most likely object position in each video frame using the
object detections probability scores (there can only be one object for
the object classes BMR, SD and HRS, but several HCPHs.)

(ii) Create time series, TSobj,dir, for the objects position, x and y coordi-
nates, in each video frame.

(iii) Fill detection gaps in TSobj,dir by choosing the previous detected
value.

(iv) Remove short peaks in TSobj,dir by checking, in time, if a rapid
position change is an actual large position change or if the position
quickly returns to the same area as prior to the change.

(v) Smoothing of TSobj,dir using a moving average filter.

(vi) Region proposal surrounding the objects center coordinates, i.e the
TSobj,dir, for further activity analysis. Regions are of size 500x500
pixels.

Step ii-v is illustrated with examples from the x-position of object BMR,
TSBMR,x, in Figure 4.10, and an example of the proposed regions of step
vi are shown in the colored area of Figure 4.9.
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Figure 4.10: Post-processing of the position signal, T Sobj,dir, of a detected object. In
this example the x-coordinates of the object BMR in the video frames are used, T SBMR,x.

In addition to the proposed dynamic regions surrounding the objects
BMR, HRS and SD, a static region of the most likely newborn position in
the resuscitation video is also proposed. By analyzing this region in the
activity recognition it gets possible to detect the activities which are not
object dependent, like is the newborn covered or not. In addition, this
region may also allow us to recognize object-dependent activities for cases
where the object detection and tracking is poor. The newborn region is
found by generating a heatmap from the position of the detected HCPHs
throughout the resuscitation video and the chosen region size is 700x700
pixels. An example of the generated heatmap and the proposed newborn
region can be seen in Figure 11.2.
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Figure 4.11: An example of the generated heatmap from the detection of HCPHs
(right) and the proposed newborn region (left).

4.2.4 Activity Recognition (Paper 6)

Figure 4.12: An overview of the proposed system, ORAA-net, for activity recognition
and timeline generation from newborn resuscitation videos. This is a repetition of Figure
1.4 with the part presented in this section, activity recognition, boxed in pink.

The topic of this subsection, activity recognition in newborn resuscitation
videos, is highlighted in Figure 4.12. The proposed newborn and object
regions from section 5.2.1 are further analyzed over time using 3D CNNs
to recognize the relevant resuscitation activities listed in section 1.4.3.
The activity chest compressions is excluded in the activity recognition
because of the limited number of occurrences of this activity in both the
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training and test data material. The activity number of HCPs present in
the resuscitation is estimated by counting the number of detected HCPHs
per frame, and do not undergo the activity recognition described in the
following.

The activity recognition is performed using 11 3D CNN each trained
on one activity and on one of the two data representations - optical flow
and RGB. A sequence of images from the activity relevant area, or areas,
is used as an input to the activity relevant model, and the model classify
the sequence to activity or not, i.e a binary classification problem. For
activities that have a distinct movement, which are all activities except
from newborn uncovered, optical flow representation of the data is used in
addition to the RGB data when recognizing the activities. An illustration
of how the proposed regions are used as input to the 3D CNNs to recognize
the activities is shown in Figure 4.13. As can be seen, both the newborn
region and an object region are used as input to the networks belonging to
an object dependent activity to increase the chances for the activity being
recognized.

For this step we utilize transfer learning and the chosen pre-trained 3D
CNN architecture is the Inception 3D (I3D) developed by Deepmind1 and
Carreira et. al [9].

1https://deepmind.com/
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Figure 4.13: Illustration of how the three relevant object regions and the newborn
regions are used as input to different 3D CNN (I3D architecture [9]) models trained to
recognize a specific resuscitation activity. The details of how the predictions are made,
indicated with box P, is illustrated and explained in Figure 4.15.
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4.2.5 Activity Timelines (Paper 6)

Figure 4.14: An overview of the proposed system, ORAA-net, for activity recognition
and timeline generation from newborn resuscitation videos. This is a repetition of Figure
1.4 with the part presented in this section, the generation of activity timelines, boxed in
pink.

The topic of this subsection, generation of activity timelines from newborn
resuscitation videos, is highlighted in Figure 4.14. Figure 4.15 shows the
details of the red-dotted area of Figure 4.13, and is an example of how
the timeline for an activity is generated. This activity example used both
the Newborn region and an object region in the activity recognition. Both
regions and both data representations are inputs to models trained for the
specific activity and the specific data representation. As indicated with A
and B, both regions use the same models, thus in this example there is only
two different models - the RGB model and the Flow model. The output
from the two models are averaged, resulting in a timeline for each of the
regions. Further, the timelines from the two regions are also averaged, and
the final activity timeline, consisting of values between 0 and 1, where 1
indicates that the activity is detected, are generated.

This is similar for all 6 activities listed in Figure 4.13, the only difference
is the number of regions used to detect the activity - one or two, and if the
activity recognition involves the usage of both RGB and Flow models.
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Figure 4.15: An example of how the prediction timeline is generated for the actiity
Ventilation. This activity example used both the Newborn region and an object region
in the activity recognition. Both regions and both data representations are inputs to
models trained for the specific activity and the specific data representation. As indicated
with A and B, both regions use the same models, thus in this example there is only two
different models - the RGB model and the Flow model. The output from the two models
are averaged, resulting in a timeline for each of the regions. Further, the timelines from
the two regions are also averaged, and the final activity timeline, consisting of values
between 0 and 1, where 1 indicates that the activity is detected, are generated.
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4.3 Contributions

This section summarizes the main contributions of the 2 papers involving
video analysis in newborn resuscitation.

4.3.1 Paper 5 - Object Detection During Newborn Resus-
citation Activities

Paper 5 is a journal paper published by IEEE, Journal of Biomedical and
Health Informatics, 2019.

Objectives

The objective is to investigate the possibilities of automatic activity recogni-
tion on noisy real-world newborn resuscitation videos with large variations
in quality. The methods used are based on CNNs. The idea is to firstly
detect relevant objects and thereafter analyze the area around them in an
activity recognition step. Knowing where to focus in the video frames when
performing activity recognition could increase the chances for the activities
being recognized. The paper presents the first step of the ORAA-net,
involving the object detection and tracking to propose regions.

Methods

With the use of transfer learning from the pre-trained Yolo v3 network [7]
architecture, an object detector is trained to detect relevant objects in the
newborn resuscitation videos. The dataset used in the training consists of
3 subset of data: 1) Manually labelled images (3000 images) where each
object is marked with bounding boxes, 2) augmentation of the manual
labelled subset using histogram matching [79] (30000 images), and 3) a
synthetic dataset made by video recordings of the objects of interest in a
studio (30000 images). 75 % of the data is used in a training set and 25 % in
a validation set. The output from the object detection is further processed
to fill in missing detections and to create a continuous tracking signal of
the object‘s positions throughout the resuscitation videos. In addition, the
number of HCP present in the resuscitation is estimated from the detected
number of HCPH in each frame. The performance of the method for region
proposal and the estimation of the number of HCPs present are evaluated
on a test set of 20 videos.
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Results

The performance of the proposed system for object detection in newborn
resuscitation videos is shown in Table 4.2. The upper part shows the
detection results for the object detection and tracking of the objects BMR,
HRS and SD after post-processing, the middle part the detection results
measured during time periods where the relevant activities are ongoing,
and the bottom part shows the estimation of the number of HCP present
in the resuscitation episodes.

Conclusion

The proposed object detection and tracking system provides promising
results in noisy newborn resuscitation videos.
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Table 4.2: Performance results for object detection in newborn resuscitation videos. Top
section: Object detection after post processing. Middle: object tracking when relevant
activities occurs (# detected / # true). Bottom: Prediction of the number of health
care providers.

Object detection
(post processed)

P Q (25,50,75)

BMR 96.66 % 96.23, 100, 100 (%)
HRS 97.88 % 100, 100, 100 (%)
SD 76.86 % 70.99, 81.67, 92.82 (%)

Object detection
during activity

P Activities

BMR 96.97 % (64/66) Ventilation
HRS 100 % (43/43) Attach/remove HRS
SD 75.00 % (45/60) Suction

HCP detection P

No HCP 90.70 %
One HCP 90.48 %
Two HCPs 53.31 %
Three (or more)
HCPs

6.88 %

P Q (25,50,75)
HCP correct pred. 71.16 % 50.72, 78.56, 89.45 (%)

E

HCP pred. error 0.32 0.11 0.22 0.54

67



4. Video analysis in newborn resuscitation

4.3.2 Paper 6 - Activity Recognition from Newborn Resus-
citation Videos

Paper 6 is a journal paper under review.

Objectives

The objective is to investigate the possibilities of using 3D CNNs to per-
form step two of the ORAA-net, activity recognition and generation of
activity timelines on newborn resuscitation videos. The paper also aims to
investigate if there are other state-of-the art object detectors that could
be used as the backbone model instead of YOLO v3 [7], to improve the
performance of the object detector in step 1, presented in paper 5.

Methods

The object regions from paper 5 and a newborn region, found from analyzing
the position of the detected HCPHs, are used as input to 3D CNNs to
recognize the resuscitation activities. This step utilize transfer learning and
the chosen backbone for the 3D CNN architecture is the Inception 3D.

To recognize the activities we input short video sequences from activity
relevant areas to models trained on a specific activity. Thus, each model
performs a binary classification - activity or not. For activities which are
object dependent, both the object region and the newborn region are used
during predictions. All activities except the activity uncovered, which are
not movement dependent, utilize both RGB and optical flow models in the
predictions, and average the predictions in the generation of a final timeline.
76 videos were manually annotated and used to generate the training data
for the models. 75 % of the data were used in a training set and 25 % in a
validation set. The evaluation of the system was performed on a test set of
20 videos.

Results

In the comparison of the different object detectors, the RetinaNet [6]
architecture reduced the amount of missing detection of the object SD
during activities with 47 % compared to the results achieved with the
YOLO v3 [7] architecture. The RetinaNet also estimated the number of
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Table 4.3: Activity recognition results from paper 6.

Modell Precision Recall Accuracy
Uncovered RGB 87.75 83.99 88,31
Stimulation RGB + Flow 78.79 74.59 91.61
Ventilation RGB + Flow 87.30 90.64 96.90

Suction RGB + Flow 56.85 61.32 92.78

health care providers (HCP) present in the resuscitation episodes with an
accuracy of 68.32 %.

In the activity recognition, step two of the ORAA-net, the system
recognized the activities newborn uncovered, stimulation, ventilation and
suction with a mean precision of 77.67 %, a mean recall of 77,64 % and a
mean accuracy of 92.40 %. The results for the individual activities can be
seen in Table 4.3.

The results for Attach/adjust HRS showed a precision of 50 % and a
recall of 52.92 %, and the results for Removing HRS showed a precision of
6.49 % and a recall of 57.45 %.

Figure 4.16 shows timeline examples of the detection results for the
activities. For the motion dependent activities where optical flow models
were included in the experiments, we achieved better results by combining
the data representation models compared to using only one of them.

Conclusion

The results indicate that the proposed ORAA-net utilizing CNNs could
be used for object detection and activity recognition in noisy low quality
newborn resuscitation videos. By including more training data that well
represent the variation in the data, we expect that the results for the
activities suction, Attach/adjust HRS and Removing HRS could be further
improved.
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Figure 4.16: Examples of activity detection results for the activities Uncovered, Stimu-
lation, Ventilation, Suction, Attach/adjust Heart Rate Sensor (HRS), and Remove HRS,
and the Number of health care providers (HCP) estimated from the detected HCP‘s
hands. Two test set examples that illustrate both strengths and weaknesses are chosen
for each activity. The y-axis represent the probability for the activity, between 0 and 1,
and x-axis the video length in seconds. Blue lines represent the reference data from the
manual annotations and orange lines the detection results.
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Chapter 5

Discussion and Conclusion
In this chapter the main achievements are listed and the results and chal-
lenges are discussed. Furthermore, the conclusion and potential future work
for both video analysis in OHCA situations and in newborn resuscitation
situations are presented.

5.1 Out-of-hospital Cardiac Arrest Resuscitation

Figure 5.1: An overview of the proposed system for automatic video analysis in
out-of-hospital cardiac arrest situations.

The main achievements in video analysis in out-of-hospital cardiac arrest
situations (OHCA) can be summarized with the following points:

• A1) A solution has been proposed for detection of chest compression
rate in noisy simulated OHCA situations using frequency analysis
and methods for noise handling from video captured by a smartphone
on the floor.
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• A2) A solution has been proposed for measurement of CPR summary
parameters based on the detected chest compression rate from A1).

• A3) A solution has been proposed for detection of chest compression
depth by utilizing a bystander adapted method based on motion
segmentation from video captured by a smartphone on the floor.

• A4) Discovered variations in bystanders chest compression technique
that cause limitations in chest compression depth measurement us-
ing the method from A3) and for bystander-movement-dependent
methods in general.

5.1.1 Results and Challenges

Chest Compression Rate Measurement

The measurement of chest compression rate provides very good overall
results for the tests involving different challenging simulated OHCA situa-
tions. However, we did experience some limitations when the bystander
had long loose hair, compressed with a high compression rate and were
visible only in a small part of the image frame. This suggests that it is
important that the smartphone is positioned on the floor so that both the
head and shoulder of the bystander is included in the camera of view.

CPR Summary Parameters

The CPR summary parameter test provided acceptable results, but we
discovered that false detections could occur in compressions pauses. The
bystander sometimes moved back and forth in a slow repetitive movement,
causing the algorithm to think that the bystander was performing chest
compression with a slow rate. These false detections can be suppressed by
deactivating the dynamic rate range function, but a consequence would be
that a bystander performing chest compressions with very low rates, i.e.
below 70 cpm, would not be detected. It is also unlikely that these false
predictions would last very long, making it possible for the dispatcher to
recognize the short sequences of low chest compression rate detections as
noise from the live plot on the webserver.
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Chest Compression Depth Measurement

The results for the chest compression depth measurement were promising
when adapted for a specific bystander. However, since the chest compression
movement modelling study revealed that there are large variations in by-
stander‘s chest compression technique, and individual bystander calibration
would be required, the solution is not suited for usage in real emergen-
cies. In addition, the current solution would also be greatly affected by
disturbances, such as other bystanders moving around and if the bystander
performing the chest compressions has long loose hair. The solution could
still be useful in training situations, where such disturbances could be
avoided and it is possible to do calibration prior to chest compression start.
The chest compression movement modelling study also revealed that the
movements in the vertical Y-direction and the back and forth Z-direction
are similar for most bystanders. Combining these movement into motion
vectors and measuring the vector‘s length, could potentially allow us to
translate this information to measurements of the chest compression depth.
Measurement of these motion vectors would require a camera with depth
measurements, but this seems to be standard in the latest smartphones.
However, even a depth camera solution would suffer from poor measurement
accuracy in cases where the bystander lifts the back of the hands during
chest compressions, as was discovered with some of the test persons in
the chest compression modelling study. This lifting of the hands will also
cause problems for other bystander movement dependent methods, such
as accelerometer based smartwatch and smartphone solutions attached to
the bystander [39, 40, 41, 43, 45, 46, 47, 48]. By measuring directly on the
patients chest instead of the movements of the bystander, it is possible to
accurately measure the chest compression depth as well. As discussed in
section 1.3.2 such products exist [36, 37, 38], but a challenge is to get the
users to carry it with them at all times.

Real-time measurement and Feedback System

The TCPR link app is made available on iTunes and Google Play 12, but
strictly for training and evaluation purposes. By releasing this version we
increase the visibility of our work, and it allows professionals in the medical

1https://apps.apple.com/no/app/tcpr-link/id1314904593
2https://play.google.com/store/apps/details?id=no.laerdal.global.health.tcprlink&hl=

no
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community to evaluate the system. Receiving information confirming that
the bystander is performing chest compressions and if he or she is performing
them with a correct rate, would be of great value for a dispatcher at the
emergency unit, even if the CC depth is not measured. It is important to
have in mind that an out-of-hospital cardiac arrest situation is extremely
stressful for the bystander, and it could be very difficult for the dispatcher
to interpret if the bystander performs quality chest compressions or not,
strictly based on the words spoken by the bystander. Thus, any additional
information provided to the dispatcher in these situations would be of great
value.

The detected and stored compression rate signal and the CPR summary
report provides further opportunity for evaluation, debriefing and quality
improvement of the dispatcher-caller interaction. The stored data and
the visual dispatcher feedback system can be used to provide continuing
education in telephone CPR (T-CPR) for dispatchers, as AHA recommends
in T-CPR guidelines [83]. In addition, the CPR summary parameters can
provide the EMS arriving at the scene with detailed information about the
treatment the patient has received.

If TCPR link shows a well documented positive effect on the CPR quality,
it may be subject to appropriate medical device regulations and thus made
available for clinical use [84, 85]. A group of researchers at Shanghai Jiao
Tong University School of Public Health, Shanghai, China, lead by Lin
Zhang, have performed a study to evaluate the effect of using TCPR link
together with standard T-CPR vs. only using T-CPR. The study included
186 lay persons which were divided randomly into the two groups. Both
groups was first trained using a T-CPR training video and with a real-
time feedback manikin (Resusci Anne, Laerdal Medical). Further, the
participants in the two groups were asked to make an emergency call in a
simulated scenario, and to perform 6 minutes hands-only chest compressions
on a manikin. During the call the participants received instructions from a
senior dispatcher. The findings from the study was that the participants in
TCPR link group (n=94) had significantly higher median chest compression
rate, 111 (109-114) vs. 108 (103-113) cpm, (p=0.002), and increased
median adequate compression ratio 91 (86-96) vs. 82 (64-94) %, (p<0.001)
compared to those in the conventional T-CPR group (n=92). The study was
presented in a poster session at the International Conference on Emergency
Medicine (ICEM), 20193 with abstract code PO_RCH_04_044.

3http://www.icem2019.com/
4http://www.icem2019.com/program/program_14.asp
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Studies have also shown that both laypersons and professionals could
benefit from objective feedback during CPR. In a study presented by Abella
et al. [86], the CPR certified rescuers performed chest compression rates
<80 cpm in 36.9 % of the CPR segments included in the study and rates of
100 plus minus 10 cpm in only 31.4% of the segments, clearly suggesting
that CPR-certified rescuers could also benefit from the proposed solution.

We also believe that our camera-based smarpthone solution is more suited
for usage in real emergencies than accelerometer based smartphone solutions
proposed by others [43, 45, 46, 47, 48]. The accelerometer based solutions
have to be held in the bystander‘s hand or be attached to the bystander‘s
arm in order to perform the measurements, while our camera-based solution
can be placed safely on the ground. The advantages of a smarthone-on-
the-floor solution is 1) it avoids phone connection interruptions caused by
accidental pressing a button, 2) it ensures that the microphone and loud
speaker is not covered up and 3) it lets the bystander perform CPR with
both hands free.

5.1.2 Conclusion

The proposed system for chest compression rate measurement and esti-
mation of CPR summary parameter shows very promising results. The
system handles different variations of noise, and could potentially add
important information on the CPR quality to the communication between
the bystander and the dispatcher in real OHCA situations.

The proposed method for chest compression depth measurement suffers
from limitations due to variations in bystanders chest compression tech-
niques, and the proposed method require individual person calibration to
perform chest compression depth measurement. As a consequence, the
method is unsuited for real emergencies, but could still be beneficial in
training situations.

5.1.3 Future work

A feature which records audio and video will be considered integrated in
TCPR link. A possible solution could be to let the recordings be automati-
cally uploaded to a cloud storage when available bandwidth would allow it.
Still images, video and audio could be made available for the dispatcher
and allow for a better understanding of the emergency situations. Audio
recordings may also be analyzed with respect to chest compression rate and
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inactivity to further improve measurement accuracy since most dispatcher
protocols include prompting and counting loud while compressing on the
chest. The collected data could also be utilized in a deep learning framework
to provide potential decision support in future systems. This could involve
1) automatic recognition of the bystander to establish and update a correct
region of interest for the chest compression rate measurement, and 2) a
power spectrum analysis of the generated difference signal to separate noise
from chest compressions.

The proposed method for chest compression depth measurement could
be further developed by utilizing smartphone depth cameras. Precise
measurements based on the bystander movements is expected to be very
difficult, but the solution could give indications on the chest compression
depth, such as to shallow, OK, and to hard chest compressions.

Another option for implementing chest compression depth measurement
in TCPR link is to connect the app to a small credit card-sized device
called CPRcard developed by Laerdal Medical [38]. The card utilize an
accelerometer sensor and as the card is placed directly on the patient‘s
chest, it allows more accurate chest compression depth measurements than
the bystander-movement dependent solutions would provide. When TCPR
link is initiated it could detect the CPRcard through bluetooth and auto-
matically utilize both the card and the camera in the measurements before
forwarding all information to the webserver monitored by the dispatcher.
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5.2 Newborn Resuscitation

Figure 5.2: An overview of the proposed system, ORAA-net, for activity recognition
and timeline generation from newborn resuscitation videos.

The main achievements in video analysis in newborn resuscitation situa-
tions can be summarized with the following points:

• A5) A solution has been proposed for creating an augmented object
detection dataset based on histogram matching [79] and synthetic
data.

• A6) A solution has been proposed for object detection in newborn
resuscitations videos using a CNN and the dataset from A5).

• A7) A solution has been proposed for finding relevant activity regions
based on further processing the output from the object detection
network of A6).

• A8) A solution has been proposed for activity recognition by analyzing
the regions of A7) over time with 3D CNNs.

• A9) A two step activity recognition system, the ORAA-net, has been
proposed by combining A6 and A7 (step 1), and A8 (step two).

5.2.1 Results and Challenges

Object Detection

The RetinaNet architecture proved to be the best overall architecture for
our dataset and problem at hand. The comparison of the networks in table
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4.1 indicates that producing predictions from a larger selection of feature
map scales was crucial for the improvement. Tsung-Yi Lin et al [6] also
emphasize that RetinaNet are capable of state-of-the-art results due to
their novel focal loss [6].

Using RetinaNet we experienced a large improvement in the detection of
the suction device compared to the results achieved with Yolo v3 [7], the
architecture proposed to use in paper 5. However, RetinaNet still sometimes
have difficulties detecting the suction device and this is most likely due to
the object transparency and small size. In a health care provider‘s hand the
suction device can be almost hidden and very difficult to detect, especially
in videos with poor quality and motion blurred frames.

For the other object classes there were no significant improvement between
YOLO v3 and RetinaNet. In fact, using RetinaNet architecture made
the accuracy of the proposed method for estimation of number of health
care providers present in the resuscitation to drop from 71.16 to 68.32
%. However, this reduction is small compared to the gain we experienced
with the detection of the suction device, where the error was reduced with
almost 50 %. The proposed method for estimation of number of health care
providers is based on counting the number of detected health care provider
hands in each frame, which is a quite naive approach that require all hands
to be visible in the frames at all time. This is often not the case in these
videos where the camera could be placed in a side position, causing the
health care providers to occlude other health care providers hands. A better
approach would most likely be to detect both right and left hands, but
with these low quality videos it is very difficult to discriminate between the
two. We also experience that the object detector struggled more in cases
where the health care providers did not wear protective gloves, indicating
the need for more training data of hands without gloves.

Although the models benefit from including augmented and synthetic
data together with real manually labelled data in the training, we expect
the accuracy of all classes to be further improved by labelling and including
more real video data. The generation of the synthetic data could also be
further developed and improved as the transparent objects, such as the
suction device, is affected by the blue color of the background wall in the
video recordings, and may not look as realistic as the objects appear in the
videos. A consequence of such a difference between synthetic and real data
could result in the model making prediction based on wrong data features.

78



5. Discussion and Conclusion

Region Proposal

The method for region proposal based on the detected objects works well,
but for cases of poor object tracking or false object detection, it is difficult
to recognize the activities from the moving detection area.

The proposed static newborn region should be further developed to
ensure that the newborn is present in the region at all time. This could
be solved by letting the method be dynamic by allowing the region to be
updated when large movements in for example hand activity occurs.

Activity Recognition

The results from the activity recognition is promising, but the method
have potential for further improvement. The I3D [9] network seems to
learn relevant movements and features for the activities, but other network
architectures and approaches for activity recognition should also be evalu-
ated on our dataset. The proposed method involves the analysis of several
regions and analysis using many different models, and the method could
potentially be simplified. This could be achieved by analyzing fewer regions,
as proposed in the Region Proposal section, but also by investigating if
similar results can be achieved by doing multi class classification instead of
binary classification. Multi class classification would require fewer models,
but the downside is that activities overlapping in time would not be recog-
nized. A potential solution to this problem is that activities that can not
be performed at the same time, such as suction and ventilation, could be
recognized from the same model.

The I3D network also propose the usage of a highly computational
demanding algorithm for estimation of optical flow, the TV-L1 algorithm
[70], that limits the possibilities for usage in real-time, which can be a
feature application of the proposed system. Thus, other less computational
demanding algorithms need to be investigated as well. In addition, although
the activity recognition was improved by including optical flow models, we
should further investigate if the optical flow data representation is necessary
to include in the predictions, or if RGB models can provide acceptable
results on their own given more training data.

It is also expected that the results could be improved by including more
data in the training of the models. A generalized model that performs
well on large variations can only be achieved by including data with large
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variations in the training. Thus, situations were the models struggle to
recognize the activities need to be focused on in further training.

The total length of each of the activities uncovered, stimulation, ven-
tilation, suction, attaching/adjusting ECG and removing ECG generated
from the 76 videos included in training were 17612, 3729, 8823, 2707, 446
and 172 seconds respectively. The activities that were most difficult to
recognize from the videos were the activities with the smallest amount of
training data. These findings support the fact that adding more training
data can further improve the system, especially for the activities suction,
attaching/adjusting ECG and removing ECG.

5.2.2 Conclusion

The results indicate that the proposed two-step ORAA-net, utilizing object
detection and tracking to propose detection regions for temporal activity
analysis, is well suited for activity recognition in noisy and low quality
newborn resuscitation videos where sometimes the activities are largely
occluded. Although some of the activities were more difficult to detect,
these were also the activities with the smallest amount of training data,
and it is expected that including more quality data in the training of the
models can further improve the performance of the ORAA-net.

5.2.3 Future Work

In future work we need to compare our approach with other methods for
activity recognition to see if better results could be achieved on our dataset.
This can include different DNN architectures - including semi-supervised
learning methods, methods for region proposal and methods for optical
flow estimation.

We also need to investigate the possibilities for creating a generalized
system that could analyze videos from different hospitals. Newborn resus-
citation episodes are currently being recorded and collected at hospitals
in both Nepal and Norway, and including data from these hospital in the
training of the proposed system could make a generalized system possible.
Other hospitals can be using different products and methods in the resusci-
tation activities, and data examples from these cases need to be included
in training. In addition, videos of simulated resuscitation activities on a
manikin using the different objects and methods that can appear in the
videos should also be created as an efficient approach to generate high
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quality training data. The generalized system can be cloud-based, and
the hospitals could upload videos for automatic video analysis. After an
analysis, the hospital could receive quantified information on the individual
episodes and the performed resuscitation activities, with nobody in need of
studying the episodes manually. This approach ensures the privacy of the
newborn as well as the health care providers. The extracted information
from the videos can further be used to provide valuable support in the
training of health care providers, and in methods for debriefing and quality
improvement.

In future video collection it is also important to be aware of the impor-
tance of standardization in the video recording settings when working with
automatic video interpretation. If the videos were recorded with fixed frame
rates and camera settings, and the camera position was fixed and in front
of the resuscitation table, it would most likely be easier to recognize the
activities than what we experienced in this project. Thus, a protocol for
how video recordings and video collection should be performed is needed.
It should also be considered to use more than one camera in the recordings
of the resuscitation episodes. By having more than one camera angle it
would be possible to ensure that all the relevant information is captured.
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Abstract—Globally one of our major mortality challenges is
out-of-hospital cardiac arrest. Good quality cardiopulmonary
resuscitation (CPR) is extremely important for the chance of
survival after cardiac arrest. Research has shown that telephone
assisted guidance from the dispatcher to the bystander can
improve the CPR quality provided to the patient. Some recent
work has proposed to use the accelerometer in a bystander‘s
smartphone to estimate compression rates, but this demands the
phone to be placed on the patient during compression. Our re-
search group has previously proposed a real-time application for
bystander and dispatcher feedback using the smartphone camera
to estimate the chest compression rate while the smartphone is
placed flat on the ground. Some shortcomings were observed with
the application in high noise situations. In this paper we propose
a robust method where we have modeled and parametrized the
power specter density to distinguish between noisy situations,
improved the update procedure for the dynamic region of interest
and added post-processing steps to suppress noise. The proposed
method provides excellent results with acceptable performance
at 99.8% of the time testing different rates in high and low noise
situations, 99.5% in a disturbance test, and 92.5% of the time
during random movements.

I. INTRODUCTION

Globally one of our major mortality challenges is Out-of-

hospital cardiac arrest (OHCA) [1]. Between 370,000-740,000

OHCA incidents occur each year in Europe alone, and only

7.6% survive in average [2]. It is known that immediate

cardiopulmonary resuscitation (CPR) increases chance of sur-

vival [3], [4], [5]. Most OHCA incidents appear with lay

people as bystanders, and CPR quality can be variable and

sometimes ineffective. CPR feedback and continuous coaching

can improve CPR quality for both lay people and medical

professionals [6], [7], [8], [9], [10], [11]. Today most people

have a smartphone, permitting not only verbal communication

and coaching by dispatcher, but apps with increased func-

tionality. Some existing apps provide functionality like GPS

location and dialing of the emergency number, like Hjelp 113
- GPS App by the Norwegian air ambulance and Emergency+
available on App store and Google play. There are other apps

locating automated external defibrillators (AEDs), or notifies

volunteers nearby (PulsePoint), but currently no apps sends

objective information about how CPR is performed to the

dispatcher.

In previous work different research groups have used an ac-

celerometer to estimate the compression rate with the purpose

of providing feedback in emergency or in training situations

[12], [13], [14], [15]. Using the accelerometer embedded in a

smartphone requires the smartphone to be held in the hands

of the bystander during CPR and since this could interrupt

the phone connection with the dispatcher, we believe this

is more suited for training than for emergency situations.

Smartwatches has also been proposed to use as a tool for

measuring compression rate with promising results [16], [17].

Using smartwatches avoids the risk of interrupting the phone

connection, but as of today, smartwatches are still few in

numbers compared to smartphones.

Our group has previously presented a smartphone applica-

tion, QCPR cam-app 1.0, utilizing the built in camera for

doing automatic detection of chest compression rate, and

communicating the chest compression rate to a dispatcher

[18]. This solution performs estimations while the smartphone

is placed flat on the ground, making it more suited for

emergency situations than the smartphone solutions utilizing

the accelerometer. To the best of our knowledge, the only other

publication proposing to use a camera when performing the

estimations is a small off-line study by [19]. Currently there

are no other real-time feedback solutions utilizing the camera

when measuring the compression rate.

QCPR cam-app 1.0 [18] showed difficulties when detecting

in noise e.g long loose hair of bystander, disturbances from

people moving around the bystander, and specificity. In this

paper we present QCPR cam-app 2.0 where these issues are

improved by i) model the spectrum of the difference signal

for noisy situations, ii) improving a dynamic region of interest

(ROI) update procedure and iii) post-processing the detections

with different filters to suppress noise.

II. PROPOSED METHOD

The proposed method, implemented in QCPR cam-app 2.0,

is a continuation of the work presented by Engan et.al. in [18],

but with some fundamental changes and improvements. Fig.

1 gives an overview of the QCPR cam-app 2.0. Screenshots

of the QCPR cam-app 2.0 in use can be seen in Fig. 2.

Let fl(i, j) represent video frame number l, where (i, j)
corresponds to row index i and column index j. For two

consecutive image frames, define the difference image gl as:

gl(i, j) =

{
0, if |fl(i, j)− fl−1(i, j)| <= ε
fl(i, j)− fl−1(i, j), otherwise

(1)
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Abstract:

Globally one of our major mortality challenges is out-of-hospital
cardiac arrest. Good quality cardiopulmonary resuscitation (CPR) is
extremely important for the chance of survival after cardiac arrest.
Research has shown that telephone assisted guidance from the
dispatcher to the bystander can improve the CPR quality provided to
the patient. Some recent work has proposed to use the accelerometer
in a bystander‘s smartphone to estimate compression rates, but this
demands the phone to be placed on the patient during compression.
Our research group has previously proposed a real-time application
for bystander and dispatcher feedback using the smartphone camera
to estimate the chest compression rate while the smartphone is
placed flat on the ground. Some shortcomings were observed with
the application in high noise situations. In this paper we propose a
robust method where we have modeled and parametrized the power
specter density to distinguish between noisy situations, improved
the update procedure for the dynamic region of interest and added
post-processing steps to suppress noise. The proposed method
provides excellent results with acceptable performance at 99.8% of
the time testing different rates in high and low noise situations,
99.5% in a disturbance test, and 92.5% of the time during random
movements.
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6.1 Introduction

Globally one of our major mortality challenges is Out-of-hospital cardiac
arrest (OHCA) [21]. Between 370,000-740,000 OHCA incidents occur each
year in Europe alone, and only 7.6% survive in average [22]. It is known
that immediate cardiopulmonary resuscitation (CPR) increases chance of
survival [87, 88, 89]. Most OHCA incidents appear with lay people as
bystanders, and CPR quality can be variable and sometimes ineffective.
CPR feedback and continuous coaching can improve CPR quality for both
lay people and medical professionals [27, 28, 29, 30, 32, 33]. Today most
people have a smartphone, permitting not only verbal communication and
coaching by dispatcher, but apps with increased functionality. Some existing
apps provide functionality like GPS location and dialing of the emergency
number, like Hjelp 113 - GPS App by the Norwegian air ambulance and
Emergency+ available on App store and Google play. There are other apps
locating automated external defibrillators (AEDs), or notifies volunteers
nearby (PulsePoint), but currently no apps sends objective information
about how CPR is performed to the dispatcher.

In previous work different research groups have used an accelerometer to
estimate the compression rate with the purpose of providing feedback in
emergency or in training situations [45, 46, 47, 48]. Using the accelerometer
embedded in a smartphone requires the smartphone to be held in the hands
of the bystander during CPR and since this could interrupt the phone
connection with the dispatcher, we believe this is more suited for training
than for emergency situations. Smartwatches has also been proposed to
use as a tool for measuring compression rate with promising results [41, 90].
Using smartwatches avoids the risk of interrupting the phone connection, but
as of today, smartwatches are still few in numbers compared to smartphones.

Our group has previously presented a smartphone application, QCPR
cam-app 1.0, utilizing the built in camera for doing automatic detection of
chest compression rate, and communicating the chest compression rate to
a dispatcher [50]. This solution performs estimations while the smartphone
is placed flat on the ground, making it more suited for emergency situations
than the smartphone solutions utilizing the accelerometer. To the best
of our knowledge, the only other publication proposing to use a camera
when performing the estimations is a small off-line study by [49]. Currently
there are no other real-time feedback solutions utilizing the camera when
measuring the compression rate.
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QCPR cam-app 1.0 [50] showed difficulties when detecting in noise e.g
long loose hair of bystander, disturbances from people moving around the
bystander, and specificity. In this paper we present QCPR cam-app 2.0
where these issues are improved by i) model the spectrum of the difference
signal for noisy situations, ii) improving a dynamic region of interest (ROI)
update procedure and iii) post-processing the detections with different
filters to suppress noise.

difference images difference signal

40-160 cpm
freq. region of interest

STFT specter

video frames  

output comp.rate

Sliding 
Hanning 
window,
STFT

2

1

dynamic
ROI

finder

PSD model

Decision 
tree:
(noise / hair / 
OK comp.)

3 4

Post-
processing

Figure 6.1: Simplified block scheme of QCPR cam-app 2.0. Input: image frames from
the smartphone camera. Output: the detected comp. rate, CRf (n).

6.2 Proposed Method

The proposed method, implemented in QCPR cam-app 2.0, is a continuation
of the work presented by Engan et.al. in [50], but with some fundamental
changes and improvements. Fig. 6.1 gives an overview of the QCPR cam-
app 2.0. Screenshots of the QCPR cam-app 2.0 in use can be seen in Fig.
6.2.

Let fl(i, j) represent video frame number l, where (i, j) corresponds to
row index i and column index j. For two consecutive image frames, define
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Figure 6.2: Screenshots of QCPR cam-app 2.0. The bystander gets feedback on the
compression rate from the green indicator to the right.

the difference image gl as:

gl(i, j) =
{

0, if |fl(i, j) − fl−1(i, j)| <= ε

fl(i, j) − fl−1(i, j), otherwise
(6.1)

where ε is a chosen threshold. The difference image gl(i, j) is divided into
non-overlapping blocks of size 50 × 50 pixels, Rk. Define SRk

(l) as the sum
of change in region block Rk for time-point (frame number) l. Then, for
m1 = (n − 1)L, and m2 = nL:

SL
Rk

(n) =
m2∑

m=m1

SRk
(m) =

m2∑
m=m1

∑
(i,j)∈Rk

|gm(i, j)| (6.2)

denote the sum of changes for block Rk summed over the last L difference
frames, at time index n, where l = n · L. For all blocks, Rk, and L = the
number of frames captured in the last half second, an indicator function is
defined as:

IRk
(n) =

{
1, SL

Rk
(n) > S̄L

R(n)
0, else

(6.3)

where S̄L
R(n) denote the average sum of change of all region blocks. Estab-

lishing a new ROI, a block, Rk, is included in the ROI if at least three of
the last four indicator values were one:

Rk ∈ {ROIn} if
n∑

m=n−3
IRk

(m) ≥ 3, (6.4)
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gaps in the ROI are filled, and finally the largest connected object is chosen,
more details are found in [50]. When an ROI is established the difference
signal at time point l is found:

d(l) =
∑

Rk∈ROI n

∑
(i,j)∈Rk

g(i, j) (6.5)

As a change from [50], d(l) is now defined using both positive and negative
values of g(i, j), improving the features of the corresponding power specter.
A Short Time Fourier Transform (STFT) is performed on overlapping
blocks of d(l), with blocklength Lf corresponding to 3 sec., updated every
0.5 sec. A sliding Hanning window is used prior to the Fourier transform.
The power spectral density is estimated by the periodogram calculated
from the STFT signal:

Dn(w) =
1

Lf
|FM {dhf (l)}|2 l = (n − 1)Lf : nLf , (6.6)

where FM denotes M point FFT, and dhf (l) denotes the Hanning filtered
difference signal (block 2 in Fig. 6.1).

6.2.1 Spectrum modeling and compression rate detection

The power spectral density (PSD) is estimated by the STFT as seen
in Equation 6.6. To handle estimation of the compression rate in high
noise situations we have modelled the PSD during three cases, a) no
compression/random movements, b) high noise compression due to long
loose hair situations and c) low noise compression. This corresponds to
block 3 in Fig. 6.1.

Fig. 6.3 shows four examples of the PSD for each case a), b) and c), and
the actual compression rate is here indicated by a red line. As seen in Fig.
6.3 b), long loose hair creates more frequency peaks in the PSDs compared
to the low noise case, c). The loose hair results in increased power in the
harmonic multiples of the compression frequency, and the first harmonic
peak can have a higher PSD value than the actual compression frequency.
For the no compression case, observed in Fig. 6.3 a), random movements
can cause different shaped PSDs, but all have in common that the power is
more spread out compared to when compressions are performed.

Attributes found from the PSD can be used to distinguish the three
cases, and to thereafter estimate the compression rate, CR(n). First,
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Figure 6.3: PSD examples for the three cases, a) noise, b) long loose hair and c) low
noise, in the spectrum modelling. X-axis: 0-5 hz. Y-axis: Dn(w).

significant peaks of the PSD are found by keeping peaks > 0.6amax where
amax indicates the peak with greatest amplitude. Further the following 5
attributes are found for each sliding window STFT based PSD, Dn(w):

1) Amplitude of the first significant peak, ap1(n),
2) Amplitude of the second significant peak, ap2(n),
3) Frequency of the first significant peak, fp1(n),
4) Frequency of the second significant peak, fp2(n), and
5) Mean amplitude hight of PSD, aP SD(n).

The 5 attributes, as well as 3 extracted attributes: ap1(n)/ap2(n),
fp1(n)/fp2(n) and ac(n)/aP SD(n), making a total of 8 attributes, are used
in a handcrafted decision tree [91], as illustrated in Fig. 6.4, providing the
comp. rate CR(n) as output.

6.2.2 ROI update

The dynamic ROI corresponds to block 1 in Fig. 6.1 and is improved from
previous version. The ROI might change for every 0.5 sec, indicated by the
ROIn symbol. During ROI updating, all blocks at the boundaries of the
ROI are checked. Let Rbo,i denote block i on the outside of the boundary
and Rbi,i denote block i inside the ROIn.

Rbo,i ∈ {ROIn} if SL
boi

(n) > 0.5 · S̄L
R(n) (6.7)
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Figure 6.4: Decision Tree using 8 attributes calculated from the PSD (Dn(w)) at
time index n to decide the estimated compression rate, CR(n). CR(n) = 0 corresponds
to Fig.6.3 a), i.e. noise or no peaks. Long loose hair is tested if both ap1 and ap2 is
> 0, by looking at the relations: ap1/ap2 and fp1/fp2. The amplitude of the potential
compression peak, ac, must be checked relative to the mean amplitude of the PSD, aPSD
to evaluated if the peak is due to noise or compression (see right square, marked Pev).
Detected compression rates below Trate is treated as noise. All thresholds are found by
using a trainingset.

Rbi,i �∈ {ROIn} if SL
bii

(n) < 0.5 · S̄L
R(n) (6.8)

If the ROIn is divided into multiple areas, a frequency analysis is carried
out in each area upon deciding the final ROIn. For each area a difference
signal, d(l)ROI,i, where i = the number of ROI areas, is generated over the
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3 last seconds, as described by Eq. 6.5. Next, STFTs are performed on the
d(l)ROI,i as in Eq. 6.6, and by performing the same detection control as
shown in the decision tree in Fig. 6.4, we evaluate if the possible ROI area
should be included in the final ROIn or not. If the number of blocks in
ROIn is < 2, the ROIn is re-established by the procedure explained in Eq.
6.3 and 6.4.

6.2.3 Postprocessing

A sliding window containing the last 20 sec. of detected compression rate
is seen by the dispatcher, as shown in Fig. 6.5. Wanting to provide the
dispatcher with only significant information, some post-processing steps
are carried out on the detected compression rate signal CR(n). The steps
are explained in detail in Algorithm 1. CR(n) is firstly filtered with a
spike/drop removal filter, shown in line 5-13. If a large rapid change in
CR(n) occur after a stable detection period, we check if the change is
caused by a short peak/drop or by an actual change in compression rate
before displaying it on the webserver. During a check, the previous stable
detection is displayed.

The second step is a smoothing filter, line 14-17. This filter is an adaptive
mean filter where the filter length, K, varies depending on the stability of
the previous values compared to the current value. The filter indicated by
the function meanFilter in line 19 is defined as:

CRf (n) =
K∑

k=0
ak CRf (n − k)

where ak is the filter coefficients,
∑K

k=0 ak = 1 and aj = ai ∀ i, j. The
adaptive mean filter ensures that real changes are preserved, but that
smoothing is applied on small rapid changes.

The last step is a dynamic rate range, line 18-25, meant to filter out
disturbances. In Dn(ω) we look for possible compression rate peaks in the
range 40-160 cpm as shown in Fig. 6.1 step 2. Disturbances from random
movements, i.e. no actual compressions, tends to be below rates of 70
cpm and for rates as low as 40-70 cpm to be showed to the dispatcher, the
detections have to be proven stable for a period of at least 10 detections.
By doing this we prevent some disturbance due to random movements to
be interpret by the algorithm as compressions, but allow the dispatcher to
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Algorithm 1 Post-processing to remove noise. Input: CR(n). Output:
CRf (n). Steps: Peak/drop removal, smoothing filtering and dynamic rate
range.

1 Input:CR(n), Output: CRf (n)
2 Init: i=0
3 while detecting do
4 CRf (n) = CR(n)
5 Short spike/drop removal:
6 if |CRf (n − 1) − CRf (n − 1 − k)| < Tsd1 ∀k � 2 then
7 if |CR(n) − CRf (n − 1)| > Tsd2 then
8 CRf (n) = CR(n − 1)
9 i = i + 1;

10 if i = 4 then
11 CRf (n − 3 : n) = CR(n − 3 : n);
12 i = 0

end
else

13 i = 0;
end

end
14 Smoothing mean filter:
15 for j=1:3 do
16 K = argmaxJ |CRf (n) − CRf (n − j)| < Tmf , ∀j � J

end
17 CRf (n) = meanFilter(CRf (n), K)
18 Dynamic rate range:
19 CRdrr(n) = CRf (n);

20 if CRdrr(n) < 70 then
21 for j=1:10 do
22 K = argmaxJ |CRdrr(n) − CRdrr(n − j)| < Tdrr, ∀j � J

end
23 if K=10 then
24 CRf (n − 10 : n) = CRdrr(n − 10 : n);

else
25 CRf (n) = 0

end
end

end
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see if the bystander is compressing steadily with a very low compression
rate.

The filtered rate, i.e. the CRf (n) is the final compression rate shown to
the dispatcher, and logged in the system. To avoid delays in the displayed
rate, the current CRf (n) is firstly plotted, and the history is rewritten
when necessary.

Figure 6.5: Example of the dispatcher. Top: Last 20 seconds of real-time comp. rate
detections. Bottom: Map showing the bystander‘s position.

6.3 Experiments

The experiments are performed using an Android phone and QCPR cam-
app 2.0 controls the camera to provide a resolution of 640 x 480 pixels
and to deliver 15 frames per second, supported by most smartphones. All
calculations are done on the phone in real-time, and only the compression
rate CRf (n) is transmitted to the dispatcher. All compressions are per-
formed on Resusci Anne QCPR5, Laerdal Medical training manikin. A
compression depth signal is provided by an optical encoder embedded in
the Resusci Anne QCPR and is used as reference data. To extract the
compression rate it is treated with block 2, Fig 6.1, providing a noise free
specter where the rate, CRtrue(n), is easily found. The resulting CRf (n)
is compared for each time index, n, with the compression rate found from
the Resusci Anne QCPR signal, CRtrue(n). Two measurements are used,
Average error, E [cpm]:

5http://www.laerdal.com/gb/ResusciAnne
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E =
1
K

K∑
n=1

|CRf (n) − CRtrue(n)|

where K is the sequence length, and Performance, P [%], defined as the
percentage of time the difference between the detected rate and the true
rate is within an acceptance criterion:

|CRf(n) − CRtrue(n)| < 10[cpm],

where [cpm] means compression pr. minute. The guidelines recommend
compression rates at 110 ± 10 cpm [51, 92], thus an acceptance criterion of
± 10 cpm is used when defining a performance measure. The results are
presented with average measurements, μE and μP , over multiple sequences
included in the sub-groups or the experiments. All threshold values are
found by using a training set, not included in the test sets of the presented
experiments and listed in the following. The threshold values from the
decision tree algorithm, defined in Fig. 6.4: TaL = 0.75, TaH = 1.5, TfL =
1.7, TfH = 2.3, Ts1 = 2.2, Ts2 = 1.6, Ta1 = 300000/Lf , Ta2 = 80000/Lf , and
the thereshold values from the post processing algorithm, defined in Alg. 1:
Tmf = 10, Tsd1 = 20, Tsd2 = 30, Tdrr = 15.

Three experiments are conducted to evaluate the QCPR cam-app 2.0.
These experiments are carried out under indoor conditions, as for the results
presented in [50], but with different test persons. Since we believe that
holding the smartphone while performing the detections is unsuited for
emergency situations and since there are no other smartphone solution
that utilize the camera when performing estimations, the results are only
compared to results obtained with QCPR cam-app 1.0 [50]. QCPR cam-app
1.0 is here implemented on a identical smartphone and the smartphones are
placed with the cameras pointing towards each other during the experiments.

Exp. 1 - Noise due to hair: 7 test persons were used, 2 short haired,
2 medium long haired and 3 long haired. Tests with target comp. rates of
60, 100, 120 and 150 (using a metronome) were done for all test persons.
Duration for all recordings are 60 sec. Results are presented in Tab. 6.1
and 6.2.

Exp. 2 - Noise due to interrupting bystander: The same 7 test
persons as in Test 1 were used in addition to an interrupting bystander.
Target compression rate is kept at 110 cpm, and compressions are performed
throughout the whole sequence. The protocol for the interrupting bystander
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is the same in each recording and involves small and big disturbances e.g.
walking around, waving arms, with and without direct contact in the image
frame with the bystander performing the compressions. The duration of all
the 7 recordings are 120 sec. Results are presented in Table 6.1 and 6.2.

Exp. 3 - Noise due to random movements: Performed on one test
person. No compressions are performed and the random movements are:
walking around the patient, checking for pulse and respiration, unzipping
jacket, turning patient around and waving for help. The test has a duration
of 180 seconds. In this test only the performance, P , is used as an error
measurement, and the results are seen in Tab. 6.2.

As can be seen in Tab. 6.1 and Tab. 6.2, the QCPR cam-app 2.0 provides
very good detection results for all three tests. We also observed that the
results provided with QCPR cam-app 1.0 was in some cases poorer than
the results presented in [50] for similar tests, which indicates that QCPR
cam-app 1.0 could also be dependent on the test conditions and the test
persons used in the experiments. Some spikes that failed to be eliminated by
the spike/drop removal filter in the post-processing step caused some false
detections in Exp. 3, but none that resembled an actual chest compression
sequence.

6.4 Conclusion and Future work

The QCPR cam-app 2.0 for detection of compression rate using the smart-
phone camera shows significant improvement compared to QCPR cam-app
1.0 [50] and provide excellent results for both detection in low noise and
noisy environments such as incidents of interrupting bystanders and in
cases where the bystander performing the compressions has medium long
or long loose hair. In future work we will continue testing the application
under different conditions that can occur in a real situation, e.g. outdoor,
low lighting, camera positions and 30:2 sessions. We are also currently
investigating the possibilities of using the smartphone camera to measure
the important CPR metric compression depth as well, with promising
results [93]. We will continue this work with the aim of developing a robust
solution that could be implemented in an QCPR cam-app 3.0 together
with the proposed solution for detection of compression rate.
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Table 6.1: Results for Exp. 1 and 2. QCPR cam-app 2.0 (v2 ) compared to QCPR
cam-app 1.0 (v1 ) [50] given as v2 / v1. μE at top, μP at bottom.

Average Error, μE v2 / v1
Exp. Rate Short Medium Long

60 2.0 / 2.5 1.8 / 26.8 2.0 / 43.0
1 100 0.9 / 5.2 2.6 / 23.4 1.1 / 34.1

120 1.0 / 25.6 1.2 / 13.5 0.8 / 8.2
150 0.8 / 20.1 0.9 / 22.1 1.3 / 12.0

2 110 2.5 / 15.6 1.5 / 18.4 1.1 / 45.9
Performance, μP v2 / v1

Exp. Rate Short Medium Long
60 100/ 98.2 99.6 / 56.0 99.7 / 16.7

1 100 100/ 92.9 99.1 / 63.8 99.7 / 30.2
120 99.6 / 75.2 99.6 / 85.1 100 / 89.1
150 100/ 79.9 99.6 / 71.2 100/ 84.5

2 110 98.4 / 78.5 99.8 / 67.9 100 / 37.7

Table 6.2: Overall μE and μP for each experiment with σ in parenthesis for both
QCPR cam-app 2.0 (v2 ) and QCPR cam-app 1.0 (v1 ) [50].

App Exp. 1 Exp. 2 Exp. 3
μE(σE) v2 1.3 (0.5) 1.6 (1.1) -

v1 20.3 (16.7) 29.4 (17.4) -
μP (σP ) v2 99.8 (0.5) 99.5 (1.2) 92.5 (-)

v1 68.1 (30.9) 58.0 (22.1) 84.0 (-)
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Out-of-hospital cardiac arrest (OHCA) is recognized as a global mortality challenge, and digital strategies could contribute to
increase the chance of survival. In this paper, we investigate if cardiopulmonary resuscitation (CPR) quality measurement using
smartphone video analysis in real-time is feasible for a range of conditions. With the use of a web-connected smartphone
application which utilizes the smartphone camera, we detect inactivity and chest compressions and measure chest compression
rate with real-time feedback to both the caller who performs chest compressions and over the web to the dispatcher who coaches
the caller on chest compressions. The application estimates compression rate with 0.5 s update interval, time to first stable
compression rate (TFSCR), active compression time (TC), hands-off time (TWC), average compression rate (ACR), and total
number of compressions (NC). Four experiments were performed to test the accuracy of the calculated chest compression rate
under different conditions, and a fifth experiment was done to test the accuracy of the CPR summary parameters TFSCR, TC,
TWC, ACR, and NC. Average compression rate detection error was 2.7 compressions per minute (±5.0 cpm), the calculated chest
compression rate was within ±10 cpm in 98% (±5.5) of the time, and the average error of the summary CPR parameters was 4.5%
(±3.6). The results show that real-time chest compression quality measurement by smartphone camera in simulated cardiac arrest
is feasible under the conditions tested.

1. Introduction

With a yearly number of out-of-hospital cardiac arrest
(OHCA) incidents around 370,000-740,000 in Europe alone,
and a low average survival rate of 7.6 % [1], OHCA is
recognized as a major mortality challenge [2]. The time
from collapse to care is crucial and there is a high focus
on low response times of emergency medical services (EMS)
[3]. A majority of EMS treated OHCAs are witnessed [4],
and quality cardiopulmonary resuscitation (CPR), until
EMS arrives, can have positive effects on survival [5–7]. The
witness is often in close relation with the patient and could
experience the situation as extremely stressful [8]. Studies
have shown that telephone-assisted CPR (T-CPR) has
a positive effect by getting more callers to start CPR and
coaching callers to provide quality CPR [9–11].

Furthermore, CPR feedback has been shown to improve
CPR quality [12–15]. Combining T-CPR with CPR feedback
may improve CPR quality and survival from OHCA.

In the recent statement from the America Heart Associ-
ation (AHA), the use of digital strategies to improve healthcare
in general and to document its effect is encouraged [16, 17].
Devices providing the bystander with CPR quality measure-
ment by utilizing an accelerometer to measure CPR metrics
are available [18–20]. A challenge with these devices is to get
the users to carry it with them at all times. Smartwatches has
a built-in accelerometer, and has been suggested as a tool for
measuring CPR metric [21–23]. However, a very small per-
centage of the population wears a smartwatch at all times. The
smartphone, on the contrary, is a digital device most people
carry with them. In recent years, smartphone applications have
been developed for CPR quality measurement and to support
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Abstract:
Out-of-hospital cardiac arrest (OHCA) is recognized as a global mor-
tality challenge and digital strategies could contribute to increase the
chance of survival. In this paper we investigate if cardiopulmonary
resuscitation (CPR) quality measurement using smartphone video
analysis in real-time is feasible for a range of conditions. With the
use of a web-connected smartphone application which utilizes the
smartphone camera, we detect inactivity and chest compressions,
and measure chest compression rate with real-time feedback to both
the caller who performs chest compressions and over the web to
the dispatcher who coaches the caller on chest compressions. The
application estimates compression rate with 0.5 sec update interval,
time to first stable compression rate (TFSCR), active compression
time (TC), hands-off time (TWC), average compression rate (ACR)
and total number of compressions (NC). Four experiments were
performed to test the accuracy of the calculated chest compression
rate under different conditions and a fifth experiment was done
to test the accuracy of the CPR summary parameters TFSCR,
TC, TWC, ACR and NC. Average compression rate detection error
was 2.7 compressions per minute (± 5.0 cpm), the calculated chest
compression rate was within ± 10 cpm in 98 % (± 5.5) of the time
and the average error of the summary CPR parameters were 4.5 %
(± 3.6). The results show that real-time chest compression quality
measurement by smartphone camera in simulated cardiac arrest is
feasible under the conditions tested.
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7.1 Introduction

With a yearly number of out-of-hospital cardiac arrest (OHCA) incidents
around 370,000-740,000 in Europe alone, and a low average survival rate
of 7.6 % [22], OHCA is recognized as a major mortality challenge [21].
The time from collapse to care is crucial and there is a high focus on
low response times of emergency medical services (EMS) [23]. A majority
of EMS treated OHCAs are witnessed [24] and quality cardiopulmonary
resuscitation (CPR) until EMS arrives, can have positive effects on survival
[87, 88, 89]. The witness is often in close relation with the patient and
could experiences the situation as extremely stressful [26]. Studies have
shown that telephone-assisted CPR (T-CPR) has a positive effect by getting
more callers to start CPR and coaching callers to provide quality CPR
[27, 28, 29]. Furthermore, CPR feedback has been shown to improve CPR
quality [30, 31, 32, 33]. Combining T-CPR with CPR feedback may improve
CPR quality and survival from OHCA.

In the recent statement from the America Heart Association (AHA), the
use of digital strategies to improve healthcare in general and to document
its effect is encouraged [34, 35]. Devices providing the bystander with
CPR quality measurement by utilizing an accelerometer to measure CPR
metrics, are available [36, 37, 38]. A challenge with these devices is to get
the users to carry it with them at all times. Smartwatches has a built-
in accelerometer, and has been suggested as a tool for measuring CPR
metric [39, 40, 41]. However, a very small percentage of the population
wears a smartwatch at all times. The smartphone, on the contrary, is a
digital device most people carry with them. In recent years, smartphone
applications have been developed for CPR quality measurement and to
support learning [42, 43] and to help communicate the location of an
emergency [44]. In addition, there are publications describing the use of the
accelerometer in smartphones to measure CPR metrics [43, 45, 46, 47, 48].
Smartphone solutions utilizing the accelerometer require the smartphone
to be held on the patient‘s chest or strapped to the bystander‘s arm while
performing CPR. These solutions may be more suited for training than for
actual emergencies since buttons causing phone connection interruptions
with the emergency unit can accidentally be pressed when performing the
compressions.

Our research group has earlier presented an application, QCPR cam-app
1.0, utilizing the smartphone camera to estimate the chest compression
rate and provide feedback to both the bystander and the dispatcher while
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the phone is placed flat on the ground [50]. Beside from a small off-line
study by Frisch et al. [49] we have found no other published work or
products that utilize the smartphone camera when measuring compression
rate. QCPR cam-app 1.0 demonstrated accuracy issues when challenged
with bystanders having long loose hair and in cases of people moving around
the emergency scene. In this paper, we present test results of QCPR cam-
app 2.0, improved to handle this, but also to provide more information by
calculating a CPR summary report after CPR has ended. These parameters
can be used to evaluate each session and to generate data that can be used
for dispatcher-caller quality improvement and research.

7.2 Materials and Methods

The application, QCPR cam-app 2.0, captures CPR movements utilizing
the smartphone camera while the smartphone is placed flat on the ground
next to the patient. From the detected motions, the algorithm estimate
the chest compression rate and hands-off time and provide: 1) real-time
objective feedback to the bystander, 2) real-time objective feedback to the
dispatcher during the emergency call, and 3) a CPR summary report.

7.2.1 Illustration of bystander and dispatcher use

An illustration of the application in use can be seen in Figure 7.1a, with
screenshots in Figure 7.1b. By clicking the emergency button, the ap-
plication activates speaker mode, establishes telephone connection with
the dispatcher and sends GPS location and real time compression data
to a web-server available for the dispatcher. The bystander then places
the smartphone at the opposite side of the patient, see Figure 7.1a. The
preview frames from the front camera are shown to the bystander, allowing
him to position himself and to keep track of the ongoing activity in the
field of view of the camera (Figure 7.1b). A speedometer is displayed next
to the preview frame allowing the bystander to keep track of the applied
compression rate.

A live sequence example of the proposed webserver solution monitored
by the dispatcher is shown in Figure 7.1c. A 20 seconds sliding window
providing the development and history of the compression rate in real-time
is shown, where different colors are used to make the interpretation easier.
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Green dots correspond to compression rates in the desired range of 100-
120 cpm, and yellow outside. Above the graph, a circular color indicator
provides information about the certainty of the reported compression rates.
If the detections are carried out in low noise, the indicator is green, but
if high noise conditions are present, i.e. some cases of long loose hair and
from large disturbances, the indicator shifts to yellow. The bystander‘s
GPS location is provided to the dispatcher, as seen in Figure 7.1c.

Figure 7.1: A) Illustration photo of the smartphone application in use in a simulated
emergency situation. B) Screenshots of the smartphone application. Front-page to
the left and bystander feedback example to the right. C) Screenshot of the webserver
available for the dispatcher.
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7.2.2 Technical description

QCPR cam-app 2.0 was designed to handle the disturbance issues ob-
served in QCPR cam-app 1.0, [50] and the technical description of the
improvements are presented in more detail in Appendix 1. In short; All
the estimations are performed on the smartphone, and the main steps
in detection of compression rate are illustrated in Figure 7.2. In step 1,
difference frames, g(i, j), are generated by thresholding the differences
between sub-sequent input frames, f(i, j), from the camera. A dynamic
region of interest (ROI) is established from the largest connected moving
object and is updated each half second by checking the activity in the
blocks around the ROI boundary. By using a dynamic ROI we allow others
to move around in the emergency scene without disturbing the detections.
In step 2, we generate a signal, d(l), from the activity in the ROI and for
each half second, timestep n, a short time fourier transform (STFT) is
performed on the three last seconds of d(l). A sliding Hanning window is
applied to d(l) prior to the STFT. In step 3, the power spectrum density,
Dn(ω), found from the STFT is studied and a decision three is used to
separate compression rates from noise. The descision three recognizes a
system in the Dn(ω) for cases of bystanders with long loose hair, thus
solve the detection issues observed in QCPR cam-app 1.0 [50] for these
cases. If a CR(n) is detected it further undergoes some post-processing
steps, indicated in step 4, Figure 7.2. These steps filter out and suppress
noise by performing smoothing and removing short detection pauses caused
by compression stops or disturbances. In step 5, the detected and filtered
compression rate, CRf(n) [cpm], is displayed on the smartphone and sent
to the webserver and displayed to the dispatcher, providing the real-time
feedback to both bystander and dispatcher.

7.2.3 CPR summary report

After completion of a caller session, a set of CPR summary parameters are
calculated by QCPR cam-app 2.0. The parameters, which are both shown
on the smartphone screen for the bystander and saved on the webserver for
the dispatcher, are:

• TFSCR [s]: Time from start of phone call to start of first stable comp.
rate. A compression rate is defined as stable if CRf (n) > 40 and
|CRf (n) − CRf (n − 1 )| < 20 is true for at least 6 seconds.
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Figure 7.2: Simplified block scheme of the proposed system for chest compression rate
measurement. Image frames from the smartphone front camera is used as input and
output is the detected compression rate, CRf(n).

• TC [s]: Total active compression time. The time where CRf (n) > 0 ,
for t(n) > TFSCR, and continuously for more than 2 sec.

• TWC [s]: Time without compressions. TDPC − TC , where TDPC [s]
is the duration of the phone call.

• ACR [min-1]: Average compression rate. An average of all CRf (n) > 0 ,
for t(n) > TFSCR, and continuously for more than 2 sec.

• NC: Total number of compressions. Estimated by: ACR ∗ (TC/60 ).

7.2.4 Data material and evaluation measures

All experiments were performed on a Resusci Anne QCPR manikin. The
QCPR cam-app 2.0 algorithm was implemented in Android Studio and
the experiments were performed with a Sony Xperia Z5 Compact (Sony,
Japan). A reference signal for the compression rate were provided by an
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optical encoder embedded in the Resusci Anne QCPR. A three-second long
sliding window frequency analysis was performed on the signal each half
second, providing the reference data, CRtrue(n), with the same sample rate
as the compression rate detection, CRf (n), from the app.

To evaluate the results, different measurements were used - Average error
(E), Performance, P , Relative error parameter, REpar, and Bland Altman
plots used to visualize the agreement between data provided by QCPR
camp-app 2.0 and the reference data provided by Resusci Anne QCPR
manikin. E is given in compression per minute (cpm) and is the average
error of the sequence, defined as

E[cpm] =
1
N

N∑
n=0

|CRf (n) − CRtrue(n)|, (7.1)

where N is the number of samples of the sequence. For sequences containing
discontinuity in the reference data, i.e. 30:2 session, we allowed errors in a ±1
sec interval around the automatically detected discontinuities. This reduced
the influence of insignificant delays on the error measure. P is defined
as the percentage of time where |CRf (n) − CRtrue(n)| < δ . According
to guidelines [94, 95, 96] the acceptable compression rate is between 100-
120 cpm, thus δ = 10[cpm] was chosen as an acceptance criterion. REpar
measures the performance of the CPR summary parameters listed in section
7.2.3 REpar is given in percentage and defined as

REpar[%] =
|ParD − ParR|

ParR
100 (7.2)

where ParD is a CPR summary parameter estimated by the app and ParR

the corresponding CPR parameter found from the reference signal. If the
test contained more than one sequence, the results are presented with mean
and standard deviations, i.e. μE(σE), μP (σP ), and μREpar(σREpar),
found over the result values of the sequences.

A desired detection results provides a low Average error, E, a low Relative
error parameter, REpar, and a high Performance, P .

7.2.5 Experiments

The performance of the QCPR cam-app 2.0 was tested in various conditions
that could occur in real emergencies. The experiments were divided into
five different tests - Smartphone position test, Outdoor test, Disturbance
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test, Random movement test and CPR summary report test. Altogether,
this sum up to approximately 162 minutes of CPR. Specifications for the
sub-tests included in each test are listed in Table 7.1.

The Smartphone position test included seven test persons - two with short
hair (SH), two with medium length loose hair (MLLH) i.e. chin/shoulder
length, and three with long loose hair (LLH) i.e. chest length. Each of the
test persons performed 8 sub-tests carried out indoor.

The result for sub-test RateP1, Table 7.1, were presented in Meinich-
Bache et al.[97] to verify that QCPR cam-app 2.0 is able to estimate correct
compression rate for test objects with various hair lengths and for different
compression rates, which were an issue in QCPR cam-app 1.0 [50]. The
sub-test D1R110P1 included a person that walks around and behind the
bystander during CPR, leaning over the patient, waving his arms, and thus
causing disturbances. These results were also presented in Meinich-Bache et
al. [97] to verify improvements of QCPR cam-app 2.0 over QCPR cam-app
1.0 where sometimes disturbances could take over the dynamic ROI [50].
The results of sub-tests RateP1 and D1R110P1 are repeated here for the
reader to experience all the various tests that QCPR cam-app 2.0 has been
exposed to.

Various other conditions were also tested in the Smartphone position
test. Three camera positions were included- next to shoulder (Pos.1), 20
cm away from shoulder (Pos.2) and next to head (Pos.3). The camera
positions are shown in Figure 7.3. 30:2 sessions were carried out for camera
positions Pos 1, sub-test 30:2P1, and Pos 3, sub-test 30:2P3. Pos.3 was
included to see if the algorithm provides false detection when the bystander
is still visible in the image frame when performing rescue breaths. Since
the bystander is not visible in the image frame while performing rescue
breaths when the camera is positioned in Pos.2, this position is not relevant
for the 30:2 sessions and therefore not included. Pos.2 is used to measures
the algorithms ability to detect when only a small part of the bystander
is visible in the image frame and used in sub-tests R100P2 and R150P2.
The algorithm was also tested in low lighting conditions, 7 lux, in sub-test
LightP1.

The Outdoor test included three test persons, one with each hair length;
SH, MLLH and LLH. The detections were carried out in cloudy (C) and
sunny (S) weather, both with and without noisy background (B) i.e. trees.

The purpose of the Disturbance test was twofold: 1) to measure the algo-
rithm‘s ability to detect compression rate when there is a large disturbances
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Sub-test
name

Comp.
rate

(cpm)

Dur.
(sec.)

Cam.
pos.

Light. Meas.

Smartphone position test (n=7)

RateP1 Normal 60, 100,
120,150

60x4 Pos.1 480 lux μE, μP

D1R110P1 Disturb.
person

110 120 Pos.1 480 lux μE, μP

30:2P1 30:02 110 90 Pos.1 480 lux μE, μP

LightP1 Dimmed light 110 60 Pos.1 7 lux μE, μP

R100P2
Small part of
image frame

(pos. change)
100 60 Pos.2 480 lux μE, μP

R150P2
Small part of
image frame

(pos. change)
150 60 Pos.2 480 lux μE, μP

30:2P3 30:2 (pos.
change)

110 90 Pos.3 480 lux μE, μP

R100P3 Normal (pos.
change)

100 60 Pos.3 480 lux μE, μP

Outdoor test (n=3)

OCBR110P1
Cloudy with

noisy (threes)
background

110 60 Pos.1 Cloudy
weather

μE, μP

OCR110P1 Cloudy with no
background

110 60 Pos.1 Cloudy
weather

μE, μP

OSBR110P1
Sunny with

noisy (threes)
background

110 60 Pos.1 Sunny
weather

μE, μP

OSR110P1 Sunny with no
background

110 60 Pos.1 Sunny
weather

μE, μP

Disturbance test (n=1)

D2R110P1 Disturbing
person

110 180 Pos.1 Normal
indoor

μE, μP
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Random movement test (n=3)

Ran.MovP1 Random
movements

- 150 Pos.1 Normal
indoor

μP

CPR summary report test (n=5)

CPRsrR110P1 Compressions
with pauses

110 580 Pos.1 Normal
indoor

μREpar

Table 7.1: Detailed description of the sub-tests included in the 5 tests performed to
both measure the accuracy of QCPR cam-app 2.0‘s ability to detect the compression
rate under various conditions and to evaluate the CPR summary parameters calculated
after an ended session. Abbreviations in the sub-test names: R=rate. P=position,
D=disturbance, O=outdoor, B=Noisy Background, C=cloudy, S=sunny, CPRsr=CPR
summary report.

present i.e. another moving person, and to 2) quantify the disturbance size
relative to the bystander performing the compressions when the algorithm
fails to detect due to too much noise. A second Sony Xperia Z5 Compact
(Sony, Japan) phone was used to capture video recordings of the test, and
the video is studied off-line to perform the quantification. The bystander
carried out continuous compressions during the sequence. The disturbing
person moved around the patient, waving arms in different frequencies,
standing behind and over the bystander while waving arms, stepping over
patient etc.

In the Random movement test no CPR was performed on the manikin
and the purpose of the test was to measure the algorithm‘s resilience to
false detections. The random movement included checking breathing and
pulse of patient, turning patient, unzipping jacket, walking around, waving
for help etc. Three test persons were included.

The CPR summary report test is an evaluation of the session summary
parameters. The test included five different test persons with different hair
lengths and the following test protocol:

• The bystander sits next to patient with the smartphone in his hands.
He/she presses the emergency call button and places the smartphone
flat on the ground. For approximately 20 seconds the bystander
checks for patient‘s pulse and respiration before starting performing
chest compressions.

• Next, four intervals of 120 second continuous compressions and 20
seconds pauses while checking for respiration are followed.
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Figure 7.3: Different camera positions used in Smartphone position test.

• The total sequence time is approximately 580 sec., which is a typical
response time for medical assistance [98, 99, 100, 101].

The CPR summary parameters evaluated are the parameters explained
in section 7.2.3: TFSCR, TC, TWC, ACR and NC.

7.3 Results

The error measurement results of all five tests are summarized in 7.2.
The average compression rate detection error, E was 2.7 compressions per
minute (± 5.0 cpm), the performance, P , accepted detections in 98 % (±
5.5) of the time and the relative error of the CPR summary parameters,
REpar, were 4.5 % (± 3.6). In sub-test R150P2 from the Smartphone
position test, the results reveals some weaknesses when only a small part of
the bystander is visible to the camera, the compression rate is as high as
150 cpm and the person performing compression has MLLH or LLH. In the
two sequences with poor results, P of 56.2 % and 80.2 %, the bystander
is only present in 4.6 % and 6.9 % of the image frame and an example
from the largest one is shown in Figure 7.4a. Figure 7.4 b-d also shows
examples from the sub-tests: B) low lighting conditions, LightP1, C) LLH
in noisy outdoor conditions, OSBR110P1, and D) the smallest disturbance,
occupying 3.4 times the size of the area occupied by the bystander, that
cause the algorithm to fail to detect for a short period of time in D2R110P1.

The Bland Altman plot in Figure 7.5 shows the agreement between
reference data and detection data for Smartphone position test, Outdoor
test and the Disturbance test. Each analysis in all the test sequences are
here included. The sub-tests with poorer results, 30:2P1, R150P2 and
30:2P3, is marked with the colors red, yellow and purple respectively. The
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μE(σE)[cpm]
[0− >]

μP (σP )[%]
[0 − 100]

μREpar

(σREpar)[%]
[0 − 100]

Smartphone position test (n=7)
RateP1 1.3 (0.3) 99.7 (0.3) -

D1R110P1 1.8 (1.3) 99.5 (1.2) -
30:2P1 4.5 (3.8) 95.9 (3.7) -
LightP1 1.1 (0.3) 100 (0) -
R100P2 3.0 (3.4) 98.1 (3.7) -
R150P2 11.4 (14.9) 89.8 (16.4) -
30:2P3 3.3 (1.4) 96.0 (2.1) -
R100P3 1.1 (0.2) 99.9 (0.4) -

Outdoor test (n=3)
OCBR110P1 1.7 (0.3) 100 (0) -
OCR110P1 1.5 (0.3) 100 (0) -
OSBR110P1 1.4 (0.4) 99.7 (0.5) -
OSR110P1 1.1 (0.4) 100 (0) -

Disturbance test (n=1)
D2R110P1 5.8 96.0 -

Random movement test (n=3)
Ran.MovP1 - 89.6 (2.5) -

CPR summary report test (n=5)
TFSCR - - 6.1 (3.3)

TC - - 2.8 (2.6)
CPRsrR110P1 TWC - - 10.0 (9.1)

ACR - - 1.8 (1.2)
NC - - 1.6 (1.0)

Total (all tests) 2.7 (5.0) 98.0 (5.5) 4.5 (3.6)

Table 7.2: Detection results for all of the 5 tests included in the experiments. The
results are given in mean Average Error, μE, mean Performance, μP , and mean Relative
Error parameter, μREpar. Standard deviations are shown in parenthesis. Abbreviations
in the sub-test names: R=rate. P=position, D=disturbance, O=outdoor, B=Noisy
Background, C=cloudy, S=sunny, CPRsr=CPR summary report.
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Figure 7.4: (a) Screenshot of a MLLH bystander‘s position in image frame when
algorithm provided poor detection results for compression rate of 150 cpm, R150P2. (b)
Screenshots of low lighting conditions, LightP1. (c) Screenshot of LLH and noisy outdoor
background, OSBR110P1. (d) Screenshot of the disturbance size when the algorithm
failed to detect the compression rate in D2R110P1.

total number of samples in the plot is 11718 and the number of samples
with larger deviation than ± 10 cpm compared to reference data is 180
(1.53%).

In Figure 7.6 the Bland Altman plots shows the agreement between the
summary parameters calculated from the detection data and the summary
parameters calculated from the reference data in the CPR summary report
test.

7.4 Discussion

The results presented in this paper shows that the camera in a smartphone
can be used to measure chest compression rates and hands-off times under
various conditions with good accuracy. Our proposed method allows for real
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Figure 7.5: Bland Altman plot to compare reference data from Resusci Anne manikin
with detection data from QCPR cam-app 2.0 for the tests Smartphone position test,
Outdoor test and Disturbance test. All together 11718 compared samples. Different colors
are used to differentiate the sub-tests 30:2P1, R150P2 and 30:2P3, from the rest.

time feedback to both the bystander and to a dispatcher in real emergencies,
which could improve CPR quality.

7.4.1 Challenges

Although the algorithm works well with only a small part of the bystander
being visible under low noise situations, we discovered reduced accuracy in
two of the sequences where the bystander had long loose hair, compressed
with a very high rate and were visible only in a small part of the image frame.
In these sequences the loose hair is sometimes almost the only thing visible
in the image frame and QCPR cam-app 2 interpret this as compression in
the rate the visible hair is bouncing in. These two cases explain the yellow
samples, in R150P2, that caused disagreement in the Bland Altman plot,
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Figure 7.6: Bland Altman plots of the agreement between the summary parameters
calculated from the QCPR cam-app 2.0 detection data and the summary parameters
calculated from the Resusci Anne manikin reference data in the CPR summary report
test.

Figure 7.5. To avoid these false detections the bystander should position
the smartphone such that most of the head and shoulders are captured in
the image frame.

We also experienced that repetitive random movements during com-
pression pauses could cause the algorithm to detect a false stable-low
compression rate causing QCPR cam-app 2 to calculate a longer TC and a
shorter TWC. It could be observed that during compression pauses people
often bend towards and away from the patient in a sometime very repeti-
tive movement, and on a few occasion when the bystander had long loose
hair these movement caused the algorithm to interpret the movements as
a stable but very low compression rate lasting a minimum of 5 seconds.
These false stable-low compression rate detections did not occur in the
Random Movement Test when the test persons where asked to perform
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all kinds of different tasks that could be carried out before compression
start. Deactivating the dynamic rate range could solve this problem, but a
consequence of this would be that compressions rates below 70 cpm would
not be detected.

The samples that shows disagreement between the detections data and
the reference data in Figure 7.5 for sub-test 30:2P1 (red) and 30:2P3
(purple) occurs in the transitions between compression and compression
pauses when performing 30:2 and do not significantly affect the visual
presentation of the detected signal that is shown to the dispatcher.

7.4.2 Further work

The proposed system allows the bystander to have both hands free with
compression feedback on the smartphone screen visible next to the patient
which is different from accelerometer-based smartphone solutions that
requires the smartphone to be held on the patient‘s chest or strapped to
the bystander‘s arm [42, 43, 45, 46, 47, 48]. This advantage could make
the proposed solution suited for real emergencies where the phone is also
used as a life line to the emergency unit. Studies comparing the proposed
solution with the accelerometer-based solutions in simulated emergencies
should be considered.

Testing of QCPR cam-app 2.0 in simulated real emergencies must be
carried out in order to conclude if this method could be suited for real
emergencies. In addition, studies with the aim of documenting the usability
of the application, safety of the method and effectiveness on the CPR
quality also need to be carried out as suggested by Rumsfeld et al. [34]. If
QCPR cam-app 2.0 show a well documented positive effect on the CPR
quality, it may be subject to appropriate medical device regulations and
made available for clinical use [84, 85].

The detected and stored compression rate signal and the CPR summary
report provides further opportunity for evaluation, debriefing and quality
improvement of the dispatcher-caller interaction. The stored data and
the visual dispatcher feedback system can be used to provide continuing
education in T-CPR for dispatchers, as AHA recommends in T-CPR
guidelines [83]. In addition, these measurements can provide the EMS
arriving at the scene with detailed information about the treatment the
patient has received. A feature which records audio and video will be
considered integrated in QCPR cam-app 2. A possible solution could be
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to let the recordings be automatically uploaded to a cloud storage when
available bandwidth would allow it. Still images, video and audio could be
made available for the dispatcher and allow for a better understanding of the
emergency situations. Audio recordings may also be analyzed with respect
to chest compression rate and inactivity to further improve measurement
accuracy since most dispatcher protocols include prompting and counting
loud while compressing on the chest.

The collected data could also be utilized in a machine learning framework
providing potential decision support in future systems.

We are currently investigating camera-based methods for measurement
of compression depths [93]. In future work, we will try to develop a
robust depth algorithm that could be implemented together with the
proposed method. An implementation of depth measurement would make
this solution a complete CPR quality measurement and feedback device.
Although the proposed solution main idea is to assist laypersons in real
emergencies, we have also developed a training version of the solution called
TCPR Link, available on App Store and Google Play [102, 103] in selected
countries. As AHA has announced, CPR feedback devices will also be
required to use in all AHA CPR courses by February, 2019 [104].

Studies have also shown that not only laypersons could benefit from
objective feedback during CPR. In a study presented by Abella et al. [86]
the CPR-certified rescuers performed chest compression rates <80 cpm in
36.9% of the CPR segments included in the study and rates of 100 ±10
cpm in only 31.4% of the segments, clearly suggesting that CPR-certified
rescuers could also benefit from the proposed solution.

7.4.3 Study limitations

• The validity testing of the QCPR cam-app 2.0 was assessed with a
manikin in a simulated cardiac arrest.

• The QCPR cam-app 2.0 does not measure chest compression depth.

• The bystanders used in the validity testing were known to CPR and
to the QCPR cam-app 2.
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7.5 Conclusion

Real-time chest compression quality measurement by smartphone camera is
feasible for a range of bystanders, compression rates, camera positions and
noise conditions. This technology may be used to measure and improve the
quality of telephone CPR and minimize hands off times.

Data Availability

The data used in the evaluation of the study are included as supplementary
materials in this published article. Our system do not capture and store
the videos the system performs detections on, thus the videos can not be
made available.
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Supplementary Material

The supplementary material consists of a zip-file, Data files, with one
subfolder for each of the five presented experiments. For the first four
experiments the folders are further divided into subfolders and datafiles for
each test person and each sub-test, and the data is presented as Matlab
mat-files containing both the compared reference data, ReferenceData, and
the detection data, DetectionData. For the fifth test, CPR summary report
test, the folder is divided into sub-folders for each test persons and the
data is presented as ssx-files (reference data) and xls-files (detection data).
The folder for the CPR summary report test also contains a readme-file
explaining the preprocessing carried out on the detection signals prior to
the comparison with the reference data.
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7.6 Appendix 1

This appendix provides a pseudocode description of method for measure-
ment of chest compression rate. More details can be found in [31] and [36].
The application is called TCPR link and is available on App Store [43] and
Google Play [44].

Let the input, fl(i, j), represent video frames, l, where (i, j) corresponds to
row index i and column index j. Output it the filtered compression rate
measurement, CRf (n), for each 0.5 sec analysis interval, n.

1: Input: fl(i, j), Output: CRf (n)
2:

3: while receiving image frames do

4:

5: Activity measurement:
6:

7: 1. Generating difference frame:
8:

9: for All pixels in frame do
10: if |fl(i, j)− fl−1(i, j)| <= ε then
11: gl(i, j) ← 0
12: else
13: gl(i, j) ← fl(i, j)− fl−1(i, j)
14: end if
15: end for
16:

17: 2. Dividing gl(i, j) into non-overlapping blocks and finding the
18: sum of change in region block, Rk over the received
19: frames, L, in the last half second:
20:

21: SL
Rk

(n) ← ∑L
L−1 SRk

(m) ← ∑L
L−1

∑
(i,j)∈Rk

|gm(i, j)|
22:

23: 3. Marks the blocks with SL
Rk

(n) > than the average block

24: activity, S̄L
R(n), with an indicator function, IRk

(n):
25:
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26: if SL
Rk

(n) > S̄L
R(n) then

27: IRk
(n) ← 1

28: else
29: IRk

(n) ← 0
30: end if
31:

32: if ROIestablished = FALSE then

33:

34: Establishing ROI
35:

36: 4. Establishes a temporary ROI:
37:

38: Rk ∈ {T-ROIn} if
∑n

m=n−3 IRk
(m) ≥ 3

39:

40: 5. Fills block-gaps in the temporary ROI:
41:

42: Rk ∈ {TF-ROIn} if Rk is a gap in a connected object in T-ROI
43:

44: 6. Choses the largest connected object, LCO, in the TF-ROI:
45: to be the established ROI.
46:

47: Rk ∈ {ROIn} if Rk ∈ {TF-ROILCO,n}
48: ROIestablished = TRUE
49: end if
50:

51:

52: while ROIestablished = TRUE do for each half second:

53:

54: Activity signal from ROI
55:

56: 7. Generate difference signal at time point, l:
57:

58: d(l) =
∑

Rk∈ROI n

∑
(i,j)∈Rk

g(i, j)
59:

60:

61:

62: Frequency analysis
63:

64: 8. STFT is performed on overlapping blocks of d(l), with
65: blocklength Lf corresponding to 3 sec., updated every
66: 0.5 sec. A sliding Hanning window is used prior to
67: the STFT. The PSD, Dn(w), is estimated by the periodogram
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68: calculated from the STFT:
69:

70: Dn(w) =
1
Lf

|FM{dhf (l)}|2 l = (n− 1)Lf : nLf

71:

72: where FM denotes M point FFT, and dhf (l) denotes the
73: Hanning filtered difference signal.

74: PSD modelling:
75:

76: 9. Decision tree. Recognizes and handle cases of long loose
77: hair and separate compressions from noise. Relevant
78: frequency range is 40-160 [cpm]:

Attributes found from Dn(w):
79: 1) Amplitude of the first significant peak, ap1(n),
80: 2) Amplitude of the second significant peak, ap2(n),
81: 3) Frequency of the first significant peak, fp1(n),
82: 4) Frequency of the second significant peak, fp2(n) and
83: 5) Mean amplitude hight of PSD, aPSD(n).
84:

85: CR(n) ← decisionTree(ap1(n), ap2(n), fp1(n), fp2(n), aPSD(n),
86: ap1(n)/ap2(n), fp1(n)/fp2(n))
87:

88:

89:

90: Post processing
91:

92: CRf (n) = CR(n)
93:

94: 10. Short spike/drop removal:
95:

96: if |CRf (n− 1)− CRf (n− 1− k)| < Tsd1 ∀k � 2 then
97: if |CR(n)− CRf (n− 1)| > Tsd2 then
98: CRf (n) = CR(n− 1)
99: i = i+ 1
100: if i = 4 then
101: CRf (n− 3 : n) = CR(n− 3 : n)
102: i = 0
103: end if
104: else
105: i = 0
106: end if
107: end if
108:
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109: 11. Smoothing mean filter:
110:

111: for j = 1 : 3 do
112: K = argmaxJ |CRf (n)− CRf (n− j)| < Tmf , ∀j � J
113: end for
114: CRf (n) =

∑K
k=0 ak CRf (n− k)

115: where ak is the filter coefficients,
∑K

k=0 ak = 1
116: and aj = ai ∀ i, j.
117:

118: 12. Dynamic rate range:
119:

120: CRdrr(n) = CRf (n);
121: if CRdrr(n) < 70 then
122: for j = 1 : 10 do
123: K = argmaxJ |CRdrr(n)− CRdrr(n− j)| < Tdrr, ∀j � J
124: end for
125: if K=10 then
126: CRf (n− 10 : n) = CRdrr(n− 10 : n)
127: else
128: CRf (n) = 0
129: end if
130: end if
131:

132:

133:

134: ROI update:
135:

136: 13. Add and remove blocks in ROI :
137:

138: if SL
boi

(n) > 0.5 · S̄L
R(n) then

139: Rbo,i ∈ {ROIn}
140: end if
141: if SL

bii
(n) < 0.5 · S̄L

R(n) then
142: Rbi,i �∈ {ROIn}
143: end if
144: where Rbo,i denote block i on the outside of the ROIn
145: boundary and Rbi,i denote block i inside the ROIn
146:

147: 14. Freq. analysis if ROI is divided into multiple areas:
148:

149: if # of connected areas, AROI ,∈ {ROIn} > 1 then
150: for i = 1 : # of AROI do
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151: Perform step 7, 8 and 9, and
152: if CRAROI ,i(n) is in range of 40-160 cpm then
153: AROI,i ∈ {ROIn}
154: else
155: AROI,i �∈ {ROIn}
156: end if
157: end for
158: end if
159:

160: if # of Rbi,i ∈ {ROIn} < 2 then
161: ROIestablished = FALSE
162: end if
163:

164:

165:

166: end while
167: end while
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Abstract. Telephone assisted guidance between dispatcher and
bystander providing cardiopulmonary resuscitation (CPR) can improve
the quality of the CPR provided to patients suffering from cardiac arrest.
Our research group has earlier proposed a system for communication and
feedback of the compression rate to the dispatcher through a smartphone
application. In this paper we have investigated the possibilities of pro-
viding the dispatcher with more information by also detecting the com-
pression depth. Our method involves detection of bystander‘s position
in the image frame and detection of compression depth by generating
Accumulative Difference Images (ADIs). The method shows promising
results and give reason to further develop a general and robust solution
to be embedded in the smartphone application.

Keywords: Video detection · Motion segmentation · CPR

1 Introduction

In Europe there are 370,000–740,000 out-of-hospital cardiac arrests every year
with a survival rate as low as 7.6% [1]. Many are witnessed by a bystander and
the bystander might not be skilled in cardiopulmonary resuscitation (CPR), thus
there is a need for guided assistance to ensure the provision of quality CPR. The
importance of quality CPR has been confirmed in many publications [2–4].

Smartphone applications for communication with the emergency unit and
sending GPS location already exists in solution like Hjelp 113-GPS App by the
Norwegian air ambulance1. Our group (Engan et al.) has earlier proposed an
application for dispatcher communication which detects the compression rate [5].
Another important CPR quality metric is the compression depth which is crucial
for generating sufficient circulation [6], thus providing the dispatcher with depth
information can improve CPR quality and possibly save lives.

1 https://www.itunes.apple.com/no/app/hjelp-113-gps/id363739748?l=no\&mt=8.

c© Springer International Publishing AG 2017
P. Sharma and F.M. Bianchi (Eds.): SCIA 2017, Part II, LNCS 10270, pp. 53–64, 2017.
DOI: 10.1007/978-3-319-59129-2 5
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Abstract:

Telephone assisted guidance between dispatcher and bystander pro-
viding cardiopulmonary resuscitation (CPR) can improve the quality
of the CPR provided to patients suffering from cardiac arrest. Our
research group has earlier proposed a system for communication
and feedback of the compression rate to the dispatcher through a
smartphone application. In this paper we have investigated the
possibilities of providing the dispatcher with more information by
also detecting the compression depth. Our method involves detec-
tion of bystander‘s position in the image frame and detection of
compression depth by generating Accumulative Difference Images
(ADIs). The method shows promising results and give reason to
further develop a general and robust solution to be embedded in
the smartphone application.
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8.1 Introduction

In Europe there are 370,000-740,000 out-of-hospital cardiac arrests every
year with a survival rate as low as 7.6 % [22]. Many are witnessed by
a bystander and the bystander might not be skilled in cardiopulmonary
resuscitation (CPR), thus there is a need for guided assistance to ensure
the provision of quality CPR. The importance of quality CPR has been
confirmed in many publications [87][88][89].

Smartphone applications for communication with the emergency unit
and sending GPS location already exists in solution like Hjelp 113-GPS
App by the Norwegian air ambulance6. Our group (Engan et al.) has
earlier proposed an application for dispatcher communication which detects
the compression rate [50]. Another important CPR quality metric is the
compression depth which is crucial for generating sufficient circulation [106],
thus providing the dispatcher with depth information can improve CPR
quality and possibly save lives.

Previously an accelerometer has been used to estimate the compression
depth with the purpose of providing feedback in emergency or in training
situations [46][45][48]. This requires the smartphone to be held in the hand
of the bystander or at the chest of the patient during CPR. Since it is
very important to maintain the phone connection between the bystander
and the dispatcher we believe that placing the smartphone next to the
patient and using the camera to perform the measurements would be more
suited for emergency situations. This ensures that the microphone and loud
speaker is not covered and that the phone connection is not interrupted
by accidentally pressing a button. To our knowledge there has been made
no attempt to estimate the compression depth from a smartphone camera
with the attention to provide information to the dispatcher in an emergency
situation. In this paper we have investigated this problem and propose
a system that uses the front camera on a smartphone to estimate the
compression depth. Figure 8.1 gives an overview of the proposed system,
using generated Accumulative Difference Images (ADIs) [67] for motion
segmentation to both detect the bystander position in the frame and to
estimate the compression depth. These steps will be further explained in
chapter 8.3.

6https://www.itunes.apple.com/no/app/hjelp-113-gps/id363739748?l=no&mt=8
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Figure 8.1: Proposed system for detection of compression depth. Top: detecting
bystander and regions of interest (ROIs). Bottom: detection of compression depth.

8.2 Modelling of Scene

Modelling of the scene is necessary in order to estimate both the bystander‘s
position in world coordinates and to compensate for the camera angle and
position relative to the bystander.

8.2.1 Image to world coordinates

We can find a model for the connection between world coordinates and image
coordinates by calibration of the camera. By using camera coordinates for
the world points it is sufficient to use the internal camera matrix K. The
radial distortion must also be found and compensated for. Then we have

λ
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where λ = zw, P0 a projection matrix, α and β the focal length of the
camera and x0 and y0 the principal point offset in pixels. The distance, zw,
can be expressed zw = zw0 +Δz where zw0 is the distance between shoulders
and ground and Δz is the compression depth in z-direction. A derivation
of Eq. 8.1 for Δz << zw0 gives the two expressions, approximated to be
linear:

(yc − y0) = β
yw

zw
= β

yw

zw0 + Δz
= β

yw

zw0

1
1 + Δz

Zw0

≈ β
yw

zw0
(1 − Δz

zw0
) (8.2)

(xc − x0) = α
xw

zw
= α

xw

zw0 + Δz
= α

xw

zw0

1
1 + Δz

Zw0

≈ α
xw

zw0
(1 − Δz

zw0
) (8.3)

Figure 8.2 shows a model of the scene. Ellipsoid 1, 2 and 3 illustrates
the shoulder positions of the bystander. For illustration purpose ellipsoid 2
and 3 are scaled relative to ellipsoid 1 according to the camera enlargement
model for approaching objects. p.A, p.B, p.C and p.D are camera positions
along the positive y-axis where position p.D defines the limit for camera
positions where the bystander‘s shoulders are visible in the camera‘s field of
view (FOV) and is a function of the distance between ground and shoulders
along the z-axis given by zw0

2 . L1 and L2 represents motion vectors for
the observed object enlargement in the image frame due to compression
motions. The pink box is a zoomed in area of C illustrating the observed
motion band in different camera positions.

The position of the ellipsoid marked as 1 illustrates the bystanders
starting position, and 2 illustrates the new position if the compression
motion is strictly in z-direction and the compression depth, Δz, is 50 mm.
The enlargement for approaching objects for different zw0 is found from
Eq. 8.2 and 8.3 and is illustrated by using a 45 mm approaching object in
Figure 8.3. Since our method for detecting motion only captures changes
in the contour of the bystander, a movement from shoulder position 1 to
2 and a camera positioned where L1 meets the ground floor line, would
be represented by the same values for xc and yc. Thus, we would not be
able to detect the change in the generated ADI and this position is further
referred to as the blind spot and must be taken into account.

As shown in Figure 8.2 a camera positioned where L1 meets the ground
line is not possible since the camera would be placed underneath the

133



Paper 3

Figure 8.2: Model of scene. Ellipsoid in position 1,2, and 3 illustrates the shoulder
positions when compressing 50 mm. L1 and L2 illustrates the blind spot problem as a
consequence of the different motions. p.A, p.B , p.C and p.D shows the possible camera
positions for detections. The pink box shows the observed motion bands in the camera
positions p.A, p.B and p.C.

patients shoulder. Camera positions p.A, p.B and p.C should therefore
have no problem avoiding the blind spot problem. Positions where y-value
> p.C needs to be avoided since the bystander‘s shoulders no longer is
guaranteed to be a part of the image frame. If the compression motion
was strictly in z-direction the detected motion band should increase for
each displacement along positive y-axis. This is not the case and it turns
out that a compression motion will vary but are typically slightly positive
along the y-axis, illustrated by the red ellipsoid at position 3 where line
L2 indicates an approximation to a typical motion vector. This causes the
blind spot line to move to the other side of the indicated camera positions
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Figure 8.3: Enlargement model for moving objects. The x-axis shows the observed size
of the 45 mm square object in pixels and the y-axis show the distance between the object
and the camera. Enlargement in % for object approaching 50 mm at 800 and 600 mm
are marked.

p.A, p.B and p.C. As a consequence, the detected motion band will shrink
instead of increase as the camera is placed further along the positive y-axis.
Since the y-value for L2 > p.D, the blind spot is not a problem, this is
also true for a smaller bystander with zw0 < 800. Eq. 8.2 and 8.3, as well
as Figure 8.3 shows that the linear model will change with zw0, which is
bystander and patient dependent (length of arms, size of torso).

8.2.2 Camera Angle Model

The camera angle problem is illustrated in the zoomed in area of circle C
in Figure 8.2 (pink box). Although the distance from the camera to the
shoulders changes relatively little between positions p.A, p.B and p.C, the
displacements causes big variations in observed motion band. Since the
compression movements will have small variations, the compensating model
for displacement in y-direction is estimated by observing detected motion
bands in given positions and at given compression depths. As the red,
green and blue line in the pink box shows, this reduction of detected motion
band is approximately linear which was also the case when studying the
different detection results. The compensating model for the displacement
in y-direction in the area between position p.A and p.C is estimated to be:

angcorr = 1 + 0.0026(actpos − p.A) (8.4)

where angcorr is the compensating factor for displacement along positive
y-axis and actpos is the calculated position on the y-axis based on image to
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world conversion from Eq. 8.2. The model implies that a displacement from
position p.A to p.C would mean a 26 percent decrease in detected motion
band. If the camera is positioned closer to the patient than position p.A
the observed motion band would increase and the model would scale down
the detections. This will not be an issue here since the optimal position
p.A is next to the patient.

8.3 Proposed System

In Figure 8.1 the system for detection of compression depth are shown step
by step. The figure is divided into two main sections; detection of bystander
and regions of interest (ROIs) (top), and detection of compression depth
(bottom). ADIs [67] are used to carry out both sections. ADI is a well
known method for motion segmentation and has earlier been used in many
applications such as object tracking [107], vehicle surveillance systems [108]
and smoke detection [109].

8.3.1 Detection of Bystander by Motion Segmentation

In the following let f indicate an N × K video frame where N is number
of rows and K is number of columns, and f(r, c, k) corresponds to row, r,
and column, c, in frame number k.

From experiments we found that using three subsequent frames from
the middle section of the sequences were enough to generate an ADI
that revealed the position of the bystander. Spatial de-noising is done by
Gaussian smoothing and the images are corrected for lens distortion [110]
prior to ADI generation. The ADI is initialized by generating a N ×K sized
frame of zeros. Furthermore first of the three frames, k0, is the reference
frame and the ADI, A(r, c), is found as:

Ak(r, c) =

⎧⎨
⎩Ak−1(r, c) + 1 if |f(r, c, k0) − f(r, c, k0 + i)| > T

Ak−1(r, c) otherwise
(8.5)

where T is a threshold value and i is an index for the subsequent frames.
The resulting ADI used in detection of bystander will then consist of values
from 0 to 2.
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The generated absolute ADI is further correlated with templates to find
the position of the bystander. This is illustrated in 1.B and 1.C in Figure
8.1. The templates used are scaled and resized versions of a template of
a person‘s head and shoulder contour created from an example sequence.
To avoid higher correlation caused by thicker lines when the scale factor is
above 1, a morphological skeletonization or thinning [111] of the scaled
template is performed. The template position of the best match indicates
the position of the bystander.

8.3.2 Position Compensation

In the detection of compression depth the information of the motion band
in the shoulder areas are used. The desired camera position is when the
bystander is centred in the image frame and the camera is placed close to
the patient‘s arm. If the camera is positioned elsewhere compensation is
needed. When compensating for position the bystander‘s shoulder points
has to be detected. By starting in the first column, c0, in the template
match square marked Tsize in Figure 8.1.1.C, the columns for the detection
center points are found as follows:

c1 = c0 + (
1
6

· K1), c2 = c0 + (
5
6

· K1) (8.6)

where K1 indicates the number of columns (width) of the matched template.
Further the row number where the motion band starts is found by:

ri = min
r

(A(r, ci) � 1) (8.7)

where i = 1, 2 indicates the two ROIs and r the row elements in the column
ci. Together with c1 and c2 these rows define the detection center points
p1(c1, r1) and p2(c2, r2). The points are marked with a red circle in Figure
8.1.1.C. p1(c1, r1) and p2(c2, r2) are then converted from image to world
coordinates, w1(x, y) and w2(x, y) by solving Eq. 8.2 and 8.3 for w1(x, y)
and w2(x, y). The actual distance, dact,i, between the bystander and the
camera is found by:

dact,i =
√

wi(x)2 + wi(y)2 + z2
w0 (8.8)

for i = 1, 2 which represents the two detections points and zw0 is illustrated
in Figure 8.2. The scaling factors for actual distance, distcorr, for each
detection point is found by:
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distcorr,i =
dact,i

zw0
(8.9)

Further the compensating factor, angcorr, for the camera angle is found
by using the model given in Eq. 8.4. The same compensating factor is used
for both p1(c1, r1) and p2(c2, r2) since these points lie approximately on
the same horizontal line in the image frame.

8.3.3 Detection of Compression Depth

For the dispatcher-bystander communication to be efficient, the dispatcher
should guide one problem at a time, thus the compression rate should first
be guided to the desired range (100-120 cpm). Detection of compression
rate is described in [50]. Knowing that the compression rate is in the
desired range also makes the compression motion more predictable and
furthermore the compression depth estimation less complicated.

The steps in detection of compression depth are shown in Figure 8.1.2
and the compression depth is estimated every half second. Consider a
videostream with 30 fps, providing 30

2 = 15 non-overlapping video frames
in each compression depth estimation, I(r, c, ls), where l is the estimation
number and s is a index for image number in this estimation. First, the
images are spatially de-noised by Gaussian smoothing and corrected for
lens distortion. Furthermore I(r, c, l1) is used as the reference frame and
the other 14 frames to generate an ADI as shown in Eq. 8.5 and in
Figure 8.1.2.A. For each new estimation the ADI is first set to zero before
generating the ADI for the next estimation.

A reasonable width for the ROIs is found to be MROI = 21 columns
when using image frame size of N × K = 480 × 640. The vertical motion
band along the head/arms is then avoided but we still use enough columns
to get a good average measurement of the motion band. An example is
shown in Figure 8.1.2.B where the ROIs is marked with red. Motion band
vectors, mband,i, for motion band size in columns, j, in the ROIs i = 1, 2
are found by:

mband,i(o) =
N∑

q=1
A(q, j) > 1 (8.10)

where o is a vector index for the columns used and q represents the row
number.
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Further the mean of these vectors are multiplied with their two compen-
sating factors - position in image frame and camera angle, providing the
corrected pixel size of the motion bands, mmean,i:

mmean,i =
1

MROI

MROI∑
o=1

mband,i(o) · distcorr,i · angcorr (8.11)

used to find the combined detected motion band, mtot, for this estimation,
l:

mtot(l) =
1
2

(mmean,1 + mmean,2) (8.12)

The last step is to filter the detections with a 3 coefficient weighted FIR
filter to remove some of the noise caused by random movements from the
bystander. The filter is selected from experimenting with different filter
order and coefficient values to best suppress rapid changes without loosing
important compression depth change information. CDdet(l) represent the
compression depth detection for estimation l and are found by:

CDdet(l) = 0.3 · mtot(l) + 0.35 · mtot(l − 1) + 0.35 · mtot(l − 2) (8.13)

8.4 Experiments and Datasets

All compressions are performed on Resusci Anne QCPR7 by the same
bystander with zw0 = 800. Resusci Anne QCPR measures, among other
things, the compression depth with an accuracy of ± 15 % and these data
are used as reference data in development and verification testing of the
proposed system. The smartphone used for the recordings is a Xperia Z5
Compact (Sony, Japan).

The results are presented with Average error: μE = 1
L

∑L
l=1 |CDdet(l) −

CDtrue(l)| where L is number of estimations and CDtrue(l) is the reference
signal, and Performance, P , defined as percentage of the time where the
|CDdet(l)−CDtrue(l)| < 10 [mm]. According to the European Resuscitation
Council Guidelines 2015 [51] 50-60 mm is the appropriate compression depth.
A study of Stiell et al. [106] found that compression depth in the interval
40.3 to 55.3 mm provided maximum survival rate and the peak was found

7http://www.laerdal.com/gb/ResusciAnne
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at 45.6 mm. Thus, the limit for accepted detection depths when calculating
the P is here chosen to be ±10 mm.

Each test starts with a target compression depth of approximately 20
mm and the target depth is gradually increased to 60 mm (maximum
compression depth on Resusci Anne QCPR doll) during the 80-90 sec
recordings. The compression rate is in the desired range (100-120 cpm) for
all tests. The detection of the bystander and the corresponding shoulder
areas is performed once, and thereafter used throughout the sequence. Two
different ways of finding the bystander‘s position are used; completely
automatic using the method described in Section 8.3.1, and manually by a
visual inspection.

The camera is calibrated with the procedure described in [110], which is
based on [112] and [113]. The threshold used in generation of ADI is set to
50 and in the preprocessing of the images a Gaussian filter mask of size
N = 13 with σ = 3 is used to reduce noise.

Modelling experiment, Dataset 1
Eq. 8.2 provides a theoretical conversion between pixels and mm. An
experiment has been carried out to design a model for this conversion since
a person performing compressions have larger movements than the actual
compression depth itself. Dataset 1, D1, consist of 6 recordings where the
phone for each recording is picked up and replaced at a point somewhere
near the target of the optimal phone placement. The linear regression
model for converting motion band in pixels to compression depth in mm is
found to be:

CDconv(l) = 2.7285 · CDdet(l) − 13.9692 (8.14)

The data spread for D1 and the linear conversion model is shown in Figure
8.4.

Verification test, Dataset 2
Dataset 2, D2, consists of 9 recordings, each with the phone placed at
a different position marked with black X in Figure 8.5. If we define the
desired position as (0,p) where p represent position p.A in Figure 8.2, these
positions corresponds to (-100,p),(-50,p),(0,p), (50,p), (100,p), (-50,p+50),
(0,p+50), (50,p+50) and (0,p+100). The values of the coordinates are given
in millimetres. As shown on the smartphone in the figure, the (0,p+100)
position is close to the limit of where the shoulders are included in the
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image frame, and is therefore the furthest distance from the bystander
used in the recordings of D2. The y-coordinates chosen for D2 positions
corresponds to position p.A, p.B and p.C in Figure 8.2.

Figure 8.4: The spread of D1 and the connection between detected motion band in
pixels and the actual compression depth at that time. Linear regression model is shown
in purple. Different colors correspond to different recordings.

Figure 8.5: Scene for recording D2. The triangular system of black X‘s marks the
phone position for each recording.
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Table 8.1: Detection result for verification test performed on D2. Results are given as
Average error, μE , with σ given in parentheses and Performance, P . Columns to the left,
automatic detection of bystander‘s shoulder points. To the right, manually detection of
bystander‘s shoulder points.

Auto. detect. of bystand. Man. detect. of bystand.
Pos. μE(mm) P (%) μE(mm) P (%)

1 7.4 (3.8) 77.6 2.6 (3.3) 96.2
2 15.4 (4.1) 1.9 2.8 (3.7) 95.6
3 6.4 (3.1) 90.1 2.8 (3.1) 97.4
4 5.0 (7.5) 90.3 4.2 (6.0) 92.9
5 2.5 (3.4) 96.4 3.8 (5.0) 94.0
6 4.1 (3.5) 94.5 5.7 (3.4) 92.4
7 4.3 (7.3) 83.9 8.6 (6.6) 64.0
8 4.9 (7.6) 91.7 5.1 (5.0) 96.2
9 4.3 (5.0) 92.7 6.4 (3.7) 81.2

Mean 6.1 79.9 4.7 90.0
σ 3.8 29.8 2.0 10.9

8.5 Results and Discussion

Table 8.1 shows the result from the proposed system, where the model found
from D1 is tested on D2. The results from automatic detection of bystander
shows poor results for position 2 and partly for position 1. By manually
choosing the ROIs we get better results for position 1-4, but poorer results
for position 5-9. The standard deviation given in parenthesis reveals little
or no significant difference between the two methods for each position.
Figure 8.6 also shows the results for each of the 9 positions in D2 arranged
in the triangular form for the positions as in Figure 8.5. The reference data
are shown in blue, the automatic bystander detection results in orange and
when the bystander is manual detected in red. It can clearly be seen that
the detection points chosen in automatic detection of bystander‘s shoulder
points for position 2 provides poor detection results. The overall results
indicates that as a consequence of determining the ROIs only once we might
not have found suiting ROIs for the whole sequence, and that the detection
results depend largely on the detection points chosen.
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Figure 8.6: Results for verification test, arranged in the same triangular form as seen in
Figure 8.5. Blue graphs represent the reference data, orange the results with automatic
detection of bystanders shoulders and red with manual detection of bystanders shoulders.
The x-axis shows the estimation number (estimation each 0.5 sec) and the y-axis shows
the depth in millimetres.

8.6 Conclusion and Future work

The proposed system shows promising results for detection of compression
depth by the use of a smartphone camera under the circumstances inves-
tigated in this paper. Although all tests are performed by only a single
bystander with known distance between ground and shoulders, the model
could be adapted for different distances.

In future work we will test the system for different bystander with known
size/arm-length, as well as estimating the distance to the bystander when
the distance is unknown. The latter is expected to be challenging since a
small bystander would be similar to a big bystander further away.

Since the system is planned to be a part of an existing application
for dispatcher feedback [50], the user could possibly type in some user
information (height weight, age) when downloading and installing the app.
This information would not only be useful for estimating distance, but
would also be information relevant for the dispatcher. The system must
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also be able to track the bystander and to update the ROIs every 5 second
or so during detection. Templates used to detect the bystander can here
be developed from previous analyzed ADIs. It could also be useful to use
more of the information in the detected motion band when deciding the
compression depth.
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ABSTRACT

Quality cardiopulmonary resuscitation (CPR) increases

the chances of survival from out-of-hospital cardiac ar-

rest. CPR measurement devices with real-time feedback

could assist in the provision of this. Others have proposed

accelerometer-based feedback systems by using specialized

cards, smartwatches or hand-held smartphones. Our group

have previous proposed a system that measure chest com-

pression (CC) rate and hands-off-time utilizing a smartphone

camera with a phone-on-the-floor solution. In this paper we

have investigated the possibilities of also measuring the im-

portant CPR metric CC depth. Solutions using smartwatches

or smartphones estimate CC parameters based on the by-

standers movement. However, there are no reported work

on analyzing different bystanders movement during CCs.

In this work, a CC modelling experiment using Microsoft

Kinect is performed to measure the degree of variations in

CC techniques, providing knowledge on limitations when

considering digital strategies for CC depth measurements.

Although variations between the CC techniques were discov-

ered, the results indicate that smartphone depth-cameras and

accelerometer-sensors could in most cases be used for CC

depth measurement with acceptable accuracy.

Index Terms— 3D modeling, Chest compressions, CPR

measurement, Microsoft Kinect

1. INTRODUCTION

Out-of-hospital cardiac arrest (OHCA) is a global mortality

problem with low survival rates ranging from 5.7-12 % in

Asia, Europe and USA [1, 2, 3]. If the patient suffering from

an OHCA is provided with quality cardiopulmonary resusci-

tation (CPR) the chance of survival increases [4, 5]. The pos-

itive effect of objective CPR feedback is documented [6, 7]

and the American Heart Association (AHA) recently encour-

aged to increase the focus on using digital strategies to ensure

the provision of quality CPR to the patients [8]. Strategies

using hand held products [9], smartphones [10, 11, 12] and

smartwatches [13, 14] has been proposed by others, and com-

mon for all of them is the usage of a built in accelerometer

when measuring important CPR parameters like chest com-

pression (CC) rate an CC depth. Since smartphones have be-

come a very common device that most people carry at all time,

it is likely to be considered for usage in OHCAs situations.

Disadvantages with the accelerometer based smartphone so-

lutions is that they have to be attached to the bystander‘s hand

or arm in order to perform the measurement. We believe

this is unsuited for real emergencies since the phone is also

the lifeline between the bystander and the emergency unit.

Our research group has previously proposed a real-time mea-

surement and feedback system for CC rate and other CPR

metrics, like hands-off-time, using the smartphone camera
instead of the smartphone accelerometer [15, 16], allowing

the phone to be placed flat on the ground. In [17] we fur-

ther investigated the possibilities of camera-based measure-

ment and proposed a method for detecting CC depth using the

smartphone-camera-on-the-floor solution, where data from a

single bystander was used. Common for our proposed CC

depth measurement solution and the accelerometer-based so-

lutions which has to be strapped to the arm, e.g. smartwatch

and smartphone, proposed by others, is that they all assume

bystanders to have similar movements when performing CCs

at given CC depths. To the best of our knowledge, there is no

published work which justifies this assumption. Thus, the aim

of this work is to model the movement of different, untrained

persons performing CC at different CC depths, as a feasibil-

ity study for CC depth measurements using different digital

strategies.

2. DATA COLLECTION AND METHODS

The CC modeling is performed using Microsoft Kinect for

Xbox One1 and reflective markers to track the shoulders, el-

bows and wrist points in 3D. The Kinect device uses IR time-

of-flight technology to create depth maps where the map pixel

values corresponds to the distance in millimeters to objects

visible to the IR sensor. To capture the IR frames and the

depth maps from the Kinect, we have used a modified version

of the Kin2 Matlab toolbox created by Terven2. The modifi-

cations includes frame rate control and frame capturing.

The setup for the experiment with an additional block

scheme for the main tracking algorithm is shown in Fig. 1.

1https://www.xbox.com/en-US/xbox-one/accessories/kinect
2https://github.com/jrterven/Kin2
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Abstract:

Quality cardiopulmonary resuscitation (CPR) increases the chances
of survival from out-of-hospital cardiac arrest. CPR measurement
devices with real-time feedback could assist in the provision of this.
Others have proposed accelerometer-based feedback systems by
using specialized cards, smartwatches or hand-held smartphones.
Our group have previous proposed a system that measure chest
compression (CC) rate and hands-off-time utilizing a smartphone
camera with a phone-on-the-floor solution. In this paper we have
investigated the possibilities of also measuring the important CPR
metric CC depth. Solutions using smartwatches or smartphones esti-
mate CC parameters based on the bystanders movement. However,
there are no reported work on analyzing different bystanders move-
ment during CCs. In this work, a CC modelling experiment using
Microsoft Kinect is performed to measure the degree of variations in
CC techniques, providing knowledge on limitations when considering
digital strategies for CC depth measurements. Although variations
between the CC techniques were discovered, the results indicate
that smartphone depth-cameras and accelerometer-sensors could
in most cases be used for CC depth measurement with acceptable
accuracy.
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9.1 Introduction

Out-of-hospital cardiac arrest (OHCA) is a global mortality problem with
low survival rates ranging from 5.7-12 % in Asia, Europe and USA [96,
114, 115]. If the patient suffering from an OHCA is provided with quality
cardiopulmonary resuscitation (CPR) the chance of survival increases [87,
88]. The positive effect of objective CPR feedback is documented [30, 31]
and the American Heart Association (AHA) recently encouraged to increase
the focus on using digital strategies to ensure the provision of quality CPR
to the patients [34]. Strategies using hand held products [38], smartphones
[43, 46, 48] and smartwatches [116, 117] has been proposed by others, and
common for all of them is the usage of a built in accelerometer when
measuring important CPR parameters like chest compression (CC) rate
an CC depth. Since smartphones have become a very common device that
most people carry at all time, it is likely to be considered for usage in
OHCAs situations. Disadvantages with the accelerometer based smartphone
solutions is that they have to be attached to the bystander‘s hand or arm
in order to perform the measurement. We believe this is unsuited for
real emergencies since the phone is also the lifeline between the bystander
and the emergency unit. Our research group has previously proposed a
real-time measurement and feedback system for CC rate and other CPR
metrics, like hands-off-time, using the smartphone camera instead of the
smartphone accelerometer [50, 97], allowing the phone to be placed flat
on the ground. In [93] we further investigated the possibilities of camera-
based measurement and proposed a method for detecting CC depth using
the smartphone-camera-on-the-floor solution, where data from a single
bystander was used. Common for our proposed CC depth measurement
solution and the accelerometer-based solutions which has to be strapped to
the arm, e.g. smartwatch and smartphone, proposed by others, is that they
all assume bystanders to have similar movements when performing CCs at
given CC depths. To the best of our knowledge, there is no published work
which justifies this assumption. Thus, the aim of this work is to model the
movement of different, untrained persons performing CC at different CC
depths, as a feasibility study for CC depth measurements using different
digital strategies.
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Figure 9.1: Block scheme of 3d CC modeling using Microsoft Kinect. IIR(i, x, y) and
IDM (i, x, y) are provided by the Kinect.

9.2 Data Collection and Methods

The CC modeling is performed using Microsoft Kinect for Xbox One8 and
reflective markers to track the shoulders, elbows and wrist points in 3D.
The Kinect device uses IR time-of-flight technology to create depth maps
where the map pixel values corresponds to the distance in millimeters to

8https://www.xbox.com/en-US/xbox-one/accessories/kinect
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objects visible to the IR sensor. To capture the IR frames and the depth
maps from the Kinect, we have used a modified version of the Kin2 Matlab
toolbox created by Terven9. The modifications includes frame rate control
and frame capturing.

The setup for the experiment with an additional block scheme for the
main tracking algorithm is shown in Fig. 9.1. From the captured IR frames
and depth maps we track the reflective markers and measure the bystanders
CC movement in world coord., Xw, Yw and Zw, for different CC depths.
The truth data, CCtrue, is collected by performing the CCs on a Resusci
Anne manikin.

9.2.1 Distance, Z, from Kinect camera in world coord.

As can be seen in the depth map, IDM (i, x, y), shown in Fig. 9.1, the
markers appears as black spots due to the fact that the highlights either
prevent the infrared reflection back to the kinect sensor or causes the sensor
to saturate [118]. To obtain the depth map information in the area around
each marker the following steps, shown in Fig. 9.1, are carried out: In step
1, only the information in bright reflective spots are kept in the IR frames,
IIR(i, x, y), where i is the frame number and x, y the image coordinates,
by thresholding the frames:

IIRT (i, x, y) =

⎧⎨
⎩1 if IIR(i, x, y) > Tm

0 otherwise
(9.1)

Step 2 removes small bright spots caused by noise by discarding all ar-
eas with a number of pixels < Tsbs. Containing only information in the
reflective markers, the resulting filtered frames IIRF (i, x, y) are dilated in
step 3 with a 5-by-5 matrix of ones and all pixel values > 0 in the dilated
image IIRD(i, x, y), are set to one. Next, the Hadamard product between
IIRD(i, x, y) and the depth maps, IDM (i, x, y), is found, resulting in frames,
IDMF (i, x, y), with only depth information in the area around each marker.
Further we define index-sets, Am = {x

(m)
l , y

(m)
l }, where x

(m)
l and y

(m)
l

represents the pixel positions included in the region of each marker, m,
where m ∈ 1 : 6. The Zw position of each marker and frame can then be
found by:

9https://github.com/jrterven/Kin2
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Figure 9.2: Median movement, MQ(p, d, DG, Q2), [mm] as a function of CC depth
[mm] for each test person‘s (TP) CCs.

Zw(i, m) =
1

nm

∑
l∈Am

IDMF (i, x
(m)
l , y

(m)
l ) > 0 (9.2)

where nm is the number of pixels in the index-set of marker, m.

9.2.2 X and Y position in world coord.

In step 4, Fig. 9.1, the markers centroid coordinates, (xc, yc)i
m, are found

in IIRF (i, x, y) by:

(xc, yc)i
m = cent(IRF (i, Am) > 0), (9.3)

and in step 5 we convert these image coordinates to world coordinates. By
calibrating the IR camera, the camera matrix, KIR, can be found, and
together with a rotation matrix, Rk2w, a translation vector, Tk2w and the
depth information, Zw, from section 9.2.1, KIR allows us to convert IR
image coordinates (x, y) to world coordinates Xw and Yw. By defining
the matrix Ck2w = KIR[Rk2w|Tk2w], and choosing the center of the world
coordinate system to be the same as the camera coordinates system, the
conversion can be written [119]:

λ

⎡
⎢⎣x

y

1

⎤
⎥⎦ = Ck2w

⎡
⎢⎢⎢⎣

Xw

Yw

Zw

1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎣α 0 x0

0 β y0

0 0 1

⎤
⎥⎦

⎡
⎢⎣1 0 0 0

0 1 0 0
0 0 1 0

⎤
⎥⎦

⎡
⎢⎢⎢⎣

Xw

Yw

Zw

1

⎤
⎥⎥⎥⎦ (9.4)
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where λ = Zw, α and β the focal length of the camera and x0 and y0 the
principal point offset in pixels. From Eq. 9.4 we can find the Xw and Yw

coordinates for each m and i:

Xw(i, m) = (xi
c,m − xo)

Zw(i, m)
α

(9.5)

Yw(i, m) = (yi
c,m − yo)

Zw(i, m)
β

(9.6)

Further, for each marker, m ∈ 1 : 6 and direction, d ∈ Xw, Yw, Zw, we
define position in world signals, Sm,d(i), as a function of discrete time, i ,
e.g. S1,Xw(i) = Xw(i, 1).

9.2.3 Movement analysis

From Sm,d(i) and the reference data, CCtrue, we can measure a person‘s
movement as a function of different CC depths, summarized in Algorithm 2.
The output is the measured bystander movement, MQ(p, d, DG, Q) [mm],
where p ∈ shoulder, elbows, wrists in the directions d ∈ Xw, Yw and Zw,
DG the depth groups and Q the quartile measurements, Q1 (25%), Q2
(median) and Q3 (75%). CCs in the CC rate range of 95-125 cpm is here
being measured and sorted in groupCCD according to the reference CC
depths. The first group 0-15 mm and the following 9 groups divides the
range 15 to 60 into depth intervals of 5 mm. Further we find the motion
vector for the median movement in Yw and Zw direction for the bystander‘s
shoulders. These vectors are used to estimate how the motion would be
observed by a smartphone camera placed on the floor next to the patient,
see Fig. 9.4, and to investigate if it is possible to create a conversion model
based on the method for CC depth measurment proposed in Meinich-Bache
[93], where we measure the movement‘s motion band size in the image
frames. To convert the movement in world coord. to smartphone camera
image coord., we use Eq. 9.4 and substitute KIR, Rk2w and Tk2w with
smartphone to world matrices KSP , Rsp2w and Tsp2w. Fig. 9.4 shows
the rotation and translation, -555 mm in YSP -direction and 475 mm in
ZSP -direction, between the coord. systems, and we get:

[Rsp2w|Tsp2w] =

⎡
⎢⎢⎣

1 0 0 0
0 0 1 −555
0 −1 0 475

⎤
⎥⎥⎦ (9.7)
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Algorithm 2 Movement measurement of shoulders, elbows, and wrists for
different CC depths.
Input: Sm,d(i), CCtrue, Output: MQ(p, d, DG, Q)
Detecting CCs using the Yw signal of left wrist:
[pks lcs] ← findpeaks(S5,Yw (i))
Measuring mov. for each CC, marker and direction:
for m=1:6 do

for d = Xw, Yw, Zw do
o=1; for j=length(lcs):-1:2 do

if 95[cpm] < CCtrue(j) < 125[cpm] then
Mm,d(o) ←
|max(Sm,d(lcs(j)) : Sm,d(lcs(j − 1)) − min(Sm,d(lcs(j)) :
Sm,d(lcs(j − 1))| o = o + 1;

end
end
Grouping CCs in CC depth groups (DG):
M(m, d, DG) ← groupCC(Mm,d(o), CCtrue)

end
end
for shoulders, elbows and wrists in all directions: do

Combining L&R measurements

ML&R(p, d, DG) ← [M(Left, d, DG), M(Right, d, DG)]
Estimating Q1,Q2,Q3
MQ(p, d, DG, Q) ← Q(ML&R(p, d, DG))

end

9.3 Experiments and Results

The experiment setup can be seen in Fig. 9.1, and the number of test
persons (TPs) included in the study was 13. Each TP was told to perform
CC in the rate range of 100-120 cpm and to gradually increase the CC
depth over a two minute sequence. All TPs executed the sequence twice.
We collected image streams from the Kinect with a frame rate of 20 frames
per second. The Kinect camera and the Sony smartphone camera used in
the conversion in section 9.2.3 was calibrated with the Bouguet‘s calibration
procedure [110]. The threshold value of Tm was set to 65000, close to the
brightest value possible, to keep only the reflective markers, and Tsbs was
set to 70 pixels, just below the limit for the marker‘s size in the frames.
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Figure 9.3: Median (Q2) Yw and Zw movement model in [mm] for all CCs (all TPs) as
a function of CC depth [mm].

9.3.1 Results

Fig. 9.2 shows the movement for each TP when performing CCs with
different depths. As shown in Algorithm 2, we combine left and right
markers when measuring the movements, thus, the figure includes Xw, Yw

and Zw direction movement for shoulders, elbows and wrists. The median
difference between left and right markers where 2.53 mm (Q1= 1.58, Q3 =
2.91). In Fig. 9.3 the movement from all CCs and all TPs are shown for

Table 9.1: Lin. reg. mod., M̂p,d(CD), for all CCs (all TPs) in Yw and Zw direction as
a function of CC depth, CD, [mm].

d Yw Zw

p Sho. Elb. Wri. Sho. Elb. Wri.
ap,d -0.78 1.74 3.19 10.79 8.84 6.10
bp,d 1.60 1.41 1.30 0.66 0.26 0.07

each CC depth group in Yw and Zw direction. The bystander‘s movement in
Xw direction (horizontal) is not included due to its small size (Q2 <10 mm)
and to its large interquartile range (IQR), where IQR = Q3 − Q1, relative
to the slope of the curve. In Table 9.1 the approximation to the linear
regression models, M̂p,d(CD) = ap,d + bp,dCD, where CD is the CC depth,
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is listed for Yw and Zw movement. Fig. 9.4 illustrates how the smartphone,
placed flat on the ground next to the patient, would observe different TP‘s
typical shoulder movement when compressing with different CC depths.
The figure shows the Yw − Zw plane with the Kinect at coordinate (0,0,0).
Each TP‘s median motion vector when compressing with a depth of 50-55
mm is included to illustrate the variation between TPs. In the upper left
corner a plot is showing the estimated motion band size the camera would
experience for all CC depths and all TPs.

Figure 9.4: Illustration of motion vectors (arrows) of shoulder for each test person
when CC depth is in the range of 50-55 mm (no data for CC depth above 35 mm for
TP12 and TP13). Upper left, plot of motion band as a function of CC depth, observed
by smartphone camera with method in [93].

9.4 Discussion

In Fig. 9.2 we can see large variations relative to the slope of the curves in
bystanders horizontal, Xw, and distance from the kinect camera, Zw, move-
ments. The vertical movement, Yw, shows a more predictable movement
where 10 of the 13 TPs have a very similar development of movement for
increasing CC depth. This is also shown in Fig. 9.3 and in Table 9.1 where
Yw-movement has a slope indicating that it is a function of the CC depth,
while the Zw-movement has a more gentle slope.
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The variations in the development of the motion band as a function of
the CC depth in Fig. 9.4 is caused by the blind spot problem that occur
if a motion vector is directly pointing towards the camera. This problem
is explained in detail in [93]. As can be seen in the Fig., e.g. the motion
vector of TP 2 indicated with the L1 line, the problem occurs for TPs with
small movement in Zw-direction. Thus, the variation between different TPs
is too large to suggest a general model to use with the method proposed in
[93]. Although this exclude the possibilities for usage in real emergencies,
the proposed method could still be useful in training where it is possible to
calibrate the model for a specific person prior to CC start.

If one could measure the more predictable Yw movement, it should be
possible to measure the CC depth with acceptable accuracy. Smartphones
with infrared depth technology could potentially be used for this and
although this is not yet a very common smartphone technology, it exists, e.g.
in the Iphone X10, and we expect it to be standard in future smartphones.

A very important observation from the results is the fact that some
people tend to lift the back of their hand from the chest when performing
the CCs. This is visible in the bottom Yw-plot in Fig. 9.2 where the vertical
wrist movement is much larger than the actual CC depth for some TPs. As
a consequence, this could greatly impact the accuracy of the measurements,
also for the position-based accelerometer systems [43, 46, 116, 117] attached
to the bystander‘s arm.

9.5 Conclusion and future work

This CC modeling study reveals large variations in bystanders CC tech-
niques. Using a standard smartphone-on-the-floor camera solution would
require person-calibration to estimate CC depth and might still have ques-
tionable accuracy. However, new technology includes smartphones with
depth cameras, which we will explore in future work. The discovered large
variations in wrist movements shows that the accelerometer based solutions,
with watch or smartphone strapped to the arm/hand as proposed today,
suffers shortcomings. In future work we will investigate if incorporating
this knowledge might improve such systems.

10https://www.apple.com/iphone-x/
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Abstract—Objective: Birth asphyxia is a major newborn
mortality problem in low-resource countries. International
guideline provides treatment recommendations; however, the
importance and effect of the different treatments are not fully
explored. The available data is collected in Tanzania, during
newborn resuscitation, for analysis of the resuscitation activities
and the response of the newborn. An important step in the
analysis is to create activity timelines of the episodes, where
activities include ventilation, suction, stimulation etc. Methods:
The available recordings are noisy real-world videos with large
variations. We propose a two-step process in order to detect
activities possibly overlapping in time. The first step is to detect
and track the relevant objects, like bag-mask resuscitator,
heart rate sensors etc., and the second step is to use this
information to recognize the resuscitation activities. The topic
of this paper is the first step, and the object detection and
tracking are based on convolutional neural networks followed
by post processing. Results: The performance of the object
detection during activities were 96.97 % (ventilations), 100 %
(attaching/removing heart rate sensor) and 75 % (suction) on a
test set of 20 videos. The system also estimate the number of
health care providers present with a performance of 71.16 %.
Conclusion: The proposed object detection and tracking system
provides promising results in noisy newborn resuscitation videos.
Significance: This is the first step in a thorough analysis of
newborn resuscitation episodes, which could provide important
insight about the importance and effect of different newborn
resuscitation activities.

Index Terms—Newborn Resuscitation, Automatic Video Anal-
ysis, Object Detection, Convolutional Neural Networks

I. INTRODUCTION

Globally, one million newborns die within the first 24

hours of life each year. Most of these deaths are caused

by complications during birth and birth asphyxia, and the

mortality rates are highest in low-income countries [1]. As

many as 10-20 % of newborns require assistance to begin

breathing and recognition of birth asphyxia and initiation
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of newborn resuscitation is crucial for survival [1], [2], [3].

International guidelines on newborn resuscitation exists, how-

ever, the importance and effect of the different treatments and

therapeutic activities are not fully explored.

Safer Births1 is a research project to establish new knowl-

edge on how to save lives at birth, and the project has,

among other things, collected data during newborn resuscita-

tion episodes at Haydom Lutheran Hospital in Tanzania since

2013. The collected data contains video recordings, ECG and

accelerometer measurements from a heart rate sensor (HRS)

attached to the newborn, and measurements of pressure, flow

and expired CO2 from a bag-mask resuscitator (BMR). A

thorough analysis of the collected data could provide important

insight about different effects of the resuscitation activities.

To be able to study such effects it is necessary to quantify

the series of performed activities, in addition to measuring the

condition of the newborn during resuscitation and knowing the

outcome. A timeline documenting activities like ventilation,

stimulation and suction would be of immense value. From

such a timeline it would be possible to extract parameters like

the amount of both total and continuous time used, the number

of starts and stops for different activities etc. The generation

of the timelines should preferably be done automatically by

using the collected signals and/or video, thus allowing large

amounts of data to be analyzed. The value of such timelines

would clearly be i) for research and increased knowledge

on the effects of newborn resuscitation activities. A future

implementation of a complete system would also be useful on-

site: ii) as a debriefing tool, summarizing the activities with no

need to study video recordings and iii) as a real-time feedback

system.

Previously, in Huyen et.al [4], our research group proposed

an activity detector based on the HRS signals and the detector

discriminated the activities stimulation, chest compressions
and other with a accuracy of 78.7 %. Stimulation and chest

compressions are therapeutic activities, whereas other would

include moving and drying the baby, touching the HRS etc.

These activities would result in movement in the HRS, and

thus be visible in both the ECG and the accelerometer signals,

but are not considered therapeutic activities or treatment of

the newborn. Using automatic video analysis of the video

recordings during the resuscitation episodes could potentially

improve the performance achieved using the HRS signals.

Furthermore, video analysis could possibly detect activities

and information that are difficult or impossible to detect from

the ECG and accelerometer signals, like; is the HRS attached

to the newborn or not, and how many health care providers

1www.saferbirths.com
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Abstract:

Objective: Birth asphyxia is a major newborn mortality problem in
low-resource countries. International guideline provides treatment
recommendations; however, the importance and effect of the
different treatments are not fully explored. The available data is
collected in Tanzania, during newborn resuscitation, for analysis of
the resuscitation activities and the response of the newborn. An
important step in the analysis is to create activity timelines of the
episodes, where activities include ventilation, suction, stimulation
etc. Methods: The available recordings are noisy real-world videos
with large variations. We propose a two-step process in order to
detect activities possibly overlapping in time. The first step is to
detect and track the relevant objects, like bag-mask resuscitator,
heart rate sensors etc., and the second step is to use this information
to recognize the resuscitation activities. The topic of this paper
is the first step, and the object detection and tracking are based
on convolutional neural networks followed by post processing.
Results: The performance of the object detection during activities
were 96.97 % (ventilations), 100 % (attaching/removing heart
rate sensor) and 75 % (suction) on a test set of 20 videos. The
system also estimate the number of health care providers present
with a performance of 71.16 %. Conclusion: The proposed object
detection and tracking system provides promising results in noisy
newborn resuscitation videos. Significance: This is the first step
in a thorough analysis of newborn resuscitation episodes, which
could provide important insight about the importance and effect of
different newborn resuscitation activities.
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10.1 Introduction

Globally, one million newborns die within the first 24 hours of life each
year. Most of these deaths are caused by complications during birth and
birth asphyxia, and the mortality rates are highest in low-income countries
[52]. As many as 10-20 % of newborns require assistance to begin breathing
and recognition of birth asphyxia and initiation of newborn resuscitation
is crucial for survival [52, 53, 54]. International guidelines on newborn
resuscitation exists, however, the importance and effect of the different
treatments and therapeutic activities are not fully explored.

Safer Births11 is a research project to establish new knowledge on how
to save lives at birth, and the project has, among other things, collected
data during newborn resuscitation episodes at Haydom Lutheran Hospital
in Tanzania since 2013. The collected data contains video recordings, ECG
and accelerometer measurements from a heart rate sensor (HRS) attached
to the newborn, and measurements of pressure, flow and expired CO2 from
a bag-mask resuscitator (BMR). A thorough analysis of the collected data
could provide important insight about different effects of the resuscitation
activities. To be able to study such effects it is necessary to quantify the
series of performed activities, in addition to measuring the condition of
the newborn during resuscitation and knowing the outcome. A timeline
documenting activities like ventilation, stimulation and suction would be
of immense value. From such a timeline it would be possible to extract
parameters like the amount of both total and continuous time used, the
number of starts and stops for different activities etc. The generation of the
timelines should preferably be done automatically by using the collected
signals and/or video, thus allowing large amounts of data to be analyzed.
The value of such timelines would clearly be i) for research and increased
knowledge on the effects of newborn resuscitation activities. A future
implementation of a complete system would also be useful on-site: ii) as
a debriefing tool, summarizing the activities with no need to study video
recordings and iii) as a real-time feedback system.

Previously, in Huyen et.al [55], our research group proposed an activity
detector based on the HRS signals and the detector discriminated the
activities stimulation, chest compressions and other with a accuracy of
78.7 %. Stimulation and chest compressions are therapeutic activities,
whereas other would include moving and drying the baby, touching the

11www.saferbirths.com
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HRS etc. These activities would result in movement in the HRS, and
thus be visible in both the ECG and the accelerometer signals, but are
not considered therapeutic activities or treatment of the newborn. Using
automatic video analysis of the video recordings during the resuscitation
episodes could potentially improve the performance achieved using the HRS
signals. Furthermore, video analysis could possibly detect activities and
information that are difficult or impossible to detect from the ECG and
accelerometer signals, like; is the HRS attached to the newborn or not, and
how many health care providers (HCPs) are present.

The importance of video analysis of newborn resuscitation episodes has
been well documented for both evaluation and training purposes [57, 58, 59,
60, 61]. However, manual inspection and annotation is very time consuming,
and limits the amount of data that can be analyzed. In addition, a manual
inspection entails privacy issues. Thus, there is a need for automatic video
analysis of these episodes. Conventional image and pattern recognition
methods, e.g segmentation and tracking, has been applied in automatic
video analysis for decades [120], but in recent years Deep Neural Networks
(DNNs) has shown it‘s superior strength in the field [63, 121, 122, 123]. In
the topic of object and activity detection in resuscitation in general, others
have propose the usage of passive radio-frequency identification (RFID)
tags on the objects for object motion and interaction detection [16, 17, 18].
Chakraborty et.al [19] proposed an object and activity detector for trauma
resuscitation video recordings based on object segmentation and a Markov
Logic Network model. In the area of newborn resuscitation Guo et.al [62]
proposed an activity detection system for newborn resuscitation videos
based on DNN and linear Support-Vector Machines (SVMs). Their dataset
included 17 videos recorded with a frame rate of 25 frames per second
(FPS) at a hospital in Nepal, and the group aimed to detect the activities
stimulation, suction, ventilation and crying. The pre-trained Faster RCNN
network and the object class People were used to propose areas involving
the newborn, and motion salient areas were further used as input to two
pre-trained Convolutional Neural Networks (CNN) from [63] designed to
extract motion and spatial features. Further, the features was combined
and used as input to linear SVMs, trained on their own dataset, to detect
the activities.

All though there are similarities between the dataset from [62] and our
dataset, they are both noisy real-world videos with large variations, there
are some specific tasks an challenges that differs between the studies. First,
we aim to detect activities that are not newborn location dependent or
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movement dependent, like, the number of HCP present, and is the HRS
attached or not. Second, in our dataset the newborns are wrapped in
blankets most of the time, even before being placed at the resuscitation
table, and the image examples from [62], which shows fully uncovered
newborns, are more infrequent in our dataset. Thus, using a pre-trained
Person detection network as suggested in [62] would most likely not be the
best approach. In addition, our videos are recorded with variable frame
rate, which in some case are very low and causes motion blurred images of
poor quality, resulting in larger per frame motion variations than for images
recorded with fixed frame rates. Considering all this, we believe that using
an object detection and tracking approach to localize the relevant activity
detection areas would be a more robust first step in activity detection.
Further, using the areas around each objects would simplify the detection
problem to a binary classification problem for the specific activities; is the
object being used in resuscitation or not. The topic of this paper is the
first step and the object detection and tracking is based on CNNs followed
by post processing. Neural networks for object detection requires a lot of
training data, so in addition to using image frames from the videos, we use
histogram matching [79] for augmentation and also a synthetic dataset. The
object detection is performed on each video frame and here we use the well
known YOLOv3 [7] network, used in various object detection applications
[76, 124, 125]. Post processing is used to fill in missing detections and track
the area around the objects during the episodes.

10.2 Data material

The dataset is collected using Laerdal Newborn Resuscitation Monitors
(LNRM) [126] and with cameras mounted over the resuscitation tables.
The dataset contains almost 500 videos with corresponding LNRM data.
The LNRM records the signals measured by the green HRS and the BMR,
both shown at the top of Figure 10.3 C.

The video recordings were initiated to provide additional support in cases
and research objectives where the other collected signal or observed data
were difficult to interpret. However, the videos are of variable quality and
camera and scene settings are not standardized for the different resuscitation
tables included in the dataset. The variations are caused by different
camera types, camera angles, video resolutions (1024×1280, 720×1280, and
1200×1600), camera distances from resuscitation tables, variable frame
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Figure 10.1: Block scheme of the activity detection system. The red dotted line encircles
the steps proposed in this paper. 1: Generated dataset is input to YOLOv3 object
detection network. 2: Detected objects. 3: Detected object area after post processing.
4: Sequence of images from areas are used as input to sequential neural networks. 5:
Activity time lines is the final output.

rates (2-30 frames per second), unfocused cameras and light settings. All
these variations, especially the variable frame rate, make automatic video
analysis more challenging. In some cases the frame rate is as low as two
frames per second, resulting in motion blurred image frames of poor quality.
In Figure 10.2 some of these challenges are depicted; A) Motion blurring,
B) far away camera position, C) occlusion due to camera angle and D) poor
lighting conditions. In addition, the videos also have variations like HCPs
using different colored rubber gloves, HCPs that do not wear rubber gloves,
different colored HCP uniforms and clothing, and colorful and patterned
blankets brought by the mothers to wraps the newborn in. The activity
timelines that are relevant to generate are:
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• 1) Bag-mask ventilations: Respiratory support.

• 2) Suction: Removal of fluids from nasal and oral cavities using a
device called suction penguin (SP).

• 3) HRS attached to newborn or not.

• 4) Stimulation: Warming, drying, and rubbing the newborns‘s back.

• 5) Chest compressions. Keep oxygenated blood flowing to the brain
and other vital organs.

• 6) Number of HCPs present.

• 7) Newborn wrapped in blanket or not.

Activity 1), 2), 3), 4) and 5) can be detected by tracking the objects BMR,
SP, HRS and HCPs hands (HCPH), and by analyzing their surrounding
areas, 6) by counting the number of detected HCPH, and 7) by analyzing
an area around the newborn, found from motion analysis and the location
of the detected objects.

10.3 Methods

A block scheme of the planned activity detection system is shown in Figure
10.1. The steps proposed in this paper is encircled with a red dotted line.
These include dataset generation using the collected videos, augmentation
of images from the collected videos, generation of a synthetic dataset, object
detection using YOLOv3 [7], post processing to select the areas surrounding
the relevant objects and an estimation of the number of HCPs involved in
the resuscitation at each moment in time.

10.3.1 Data Generation

A dataset, VideoD, of 3093 images for object detection training is created
by selecting evenly spread image frames from 21 randomly selected videos.
The objects are manually labelled using the Image Labeler [127].
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Figure 10.2: A: Motion blurring due to low frame rate, 1024x1280. B: Camera far away,
1200 x 1600. C: Occlusion (ventilating newborn behind health care provider), 1024x1280.
D: Poor lighting, 720 x 1280.

Augmentation dataset

VideoD is further augmented to a new dataset, HistD, by using histogram
matching [79]. A frame from 10 randomly selected videos are used as
histogram reference frames, and each of the images in VideoD are augmented
with each of the reference frames creating in total 34 023 images. 6 of 10
examples of the histogram match augmentation is shown for one of the
frames in Figure 10.3 B.

Synthetic dataset

A synthetic dataset, SynthD, is created in an attempt of generating example
images with the variation found in the original dataset. Because of the
colorful and patterned blankets used in the resuscitation videos, the objects
we want to detect can appear on all kinds of backgrounds, thus over 6000
different backgrounds, both natural images and texture images are used.
First, hands with different colored gloves and no gloves, two types of BMR
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Figure 10.3: A: Example of a frame used in VideoD. B: Examples of histogram match
augmented images from HistD. C: Scene for recording objects to be used in the generation
of synthetic dataset, masked objects and an example of a generated frame in SynthD.

that both appear in the collected resuscitation videos, the HRS and the SP
were video recorded in front of a blue screen in all possible angles. Object
masks are created using video frames, I(x, y)i, where x, y denote the pixel
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coordinates and i the frame number, from the recorded object videos by:

OM (x, y)i,c = IB(x, y)i,c − IL(x, y)i,c < TCK,c (10.1)

where c denote the object class, IB the blue channel, IL the RGB luminance
value (0.3IR + 0.59IG + 0.11IB) and TCK the chroma key thresholds for
each c. Around 6300 masks per class are created in average.

Next, a background is randomly drawn from the 6482 examples and
objects and masks are cast at random positions onto the background. One
example of each object, except from HCPH where we use a number between
one and three examples, is used. The objects are randomly scaled with the
object‘s typical size relative to the size of the image frame - found from
VideoD, and hue, saturation and lightness is also randomly chosen between
60-100 % of the original object images.

In order to make the object appear as realistic as possible, the final
synthetic images are filtered with a small motion blur where the length, len,
and angle, θ, of the motion are randomly chosen. The scene for recording
objects, masked objects and an example of a generated synthetic image is
shown in Figure, 10.3 C.

Split image dataset

In an attempt of better utilizing the resolution in the video frames and to
be able to predict the smallest objects, the images in HistD are split into
five equally sized sub images generating a new dataset, SplitD. The four
first images are generated from splitting the image into four parts, and the
fifth is extracted at the center of the original image frame. This fifth sub
image would typically contain more objects than the rest, and become an
overlap of the other four sub images. The bounding box annotation is also
split and the resulting bounding boxes is removed if they are < 40 % of
the size of another box representing the same object in another sub image.
This step ensures that all the resulting bounding boxes contain a significant
part of the objects, making the resulting images good training examples.

Dataset for testing

A dataset, TestD, of 1000 images is created by selecting 50 evenly spread
image frames from 20 randomly selected videos, not previously used for
training, where the mean duration per video is around 7 minutes. The test
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images are labelled using Image Labeler [127]. A split version, TestDsplit,
of TestD is also created with the same procedure as explained in section
10.3.1.

10.3.2 Object detection

The proposed system uses the well known YOLOv3 [7] in the object de-
tection step. YOLOv3 is comparable to the state of the art models on
the mAP50 metric [7], and is chosen for the following reasons: 1) Speed -
YOLOv3 can perform predictions on video streams in real time - which
could be useful in a future application for our proposed system, 2) YOLOv3
is state-of-the-art at predicting the correct class, rather than focusing on
accurate bounding box predictions - which suits the problem at hand well.
3) It predicts small objects with better precision than medium and large
objects [7] - which also suits the problem at hand well, and finally, 4) due
to the limited size of labelled training data, using transfer learning with
a-state-of-the-art model as YOLOv3 as the starting point will most likely
outperform any training from scratch.

Network structure (YOLOv3)

YOLOv3 [7] is a fully convolutional network, meaning no fully-connected
layers are used. It consist of 75 convolutional layers in total and performs
downsampling by using convolutional layers with a stride of two instead of
using pooling layers. The network also includes residual blocks [128] and
performs detection on three different scales in order to detect objects of
different size. The detections on the different scales utilize feature maps
from deeper layers in a similar concept to feature pyramid networks [75] and
the features go through convolutional layers before outputting 3D tensors
with dimension:

N × N × [3 × (4 + 1 + C)] (10.2)

where N is the number of grids at that scale (13, 26 and 52 if image size
is 416 × 416), 3 the number of bounding boxes for each grid, 4 the box
coordinates and size, 1 the objectness prediction, oP , and C the number
of object classes. The YOLO algorithm further performs non-maximum
suppression: Removing predicted object with an objectness score below
a threshold, To, and by removing predictions of same class where the
bounding box overlap more than threshold TIoU .
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Post processing object detection

Post processing is performed on the detection of BMR, SP and HRS to
fill in missing detections in frames and to create areas surrounding the
object throughout the video. Since we can have multiple true occurrences
of HCPH in the same frame, HCPH do not undergo these steps. Denote
obj ∈ 1 : 4 to be the object classes where 1 = BMR, 2 = SP, 3 = HRS
and 4 = HCPH, and NE,i to represent the number of detections in image,
i, of episode, E. For objp ∈ {1, 2, 3} ⊂ obj we estimate the most likely
object position in each i by; first, creating blank images, IB(x, y, objp)E,i.
Second, for each pixel areas, pAE,i,objp,n = {x

E,i,objp
n , yE,i,objP

n }, representing
all pixel coordinates of a detected object, obj(n)E,i, in an image we add
the detection‘s oP score, oP (n)E,i,objP

, to the matching coordinates in
IB(x, y, objp)E,i.

For n = 1 : NE,i do:

IB(x, y, objp)E,i =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

IB(·) + oP (n)E,i,objp ,

∀{x, y} ∈ pAE,i,objp,n(n)

if obj(n)E,i = objp

IB(·), otherwise

(10.3)

Further the centroid coordinates, (xE,i,objp
c , y

E,i,objp
c ), of the most likely

object position is found from:

(x(·)
c , y(·)

c ) = cent(max(IB(x, y, objp)E,i > Tobjp) (10.4)

where Tobjp defines thresholds for the different object classes. Denote
d ∈ X, Y . Each x

(·)
c and y

(·)
c are stored in location vectors, L(i)E,d,objp ,

representing timelines of the center position of each object as a function of
the video frames. L(i)E,d,objp further undergoes the three post processing
steps illustrated with an example in Figure 10.4, listed as follows:
1) Filling detection gaps by choosing the previous detected value →
Lf(i)E,d,objp .
2) Short peak removal. If ||Lf(i)(·) − Lf(i − 1)(·)|| > Tpeak, we check if it is
an actual large change in object position, or if it returns to a value where
Lf(i+1 : i+10)(·)−Lf(i−1)(·)|| < Tstable. This step filters out short false de-
tections of the objects, and outputs the peak removed signal, Lpr(i)E,d,objp .

172



Paper 5

3) Signal smoothing by applying a moving average filter of length Nf1:

Ls(i)E,d,objp =
1

Nf1

Nf1/2∑
l=−Nf1/2

Lpr(l)E,d,objp (10.5)

Finally, object area tracking throughout sequences is performed by adding
a 500 × 500 bounding box, BBtrack,E,objp , around each Ls(i)E,d,objp onto
the original videos. The size of BBtrack,E,objp ensure that it is possible to
detect what activities are performed in the area, and thus discriminate the
activities from movement and noise. An example of the tracking results is
shown in step 3 of Figure 10.1.

Figure 10.4: Example of post processing the centroid X-coordinate of the detected
bag-mask resuscitator (BMR). Horizontal axis is the image frame in the video and vertical
axis the pixel position in the frame.

10.3.3 Estimation of number of health care providers present

Timelines of the number of HCPs present in the resuscitation videos are
generated from the number of detected hands in the image frames, nH (i)E .
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For n = 1 : NE,i do:

nH (i)E =

⎧⎪⎪⎨
⎪⎪⎩

nH(i)E + 1, if obj(n)E,i = 4
and oP (n)E,i > THCPH

nH(i)E , otherwise
(10.6)

where THCPH is a threshold for detection of HCPHs. To remove noise,
nH(i)E is further smoothed by a moving average filter:

nH (i)E =
1

Nf2

Nf2/2∑
l=−Nf2/2

nH (l)E (10.7)

where Nf2 is the filter size. Finally, nH (i)E is converted to the detected
number of HCPs, nHCP (i)E , by:

nHCP(i)E =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if nH (i)E ≤ Tzero

1 if Tzero < nH (i)E ≤ Tone

2 if Tone < nH (i)E ≤ Ttwo

3 if nH (i)E > Ttwo

(10.8)

10.4 Experiments

We used the original pretrained weights for YOLOv3, darknet53, and trained
different models by further training the weights with four different sets of
training data, V ideoD, HistD, HistD + SynthD and SplitD + SynthD.
An initialization stage is used to get a stable loss by first freezing all layers
except the top 3 layers. In the next and final stage all layers are further
trained with learning rate decay and early stopping. The batch size was
set to 16. The mean Average Precision (mAP) criterion defined in the
PASCAL VOC 2012 competition12 was used to compare single-image object
detection results from the models trained on the four different mixtures of
the datasets. mAP is a function of precision, recall and the Intersection
over Unions (IoU), the overlap between predicted and true bounding box.
The threshold for IoU was set to 0.5.

12http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
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The best models were further used in detection of the objects and the
post processing steps to evaluate the performance of the proposed object
regions. The proposed regions were added to the original video and the
detection results were manually evaluated by annotating timelines using
the video annotation tool ELAN13. The annotated timelines for each E are:

• The number of HCPs: nHCPref ,E(i),

• activities - ventilations, attaching or removing HRS, and suction,
Aobjp,E(i),

• is the object visible: Vobjp,E(i) and

• is the object detected: Dobjp,E(i) (> half the object is included in
BBtrack,E,objp)

The main task of the object detection and tracking is to find approximate
regions around the objects that can be used for further activity recognition.
The aim is not to propose very accurate regions that centers the object
perfectly, but more importantly to propose smoothly updated regions that
surround the object over time. Thus, we classify a tracking result as correct
if the object is at least 50 % included in the proposed region.

Since our aim is to track a single object of each of the classes SP, HRS and
BMR throughout the whole video, we can evaluate the objects individually.
The established metric Multiple Object Tracking Accuracy (MOTA) can be
seen in the context of single-object short-term tracking and be simplified
to the percentage of correctly tracked frames [129]. Thus, the performance,
P, is evaluated for each object class and each episode, E, by the general
equation

P = (
1

Ns

Ns∑
i=1

If (i)) ∗ 100 (10.9)

where Ns is the number of frames in the episode and If (i) an indicator
function defined as 1 if |detection(i)E −reference(i)E | = 0 and 0 otherwise.
The average performance, P , of the post processed object detection are
estimated using Eq. 11.5 with Dobjp,E(i) as detection Vobjp,E(i)) as reference,
and by averaging over the episodes.

13https://tla.mpi.nl/tools/tla-tools/elan/
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Further, we evaluate the performance of the object detection during the
relevant resuscitation activities, ventilation (BMR), Attaching or removing
HRS and suction (SP). From Aobjp,E(i) we locate the activity sequences
and use them as reference in Eq. 11.5. Their corresponding sequences in
time in Dobjp,E(i) is here used as detection and an activity is classified as
detected if the detection overlap with the reference data > 80 % of the
time.

The timelines nHCP(i)E is found as explained in Section 10.3.3 and the
average performance, P , of the prediction of number of HCPs is estimated
using Eq. 11.5 with nHCPref ,E(i) as reference and nHCP(i)E as detection.
In addition, the average prediction error, E, of ||nHCPref ,E(i)−nHCP(i)E ||
is estimated over the episodes. The total performance, P , of the classes
no HCP, one HCP, two HCP and three (or more) HCP is also estimated
using Eq. 11.5, where the class-relevant sequences in nHCPref ,E(i) is the
reference and the corresponding sequences in time in nHCP(i)E is the
detection.

When the results are averaged over results from individual episodes,
quartile measurements, Q, are also provided.

The experiments are done using Python14 and a Keras15 implementation
of YOLOv3 developed by user qqwwee16 with minor modifications. Since
the objects often are occluded in the videos and the camera distance varies,
the objects‘s size and form have large variations. Therefore, we have chosen
to use the YOLOv3 anchor boxes determined using k-means clustering on
the large COCO dataset [7] instead of estimating anchor boxes from our
limited truth data.

The threshold and parameter values used in the experiments are: TCK,c ∈
{80, 180}, len = 3 − 7, θ = 3 − 10, To = 0.05, TIoU = 0.45 , Tobj =
[0.1, 0.05, 0.1] for BMR, SP and HRS, THCPH = 0.1 Tpeak = 200, Tstable = 50,
Tzero = 0.2, Tone = 2, Ttwo = 4, Nf1 = 5 and Nf2 = 40.

10.5 Results

The mean average precision, mAP, results are listed in Table 10.1 for the
object detection using models trained on the datasets V ideoD, HistD,

14https://www.python.org/
15https://keras.io/
16https://github.com/qqwweee/keras-yolo3
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HistD + SynthD and SplitD + SynthD. For the objects HCPH, BMR
and HRS using a combination of HistD and SynthD and image size
416 × 416 provided the best results. There was no significant improvement
by increasing the image input size to 608 × 608. For detection of SP we
achieved the best result by using a model trained on SplitD and SynthD,
and an image size of 608 × 608. This model also provided the best overall
mAP.

Table 10.1: Object detection results, measured with mAP50, for models trained with
different datasets. HCPH = health care provider hand, BMR = bag-mask resuscitator,
HRS = heart rate sensor and SP = suction penguin.

V ideoD

416 × 416
HistD

416 × 416

HistD+
SynthD

416 × 416

SplitD+
SynthD

608 × 608
HCPH 63.91 68.49 70.07 68.55
BMR 57.45 57.54 62.07 59.77
HRS 62.79 71.61 79.38 73.49
SP 25.92 18.86 19.25 42.02

Total 52.52 54.12 57.69 60.96

The detection results from models trained on HistD + SynthD and
SplitD + SynthD were combined and used in the post processing steps
explained in Section 10.3.2 to achieve the results listed in Table 10.2. The
proposed tracking area surround more than half the object in close to 100
% of the time for VB and HRS, and almost 77 % for the SP.

During the activities Ventilations (BMR), Attach/remove HRS (HRS)
and Suction (SP) the tracking area surrounds the object during the activities
in 97, 100 and 75 % of the occurrences respectively.

Table 10.2 also shows the results of HCP detection and the first four
results listed are estimated over all samples and episodes, and the last two
results are estimated per episode. The performance of the detection of
number of HCPs is above 90 % when there are zero or one HCP present.
However, for two and more than two HCPs the performance is 53 and 6 %
respectively. The mean prediction error is here 0.32, in other words, when
the number of estimated HCP is incorrect, it is usually underestimated by
one.

177



Paper 5

Table 10.2: Performance results. Top section: Object detection (using a 500x500 area)
after post processing. Middle: object tracking when relevant activities occurs (# detected
/ # true). Bottom: Prediction of the number of health care providers.

Object detection
(post processed)

P Q (25,50,75)

BMR 96.66 % 96.23, 100, 100 (%)
HRS 97.88 % 100, 100, 100 (%)
SP 76.86 % 70.99, 81.67, 92.82 (%)

Object detection
during activity

P Activities

BMR 96.97 % (64/66) Ventilation
HRS 100 % (43/43) Attach/remove HRS
SP 75.00 % (45/60) Suction

HCP detection P

No HCP 90.70 %
One HCP 90.48 %
Two HCPs 53.31 %
Three (or more)
HCPs

6.88 %

P Q (25,50,75)
HCP correct pred. 71.16 % 50.72, 78.56, 89.45 (%)

E

HCP pred. error 0.32 0.11 0.22 0.54

Figure 10.5 shows the distribution of the sub groups FPS ≤ 8 and FPS
> 8 in the groups detected and undetected SP during suction. For the group
undetected we list the most likely reason for why the SP were undetected.
The group others represent the sequences where no large challenges was
observed during the activity.
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10.6 Discussion

The proposed system shows promising results for object detection and
tracking in noisy real-world videos of a newborn resuscitation scene. As
proposed in Figure 10.1 the areas around the objects will be used as input
to sequential neural networks trained to recognize the different activities by
analyzing the areas for short time sequences. Other relevant areas like the
area around the newborn, which could be found from the detected hand
movements, and around the detected HCPHs can also be used as inputs to
the sequential analysis.

Due to the suction penguins transparency and small size, the system
struggles with detecting it in some of the episodes. Especially in videos
with low frame rate and motion blurred images it could be very difficult
to detect a SP held in the hand of a health care provider. In additon, the
system also has problem detecting the SP in unfocused video sequences and
in activity sequences with large occlusions. Using the sub-image approach
and the SplitD model improved the detections of the SP. This suggests
that it could be possible to further improve the results by experimenting
with the size and cropping of training examples. In addition, we could
experiment with the generation of the synthetic data to see if it is possible
to generate more realistic examples.

In future recordings the problem with detection of SP could be solved by
using fixed camera settings, focus, frame rate and distance from resuscitation
tables and by using two camera angles to avoid occlusion.

The performance of detected number of HCPs present in the video is very
good for zero and one HCP present, but the system struggles to detect the
number of HCPs when there are more than one HCPs present. Instead, in
cases of false detection, these are mostly being mislabeled as one HCPs less
than the reference data shows. The cause for this is a mixture of variations
in the dataset and of camera angles. The system performs worse when the
HCPs are not wearing rubber gloves, suggesting the need for more training
examples from similar episodes. The cameras are also often placed in a
side-position where the HCPs occludes other HCPs and hands. Training
the network to discriminate between left and right hands could also improve
the performance of the detected number of HCPs present in the videos.
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Figure 10.5: Object detection during suction. Detected and undetected sequences with
the subgroups low and medium frames per second (FPS) rate.

10.7 Conclusion and future work

The proposed system shows promising object detection and tracking re-
sults in noisy real-world videos. The object detection performance during
activities was 97 % on ventilation, 100 % on attaching or removing heart
rate sensor and 75 % on suction. The system also estimate the number of
health care providers (HCP) present with an accuracy of 71 %.

In future work we will investigate the possibility of discriminating between
left and right HCP hands and implementing hand tracking to improve the
performance of the estimated number of HCP. We will also experiment
with different network structures and training data to try to improve the
detection of the suction device, in addition to increasing the amount of
training data in general to get a better overall detection performance.
Further, we will continue with step two of the planned system: inputting
the proposed object areas to sequential neural networks to detect the
resuscitation activities. This will produce timelines useful for quantifying
the use of different resuscitation activities, which could further provide new
knowledge on the effects of activities on newborn resuscitation outcome.
In the future, such a system could also be implemented on-site as a post-
resuscitation debriefing tool, and/or for real-time feedback and decision
support during newborn resuscitation. The latter would require a very
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high-performance system.
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Abstract:
Objective: Birth asphyxia is one of the leading causes of neonatal
deaths. A key for survival is performing immediate and continuous
quality newborn resuscitation. A dataset of recorded signals dur-
ing newborn resuscitation, including videos, has been collected in
Haydom, Tanzania, and the aim is to analyze the treatment and its
effect on the newborn outcome. An important step is to generate
timelines of relevant resuscitation activities, including ventilation,
stimulation, suction, etc., during the resuscitation episodes. Meth-
ods: We propose a two-step deep neural network system, ORAA-net,
utilizing low-quality video recordings of resuscitation episodes to
do activity recognition during newborn resuscitation. The first step
is to detect and track relevant objects using Convolutional Neural
Networks (CNN) and post-processing, and the second step is to
analyze the proposed activity regions from step 1 to do activity
recognition using 3D CNNs. Results: The system recognized the
activities newborn uncovered, stimulation, ventilation and suction
with a mean precision of 77.67 %, a mean recall of 77,64 %, and a
mean accuracy of 92.40 %. Moreover, the accuracy of the estimated
number of Health Care Providers (HCPs) present during the resusci-
tation episodes was 68.32 %. Conclusion: The results indicate that
the proposed CNN-based two-step ORAA-net could be used for ob-
ject detection and activity recognition in noisy low-quality newborn
resuscitation videos. Significance: A thorough analysis of the effect
the different resuscitation activities have on the newborn outcome
could potentially allow us to optimize treatment guidelines, training,
debriefing, and local quality improvement in newborn resuscitation.
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11.1 Introduction

In 2017 the average global mortality rate for newborns was 18 deaths per
1000 live births [130]. Low- and middle-income countries account for 99
% of deaths for neonates under four weeks of age [131]. Birth asphyxia
is one of the leading causes of neonatal deaths, and mortality rates due
to this complication have not seen the same rate of improvement as other
common causes of newborn mortality [132]. The immediate presence of
properly trained and equipped Health Care Providers (HCPs) lessens these
preventable newborn deaths [133]. The main therapeutic resuscitation
activities for birth asphyxia in this setting comprise the following; positive
pressure ventilations using a Bag-Mask Resuscitator (BMR), stimulation,
suction using a Suction Device (SD), and keeping the newborn warm using
a blanket [134].

The collaborative research and development project Safer Births17 aims
to establish new knowledge and develop new products to support HCPs
in low resource countries with the purpose of saving more lives at birth.
Since 2013 the project has been collecting various data during newborn
resuscitation episodes at Haydom Lutheran Hospital in Tanzania. The
acquired data, such as ECG, flow during ventilation, videos, and the
newborn outcome, can be used to gain critical insight into the effects of
the different resuscitation activities, as well as facilitating ongoing training
of HCPs, debriefing, and continuous quality improvement. This could be
achieved by creating activity timelines from the collected data and study
them together with information on the condition of the newborn during
resuscitation, found from the ECG, and the resuscitation outcome.

An activity detector based on signals from a Heart Rate Sensor (HRS),
(which is a prototype of the NeoBeat18), previously proposed by our research
group in Vu et al., separated the activities stimulation, chest compressions
and other with a precision of 78.7 % [55]. Automatic analysis of video
collected during newborn resuscitation could be utilized to potentially
improve the precision achieved by using HRS signals, as well as to detect
activities and information when the HRS signals are not available. In
addition, video analysis could also allow us to detect activities that are
difficult or impossible to obtain from ECG and accelerometer measurements.

Video analysis of newborn resuscitation episodes has been documented
to have a positive effect on both evaluation and training purposes [57, 58,

17www.saferbirths.com
18https://laerdalglobalhealth.com/products/neobeat-newborn-heart-rate-meter/
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59, 60]. However, such analysis involves manual inspection, which are both
time-consuming and entails privacy issues. Hence, it would be beneficial to
perform the analysis automatically.

Automatic video analysis and activity recognition using deep learning
models has become very popular in the last few years. However, recognizing
temporal information in an image series is a far more complex problem
than recognizing spatial information in individual images. Quite recently
DeepMind19 and Carreira et. al [9] proposed a two-stream activity recog-
nition network, I3D, that utilized CNNs and transfer learning to achieve
state-of-the-art results on the activity recognition dataset UCF-101. I3D
is based on a 3D inflated version of the well-known CNN Inception v1
[74], and Carreira et. al demonstrated that 3D CNNs can benefit from
pre-trained 2D CNNs, and that transfer learning is highly efficient also in
activity recognition.

In 2016 Guo et al. proposed an automatic activity detection system
for newborn resuscitation videos [62]. The system was based on a pre-
trained Faster RCNN network and the person class was used to detect the
newborn and finding the region of interest. Further, linear Support-Vector
Machines (SVMs) were trained on individual video frames to perform
activity recognition. In our dataset the newborn is covered with a sheet
most of the time, making a person detection not the best approach. We
have chosen a different approach that we consider more suited for our
dataset and the activities we want to detect - which are not necessarily
newborn position-dependent. Our approach for activity recognition is
to learn deep neural networks to recognize the typical movement for an
activity by utilizing sequential frames instead of individual frames in the
activity analysis, e.g. the BMR used in ventilation has to be in a correct
position and squeezed in order to be assigned to the activity class. This
approach is also more suited for our low-quality videos where it can be
difficult to detect activities from individual frames due to motion blurring.
The proposed system consist of the main parts; Object detection, Region
proposal, Activity recognition, Activity timelines, and is named ORAA-net
for short. We consider it as being a two-step approach where the first
step comprise the OR, i.e detect and track relevant objects and propose
regions surrounding them, and the second step comprise the AA i.e activity
recognition and the generation of the activity timelines.

Results from the first step in the ORAA-net was presented in [135]. The
19https://deepmind.com/
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step utilized the YOLOv3 [7] object detection architecture and subsequent
post-processing to propose regions surrounding the objects throughout the
resuscitation videos. The performance of the object region proposal during
activities was 97 % on ventilation, 100 % on attaching or removing the
heart rate sensor, and 75 % on suctioning. Additionally, the number of
HCPs present in the image frames were estimated with a performance of
71 %. Potential for improvement for object detection, particularly in the
detection of the suctioning device, was however recognized.

In this paper, we present results from step two of the ORAA-net. Short
sequences from the proposed regions are used as input to I3D models trained
to recognize the different resuscitation activities and to generate activity
timelines. Besides, the paper also presents improvements of the ORAA-
net‘s first step, which has been attained through experiments with three
additional state-of-the-art object detection networks, and by proposing a
method for finding the region surrounding the newborn.

The paper uses several acronyms and the most commonly used are listed
below for increased readability.

Term Acronym
Heart Rate Sensor HRS
Bag-Mask Resuscitator BMR
Suction Device SD
Health Care Provider HCP
Health Care Provider Hand HCPH
Inception 3D I3D
Linear Frame Interpolation LFI

11.2 Objectives

We aimed to recognize the following therapeutic activities, provided in this
setting and known to affect the condition of a newborn during resuscitation
[134]:

• Uncovered - the newborn is not covered by a blanket.

• Stimulation - thoroughly drying and rubbing the newborn.
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• Ventilation - positive pressure ventilation using a BMR.

• Suction: removal of liquid from the mouth/airways using a SD, where
in this datamaterial the Penguin20 is used.

In addition, we also aim to recognize other activities and parameters that
could be of interest:

• Attaching/adjusting HRS - relevant for the analysis of the ECG signals
collected by the HRS.

• Remove HRS - relevant for the analysis of the ECG signals collected
by the HRS.

• Number of HCPs treating the newborn - might have an impact on
the newborn outcome.

Uncovered and Stimulation could be detected by analyzing an area around
the newborn, Ventilation, Suction, Attaching/adjusting HRS, and Remove
HRS by tracking the objects BMR, SD, and HRS, and by analyzing their
surrounding areas, and finally, Number of HCPs by counting the number
of detected HCPH.

11.3 Data material

The dataset was collected at Haydom Lutheran Hospital in Tanzania using
Laerdal Newborn Resuscitation Monitor (LNRM) [55] and with cameras
mounted over the resuscitation tables. The dataset contains 481 newborn
resuscitation episodes with video, LNRM data, state of the newborn during
resuscitation, and information on the newborn outcome. In this work,
96 randomly selected videos from the dataset were used to develop and
evaluate the performance of the proposed system. The LNRM signals were
recorded by measuring signals with a BMR and a HRS, both connected to
the LNRM. The HRS of the LNRM is an early version of the NeoBeat21.
The recorded videos were not initially intended for automatic video analysis,
but rather as support material for human interpretation when needed. As
a consequence, no standardization in camera type and camera settings

20https://laerdalglobalhealth.com/products/penguin-newborn-suction/
21https://laerdalglobalhealth.com/products/neobeat-newborn-heart-rate-meter/
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were applied. The videos are recorded with different kinds of low-quality
cameras and have variable frame rates - ranging from 0.5-30 fps, resolutions,
focus settings and quality. Furthermore, there are also variations in the
position of the mounted cameras and in light settings in the labor rooms.
These variations make it more challenging to perform object detection and
activity recognition.

11.4 Methods

An overview of the proposed ORAA-net is illustrated in Figure 11.1. The
system is divided into 2 main steps - 1 - object detection and region proposal,
and 2 - activity recognition and timeline generation, and they are explained
seperately in the following.

11.4.1 ORAA-net Step 1 - Object Detection and Region
Proposal

In our previous work we achieved encouraging results using the YOLOv3
architecture as the object detector on the presented dataset and chal-
lenge [135]. However, especially the small SD, (labled SP in [135]) had
improvement potential. In this work we implement, further trained and
tested RetinaNet [6], SSD MulitBOx [81] Faster R-CNN [82], in addition to
YOLOv3 [7] on our dataset to find the best solution for step 1 (see Figure
11.1). A comparison of the main features of the object detection networks
considered in this work are shown in Table 11.1.

Object tracking and region proposal of the class BMR, SD and HRS are
performed on the object detection results as follows:

• Localize the most likely true object position in each image using the
object detections probability scores.

• Fill detection gaps by choosing the previous detected value.

• Remove short peaks by checking, in time, if a rapid position change
is an actual large position change or if the position quickly returns to
the same area as prior to the change.

• Signal smoothing using a moving average filter.
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• Region proposal for further activity analysis. 500 × 500 pixel regions
around the tracked objects as shown in Figure 11.1, step 1.

This is consistent with the method we proposed in [135], were more details
can be found.

In this work, we propose an additional region of interest to further
analyze; the newborn region. Analyzing this region would make it possible
to detect the activities which are not object dependent, like if the newborn
is covered or not. Moreover, the newborn region may also allow us to
recognize object dependent activities for cases where the object tracking is
poor.

For each episode, a fixed newborn region is found by first generating
a heatmap of the whole image, HM (x, y), where x and y are pixel coor-
dinates. The HM (x, y) are initialized with zeros, and for each detection
of a HCPH a value of 1 is added to the pixel area of the detection. De-
note pAi,HCPH(n) = {x i,HCPH

n , yi,HCPH
n } to represent the pixel area of each

detected HCPH, n, of the total HCPH detections, Ni, in frame i:
∀ i and For n = 1 : Ni do:

HM (x, y) =

⎧⎪⎪⎨
⎪⎪⎩

HM (·) + 1,

∀{x, y} ∈ pAi,HCPH(n)
HM (·), otherwise

(11.1)

The fixed and squared newborn region with size Rs = 700 pixels, is selected
by finding the xm and ym that

{xm, ym} = argmaxxj ,yk

xj+Rs−1∑
m=xj

yk+Rs−1∑
n=yk

HM(m, n) (11.2)

where xj ∈ {1 : imwidth − (Rs − 1 )} and yk ∈ {1 : imheight − (Rs − 1 )}. An
example of the generated heatmap with its proposed region is shown in
Figure 11.2.

11.4.2 ORAA-net Step 2 - Activity Recognition and Activ-
ity Timelines

Dataset pre-processing

An important step in activity recognition is to ensure that the data is of
sufficient quality. This is especially important in our case where the video
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Figure 11.2: Left: Example frame from a video. Right: Heatmap generated from the
positions of the health care provider hands (HCPH) during the video. The red square
illustrate the fixed 700 × 700 pixel sized newborn detection region.

frame rates range from 0.5-30 fps. For videos with a very low frame rate it
is difficult to separate the repetitive activities we are searching for, such as
stimulation, where the HCP typically rubs the baby‘s back, from random
movements. We have observed that for frame rates below 5 fps it can
be very difficult to identify stimulations even by careful visual inspection.
Thus, only videos with frame rates > 5 fps are included in the dataset for
training. Videos with frame rates of 5 fps or lower accounts for 27 % of the
original dataset and the distribution of average fps for all videos can be
seen in Figure 11.3.

Figure 11.3: Average video frame rates for the 481 videos in the dataset. X-axis is the
video frame rate groups with frame rate interval of five, and Y-axis is the number of
videos.

Thereafter, a pre-processing step is performed to convert the videos,
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now ranging from 5-30 fps, to a fixed and adequate frame rate. Although
videos with frame rate below 5 fps are now removed, many of the remaining
videos are still of low quality. Thus, advanced up-sampling techniques that
include motion analysis and require a certain frame rate, would not be
well-suited, and a simple Linear Frame Interpolation (LFI) [80] technique
is chosen for the up-sampling. The artifacts from the LFI have a visual
appearance similar to the blurring in some of the videos. To represent the
implementation of the LFI technique, first let f(t) be a frame at time t
from the original video. Given frames at times t1 and t2 we construct a
new frame for time ti (t1 < ti < t2) by:

f(ti) = c1 · ft1 + c2 · ft2 (11.3)

where
c1 =

δt1
T12

, c2 =
δt2
T12

, (11.4)

and where δt1 = ti − t1, δt2 = t2 − ti and T12 = t2 − t1.

Activity Recognition

For the activity recognition in step two of the ORAA-net, we have chosen
to use multiple versions of the Inception 3D (I3D) architecture proposed
by Carreira et. al [9]. I3D uses both RGB data and optical flow data
during predictions and the authors have recently released their pre-trained
models22. We have further trained these models on newborn resuscitation
activities data to perform activity recognition on the proposed regions from
Section 11.4.1 as shown in step 2 Figure 11.1.

Inception 3D

I3D is created by converting all the filters and pooling kernels in Inception
v1 into a 3D CNN. Squared filters of size N × N are made cubic and becomes
N × N × N filters. The pre-trained 2D ImageNet weights from Inception
v1 are repeated along the time dimension and rescaled by normalization
over N. The 3D version is further trained on the large activity recognition
dataset, Kinetics Human Action Video Dataset which has 400 different
classes and over 400 clips per class. An I3D model is trained for both data
representations, i.e. optical flow and RGB stream.

22https://github.com/deepmind/kinetics-i3d
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Predictions and Timeline generation

Figure 11.4 illustrates how the timelines are predicted and generated for
different activities. The red squared section marked P shows in more detail
how the prediction of the activity ventilation is performed using both the
BMR region and the newborn region, and both an RGB model and an
optical flow model. Since the activities can overlap in time and the video
quality makes the activity recognition difficult, the models are trained on
individual activities to do binary classification - activity or no activity.
The object dependent activities that analyze both an object region and a
newborn region use the same RGB and Flow models in the two analyses,
indicated with A and B, and the models are trained on data from both
regions. This is done similarly for all the 6 activities, resulting in 11 different
I3D models learned (6 RGB and 5 flow). From the left in Figure 11.4: First,
a video undergoes object detection, tracking, and region proposal. Next,
the videos from the regions are linear frame interpolated and optical flow
is estimated using the TV-L1 algorithm [70], as proposed by [9]. Further,
a sliding window (SW) generates sub-signals of the RGB stream and the
optical flow stream, and the sub-signals are fed to their corresponding
model. The logits from the final I3D layer of the two models are averaged
before softmax is applied to perform predictions. The predictions from
the two activity-relevant regions are further averaged to generate the final
predicted timeline for that specific activity.

The activities stimulation and uncovered are not object-dependent, and
only the newborn region is used to generate the activity timeline. Since the
activity uncovered is not motion dependent, the computational demanding
TV-L1 flow prediction is not performed for this activity and the predictions
are generated by using only the RGB data and model.

Estimation of the Number of Health Care Providers

The timeline estimation of the number of HCP present in the resuscitation
episode, #HCP(i)E , is found by counting the number of detected HCPH
for each time index i, and is consistent with the method we proposed in
[135].
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11.5 Experiments

In this section, we present 4 different experiments for the two steps in
the proposed ORAA-net, Figure 11.1. For step 1, we present an object
detection experiment, Ex.1, where the 4 different network architectures of
Table 11.1 are tested. The best architecture, RetinaNet, is further used
in a second experiment, Ex.2, to investigate if object tracking and region
proposal is improved compared to our recent work employing the YOLOv3
architecture [135].

For step 2, Figure 11.1, which is the main experiments producing timelines
of the resuscitation activities, we evaluate the I3D models trained on the
specific activities, in Ex. 3, and investigate if the results could be improved
by finding optimal thresholds for the generation of the activity timelines,
in Ex. 4.

We used the video annotation tool ELAN to manually annotate ground-
truth timelines in all videos included in the training and validation set of
Ex. 3, and in the test set for Ex. 2, Ex. 3 and Ex. 4. The following is
annotated:

• Activities

– Uncovered: The newborn is not covered by a blanket.
– Stimulation: Thoroughly drying and rubbing.
– Ventilation: Bag-mask ventilations
– Suction: Removal of liquid from the mouth/airways.
– Attaching/adjusting the ECG sensor
– Removing the ECG sensor

• The number of HCPs present

An overview of the datasets used in the four experiments, with details on
the amount of training data for each activity, can be seen in Figure 11.5.

11.5.1 Performance metrics

In Ex. 1, the object detection results were evaluated by use of the Average
Precision (AP) and the mean Average Precision (mAP) metrics defined in
the PASCAL VOC 2012 challenge. The required accuracy of the localization
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Figure 11.5: Datasets used in training and testing of the 4 experiments. The 76 labeled
videos used in training has frame rates > 5 frames per second (fps) and the 20 videos in
the test set includes videos with frame rates ranging between 2-30 fps. Except from the
5-fps requirement for the training data, the videos were selected randomly from the 481
newborn resuscitation videos

task was defined by an Intersection over Union (IoU) threshold of 0.5. In
addition to the mAP criterion, the number of True Positives (TP) and False
Positive (FP) detections were assessed. This was due to FP detections being
highly undesirable for object tracking and poor TP/FP ratios not being
sufficiently penalized by mAP. As an aid in setting probability thresholds
for desirable trade-offs of TPs and FPs, the distribution of probability
scores was assessed. Distributions were drawn from network predictions on
the validation dataset.

In Ex. 2, a performance measure, P , from [135], is used to evaluate the
tracking performance of each object-dependent activity and each episode.
P is defined by the general equation:
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P = (
1

Ns

Ns∑
i=1

If (i)) ∗ 100 (11.5)

where Ns is the number of frames in the episode and If (i) an indicator func-
tion defined as 1 on correct detections if |detection(i)E−groundtruth(i)E | =
0 and 0 otherwise. An object is classified as detected during an activity
sequence if the detection overlaps with the ground-truth data > 80% of the
time.

In Ex.3 and Ex. 4 the activity recognition and activity timelines results
are evaluated by comparing the ground-truth activity timelines with the
predicted activity timelines and estimating True Positivies, (TP), True
Negatives (TN), False Positive (FP) and False Negatives (FN). To handle
class-imbalance in the binary activity classification we evaluate the results
by using the two metrics; precision and recall, in addition to the accuracy
metric. Ex. 4 also utilize the F1-score in a K-fold Cross-Validation (K-FCV)
experiment.

11.5.2 ORAA-net Step 1 - Object Detection and Region
Proposal

In Ex.1, where we compared different object detectors, RetinaNet and
Faster R-CNN employed ResNet-50 [136] with pre-trained weights on the
ImageNet dataset as the initial network. SSD MultiBox used VGG-16
[137] with weights pre-trained on the COCO dataset as the initial network.
YOLOv3 was included in the experiment for reference, using the same setup
as recently presented by the authors in [135]. The networks were all further
trained on a dataset consisting of manually labeled images from the videos,
augmented images using histogram matching, and synthetic images. The
details can be seen in the upper-right corner of Figure 11.5. The datasets are
similar to those used in [135], however the number of synthetic images were
reduced due to experiencing that models were overfitting on synthetic data
in the experiments. A built-in image augmentation pipeline recommended
in [81] was used for the SSD MultiBox network, which included random
flips, crops and photometric distortions. The object detection networks
were tested on the same dataset used in [135].

In Ex. 2, we evaluated the region proposal performance during activity
sequences for the objects SD, BMR, and HRS using the best object detector
from Ex. 1, RetinaNet, and compared it to [135].
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11.5.3 ORAA-net Step 2 - Activity Recognition and Activ-
ity Timelines

In Ex. 3, the I3D flow and RGB weights pre-trained on ImageNet, and
Kinetics 400 [9] are further trained on the individual activities to do binary
classification - activity or no activity. The threshold, Tact for detection of
class or not, is here set to 0.5. The videos are Linear Frame Interpolated
(LFI) to a fixed frame rate of 15 fps, which are reasonably close to the
pre-trained I3D weights that are trained on 25 fps videos. 76 videos are
used in training of the models, and the details can be seen in Figure 11.5.

The test set consists of 20 videos as in [135] and in Ex. 1 and Ex. 2. The
test set includes 5 videos of frame rates between 4.5-5 fps and one with a
frame rate as low as 2 fps.

The input sequences to the RGB and flow I3D models during training
and testing are 45 frames long, corresponding to 3 seconds of activity.
The frame size is 256 x 256 pixels. During training the activity sequence
examples overlap with 1/2, and during testing they overlap with 2/3 -
resulting in a new analysis every second. The training examples are also
augmented by random cropping, flipping, 90-degree rotation, noise adding
and motion blurring. During training we use a batch size of 6 and train
for 15000 steps. The learning rate is initially set to 0.0001, and every 3000
step it is decreased by a factor of 0.1

The experiment also compare the usage of both RGB and Flow models in
the predictions versus using the individual models alone. This is performed
to investigate if acceptable results can be achieved using only the RGB
models since the TV-L1 algorithm is highly computational demanding and
limits the possibility for real-time usage.

For the activity uncovered, we only use the RGB data and model since
this activity is not motion dependent and does not require a motion analysis.

In Ex. 3 we also evaluate the performance of the estimation of number
of HCP present in the videos, and compare it to [135].

In Ex. 4, a K-fold Cross-Validation (K-FCV) experiment is performed
to find the optimal Tact for the best I3D models from Table 11.4 for each
of the included activity classes. K is set to 20, i.e., one fold for each of the
20 videos included in the test set.
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11.6 Results

11.6.1 ORAA-net Step 1 - Object Detection and Region
Proposal

The results for Ex. 1 are listed in Table 11.2. Both the RetinaNet architec-
ture and the SSD MultiBox architecture show improved object detection
results compared to the YOLOv3 416 × 416 architecture used in [135],
with RetinaNet as the overall winner. In [135] we also split the original
images into five 608 × 606 sub-images and achieved an mAP close to the
one achieved by RetinaNet for the class SD, mAP 42.02, but with a much
smaller TP/FP ratio, YOLOv3‘s 1.316 vs. RetinaNet‘s 3.73.

The results for Ex. 2 are listed in Table 11.3. Here, the best object
detector architecture, RetinaNet, resulted in a large improvement in the
detection of the SD during the suction activity.

Table 11.3: Performance results for the object detection when relevant activities occurs
- using the RetinaNet architecture [6] (# detected / # true). The results presented in
[135] are marked with *.

Object detection
during activity

P Activities

BMR 96.97 % (96.97*) Ventilation
HRS 100 % (100*) Attach/remove HRS
SD 88.33 % (75.00*) Suction

11.6.2 ORAA-net Step 2 - Activity Recognition and Activ-
ity Timelines

Table 11.4 shows the results for Ex.3, activity recognition using the I3D
models for the activities uncovered, stimulation, ventilation, suction, at-
tach/adjust HRS, and remove HRS. In Table 11.5, the results from the
estimation of the number of HCP present in the resuscitation episodes are
presented. Here, the results are compared to the results from [135].
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Table 11.4: detection results for the activities uncovered, stimulation, ventilation,
suction, attach/adjust Heart Rate Sensor (HRS), and remove HRS using the the models
I3D-RGB, I3D-Flow, and I3D-RGB+Flow

I3D RGB I3D Flow I3D RGB+Flow

Prec. Rec. Prec. Rec. Prec. Rec.
Uncovered 92.89 78.74 - - - -

Stimulation 75.48 73.13 67.45 79.80 79.41 78.15

Ventilation 81.70 83.57 80.03 84.26 88.64 88.34

Suction 44.96 59.81 44.98 64.92 56.01 65.61

Att./adj. HRS 56.02 49.18 23.84 45.88 50.00 50.83

Remove HRS 4.59 58.49 3.06 45.28 6.73 52.83

Table 11.5: Performance results of the prediction of the number of health care providers
(HCPs) - using the RetinaNet architecture [6]. The results presented in [135] are marked
with *. Q denotes quartile measurements.

HCP detection P Q (25,50,75)

HCP correct pred. 68.32 % (71.16*) 53.86, 75.64, 85,46
(50.72, 78.56, 89.45 *) (%)

E

HCP pred. error 0.34 (0.32*) 0.15 0.25, 0.48
(0.11 0.22 0.54 *)

Figure 11.6 shows two test set video examples of the raw output for the
timeline predictions of the 6 activity detected by the I3D models, and two
examples of the estimated number of HCP present in the resuscitation.
The predictions are shown with orange lines, and the reference data with
blue lines.

Table 11.6 shows the results for Ex. 4, the K-fold cross validation
experiment. The Table lists both the mean results for the four therapeutic
activities, and the overall mean results for all the six activities.
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Figure 11.6: Examples of activity detection results for the activities Uncovered, Stimu-
lation, Ventilation, Suction, Attach/adjust Heart Rate Sensor (HRS), and Remove HRS,
and the Number of health care providers (HCP) estimated from the detected HCP‘s
hands. Two test set examples that illustrate both strengths and weaknesses are chosen
for each activity. The y-axis represent the probability for the activity, between 0 and 1,
and x-axis the video length in seconds. Blue lines represent the reference data from the
manual annotations and orange lines the detection results.
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Table 11.6: K-fold cross validation threshold test for activity recognition using the
combination of Inception 3D models that provided the best results in Table 11.4.

Activity recognition - I3D
Mod. K-FCV threshold test

Prec. Rec. Acc. Thresh., Q
(25, 50, 70)

Uncovered RGB 87.75 83.99 88.31 .29, .29, .29
Stimulation RGB+Flow 78.79 74.59 91.61 .46, .50, .80
Ventilation RGB+Flow 87.30 90.64 96.90 .34, .34, .34

Suction RGB+Flow 56.85 61.32 92.78 .51, .51, .51

mean
therapeutic

activities
77.67 77.64 92.40

Att./adj. HRS RGB+Flow 52.65 47.77 96.76 .51, .60, .60
Remove HRS RGB+Flow 10.24 27.67 98.27 .86, .92, .92

mean all 62.26 64.00 94.11

11.7 Discussion

11.7.1 ORAA-net Step 1 - Object Detection and Region
Proposal

The results give reason to suggest the RetinaNet as the overall best ar-
chitecture for this specific task - object detection during noisy newborn
resuscitation videos. Compared to the YOLO v3 architecture and our
results in [135], the RetinaNet architecture gave a large increase in AP for
SD-detection with an acceptable number of false positives.

The comparison of the networks in Table 11.1 indicate that using a larger
selection of feature map scales was crucial for the improvement. Producing
predictions from different sized scales allow the networks to easier recognize
objects of both small and large sizes. Tsung-Yi Lin et al. also emphasize

207



Paper 6

that RetinaNet are capable of state-of-the-art results due to their novel focal
loss [6]. The focal loss function introduces a weight term that down-weights
easy training examples, i.e. examples where the predicted confidence score
is high, during training. Thus, the main contributions in the estimated loss
come from predictions with low confidence score, and the network is better
equipped to handle the class imbalance between background/negatives and
objects.

Using RetinaNet as the base for our object detector resulted in a sub-
stantial improvement in the detection of the SD during activity compared
to what we achieved in [135] - the performance increased from 75 % to
88.33 %.

Although the object detector benefits from using histogram match aug-
mentation and synthetic images in the training, we will consider pre-
processing steps that could standardize the images in future work instead
of attempting to create all the variations by augmenting the training data.

11.7.2 ORAA-net Step 2 - Activity Recognition and Activ-
ity Timelines

The results for the activities presented in Table 11.4 and Table 11.6 demon-
strate that activity recognition from noisy low-quality videos recorded
during newborn resuscitation could be achieved using the presented pre-
processing steps for region proposal and the I3D network architecture for
temporal analysis. The results also show that although the TV-L1 optical
flow algorithm is highly computational demanding and thus limit the possi-
bilities for real-time usage, we achieve better performance by using both
RGB and optical flow data representations when predicting the activities,
as suggested by others [9, 138, 139].

For the activity uncovered most of the examples where the models failed
to recognize the activity is in cases where the newborn is only partially
covered, and the ground truth can be a matter of definition.

For the activity stimulation, where we labeled massaging and both
large and small stimulation sequences as stimulation, the models sometimes
struggle to identify the sequences. Especially for cases where the stimulation
is performed under the newborn lying on its back. Here, we also experienced
more false detections in the videos of lower frame rates, and by excluding
the 6 videos that originally had 5 fps or lower from the 20 video test set,
the precision increased from 79.41 to 82.36 % and the recall from 78.15
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to 81.86 %. This supports the problem explained in Section 11.4.2 - that
low frame rates make recognition of activities that involve fast and large
movement more difficult. From Table 11.6 we can also see that different
from the other activities, the quantile measurement for the thresholds used
in the stimulation K-FCV test is highly dependent on which video is used in
the validation, causing both the precision and the recall to drop compared
to when 0.5 was used as the threshold in table 11.4.

For the activity ventilation, the results is highly promising, with a
precision and a recall of almost 90 %.

The models have difficulties with the activity suction, where the precision
and recall are around 60 %. Examples of two detection results can be
seen in the middle section of Figure 11.6. The first example demonstrate
the models‘ ability to recognize the activity, and the second one illustrate
that the models suffer from both FP and FN. When considering that
the object detector had difficulties recognizing the SD object itself, it is
reasonable to believe that this could also be the case for the I3D models.
Thus, an explanation could be that the activity‘s movement, where the
SD is moved back and forth between the newborn‘s mouth or nose and
the resuscitation table, are sometimes not distinguishable enough from
other hand movements occurring during the resuscitations. This is also
the activity out of the presented four therapeutic activities in Table 11.4
with the smallest amount of training data - 2707 seconds of unaugmented
suction activity (see Figure 11.5). The videos with the poorest results
were videos of poor quality, i.e. motion-blurred and unfocused, and videos
where the camera are positioned further away from the resuscitation table
relative to other videos. It also had more difficulties with videos recorded
with a wide-angle format, suggesting the need for a pre-processing step
to standardize the videos in some way. Excluding videos of poor quality
would most likely increase the performance of the activity recognition,
but considering that this would remove most of the videos in the present
dataset, this option would limit our data analysis.

The results for the classes Attach/adjust HRS and Removing HRS are
poor. As illustrated in Figure 11.5, the occurrences of these two activities
in the 76 videos used in training, was relatively short, 446, and 172 seconds,
and considering that a deep neural network requires a lot of training data,
the results are understandable. However, we did observe that the models
learned to recognize the activities in some cases, as can be seen in Figure
11.6.
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In the estimation of the number of HCP present we achieved slightly
poorer results using the RetinaNet architecture than with the YOLO v3
architecture [135]. As before, the network struggled to recognize hands in
poor video quality due to motion smoothing, but also in cases where the
HCP does not wear gloves. The proposed method is based on counting
the number of detected HCP hands in each frame, which is a quite naive
approach that require all hands to be visible at all time. However, the
method makes it possible to recognize if no HCP is present and cases where
there are certainly more than one HCP present. A better approach would
most likely be to detect both right and left hands, but with these low-quality
videos it is very difficult to discriminate between the two. Moreover, in
some videos the camera is positioned in a side-position, causing HCPs to
occlude other HCPs‘ hands. A potential solution for future recordings could
be to include an additional camera, positioned further away, that could be
used to recognize the number of HCPs participating in the resuscitation.

In [135], we also suggested that it would be possible to recognize chest
compressions, but because this activity only occurred in 2 of the 76 videos
annotated for training, and none of the videos in the test set, we made
no attempt of training I3D models for this activity. This activity could
instead, as suggested by Vu [55] and Gonzalez-Otero [140], be detected
from the ECG signal measured with the HRS.

Some of the discussed problems should be possible to solve by further
training of the models on more data. This would especially be true for the
activities with the smallest amount of training data. Manual annotations
are expensive and time consuming, and a potential solution could be to
record resuscitation simulation on a manikin, where we focus on the cases
where the models struggle to recognize the activities.

The results suggest that we should consider pre-processing steps that
could simplify our data in future work. The videos contain a lot of variations
and by standardizing them in some way it could be easier for the I3D models
to learn the relevant features.

There are also some video quality limitations in the current dataset, e.g.
motion blurring, low frame rates etc., making it challenging to recognize
activities - regardless of the amount of training data or the deep learning
architecture used. In future recordings this could be solved by clearly
defining a protocol for standardization of video recordings for automatic
activity recognition in a newborn resuscitation setting.

210



Paper 6

11.8 Conclusion and Future Work

The results suggest that the proposed two-step ORAA-net, utilizing object
detection and tracking to propose detection regions for temporal activity
analysis, is well suited for activity recognition in noisy and low-quality
newborn resuscitation videos where sometimes the activities are largely
occluded.

Potential future applications for such a system could be to implement it
on-sight, as a real-time feedback system, or as a debriefing tool for newborn
resuscitation training. The ORAA-net could also be adapted for in-hospital
emergency situations involving adults.

In future work, we will investigate if adding more training data to the
object detection and the activity recognition could further improve the
system, and make it possible to detect if the HRS is attached to the newborn
or not. We will also investigate if the system could be simplified by using
fewer models in the activity recognition. A possible solution could be to
train activities that cannot overlap in time, such as ventilation and suction,
in the same model. Besides, we plan to develop a multisensor fusion system
that incorporate the activity recognition from the ECG signals [55] into our
video-based method in an attempt to increase the system‘s performance.
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