
 

 

FACULTY OF SCIENCE AND TECHNOLOGYFOR 

SIDE 

MASTER’S THESIS 

  Study programme/specialization: 

   Master of Science in Petroleum Engineering/ 

   Drilling Engineering 

Spring semester, 2020. 

 

Open access 

  Author: 

   MohammadAli Shahmoradi 

 
 

_________________________________ 

(Author’s signature) 

  Supervisor(s): 

   Dr. Mahmoud Khalifeh 

   Dr. Eric Cayeux 

  Title of master’s thesis: 

    Predictive Accuracy of Data-Driven Solutions to the Transient Response of the Drilling 

System 

  Credits: 30 ECTS 

Keywords: 

   DMD 

   SVD 

   Data-driven  

   Drilling dynamics 

   Prediction 

   Data reconstruction 

 

 
  Number of pages: 133 

 

 

 

 

Stavanger, 15th July 2020 

 

 



 II 

 

Predictive accuracy of data-driven solutions to the transient response of 

the drilling system 

 

 

 

 

By 

MohammadAli Shahmoradi 

 

 

 

 

Master’s Thesis 

Presented to the Faculty of Science and Technology 

University of Stavanger 

 

 

 

 

 

 

UNIVERSITY OF STAVANGER 

JULY 2020  



 III 

 

Acknowledgement 

This master thesis is written in spring of 2020 as final work of a Master of Science in 

Petroleum Engineering specialization in Drilling and Well Engineering from University of 

Stavanger (UiS), Norway. 

First of all, I would like to express my gratitude towards NORCE Norwegian Research 

Centre, especially drilling department for providing data, office and supporting me in any 

possible way. I would like to thank my supervisor Dr. Mahmoud Khalifeh, Professor at 

Department of Energy and Petroleum Engineering, University of Stavanger, co-supervisor Dr. 

Eric Cayeux, Chief Scientist at NORCE for your support, guidance, professional insight and 

positive feedback along the process of writing this thesis. I must thank Elie Magnon at Total 

who has guided me in the process of this thesis.  

Finally, and most importantly, I must thank my wife and parents for all that they have done. 

I am forever indebted to them for their many sacrifices over the years which can never be repaid, 

but I hope that someday I can return the favor.  

 

  



 IV 

Abstract 

 One of the utmost desires of the drilling industry is full drilling automation to minimize 

well construction cost, optimize well performance and many other advantages. Dynamical 

system modeling and control of complex systems is undergoing a renaissance, with appearance 

of data-driven approaches as a result of unprecedently availability of high-fidelity 

measurements from historical records, numerical simulations and experimental data. In this 

master thesis, one of modal decomposition techniques called Dynamic Mode Decomposition 

(DMD), a data-driven regression and machine learning method, is introduced and performance 

of the algorithm in a dynamic of drilling parameter evaluated as few existing literatures focus 

on drilling applications of this algorithm. 

First, basic DMD theory, definition and its classified applications are introduced. In 

particular, a synthetic example was presented to check the accuracy of the algorithm and 

become familiar with terms and conditions of it. Afterward, annular fluid velocity dataset is 

used to characterize the basic DMD algorithm capabilities. Among the analyzed DMD 

applications are DMD data reconstruction, DMD data interpolation and DMD data prediction. 

The basic DMD algorithm is able to reconstruct different datasets under various conditions and 

limitations, however, the primary desire has been the reconstruction of whole dataset as it is the 

base of all DMD applications. Various advantages and drawbacks of the algorithm are 

evaluated and good understandings of method are achieved. Furthermore, based on the 

successful reconstructed intervals, short studies of DMD data interpolation and extrapolation 

are accomplished, aiming to learn more about the algorithm capabilities. DMD interpolation 

and extrapolation could be satisfactory as long as the performance of the DMD reconstruction 

is preferable. Last but not least, as a recommendation, for commercializing DMD algorithm, 

WDP providers should increase the number of sensors run on WDP to transmit high quality and 

high-density real-time data, for the reason that the number of measurements in each timestep is 

an important factor to apply DMD algorithm, which is corresponding to number of sensors 

along drill-sting. 
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 Introduction 

Drilling of wells is a basic process in hydrocarbon production. It involves multi-physics 

aspects such as hydraulics, mechanics, heat transfer and mass transfer with non-linear abrupt 

changes of the surface and downhole boundary conditions. Primary analysis of drilling 

experiences is often being used in designing of the conventional drilling, which is not effective 

in modern drilling and it has caused loss of assets, health, safety and environment. Complex 

real-time high-fidelity models of the drilling process have been developed, as a result of the 

advancement in downhole measurement while drilling and experimental data. These models 

may add significant value if implemented in a way that handles the various related challenges 

adequately (Bjørkevoll, 2015a). However, it is difficult to run such complex models much faster 

than real-time as a result of the high-dimensional, nonlinear dynamical systems. All challenges 

and complexities of the mathematical models have induced research in other techniques such 

as data-driven techniques. 

The recently developed dynamic mode decomposition (DMD) algorithm, originated from 

fluid dynamic community, is an innovative tool for integrating data with dynamical systems 

theory and has become a widely used technique in fluid dynamics (Schmid, 2011, p. 31). Jets, 

cavity flow, wakes, channel flow, boundary layers are examples of flow geometries that has 

been studied by DMD to understand mixing, acoustics, and combustion among other 

phenomena, and it may be used for short-time future state prediction and control (Kutz, 

Brunton, Brunton, & Proctor, 2016). Bao and Gildin (2017) successfully used DMD to capture 

and predict the behavior of reservoir fluid flow in porous media. (Bao & Gildin, 2017)  

The main objective of this master thesis is to investigate the possibility of applying DMD 

method for drilling applications in the scope of the project that will be explain in the following. 

Chapter 2 reviews the DMD theory and background. For better understanding of the algorithm, 

a synthetic dataset is analyzed to demonstrate the utility of this generalized theory. The rest of 

this master thesis focuses on applications of DMD in practice. In chapter 3, the DMD algorithm 

is applied to a case study in the dynamics of drilling parameters and accuracy of the DMD for 

different applications such as original data reconstruction, interpolation and prediction is 

analyzed finally applicability of the current downhole drilling data acquisition technologies for 

the DMD applications are discussed. In Chapter 4, the main findings of this master thesis are 

summarized and conclusions are drawn on whether the DMD is viable solution for drilling 

applications or not.
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 Background Theory and Solution Method 

Drilling industry is always looking for solutions for improving the drilling performance, 

increasing safety and reducing non-productive time (NPT). Drilling Modeling and Simulation 

(DMS) for analysis and control of the drilling process have become an attractive approach to 

deliver solutions. DMS involves modeling and simulating the behavior of drilling systems 

and/or processes, and it provides crucial information without actually constructing a well. DMS 

has widely been used for improving drilling systems automation and control, managed pressure 

drilling and drilling optimization by understanding and predicting downhole dynamics, thanks 

to the aggressive development. The mechanical, hydraulic and heat transfer domains are the 

usual sections of drilling modelling. Changing boundary conditions of the drilling system 

encourage using transient models instead of steady state models, which leads to perform 

accurate simulation of the real-time operation according to the detailed wellbore properties 

(Dvergsnes & Cayeux, 2019; Sugiura et al., 2015). 

The drilling process is described by mass, momentum, and energy conservation equations, 

and force and torque equilibriums that are used for mechanistic modeling. One-dimensional 

versions of these equations are succinctly mentioned. 

The mass conservation can be expressed as follows: 

𝜕

𝜕𝑡
(𝐴𝜌) +

𝜕

𝜕𝑠
(𝐴𝜌𝜈) = 𝑚,̇  (2.1) 

where t, s are time and space dimensions, A, 𝜌, 𝜈 are the cross-sectional area, density and 

velocity and 𝑚̇ is the mass flux through the wellbore wall. 

The Navier-Stokes equation for a single-component, single-phase fluid can be simplified 

to: 

𝜕

𝜕𝑡
(𝐴𝜌𝜈) +

𝜕

𝜕𝑠
(𝐴𝜌𝜈2) + 𝐴

𝜕𝑝

𝜕𝑠
= 𝐴𝜌𝑔 cos 𝜃 + 𝐴𝐾(𝜈) + 𝑚̇𝜈𝑚̇, (2.2) 

where p is the pressure, g is the gravitational acceleration, 𝜃 is the inclination, 𝜈𝑚̇ is velocity of 

the mass flux along wellbore wall, K(𝜈) represents the friction loss and it is a positive function 

of the velocity, depending on the fluid’s rheological behavior and the local geometry. 

The Fourier equation in a volumetric form can be written as: 

𝜌𝐶𝑝
𝜕𝑇

𝜕𝑡
+ 𝜌𝑉(1 − 𝛼𝑇)

𝜕𝑝

𝜕𝑡
− 𝜌𝜈𝐶𝑝

𝜕𝑇

𝜕𝑠
− 𝜌𝜈𝑉(1 − 𝛼𝑇)

𝜕𝑝

𝜕𝑠
− ∇(𝜆∇𝑇) = 𝑞𝑠 (2.3) 
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where T is the temperature, 𝐶𝑝 is the specific heat capacity, V is the elementary volume, 𝛼 =

1

𝑉
(
𝜕𝑉

𝜕𝑇
)𝑝 is the coefficient of thermal expansion, 𝜆 is the thermal conductivity and 𝑞𝑠 is the heat 

generated by mechanical and hydraulic friction per unit volume.  

Newton’s equations of motion on force and torques along the drill-string can be expressed 

as: 

𝐸𝐴
𝜕𝑢⃗ 

𝜕𝑠
+ 𝐹 𝑔 + 𝐹 𝑝 + 𝐹 𝑎 + 𝐹 𝑣 + 𝐹 𝜇𝑘 + 𝐹

 
𝑐 + 𝐹 𝑒 + 𝑅⃗ = 𝜌𝐴

𝜕2𝑢⃗ 

𝜕𝑡2
 (2.4) 

𝐺𝐼
𝜕𝛽 

𝜕𝑠
+ 𝑡 × 𝑇⃗ + 𝐶 𝑣 + 𝐶 𝜇𝑘 + 𝐶

 
𝑒 = 𝜌𝐼

𝜕2𝛽 

𝜕𝑡2
 (2.5) 

where E is the Young modulus, 𝑢⃗  is the displacement, 𝐹 𝑔, 𝐹 𝑝, 𝐹 𝑎 , 𝐹 𝑣 , 𝐹 𝜇𝑘 , 𝐹
 
𝑐 , 𝐹 𝑒 are the 

gravitational, pressure, fluid acceleration, viscous friction, kinetic friction, centrifugal, and 

Euler forces applied to the control element, 𝑅⃗  is the reaction force at the contact with the 

borehole wall, G is the shear modulus, I is the second moment of area around the axis of 

rotation, 𝛽  is the rotation of a section of the control element, 𝑇⃗  is tension vector, 𝑡  is the 

tangential unit vector of the Frenet-Serret coordinate system associated to the control element, 

× denotes the vectoral cross-product, 𝐶 𝑣, 𝐶 𝜇𝑘 , 𝐶
 
𝑒 are viscous friction, kinetic friction and Euler 

torques applied to the control element. It should be noted that  many of the coefficients in above 

equations are a function of pressure and/or temperature such as density 𝜌(𝑝, 𝑇), the hydraulic 

friction K(𝜈,p,T), the specific heat capacity 𝐶𝑝(𝑝, 𝑇), the thermal conductivity 𝜆(𝑝, 𝑇), the 

coefficient of thermal expansion 𝛼(𝑝, 𝑇), young modulus E(T) and shear modulus G(T) 

(Cayeux et al., 2018). 

In order to develop qualified mathematical models with high level of accuracy and proper for 

real time purposes, number of elements need to be developed (see Figure 2.1). 
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Figure 2.1  Elements of mathematical models for obtaining satisfactory results (Bjørkevoll, 2015b). 

 

As shown in Figure 2.1, number of items need to be addressed to improve real-time models, 

and they should be implemented in a robust way that model characteristics such as accuracy, 

predictability, calculation speed, stability and others are not sacrificed. It is important to have a 

model that works in spite of the complexities of the modelling (Bjørkevoll, 2015b). As 

mentioned, mass conservation equation (2.16), Navier Stokes equation (2.2), Fourier equation 

(2.3), and Newton’s equations (2.4, 2.5) have parameters that are function of pressure, 

temperature and velocity, which influence each other, and add more complexities to the 

modelling calculations. These equations also indicate that we are dealing with chaotic systems, 

which are known as sensitive dependence on initial and boundary conditions. According to 

chaos theory, deterministic predictability is false for most systems, and small uncertainties in 

initial states can indeed become large errors at last and as a result this causes the appearance of 

randomness in the system. So this means, at any time one of two or more events can happen 

randomly next (Motter & Campbell, 2013). Furthermore, for control applications, sometimes it 

is necessary to have fast response of the non-linear models in real-time situation. All challenges 

and computational complexities of the mathematical models have induced research in other 

techniques for real time applications. 
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Dynamical system modeling and control of complex systems is undergoing a renaissance, 

with appearance of data-driven approaches as a result of unprecedently availability of high-

fidelity measurements from historical records, numerical simulations and experimental data. 

Manipulating such data to find most obvious trends needs a skillset that can take a dataset and 

characterize it in meaningful ways. In this master thesis, one of modal decomposition 

techniques called Dynamic Mode Decomposition (DMD), a data-driven regression and 

machine learning method, is introduced. This technique takes a set of data and discover 

dynamical systems from the data. DMD is a new data-based algorithm, which computes a set 

of modes from data and identifies features that explain the underlying physics in a dynamical 

system (Kutz et al., 2016; Jonathan H. Tu, 2013). In this chapter, the core DMD algorithm is 

presented. It is the foundation for different DMD methods and future innovations and 

applications of this algorithm. Wherever possible, attempts are made to be clear and simple as 

possible, and some preliminary mathematical concepts are covered in appendices. 

2.1 Dynamic mode decomposition (DMD) 

Dynamic mode decomposition was developed by Schmid in the fluid dynamic community 

to find spatio-temporal coherent structures from measured data (Brunton & Kutz, 2019). DMD 

is a combination of spatial dimensionality-reduction technique, using the computationally 

efficient singular value decomposition (SVD1), with Fourier transform which decomposes 

experimental data into a set of dynamic modes that are derived from collected snapshots of data, 

and also provides a model for how these modes evolve in time. Basically, DMD is a regression 

method to find the best-fit linear dynamical system from measurement data in time, even if the 

dynamics is nonlinear (Kutz, 2013; Kutz et al., 2016). Considerable interest has been generated 

to DMD algorithm as it only relies on measured data without any knowledge of the governing 

equations (Brunton & Kutz, 2019). 

The DMD algorithm has three main applications: 

I. Diagnostics. Ability of the algorithm to extract low-rank features of high-dimensional 

systems, allowing for physical interpretation of system in case of spatial structures and 

temporal response.  

II. State estimation and future-state prediction. By using dominant spatiotemporal 

structures of data in DMD algorithm, it is possible to construct dynamical models of the 

 

1 This notion is explained more precise in Appendix B  
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underlying processes and predict the state of the system in future where no 

measurements were made. 

III. Control. As linear dynamical model is used to predict the future state of a nonlinear 

dynamical system, there is limited short-time window in future where DMD model and 

real dynamics agree. As a result, control goal of the DMD algorithm is highly 

challenging. If precise prediction window is long enough, it is possible to use DMD for 

control strategies (Kutz et al., 2016). 

2.2 Formulating the DMD algorithm 

A dynamical system is generally defined  

𝜕𝑥

𝜕𝑡
= 𝑓(𝑥, 𝑡, 𝜇), (2.6) 

where x(t) ∈ ℝ𝑛 is an n-dimensional vector (n≫1) representing the state of our dynamical 

system at time t, μ is parameters of the system, and 𝑓 represents the dynamics which is often 

nonlinear differential equation. In general, it is impossible to find a governing equation for 

nonlinear dynamics of dynamical system (2.6). DMD is used to approximate the dynamics, 

without using any equation, just by using measured data. 

The first step is to collect a number of snapshots of the state of systems in equal time 

interval Δt so that 𝑥𝑘 = 𝑥(𝑡𝑘) at 𝑡𝑘 = 𝑘𝛥𝑡 for k=1, 2, 3, …, m. The measured data matrix could 

be like: 

 

[
 
 
 
 
𝑥1(𝑡1) 𝑥1(𝑡2) 𝑥1(𝑡3) … 𝑥1(𝑡𝑚)

𝑥2(𝑡1) 𝑥2(𝑡2) 𝑥2(𝑡3) … 𝑥2(𝑡𝑚)

𝑥3(𝑡1)
⋮

𝑥𝑛(𝑡1)

𝑥3(𝑡2)
⋮

𝑥𝑛(𝑡2)

𝑥3(𝑡3) … 𝑥3(𝑡𝑚)
⋮ … ⋮

𝑥𝑛(𝑡3) … 𝑥𝑛(𝑡𝑚)]
 
 
 
 

   𝑛×𝑚

 (2.7) 

which 𝑥(𝑡1) is the initial conditions of the dynamical system. The timestep Δt should be small 

enough to record the highest frequencies in the measurements.  

The DMD method approximate dynamical system (2.6) as a locally linear dynamical system 

𝜕𝑥

𝜕𝑡
= 𝐴𝑥 (2.8) 

which searches the leading spectral decomposition (eigenvalues, eigenvectors)2 of A, the best-

fit linear operator that relates two modes in time. Assuming uniform sampling of modes in time, 

the discrete version of equation (2.8): 

 

2 This notion is explained more precise in Appendix A  
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𝑥(𝑡𝑘+1) ≈ 𝐴𝑥(𝑡𝑘) (2.9) 

By calculating eigenvalues (𝜆𝑘) and eigenvectors (𝛷𝑘) of the operator A, the solution for 

dynamical system (2.6) could be expressed as: 

𝑥𝑘 =∑𝛷𝑗𝜆𝑗
𝑘𝑏𝑗 = 𝛷𝛬

𝑘𝑏

𝑟

𝑗=1

             𝑘 = 1, 2, … ,𝑚 − 1  (2.10) 

which 𝑥1 = 𝛷𝑏 is the initial condition in eigenvector basis and b are the coefficients of the 

initial condition, and Λ is eigenvalues in reduced version of A. DMD algorithm is capable to 

provide a low-rank eigendecomposition of matrix A which fits 𝑥𝑘 for k=1,2,3,…, m in least-

square sense: 

‖𝑋𝑘+1 − 𝐴𝑋𝑘‖2 (2.11) 

So, it is minimized across all points for k=1, 2, 3, …, m-1. To minimize the equation (2.11), 

approximation error, measured data matrix (2.7) is then arranged into two matrices, X and X′, 

for the DMD algorithm. 

            𝑋 =

[
 
 
 
 
𝑥1(𝑡1) 𝑥1(𝑡2) 𝑥1(𝑡3) … 𝑥1(𝑡𝑚−1)

𝑥2(𝑡1) 𝑥2(𝑡2) 𝑥2(𝑡3) … 𝑥2(𝑡𝑚−1)

𝑥3(𝑡1)
⋮

𝑥𝑛(𝑡1)

𝑥3(𝑡2)
⋮

𝑥𝑛(𝑡2)

𝑥3(𝑡3) … 𝑥3(𝑡𝑚−1)

⋮ … ⋮
𝑥𝑛(𝑡3) … 𝑥𝑛(𝑡𝑚−1)]

 
 
 
 

   𝑛×(𝑚−1)

 (2.12) 

 

               𝑋′ =

[
 
 
 
 
𝑥1(𝑡2) 𝑥1(𝑡3) 𝑥1(𝑡4) … 𝑥1(𝑡𝑚)

𝑥2(𝑡2) 𝑥2(𝑡3) 𝑥2(𝑡4) … 𝑥2(𝑡𝑚)

𝑥3(𝑡2)
⋮

𝑥𝑛(𝑡2)

𝑥3(𝑡3)
⋮

𝑥𝑛(𝑡3)

𝑥3(𝑡4) … 𝑥3(𝑡𝑚)

⋮ … ⋮
𝑥𝑛(𝑡4) … 𝑥𝑛(𝑡𝑚)]

 
 
 
 

   𝑛×(𝑚−1)

 (2.13) 

The linear approximation of the dynamical system (2.9) could be written: 

𝑋′ ≈ 𝐴𝑋 (2.14) 

And Matrix A is achieved by: 

𝐴 = 𝑋′𝑋† (2.15) 

which the error is ‖𝑋′ − 𝐴𝑋‖𝐹 , Frobenius norm, and could be calculated by: 

‖𝑋‖𝐹 = √∑∑𝑋𝑗𝑘
2

𝑚

𝑘=1

𝑛

𝑗=1

 (2.16) 
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The size of the measured data matrix depends on how many time snapshots is planned to record, 

but for DMD algorithm, it is supposed to have overdetermined system3, which means the 

number of rows or constraints of X is greater than the number of columns or variables. Matrix 

A may have high dimension, and as a result the decomposition of A becomes difficult. To solve 

the problem, measured data is projected onto a low-rank subspace defined by the m-1 modes, 

computed by singular value decomposition (SVD), and calculations continue with a low-rank 

matrix Ã. The DMD algorithm reconstructs the eigenvalues and eigenvectors of matrix A by 

using low-rank operator Ã (Brunton & Kutz, 2019; Kutz, 2013; Kutz et al., 2016). Schematic 

of DMD method shown in Figure 2.2. 

 

 

Figure 2.2  Schematic review of the DMD algorithm (Kutz et al., 2016). 

 

DMD definition in short: For the prepared X (2.12) and X′ (2.13) dataset of dynamical system 

(2.6), which 𝑥𝑘+1 = 𝐹(𝑥𝑘) and F is the map of time snapshots in time evolution, DMD 

computes the leading eigendecomposition of the best-fit linear operator A that 𝑋′ ≈ 𝐴𝑋. Then 

the DMD modes (or the eigenvectors of A) corresponding to  particular eigenvalues of A is 

achieved (Jonathan H Tu, Rowley, Luchtenburg, Brunton, & Kutz, 2013). DMD modes are 

used for different applications such as original data reconstruction, interpolation, and future 

state or mode prediction. 

2.2.1 Step by step guide for DMD algorithm in practice 

1. Take the singular value decomposition (SVD) of X: 

 

3This notion is explained more precise in Appendix C  
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𝑋 ≈ 𝑈Ʃ𝑉∗ (2.17) 

where * denotes conjugate transpose, 𝑈 ∈ ℂ𝑛×𝑟, ∑ ∈ ℂ𝑟×𝑟, 𝑉 ∈ ℂ𝑚×𝑟, 𝑟 ≤ 𝑚 is either the exact 

or approximate rank of the data matrix X. The columns of U are known as proper orthogonal 

decomposition (POD) modes and they satisfy U*U=I as the columns are orthonormal. In a 

similar way, V*V=I. 

2. Compute A by using pseudoinverse of X obtained by SVD: 

𝐴 = 𝑋′𝑉Ʃ−1𝑈∗ (2.18) 

As mentioned before, it is not efficient to directly calculate A, so a low-dimensional linear 

model of the dynamical system, Ã, is obtained by using r×r projection of the full matrix A onto 

POD modes in U: 

Ã = 𝑈∗𝐴𝑈 = 𝑈∗𝑋′𝑉Ʃ−1 (2.19) 

𝑥̃𝑘+1 = Ã𝑥̃𝑘 (2.20) 

It should be mentioned that full dataset X could be reconstructed from the reduced states: 

𝑥̃𝑘: 𝑥 = 𝑈𝑥̃ (2.21) 

3.  Compute the eigendecomposition of Ã: 

Ã𝑊 = 𝑊𝛬 (2.22) 

where diagonal matrix Λ contains the DMD eigenvalues (𝜆𝑘) of Ã, which correspond to 

eigenvalues of the full A matrix. The columns of W are eigenvectors of Ã and provide a 

coordinate transformation that diagonalizes the matrix. The columns of eigenvectors are linear 

combinations of mode amplitudes that behave linearly with single temporal given by 𝜆. 

4. Reconstruct eigenvectors of the A matrix using eigenvectors of the reduced version 

W (Brunton & Kutz, 2019; Kutz, 2013; Kutz et al., 2016): 

𝛷 = 𝑋′𝑉Ʃ−1𝑊 (2.23) 

As mentioned in Step 3, eigenvalues of matrix A and reduced version Ã are equal which is 

demonstrated as follows (Jonathan H Tu et al., 2013): 

𝐴𝛷 = (𝑋′𝑉Ʃ−1𝑈∗)(𝑋′𝑉Ʃ−1𝑊) 

= 𝑋′𝑉Ʃ−1ÃW 

= 𝑋′𝑉Ʃ−1𝑊𝛬 

=  𝛷Λ 

5. Approximate solution at all future times: 

𝑥(𝑡) ≈ ∑𝛷𝑘 exp(𝜔𝑘) 𝑏𝑘 = 𝛷 exp(Ω𝑡) 𝑏,

𝑟

𝑘=1

 (2.24) 
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where 𝑏𝑘 is the initial amplitude of each mode, 𝛷 is matrix whose columns are the DMD modes 

or eigenvectors 𝛷𝑘, and Ω = diag(𝜔) is a diagonal matrix that contains eigenvalues 𝜔𝑘 =

ln(𝜆𝑘)/Δ𝑡. The b is a vector contains coefficients of 𝑏𝑘 = 𝛷
†𝑥1. Step by step DMD algorithm 

summary is shown in Figure 2.3. 
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Figure 2.3  Step by step DMD algorithm summary (Kutz et al., 2016) 
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2.2.2 DMD example 

To understand and test the DMD algorithm, two simple functions are considered as a 

dynamical system, which are added together. The objective is to demonstrate the ability of 

DMD algorithm to decompose the summation of the signals into the constituent signals. 

The two functions of interests are 

𝑓1(𝑥, 𝑡) = sin(𝑥) exp (𝑖10.3𝑡) (2.25) 

𝑓2(𝑥, 𝑡) = cos(x)exp(𝑖1.8𝑡) (2.26) 

The mixed signal function is equal: 

𝐹(𝑥, 𝑡) = 𝑓1(𝑥, 𝑡) + 𝑓2(𝑥, 𝑡) = sin(𝑥) exp(𝑖10.3𝑡) + cos(x)exp(𝑖1.8𝑡) (2.27) 

Each spatiotemporal function is illustrated in Figure 2.4. The frequency of 𝑓1 (freq.1=10.3) is 

higher than 𝑓2 (freq.2=1.8), and this is clearly seen in the illustration. For this example, 𝑥 ∈

[0 10] and 𝑡 ∈ [0 4𝜋] are divided into 128 equally spaced distances. 

 

Figure 2.4  Spatiotemporal dynamics of 𝑓1, 𝑓2 and F 

 

After preparing data matrix of F(x,t), first step is to compute the SVD, which transforms 

data matrix into a number of constitutive components, all of which has a specific meaning. In 

other words, the SVD produces the diagonal matrix of ordered singular values along with the 

two unitary matrices U and V. The SVD is represented in Figure 2.5. 
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Figure 2.5  The singular value decomposition (SVD) of the dataset 

 

The Figure 2.5a shows all of the spatial modes in the dataset which are the columns of U, 

left singular vector. The time dynamics of the modes in U are shown in Figure 2.5c which are 

columns of the matrix V, right singular vector. The normalized singular values of the modes 

are illustrated in Figure 2.5b which represent the energy of each mode in whole data matrix. As 

mentioned in Appendix B , for faster computation, it is possible to reduce the data matrix either 

by the economy SVD, removing zero singular values rows, or the truncated SVD by keeping 

the leading r singular values and vectors and discarding the rest. The entire spectrum of the 

singular values of F(x,t) is plotted in Figure 2.6. 
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Figure 2.6  The spectrum of singular values of F(x,t) 

 

As is shown in Figure 2.6a, most of singular values are almost zero except two, which are 

93.41 and 87.53 corresponding first and second mode in U. These two singular values contain 

0.51 and 0.48 of the normalized energy of the system according to Figure 2.6b, which means 

that each mode captures 51% and 48% of dynamics of the system, respectively. The cumulative 

energy amount of these two modes, Figure 2.6c, capture almost 100% of the energy and 

dynamics of the system F(x,t) could be approximated using these two dominant modes. Thus, 

the rest of the modes are unnecessary.  

SVD explored that the system could be characterize by two modes according to the energy 

of the singular values. Now the reduced version of the DMD algorithm is applied and these two 

modes are achieved.  The next step is to know about the temporal behavior of these modes. 

Stability of the modes is one of the important characteristics, which influences the applicability 

of this method and could be checked thanks to the eigenvalues and position of them on the unit 

circle. The unit circle and eigenvalues for the detected DMD modes of the dynamical system 

F(x,t) is illustrated in Figure 2.7.  
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Figure 2.7  Eigenvalues of the dynamic system on the unit circle 

 

To understand the behavior of modes using unit circle, several points should be considered: 

- If eigenvalue is a complex number, the corresponding mode will oscillate. The higher 

imaginary part results in the higher frequency. 

- If the real part of the eigenvalue is positive, the corresponding mode will diverge in time 

and if the real part is negative, the corresponding mode will converge in time.  

-  When eigenvalue is close to the origin, the time takes the mode converges or diverges 

will increase and the resulting mode is called slow mode. As the eigenvalue move away 

from the unit circle, the corresponding mode will converge or diverge very fast and the 

mode based on this behavior is called fast mode (Demo et al., 2018). 

Considering mentioned points, a signal is stable when it does not diverge or converge 

too fast or too slow and this is obtained when an eigenvalue is close or on the unit circle. 

As shown in Figure 2.7, the DMD eigenvalues are located on the top right side of the 

coordinate system. The expected dynamics of modes should diverge and oscillate in time 

as their eigenvalues have positive real part and non-zero imaginary part respectively. The 

one with higher imaginary value oscillates more with higher frequency. The spatial DMD 

modes and their dynamics are shown in Figure 2.8. 

 

Figure 2.8  The Spatial modes and their dynamics in time 

 

Figure 2.8a shows the DMD detected modes which catch the 100 % energy of the system.  

Figure 2.8b clearly supports what was mentioned about the expected dynamics based on the 
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eigenvalues and the unit circle. Final approval of these DMD modes and dynamics could be 

achieved by comparing them with the constituent signals 𝑓1( 2.25) and 𝑓2 (2.26), which are two 

diverging trigonometric functions with 
𝜋

2
 phase difference and different frequencies.  

Finally, the original dataset is reconstructed using the dominant modes and their dynamics. 

The dominant DMD modes and DMD reconstructed dataset are shown in Figure 2.9. 

 

 

Figure 2.9  The dominant DMD modes and DMD reconstructed dataset 

 

By comparing Figure 2.9 and Figure 2.4, the similarities between the evolution of the 

original dataset and the DMD reconstructed data are identified. To understand the precision of 

the DMD algorithm, the absolute error between the approximated DMD data and the original 

date is plotted in Figure 2.10 and Figure 2.11. 
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Figure 2.10  The frequency distribution of the absolute DMD reconstructed data error 

 

 As it is shown in Figure 2.10, the maximum error for the DMD reconstruction data is 

4.000e-14, which is negligible.  

 

Figure 2.11  The distribution of the absolute DMD reconstructed data error 
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In Figure 2.11, the values for P20, P50 and P90 are presented as 6e-15, 1.1e-14 and 2.3e-

14, respectively. P90 shows that 90 percent of the absolute DMD reconstructed data error are 

less than 2.3e-14.  

The overall success of the DMD algorithm is highly dependent upon what applications one 

is attempting to achieve. In some applications, it may be reasonable to use DMD as a diagnostic 

tool and using it for other applications is limited. For the analyzed DMD example, the basic 

DMD algorithm computed several diagnostic features of the ideal dynamical system F(x,t) such 

as DMD modes, eigenvalues and the reconstruction of the original data was almost perfect and 

matched the original dataset. In reality, dynamical systems are not behaving like an ideal 

system, and as a result applying the DMD is challenging. This makes various powerful 

extensions to DMD technique based on the different dynamical systems and unsatisfactory 

performances of basic DMD for those dynamical systems, thanks to the simple and well-

stablished formulation of the DMD algorithm in linear algebra (Kutz et al., 2016). 

PyDMD is a python package which is used for implementing DMD algorithm in this master 

thesis. In PyDMD, the majority of the DMD extensions are coded for different applications 

such as multiresolution DMD, compressed DMD, forward backward DMD, higher order DMD 

and so forth (Demo et al., 2018). Any extension used with DMD in this master thesis is 

explained in the following. 

 

2.3 Optimal amplitudes of DMD modes  

This extension is aimed to optimize the quality of approximation and the number of modes 

that are used to approximate dataset which are achieved by regularization of the least square 

deviation between the data matrix and linear combination of the DMD modes.  

In section 2.2.1 after implementing step by step the DMD algorithm, approximation 

solution x(t) (2.24) is achieved.  

𝑋 ≈ [
| | ⋯
Φ1 Φ2 ⋯
| | ⋯

]

⏟        
𝛷

[
𝑏1 0 ⋯
0 𝑏2 ⋯
⋮ ⋮ ⋱

]
⏟        

𝑏

[
1 𝜆1
1 𝜆2
⋮ ⋮

    

⋯ 𝜆1(𝑚−2)
⋯ 𝜆2(𝑚−2)
⋱ ⋮

]

⏟              
𝑉𝑎𝑛𝑑

 
(2.28) 

where 𝛷 is a matrix whose columns are the DMD modes or eigenvectors 𝛷𝑘, b is a matrix with 

the initial amplitude of each mode 𝑏𝑘 and Vandermonde matrix (𝑉𝑎𝑛𝑑) which is determined by 

eigenvalues and provides information about the underlying temporal frequencies. The solution 
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of the following optimization problem is way to determine the unknown amplitudes of 2.28 

which can be illustrated as vector 𝐷𝑏 = 𝑑𝑖𝑎𝑔(𝑏) = [𝑏1 ⋯ 𝑏𝑟]
𝑇 : 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑏  ‖𝑋 − Φ𝐷𝑏𝑉𝑎𝑛𝑑‖𝐹
2  (2.29) 

Using 𝑋 = 𝑈Ʃ𝑉∗ and Φ = 𝑈𝑊 the problem become: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑏   𝐽(𝑏) =   ‖Ʃ𝑉
∗ −W𝐷𝑏𝑉𝑎𝑛𝑑‖𝐹

2  (2.30) 

which is an optimization problem and can be solved by standard methods. After solving the 

problem, function J(b) is represented as: 

𝐽(𝑏) = 𝑏∗𝑃𝑏 − 𝑞∗𝑏 − 𝑏∗𝑞 + 𝑠 (2.31) 

 𝑃 = (𝑊∗𝑊)𝑜(𝑉𝑎𝑛𝑑𝑉𝑎𝑛𝑑
∗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ), 𝑞 = 𝑑𝑖𝑎𝑔(𝑉𝑎𝑛𝑑𝑉𝑎𝑛𝑑

∗ Ʃ∗𝑊)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , s=trace (Ʃ∗Ʃ) 

The overline signifies the complex conjugate of a vector (matrix), and o is the elementwise 

multiplication for matrices. 

The optimal DMD amplitudes, which solve optimization problem 2.29), can be achieved by 

minimizing function 2.31 with respect to b. If the DMD approximation solution 2.28) is 

properly weighted by optimal amplitudes of the modes, better result will be achieved. For 

detailed information, it is recommended to read the original paper (Jovanović, Schmid, & 

Nichols, 2014).  

 In chapter 2, the basic DMD theory, definition and its classified applications were 

introduced. In particular, a synthetic example was presented to check the accuracy of the 

algorithm and become familiar with terms and conditions of it.  

The following chapter focuses on implementing DMD in practice. The DMD algorithm 

will be applied to a case study in dynamics of drilling parameters. The accuracy of different 

DMD applications such as the original data reconstruction, interpolation, prediction will be 

analyzed.  
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 Case Studies, Results and Discussions 

We have drilled many wells without the benefit of downhole real-time data and this is no 

longer a necessary limitation since the introduction of wired drill pipe (WDP) technology. The 

WDP system has been commercialized since 2006 which creates a high-speed data network 

from the drill-string enabling bi-directional data transmission at speeds up to 57000 bits per 

second. The WDP allows for different data sources such as Logging while drilling (LWD), 

measurement while drilling (MWD) and along-string measurement (ASM) tools, to stream to 

surface in real time and makes real time decisions-making possible (see Figure 3.1) (Foster & 

Macmillan, 2018; Schils, Teelken, van Burkleo, Rossa, & Edwards, 2016). 

 

Figure 3.1 Downhole real time data sources(Israel et al., 2018) 

Since the introduction of high-speed telemetry to the drilling market, operators have 

recognized the potential benefits of WDP on their drilling processes in many different ways 

which push the technology forward (Foster & Macmillan, 2018).  

Along string measurement (ASM) sensors which can be placed anywhere along the WDP, 

collect dynamic data from downhole and transmit it to the surface through WDP 

communication network for analysis and modeling to improve efficiency and avoid problems 

related to downhole conditions. ASM tools which run on WDP are limited to mechanical 

measurements including, pressure, temperature, vibration and rotational speed. There have been 

continuous attempts by  service companies to improve or add ASMs to measure different 
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parameters such as bending, torque, tension and borehole caliper  (NOV, 2020). Also, it should 

be noted that despite the high bandwidth of the wired pipe telemetry network, measurements 

from the ASMs are sent in packets. The refresh interval of packets is about 2.5s and only 

average, min/max and standard deviations corresponding to the time window are transferred 

(Eric, Per, Lars Jørgen, Håvard, & Espen, 2019). In practice, there are from 0 to 4-5 ASMs 

along the drill-string. 

In this chapter, DMD algorithm will be implemented on a drilling dynamic dataset received 

from NORCE’s simulator, which generates synthetic measurements along the drill-string at 

every tool-joints and transfer them without delays and at a refresh rate of 10Hz. This would 

require a bandwidth largely greater than the one of currently commercialized WDP solutions 

but which would be compatible with newer solutions such as the one described by (Temizel et 

al., 2019). A brief information about the simulated well configuration and other parameters are 

presented in the following before going into the main analysis. 

3.1 Simulated well  

For a short overview of the simulated well, some of the input data and simulator 

visualizations are presented. Figure 3.2 shows different information about the depth of blowout 

preventer (BOP) and surface sensor, size and depth of casings, riser and open-hole section.  

 

Figure 3.2 Simulated well architecture 
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As can be seen from wellbore trajectory in Figure 3.3,  the simulated well is horizontal. 

The corresponding TVD for vertical, build-up and horizontal sections are shown in left curve. 

The orientation of well is also illustrated in the azimuth curve on the right side.  

 

Figure 3.3 wellbore trajectory 

Schematic and description of the drill-string components (drill pipes and bottom hole 

assembly (BHA)) are shown in Figure 3.4. 

 

 

Figure 3.4 Description of Drill-string components 
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Figure 3.5 shows some of the properties of drilling fluid used for this study. 

 

Figure 3.5 Drilling fluid report 

3.2 Case study: Annular fluid velocity (AFV) during trip out 

During drilling operation, it is often necessary to pull the drill-string out of the wellbore 

and run it back (tripping operation) for different reasons. The typical reasons for tripping pipe 

are replacing worn-out bit, replacing damaged downhole equipment, performing logging 

operation and so forth. When tripping, the drill-string acts like a spring-mass system, composed 

of a multitudes of individual masses attached to each other’s by springs, which oscillates axially 

with complex patterns as a consequence of mechanical friction between the moving string and 

wellbore (Cayeux, 2018) and swab and surge engendered by fluid movement (Cayeux et al., 

2020). In other words, the drill-string axial movement is most often not periodic, and oscillates 

with larger or shorter periods and also nonuniform timing of process in different time intervals 

(Sethares, 2001). This oscillatory behavior of the drill-string disturbs the fluid velocity profile 

in an annulus. Because of the no slip at the wall condition, the fluid in contact with the drill-

string moves at the same velocity as the drill-string, while the fluid velocity at the wellbore is 

zero. This results in a fluid velocity field in the annulus where in the same cross-section the 

fluid velocity can be positive at a certain radial distance and negative at another radial position. 

This is called the clinging effect (Whittaker, 1985).  
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The simulated annular fluid velocity while lifting up one stand is used to test the DMD 

algorithm. The dataset contains 388 rows and 1669 columns, which corresponds to the number 

of sensors placed along the drill-string, and number of measurements in different time 

snapshots, respectively. It should be noted that there is no ASM to measure annular fluid 

velocity directly and it is calculated using differential pressure measured between sensors, 

distances between sensors, fluid characteristics, wellbore geometry. Figure 3.6 visualizes the 

annular fluid velocity along the wellbore for every 0.2 sec time snapshots. Positive annular fluid 

velocity during tripping out means that fluid moving upward as a result of clinging effect and 

negative annular fluid velocity indicating downward movement of fluid.   

 

Figure 3.6 Annular Fluid Velocity dataset 
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 As shown in Figure 3.6, the annular fluid velocity values change at each measured 

depth, which represent the dynamic behavior of the AFV. The dynamic behavior of AFV 

in different time intervals shows variable oscillations with larger or shorter periods and 

also nonuniform timing. There is a dominance of positive velocities compared to the 

negative ones, which can be seen by the darker part of the curve in the righthand side, 

showing that fluid mostly moves downward. Abrupt changes or jumps of the velocity in 

annuls could be caused by an abrupt change in drill-string movement, drill-string 

configuration, different borehole dimensions and inclination of each section. Now this data 

set is going to be used for DMD implementation. 

3.2.1 DMD data reconstruction  

In order to use DMD algorithm for any application, it is necessary to reconstruct the 

dynamics over the interval used for the algorithm. In chapter 2, DMD algorithm was 

successfully tested for an ideal dynamical system. As the annular fluid velocity data contains 

dynamics with different periods in nonequal time intervals, the first use of DMD is to check the 

reconstruction of dynamics in short intervals and then larger ones. Less than 388 time- 

snapshots are enough to test DMD reconstruction, as mentioned in the previous chapter, 

overdetermined system is critical for DMD algorithm, meaning that the number of columns 

should be less than the number of rows. Here, 395 time-snapshots are used.  

According to the similar patterns observed in the Figure 3.6, time snapshots 0 to 394 are 

divided into 14 intervals with the similar dynamics, however for some intervals it is difficult to 

find the transition from one behavior to another (see Table 1). 

 

Table 1. Annular fluid velocity sub datasets 

Interval No. Interval range 

1 0 – 43 

2 44 – 111 

3 112 – 140 

4 141 – 161 

5 162 – 185 

6 186 – 211 

7 212-230 

8 231 – 253 
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9 254 – 278 

10 279 – 307 

11 308 – 332 

12 333 – 347 

13 348 – 372 

14 373 - 394 

 

3.2.1.1 DMD reconstruction of single sub dataset     

DMD algorithm, without reduction, is implemented on the 14 sub datasets in Table 1. 

 

• Interval No. 1: 0 – 43 

First interval shows the acceleration of velocity as tripping out is started (see Figure 3.7). 

As can be seen, velocity values are small and changing gently. At the beginning, fluid velocities 

are positive with small amplitudes and it moves upward in the annulus because of clinging 

effect. 
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Figure 3.7 Annular fluid velocity, interval No. 1 (0 - 43) 

  

Singular value decomposition (SVD) and Singular values of the interval No. 1 are 

shown in Figure 3.8 and Figure 3.9.  
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Figure 3.8 Singular value decomposition (SVD) of interval 1(0 - 43) 

 

 

Figure 3.9 Singular values of interval No. 1 (0 - 43) 

 

As shown in Figure 3.8b and Figure 3.9b, the maximum energy of the system is captured 

by the first singular value, which means, it is the dominant mode through measurements ( see 

Figure 3.8a) for  79.13% of the reconstruction. Now the DMD algorithm is implemented to 

catch these modes and their dynamics and finally reconstruct the interval. Figure 3.10 shows 

spatial modes and their dynamics used for reconstruction. 
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Figure 3.10 The Spatial modes and their dynamics in time, interval 1 (0 - 43) 

  

As mentioned earlier, modes and their dynamics are components of the DMD 

approximate solution (2.24). Dynamics of modes are achieved by exp(𝜔𝑘) 𝑏𝑘, which  𝜔𝑘 and 

𝑏𝑘 denote eigenvalue and initial amplitude, respectively. These two parameters are critical for 

DMD performance as eigenvalues determine stability of modes and initial amplitude, which is 

a scale for each mode reconstruction, determines the amplitude of a mode. Eigenvalues of 

interval 0 – 43 are shown in Figure 3.11.  
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Figure 3.11 Eigenvalues of interval 1 (0 - 43) 

The temporal modes which represent the behavior of the system in time, are dependent on 

the position of eigenvalues. When a dynamic change abruptly and with various periods in time, 

some of eigenvalues will be located outside of the unit circle and produce fast mode or slow 

mode based on the position of each eigenvalue and finally limit the performance of 

reconstruction and prediction. 3D plots of  DMD reconstruction and original measurements 0 – 

43 are shown in Figure 3.12 and Figure 3.13.  
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Figure 3.12 DMD reconstruction of the interval No. 1 (0 - 43) 

 

Figure 3.13 Original data interval No. 1 (0 - 43) 

 

The reconstructed and original data plots look similar. To find out the accuracy of DMD 

reconstruction, it is better to have a look at the figures which represent error.  
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Figure 3.14 DMD reconstructed data error interval No. 1 (0 - 43) 

 

As shown in Figure 3.14, performance of DMD reconstruction over the interval is great.  

In last time-snapshots, errors are still low, but compare to the rest of timesteps are higher which 

could be as a result of fast modes due to transition to the next dynamic. 

 

Figure 3.15 The frequency distribution of the absolute DMD reconstructed data error, interval No. 1 (0 – 43) 
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Figure 3.16 The distribution of the absolute DMD reconstructed data error, interval No. 1 (0 - 43) 

 

As can be seen in Figure 3.15, the highest error distribution belongs to first bar (98.59%) 

and this is the reason for P90 to become 4.5e-17 for 90 percent of the reconstruction in Figure 

3.16. The analysis of DMD reconstruction for the rest of sub datasets show high accuracy and 

acceptable result (see Table 2). DMD reconstruction figures for interval No. 2-5 are attached in 

Appendix D.  

Table 2.  Error distribution of DMD reconstruction sub datasets 

Interval No. Interval range P20 P50 P90 

1 0 – 43 3.7e-18 9.1e-18 4.5e-17 

2 44 – 112 1.2e-14 4.1e-14 1.4e-13 

3 112 – 140 1.3e-16 3.5e-16 1.2e-15 

4 141 – 161 4.2e-17 1.2e-16 3.6e-16 

5 162 – 185 2.3e-07 1.0e-06 8.8e-06 

6 186 – 211 1.0e-16 2.4e-16 5.6e-16 

7 212-230 5.9e-17 1.7e-16 8.9e-16 

8 231 – 253 4.7e-16 1.3e-15 3.8e-15 

9 254 – 278 2.2e-16 5.6e-16 2.3e-15 
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10 279 – 307 2.5e-16 7.6e-16 2.3e-15 

11 308 – 332 5.2e-16 1.4e-15 3.5e-15 

12 333 – 347 3.9e-16 9.9e-15 2.9e-15 

13 348 – 372 9.7e-17 3.1e-16 1.1e-15 

14 373 - 394 4.3e-16 1.5e-115 5.6e-15 

  

As dynamic changes more gently and with a predictable trends or no abrupt oscillation, 

eigenvalues corresponding to more stable modes (stable eigenvalues)4 will be achieved and the 

energy of system is captured by few modes and as a result optimal amplitude extension works 

fine for all reconstruction in the interval.  

As mentioned earlier, measured data were classified to 14 intervals based on similar patterns. 

It was difficult to find out the end of dynamics, especially for transition from one dynamic to 

another and finally DMD algorithm managed to reconstruct all the intervals.     

Recall that it is our desire to reconstruct whole dataset, no matter what dynamics exist in 

measurements in time. In following section, multiple intervals together are used to check the 

behavior of DMD algorithm and the performance of reconstruction. 

 

3.2.1.2 DMD reconstruction of multiple sub datasets     

In this section, some of AFV sub datasets in Table 1 are merged together to evaluate DMD 

reconstruction capabilities in the following.  

 

• Merged interval No. 1: 0 – 111 

This interval contains two dynamics 0 – 43 and 44 – 111 according to Table 1.  

 

 

4  For simplicity, eigenvalues corresponding to stable modes are considered stable eigenvalues in the 

following  
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Figure 3.17 Annular fluid velocity, merged interval No. 1 (0 - 111) 

As shown in Figure 3.17, the first dynamic (0 – 43) has lower amplitudes compare to the 

second dynamic (44 – 111). These two dynamics are illustrated separately in Figure 3.7 and 

Append. D.1. Singular value decomposition (SVD) and Singular values of the merged interval 

No. 1 are shown in Figure 3.18 and Figure 3.19. 
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Figure 3.18 Singular value decomposition (SVD) of merged interval 1 (0 - 111) 

 

 

Figure 3.19 Singular values of merged interval No. 1 (0 - 111) 

According to previous analyses, the maximum energy of interval No. 1 and 2 

(corresponding to the largest singular value) are 79.13% and 74.07%, respectively, which 

indicate similarity of the modes in each interval. As shown in Figure 3.18b and Figure 3.19b, 

the energy of whole merged dataset is 74.07%, which indicates that great number of modes 

over interval No. 1 and 2 are similar. Figure 3.20 shows spatial modes and their dynamics used 

for reconstruction. 
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Figure 3.20 The Spatial modes and their dynamics in time, merged interval 1 (0 - 100) 

As can be seen, by comparing captured modes in Figure 3.20a with modes in constituent 

intervals in Figure 3.10a and Append. D.4a, it seems that modes also merged together by 

merging two intervals. According to Figure 3.20b, dynamics of some modes are diverging very 

fast, which influence on reconstruction and limit prediction capability as a result of fast 

eigenvalues. Eigenvalues of merged interval 0 – 111 are shown in Figure 3.21. 
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Figure 3.21 Eigenvalues of merged interval 1 (0 - 111) 

 

By merging intervals, it seems their eigenvalues are merged as well, and this can be seen 

by looking at Figure 3.21 and constituent intervals eigenvalues Figure 3.11 and Append. D.5. 

Since now modes and eigenvalues of the merged interval and constituent intervals are almost 

identical and as a result good reconstruction is expected. 3D plots of DMD reconstruction and 

original measurements (merged interval 0 – 111) are shown in Figure 3.22 and Figure 3.23. 
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Figure 3.22 DMD reconstruction of merged interval No. 1 (0 - 111) 

 

 

Figure 3.23 Original data, merged interval No. 1 (0 - 111) 

 

Figure 3.22 and Figure 3.23 look similar with positive low oscillating velocities at 

acceleration interval and negative and high oscillating velocities at middle points. To find out 

the accuracy of DMD reconstruction, it is better to have a look at the figures which represent 

error. 
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Figure 3.24 DMD reconstructed data error, merged interval No. 1 (0 – 111) 

As can be seen in Figure 3.24, there are errors (no matter how small)  in DMD 

reconstruction in spite of what was expected based on the eigenvalues and the spatial modes. 

The reason for errors could be initial amplitudes selected by algorithm using optimal amplitude 

extension. When there are dynamics with different ranges of amplitudes, optimal amplitudes 

measured by algorithm could be overestimated, underestimated or equal, compare to real 

values. In merged interval 1 (0 – 111), optimal amplitudes are overestimated for starting modes 

as they have small amplitudes compare to rest of measurements and DMD reconstructed values 

become larger than real data. Consequently, errors become positive which are shown by red 

color at the beginning timesteps. This is also true for the rest of dataset. Error distributions are 

shown in Figure 3.25 and Figure 3.26.  
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Figure 3.25 The frequency distribution of the absolute DMD reconstructed data error, merged interval No. 1 (0 

– 111) 

 

 

Figure 3.26 The distribution of the absolute DMD reconstructed data error, merged interval No. 1 (0 - 111) 
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According to Figure 3.25 and Figure 3.26, different ranges of errors exist, however they 

are still small and this is also indicated by P90 which is 7.9e-06. 

 

• Merged interval No. 2: 0 – 140 

This interval contains three dynamics 0 – 43, 44 – 111 and 112 – 140 according to Table 1. 

 

 

Figure 3.27 Annular fluid velocity, merged interval No. 2 (0 - 140) 

By comparing merged interval No. 1 with merged interval No. 2, it can be seen that 

some oscillating measurements with high amplitudes are added (see Figure 3.27). Singular 

value decomposition (SVD) and Singular values of the merged interval No. 2 are shown in the 

following.  
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Figure 3.28 Singular value decomposition (SVD) of merged interval 2 (0 - 140) 

 

 

Figure 3.29 Singular values of merged interval No. 2 (0 - 140) 

As shown in Figure 3.28 and Figure 3.29, the maximum energy of the system 

corresponding to the largest singular value is 64.03 %, which compare to previous merged 

interval is reduced. This means that the number of similar modes reduced by merging another 

interval. Figure 3.30 shows spatial modes and their dynamics used for reconstruction. 
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Figure 3.30 The Spatial modes and their dynamics in time, merged interval 2 (0 - 140) 

As can be seen in Figure 3.30, some of the modes are diverging very fast as a result of 

the position of eigenvalues which are shown in Figure 3.31. 

 

Figure 3.31 Eigenvalues of merged interval 2 (0 - 140) 

By comparing Figure 3.31 with previous merged interval eigenvalues in Figure 3.21, it can 

be seen that most of the eigenvalues are located at short distance of unit circle except 
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acceleration interval which are located inside. 3D plots of DMD reconstruction and original 

measurements (merged interval 0 – 140) are shown in Figure 3.32 and Figure 3.33. 

 

 

Figure 3.32 DMD reconstruction of merged interval No. 2 (0 - 140) 

 

 

Figure 3.33 Original data, merged interval No. 2 (0 - 140) 
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As shown in Figure 3.32 and Figure 3.33, DMD reconstruction and original 

measurements look similar. To find out the accuracy of DMD reconstruction, it is better to have 

a look at the figures which represent error. 

 

 

Figure 3.34 DMD reconstructed data error, merged interval No. 2 (0 – 140) 

As clearly shown in Figure 3.34, acceleration interval is overestimated as expected, for 

the reason that the calculated initial amplitudes of DMD are higher than real measurements. 

Compare to previous merged interval reconstruction, lower errors are observed for the rest of 

interval and this is occurred as more high-amplitude measurements added to the interval and as 

a result, initial amplitudes of DMD are close to real measurements. Error distributions are 

shown in Figure 3.35 and Figure 3.36. 
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Figure 3.35 The frequency distribution of the absolute DMD reconstructed data error, merged interval No. 2 (0 

– 140) 

 

 

Figure 3.36 The distribution of the absolute DMD reconstructed data error, merged interval No. 2 (0 - 140) 
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When there are similar dynamics with the same range of amplitudes in an interval, better 

reconstruction accuracy will be achieved and this is the reason for improved performance of 

algorithm over the interval 0-140, which  are shown in Figure 3.35 and Figure 3.36.  

 

• Merged interval No. 3: 0 – 161 

This interval contains four dynamics, including 0 – 43, 44 – 111, 112 – 140, 141– 161 

according to Table 1.  

 

Figure 3.37 Annular fluid velocity, merged interval No. 3 (0 - 161) 

To find out added measurements, it is better to compare Figure 3.37 with Figure 3.27. 

The added measurements are located at the right side of the figure, which oscillate with higher 

amplitudes at lower section of the well compare to the previous measurements. Singular value 
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decomposition (SVD) and Singular values of the merged interval No. 3 are shown in Figure 

3.38 and Figure 3.39.  

 

 

Figure 3.38 Singular value decomposition (SVD) of merged interval 3 (0 - 161) 

 

 

Figure 3.39 Singular values of merged interval No. 3 (0 - 161) 

 

As can be seen in Figure 3.38 and Figure 3.39, by adding new measurements to previous 

merged interval, the maximum energy of the system corresponding to the largest singular value 
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is reduced to 61.35%, meaning that the number of similar modes are reduced. Figure 3.40 shows 

spatial modes and their dynamics used for reconstruction. 

 

Figure 3.40 The Spatial modes and their dynamics in time, merged interval 3 (0 - 161) 

As shown in Figure 3.40b, fast modes cause that some dynamics converge soon at the 

beginning and some dynamics diverge at the end. For better understanding, it is better to have 

look at eigenvalues in Figure 3.41. 
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Figure 3.41 Eigenvalues of merged interval 3 (0 - 161) 

 

According to Figure 3.41 and previous analyses, it is perceived that the circle made by 

eigenvalues is the stability of the modes, thus five eigenvalues outside the eigenvalues circle 

may fail the reconstruction. 3D plots of DMD reconstruction and original measurements 

(merged interval 0 – 161) are shown in Figure 3.42 and Figure 3.43. 
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Figure 3.42 DMD reconstruction of merged interval No. 3 (0 - 161) 

 

 

Figure 3.43 Original data, merged interval No. 3 (0 - 161) 

By comparing Figure 3.42 and Figure 3.43,  it is obvious that DMD reconstruction is 

not preferable as expected. To find out the accuracy of DMD reconstruction, it is better to have 

a look at the figures which represent error. 
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Figure 3.44 DMD reconstructed data error, merged interval No. 3 (0 – 161) 

As shown in Figure 3.44, error values are high and, in some points, errors are even equal 

to measured data. Error distributions are shown in Figure 3.45 and Figure 3.46. 

 

 

Figure 3.45 The frequency distribution of the absolute DMD reconstructed data error, merged interval No. 3 (0 

– 161) 
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Figure 3.46 The distribution of the absolute DMD reconstructed data error, merged interval No. 3 (0 - 161) 

 

As can be seen in Figure 3.45 and Figure 3.46, performance of  DMD reconstruction is 

unsatisfactory, as there are high error ranges (as an example 0.1 to 0.15) in error distribution 

and also P90 is 0.056, which is unfavorable. As mentioned before, similar patterns were used 

to classify different dynamics in measured data and it worked successfully for single sub 

datasets, even though it was difficult to separate measurements related to transition to next 

dynamic. Classifying intervals based on the similar patterns is not working for merged intervals, 

which may contain transitional data from next dynamic, and this was shown by unstable 

eigenvalues in the merged interval No. 3. Stability of modes based on the position of 

eigenvalues on the unit circle could be a recommended solution that needs to be checked to 

separate different dynamics in a dataset. In this regard, five columns of merged interval No. 3 

are removed and DMD algorithm is going to be implemented in the following.  

 

• Corrected merged interval No. 3: 0 – 156 

By removing five columns from the merged interval 3, SVD and singular values do not 

change considerably and to avoid repetition, they are skipped. Figure 3.47 shows spatial 

modes and their dynamics used for DMD reconstruction. 
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Figure 3.47 The Spatial modes and their dynamics in time, corrected merged interval 3 (0 - 156) 

 

 By comparing Figure 3.47b and Figure 3.40b, it is observed that in both figures,  some 

dynamics converge at the beginning  and some diverge at the end, depending on the positions 

of eigenvalues. In corrected interval, oscillations of modes are smoother as a result of stable 

eigenvalues. Eigenvalues of the corrected merged interval are shown in Figure 3.48.  

 



 69 

 

Figure 3.48 Eigenvalues of corrected merged interval 3 (0 - 156) 

 

By removing measurements which do not belong to tested interval, stable eigenvalues 

achieved (see Figure 3.48). 3D plots of DMD reconstruction and original measurements 

(corrected merged interval 0 – 156) are shown in Figure 3.49 and Figure 3.50. 
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Figure 3.49 DMD reconstruction of corrected merged interval No. 3 (0 - 156) 

 

 

Figure 3.50 Original data, corrected merged interval No. 3 (0 - 156) 

 

As can be seen in Figure 3.49 and Figure 3.50, DMD reconstruction and original 

measurements look similar, as expected. To find out the accuracy of DMD reconstruction, it is 

better to have a look at the figures which represent error. 
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Figure 3.51 DMD reconstructed data error, corrected merged interval No. 3 (0 – 156) 

 

As mentioned earlier, acceleration interval is overestimated as expected, for the reason 

that the amplitudes of the acceleration interval are lower than the rest of measurement 

amplitudes and as a result, calculated initial amplitudes of DMD for starting timesteps are 

higher than real measurements. Error distributions are shown in Figure 3.52 and Figure 3.53. 
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Figure 3.52 The frequency distribution of the absolute DMD reconstructed data error, corrected merged 

interval No. 3 (0 – 156) 

 

 

Figure 3.53 The distribution of the absolute DMD reconstructed data error, corrected merged interval No. 3 (0 - 

156) 
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As can be seen in Figure 3.52 and Figure 3.53, the performance of DMD reconstruction 

is satisfactory and P90 ( 1.2e-06) is an indication of this performance. The performance of DMD 

algorithm for reconstruction of the merged intervals are summarized in Table 3. 

 

Table 3. Error distribution of DMD reconstruction data, merged intervals 

Merged interval 

No. 
Interval range P20 P50 P90 

1 0 – 111 4.6e-07 1.6e-06 7.9e-06 

2 0 – 140 5.2e-07 1.3e-06 3.9e-06 

3 0 – 156 8.1e-08 2.3e-07 1.2e-06 

4 0 – 185 4.5e-06 1.1e-05 3.5e-05 

5 0 – 210  1.5e-07 4.2e-07 3.3e-06 

6 0 – 229 3.9e-10 1.2e-09 6.4e-09 

7 0 – 248 3.9e-10 1.2e-09 8.5e-09 

8 0 – 278 7.7e-07 2.9e-06 3.4e-05 

9 0 – 306 7.9e-09 2.4e-08 2.4e-07 

10 0 – 334 1.5e-08 4.5e-08 2.5e-08 

11 0 – 346 9.1e-08 2.5e-07 7.9e-07 

12 0 – 368 0.002 0.02 0.06 

   

By separating different dynamics based on the stability of eigenvalues, DMD algorithm 

could manage to reconstruct most of the merged intervals successfully. As can be seen in Table 

3, P20, P50 and P90 for intervals No. 1 to 11 are satisfactory.  As length of the interval increases, 

it becomes difficult to find stable eigenvalues for all data and as a result reconstruction fails. 

For interval No. 12, all eigenvalues for captured modes are not stable, as number of dynamics 

increased and the corresponding result in Table 3 is the best performance of DMD algorithm 

which is not preferable.   

Comparing 3D plots of the reconstruction error in previous section indicate that the most 

of errors are related to acceleration interval, as they have small amplitudes than the rest of 

measurements. In the following section, merged intervals without acceleration measurements 

will be used to check reconstruction performance.  
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3.2.1.3 DMD reconstruction of multiple sub datasets without acceleration    

 

According to Table 1, interval No. 1 (0 – 43) is the acceleration measurement, but after 

checking stable eigenvalues 0 – 44 is selected as the acceleration interval. DMD algorithm is 

implemented for several intervals as follows: 

 

• Merged Interval No. 1: 45 – 140 

This interval contains two dynamics, including 45 – 111, 112 – 140 (see Figure 3.54).  

 

 

Figure 3.54 Annular fluid velocity, merged interval No. 1 (45 - 140) without acceleration data 

Singular value decomposition (SVD) and Singular values of the merged interval No. 

1(without acceleration) are shown in Figure 3.55 and Figure 3.56. 
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Figure 3.55 Singular value decomposition (SVD) of merged interval 1(45 - 140) without acceleration 

 

 

Figure 3.56 Singular values of merged interval No. 1 (45 - 140) without acceleration data 

 

As can be seen in Figure 3.55 and Figure 3.56, the maximum energy of the system 

corresponding to the largest singular value is 57.26%, which compare to merged interval (0 – 

140) in Figure 3.28 is reduced. Figure 3.57 shows spatial modes and their dynamics used for 

reconstruction. 



 76 

 

Figure 3.57 The Spatial modes and their dynamics in time, merged interval 1 (45 - 140) without acceleration 

data 

As can be seen in Figure 3.57, captured modes and their dynamics are identical to 

previous analyses as intervals are classified based on stable eigenvalues. Eigenvalues of the 

merged interval (45 – 140) are shown in Figure 3.58. 

 

Figure 3.58 Eigenvalues of merged interval 1 (45 - 140) without acceleration data 
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By removing acceleration measurements, the corresponding eigenvalues inside unit 

circle are removed and stable eigenvalues achieved (see Figure 3.58). 3D plots of DMD 

reconstruction and original measurements (merged interval 45 – 140) are shown in Figure 3.59 

and Figure 3.60. 

 

Figure 3.59 DMD reconstruction of merged interval No. 1 (45 - 140) without acceleration data 

 

 

Figure 3.60 Original data, merged interval No. 1 (45 - 140) without acceleration data 
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As shown in Figure 3.59 and Figure 3.60, the reconstruction and original data plots are 

similar. To find out the accuracy of DMD reconstruction, it is better to have a look at the figures 

which represent error. 

 

Figure 3.61 DMD reconstructed data error merged interval No. 1 (45 – 140) without acceleration data 

 

As can be seen in Figure 3.61, error plot is mostly light blue which indicates almost zero 

error in reconstruction. Error distributions are shown in Figure 3.62 and Figure 3.63. 
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Figure 3.62 The frequency distribution of the absolute DMD reconstructed data error, merged interval No. 1 

(45 – 140) without acceleration data 

 

 

Figure 3.63 The distribution of the absolute DMD reconstructed data error, merged interval No. 1 (45 - 140) 

without acceleration data 
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By removing acceleration interval, DMD algorithm could calculate more precise initial 

amplitudes for modes, as amplitudes are in same ranges. Thus, better results are achieved 

compare to the reconstruction of merged intervals with acceleration. P90 is 1.5e-11, which is 

an indication of great performance. The performance of DMD algorithm for reconstruction of 

the merged intervals without acceleration data are summarized in Table 4. 

 

Table 4. Error distribution of DMD reconstruction data, merged intervals without acceleration 

Merged interval 

No. 
Interval range P20 P50 P90 

1 45 – 140 1.1e-12 3.6e-12 1.5e-11 

2 45 – 156 3.6e-12 1.1e-11 4.2e-11 

3 45 – 184 2.9e-12 9.6e-12 4.0e-11 

4 45 – 203 2.9e-11 8.1e-11 2.4e-10 

5 45 – 224 4.7e-11 1.4e-10 5.9e-10 

6 45 – 251 3.6e-10 1.1e-09 3.8e-09 

7 45 - 288 1.8e-09 5.2e-09 1.7e-08 

 

As can be seen in Table 4, great performance is achieved by removing acceleration data. 

After classifying data based on similar patterns and separating different dynamics especially 

transitional measurements between two dynamics using stable eigenvalues, these results 

achieved. Moreover, after removing acceleration interval, adding or removing columns of data 

continued to get stable eigenvalues and this is why you may see different interval ranges 

compare to Table 3. As mentioned earlier, by increasing the number of timesteps and as a result 

number of dynamics, some eigenvalues will be located out of stability circle and for this reason, 

it is not possible to achieve satisfactory reconstruction beyond 288 timesteps. 

Until now, attempts have been made to reconstruct the original dataset. In spite of all 

limitations and constraints, DMD algorithm succeeded in reconstructing number of time 

snapshots under certain conditions. In the following sections, interpolation and extrapolation of 

DMD reconstructed data are going to be analyzed.   

3.2.2 DMD data interpolation 

If DMD algorithm was able to reconstruct any dataset with no constraints, then it would be 

possible to use interpolation capability of DMD unlimitedly. For now, to check the accuracy of 
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DMD data interpolation, one of merged intervals without acceleration data (45 – 225) is used. 

One out of two measured data snapshots is used for reconstruction and missed measurements 

are interpolated to check with real measurements. DMD reconstruction error is shown in Figure 

3.64. 

 

Figure 3.64 DMD reconstructed data error, (45 – 225) odd columns 

As shown in Figure 3.64, DMD reconstruction error is low through the dataset except 

the measurements at the boundary. Error distributions are shown in Figure 3.65 and Figure 3.66. 
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Figure 3.65 The frequency distribution of the absolute DMD reconstructed data error, (45 – 225) odd columns 

  

 

Figure 3.66 The distribution of the absolute DMD reconstructed data error, (45 - 225) odd columns 
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As can be seen in Figure 3.65 and Figure 3.66, the DMD performance for this interval 

is satisfactory and this is why it is selected for evaluating DMD data interpolation. 3D plots of 

DMD data reconstruction and interpolation along with corresponding original data are shown 

in the following.  

 

Figure 3.67 DMD reconstruction (odd time snapshots) and interpolation (even time snapshots) , (45 - 225) 

 

 

Figure 3.68 Original data, (45 - 225) 
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Comparing Figure 3.67 and Figure 3.68, it is clear that the interpolated and original data 

look similar except for last time snapshots. To find out the accuracy of DMD interpolation, it 

is better to have a look at the figures which represent error. 

 

Figure 3.69 DMD interpolated data error, (45 - 225) 

As expected, most of DMD interpolated errors are related to last time snapshots (see 

Figure 3.69). Error distributions are shown in Figure 3.70 and Figure 3.71. 

 

Figure 3.70 The frequency distribution of the absolute DMD interpolated data error, (45 - 225) 
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Figure 3.71 The distribution of the absolute DMD interpolated data error, (45 - 225) 

 

As can be seen in Figure 3.70 and Figure 3.71, the performance of DMD interpolation 

is convincing for some of the measurements. DMD interpolation could be satisfactory as long 

as the performance of DMD reconstruction is preferable. 

 

3.2.3 DMD data extrapolation or prediction  

For evaluating DMD data extrapolation, merged interval (45 – 140) is going to be used as 

it was successfully reconstructed (see error distributions in Figure 3.62 and Figure 3.63). As 

mentioned earlier, most of DMD reconstruction error is at the boundary when system transits 

to another dynamic.  

DMD algorithm is used to extrapolate 8 time-snapshots in the following. 3D plots of DMD 

data reconstruction and extrapolation along with corresponding original data are shown in 

Figure 3.72 and Figure 3.73. 
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Figure 3.72 DMD reconstructed (0 - 140) and extrapolated (141 - 148) data 

 

Figure 3.73 Original data interval (0 - 148) 

   

It is obvious that Figure 3.72 and Figure 3.73 are different. Extrapolated values are so 

much larger than reconstructed values and this is the reason why the reconstructed values are 

shown like a flat plane with red color. DMD algorithm extrapolates future dynamics based on 

the features of the previous reconstructed dataset. According to original data, dynamic in 

interval (140 – 148) is almost similar to previous dynamics, thus initial amplitudes for previous 

dynamics should work acceptable for the extrapolated interval. Another important factor to be 
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considered is the stability of eigenvalues. Figure 3.74 shows the location of eigenvalues used 

for reconstruction of dataset.  

 

Figure 3.74 Eigenvalues of reconstructed dataset (45 – 140) for extrapolation 

Figure 3.74 shows the unit circle and eigenvalues of dataset (45 – 140) with red and 

blue colors. For successful reconstructing of the dataset, eigenvalues are stabilized as a circle 

outside of unit circle. Recall that red and blue eigenvalues diverge and converge in time, 

respectively. As the eigenvalue circle is larger than the unit circle, capture modes change faster 

and this is critical for extrapolation. By extrapolating more timesteps, diverging eigenvalues 

oscillate with higher amplitudes and as a result the extrapolated data become far from original 

data. This is why unit circle is more preferable for DMD prediction which allows for more valid 

extrapolation in time. Error distributions of extrapolated data are shown in Figure 3.75 and 

Figure 3.76. 



 88 

 

Figure 3.75 The frequency distribution of the absolute DMD extrapolated data error 

      

 

Figure 3.76 The distribution of the absolute DMD extrapolated data error 
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Figure 3.75 and Figure 3.76 show poor extrapolation of DMD algorithm for this dataset. 

P90 is 28.592208 which is inacceptable.  

3.2.4 Summary of DMD implementation in AFV case study 

Annular fluid velocity dataset was used to characterize the basic DMD algorithm 

capabilities. Among the analyzed DMD applications were DMD data reconstruction, DMD data 

interpolation and DMD data prediction. The main objective has been the reconstruction of 

whole dataset because it is the base of all applications of DMD algorithm. Unfortunately, basic 

DMD algorithm cannot reconstruct different datasets without limitations. Under various 

conditions, basic DMD algorithm was implemented and its pros and cons were evaluated and 

good understandings about the method were achieved. Furthermore, based on the successful 

reconstructed intervals, short studies of DMD data interpolation and extrapolation were 

accomplished, aiming to learn more about the algorithm capabilities. In the following chapter, 

the main findings of this master thesis will be summarized.    

 

3.3 Future studies 

As explained earlier, this master thesis was just the tip of iceberg and the journey toward 

more advanced and complicated DMD algorithm started. There are a lot of limitations and 

unknowns about DMD applications which need to be overcome. Future directions of this work 

could be extended as implementing other DMD extensions, such as multiresolution DMD, 

compressed DMD, forward backward DMD, higher order DMD and so forth.  

3.4 DMD applicability and current technologies in the industry 

One of the utmost desires of the drilling industry is full drilling automation in order to 

minimize well construction cost, optimize well performance and so many other advantages. 

DMD is one of data-driven techniques which is developing and could be used in digital drilling 

technology. The method relies on high quality and high-density data and this turned into reality 

by introduction of wired drill pipe. Many companies are working on different WDP 

technologies, as benefits and impacts of WDP has been recognized through field tests, in order 

to improve the reliability and reduce total cost of ownership which are not the subject of this 

section (Silvester, Høgset, Torvund, & Saxena, 2020). One of the important factors for applying 

DMD algorithm is the number of measurements in each timestep which is corresponding to 
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number of sensors along drill sting. Among the technologies for WDP in the market are 

IntelliServ wired drill pipe from National Oilwell Varco Company, Powerline drill Sting (PDS) 

from TDE Group, DualLink drill string from Reelwell AS and Micro-repeater wired pipe or 

smart pipe from Baker Hughes. According to smart pipe technology, there is one sensor per 

each pipe joint for real-time measurements (Macpherson, Roders, Schoenborn, Mieting, & 

Lopez, 2019). Regarding IntelliServ, PDS and DualLink, no published document has been 

found about the maximum number of sensors which can be used along wired drill-sting. 

However, using a lot of ASMs could be limited by their costs as ASMs are separate tool joints. 

It seems that smart pipe technology fulfils the DMD algorithm requirements.   
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 Conclusions and Recommendations 

A key contribution of this master thesis is the introduction of DMD theoretical framework 

based on linear algebra and applications of DMD algorithm to a drilling dynamic dataset in 

order to understand the potential benefits and drawbacks of DMD algorithm. The main findings 

and conclusions of the work are summarized as follows: 

• DMD algorithm is easy to formulate and it can be used to explore diagnostic features of 

data like eigenvalues where their imaginary parts correspond to the underlying frequencies 

of the system 

• DMD algorithm is able to separate independent dynamics of AFV dataset using eigenvalues 

corresponding to stable modes 

• Transition from one dynamic to another is not well captured by the algorithm in such a way 

that even one measurement from another dynamic can ruin the whole reconstruction. 

• DMD algorithm succeeded in reconstructing number of time snapshots under certain 

constrains and conditions, however our desire is to reconstruct whole dataset, no matter 

what dynamics exist in it. 

• When there are dynamics with different ranges of amplitudes, optimal amplitudes measured 

by algorithm could be overestimated, underestimated or equal, compare to real values. For 

this reason, acceleration interval is overestimated. By removing acceleration interval, DMD 

algorithm could calculate more precise initial amplitudes for modes, as amplitudes are in 

same ranges. Thus, better results are achieved compare to the reconstruction of merged 

intervals with acceleration. 

• By increasing the number of timesteps in a dataset and as a result number of dynamics, 

some eigenvalues will be located out of stability circle and for this reason, it is not possible 

to achieve satisfactory reconstruction beyond 288 timesteps. 

• DMD interpolation could be satisfactory as long as the performance of the DMD 

reconstruction is preferable. 

• The AFV during swabbing is so non-linear, that it limits very much the applicability of the 

DMD for extrapolation. 

• In successful reconstruction of AFV datasets, the eigenvalues were stabilized at short 

distance out of unit circle corresponding to stable modes. As the eigenvalue circle is larger 

than the unit circle, capture modes change faster and this is critical for extrapolation. By 

extrapolating more timesteps, diverging eigenvalues oscillate with higher amplitudes and 

as a result the extrapolated data become far from original data. This is why unit circle is 
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more preferable for DMD prediction which allows for more valid extrapolation in time. 

• Many studies are necessary to develop DMD algorithm and overcome limitations. 

Moreover, for commercializing DMD algorithm, WDP providers should increase the 

number of sensors run on WDP to transmit high quality and high-density real-time data. 
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Appendix A – Eigenvalue and eigenvector  

Eigenvalue problems often arise from differential equations which are impossible to solve 

by elimination. By considering the linear differential equation 
𝑑𝑦

𝑑𝑡
= 𝐴𝑦 and attempting a 

solution of the form 𝑦(𝑡) = 𝜙 exp (𝜆𝑡), the resulting equation for 𝜙 is:  

𝐴𝜙 = 𝜆𝜙 (App. A.1) 

which is eigenvalue problems. The 𝜙 and 𝜆 denote eigenvector and eigenvalue respectively. 

Almost all vectors change direction when they are multiplied by A. There are some exceptional 

vectors 𝜙 which are in the same direction as  𝐴𝜙 and called eigenvectors. When matrix A is 

multiplied by an eigenvector 𝜙, the resulting vector 𝐴𝜙 is a number 𝜆 times the original 𝜙. In 

other words, the eigenvalue 𝜆 is an indication which represents whether the vector 𝜙 is stretched 

or shrunk or reversed or left unchanged when it is multiplied by A.  

 

Computing eigenvalue and eigenvector: 

- Rewriting the App. A.1 as:                       𝐴𝜙𝑖 = 𝜆𝑖𝐼𝜙𝑖        i: number of eigenvalue or eigenvector  

- Moving 𝜆𝐼𝜙 to the left side of equation:      𝐴𝜙𝑖 − 𝜆𝑖𝐼𝜙𝑖 = 0 

- Factoring out the vector 𝜙:                             (𝐴 − 𝜆𝑖𝐼)𝜙𝑖 = 0 

- Computing eigenvalues knowing that 𝜆 is an eigenvalue of A if and only if 𝐴 −  𝜆𝐼 is singular, 

which means: 

𝑑𝑒𝑡(𝐴 − 𝜆𝑖𝐼) = 0 

- For each eigenvalue  𝜆, solve (𝐴 − 𝜆𝐼)𝜙 = 0 to find an eigenvector 𝜙 

- When all eigenvalues and eigenvectors of A are computed, it is possible to collect them in 

matrix system: 

𝐴𝜙1 = 𝜆1𝜙1 

𝐴𝜙2 = 𝜆2𝜙2 

⋮ 

𝐴𝜙𝑛 = 𝜆𝑛𝜙𝑛 

 

𝐴Φ = Φ𝜆  

 

 

which columns of matrix Φ are eigenvectors of A and 𝜆 is a matrix whose diagonals are 

eigenvalues of A. (Kutz, 2013; Strang, 2016)5 

 

 

5 These references are used to explain mathematical concepts for Appendix A  
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Appendix B – Singular value decomposition (SVD) 

The singular value decomposition (SVD) is one of the most important matrix factorizations 

for various computational methods. Data that are generally generated from complex systems 

are in form matrices which are usually low-rank, meaning that there are a few patterns that 

describe system dynamics. The SVD is an efficient method of extracting dominant patterns 

purely from high-dimensional data to determine a low-dimensional approximation. The SVD 

is numerically stable and guaranteed to exist and as a result provide a new coordinate system 

to represent the data according to the dominant correlations within the data. In addition to 

dimensionality reduction, the SVD is used to compute the pseudo-inverse of non-square 

matrices to find solutions of overdetermined or underdetermined system of equations, Ax=b. 

The SVD is a unique matrix decomposition that exists for every matrix 𝑋𝜖ℂ𝑛×𝑚: 

𝑋 = 𝑈Σ𝑉∗ (App. B.1) 

where  𝑈𝜖ℂ𝑛×𝑚 left singular vectors and 𝑉𝜖ℂ𝑚×𝑚 right singular vectors are unitary matrices 

(square matrix U is unitary if U*U=UU*=I), and Σ𝜖ℂ𝑛×𝑚 singular values of X is a matrix with 

real, nonnegative and ordered number on diagonal and zeros off the diagonal. * denotes the 

complex conjugate transpose (for real-valued matrix, it is as regular transpose 𝑋∗ = 𝑋𝑇). For 

overdetermined system (𝑛 ≥ 𝑚), the matrix Σ has the most m nonzero elements on the diagonal, 

so full SVD (App. B.1) could be written as economy SVD to represent X: 

𝑋 = 𝑈Σ𝑉∗ = [𝑈̂   𝑈̂⊥] [Σ̂
0
] 𝑉∗ = 𝑈̂Σ̂𝑉∗ (App. B.2) 

where columns of 𝑈̂⊥ span a vector space the is complementary and orthogonal to that spanned 

by 𝑈̂. 

 

Append. B.1 Full singular value decomposition (SVD)((Brunton & Kutz, 2019)) 
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Append. B.2 Economy singular value decomposition (SVD)(Brunton & Kutz, 2019) 

 

For high dimensional data, optimal rank-r approximation of the measured data could be 

used by truncating rank-r SVD which is obtained by keeping the leading r singular values and 

vectors and discarding the rest. The truncated SVD provides a coordinate transformation from 

high dimensional data space into a low dimensional data space. By taking SVD and plotting 

singular values it is possible to find out the energy of each mode and truncate matrix accordingly 

which compress the measured data matrix (Brunton & Kutz, 2019). 

 

Append. B.3 Truncated Singular Value Decomposition (SVD)(Brunton & Kutz, 2019) 
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If measured data matrix X contains spatial measurements in time, U encode spatial patterns and 

V encode temporal patterns. The SVD of X could be interpreted geometrically by linear 

mapping of hypersphere into an ellipsoid which U is a rotation factor and Σ is stretching 

factor(Brunton & Kutz, 2019; Kutz, 2013)6. 

 

Append. B. 4 Geometric illustration of the SVD as mapping from a sphere to an ellipsoid (Brunton & Kutz, 2019) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 These references are used to explain mathematical concepts for Appendix B 
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Appendix C – Overdetermined and underdetermined system 

In mathematics, the number of constraints (independent equations) is counted in order to 

compare it with the number of variables, parameters, etc. which can be seen as a degree of 

freedom. If there are fewer equations than unknowns, the system of equations is considered 

underdetermined. By contrast the overdetermined system has more equations than unknowns. 

When the number of equations and number of variables are equal, for every variable giving a 

degree of freedom there is a corresponding constraint. An underdetermined linear system has 

either no solution or infinitely many solutions. In case a system of equations having no solution 

is said to be inconsistent. On the other hand, a system of equations is consistent when it has an 

infinitude of solutions. An overdetermined system may have solutions for some cases for 

example some equations are linear combinations of the others. 

For example: 

[
1 0
0 1
0 0

] [
𝑥
𝑦] = [

1
1
0
] (App. C.1) 

 

which 𝐴 = [
1 0
0 1
0 0

] is coefficient matrix, 𝐵 = [
𝑥
𝑦] is variable matrix, 𝐶 = [

1
1
0
] is constant matrix 

and 𝐷 = [
1 0 1
0 1 1
0 0 0

] is augmented matrix by adding constant matrix as a column in coefficient 

matrix. As the rows of coefficient matrix A (corresponding the number of equations or 

constraints) is greater than the number of variable in the variable matrix, the system is 

overdetermined. A linear system is consistent if and only if the coefficient matrix has the same 

rank as the augmented matrix otherwise it is inconsistent. The rank of matrix corresponds to 

the maximal number of linearity independent columns of a matrix. In this example matrix A 

and D both have the ranks equal two which means the system is consistent (Datta, 2010; Gentle, 

2012)7. 

 

 

 

 

 

 

 

 

7 These references are used to explain mathematical concepts for Appendix C 
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Appendix D – DMD reconstructed result of single sub dataset, interval No. 2 

– 5  

 

• Interval No. 2: 44 – 111 

 

 

Append. D.1 Annular fluid velocity, interval No. 2 (44 - 111) 
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Append. D.2 Singular value decomposition (SVD) of interval 2(44 - 111) 

 

 

 

 

 

Append. D.3 Singular values of interval No. 2 (44 - 111) 
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Append. D.4 The Spatial modes and their dynamics in time, interval 2 (44 - 111) 

 

 

 

 

 

Append. D.5 Eigenvalues of interval 2 (44 - 111) 
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Append. D.6 DMD reconstruction of the interval No. 2 (44 - 111) 

 

 

 

 

 

Append. D.7 Original data interval No. 2 (44 - 111) 
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Append. D.8 DMD reconstructed data error interval No. 2 (44 - 111) 

 

 

 

 

Append. D.9 The frequency distribution of the absolute DMD reconstructed data error, interval No. 2 (44 – 

111) 
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Append. D.10 The distribution of the absolute DMD reconstructed data error, interval No. 2 (44 - 111) 
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• Interval No. 3: 112 – 140 

 

 

Append. D.11 Annular fluid velocity, interval No. 3 (112 - 140) 
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Append. D.12 The Spatial modes and their dynamics in time, interval 3 (112 - 140) 

 

 

 

 

 

 

Append. D.13 Singular value decomposition (SVD) of interval 3 (112 - 140) 
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Append. D.14 Singular values of interval No. 3 (112 - 140) 

 

 

 

 

 

 

Append. D.15 Eigenvalues of interval 3 (112 - 140) 
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Append. D.16 DMD reconstruction of the interval No. 3 (112 - 140) 

 

 

 

 

 

Append. D.17 Original data interval No. 3 (112 - 140) 
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Append. D.18 DMD reconstructed data error interval No. 3 (112 - 140) 

 

 

 

 

Append. D.19 The frequency distribution of the absolute DMD reconstructed data error, interval No. 3 (112 – 

140) 
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Append. D.20 The distribution of the absolute DMD reconstructed data error, interval No. 3 (112 - 140) 
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• Interval No. 4: 141 – 161 

 

 

Append. D.21 The distribution of the absolute DMD reconstructed data error, interval No. 4 (141 - 161) 
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Append. D.22 The Spatial modes and their dynamics in time, interval 4 (141 - 161) 

 

 

 

 

 

 

Append. D.23 Singular value decomposition (SVD) of interval 4 (141 - 161) 
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Append. D.24 Singular values of interval No. 4 (141 - 161) 

 

 

 

 

 

Append. D.25 Eigenvalues of interval 4 (141 - 161) 
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Append. D.26 DMD reconstruction of the interval No. 4 (141 - 161) 

 

 

 

 

 

Append. D.27 Original data interval No. 4 (141 - 161) 
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Append. D.28 DMD reconstructed data error interval No. 4 (141 - 161) 

 

 

 

 

Append. D.29 The frequency distribution of the absolute DMD reconstructed data error, interval No. 4 (141 – 

161) 
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Append. D.30 The distribution of the absolute DMD reconstructed data error, interval No. 4 (141 - 161) 
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• Interval No. 5: 162 – 185 

 

 

Append. D.31 Annular fluid velocity, interval No. 5 (162 - 185) 
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Append. D.32 The Spatial modes and their dynamics in time, interval 5 (162 - 185) 

 

 

 

 

 

 

Append. D.33 Singular value decomposition (SVD) of interval 5 (162 - 185) 
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Append. D.34 Singular values of interval No. 5 (162 - 185) 

 

 

 

 

 

Append. D.35 Eigenvalues of interval 5 (162 - 185) 
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Append. D.36 DMD reconstruction of the interval No. 5 (162 - 185) 

 

 

 

 

 

Append. D.37 Original data interval No. 5 (162 - 185) 
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Append. D.38 DMD reconstructed data error interval No. 5 (162 - 185) 

 

 

 

 

Append. D.39 The frequency distribution of the absolute DMD reconstructed data error, interval No. 5 (162 –

185) 
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Append. D.40 The distribution of the absolute DMD reconstructed data error, interval No. 5 (162 - 185) 
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Appendix E – Python codes  

The codes were written in Jupiter Notebook, so different cells are separated with dash lines. 

 

Chapter 2: DMD example codes 

 

# Import the necessary libraries 

 

%matplotlib inline 

import matplotlib.pyplot as plt 

import numpy as np 

from pydmd import DMD 

 

# Define the original signal  

 

def f1(x,t):  

    return np.sin(x)*np.exp(10.3j*t) 

def f2(x,t): 

    return np.cos(x)*np.exp(1.8j*t) 

x =np.linspace(0, 10, 128) 

t = np.linspace(0, 4*np.pi, 128) 

xgrid, tgrid = np.meshgrid(x, t) 

X1 = f1(xgrid, tgrid) 

X2 = f2(xgrid, tgrid) 

X = X1 + X2 

 

# Plotting the original signals 

 

titles = ['$f_1(x,t)$', '$f_2(x,t)$', '$F(x,t)$'] 

data = [X1, X2, X] 

fig = plt.figure(figsize=(17,6)) 

for n, title, d in zip(range(131,134), titles, data): 

    plt.subplot(n) 

    plt.pcolor(xgrid, tgrid, d.real) 

    plt.title(title,size=15) 

    matplotlib.rc('xtick', labelsize=12)  

    matplotlib.rc('ytick', labelsize=12)  

plt.colorbar() 

plt.show() 

 

# SVD 

 

UU, ss, VV = np.linalg.svd(X,full_matrices=True); 

plt.figure(figsize=(15,8)) 

plt.subplot(1,3,1) 

plt.plot(x[:],UU[:,0:ss.shape[0]].real); 

plt.xlabel('x',fontsize=15) 

plt.ylabel('F(x,t)',fontsize=15) 

plt.title('Spatial Modes',fontsize=15) 

plt.subplot(1,3,2) 

plt.plot((np.diag(ss))/(np.trace(np.diag(ss))),'o'); 

plt.xlabel('Number of Singular Values',fontsize=15) 

plt.ylabel('Normalized Singular Values',fontsize=15) 

plt.subplot(1,3,3) 

plt.plot(np.array(list(range(0,X.shape[1]))),VV[:,0:ss.shape[0]].real); 

plt.xlabel('time',fontsize=15) 

plt.ylabel('F(x,t)',fontsize=15) 
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plt.title('Temporal Modes',fontsize=15) 

plt.tight_layout() 

matplotlib.rc('xtick', labelsize=12)  

matplotlib.rc('ytick', labelsize=12)  

plt.show() 

 

# Singular values  

 

plt.figure(figsize=(15,8)) 

plt.subplot(1,3,1) 

plt.plot(ss,'ro'); 

plt.xlabel('Number of Singular Values',fontsize=15) 

plt.ylabel('Singular Values',fontsize=15) 

plt.subplot(1,3,2) 

plt.plot((np.diag(ss))/(np.trace(np.diag(ss))),'o'); 

plt.xlabel('Number of Singular Values',fontsize=15) 

plt.ylabel('Normalized Singular Values',fontsize=15) 

plt.subplot(1,3,3) 

PersentSS=np.diag((np.diag(ss))/(np.trace(np.diag(ss))))*100 

CumulSS=np.empty((PersentSS.shape[0],1)) 

CumulSS[0,0]=PersentSS[0].copy() 

for i in range(1,PersentSS.shape[0]): 

    CumulSS[i,0]=CumulSS[i-1,0]+PersentSS[i] 

plt.plot(range(PersentSS.shape[0]),CumulSS,'bo'); 

plt.xlabel('Number of Singular Values',fontsize=15) 

plt.ylabel('Cumulative energy in first r modes (%)',fontsize=15) 

plt.tight_layout() 

matplotlib.rc('xtick', labelsize=12)  

matplotlib.rc('ytick', labelsize=12)  

plt.show() 

 

# Applying the DMD  

 

dmd = DMD(svd_rank=0,opt=True) 

dmd.fit(X.T) 

 

# Eigenvalues on the unit circle 

 

for eig in dmd.eigs: 

    print('Eigenvalue: distance from unit circle '.format(eig, np.abs(eig.imag**2+eig.real**2 - 1))) 

dmd.plot_eigs(show_axes=True, show_unit_circle=True) 

 

# Plotting DMD modes and dynamics 

 

plt.figure(figsize=(16,8)) 

plt.subplot(1,2,1) 

for mode in dmd.modes.T: 

    plt.plot(x, mode.real) 

    plt.title('Modes') 

plt.show() 

plt.subplot(1,2,2) 

for dynamic in dmd.dynamics: 

    plt.plot(t, dynamic.real) 

    plt.title('Dynamics') 

plt.show() 

 

# Plotting the DMD reconstructed data 

 

fig = plt.figure(figsize=(17,6)) 

titles = ['Detected mode 1', 'Detected mode 2'] 



 124 

for n,title, mode, dynamic in zip(range(131, 133),titles, dmd.modes.T, dmd.dynamics): 

    plt.subplot(n) 

    plt.pcolor(xgrid, tgrid, (mode.reshape(-1, 1).dot(dynamic.reshape(1, -1))).real.T) 

    plt.title(title,size=15)    

plt.subplot(133) 

plt.pcolor(xgrid, tgrid, dmd.reconstructed_data.T.real) 

plt.title('Reconstructed F(x,t)',size=15) 

matplotlib.rc('xtick', labelsize=12)  

matplotlib.rc('ytick', labelsize=12) 

plt.colorbar() 

plt.show() 

 

# Frequency distribution of the absolute DMD reconstructed data error by Histogram 

 

import scipy.special 

from bokeh.layouts import gridplot 

from bokeh.plotting import figure, show 

from bokeh.io import output_notebook 

from bokeh.models import NumeralTickFormatter 

from bokeh.models import ColumnDataSource, ranges, LabelSet 

from bokeh.layouts import layout  

output_notebook() 

RecError=dmd.reconstructed_data-X.T 

RecErrorPer=np.absolute(RecError.flatten())    # Error data set 

hist, edges = np.histogram(RecErrorPer, density=False, bins=10 ) 

p=figure(title='')    

p.quad(top=hist, bottom=0, left=edges[:-1], right=edges[1:],fill_color="navy", line_color ="black", alpha=.7) 

p.y_range.start = 0 

p.xaxis.axis_label = 'Absolute DMD Reconstructed Data Error '   

p.yaxis.axis_label = 'Count' 

p.title.align = "right" 

p.yaxis[0].formatter = NumeralTickFormatter(format="0") 

p.ygrid.grid_line_alpha = 0.5 

p.ygrid.grid_line_alpha = 0.5 

p.ygrid.grid_line_dash = [6, 4] 

p.xgrid.grid_line_dash = [6, 4] 

source = ColumnDataSource(dict(x=[round(((edges[i+1]-edges[i])/2)+edges[i],15) for i in range(edges.shape[0]-

1)],y=hist,z=[str(round(i,2))+'%' for i in (hist/np.sum(hist))*100])) 

labels = LabelSet(x='x', y='y', text='z', level='glyph',x_offset=-10, y_offset=0,source=source, 

render_mode='canvas',text_font_size='8pt') 

p.add_layout(labels) 

show(gridplot([p],ncols=2,plot_height=400,plot_width=600, toolbar_location=None)); 

 

# The distribution of the absolute DMD reconstructed data error 

 

def ecdf(data): 

    """ Compute ECDF """ 

    x = np.sort(data) 

    n = x.size 

    y = np.arange(1, n+1) / n 

    return(x,y) 

from bokeh.plotting import figure, show 

from bokeh.io import output_notebook 

from bokeh.models import Label 

from bokeh.models import Legend, LegendItem 

output_notebook() 

Ex,Ey = ecdf(np.absolute(RecError.flatten()))  

p2=figure() 

p2.circle(x=Ex, y=Ey,size=10, color='navy', alpha=0.7) 

p2.title.text = '' 



 125 

p2.xaxis.axis_label = 'Absolute DMD Reconstructed Data Error ' 

p2.yaxis.axis_label = 'Absolute Error Distrubution' 

p2.ygrid.grid_line_alpha = 0.5 

p2.ygrid.grid_line_alpha = 0.5 

p2.ygrid.grid_line_dash = [6, 4] 

p2.xgrid.grid_line_dash = [6, 4] 

#P20 

p2.line([Ex[np.where(Ey> 0.2)[0][0]-1],Ex[np.where(Ey> 0.2)[0][0]-1]],[0,1],line_dash="4 

4",color='black',line_width=2,legend_label='P20:'+str(round(Ex[np.where(Ey> 0.2)[0][0]-1].real,15))) 

P20 = Label(x=Ex[np.where(Ey > 0.2)[0][0]-1], y=1, text='P20',x_offset=-20, y_offset=0,text_font_size='10pt') 

p2.add_layout(P20) 

#P50 

p2.line([Ex[np.where(Ey > 0.5)[0][0]-1],Ex[np.where(Ey > 0.5)[0][0]-1]],[0,1],line_dash="4 

4",color='black',line_width=2,legend_label='P50:'+str(round(Ex[np.where(Ey > 0.5)[0][0]-1].real,15))) 

P50 = Label(x=Ex[np.where(Ey > 0.5)[0][0]-1], y=1, text='P50',x_offset=-10, y_offset=0,text_font_size='10pt') 

p2.add_layout(P50) 

#P90 

p2.line([Ex[np.where(Ey > 0.9)[0][0]-1],Ex[np.where(Ey > 0.9)[0][0]-1]],[0,1],line_dash="4 

4",color='black',line_width=2,legend_label='P90:'+str(round(Ex[np.where(Ey > 0.9)[0][0]-1].real,15))) 

P90 = Label(x=Ex[np.where(Ey > 0.9)[0][0]-1], y=1, text='P90',x_offset=0, y_offset=0,text_font_size='10pt') 

p2.add_layout(P90) 

p2.legend.location = 'bottom_right' 

p2.legend.background_fill_color = "#fefefe" 

show(gridplot([p2],ncols=2,plot_height=400,plot_width=400, toolbar_location=None)); 

 

Chapter 3: DMD reconstruction, interpolation and extrapolation codes 

 

# Importing processed data from data base 
 

%matplotlib inline 

import matplotlib.pyplot as plt 

import numpy as np 

import os 

from pydmd import DMD 

os.chdir('C:\\Users\\ext_mosh\\Desktop\\MasterThesisData\\AnnulusFluidVelocityFolder\\AnnulusFluidVelocity

EligExcel\\RawData')   # my database address  

AnnFluidVel=np.genfromtxt("AnnalusFluidVelocity.txt",delimiter=',') 

Time=np.genfromtxt("SamplingTime.txt",delimiter=',') 

MD=np.genfromtxt("PreparedCurvilinear.txt",delimiter=',') 

 

# Determining the data which going to be used for analysis 

 

start=45                      # starting time snapshot 

step=225                    # Number of Column or timestep 

 

SelectedMatrix=AnnFluidVel[:,start:1669].copy()         

X=SelectedMatrix[:,0:step:2] .copy().T                         

TX=Time[start:start+step:2].copy()                                           

t=TX    

    

# SVD 

 

%matplotlib inline 

import matplotlib  

UU, ss, VV = np.linalg.svd(X.T,full_matrices=True); 

plt.figure(figsize=(15,8)) 

plt.subplot(1,3,1) 

plt.plot(MD[:],UU[:,0:ss.shape[0]].real); 
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plt.xlabel('MD [m]',fontsize=14) 

plt.ylabel('Annulus Fluid Velocity [m/S]',fontsize=14) 

plt.title('Spatial Modes',fontsize=14) 

plt.subplot(1,3,2) 

plt.plot((np.diag(ss))/(np.trace(np.diag(ss))),'o'); 

plt.xlabel('Number of Singular Values',fontsize=14) 

plt.ylabel('Normalized Singular Values',fontsize=14) 

plt.subplot(1,3,3) 

plt.plot(np.array(list(range(0,X.T.shape[1]))),VV[:,0:ss.shape[0]].real); 

plt.xlabel('Time Snapshots',fontsize=14) 

plt.ylabel('Annulus Fluid Velocity [m/S]',fontsize=14) 

plt.title('Temporal Modes',fontsize=14) 

matplotlib.rc('xtick', labelsize=12)  

matplotlib.rc('ytick', labelsize=12)  
plt.tight_layout() 

plt.show() 

 

# Singular values  

 

import matplotlib  

plt.figure(figsize=(15,8)) 

plt.subplot(1,3,1) 

plt.plot(ss,'ro'); 

plt.xlabel('Number of Singular Values',fontsize=15) 

plt.ylabel('Singular Values',fontsize=15) 

plt.subplot(1,3,2) 

plt.plot((np.diag(ss))/(np.trace(np.diag(ss))),'o'); 

plt.xlabel('Number of Singular Values',fontsize=15) 

plt.ylabel('Normalized Singular Values',fontsize=15) 

plt.subplot(1,3,3) 

PersentSS=np.diag((np.diag(ss))/(np.trace(np.diag(ss))))*100 

CumulSS=np.empty((PersentSS.shape[0],1)) 

CumulSS[0,0]=PersentSS[0].copy() 

for i in range(1,PersentSS.shape[0]): 

    CumulSS[i,0]=CumulSS[i-1,0]+PersentSS[i] 

plt.plot(range(PersentSS.shape[0]),CumulSS,'bo'); 

plt.xlabel('Number of Singular Values',fontsize=15) 

plt.ylabel('Cumulative energy in first r modes (%)',fontsize=15) 

plt.tight_layout() 

matplotlib.rc('xtick', labelsize=12)  

matplotlib.rc('ytick', labelsize=12)  

plt.show() 

 

# Applying the DMD  

 

dmd = DMD(svd_rank=-1,opt=True) 

dmd.fit(X.T) 

 

# Eigenvalues on the unit circle 

 

i=0 

for eig in dmd.eigs: 

print('Eigenvalue {}: distance from unit circle {}'.format(eig, np.abs(eig.imag**2+eig.real**2 - 1))) 

    print(i) 

    i=i+1 

print('total number of eigenvalue used:  '+ str(i)) 

print('the energy used in reduced version is:  '+str(CumulSS[i-1][0])) 

dmd.plot_eigs(show_axes=True, show_unit_circle=True) 

 

# Plotting DMD modes and dynamics 
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%matplotlib inline 

plt.figure(figsize=(15,8)) 

plt.subplot(1,2,1) 

for mode in dmd.modes.T: 

    plt.plot(MD[:],mode.real,label='Modes') 

plt.title('Modes',fontsize=14) 

plt.subplot(1,2,2) 

for dynamic in dmd.dynamics: 

    plt.plot( dmd.dmd_timesteps,dynamic.real,label='Dynamics') 

plt.title('Dynamics',fontsize=14) 

plt.tight_layout() 

plt.show() 

 

# 3D plotting of the DMD reconstructed data 

 

from mpl_toolkits.mplot3d import axes3d 

import matplotlib.pyplot as plt 

from matplotlib import cm 

Tgrid, MDgrid = np.meshgrid(dmd.dmd_timesteps, MD) 

fig = plt.figure(figsize=(30,15)) 

ax = fig.gca(projection='3d') 

surf = ax.plot_surface(MDgrid,Tgrid,dmd.reconstructed_data.real, rstride=8, cstride=8, alpha=0.8, 

cmap=cm.bwr) 

cbar=fig.colorbar(surf, ax=ax, shrink=0.5, aspect=10) 

plt.gca().invert_xaxis()  

ax.set_xlabel('MD [m]',fontsize=25,labelpad=30) 

ax.set_ylabel(' Time Snapshots',fontsize=25,labelpad=30) 

ax.set_zlabel('Annulus Fluid Velocity [m/S]',fontsize=25,labelpad=60) 

ax.set_title('DMD Reconstructed Data',fontsize=25,weight='bold') 

ax.xaxis.set_tick_params(labelsize=25) 

ax.yaxis.set_tick_params(labelsize=25) 

ax.zaxis.set_tick_params(labelsize=25,pad=20) 

cbar.ax.tick_params(labelsize=20) 

plt.tight_layout() 

plt.show 

 

# 3D plotting of the original data 

 

fig2 = plt.figure(figsize=(30,15)) 

ax2 = fig2.gca(projection='3d') 

surf = ax2.plot_surface(MDgrid,Tgrid,X.T, rstride=8, cstride=8, alpha=0.8, cmap=cm.bwr) 

cbar=fig2.colorbar(surf, ax=ax2, shrink=0.5, aspect=10) 

plt.gca().invert_xaxis()  

ax2.set_xlabel('MD [m]',fontsize=25,labelpad=30) 

ax2.set_ylabel('Time Snapshots',fontsize=25,labelpad=30) 

ax2.set_zlabel('Annulus Fluid Velocity [m/S]',fontsize=25,labelpad=60) 

ax2.set_title('Original Data',fontsize=25,weight='bold') 

ax2.xaxis.set_tick_params(labelsize=25) 

ax2.yaxis.set_tick_params(labelsize=25) 

ax2.zaxis.set_tick_params(labelsize=25,pad=20) 

cbar.ax.tick_params(labelsize=20) 

plt.tight_layout() 

plt.show 

 

# DMD reconstructed data error 

 

RecError=dmd.reconstructed_data-X.T 

fig3 = plt.figure(figsize=(30,15)) 

ax3 = fig3.gca(projection='3d') 
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surf = ax3.plot_surface(MDgrid,Tgrid,RecError.real, rstride=8, cstride=8, alpha=0.8, cmap=cm.bwr) 

cbar=fig3.colorbar(surf, ax=ax3, shrink=0.5, aspect=10) 

plt.gca().invert_xaxis()  

ax3.set_xlabel('MD [m]',fontsize=25,labelpad=30) 

ax3.set_ylabel('Time Snapshots',fontsize=25,labelpad=30) 

ax3.set_zlabel('Annulus Fluid Velocity Error [m/S]',fontsize=25,labelpad=55) 

ax3.set_title('DMD Reconstructed Data Error',fontsize=25,weight='bold') 

ax3.xaxis.set_tick_params(labelsize=25) 

ax3.yaxis.set_tick_params(labelsize=25) 

ax3.zaxis.set_tick_params(labelsize=25,pad=20) 

cbar.ax.tick_params(labelsize=20) 

plt.tight_layout() 

plt.show 

 

# Distribution function 

 

# Multiple distribution of error 

def ecdf(data): 

    """ Compute ECDF """ 

    x = np.sort(data) 

    n = x.size 

    y = np.arange(1, n+1) / n 

    return(x,y) 

 

# frequency distribution of the absolute DMD reconstructed data error by Histogram 

 

import numpy as np 

import scipy.special 

from bokeh.layouts import gridplot 

from bokeh.plotting import figure, show 

from bokeh.io import output_notebook 

from bokeh.models import NumeralTickFormatter 

from bokeh.models import ColumnDataSource, ranges, LabelSet 

from bokeh.layouts import layout  

output_notebook() 

RecErrorPer=np.absolute(RecError.flatten())                                       # Error data set 

hist, edges = np.histogram(RecErrorPer, density=False, bins=10)    

p = figure(title='', tools=''); #title_location="left" 

p.quad(top=hist, bottom=0, left=edges[:-1], right=edges[1:],fill_color="navy", line_color="black", alpha=.7) 

p.y_range.start = 0 

p.xaxis.axis_label = 'Absolute DMD Reconstructed Data Error [m/S]'   

p.yaxis.axis_label = 'Count' 

p.title.align = "right" 

p.yaxis[0].formatter = NumeralTickFormatter(format="0") 

p.ygrid.grid_line_alpha = 0.5 

p.ygrid.grid_line_alpha = 0.5 

p.ygrid.grid_line_dash = [6, 4] 

p.xgrid.grid_line_dash = [6, 4] 

source = ColumnDataSource(dict(x=[round(((edges[i+1]-edges[i])/2)+edges[i],20) for i in range(edges.shape[0]-

1)],y=hist,z=[str(round(i,2))+'%' for i in (hist/np.sum(hist))*100])) 

labels = LabelSet(x='x', y='y', text='z', level='glyph',x_offset=-15, y_offset=0,source=source, 

render_mode='canvas',text_font_size='8pt') 

p.add_layout(labels) 

show(gridplot([p],ncols=2,plot_height=400,plot_width=600, toolbar_location=None)); 

 

# The distribution of the absolute DMD reconstructed data error 

 

from bokeh.plotting import figure, show 

from bokeh.io import output_notebook 

from bokeh.models import Label 
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from bokeh.models import Legend, LegendItem 

output_notebook() 

Ex,Ey = ecdf(np.absolute(RecError.flatten()))  

p2=figure() 

p2.circle(x=Ex, y=Ey,size=10, color='navy', alpha=0.7) 

p2.title.text = '' 

p2.xaxis.axis_label = 'DMD Reconstructed Data Error [m/S]' 

p2.yaxis.axis_label = 'Absolute Error Distrubution' 

p2.ygrid.grid_line_alpha = 0.5 

p2.ygrid.grid_line_alpha = 0.5 

p2.ygrid.grid_line_dash = [6, 4] 

p2.xgrid.grid_line_dash = [6, 4] 

#P20 

p2.line([Ex[np.where(Ey> 0.2)[0][0]-1],Ex[np.where(Ey> 0.2)[0][0]-1]],[0,1],line_dash="4 

4",color='black',line_width=2,legend_label='P20:'+str(round(Ex[np.where(Ey> 0.2)[0][0]-1].real,20))) 

P20 = Label(x=Ex[np.where(Ey > 0.2)[0][0]-1], y=1, text='P20',x_offset=-20, y_offset=0,text_font_size='10pt')  

p2.add_layout(P20) 

 #P50 

p2.line([Ex[np.where(Ey > 0.5)[0][0]-1],Ex[np.where(Ey > 0.5)[0][0]-1]],[0,1],line_dash="4 

4",color='black',line_width=2,legend_label='P50:'+str(round(Ex[np.where(Ey > 0.5)[0][0]-1].real,20))) 

P50 = Label(x=Ex[np.where(Ey > 0.5)[0][0]-1], y=1, text='P20',x_offset=-10, y_offset=0,text_font_size='10pt')  

p2.add_layout(P50) 

#P90 

p2.line([Ex[np.where(Ey > 0.9)[0][0]-1],Ex[np.where(Ey > 0.9)[0][0]-1]],[0,1],line_dash="4 

4",color='black',line_width=2,legend_label='P90:'+str(round(Ex[np.where(Ey > 0.9)[0][0]-1].real,20))) 

P90 = Label(x=Ex[np.where(Ey > 0.9)[0][0]-1], y=1, text='P90',x_offset=0, y_offset=0,text_font_size='10pt')  

p2.add_layout(P90) 

p2.legend.location = 'bottom_right' 

p2.legend.background_fill_color = "#fefefe" 

show(gridplot([p2],ncols=2,plot_height=400,plot_width=400, toolbar_location=None)); 

 

# 3D plotting of  DMD data interpolation or extrapolation 

 

dmd.dmd_time['dt'] = 0.5               *** this line should be active in case of interpolation*** 

#dmd.dmd_time['tend'] *= 1.5       *** this line should be active in case of extrapolation*** 

***for deactivate a comment, # sign should be typed at the beginning of a line*** 

  

TTgrid, MDDgrid = np.meshgrid(dmd.dmd_timesteps, MD) 

fig = plt.figure(figsize=(30,15)) 

ax = fig.gca(projection='3d') 

surf = ax.plot_surface(MDDgrid,TTgrid,dmd.reconstructed_data.real, rstride=8, cstride=8, alpha=0.8, 

cmap=cm.bwr) 

cbar=fig.colorbar(surf, ax=ax, shrink=0.5, aspect=10) 

plt.gca().invert_xaxis()  

ax.set_xlabel('MD [m]',fontsize=25,labelpad=30) 

ax.set_ylabel('Time Snapshots',fontsize=25,labelpad=30) 

ax.set_zlabel('Annulus Fluid Velocity [m/S]',fontsize=25,labelpad=60) 

ax.set_title('DMD Data Interpolation',fontsize=25,weight='bold') 

ax.xaxis.set_tick_params(labelsize=25) 

ax.yaxis.set_tick_params(labelsize=25) 

ax.zaxis.set_tick_params(labelsize=25,pad=20) 

cbar.ax.tick_params(labelsize=20) 

plt.tight_layout() 

plt.show 

 

# 3D plotting of the original data for comparing to DMD prediction 

 

from mpl_toolkits.mplot3d import axes3d 

import matplotlib.pyplot as plt 

from matplotlib import cm 
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fig = plt.figure(figsize=(30,15)) 

ax = fig.gca(projection='3d') 

surf=ax.plot_surface(MDDgrid,TTgrid,AnnFluidVel[:,start:start+(dmd.dmd_timesteps.shape[0])].copy(), 

rstride=8, cstride=8, alpha=0.8, cmap=cm.bwr) 

cbar=fig.colorbar(surf, ax=ax, shrink=0.5, aspect=10) 

plt.gca().invert_xaxis()  

ax.set_xlabel('MD [m]',fontsize=25,labelpad=30) 

ax.set_ylabel('Time Snapshots',fontsize=25,labelpad=30) 

ax.set_zlabel('Annulus Fluid Velocity [m/S]',fontsize=25,labelpad=60) 

ax.set_title('Original Data',fontsize=25,weight='bold') 

ax.xaxis.set_tick_params(labelsize=25) 

ax.yaxis.set_tick_params(labelsize=25) 

ax.zaxis.set_tick_params(labelsize=25,pad=20) 

cbar.ax.tick_params(labelsize=20) 

plt.tight_layout() 

plt.show 

 

# 3D plotting of DMD data interpolation error 

 

PreError=dmd.reconstructed_data-AnnFluidVel[:,start:start+(dmd.dmd_timesteps.shape[0])].copy() 

fig = plt.figure(figsize=(30,15)) 

ax = fig.gca(projection='3d') 

surf = ax.plot_surface(MDDgrid,TTgrid,PreError.real, rstride=8, cstride=8, alpha=0.8, cmap=cm.bwr) 

cbar=fig.colorbar(surf, ax=ax, shrink=0.5, aspect=10) 

plt.gca().invert_xaxis()  

ax.set_xlabel('MD [m]',fontsize=25,labelpad=30) 

ax.set_ylabel('Time Snapshots',fontsize=25,labelpad=30) 

ax.set_zlabel('Annulus Fluid Velocity Error [m/S]',fontsize=25,labelpad=55) 

ax.set_title('DMD Interoilated Data Error',fontsize=25,weight='bold') 

ax.xaxis.set_tick_params(labelsize=25) 

ax.yaxis.set_tick_params(labelsize=25) 

ax.zaxis.set_tick_params(labelsize=25,pad=20) 

cbar.ax.tick_params(labelsize=20) 

plt.tight_layout() 

plt.show 

 

# frequency distribution of the absolute DMD interpolated data error by Histogram 

 

import numpy as np 

import scipy.special 

from bokeh.layouts import gridplot 

from bokeh.plotting import figure, show 

from bokeh.io import output_notebook 

from bokeh.models import NumeralTickFormatter 

from bokeh.models import ColumnDataSource, ranges, LabelSet 

from bokeh.layouts import layout  

output_notebook() 

RecErrorPer=np.absolute(PreError.flatten())                                      # Error dataset 

hist, edges = np.histogram(RecErrorPer, density=False, bins=10)    

p = figure(title='', tools=''); #title_location="left" 

p.quad(top=hist, bottom=0, left=edges[:-1], right=edges[1:],fill_color="navy", line_color="black", alpha=.7) 

p.y_range.start = 0 

p.xaxis.axis_label = 'Absolute DMD Interpolated Data Error [m/S]'   

p.yaxis.axis_label = 'Count' 

p.title.align = "right" 

p.yaxis[0].formatter = NumeralTickFormatter(format="0") 

p.ygrid.grid_line_alpha = 0.5 

p.ygrid.grid_line_alpha = 0.5 

p.ygrid.grid_line_dash = [6, 4] 

p.xgrid.grid_line_dash = [6, 4] 
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source = ColumnDataSource(dict(x=[round(((edges[i+1]-edges[i])/2)+edges[i],20) for i in range(edges.shape[0]-

1)],y=hist,z=[str(round(i,2))+'%' for i in (hist/np.sum(hist))*100])) 

labels = LabelSet(x='x', y='y', text='z', level='glyph',x_offset=-15, y_offset=0,source=source, 

render_mode='canvas',text_font_size='8pt') 

p.add_layout(labels) 

show(gridplot([p],ncols=2,plot_height=400,plot_width=600, toolbar_location=None)); 

 

# The distribution of the absolute DMD interpolated data error 

 

from bokeh.plotting import figure, show 

from bokeh.io import output_notebook 

from bokeh.models import Label 

from bokeh.models import Legend, LegendItem 

output_notebook() 

Ex,Ey = ecdf(np.absolute(PreError.flatten()))  

p2=figure() 

p2.circle(x=Ex, y=Ey,size=10, color='navy', alpha=0.7) 

p2.title.text = '   ' 

p2.xaxis.axis_label = 'DMD Interpolated Data Error [m/S]' 

p2.yaxis.axis_label = 'Absolute Error Distrubution' 

p2.ygrid.grid_line_alpha = 0.5 

p2.ygrid.grid_line_alpha = 0.5 

p2.ygrid.grid_line_dash = [6, 4] 

p2.xgrid.grid_line_dash = [6, 4] 

#P20 

p2.line([Ex[np.where(Ey> 0.2)[0][0]-1],Ex[np.where(Ey> 0.2)[0][0]-1]],[0,1],line_dash="4 

4",color='black',line_width=2,legend_label='P20:'+str(round(Ex[np.where(Ey> 0.2)[0][0]-1].real,20))) 

P20 = Label(x=Ex[np.where(Ey > 0.2)[0][0]-1], y=1, text='P20',x_offset=-20, y_offset=0,text_font_size='10pt')  

p2.add_layout(P20) 

#P50 

p2.line([Ex[np.where(Ey > 0.5)[0][0]-1],Ex[np.where(Ey > 0.5)[0][0]-1]],[0,1],line_dash="4 

4",color='black',line_width=2,legend_label='P50:'+str(round(Ex[np.where(Ey > 0.5)[0][0]-1].real,20))) 

P50 = Label(x=Ex[np.where(Ey > 0.5)[0][0]-1], y=1, text='P20',x_offset=-10, y_offset=0,text_font_size='10pt')  

p2.add_layout(P50) 

#P90 

p2.line([Ex[np.where(Ey > 0.9)[0][0]-1],Ex[np.where(Ey > 0.9)[0][0]-1]],[0,1],line_dash="4 

4",color='black',line_width=2,legend_label='P90:'+str(round(Ex[np.where(Ey > 0.9)[0][0]-1].real,20))) 

P90 = Label(x=Ex[np.where(Ey > 0.9)[0][0]-1], y=1, text='P90',x_offset=0, y_offset=0,text_font_size='10pt')  

p2.add_layout(P90) 

p2.legend.location = 'bottom_right' 

p2.legend.background_fill_color = "#fefefe" 

show(gridplot([p2],ncols=2,plot_height=400,plot_width=400, toolbar_location=None)); 

----------------------------------------------------------------------------------------------------------------- ----------------------- 

 

Pydmd package is used for implementing the DMD algorithm.(Demo et al., 2018) 
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