
Faculty of Science and Technology
Department of Electrical Engineering and Computer Science

Federated Learning for Dementia
Classification in a European Multicentre

Dementia Study

Master’s Thesis in Robotics and Signal processing
by

Ruben Hesseberg
Petter Minne

Supervisors

Ketil Oppedal
Álvaro Fernández Quílez

July 15, 2020

Abstract

Every year around 10 million people are diagnosed with dementia worldwide. Higher life
expectancy and population growth could inflate this number even further in the near
future. Currently the diagnostic process of dementia relies heavily on medical experts
on an individual basis. As the prevalence of the disease grows, so does the need for
reliable diagnosis systems. Medical institutions around the world hold massive amounts of
medical patient data. Large portions of this data can not be shared between institutions
due to patient privacy concerns.

This thesis explores some solutions to these obstacles. Computer-aided diagnosis sys-
tems based on various deep neural networks trained on magnetic resonance imaging is
investigated. The use of generative adversarial networks to generate usable samples for
deep neural networks without compromising patient privacy is explored. A federated
structuring of deep neural networks where patient data is kept locally is tested. Data for
all experiments are based on a class-balanced dataset of 690 brain scans from patients
diagnosed with Alzheimer’s disease, dementia with Lewy bodies and normal control
subjects.

An accuracy of 78.65% was achieved for a three class differentiation of 171 test subjects.
This is a formidable result, especially compared to related deep learning based approaches.
The generative adversarial network approach of generating new data achieved fairly good
results, but due to memory limitations this data is of lower resolution and could not be
used in the final evaluation. The federated structuring of deep neural networks yielded
in part promising results and could be an important way of accessing medical data while
protecting privacy in the future.

Acknowledgements

This thesis marks the end of our Master’s degree in Robotics and Signal processing at
UiS. We would like to give a special thanks to our supervisors Ketil Oppedal and Álvaro
Fernández Quílez, for their advice and feedback during this semester. In particular, we
are grateful for Álvaro being available to help us in our time of need long into the summer
vacation. We also have to thank Simen Larsen for a helping hand with getting started
with his code, and Theodor Ivesdal for his technical support during the quarantine, and
making us able to work from home.

In addition, we want to thank our cohabitants for the support at home during the
pandemic. I (Petter) wish to express my gratitude to my partner Ragnhild Austbø
Kjønsøy for spellchecking the thesis multiple times and making some delicious dinners
while I was working. And many thanks to Nora for being such a good dogger and
providing Ruben with countless happy borks.

Finally, we want to thank our fellow students for two fun and exciting years, and a
special thanks to ISI ("Interesseorganisasjonen for Sivilingeniørstudentene I Informasjon-
steknologi”) for providing us with coffee, good times and many fun games with Super
Smash during this period.

v

Contents

Abstract iii

Acknowledgements v

Abbreviations xi

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Definition . 1
1.3 Thesis division . 2
1.4 Thesis Outline . 4

2 Background 5
2.1 Dementia . 5

2.1.1 Alzheimer’s disease . 5
2.1.2 Dementia with Lewy bodies . 7

2.2 MRI . 8
2.2.1 MRI Markers . 8

2.3 Preprocessing . 10
2.3.1 Spatial Normalization . 11
2.3.2 Brain Extraction . 11
2.3.3 Data Normalization . 11

2.4 Deep Learning . 11
2.4.1 Artificial Neural Networks . 11
2.4.2 Convolutional Nerural Networks 13
2.4.3 Pooling Layer . 14
2.4.4 Fully Connected Layer . 14
2.4.5 Loss Function . 15
2.4.6 Batch Normalization . 15
2.4.7 Optimizers . 15
2.4.8 Activation Functions . 16
2.4.9 Overfitting . 17
2.4.10 Dropout . 18
2.4.11 Augmentation . 18

vii

viii CONTENTS

2.4.12 K-Fold Cross Validation . 18
2.4.13 hyperparameters . 19
2.4.14 Models . 20
2.4.15 Evaluation Metrics . 22
2.4.16 Generative Models . 24
2.4.17 Federated Learning . 27
2.4.18 Federated Averaging . 28

2.5 Software . 28
2.5.1 PyTorch . 29
2.5.2 PySyft . 29
2.5.3 SciPy . 29
2.5.4 Docker . 29
2.5.5 Nipype . 29

2.6 Previous work on detecting AD-DLB-NC with machine learning 30

3 Materials and method 31
3.1 Reproduce Larsen’s results and Python Environment 31
3.2 Data . 31

3.2.1 Preprocessing . 31
3.2.2 Dataset . 33
3.2.3 Federated learning Data Set . 33

3.3 Models . 34
3.3.1 Federated Learning Models . 34

3.4 Augmentation . 37
3.4.1 Simple Single Augmentation . 38
3.4.2 Simple Augmentation Combinations 39
3.4.3 GAN . 39

3.5 Existing Approaches/Baselines . 40
3.5.1 Asynchronous federated learning on MNIST 40

4 Experimental Evaluation / Results 43
4.1 Reproducing Simen Larsen’s results . 43
4.2 Overview . 44
4.3 Prepossessing . 44
4.4 Generating MRI Images with GAN . 46
4.5 Experiment - ML Models . 48
4.6 Augmenting . 48

4.6.1 Augmenting with GAN . 51
4.7 Datasets . 56
4.8 Final Evaluation of Three Class Classification 58
4.9 Two Class Classification . 59
4.10 Federated Learning Experimental Setup 61

4.10.1 Federated learning Dataset Benchmarking 61
4.10.2 Federated Learning experiment using Federated Averaging 62
4.10.3 Asynchronous Federated Learning experiment using Federated

Averaging . 63
4.11 Federated Learning Experiment Results 63

CONTENTS ix

4.11.1 Federated Average experiment result 63
4.11.2 Asynchronous Federated Learning experiment results 65

5 Discussion 67
5.1 Preprocessing and Datasets . 67

5.1.1 Federated Learning Data Set . 67
5.2 Models . 68
5.3 Augmentations . 68
5.4 GAN . 69

5.4.1 GAN . 69
5.4.2 Upscaled GAN . 70

5.5 Final Evaluation . 70
5.5.1 Clasification of AD-DLB-NC . 70
5.5.2 State of the art . 72

5.6 Federated Learning . 73
5.6.1 Federated Model Generation Method 73
5.6.2 Federated Learning Framework/Software Choice 74
5.6.3 Network Structure, Optimizer and Parameter Choices 74
5.6.4 Federated Learning and Privacy 75
5.6.5 Federated Learning Experiment Results 75

6 Conclusion and Future Directions 77
6.1 Conclusion . 77

6.1.1 GAN and improving the existing classifier 77
6.1.2 Federated Learning . 78

6.2 Future Directions . 78
6.2.1 GAN . 78
6.2.2 Visualizing the Model with Grad-CAM 78
6.2.3 Federated Learning . 79

List of Figures 79

List of Tables 85

A Appendix A 91
A.1 requirements.txt . 91
A.2 fit.py . 91
A.3 Main_setup.py . 91
A.4 system_resources.py . 91
A.5 test.py . 92
A.6 data_resources.py . 92
A.7 NormalizeSkullStripPipeline.py . 92
A.8 TestingAllFoldsInCVfold.py . 92
A.9 upscaleGANimages.py . 92
A.10 Make_new_dataset_from_Simens_balance.py 92
A.11 AD_dataset.py, DLB_dataset.py, NC_dataset.py 92

x CONTENTS

A.12 federatedAverage.py . 92
A.13 start_websocket_server.py . 93
A.14 run_websocket_server.py . 93
A.15 run_websocket_client.py . 93

B Appendix B 95

Bibliography 127

Abbreviations

AD Alzheimer’s Disease

DLB Dementia with Lewy Bodies

NC Normal Control

MRI Magnetic Resonance Imaging

DL Deep Learning

CV Cross Validation

NN Neural Networks

DNN Deep Neural Network

ANN Artificial Neural Network

CNN Convolutional Neural Network

SD Standard Deviation

GPU Graphics Processing Unit

GD Gradient Decent

SGD Stochastic Gradient Decent

ReLU Rectified Linear Unit

BN Batch Normalization

FL Federated Learning

E-DLB European Dementia with Lewy Bodies consortium

VAE Variational Auto-Encoder

GAN Generative Adversarial Network

xi

Chapter 1

Introduction

1.1 Motivation

An early accurate diagnosis for a patient can often mean the difference between life
and death. In cases where diseases might not be fatal, an early diagnosis is often very
important to improve quality of life for the patient. For serious medical conditions such as
cancers and brain diseases, we rely on the use of medical imaging to aid in the diagnostic
process. Some of the most commonly used types of medical imagery utilized for serious
conditions is computed tomography(CT) and magnetic resonance imaging(MRI).[1]

The use of machine learning(ML) algorithms, specifically deep learning(DL) to aid in the
diagnostic process based on medical imagery looks promising. There are however several
challenges related to the access, quantity and privacy of the data needed to train a robust
DL algorithm. In the world of machine learning and statistics, more data generally means
a better model. In the field of medicine however, large sets of data can be very difficult
to acquire. Medical centers possess large amounts of patient data, but a lot of this data
cannot be shared across institutions due to privacy regulations.[2][3]

1.2 Problem Definition

The purpose of this thesis is to explore some of the proposed solutions to the problems
surrounding data quantity and availability, mainly exploring a federated learning(FL)
approach and the use of generative adversarial networks(GAN). This thesis will con-
duct experiments using a dataset of dementia patients, some of which are diagnosed
with Alzheimer’s disease(AD), some which are diagnosed with dementia with Lewy
bodies(DLB) and some normal control(NC) samples.

1

Abbreviations Chapter 1 Introduction

1.3 Thesis division

This thesis is written in collaboration by two students: Ruben Hesseberg and Petter
Minne. As a general focus, Ruben has worked mainly on a federated approach, and Petter
has experimented extensively with GANs and various other augmentation techniques for
improving the machine learning model. For clarification on which individual has worked
on/written which part of this thesis a table is provided below.

Abbreviations 3

Thesis division
Section Ruben Hesseberg Petter Minne
1. Introduction Yes -
2.1 Dementia Yes -
2.2 MRI Yes -
2.2.1 MRI Markers - Yes
2.3 Preprocessing - Yes
2.4 Deep Learning - Yes
2.4.7 Optimizers Yes -
2.4.8 Activation Functions Yes -
2.4.9 Overfitting Yes -
2.4.17 Federated Learning Yes -
2.4.18 Federated Averaging Yes -
2.5 Software Yes -
2.5.5 Nipype - Yes
2.6 Previous work on detecting AD.. - Yes
3.1 Reproduce Larsens results.. - Yes
3.2 Data - Yes
3.2.3 Federated Learning Dataset Yes Yes
3.3 Models - Yes
3.3.1 Federated Learning Models Yes -
3.4 Augmentation - Yes
3.5 Existing Approaches/Baselines Yes -
4. Experimental Evaluation/Results - Yes
4.10 Federated Learning Exp. Setup Yes -
4.11 Federated Learning Exp. Results Yes -
5. Discussion - Yes
5.1.1 Federated Learning Dataset Yes -
5.6 Federated Learning Yes -
6.1.1 GAN and improve the existing.. - Yes
6.1.2 Federated Learning Yes -
6.2.1 GAN - Yes
6.2.2 Visualizing the Model.. - Yes
6.2.3 Federated Learning Yes -

Table 1.1: Thesis division table. (The person credited with a chapter has also written
all subchapters unless otherwise specified.)

Abbreviations Chapter 1 Introduction

1.4 Thesis Outline

Chapter 2 - Background

The contents of chapter two will give an understanding of the different subjects, method
and tools used as background theory and in development of the project. The various
types of dementia diagnoses will be explained, as well as the machine learning techniques
and software utilized in this thesis.

Chapter 3 - Materials and Method

Chapter three will cover the data used in this project, including how it is prepared and
processed.

Chapter 4 - Experiments and Results

Chapter four will contain the experiments and results conducted during this project.
The experiments will be listed in the order they were performed, this is useful for
understanding the process as the grounds for later experiments and models may be based
on earlier results.

Chapter 5 - Discussion

Chapter five will include a discussion around the results from chapter four and how it
compares to related work and research.

Chapter 6 - Conclusion and Future Directions

Chapter six is the final chapter of this thesis and will contain a conclusion based on the
results of conducted experiments. The final section will propose directions for future
research.

Chapter 2

Background

2.1 Dementia

Dementia is an overall term for medical conditions which causes abnormal changes in
the brain. These changes causes various degrees of decline in the cognitive abilities of
the patient. The vast majority of dementia victims are elderly people, and the risk of
being diagnosed with the disease increases with age. However, it should not necessarily
be regarded as a normal part of the aging process, as many people in their 90s live
with no signs of dementia. It is estimated that 5-8% of the population over the age of
60 has some sort of dementia, and up to half the population over 85 might have the
disease in some form.[4] The most common form of dementia is Alzheimer’s disease (AD)
witch accounts for 60 to 70 percent of all dementia cases [5]. Other common types are
vascular dementia and dementia with Lewy bodies.[6][7] There is currently no way to
cure dementia, but there are ways to improve the lives of those who have it by temporary
suppressing symptoms.[8]

As of 2020 it is estimated that around 50 million people live with some form of dementia.
There are close to 10 million new cases every year.[5] The number of people with dementia
is estimated to reach 82 million by 2030 and 152 million by 2050.[5] Dementia has notable
social and medical care costs. The total global cost in term of GDP is estimated to be
around 1.1% with even higher proportions in high-income countries.[5]

2.1.1 Alzheimer’s disease

Alzheimer’s disease(AD) is a chronic brain disease and is the most common form of
dementia. Typical symptoms for AD are reduced short term memory, then later reduced
long term memory. The diagnosis often comes after a combination of mental tests, blood

5

Abbreviations Chapter 2 Background

tests and PET scans. Except for some rare inherited forms of AD there are no other
known risk factors that statistical increases the chances for getting AD [9].

Alzheimer’s disease is named after the man who discovered it, the german medical doctor
Alois Alzheimer. In 1906 he noticed something unusual when he was examining the brain
tissue of a woman who had died of a mental illness. She had suffered from memory loss,
language problems, and unpredictable behavior. During the post-mortem examination
Alzheimer found abnormal clumps and tangled bundles of fibers, now known as plaques
and tangles.[10]

Figure 2.1: Illustration showing plaques and tangles interfering with the brain cells[11]

For patients with Alzheimer’s disease, connections between nerve cells in the brain are
lost. This occurs due to a buildup of proteins which causes abnormal structures referred
to as plaques and tangles. Over time nerve cells die and brain tissue is lost. The brain
contains chemicals to aid in the signaling between cells. Patients with AD produce
less of some of these chemicals which reduces the communication between cells. Some
drug treatments can help boost the production of some of these chemicals to reduce the
severity of the symptoms. Alzheimer’s is a progressive disease, and over time, more and
more functionality of the brain will be lost.[12]

Abbreviations 7

2.1.2 Dementia with Lewy bodies

Dementia with Lewy bodies(DLB) is estimated by most experts to be the third most
common cause of dementia after Alzheimer’s disease and vascular dementia, accounting
for between 5 and 10 percent of all dementia cases.[7] Lewy bodies are found in 10 to 15
percent of post mortem examinations of dementia patients.[13] DLB is associated with a
protein called alpha-synuclein being abnormally deposited in the brain. These deposits
are called Lewy bodies and affects chemical processes in the brain, which in turn may
lead to problems with thinking, movement, behavior and mood in patients.[14] Lewy
body deposits are named after Fredereich H. Lewy, a neurologist who discovered them
while working in Alois Alzheimer’s laboratory during the early 1900s. Lewy bodies are
not exclusively found in patients with DLB, but also in patients with AD and Parkinson’s
disease dementia.[7]

Figure 2.2: Biopsy showing lewy body deposits in the brain[15]

Overlapping symptoms with other brain diseases can make accurate diagnosis difficult,
especially during early stages of the disease. DLB is also not mutually exclusive with
other brain diseases, so comorbidity can occur in patients, further complicating the
diagnosis and treatment process. The disease does not seem to run in families, although
this might happen in very rare cases.[16]

Abbreviations Chapter 2 Background

2.2 MRI

To differentiate the different types of dementia or NC brains, Magnetic resonance imaging
(MRI) is used. MRI is a nonintrusive way to inspect the subjects brain. In short the
MRI produces a 3D image of the brain. It utilizes technology which excites and detects
change in the direction of the rotational axis of protons in water molecules found in
organic tissue. Powerful magnets are employed in MRIs to produce a magnetic field
that forces the protons in the body to align with the magnetic field. Radiofrequency
current is then pulsed through the subject, the protons are stimulated and spin out
of equilibrium, staining against the magnetic field. When the radiofrequency current
is turned off, MRI sensors detect the energy released as the protons realign with the
magnetic field. The energy released and the time it takes for a proton to realign with
the magnetic field changes depending on the chemical nature of the molecules and the
surrounding environment. Physicians are able to distinguish between differing types of
tissue based on these observed properties.[17]

2.2.1 MRI Markers

There are no known sets of biomarkers in the MRI images which are good enough to
make a confident diagnosis of a patient with either AD[18] or DLB[19]. Both AD and
DLB are in general characterized by atrophy throughout the brain, this can be seen by
comparing the different diagnosis in figure 2.3.

Abbreviations 9

Figure 2.3: MRI scan of NC, AD and DLB brains

It has been shown that in parts of the brain in AD subjects, especially in the medial
temporal lobe, there is more atrophy than the DLB subjects [20] [21].

As demonstrated in this paper[22], both AD and DLB showed significant atrophy in the
hippocampus relative to NC. But the DLB group had significantly lower rates of atrophy
in the CA1, and fimbria compaired to the AD subjects, see figure 2.4.

Abbreviations Chapter 2 Background

Figure 2.4: Highlighted Hippocampus with detailed anatomy. Case courtesy of Assoc
Prof Frank Gaillard, Radiopaedia.org, rID: 10770

2.3 Preprocessing

The main objective of preprocessing is to reduce the irrelevant information from the
data and make the relevant information easier to analyze. In machine learning, this is a
crucial step to ensure the data is "clean" so that when an algorithm learns to recognize
patterns in the data, these patterns are relevant to the problem the algorithm is trying
to solve. As an example, when training a machine-learning algorithm to differentiate
between images of apples and oranges. If the apples are centered, and the oranges are
shifted to the lower left side of the pictures. The algorithm would learn that if an object
is centered it must be an apple, and if an object is positioned to the lower left it must be
an orange. Where the object is positioned is not a desired pattern for the algorithm to
use when differentiating apples and oranges, and that is why preprocessing is essential.

Abbreviations 11

2.3.1 Spatial Normalization

Spatial normalization is a procedure that normalizes how the brains are presented in 3D
space. The spatial normalization procedure does this by reshaping all the brains in the
dataset to a standard template, and then centering them. This means that one location
in one brain corresponds to the same location in all the other brains. The procedure
makes all the brains the same size and has the same position in the coordinate system.

2.3.2 Brain Extraction

Brain extraction is the process of removing any part of the MRI scan that is not brain
matter. This is a crucial step to minimizing the irrelevant data of the MRI images. The
brain extraction is also referred to as skull stripping.

2.3.3 Data Normalization

When training a neural networks(NN) it is common to normalize the data before using it
in training. The normalization process makes all the values of the data to have a mean
of zero and a unit standard deviation. The process makes the data easier for a model to
learn relevant patterns.

2.4 Deep Learning

2.4.1 Artificial Neural Networks

The Artificial Neural Network (ANN) is a popular computer framework inspired by
the brain’s biological nervous system. The nervous system in the brain consists of a
network like structure of many interconnected neurons. The neurons receive signals from
their neighboring neurons, which they process before they pass it on. These biological
networks are capable of learning numerous different things and perform a variety of
complicated tasks. The artificial neuron mimics the biological neuron as it takes numerous
inputs(x), which are individually weighted (wk), sums them, and processes them through
an activation function(φ), see figure 2.5. (The matematical function i shown in equation
2.1).

Abbreviations Chapter 2 Background

Figure 2.5: Ilustration of an artificial neuron. x = inputs, wk = weights, φ= activation
function, x0 = +1 which makes is a bias with wk,0 = bk

yk = φ
M∑

j=0
(wkjxj) (2.1)

An ANN is composed of these neurons which are interconnected in a network structure
called the "Hidden layers", illustrated in figure 2.6.

Figure 2.6: Illustration of an ANN structure.(Picture is from [23] used with Larsens
consent).

When training an ANN, forward propagation is used to test the model, and backward
propagation is used to learn from the test results. In the forward propagation, the

Abbreviations 13

network maps the input data through the hidden layers out to the output layer, where
the nodes conclude what the data should be classified as. The backward propagation
then calculates the loss(chapter 2.4.5) of the network, and with the use of an optimizing
function(chapter 2.4.7), the training goes backward through the network and calculates
new/updated weights in all the neurons to make the next prediction better than the last.

2.4.2 Convolutional Nerural Networks

Convolutional neural networks (CNN) are ANNs that are popular to use when analyzing
images. CNNs are good at finding patterns in the data and make sense of them. They
does so by using convolutional layers in the hidden layers of an ANN.

convolutional layers

A convolutional layer consists of one or more filters used to convolve over the input to
calculate a convolved feature, figure 2.7. The filters use a set size and stride that is
defined when creating the CNN. Zero padding is often used to avoid size-reduction when
convolving over the input, see figure 2.8. The convolutional layer’s output is referred to
as a "feature map", which is passed on to the next layer. The convolutions at the start of
the hidden layer are usually simpler filters that detect basic shapes. The deeper layers go,
the more complex features the filters learn to detect. When applying backpropagation to
a CNN, the weights of the filters are updated.

Figure 2.7: Convolution operation on a 5x5 image, with a filter of 3x3 and a stride of
one

Abbreviations Chapter 2 Background

Figure 2.8: Convolution operation on a 5x5 image, with a filter of 3x3 and a stride of
one. The green zeroes in the "image" matrix are the padding that is applied

2.4.3 Pooling Layer

After a convolutional layer, it is common to apply a pooling layer. The pooling operation
downsamples the input data by selecting a region given height and width and outputting
a single desired value from it. The most common pooling functions are average pool
(which takes the average of all the values in the region and outputs it) figure 2.9, and
maxpool (which takes the highest value in the region and outputs it) figure 2.10. The
purpose of the pooling layer is to reduce the dimensions of the feature maps, thus reducing
the memory consumption and computational strain on the system.

Figure 2.9: Average pooling with a 2x2 region
and a stride of 2. The line from the green part
of the input to the green part of the output is to
illustrate that the output is calculated from this

part of the input

Figure 2.10: Max pooling with a 2x2
region and a stride of 2. The line
from the green part of the input to the
green part of the output is to illustrate
that the output is calculated from this

part of the input

2.4.4 Fully Connected Layer

In CNNs the last layer is usually one or more Fully Connected (FC) layers. The feature
maps from the convolutional layers are flattened into a vector and used as input in the

Abbreviations 15

FC layer. The FC then maps the vector to the correct outputs. The number of FC layers
added to the end of the CNN may vary from different architectures. Basha et. al [24]
concluded that deeper CNN architectures need fewer FC layers with fewer nodes than
shallower architectures.

2.4.5 Loss Function

When training an ANN a metric is needed to quantify how well the model performs
when training. The loss function does this by comparing the output of the model with
the desired output and then quantifies how successful/unsuccessful the model was in
its prediction. There are many ways to calculate the loss, and the loss function that is
the best depends on the application. For classification problems the most common loss
function to use is cross-entropy.

Cross entropy

The cross-entropy (equation 2.2) loss function calculates the model’s loss based on how
confident the model was in its prediction.

CE(t, p) = −
M∑

c=1
to,c log(po,c) (2.2)

"t" is the target vector containing the desired output and "p" is the model’s output
probability for a given class.

2.4.6 Batch Normalization

The batch normalization (BN) uses the same principles as explained in data normalization
(chapter 2.3.3), except it is added to the feature map of a convolutional layer. Unlike
the normalization of the input, BN data does not necessarily have a mean of zero and a
standard deviation of one, because this is not always desirable inside the network. The
BN, therefore, has two parameters (one for the mean and one for the standard deviation)
that are scaled with the training when doing backpropagation.

2.4.7 Optimizers

Optimizers update the weights of all the nodes in the network to minimize the loss of the
model. The loss function guides the optimizer to where it needs to go. There are many

Abbreviations Chapter 2 Background

different optimizers in use, but in this thesis the stochastic gradient descent (SGD) was
mainly used because of its better generalization [25]. If the model struggled to perform
while training the Adam function was used instead of the SGD.

Stochastic Gradient Descent (SGD)

Stochastic gradient decent is an established optimizer which is based on the gradient
decent algorithm.[26] Gradient decent based algorithms is by far the most common
optimization method for neural networks. Gradient decent computes the gradient of the
cost function with respect to the parameters of the entire dataset. In contrast, SGD
performs a parameter update for each sample x(i) and label y(i).

(2.3)

SGD performs frequent updates with high variance which causes the function to fluctuate
a lot. This rapid fluctuation enables jumping to new potential minima’s quickly. However,
it also complicates the convergence to the exact minimum due to overshooting. Decreasing
learning rate can help counter this issue.

Adam

Adam is a gradient based optimizer specifically designed for DNNs. It uses squared
gradients to scale the learning rate and takes advantage of momentum by using moving
average of the gradient.[27] Compared to SGD with momentum, inclusion of squared
gradients makes the algorithm more robust to large relative differences between derivatives
of system parameters. The adam optimizer can achieve significant performance gains
compared to the SGD optimizer, however, this will not always be the case and it can
indeed perform worse in certain instances.

2.4.8 Activation Functions

The activation functions add non-linearity in the neurons, this is what makes the network
able to learn complex non-linear functions.

Abbreviations 17

ReLU

The Rectified Linear Unit(ReLU) is a widely used activation function in deep learning
models. The function returns 0 for negative input values, but positive input values
are returned unchanged.[28] The ReLU function can be expressed like this: f (x) =
max(0,x). The ReLU6 activation function, shown (2.11), is identical to ReLU, except
that it limits the maximum output value to 6.

Figure 2.11: ReLU6 activation function

2.4.9 Overfitting

The term overfitting in machine learning is used to describe scenarios where the overall
cost becomes small, but the generalization of the model is unreliable.[29] In other words,
the model becomes extremely good at guessing correctly on the validation set, but will
lose accuracy in a test set, because it is so specialized. An example of overfitting can be
seen in (2.12). The validation error should be the global minimum in a balanced model,
this is not the case here as seen from the figure.

Abbreviations Chapter 2 Background

Figure 2.12: Overfitting example.[30] Training error in blue, validation error in red.

2.4.10 Dropout

Dropout is a method that introduces randomness to the DL model by randomly discarding
nodes in the network. The amount of nodes the dropout function discards is manually set
in as when designing the model. Too much dropout will lead to bad performance because
the model fails to learn due to losing to many vital nodes. When tuned correctly, dropout
has proven to lower overfitting and improve generalization in many applications??.

2.4.11 Augmentation

Data augmentation is the process of altering the available data in ways that do not
change its ground truth. This is useful when there is a limited dataset, and new data is
hard to gather. Augmenting the data will often lead to improved generalization because
the model will learn to detect the data in more scenarios than before. Some simple
augmentation techniques are rotating, mirroring, and translating.

2.4.12 K-Fold Cross Validation

Normally when training a model a part of the training data will be used for validation.
K-Fold Cross Validation (CV) is a method to ensure that all the training data, even
the part that is used in the validation process, is used to train the model. It does so by
splitting the training data into K folds, then train the model on all the folds except one
which is used for validation. It then trains the model again for each combination of the

Abbreviations 19

K folds. This makes the reported results more robust because the results can report the
average of the K models from the CV.

Figure 2.13: 4-Fold Cross Validation example.

2.4.13 hyperparameters

Before training a DL model, some hyperparameters needs to be set, like the learning
rate, the number of different layers in the model, the amount of dropout, the parameters
in the optimizer, etc. These parameters do not change while training, so it is vital for
the DL model that these parameters are well chosen. The difference in training a DL
model with bad and good hyperparameters are substantial. There is no correct way of
finding the best hyperparameters for a model, but there are different methods that help
to search for them methodically.

Manual Search

Manual search is the method of manually inputting the hyperparameters, testing them
on the DL model, and trying new values. This is a very time-consuming method as it
depends on manually plotting inn new parameters restarting the DL model.

Grid Search

Grid search is a traditional way of searching for the right hyperparameters. It works by
making grids/list of all the different parameters to test, and then it iterates through all
possible combinations of these while reporting the results.

Abbreviations Chapter 2 Background

Random Search

It is a method that randomly chooses the hyperparameters, then trains the model, and
logs the result before doing the same again in a loop. This method can outperform grid
search, especially if there are a low number of hyperparameters used[31].

Bayesian Optimization

Takes advantage of the information the model learns during the optimization process.
The idea is that the Bayesian optimization has some prior beliefs about how the different
hyperparameters affect the training outcome. The optimization uses these prior beliefs
to make an educated guess when choosing new hyperparameters to test. Based on the
latest test results, it updates its prior beliefs and makes a new educated guess, and
does this until it converges. In short, the Bayesian optimization remembers all the
previous hyperparameters and then chooses to test new hyperparameters close to where
it previously has shown to increase the performance.

2.4.14 Models

SimenNet

SimenNet is a model designed by Simen Larsen [23]. The model is designed with six
convolution blocks and three linear blocks, see figure 2.14 for details. Each of the
convolution blocks uses the 3D convolution layers followed by max pool, ReLU, batch
normalization, and dropout. When moving through the layers, more filters were used
in the convolutions as the feature map decreased in size from the max pooling. The
model ends with three fully connected blocks that interpret the output from the last
convolution block and determine the diagnosis.

ResNet

The ResNet model was proposed by Kaiming He et. al in 2015 [32]. The model won first
place on the ILSVRC 2015 classification task and won several other first places in the
COCO 2015 competitions. Usually, deep neural networks will get better by stacking more
layers on top of each other, but at a certain point the model accuracy will drop. The
reason why this is happening is not clear, but Kaiming He et. al assume that the deep
plain nets may have exponentially low convergence rates, which impacts the reduction of
the training error. The ResNet model avoids this problem by using a reference from the

Abbreviations 21

Figure 2.14: SimenNet network
structure [23].

Figure 2.15: ResNet18 network struc-
ture. The dashed lines represent
a skip connection with dimension

matching.

Abbreviations Chapter 2 Background

previous layer and adds it to the current layer. This makes the model stack many more
layers on top of each other without the descending accuracy problem.

The reference in the ResNet layer is shown in figure 2.17, as the single line that goes
from X to the summation. The output of that block is calculated as Y = f(x) + X, where
Y is the output, X the input, and f(x) the mapping of the layers. In a plain net the
output is Y = f(x) see 2.16. The intuition behind this is that instead of expecting a few
stacked layers to fit a desired underlying mapping X directly, these layers explicitly fit a
residual mapping by adding X in the output.

In the ResNet18 model, the reference called "skip connection" skips over blocks of two
layers at a time. When the dimensions of the blocks change, the skip connection needs to
match the new dimensions so by performing a linear projection to the shortcut connection
to match the dimensions. Figure 2.15 visualises the ResNet18 model.

Figure 2.16: PlainNet calculation. Figure 2.17: ResNet calculation.

2.4.15 Evaluation Metrics

Loss is used when training a model. The final value the loss has after training is not very
interesting, but, the graph of the loss values during training is useful to get an overview
of how the model performed while training and to spot overfitting.

Accuracy is used for measuring the accuracy of the model. It takes all the correct
predictions and sum them together and divides by the total amount of guesses 2.4.

Accuracy = Number of Correct Prediction

Total Number of Prediction
(2.4)

Abbreviations 23

Accuracy is not always the best evaluation and often miss details. This is especially the
matter if there is a class-imbalanced dataset, or if misclassifications on one class have
more severe consequences than misclassifications on another class.

Precision is used to measure how precise the model is at predicting one of the classes
correctly. This is useful to see if the model is overpredicting it 2.5.

Precision = True Positive

True Positive+ False Positive
(2.5)

Recall is used to measure how accurate the model is to classify one of the classes correctly
2.6.

Recall = True Positive

True Positive+ False Negative
(2.6)

F1 is the harmonic mean of precision and recall. This is useful when the precision and
recall is equally important 2.7.

F1 = 2 · Precision ·Recall
Precision+Recall

(2.7)

Confusion matrix is a matrix that is used to show the performance of a model by
showing all the predictions the model made on known test data. An example of a three
classed confusion matrix is shown in figure 2.18. This is useful to see precisely how the
model makes its predictions, and it gives a good overview of where the model excels and
where it struggles. All the metrics explained above (F1, accuracy, precision, and recall)
can be derived from the confusion matrix.

Figure 2.18: Example of a confusion matrix.

Abbreviations Chapter 2 Background

2.4.16 Generative Models

Generative Adversarial Network

Generative Adversarial Network (GAN) is a ML framework invented by Ian Goodfellow
et. al [33]. GAN trains two neural networks simultaneously by plotting the two neural
networks against each other, where one of the networks is called the generator and the
other the discriminator. The generator generates fake data from a random input, while the
discriminator distinguishes the real data from the generated fake data. The generators
objective is to generate fake data that is good enough to deceive the discriminator.
For each round of training, both the discriminator and generator learn by updating
their weights through backpropagation. When the discriminators error rate is at 50%,
the training should be done because the generator is then outputting data that is
indistinguishable from the real data.

Figure 2.19: GAN flowchart.

GANs have proven to be useful in generating numerous kinds of data [34] [35], and it
has been used a lot in upscaling/improving images with lower quality [36] [37]. However
many GAN models suffer from non-convergence (when the model parameters oscillate
and never converges), mode collapse (when a generator collapses and can only produce
a limited number of new unique data samples before it repeats itself), and diminished
gradient (when the discriminator is too good, and the generators gradient becomes too
small). Unbalance between the training speed of the generator and discriminator can
also cause the GAN model to overfit [38].

Abbreviations 25

Variational Auto Encoder

An autoencoder consists of two networks, one encoding network, and one decoding
network. The encoder network takes input data through its convolutional layers and
converts it to a much more compact representation in the bottleneck (also called the
latent vector). The decoder network uses the compact representation of the data as
input and tries to recreate the original data. The autoencoder then compares the output
result with the original input to calculate the reconstruction loss and updates the two
models according to how good the recreation was. This makes autoencoders very good
at reconstructing data, and have shown good results in compression and denoising
applications. See figure 2.20 for a visual representation of an autoencoder.

Figure 2.20: Illustration of an auto-encoder.

Variational Auto Encoder (VAE) has an encoding network that produces two vectors.
One that represents the input data mean and one for the input data standard deviation,
see figure 2.21. From these two, a sampled latent vector is made by taking a random
sample from the standard deviation vector and adding the mean vector. This creates
a new latent vector that closely resembles the latent vector of the original input, but
it is a little different because the mean it is summed with the random sample from the
standard deviation vector. The decoding network then decodes the sampled latent vector
and outputs the new data [39].

Abbreviations Chapter 2 Background

Figure 2.21: Illustration of a VAE.

α-GAN

When generating 3D images with a GAN, the complexity becomes much higher than with
2D images. This makes the 3D generation struggle with the mode collapse problem. The
VAE, on the other hand, is free from the mode collapse, but it struggles with the output
being blurry. To overcome the issues GAN and VAE have, α-GAN [40] is used. The
α-GAN combines GAN and VAE by replacing the variational inference in the VAE with
a discriminator network and then using both "random noise" and the encoder’s output as
input to train the generator. Because the generator now both reconstructs data from the
encoder and generates data from the "random noise", it can be optimized using both the
reconstruction loss and the discriminator loss hence avoiding the mode collapse problem.
The α-GAN consists of four networks: a generator, an encoder, and two discriminators,
see figure 2.22. One of the discriminators discriminates between the output of the
encoder network and the "random noise" vector, and the other one discriminates between
the data generated by the generator and the real data. The networks alternate between
updating the parameters of the four network weights by minimizing the different loss
functions.

Abbreviations 27

Figure 2.22: α-GAN structure. Xreproduced: samples reproduced by the generator from
encodings produced by the encoder. Xgenerated: samples produced by the generator
given a "random" vector. Zrandom: samples from the latent-generating distribution

(random noise). Zencoded: vectors produced by the encoder given a real sample.

2.4.17 Federated Learning

Federated Learning (FL) is a machine learning technique that aims to resolve some of the
concerns and restrictions about data and user privacy when accessing data for training
machine learning algorithms. Federated learning trains an algorithm across multiple
decentralized devices or servers that holds local data samples, without directly accessing
the data. A centralized server maintains the global neural network and each device or
server connected to this central server is given a copy to train on their own dataset.
When the model has been trained locally for a number of iterations, the participating
servers or devices will send their updated model back to the centralized server. The
central server will then aggregate contributions from from all participating nodes, thus
creating a new updated global neural network which can be shared with the participating
nodes again.[41][42][43][44][45]

Abbreviations Chapter 2 Background

Figure 2.23: General Federated Learning Process[46]

2.4.18 Federated Averaging

Federated Averaging is a function commonly used in federated learning implementations.
The function is responsible for calculating new weights for the global model. Other
approaches for generating the federated model exist, however these are not utilized in this
thesis, but will be mentioned in the discussion chapter. The right side of the equation is
estimating the weight parameters for clients based on loss values. On the left side of the
equation each parameter is scaled and summed up component wise. [47]

(2.8)

w is the model parameters. K: is the total number of clients. k: is the index of the
clients. nk: is the number of data samples available for client k. n: is the total number
of data samples. Pk: is the set if indexes of data on client k.[47]

2.5 Software

This section will introduce and briefly explain the software, mainly the python libraries
utilized in this thesis.

Abbreviations 29

2.5.1 PyTorch

PyTorch is a platform for deep learning which was utilized for this thesis. PyTorch is an
open-source platform, written in the Python programming language and centers around
the use of tensors. This platform was chosen for several reasons, but mainly because this
thesis builds on results and software from Simen Larsen’s master thesis which utilized
the same platform. [48]

2.5.2 PySyft

PySyft is an open-source FL framework for building secure and scalable models. PySyft
is a hooked extension of PyTorch, thus complementing the use of PyTorch for this thesis.
[49]

2.5.3 SciPy

Is an open-source python library for mathematics, science, and engineering. This library is
mainly used in the thesis to perform multidimensional image processing when augmenting.

2.5.4 Docker

Docker as referred to in this thesis is a product that offers OS-level virtualization to
deliver software in packages. The software packages are referred to as docker images
in this thesis. An image is an instance of a system set up, this is useful for ensuring
compatibility across platforms. This is particularly helpful when using a combination
of software packages that might require a specific version of other packages to function
properly. These docker images are run by a single operating system kernel and uses fewer
resources than virtual machines. [50]

2.5.5 Nipype

Nipype is an open-source python project that provides an interface to many existing
neuroimaging software and provides interaction between these software within a single
workflow[51]. Nipype provides a dockerimage[52] with all the different packages (e.g.,
ANTS, SPM, FSL, FreeSurfer, Camino, MRtrix, MNE, AFNI, Slicer, DIPY) already
installed. This makes it much easier to use and for others to reproduce the processing
one applies on the MRI images.

Abbreviations Chapter 2 Background

2.6 Previous work on detecting AD-DLB-NC with machine
learning

Larsens paper[23] on classifying AD, DLB, and NC with deep learning(DL) is the baseline
for this study. In Larsen’s paper, he proposes a DL framework where a custom DL model
can be trained on a custom dataset. He proceeds to test his framework with his own
model, SimenNet, on a dataset he made with MRI images of AD, DLB, and NC subject.
Much of the work Larsen did with preprocessing, dataset balancing, and programming
has been utilized in this thesis. The programs he wrote has been further extended and
edited to implement new methods.

Chapter 3

Materials and method

3.1 Reproduce Larsen’s results and Python Environment

To improve the results that Larsen [23] got in his thesis, the first step was to reproduce
his results. A python environment was made to run the code in. All the missing/wrong
versions of the different packages were found by running Larsen’s code until failure and
installing the right python package. A lot of the packages needed to be installed with
specific older versions to be compatible with each other. For the full list of the installed
python packages, see the enclosed file "requirements.txt" in appendix A.

3.2 Data

The data used in this thesis is T1 weighted MRI scans from the European Dementia with
Lewy bodies (E-DLB) consortium and the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) databases [53]. The E-DLB consortium is the only source of DLB subjects, and
it contains 288 DLB, 146 AD, and 146 NC subjects. The ADNI database contains a
number of AD and NC subjects which has been used to balance the dataset.

3.2.1 Preprocessing

Spatial Normalization

Spatial normalization was performed with the SPM12 software [54] that was included in
the Nipype docker image. In addition to spatially normalize all the images, the software
also normalizes the image intensity variations that are common in MRI images due to
varying strength in the magnetic field.

31

Abbreviations Chapter 3 Materials and method

Brain Extraction

The BET2 software [55] [56] was used to extract the brains from the MRI images. This
software reported to give good results and high performance. The skull stripping process
can also be adjusted with the fractional intensity threshold (frac) parameter. Higher frac
values make the skull stripping more "aggressive" and removes more of the MRI image.
Multiple frac values (0.4, 0.3, 0.2, 0.15, 0.05, 0, 0.25, 0.275, 0.265, 0.24) were tested on
two random MRI images from the data and were manually inspected to find the optimal
frac value for the skull stripping process. Frac value 0.25 was chosen because it removed
the least amount of brain matter while still managing to remove most of the unwanted
parts of the MRI image. There were still some parts around the eyes that did not get
removed, but with higher values, the skull stripping started to remove more of the brain
matter. After skull stripping the data with frac=0.25, ten random brains were inspected,
and one of the brains had inferior results around the eyes (see figure 3.1). This brain
needed a frac value of 0.4 to get rid of the eyes in the skull stripping process correctly.
Therefore a dataset with frac = 0.4 was also created.

Figure 3.1: Poorly skullstripped brain with Frac=0.25.

The BET2 also has some mutually exclusive options when running the skull stripping.
The option "reduce bias" and "remove eyes" were tested.

The "remove eyes" option was used with the frac value 0,25 to make another dataset.
The skull stripping process crashed on ten of the MRI images. These were supplemented
from the frac = 0.4 data.

According to Popescu V, Battaglini M, Hoogstrate WS, et al.[57] the optimal parameters
would be BET option "reduce bias" with frac = 0,2. The "reduce bias" option crashed the
skull stripping process on 17 of the MRI images in the dataset. These were supplemented
from the "frac = 0.25 remove eyes" data.

Abbreviations 33

3.2.2 Dataset

The datasets are built on the work Simen Larsen did in his thesis. All the datasets use
Larsen’s age and gender matching so that patterns in the data that are not "dementia"
related are reduced. For example, if all the AD brains were men, and all the DLB brains
were women, the DL algorithm might learn false patterns related to the gender of the
brains and not the disease. That is why the dataset is balanced, see table 3.2 for the
dataset characteristics. One of the DLB subjects was discarded because the age was
three standard deviations from the mean age of the DLB data. In total there are 861
MRI images in the dataset, 287 from each class.

Figure 3.2: Larsen’s Dataset Characteristics [23] picture form Larsen’s thesis is used
with his consent.

The dataset structure is kept in all the new datasets that are made with different skull
stripping values. All the subjects that are put into "testing" and "training" are also
identical in all the datasets to keep the results consistent.

Six datasets have been used in total, and the different datasets are Frac 0.5 (Larsen’s
dataset), with and without added upscaled GAN image Larsen’s dataset was
copied from his thesis and used to generate and test the GAN images. Frac 0.5 (Larsen’s
dataset), Resized to 64x64x64, with and without added GAN images. Frac
0.25 dataset, Frac 0.25 dataset Resized to 64x64x64, Frac 0.4 dataset, Frac
0.25 dataset with "remove eye" option, Frac 0.1 dataset with "reduce bias"
option, Frac 0.2 dataset with "reduce bias" option.

3.2.3 Federated learning Data Set

For the FL approach, two datasets are being used, one for each FL model. There are
230 of each class in the original training data, which means there are 115 brains to train
in each FL dataset. Since the test data only contains 57 brains for each class, one of
the FL datasets gets 29 of each brain type and the other one gets 28 in the test folder.

Abbreviations Chapter 3 Materials and method

The MRI images from Larsen’s dataset were randomly selected and added to either the
FL1 or FL2 dataset. Because the splitting of Larsen’s dataset is random, the FL1 and
FL2 dataset does not have the same balance of age and gender, which can impact the
generalization if they are trained separately.

3.3 Models

The used models were all modified to use 3D convolutional layers instead of 2D, as the
3D has shown to produce better results with MRI images [58]. The models tested was
SimenNet, ResNet, DenseNet, as well as the federated models.

The SimenNet model was copied from Larsen’s code and tested as it is.

The ResNet model used is from Zuppichini [59] implementation in PyTorch because it
was scalable and easy to modify. The model was modified to use 3D convolutional layers
and 3D images as input, and then tested with sizes of 18, 34, 50, 101, and 152. Extra
fully connected layers were also added to the end of the model to see if it would increase
performance (see figure 3.3). Both the fully connected layers and convolutional layers
were tested with and without dropout. Dropout were always added to the model after
BN [60], see figure 3.3 to see how it is added in the FC layers.

Figure 3.3: Extra Fully Connected Layers added to end of ResNet models.

The DenseNet was implemented from Aspris github[61], and modified to use 3D instead
of 2D layers.

3.3.1 Federated Learning Models

Two different neural nets are constructed for the FL models. Both of these FL nets are
based in large part on the SimenNet, and altered only when necessary to fit the federated

Abbreviations 35

setup. The nets include multiple convolutional and max-pooling layers, as well as some
fully connected layers. The activation function used for both nets is the ReLU6 function.

Figure 3.4: Federated Network Structure

This proposed network (3.4), is for testing the federated average function performance and
effect. The first part of the network consists of five convolutional blocks, which includes
convolution function, max-pooling function, ReLU6 function and batch normalization
function. The latter part of the network consists of three fully connected blocks, which
includes a fully connected layer and the ReLU6 activation function, except for the third
block which only consists of the fully connected layer.

Abbreviations Chapter 3 Materials and method

Figure 3.5: Asynchronous Federated Network Structure

Figure 3.6: Asynchronous Federated system setup

The second proposed federated network (3.5), is for testing the federated setup in an
asynchronous federated learning structure with a central server, worker and testing
nodes (3.6). The reasoning behind the asynchronous setup is that it is based on the
asynchronous MNIST websocket example detailed in chapter 3.5. An asynchronous
structure will allow the nodes to contribute to the federated model more efficiently than
a synchronous structure. This proposed network structure contains all the layers native
to the first proposed network, however this network also includes some additional layers.

Abbreviations 37

In both the convolutional and fully connected blocks, this network contains a dropout
layer at the end. The dropout layers provide additional options to tweaking the model
and can sometimes be useful as a conutermeasure to the overfitting problem.

3.4 Augmentation

Because the primary biomarker of dementia is atrophy throughout the brain, some
augmentation techniques might make it harder to distinguish a healthy brain and one
with dementia. Therefore multiple augmentation techniques were tested separately to
single out any inferior ones. In the end, the best performing techniques are combined
and tested.

When training a model, online augmentation is applied to the data. This is done to
increase the variety of data when training and makes it harder for the model to overtrain.
The augmentation was performed on all of the training data, which includes the data
used in the validation. When verifying the model with the test images, no augmentations
are applied. The probability of an MRI image getting augmented was manually set in
the augmentation function. This is to limit the amount of augmentation applied to the
dataset.

All the different augmentations were visually inspected to ensure that the code worked
as expected, see figure 3.7

Abbreviations Chapter 3 Materials and method

Figure 3.7: Illustration of the different augmentations.

3.4.1 Simple Single Augmentation

Flipping and mirroring using the "flip" function in the NumPy library. The flips are
left to right, upside down, and mirroring. The flipping has a 50% chance of being applied
to an MRI image during training. Because a flip can only be applied once for every
picture, higher probabilities seem useless.

Random rotating because the MRI data is in 3D, there are three different planes to
rotate the data: XY, XZ, and YZ. All the different planes are tested one at the time, with
varying rotation angles and probability. The probability for an image being rotated and
the range of how many degrees to rotate is manually set in the augmentation function
before training. The varying amount of rotation is done with a random function that
gives a random number between two set values, e.g. a rotation with +-2 degrees can give

Abbreviations 39

these rotations: 1, 2 359 and 358 (negative values is 360 + the negative value). The
images are rotated with the rotate function from the scipy.ndimage package.

Translation moves the brain around in the 3D space. The translations are done in all
directions (right/left, up/down, in/out) between 1 to 4 pixels. With more than 4 pixels,
the brain will start to "wrap" around to the other side. Each of the three directions has its
own probability of being applied; this increases the total number of unique augmentations
that can be done with the translations. The probability for an image being augmented
and the probabilities for each direction are individually set in the augmentation function
before training.

Gaussian Blur was applied to the data using the gaussian_filter method from SciPy.
The probability for an image being applied with the Gaussian blur is manually set in
the augmentation function before training. The Gaussian blur can also be applied with
varying intensity levels by specifying the range in the augmentation function before
training.

3.4.2 Simple Augmentation Combinations

When combining the different augmentation techniques, two different methods were used.
The first method randomly applies multiple augmentation techniques on one image. The
chance for each type of augmentation technique being applied is set individually in the
augmentation function before training. This is to regulate which techniques are most
likely to be applied. The techniques that performed better than others in the previous
experiments have generally gotten higher probabilities of being applied than those who
performed worse.

While the second method, called "exclusive augmentation", randomly applies only one
augmentation technique to the image. In the exclusive augmentation, a random number
is generated, and the different augmentations are given a number each. If the random
number matches the number assigned to an augmentation technique, the image gets this
augmentation applied. More numbers are assigned to the more desirable augmentation
techniques to increase the likelihood of these augmentations being applied.

3.4.3 GAN

The model used is from the paper "Generation of 3D Brain MRI Using Auto-Encoding
Generative Adversarial Networks"[62]. This model uses the α-GAN network structure
to generate 3D MRI images. Results from the paper show that it outperforms other
methods, see figure 3.8. All the code used to train the 3D-α-GAN model is in their

Abbreviations Chapter 3 Materials and method

GitHub repository [63]. The data used to train the 3D-α-GAN models are from Larsen’s
dataset (Frac = 0.5) resized to 64x64x64. The Frac = 0.5 dataset was used because of
none of the other datasets were made at the time of training the 3D-α-GAN. The resized
data was used because of memory limitations on the GPUs when training. Because
there were three different classes in Larsen’s dataset, three different generators were
trained. Transfer learning was not utilized because the pre-trained model, which was
enclosed in the GitHub repository, used different preprocessing then the data in Larsen’s
dataset. Each class had 287 MRI images to train on, which should be enough. The
hyperparametes used are the same as in the thesis [62] as they were shown to produce
good results.

Figure 3.8: Detailed architecture of the model from [62]. n = number of the channels,
k = kernel size, s = stride size, and p = padding size. xrand is the generator output

from random vectors zr and xrec is the output from encoded vectors ze.

3.5 Existing Approaches/Baselines

3.5.1 Asynchronous federated learning on MNIST

This example is run with code from the PySyft MNIST Websocket example[64]. The
MNIST dataset is a set of handwritten numbers from 0-9, widely used for testing ML
algorithms. This is done to get a baseline of what accuracy is achievable when training
on a robust, large sample dataset using the PySyft FL-framwork. For this test setup we
have three workers; Alice, Bob and Charlie, each holding a piece of the dataset. The
evaluator holds testing data and tracks model performance. The structure of the setup
is identical to (3.6), except there is an additional worker node; Charlie.

Abbreviations 41

Table 3.1: MNIST dataset Asynchronous FL table

Table 3.2: MNIST dataset Asynchronous FL results table

Chapter 4

Experimental Evaluation / Results

This chapter contains the experiments and results presented in this thesis. Subchapter 4.1
- 4.9 lays out the experiments and results from the general approach of improving Simen
Larsen’s results, as well as general information about the dataset and augmentation
methods. Subchapter 4.10 - 4.11 lays out the experiments and results from the federated
learning approach.

4.1 Reproducing Simen Larsen’s results

The algorithm ran with Larsen’s start arguments for two days before the Bayesian
optimization found the best hyperparameters to train the model. The best performing
model had an accuracy of 72.5% which is more than expected, see figure 4.1 and 4.2
bellow for more details.

Figure 4.1: Confusion plot of repro-
duced model.

Figure 4.2: Performance of repro-
duced model.

43

Abbreviations Chapter 4 Experimental Evaluation / Results

4.2 Overview

An overview of the structure for when the different experiments were conducted is present
in figure 4.3.

Figure 4.3: Structure with timeline when carrying out the different experiments.

4.3 Prepossessing

To visualize the preprocessing results, two different brains have been chosen. BrainA,
which is a good MRI picture and reflects the preprocessing results for the majority of
MRI images in the dataset, figure 4.5. BrainB, which is the problematic MRI image from
figure 3.1. This MRI image shows where the prepossessing falls short. Unfortunately, the

Abbreviations 45

MRI image does not work with the "reduce bias" option, see figure 4.6. The prepossessing
process for a whole dataset took five days to complete when running on CPU.

Figure 4.4: BrainA different frac pre-
processing result.

Figure 4.5: BrainA with extra op-
tions preprocessing result.

Abbreviations Chapter 4 Experimental Evaluation / Results

Figure 4.6: BrainB preprocessing result.

4.4 Generating MRI Images with GAN

The algorithm ran for 200000 epochs and it took approximately 84 hours to make a
generative model for one type of brain on a nvidia tesla v100 PCIE 32gb GPU. See
samples of the real and fake NC, AD and DLB MRI brains in figure 4.7 - 4.12.

Figure 4.7: Sample of a real. NC brain

Abbreviations 47

Figure 4.8: Sample of a generated NC brain.

Figure 4.9: Sample of a real AD brain.

Figure 4.10: Sample of a generated AD brain.

Figure 4.11: Sample of a real DLB brain.

Figure 4.12: Sample of generated DLB brain.

The generated MRI images were visually inspected to make sure they look like brains
with no obvious anomalies. To verify that the generated MRI images were different
brains with DLB, AC, and NC diagnosis, the generated images were put in the test set
of a dataset. Then a model that was trained with only real brains was used to classify
the generated MRI images. If the results from this are similar to the results with the
real MRI images, then it is a clear indicator that the generated brains reproduce their
intended diagnosis well.

Abbreviations Chapter 4 Experimental Evaluation / Results

4.5 Experiment - ML Models

All the models were tested with the "frac = 0,25 resized 64x64x64 dataset" because the
smaller resolution reduces the training time significantly. ResNet and DenseNet used
the SGD optimizer with parameters: learning rate = 0.000995, momentum = 0.537,
L2 weight decay=0.0549, nesterov=True. SimenNet used the Adam optimizer with
parameters: learning rate =0.0000297, smoothing = 0.67, L2 weight decay=0.1552 and
dropout = 0.2. These parameters were found by doing a quick Bayesian Optimisation
with the ResNet18 model with a 2-fold CV.

Table 4.1: Results from testing different models.

For more detailed results, see appendix B.1 - B.2 were the results are reported with
confusion plots, precision, recall and F1 scores.

4.6 Augmenting

The augmentation experiments were conducted in two phases. In the first phase, the
augmentation techniques were tested by training the ResNet18 model once with hyper-
parameters that were slightly adjusted from those used in the chapter 4.5 Experiment

Abbreviations 49

- ML Models :learning rate=0.0004633, momentum=0.62, dampening=0, L2 weight
decay=0.06, nesterov=True.

The different augmentations techniques were individually tested with varying parameters
of probability and varying input range for the techniques that supported this (rotation
and gaussian blur). Then the different augmentations techniques were combined and
tested again with varying parameters of probability and varying input range. The result
was reported with confusion plot, accuracy, loss, precision, recall, and F1 score. This
method of testing was fast and gave reasonable indications of what worked and what did
not, see appendix B.4 - B.14 for the results.

The best and most consistent augmentation from the first phase was the translation
combined with a small rotation.

In phase two of the augmentation experiment, new hyperparameters were found with
the Bayesian Optimization technique, using the ResNet18 model and the best and most
consistent augmentation from the first phase while training, see table 4.2 and 4.3.

Table 4.2: Bayesian optimization with augmenting.

Table 4.3: Best iteration from the Bayesian optimization with augmenting. Values in
brackets are the standard deviation.

The different augmentations were then tested again with the new hyperparameters with
the ResNet18 model. This time the results were reported with a six-fold CV to get more
reliable results to determine which of the augmentations performed best.

The different augmentations techniques were again individually tested, and then combined
and tested, with varying parameters of probability and varying input range for the
techniques that supported this (rotation and gaussian blur), see appendix B.15 - B.26.

Abbreviations Chapter 4 Experimental Evaluation / Results

The best result from the experiment was the combination of translating(Roll) and a small
rotation in the XZ plane. The augmentation with the probability and range parameters
was: "Roll 1-4 pixels in each direction, 95% chance of translation and 66% change for
each direction, Rotate +-6 degree XZ 80%". For detailed result see table highlighted in
green in appendix B.24.

Baseline result with no Augmentations

See appendix B.3 for tables with the first results and appendix B.15 for the 6-CV results.

Rotation in XZ plane

See appendix B.4 for tables with the first results and appendix B.16 for the 6-CV results.
Some of the augmentations were tested multiple times to see if the results were consistent
like the "Rotate +-30 degree XZ axis, 90% augmented". The % augmented is to indicate
the probability that an MRI image have to be augmented.

Rotation in XY plane

See appendix B.5 for tables with the first results and appendix B.18 for the 6-CV results.

Rotation in YZ plane

See appendix B.6 for tables with the first results and, appendix B.19 for the 6-CV results.

Translations

See appendix B.7 for tables with the first results and, appendix B.20 for the 6-CV results.
"Roll" is used to indicate translations, because it is the name of the function in python
and shorter to write than "Translation". The first "%" probability when translating is
the probability for the MRI image to translated at all, and the second "%" probability is
for each direction (left/right, up/down, and back/forth).

Mirroring/Flip(0)

See appendix B.8 for tables with the first results and, appendix B.21 for the 6-CV results.

Abbreviations 51

Flip Left Right/Flip(1)

See appendix B.9 for tables with results. This augmentation was not tested with 6-CV
because it performed poorly in the first test.

Flip Upside Down/Flip(2)

See appendix B.10 for tables with results. This augmentation was not tested with 6-CV
because it performed poorly in the first test.

Gaussian Filter

See appendix B.11 for tables with the first results and, appendix B.22 for the 6-CV
results.

Combinations of Different Augmentations

See appendix B.12 - B.14 for tables with the first experiment results. See appendix B.23
- B.26 for tables with the 6-CV results.

4.6.1 Augmenting with GAN

The augmentations with GAN used the Frac0.5 dataset because the GAN model was
trained with this dataset. When comparing the GAN results, the comparisons are
done with the Frac = 0.5 dataset and not the Frac = 0.25 dataset that the rest of the
augmentations use. This is because the GAN was trained before the frac = 0.25 dataset
was created.

GAN with the Frac = 0.5 Dataset Resized to 64x64x64

230 GAN images were generated for each of the classes and added to the dataset training
data. None of the generated data was added to the test folder in the dataset to keep this
folder "clean".

The first experiments were done by training a ResNet18 model once on the dataset and
report the results (tables in appendix B.27). The second experiment, combined the GAN
supplemented dataset with augmentations, see tables in appendix B.28.

Abbreviations Chapter 4 Experimental Evaluation / Results

The GAN supplemented dataset was also trained with six-fold CV to get more reliable
results, see figure in appendix B.44 for experiments with no augmentation, and figure in
appendix B.46 for experiments with augmentation.

The resized frac = 0.5 dataset without the supplemented GAN images was trained
with six-fold CV both with and without augmentations to be compared with the GAN
supplemented experiments (see figures in appendix B.45 B.47).

Table 4.4: 6-CV Augmentation Results with Frac=0.5 with and without GAN Images.
GAN 25% had 115 added generated MRI images in each class in the training data,
GAN 50% had 230. w/augmention = Roll 1-4 pixels in each direction, 95% chance of

translation and 66% change for each direction, Rotate +-6 degree XY 90%.

To get a better intuition of how the GAN images impacts the ResNet model, the best
result from appendix B.44, which is fold 5, is displayed here with extra evaluation metrics,
see figure 4.13.

Figure 4.13: Best Result from appendix B.44 with extra evaluation metrics.

Abbreviations 53

GAN Upscaled to 157x189x156 with Frac0.5 Dataset

Because the datasets with the original size (157x189x156) provided better results than
the smaller resized (64x64x64) dataset, an experiment was conducted to upscale the
GAN generated images and supply them to the original dataset. To upscale the GAN
images, the "numpy.resize" function was used. This was used because it was fast and
easy and needed no additional software, and there was no need to make extra slides as
the GAN images contained the same amount of slides that the original sized pictures.
See figure 4.14 for a comparison of the upscaled generated brain, original-sized generated
brain, and a real brain.

Figure 4.14: Comparison of Upscaled generated brain, original sized brain and a real
brain.

The experiments with the Upscaled GAN images were trained with ResNet34 with 3
fully connected layers with dropout. The first experiment used multiple augmentations:
translation with 95% chance of being augmented and a 66% chance for each direction,
and rotating +-30 degrees in XY and XZ plane with 50% chance of being augmented.
For Loss and accuracy plots see figures in appendix B.48 and B.49

Abbreviations Chapter 4 Experimental Evaluation / Results

Figure 4.15: Confusion plot for up-
scaled GAN test.

Figure 4.16: Performance of upscaled
GAN test.

The second experiment used only one augmentation: translation with 95% chance of
being augmented and a 66% chance for each direction and rotating in. For Loss and
accuracy plots see figures 4.17 and 4.18

Figure 4.17: Confusion plot for up-
scaled GAN test.

Figure 4.18: Performance of upscaled
GAN test.

Only GAN images used in training

To test how the GAN images would perform when training a model without any real
brains in the dataset, a ResNet18 model was used. The model was then tested on a
dataset of real brains to see how the model performed, see figure 4.19 - 4.22.

Abbreviations 55

Figure 4.19: Accuracy plot for train-
ing only GAN.

Figure 4.20: Loss plot for training
only GAN.

Figure 4.21: Confusion plot for only
GAN test.

Figure 4.22: Performance of only
GAN test.

Verifying the GAN images

To verify that the GAN images are different brains with DLB, AC, and NC diagnosis,
the best model from the six-fold CV from table in appendix B.45(which is Fold 6) which
were trained on only real brains were used to classify all the generated images.

Abbreviations Chapter 4 Experimental Evaluation / Results

Figure 4.23: Model trained on real MRI images, classify the Generated GAN images.

For context the model metrics of Fold 6 from table in appendix B.45 is displayed here to
show how the same model performed on the real data (see, figure 4.24).

Figure 4.24: Detailed metrics of Fold 6 from table B.45 when tested on real data.

4.7 Datasets

Experiments to find the best dataset was conducted. The different datasets were
tested with varying amounts of augmentations, and the ones showing promising results
were tested further. The hyperparameters used was: learningrate=0.0009956, momen-
tum=0.537948, L2 weight decay=0.0549, nesterov=True. For a quick overview of the
best results of the different datasets, see table 4.5.

Abbreviations 57

Table 4.5: Single Best ACC for every dataset

Frac0.5 Dataset (Simens Dataset)

See tables in appendix B.29 for the results. This dataset is the only with GAN as
augmentation.

Frac0.25 Dataset

See tables in appendix B.30 for the results.

Frac0.4 Dataset

See tables in appendix B.31 for the results.

Frac0.25 Remove Eyes Dataset

See tables in appendix B.32, and B.33 for the results. Because this dataset had the best
results, further experiments were conducted with different, hyperparameters, LeakyRelu,
varying rotations and varying chances for different rotations, and with more significant
translations see tables in appendix B.36 - B.43.

Frac0.1 Reduce Bias Dataset

See tables in appendix B.34 for the results.

Abbreviations Chapter 4 Experimental Evaluation / Results

Frac0.2 Reduce Bias Dataset

See tables in appendix B.35 for the results.

4.8 Final Evaluation of Three Class Classification

The final evaluation uses the results from the model, augmentation, and dataset ex-
periments to train a model with the Bayesian optimization algorithm. The Bayesian
optimization algorithm finds the best hyperparameters (learning rate, L2 regularisation,
and momentum) for the model to use when training, thus finding the best performing
model.

Table 4.6: Results from the Bayesian optimization algorithm with the ResNet34 with
three FC blocks, augmentation(roll and rotate +-6 degree) and the "Frac=0.25 Remove

Eye" dataset

Table 4.7: Best six-fold CV result from the Bayesian optimization using the ResNet34
model with three FC blocks, augmentation(roll and rotate +-6 degree) and the "Frac=0.25

Remove Eye" dataset. Values in brackets are the standard deviation

Abbreviations 59

Figure 4.25: Confusion plot of Fold
6 from table 4.7

Figure 4.26: Evaluation metrics from
fold 6 from table 4.7. Loss and Accu-

racy graph see appendix B.52

4.9 Two Class Classification

Experiments with a two-class classification problem were conducted to see if the DL
model would perform better with fewer classes. The classes tested was NC versus
dementia(DLB and AD), and DLB versus AD. AD versus NC was also tested to compare
this thesis to other state of the art methods. The experiments used hyperparameters, wich
were manually found when conducting experiments to find the best dataset. (Learning
rate=0.0009956, momentum=0.537948, L2 weight decay=0.0549, nesterov=True). The
hyperparameters found in table 4.6 was tested once, but they provided worse results and
was therefore discarded.

NC versus DLB and AD

Figure 4.27: Six-fold CV result from experiment with 2 class classification NC versus
DLB and AD

Abbreviations Chapter 4 Experimental Evaluation / Results

Figure 4.28: Average recall and precision from the Six-fold CV result 4.27 from experi-
ment with 2 class classification NC versus DLB and AD

Figure 4.29: Confusion plot of fold 6
from 4.27

Figure 4.30: Performance of model
in fold 6 from 4.27. Loss and accuracy

graph see appendixB.53

A model was also trained on a dateset with NC vs AD subjects so that the model easier
can be compaired with other related works in chapter five, see appendix B.55 for results.

AD versus DLB

Figure 4.31: Six-fold CV result from experiment with 2 class classification DLB versus
AD

Figure 4.32: Average recall and precision from the Six-fold CV result 4.31 from experi-
ment with 2 class classification DLB versus AD

Abbreviations 61

Figure 4.33: Confusion plot of fold 2
from 4.31

Figure 4.34: Performance of model
in fold 2 from 4.31. Loss and accuracy

graph see appendix B.54

4.10 Federated Learning Experimental Setup

This section contains the FL experimental setup and specifies the datasets selected
including benchmarking of these.

4.10.1 Federated learning Dataset Benchmarking

Benchmarking models were trained on the federated datasets; FL1 and FL2 on two
different servers. The models were trained with the same parameters except for batch
size. The model trained on the GPU with less memory has half the batch size for training
and validation witch is 7 instead of 14.

Results for the FL1 dataset model trained on the Tesla-v100-32GB card is 61.9% accuracy.
see confusion plot below:

Abbreviations Chapter 4 Experimental Evaluation / Results

Figure 4.35: Confusion plot of model
trained on FL1

Figure 4.36: Performance of model
trained on FL1

Results for the FL2 dataset model trained on the Tesla-P100-16GB card is 55.17%
accuracy. see confusion plot below:

Figure 4.37: Confusion plot of model
trained on FL2

Figure 4.38: Performance of model
trained on FL2

4.10.2 Federated Learning experiment using Federated Averaging

These experiments were conducted by training two sets of models using the FL datasets.
Models are trained separately and later used to generate a federated average model. The
models are tested for accuracy and loss for comparison between the best locally trained
model and the federated version. Sets of models are trained with the same parameters
and all use the Adam optimizer. The models are trained without the use of dropout

Abbreviations 63

layers in the network as this will most likely reduce the accuracy of a federated average
model due to increased randomness.

4.10.3 Asynchronous Federated Learning experiment using Federated Aver-
aging

The asynchronous FL experiment is structured as shown in figure 3.6. This setup is
an attempt to implement a closer to real-world scenario structure of the FL training.
Two websocket clients; Alice and Bob, serve as the nodes in the network. There is also
a third websocket client; Trainer, used for evaluation of the model when training is
complete. The central server is a websocket server which receives model parameters from
the workers and applies the federated average function to generate a new model which is
distributed back to the workers or evaluated by the testing worker if training is complete.
All models use the Adam optimizer.

4.11 Federated Learning Experiment Results

This section contains the results of the FL experiments.

4.11.1 Federated Average experiment result

Figure 4.39: Confusion plot of best
local model, set 1, trained with the

Adam optimizer

Figure 4.40: Performance of best lo-
cal model, set 1, trained with the

Adam optimizer

Loss and accuracy plot for this model can be found here:(B.56)(B.57)

Abbreviations Chapter 4 Experimental Evaluation / Results

Figure 4.41: Confusion plot of the
federated model, set 1, trained with

the Adam optimizer

Figure 4.42: Performance of the fed-
erated model, set 1, trained with the

Adam optimizer

Loss and accuracy plot for this model can be found here:(B.58)(B.59)

Figure 4.43: Confusion plot of best
local model, set 2, trained with the

Adam optimizer

Figure 4.44: Performance of best lo-
cal model, set 2, trained with the

Adam optimizer

Loss and accuracy plot for this model can be found here:(B.60)(B.61)

Abbreviations 65

Figure 4.45: Confusion plot of the
federated model, set 2, trained with

the Adam optimizer

Figure 4.46: Performance of the fed-
erated model, set 2, trained with the

Adam optimizer

Loss and accuracy plot for this model can be found here:(B.62)(B.63)

Table 4.8: Results summary table from models set 1 and 2, normal and federated
model.

4.11.2 Asynchronous Federated Learning experiment results

Table 4.9: Results summary table from asynchronous federated learning experiment.

Chapter 5

Discussion

5.1 Preprocessing and Datasets

It is difficult to see which skull stripping results that are best by inspecting the brains
from the figures 4.4 - 4.6, feedback from a radiologist on which brains looks the best
would have been useful. The "Frac0.2 Reduce Bias" looks like the best option because it
removes very little brain matter and removes most of the unwanted parts. The "Frac0.2
Reduce Bias" was also reported to be the best option to use with the BET2 software in
this thesis [57]. However, this was not the case when training a ResNet model on different
datasets. The "Frac0.25 Remove Eye" dataset outperformed the rest, see figure 4.1. The
"Frac0.25 Remove Eye" is successful at removing unwanted parts, but it struggles with
removing parts of the necks, which is very clear in figure 4.6. Nevertheless, the "Frac0.25
Remove Eye" performed the best and was used in the final evaluation.

One possible justification for why the "Frac0.25 Remove Eye" performs better than the
"Frac0.2 Reduce Bias" is: because the "Frac0.25 Remove Eye" removes a bit more of
the brain, it has more space to move when it is augmented without it causing the MRI
image to wrap around itself. Alternatively, the extra bits of the neck in the MRI images
help the model figure out that a brain is rotated or not when the rotation augmentation
is applied. [57] also reported that with the use of extra "neck removing" software in
addition to the BET2 with the "Frac = 0.1 and reduce bias" option, they were able to
produce a little better results than with only the BET2.

5.1.1 Federated Learning Data Set

As mentioned in subchapter 3.2.3, the federated learning dataset is divided in a manner
which might not be optimal. Since the splitting of Simen Larsen’s dataset is random, the

67

Abbreviations Chapter 5 Discussion

FL1 and FL2 datasets does not have the same balance of age and gender as the original
dataset, which may impact the generalization of the result. This might especially be
noteworthy if the datasets are used to train separate models. The main justification for
not balancing the federated datasets is that both FL1 and FL2 are utilized in the training
process for all of the models in the FL experiments. In addition, it is not unreasonable
to assume that unbalanced datasets occur in a real world setting where medical centers
contribute in a federated learning process.

5.2 Models

The best model to use on the "Frac0.25 resized dataset" was the ResNet18, as it provided
the best average result on all the tests except for the test without any extra fully connected
layers or dropout, where it was second-best after ResNet101. However, the results of this
test do not give the absolute correct answer, only a guideline, because there were many
flaws with the testing of the different models. As an example, all the models used the
same hyperparameters and this could mean some models got a huge advantage. With
testing models in the future, every model should be run with the Bayesian Optimization
algorithm to ensure all models use the best hyperparameters. The main lesson from
the test was that the pattern from table 4.1 shows that the shallower models performed
better with dropout than their deeper counterparts. This can be caused by the deeper
models runing through the dropout function many more times than the shallower models,
and the deeper models, therefore, lose too many vital nodes. It is not given that the best
model on the resized dataset is the best model to use on the fullsized dataset, which was
shown to be the case when comparing tables from appendix B.36 and appendix B.40.
Where the ResNet34 model was shown to give the best results.

5.3 Augmentations

It can be argued that the way the augmentation experiments are setup is limiting the
scope of the testing to "The best single augmentations used in combination" when the best
combination might be a combination of two suboptimal single augmentation techniques.
This is most likely not the case here because only two techniques were discarded for
performing too bad during the single augmentation testing, which was the filp(1) and
flip(2) option. Moreover, the ones that were left were extensively tested to make sure
no good combinations were left out. However, with limited time, some assumptions
were made when testing. For example, if the augmentation technique did not work
well with rotation in the XY plane, it would probably not work much better with the

Abbreviations 69

rotations in the XZ and YZ planes. Throughout the testing of the different augmentation
techniques, see appendix B.4 - B.26, it was clear that most of the augmentations work
well. The majority of the models trained with augmentations provide better test accuracy
than the models without any augmentations. What seems to be the problem with the
different augmentation techniques is to find how much of it to apply to the data when
training. With too much augmentation, the accuracy starts to decrease; this is especially
evident in the deeper models, see tables in appendix B.25. With too little augmentation,
nothing drastic happens, the accuracy stays the same as without augmentation. When
the amount of augmentation is just right, the accuracy increases, see tables in appendix
B.24. In the first table, the test accuracy is even higher than the validation accuracy.
This is most likely because the subjects in the validation results are augmented, while
the test results are not.

5.4 GAN

5.4.1 GAN

The generated brains look very real, and it is very hard to differentiate between real
and fake ones, see figures 4.7 - 4.12. It is impossible to say for sure with just visual
inspection from these figures if the generated brain has the correct disease, as this is not
even possible with real brains.

The tests with the generated images supplied with the real data show improvement in
accuracy both in validation and testing, see table 4.13 (For detailed metrics, see appendix
B.44 - B.47). The improvement in the validation is most likely due to the model finding
something in the generated data that easily separates the different generated classes.
This was further confirmed when training a model with only the generated data, see
figures 4.19 - 4.22. The way the model loss drops to 0 after only a few batches signifies
that the computer sees something in the data that is not clear to see for a human.
Furthermore, when the model was tested on real MRI images, the model was barely
better than random guessing, which means the model probably focuses on some small
details specific to the classes in the generated brains. As an example, if the NC generated
class had lighter black as the background color, and the other two classes had a darker
black as the background, the model would learn to classify the NC class by only looking
at the background and not the whole brain. The dataset with 50% added GAN images
scored just 0.09% more than the dataset with 25% added, suggesting that adding more
GAN images than 50% will probably not increase the test accuracy that much.

Abbreviations Chapter 5 Discussion

When doing the test the other way around to verify that the generated images actually
replicated the different diseases with good precision, a model trained on only real MRI
images was used to classify all the generated images. Results from this show that the
generated images replicated the different diseases with good precision, see figure 4.23.
The results might be somewhat biased because the generators used the same images for
training as the model used in figure 4.23. The results might have differed if the model
was trained on images that the generator had never seen before.

The improvement in the testing accuracy is most likely caused by better generalization
with the additional GAN images, which provides the model with more variety in the
testing data. However, since the generator had access to all the data while training, it
might introduce a data leakage. Because a GAN trained with all the data might have an
advantage over a GAN trained with the same amount of data but had a separate test set.
When training the GAN images in the future, only the training dataset should be used.

5.4.2 Upscaled GAN

Comparing the results from the tabels in appendix B.29, it is clear to see that without
the upscaled GAN images, the model performs better. The upscaling seems only to
pollute the real data when training. This is probably caused by the upscaled generated
images being too blurry/low quality, see figure 4.14.

5.5 Final Evaluation

5.5.1 Clasification of AD-DLB-NC

There have been few studies using MRI-based differential diagnoses of AD, DLB, and
NC. This might be because DLB MRI images are sparse and less accessible than the
AD and NC MRI images. The results of the reports with the three-class classification
problem can be seen in figure 5.1.

Abbreviations 71

Three-Class Problem: NC versus AD versus DLB
Accuracy[%] Averag precision Average recall Size of dataset

[65] 73 0.78 0.73 48
[66] 87 (8) 0.88 0.87 109
[23] 67.2 (3.85) 0.73 0.72 861
This thesis 78.65 (3.14) 0.786 0.788 861

Table 5.1: Three-Class Problem: NC versus AD versus DLB. Values in brackets are
the standard deviation. The [66] results are the average accuracy of a ten-fold CV,
while ours and [23] is the average accuracy of a six-fold CV. The [65] are reporting the

accuracy of a single model.

Both [66] [65] had significantly smaller datasets than ours and [23], comparisons between
the first-mentioned should be made with reservation as the results might be biased
due to unbalanced data. The result of this thesis classification improved last year’s
results [23] with more than 10 percent. While not being as accurate as [66] in the three
classification problem, this thesis method got some redemption when comparing the
two-class classification problems NC versus DLB and NC, and DLB versus AD(see table
5.2 and 5.3)

Two-Class Problem: NC versus AD and DLB
Accuracy[%] Average precision Average recall Size of dataset

[66] 98 (4) 0.985 0.986 109
This thesis 81.87 (2.34) 0.801 0.795 861

Table 5.2: Results of this thesis and related work. Two-Class Problem: NC versus AD
and DLB. Values in brackets are the standard deviation. The [66] results is the average

accuracy of a ten-fold CV, while ours is the average accuracy of a six-fold CV.

Two-Class Problem: AD versus DLB
Accuracy[%] Average precision Average recall Size of dataset

[66] 74 (16) 0.625 0.73 73 (57 AD and 16 DLB)
This thesis 87.28 (1.95) 0.87649 0.8728 574

Table 5.3: Two-Class Problem: AD versus DLB. Values in brackets are the standard
deviation. The [66] is the average accuracy of a ten-fold CV, while ours is the average

accuracy of a six-fold CV.

Opedals method scores almost perfect on NC vs DLB and AD while this thesis struggled
which might be because the dataset was not balanced as before because of twice the
amount of data in the DLB and AD class. In the AD versus DLB Opedals method falls

Abbreviations Chapter 5 Discussion

a little short. With this thesis having a 13% better accuracy. Which shows that the deep
learning method is superior in differentiating between DLB and AD.

5.5.2 State of the art

Most other works involving the classification of dementia is mainly focused on AC, MCI
and NC. This thesis focused mainly on the three-class problem, but some experiments
were done with the 2 class classification to make it easier to compare this work with
others.

A resent paper [67] discusses the many problems with reproducible evaluation of different
methods related to the classification of AC, MCI and NC. In table 1 in [67] all the "state
of the art methods" is analyzed, and data leakage problems are listed in those papers
where it is found or suspected. In [67] data leakage is defined as when the test set has
been "leaked" into the training set. The methods compared in table 5.4 are the papers
with the best-reported results with no reported or suspected data leakages. Most of
the results are two-class classification problems as most of the Multi-class classification
results either were suspected of data leakage, or had a clear data leakage in them. All
the approaches to the classification uses CNNs except for the support-vector machine
(SVM).

Study Performance Approach

AD vs NC sMCI vs pMCI MCI vs CN AD vs MCI Multi-class
[68] - - - - ACC=0.931,2 2D slice
[69] ACC=0.91 ACC=0.781 - - - 3D patches
[70] ACC=0.90 - - - - 3D subject
[71] BA=0.90 - BA=0.73 BA=0.83 - ROI-based
[72] ACC=0.76 - ACC=0.75 ACC=0.76 - 3D subject
[67] BA=0.85 (0.04) BA=0.73 (0.03) - - - 3D subject
[67] BA=0.88 (0.03) BA=0.78 (0.07) - - - 3D ROI-based
[67] BA=0.88 (0.02) BA=0.70 (0.02) - - - SVM
Ours BA=0.83 (0.02) - - - BA=0.79(0.03) 3 3D subject

Table 5.4: State of the art comparison. ACC: accuracy; BA: balanced accuracy. Values
in round brackets are the standard deviation. MCI: Mild Cognitive Impairment; sMCI:
MCI subjects that will remain stable; pMCI: MCI subjects that will progress to AD;

1 Use of accuracy on a severely imbalanced dataset where one ore more classes is less
than half of the other, leading to an over-optimistic estimation of performance.
2 The classes in the multi-class clasification is: Non-demented, Very mild, Mild, and

Abbreviations 73

Moderate
3 The classes in the multi-class clasification is: NC vs AD vs DLB

The model used in this thesis might be at an disadvantage when compairing the two-
class clasification problems, as the model is deeper and optimized for the three-class
clasification problem.

5.6 Federated Learning

There are several lessons to be learned and points worth discussing from the federated
learning approach in this thesis. The federated learning branch of machine learning is
very much in a pioneer stage when this report is being written. The field is developing
rapidly and frameworks upon which federated systems are implemented are improving
daily. The next subchapters will discuss some of the main takeaways, including the
results from conducted experiments.

5.6.1 Federated Model Generation Method

The federated model generation method/function used in this thesis is the federated
average function described in the background chapter. This function is not very complex
and is almost certainly not the best choice for many applications. However, the FL field
is very young and a limited number of methods have been properly established. The
low complexity of the federated average function, and the lack of established options
justified it for selection in this thesis. In an event where more time and resources were
available, the optimal outcome would be to test several different federated methods and
compare to find the option best suited for 3D imaging and MRI applications. Figure 5.1
is a comparison table of federated learning methods, some of which were published after
work on this thesis started.

Figure 5.1: Federated Learning methods compared on various datasets. Graph from
thesis in public domain with permission[73]

Abbreviations Chapter 5 Discussion

5.6.2 Federated Learning Framework/Software Choice

Most of the code written for the federated learning part of this project is based on
the open-source FL framework; PySyft[49], which is an extension of the PyTorch[48]
framework. Simen Larsen’s code is in large part written on the PyTorch framework,
which is a big reason why PySyft was selected. The PySyft framework also seemed fairly
well documented and included extensive tutorials, as well as being free to use and alter
because of the open-source format.

As the project had been going for a while and more of the PySyft framework was
explored, it became clear that the framework was less polished than advertised. Some of
the promoted functionality was more a work in progress than working product, and thus
complicated the work related to this thesis. Some workarounds had to be implemented
and a few manual changes were made to the PySyft library files in order to complete the
experiments. These changes are not desirable as replication of experiments will be very
difficult. This is also something that is reflected in the results to some extent. Upon
reflection, other alternatives such as the Tensorflow[74] framework might have been a
better alternative.

5.6.3 Network Structure, Optimizer and Parameter Choices

The network structures of the federated models in this thesis are all based in large part
on Simen Larsen’s SimenNet. Changes have only been made from the SimenNet structure
when necessary to adapt to the federated learning format. The federated model nets
were kept similar to SimenNet in part to save time, as hopefully less experimentation
would be needed. Another reason for building on the SimenNet structure was that this
net already had achieved fairly good accuracy levels on dementia classification using the
same dataset.

The batch normalization in the fully connected layers from SimenNet were removed in
all of the federated nets. This was done because these layers interfered too much in
the learning process and flattened learning progress. The dropout layers in the some of
the nets were removed to simplify the models. In the asynchronous federated learning
experiments the dropout layers were included and adjusted to various degrees to tweak
the model.

The Adam optimizer was used in all of the FL experiments in this thesis(excluding the
FL MNIST example which utilizes SGD). The SGD optimizer was experimented with in
early iterations of some of the FL models, however this did not yield promising results

Abbreviations 75

and was scraped early on. The Adam optimizer yielded better results in all instances
and is also the optimizer used in Simen Larsen’s model.

Parameters in the FL nets were experimented with extensively. Some of the notable
parameter adjustments were various levels of dropout between layers, batch size ad-
justments, learning rate adjustments and changes in number of local training rounds
before federating the model weights. All of these adjustments were made to improve the
performance the the federated models.

5.6.4 Federated Learning and Privacy

The subject of privacy and protection of data was not directly included in the experimental
part of this thesis. A fundamental part of the federated learning structure is protection
of data and privacy through the local storage of datasets. Apart from the locally stored
data principle, this thesis does not dive deep into the subject. The justification for
not focusing more on for instance encryption techniques or similar methods to improve
security and privacy, is the time constraint the project is under. Security and privacy
should be researched and experimented with further given the opportunity. Suggested
research paper[75] by Tien-Dung Cao, Tram Truong-Huu, Hien Tran and Khanh Tran
for more details on privacy-preservation and federated learning.

5.6.5 Federated Learning Experiment Results

The results from the federated learning experiments conducted were in many ways a
mixed bag, and did not necessarily live up to all expectations. However, there are
probably some lessons to be learned and important takeaways from the final results.

The results from the federated average experiment(4.8), shows that training an FL
model on 3d images is definitely achievable, although these results did not significantly
improve the accuracy of the models. The federated model set 1 fell approximately 8
percent in accuracy from the best locally trained model. The federated model set 2 rose
approximately 8 percent in accuracy from the best locally trained model. Seen together
these results on average evens out to about the same accuracy as the best locally trained
models. It has to be noted that the accuracy might have increased further if the setup
had been run for several iterations. It is also notable that the federated models have
higher loss values than the best locally trained models.

The results from the asynchronous federated learning experiments(4.9) did not achieve
significant accuracy in any of the conducted tests. The average accuracy from the
federated model tests came out to be approximately 1/3. This is essentially the same

Abbreviations Chapter 5 Discussion

accuracy one would get by rolling a dice in a three class classification problem. The
suspected main reason for not being able to produce better models in this setup is related
to problems in the PySyft[49] framework. Implementing the structure in an asynchronous
manner might also have complicated the process somewhat unnecessarily. Although it is
disappointing that better results were not achieved with this setup, it is important to
remember that PySyft[49] is an open-source project in a rapidly developing field.

Chapter 6

Conclusion and Future Directions

6.1 Conclusion

6.1.1 GAN and improving the existing classifier

• The preprocessing of the data had a significant impact on how well the models
performed. The best preprocessing to use while training was the proposed prepro-
cessing method with the following brain extraction parameters "Frac = 0.25 and
Remove Eye = True".

• The model architectures tested all provided decent results. The ResNet34 with
three extra FC layers was chosen to be used in the final evaluation because of its
good performance and faster training.

• The GAN experiment was somewhat a success. Memory limitations when training
the GAN resulted in the generator only producing brains with limited resolution.
When the dataset of real brains was resized to match the GAN brains and trained
together, the model accuracy increased. This indicates that GAN can be used to
supply 3D brains with different types of dementia. The end result did not include
GAN images as the higher resolution in the original datasets provided better results
than the lower ones.

• The final evaluation used the Bayesian optimization technique to search for the best
hyperparameters (learning rate, L2 regularisation, and momentum) while training
with the Resnet34 model, the "Frac = 0.25 and Remove Eye = True" dataset and
with the best augmentation. The final result got a six-fold CV average accuracy
of 78.65% with standard deviation of 3.14%, and a best singular model had an
accuracy of 83.04%.

77

Chapter 6. Conclusion And Future Work Chapter 6 Conclusion and Future Directions

• The 2-class classification problem displayed poor results compared to other state of
the art methods when classifying between NC and dementia, but when classifying
between AD and DLB. This thesis model outperformed other methods significantly,
having a average accuracy of 87.28% and a standard deviation of 1.95.

6.1.2 Federated Learning

• The federated average experiment(4.8) showed promising results which suggest
large scale federated learning on 3d MRI images is achievable. Increased iterations
might improve the accuracy of the models further.

• The asynchronous federated learning experiment(4.9) did not achieve significant
results in terms of accuracy of the models. This is for the most part attributed to
the utilized framework; PySyft[49], which had major shortcomings as of the writing
of this thesis. The setup would be migrated to an alternative framework like for
instance Tensorflow[74], had it not been for the time constraint.

6.2 Future Directions

6.2.1 GAN

Getting the current generated MRI images verified by a radiologist would be interesting
to get a definite evaluation of the 3D-α-GAN model.

Training the 3D-α-GAN model with the full-sized dataset and generate new full-sized
images. As GANs, in general, have shown good results in producing high-resolution
images[36] [37] it should be possible to do it with brains as well. And if a radiologist
were to verify the generated images, the full-sized brains would give more reliable results
as the lower resolution makes it much harder to spot differences.

6.2.2 Visualizing the Model with Grad-CAM

Because there has only been reported a few biomarkers that can be used in differentiating
between AD and DLB, it would be exciting to see what parts of the brain the DL model
looks at when discriminating these two diagnoses. The model could maybe give insight
to new biomarkers that can be used in future research.

Chapter 6. Conclusion And Future Work 79

6.2.3 Federated Learning

There is a lot of potential for the future of federated learning in relation to distribution
and sharing of medical data and protection of patient privacy. Further research and
experimentation should be done in relation to federated learning methods as mentioned in
the discussions chapter. The security and privacy protecting aspects of federated learning
should definitely be investigated further. It is also probable that the asynchronous
federated setup experiment in this thesis would yield better results if migrated to a
different federated learning platform. The field of federated learning is very young
and rapidly developing. Use cases and performance will undoubtedly improve in the
foreseeable future.

List of Figures

2.1 Illustration showing plaques and tangles interfering with the brain cells[11] 6
2.2 Biopsy showing lewy body deposits in the brain[15] 7
2.3 MRI scan of NC, AD and DLB brains . 9
2.4 Highlighted Hippocampus with detailed anatomy. Case courtesy of Assoc

Prof Frank Gaillard, Radiopaedia.org, rID: 10770 10
2.5 Ilustration of an artificial neuron. x = inputs, wk = weights, φ= activation

function, x0 = +1 which makes is a bias with wk,0 = bk 12
2.6 Illustration of an ANN structure.(Picture is from [23] used with Larsens

consent). 12
2.7 Convolution operation on a 5x5 image, with a filter of 3x3 and a stride of

one . 13
2.8 Convolution operation on a 5x5 image, with a filter of 3x3 and a stride of

one. The green zeroes in the "image" matrix are the padding that is applied 14
2.9 Average pooling with a 2x2 region and a stride of 2. The line from the

green part of the input to the green part of the output is to illustrate that
the output is calculated from this part of the input 14

2.10 Max pooling with a 2x2 region and a stride of 2. The line from the green
part of the input to the green part of the output is to illustrate that the
output is calculated from this part of the input 14

2.11 ReLU6 activation function . 17
2.12 Overfitting example.[30] Training error in blue, validation error in red. . . 18
2.13 4-Fold Cross Validation example. 19
2.14 SimenNet network structure [23]. 21
2.15 ResNet18 network structure. The dashed lines represent a skip connection

with dimension matching. 21
2.16 PlainNet calculation. 22
2.17 ResNet calculation. 22
2.18 Example of a confusion matrix. 23
2.19 GAN flowchart. 24
2.20 Illustration of an auto-encoder. 25
2.21 Illustration of a VAE. 26
2.22 α-GAN structure. Xreproduced: samples reproduced by the generator

from encodings produced by the encoder. Xgenerated: samples produced
by the generator given a "random" vector. Zrandom: samples from the
latent-generating distribution (random noise). Zencoded: vectors produced
by the encoder given a real sample. 27

2.23 General Federated Learning Process[46] 28

3.1 Poorly skullstripped brain with Frac=0.25. 32

81

Chapter 6. Conclusion And Future Work LIST OF FIGURES

3.2 Larsen’s Dataset Characteristics [23] picture form Larsen’s thesis is used
with his consent. 33

3.3 Extra Fully Connected Layers added to end of ResNet models. 34
3.4 Federated Network Structure . 35
3.5 Asynchronous Federated Network Structure 36
3.6 Asynchronous Federated system setup . 36
3.7 Illustration of the different augmentations. 38
3.8 Detailed architecture of the model from [62]. n = number of the channels, k

= kernel size, s = stride size, and p = padding size. xrand is the generator
output from random vectors zr and xrec is the output from encoded vectors
ze. 40

4.1 Confusion plot of reproduced model. 43
4.2 Performance of reproduced model. 43
4.3 Structure with timeline when carrying out the different experiments. . . 44
4.4 BrainA different frac preprocessing result. 45
4.5 BrainA with extra options preprocessing result. 45
4.6 BrainB preprocessing result. 46
4.7 Sample of a real. NC brain . 46
4.8 Sample of a generated NC brain. 47
4.9 Sample of a real AD brain. 47
4.10 Sample of a generated AD brain. 47
4.11 Sample of a real DLB brain. 47
4.12 Sample of generated DLB brain. 47
4.13 Best Result from appendix B.44 with extra evaluation metrics. 52
4.14 Comparison of Upscaled generated brain, original sized brain and a real

brain. 53
4.15 Confusion plot for upscaled GAN test. 54
4.16 Performance of upscaled GAN test. 54
4.17 Confusion plot for upscaled GAN test. 54
4.18 Performance of upscaled GAN test. 54
4.19 Accuracy plot for training only GAN. 55
4.20 Loss plot for training only GAN. 55
4.21 Confusion plot for only GAN test. 55
4.22 Performance of only GAN test. 55
4.23 Model trained on real MRI images, classify the Generated GAN images. . 56
4.24 Detailed metrics of Fold 6 from table B.45 when tested on real data. . . . 56
4.25 Confusion plot of Fold 6 from table 4.7 . 59
4.26 Evaluation metrics from fold 6 from table 4.7. Loss and Accuracy graph

see appendix B.52 . 59
4.27 Six-fold CV result from experiment with 2 class classification NC versus

DLB and AD . 59
4.28 Average recall and precision from the Six-fold CV result 4.27 from experi-

ment with 2 class classification NC versus DLB and AD 60
4.29 Confusion plot of fold 6 from 4.27 . 60
4.30 Performance of model in fold 6 from 4.27. Loss and accuracy graph see

appendixB.53 . 60

Chapter 6. Conclusion And Future Work 83

4.31 Six-fold CV result from experiment with 2 class classification DLB versus
AD . 60

4.32 Average recall and precision from the Six-fold CV result 4.31 from experi-
ment with 2 class classification DLB versus AD 60

4.33 Confusion plot of fold 2 from 4.31 . 61
4.34 Performance of model in fold 2 from 4.31. Loss and accuracy graph see

appendix B.54 . 61
4.35 Confusion plot of model trained on FL1 62
4.36 Performance of model trained on FL1 . 62
4.37 Confusion plot of model trained on FL2 62
4.38 Performance of model trained on FL2 . 62
4.39 Confusion plot of best local model, set 1, trained with the Adam optimizer 63
4.40 Performance of best local model, set 1, trained with the Adam optimizer . 63
4.41 Confusion plot of the federated model, set 1, trained with the Adam

optimizer . 64
4.42 Performance of the federated model, set 1, trained with the Adam optimizer 64
4.43 Confusion plot of best local model, set 2, trained with the Adam optimizer 64
4.44 Performance of best local model, set 2, trained with the Adam optimizer . 64
4.45 Confusion plot of the federated model, set 2, trained with the Adam

optimizer . 65
4.46 Performance of the federated model, set 2, trained with the Adam optimizer 65

5.1 Federated Learning methods compared on various datasets. Graph from
thesis in public domain with permission[73] 73

List of Tables

1.1 Thesis division table. (The person credited with a chapter has also written
all subchapters unless otherwise specified.) 3

3.1 MNIST dataset Asynchronous FL table 41
3.2 MNIST dataset Asynchronous FL results table 41

4.1 Results from testing different models. 48
4.2 Bayesian optimization with augmenting. 49
4.3 Best iteration from the Bayesian optimization with augmenting. Values in

brackets are the standard deviation. 49
4.4 6-CV Augmentation Results with Frac=0.5 with and without GAN Images.

GAN 25% had 115 added generated MRI images in each class in the
training data, GAN 50% had 230. w/augmention = Roll 1-4 pixels in each
direction, 95% chance of translation and 66% change for each direction,
Rotate +-6 degree XY 90%. 52

4.5 Single Best ACC for every dataset . 57
4.6 Results from the Bayesian optimization algorithm with the ResNet34

with three FC blocks, augmentation(roll and rotate +-6 degree) and the
"Frac=0.25 Remove Eye" dataset . 58

4.7 Best six-fold CV result from the Bayesian optimization using the ResNet34
model with three FC blocks, augmentation(roll and rotate +-6 degree) and
the "Frac=0.25 Remove Eye" dataset. Values in brackets are the standard
deviation . 58

4.8 Results summary table from models set 1 and 2, normal and federated
model. 65

4.9 Results summary table from asynchronous federated learning experiment. 65

5.1 Three-Class Problem: NC versus AD versus DLB. Values in brackets are
the standard deviation. The [66] results are the average accuracy of a
ten-fold CV, while ours and [23] is the average accuracy of a six-fold CV.
The [65] are reporting the accuracy of a single model. 71

5.2 Results of this thesis and related work. Two-Class Problem: NC versus
AD and DLB. Values in brackets are the standard deviation. The [66]
results is the average accuracy of a ten-fold CV, while ours is the average
accuracy of a six-fold CV. 71

5.3 Two-Class Problem: AD versus DLB. Values in brackets are the standard
deviation. The [66] is the average accuracy of a ten-fold CV, while ours is
the average accuracy of a six-fold CV. 71

85

Chapter 6. Conclusion And Future Work LIST OF TABLES

5.4 State of the art comparison. ACC: accuracy; BA: balanced accuracy.
Values in round brackets are the standard deviation. MCI: Mild Cognitive
Impairment; sMCI: MCI subjects that will remain stable; pMCI: MCI
subjects that will progress to AD; . 72

B.1 Results from experiment with different models 95
B.2 Results from experiment with different models 96
B.3 Results from test without augmentation 96
B.4 Augmentation Results from Rotate in XZ direction 97
B.5 Augmentation Results from Rotate in XY direction 98
B.6 Augmentation Results from Rotate in YZ direction 98
B.7 Augmentation Results from Translating/Roll 99
B.8 Augmentation Results from Mirroring(Flip(0)) 100
B.9 Augmentation Results from flipping left/right (Flip(1)) 100
B.10 Augmentation Results from flipping upside/down (Flip(2)) 101
B.11 Augmentation Results from Gaussian Blur 102
B.12 Augmentation Results from different combinations 1 103
B.13 Augmentation Results from different combinations 2 104
B.14 Augmentation Results from different combinations 3 105
B.15 6-CV Augmentation Results with no Augmentation 105
B.16 6-CV Augmentation Results for Rotation in the XZ plane 106
B.17 6-CV Augmentation Results for Rotation in the XZ plane 107
B.18 6-CV Augmentation Results for Rotation in the XY plane 108
B.19 6-CV Augmentation Results for Rotation in the YZ plane 108
B.20 6-CV Augmentation Results for Translations 109
B.21 6-CV Augmentation Results for Mirroring 109
B.22 6-CV Augmentation Results for Gaussian Blur 110
B.23 6-CV Augmentation Results from Different Combinations 110
B.24 6-CV Augmentation Results from Different Combinations 111
B.25 6-CV Augmentation Results from Different Combinations 112
B.26 6-CV Augmentation Results from Different Combinations 112
B.27 Augmentation Results with GAN . 113
B.28 Augmentation Results with GAN . 113
B.44 6-CV Augmentation Results with 50%GAN Images 113
B.29 Frac0.5 Dataset with augmentations . 114
B.45 6-CV Result Frac=0.5 dataset, No Augmentation 114
B.30 Frac0.25 Dataset with augmentations . 115
B.31 Frac0.4 Dataset with augmentations . 116
B.32 Frac0.25 Remove Eyes Dataset with augmentations 116
B.46 6-CV Augmentation Results with 50%GAN Images, Roll and Rotate

Augmentations . 116
B.33 Frac0.25 Remove Eyes Dataset with augmentations 117
B.34 Frac0.1 Reduce Bias Dataset with augmentations 117
B.35 Frac0.2 Reduce Bias Dataset with augmentations 118
B.36 Experiments from the Frac0.25 Remove Eye Dataset: ResNet18 118
B.37 Experiments from the Frac0.25 Remove Eye Dataset: ResNet34 with

LeakyReLU . 119

Chapter 6. Conclusion And Future Work 87

B.38 Experiments from the Frac0.25 Remove Eye Dataset: ResNet34 with
Different Hyperparameters . 119

B.47 6-CV Result Frac=0.5 dataset, With Roll and Rotate Augmentations . . . 119
B.39 Experiments from the Frac0.25 Remove Eye Dataset: ResNet34 with

Different Rotation, chance=70 . 120
B.48 Accuracy plot for training upscaled GAN Experiment1 120
B.49 Loss plot for training upscaled GAN Experiment1 120
B.40 Experiments from the Frac0.25 Remove Eye Dataset: ResNet34 with

Different Rotation, chance=90 . 121
B.50 Accuracy plot for training upscaled GAN Experiment2 121
B.51 Loss plot for training upscaled GAN Experiment2 121
B.41 Experiments from the Frac0.25 Remove Eye Dataset: ResNet34 with

Different Rotation, chance=98 . 122
B.42 Experiments from the Frac0.25 Remove Eye Dataset: ResNet34 with

Different Rotation=+-30 Degree, and Bigger Translations 122
B.43 Experiments from the Frac0.25 Remove Eye Dataset: ResNet34 with

Different Rotation=+-6 Degree, and Bigger Translations 123
B.52 Accuracy and Loss graphs from the training of fold 6 from table 4.7 . . . 123
B.53 Accuracy and Loss graphs from the training of fold 6 from table 4.27 . . . 124
B.54 Accuracy and Loss graphs from the training of fold 2 from table 4.31 . . . 124
B.56 Accuracy plot of best local model, set 1, trained with the Adam optimizer 124
B.57 Loss plot of best local model, set 1, trained with the Adam optimizer . . . 124
B.55 Experiments with training proposed model on NC vs AD data, so it can

be compared to other results easier . 125
B.58 Accuracy plot of the federated model, set 1, trained with the Adam optimizer125
B.59 Loss plot of the federated model, set 1, trained with the Adam optimizer . 125
B.60 Accuracy plot of best local model, set 2, trained with the Adam optimizer 125
B.61 Loss plot of best local model, set 2, trained with the Adam optimizer . . . 125
B.62 Accuracy plot of the federated model, set 2, trained with the Adam optimizer126
B.63 Loss plot of the federated model, set 2, trained with the Adam optimizer . 126

Chapter 6. Conclusion And Future Work 89

-

Appendix A

Appendix A

A.1 requirements.txt

File with the required python packages to run this code on.

A.2 fit.py

This file takes a dictionary as input and executes a model evaluation, until it reaches
maximum amount of epochs or runs out of patience. Also the augmentation function is
here.

A.3 Main_setup.py

File used for executing experiments. Dictionary with different hyperparameters is made
here and sent to fit.py.

A.4 system_resources.py

File that contains functions used in fit.py, Main_setup.py, and test.py. All models are
stored in here as well.

91

ProgramFiles/AD_dataset.py

import csv
import numpy as np
import torch
from torch.utils.data.dataset import Dataset
import os
from torchvision import transforms
from skimage.transform import resize
from nilearn import surface
import nibabel as nib

class ADNI_AD_dataset(Dataset):
	def __init__(self, root='/zfs1/home/petterm/pette/augment/3dbraingen-master/all_AD/AD_data', augmentation=False):
		self.root = root
		self.augmentation = augmentation
		f = open('AD_list.csv','r')
		rdr = csv.reader(f)
		name = []
		for line in rdr:
			name.append(line[0])
		name = np.asarray(name)
		self.name =name
	def __len__(self):
		return len(self.name)

	def __getitem__(self, index):
		path = os.path.join(self.root,self.name[index])
		img = nib.load(os.path.join(path,))
		img = np.swapaxes(img.get_data(),1,2)
		#img = np.flip(img,1)
		#img = np.flip(img,2)
		sp_size = 64
		img = resize(img, (sp_size,sp_size,sp_size), mode='constant')
		if self.augmentation:
			random_n = torch.rand(1)
			random_i = 0.3*torch.rand(1)[0]+0.7
			if random_n[0] > 0.5:
				img = np.flip(img,0)

			img = img*random_i.data.cpu().numpy()

		imageout = torch.from_numpy(img).float().view(1,sp_size,sp_size,sp_size)
		imageout = imageout*2-1

		return imageout

ProgramFiles/AllNormalizeSkullStripPipelinePetteFrac025.py

import os
from nipype.interfaces import io, fsl, spm
from nipype.interfaces.io import DataFinder, DataSink
from nipype import Node, Workflow, SelectFiles, IdentityInterface, DataGrabber

data_path = '/data/All_nii_data'
workspace = '/work'
output_path = '/scratch'

subject_list = os.listdir(data_path)
#subject_list = ['VEN007', 'STR213', 'SK45', 'CHI018', '032_S_4304', '041_S_4427', 'AMS003', 'NOR200', 'AMS009', 'STP010', '129_S_4369', 'BRE22', '016_S_0538', 'CHI012', 'SK38', 'STR219', 'LJU010', 'NOR079', 'AK04', 'STR183', 'NEW047', 'STR060', 'PRA01', 'NEW030', '014_S_0357', 'BK55', 'STR167', 'STR110', 'STR189', 'BK28', 'REK99', '027_S_0403', 'NOR073', 'NOR109', 'AMS046', 'AMS031', '062_S_0768', 'NOR238', '109_S_0876', '099_S_4086', '036_S_4740', 'STR256', 'VEN035', 'VEN042', '128_S_0545', 'BRN016', 'CHI020', 'VEN048', '053_S_5070', '018_S_4399', 'BRE10', 'NOR245', 'NOR232', '067_S_0076', 'STR128', 'NEW002', 'PRA33', 'STR052', 'NEW075', 'PRA44', '037_S_0327', 'NOR131', 'NOR146', '116_S_4625', 'GEN093', 'LJU022', 'NOR036', '130_S_4730', '002_S_0413', '067_S_1253', 'GEN099', 'LJU028', 'NEW091', 'NEW105', 'PRA39', 'NEW008', 'STR058', '136_S_0300', 'CHI001', 'NOR213', '037_S_5162', '018_S_5074', 'STP003', 'NOR219', 'STP009', 'AMS010', 'AMS067', '021_S_0343', 'FK07', '002_S_0295', 'VEN014', 'SK21', 'STR200', 'LJU009', 'GEN056', 'NOR183', 'NOR017', 'NOR060', 'PRA18', 'NEW029', '031_S_4024', 'STR103', '022_S_0007', 'NEW054', 'STR004', 'STR073', 'PRA12', 'STR109', 'BK46', '005_S_0814', '137_S_0972', 'BK31', 'NOR167', 'NOR189', 'AMS028', 'NOR221', '009_S_0751', 'STR238', '037_S_4308', 'BRN005', 'SK19', 'BRE03', '018_S_4313', '082_S_4208', '033_S_0888', '031_S_4218', 'STR232', 'SK13', '022_S_4173', '041_S_4041', 'BRE09', 'VEN026', 'AMS055', 'AMS022', '010_S_4442', '037_S_4001', 'STR131', 'STR146', '012_S_1133', 'NOR128', 'NOR052', 'NOR025', 'NOR122', 'NOR155', 'NOR058', 'GEN080', 'NEW011', '029_S_0999', 'STR041', 'PRA57', 'NEW066', 'AK25', '003_S_0931', 'NEW085', 'STR141', 'STR136', 'AK28', '023_S_1306', '036_S_4894', 'NOR055', 'NOR158', 'NOR152', '062_S_0578', 'GEN087', '014_S_4039', 'AK22', 'PRA50', 'NEW061', 'STR046', 'PRA27', 'NEW016', 'AMS058', 'NOR226', '010_S_0829', '011_S_0022', '005_S_0602', 'BRE04', 'STR242', 'VEN021', 'AMS025', 'AMS052', '002_S_5018', 'REK63', 'NOR067', 'NOR010', 'NOR184', '023_S_0061', 'STR090', 'STR104', 'STR173', 'STR009', '009_S_5037', 'AK10', 'NEW024', 'PRA15', 'STR074', 'NEW053', 'PRA62', 'STR197', 'BK41', '027_S_0120', 'LJU004', '032_S_4429', '067_S_4728', 'NOR083', 'NOR117', 'NOR160', 'VEN019', '011_S_4222', '011_S_0010', 'CHI006', '013_S_0592', '019_S_5012', '023_S_4020', 'NOR214', 'STP004', '037_S_4770', 'AMS060', 'AMS017', '068_S_4968', 'VEN013', 'SK26', 'BK17', 'NEW072', 'PRA43', '127_S_0622', 'STR055', 'NEW005', 'PRA34', 'STR158', '006_S_4357', 'NOR141', 'NOR136', 'GEN094', 'GEN100', '082_S_4428', 'NOR031', 'NOR046', '123_S_4526', 'REK35', '100_S_4469', '020_S_0883', 'PRA49', 'NEW078', 'NEW102', 'STR125', 'AMS036', 'AMS041', 'NOR248', '006_S_4153', '057_S_1373', 'STR251', 'VEN045', 'VEN032', 'BRN011', 'BRE17', 'VEN038', 'NOR235', 'NOR242', '005_S_0221', 'LJU017', 'NOR173', 'PRA06', 'STR067', 'NEW040', 'STR184', '033_S_1098', '006_S_0484', 'BK52', 'STR083', 'STR117', 'AK09', 'STR160', '021_S_0159', 'GEN035', 'NOR179', 'NOR003', '098_S_0884', '033_S_1308', '116_S_0382', '082_S_4224', '003_S_1021', 'STR214', 'SK35', 'AMS004', 'NOR207', '941_S_1197', '014_S_0519', 'BRE25', 'BRN023', 'CHI015', 'SK48', 'NOR193', '128_S_0230', '130_S_0969', '941_S_1203', '127_S_0259', 'STR113', '072_S_4103', '073_S_4552', 'STR069', 'NEW039', 'PRA08', 'BK21', 'BK56', '036_S_5210', 'STR119', 'AK07', 'PRA02', 'NEW033', 'NEW044', 'STR014', 'NOR199', '027_S_0850']

infosource = Node(IdentityInterface(fields=['subject_id']),name="infosource")
infosource.iterables = [('subject_id', subject_list)]

datagrabber = Node(DataGrabber(infields=['subject_id'], outfields=["out_file"]), name='datagrabber')
datagrabber.inputs.base_directory = data_path
datagrabber.inputs.template = '%s/*.nii'
datagrabber.inputs.sort_filelist = True

Normalize - normalizes functional and structural images to the MNI template
normalize = Node(spm.Normalize12(jobtype='estwrite', write_voxel_sizes=[1, 1, 1]), name="normalize")

Skullstrip process
skullstrip = Node(fsl.BET(mask=True, frac=0.2,reduce_bias=True), name="skullstrip")

Mask process
mask = Node(fsl.ApplyMask(), name="mask")

Save data
datasink = Node(io.DataSink(), name='sinker')
datasink.inputs.base_directory = output_path

Initiation of a workflow
wf = Workflow(name="workflow", base_dir=workspace)

Now the more complicated method
wf.connect([(infosource, datagrabber, [("subject_id", "subject_id")]),
 (datagrabber, normalize, [("out_file", "image_to_align")]),
 (datagrabber, normalize, [("out_file", "apply_to_files")]),
 (normalize, skullstrip, [("normalized_image", "in_file")]),
 (normalize, mask, [("normalized_image", "in_file")]),
 (skullstrip, mask, [("mask_file", "mask_file")]),
 (mask, datasink, [("out_file", "output_files")])
])

wf.write_graph("workflow_graph.dot")

wf.run("MultiProc", plugin_args={'n_procs': 1})

ProgramFiles/data_resources.py

import os
import pandas as pd
from shutil import copy
import numpy as np
from torch.utils.data import DataLoader, Dataset
import random
import torch.nn as nn

def match_classes_sex_gender(pd_data_set, template_pd_dataset, sort_gender=True, forced=False, mean_correct=False, std_correct=False):
 # Function for matcing data by statistics

 print("Matching data by statistics..")
 # Not possible to match if less data than in template
 if len(pd_data_set) < len(template_pd_dataset):
 print("Not enough data to match")
 return

 # Instantiating final data set
 matched_data = pd.DataFrame(columns=list(template_pd_dataset))

 # Remove outliers
 Z = pd_data_set["ageatbaseline"].std()
 mean = pd_data_set["ageatbaseline"].mean()
 pd_data_set = pd_data_set.loc[abs(pd_data_set['ageatbaseline'] - mean) < 3 * Z]

 # Statistical properties
 mean = template_pd_dataset['ageatbaseline'].mean()
 std = template_pd_dataset['ageatbaseline'].std()

 # Gender characteristics
 share_male = len(template_pd_dataset[template_pd_dataset['gender0M1F'] == 0])
 share_female = len(template_pd_dataset[template_pd_dataset['gender0M1F'] == 1])
 males = 0
 females = 0
 sex_dist = share_male/share_female

 # Initialize parameters
 rem_list_N = pd_data_set
 target = mean
 print("Template:")
 print("Length:{}, Mean:{:.3f}, Std:{:.3f}, Males:{}, Females:{}, Males/Female:{:.3f}"
 .format(len(template_pd_dataset), mean, std, share_male, share_female, sex_dist))

 while len(matched_data) < len(template_pd_dataset):
 if sort_gender:
 if males + females == 0:
 gender = 1
 elif males/females >= sex_dist and len(rem_list_N[(rem_list_N['gender0M1F'] == 1)]) > 0:
 gender = 1
 elif len(rem_list_N[(rem_list_N['gender0M1F'] == 0)]) > 0:
 gender = 0
 elif len(rem_list_N[(rem_list_N['gender0M1F'] == 1)]) > 0:
 gender = 1
 else:
 print("Not enough data to use force data like this")
 else:
 gender = rem_list_N.loc[abs(rem_list_N['ageatbaseline'] - target).idxmin()]['gender0M1F']

 if matched_data['ageatbaseline'].mean() < mean and len(rem_list_N[(rem_list_N['ageatbaseline'] >= target) & (rem_list_N['gender0M1F'] == gender)]) > 0 and forced:
 sub = rem_list_N.loc[abs(rem_list_N[(rem_list_N['ageatbaseline'] >= target) & (rem_list_N['gender0M1F'] == gender)]['ageatbaseline'] - target).idxmin()]
 elif len(rem_list_N[(rem_list_N['ageatbaseline'] <= target) & (rem_list_N['gender0M1F'] == gender)]) > 0 and forced:
 sub = rem_list_N.loc[abs(rem_list_N[(rem_list_N['ageatbaseline'] <= target) & (rem_list_N['gender0M1F'] == gender)]['ageatbaseline'] - target).idxmin()]
 else:
 sub = rem_list_N.loc[abs(rem_list_N[(rem_list_N['gender0M1F'] == gender)]['ageatbaseline'] - target).idxmin()]
 if sub['gender0M1F'] == 0:
 males += 1
 else:
 females += 1

 matched_data = matched_data.append(sub)
 rem_list_N = rem_list_N.drop(pd_data_set[pd_data_set["MRCODE"] == sub["MRCODE"]].index)

 if mean_correct:
 mean_off_set = (mean - matched_data['ageatbaseline'].mean()) * len(matched_data)
 else:
 mean_off_set = 0

 if matched_data['ageatbaseline'].var() > 0 and std_correct:
 sign = min(1, max(-1, mean - matched_data['ageatbaseline'].mean()))
 std_off_set = sign * abs((std**2 - matched_data['ageatbaseline'].var())*len(matched_data))**(1/2)
 # std_off_set = sign * abs(std - matched_data['ageatbaseline'].std()) # Optional way of correction, not compensating
 else:
 std_off_set = 0

 correction = mean_off_set + std_off_set
 target = mean + correction

 print("Matched class:")
 print("Length:{}, Mean:{:.3f}, Std:{:.3f}, Males:{}, Females:{}, Males/Female:{:.3f}, Original data size:{}"
 .format(len(matched_data), matched_data['ageatbaseline'].mean(), matched_data['ageatbaseline'].std(),
 len(matched_data[matched_data['gender0M1F'] == 0]), len(matched_data[matched_data['gender0M1F'] == 1]),
 len(matched_data[matched_data['gender0M1F'] == 0])/len(matched_data[matched_data['gender0M1F'] == 1]), len(pd_data_set)))

 return matched_data, rem_list_N

def subject_matching(pd_data_NC, pd_data_AD, template_pd_dataset, number_of_subjects):
 # Function for matching data to a template dataset

 # Keeping only data within 3 standard deviations of the template mean
 template_mean = template_pd_dataset['ageatbaseline'].mean()
 template_std = template_pd_dataset['ageatbaseline'].std()
 template_pd_dataset = template_pd_dataset.loc[abs(template_pd_dataset['ageatbaseline'] - template_mean) < 3 * template_std]
 template_mean = template_pd_dataset['ageatbaseline'].mean()
 template_std = template_pd_dataset['ageatbaseline'].std()
 # template_pd_dataset = template_pd_dataset.reindex(abs(template_pd_dataset['ageatbaseline'] - template_mean).sort_values(ascending=True).index)

 pd_data_NC = pd_data_NC.loc[abs(pd_data_NC['ageatbaseline'] - template_mean) < 3 * template_std]
 pd_data_AD = pd_data_AD.loc[abs(pd_data_AD['ageatbaseline'] - template_mean) < 3 * template_std]

 print("\nMatching data by subjects..")
 matched_data_NC = pd.DataFrame(columns=list(template_pd_dataset))
 matched_template = pd.DataFrame(columns=list(template_pd_dataset))
 matched_data_AD = pd.DataFrame(columns=list(template_pd_dataset))
 matched_rem_NC = pd.DataFrame(columns=list(template_pd_dataset))
 matched_rem_AD = pd.DataFrame(columns=list(template_pd_dataset))
 rem_list_AD = pd_data_AD
 rem_list_NC = pd_data_NC
 rem_template = template_pd_dataset

 # Matching datapoint by age and sex
 for code in template_pd_dataset["MRCODE"].to_numpy():
 gender = template_pd_dataset[template_pd_dataset["MRCODE"] == code]["gender0M1F"].item()
 age = template_pd_dataset[template_pd_dataset["MRCODE"] == code]['ageatbaseline'].item()
 if abs(age - rem_list_AD.loc[abs(rem_list_AD[(rem_list_AD['gender0M1F'] == gender)]['ageatbaseline'] - age).idxmin()]['ageatbaseline'].item()) <= 0.5\
 and abs(age - rem_list_NC.loc[abs(rem_list_NC[(rem_list_NC['gender0M1F'] == gender)]['ageatbaseline'] - age).idxmin()]['ageatbaseline'].item()) <= 0.5:
 sub_AD = rem_list_AD.loc[abs(rem_list_AD[(rem_list_AD['gender0M1F'] == gender)]['ageatbaseline'] - age).idxmin()]
 sub_NC = rem_list_NC.loc[abs(rem_list_NC[(rem_list_NC['gender0M1F'] == gender)]['ageatbaseline'] - age).idxmin()]

 matched_data_AD = matched_data_AD.append(sub_AD)
 rem_list_AD = rem_list_AD.drop(rem_list_AD.loc[rem_list_AD["Subject_ID"] == sub_AD["Subject_ID"]].index)

 matched_data_NC = matched_data_NC.append(sub_NC)
 rem_list_NC = rem_list_NC.drop(rem_list_NC.loc[rem_list_NC["Subject_ID"] == sub_NC["Subject_ID"]].index)

 matched_template = matched_template.append(template_pd_dataset[template_pd_dataset["MRCODE"] == code])
 rem_template = rem_template.drop(rem_template[rem_template["MRCODE"] == code].index)

 if len(matched_data_NC) >= number_of_subjects and len(matched_template) >= number_of_subjects and len(matched_data_AD) >= number_of_subjects:
 break

 print(len(rem_list_NC), len(rem_template), len(rem_list_AD))
 for code in rem_template["MRCODE"].to_numpy():
 rem_gender = template_pd_dataset[template_pd_dataset["MRCODE"] == code]["gender0M1F"].item()
 rem_age = template_pd_dataset[template_pd_dataset["MRCODE"] == code]['ageatbaseline'].item()
 if abs(rem_age - rem_list_AD.loc[abs(rem_list_AD[(rem_list_AD['gender0M1F'] == rem_gender)]['ageatbaseline'] - rem_age).idxmin()]['ageatbaseline'].item()) <= 26\
 and abs(rem_age - rem_list_NC.loc[abs(rem_list_NC[(rem_list_NC['gender0M1F'] == rem_gender)]['ageatbaseline'] - rem_age).idxmin()]['ageatbaseline'].item()) <= 26:

 sub_AD = rem_list_AD.loc[abs(rem_list_AD[(rem_list_AD['gender0M1F'] == rem_gender)]['ageatbaseline'] - rem_age).idxmin()]
 sub_NC = rem_list_NC.loc[abs(rem_list_NC[(rem_list_NC['gender0M1F'] == rem_gender)]['ageatbaseline'] - rem_age).idxmin()]

 matched_rem_NC = matched_rem_NC.append(sub_NC)
 rem_list_NC = rem_list_NC.drop(rem_list_NC.loc[rem_list_NC["Subject_ID"] == sub_NC["Subject_ID"]].index)

 matched_rem_AD = matched_rem_AD.append(sub_AD)
 rem_list_AD = rem_list_AD.drop(rem_list_AD.loc[rem_list_AD["Subject_ID"] == sub_AD["Subject_ID"]].index)

 print("Data matched")
 print("Statistics:")
 print("Matched Template: Length: {}, Mean: {:.2f}, Std:{:.2f}, Males: {}, Females: {}, Original data size: {}".
 format(len(matched_template["MRCODE"].unique()), matched_template['ageatbaseline'].mean(), matched_template['ageatbaseline'].std(),
 len(matched_template[(matched_template['gender0M1F'] == 0)]),
 len(matched_template[(matched_template['gender0M1F'] == 1)]), len(template_pd_dataset)))

 print("Matched AD data: Length: {}, Mean: {:.2f}, Std:{:.2f}, Males: {}, Females: {}, Original data size: {}".
 format(len(matched_data_AD["MRCODE"].unique()), matched_data_AD['ageatbaseline'].mean(), matched_data_AD['ageatbaseline'].std(),
 len(matched_data_AD[(matched_data_AD['gender0M1F'] == 0)]),
 len(matched_data_AD[(matched_data_AD['gender0M1F'] == 1)]), len(pd_data_AD)))

 print("Matched NC data: Length: {}, Mean: {:.2f}, Std:{:.2f}, Males: {}, Females: {}, Original data size: {}".
 format(len(matched_data_NC["MRCODE"].unique()), matched_data_NC['ageatbaseline'].mean(), matched_data_NC['ageatbaseline'].std(),
 len(matched_data_NC[(matched_data_NC['gender0M1F'] == 0)]),
 len(matched_data_NC[(matched_data_NC['gender0M1F'] == 1)]), len(pd_data_NC)))

 print("Remaining template: Length: {}, Mean: {:.2f}, Std:{:.2f}, Males: {}, Females: {}, Original data size: {}".
 format(len(rem_template["MRCODE"].unique()), rem_template['ageatbaseline'].mean(), rem_template['ageatbaseline'].std(),
 len(rem_template[(rem_template['gender0M1F'] == 0)]),
 len(rem_template[(rem_template['gender0M1F'] == 1)]), len(template_pd_dataset)))

 print("Remaining AD data: Length: {}, Mean: {:.2f}, Std:{:.2f}, Males: {}, Females: {}, Original data size: {}".
 format(len(matched_rem_AD["MRCODE"].unique()), matched_rem_AD['ageatbaseline'].mean(), matched_rem_AD['ageatbaseline'].std(),
 len(matched_rem_AD[(matched_rem_AD['gender0M1F'] == 0)]),
 len(matched_rem_AD[(matched_rem_AD['gender0M1F'] == 1)]), len(pd_data_AD)))

 print("Remaining NC data: Length: {}, Mean: {:.2f}, Std:{:.2f}, Males: {}, Females: {}, Original data size: {}".
 format(len(matched_rem_NC["MRCODE"].unique()), matched_rem_NC['ageatbaseline'].mean(), matched_rem_NC['ageatbaseline'].std(),
 len(matched_rem_NC[(matched_rem_NC['gender0M1F'] == 0)]),
 len(matched_rem_NC[(matched_rem_NC['gender0M1F'] == 1)]), len(pd_data_NC)))

 matched_train_samples = pd.concat([matched_data_NC, matched_template, matched_data_AD])
 matched_train_samples["data_set_type"] = "train"

 matched_test_samples = pd.concat([matched_rem_NC, rem_template, matched_rem_AD])
 matched_test_samples["data_set_type"] = "test"

 matched_samples = pd.concat([matched_train_samples, matched_test_samples])
 matched_samples.to_csv("data/matched_samples.csv")

 return matched_data_NC, matched_template, matched_data_AD, matched_rem_NC, rem_template, matched_rem_AD

ProgramFiles/DLB_dataset.py

import csv
import numpy as np
import torch
from torch.utils.data.dataset import Dataset
import os
from torchvision import transforms
from skimage.transform import resize
from nilearn import surface
import nibabel as nib

class ADNI_DLB_dataset(Dataset):
	def __init__(self, root='/zfs1/home/petterm/pette/augment/3dbraingen-master/all_DLB/DLB_data', augmentation=False):
		self.root = root
		self.augmentation = augmentation
		f = open('DLB_list.csv','r')
		rdr = csv.reader(f)
		name = []
		for line in rdr:
			name.append(line[0])
		name = np.asarray(name)
		self.name =name
	def __len__(self):
		return len(self.name)

	def __getitem__(self, index):
		path = os.path.join(self.root,self.name[index])
		img = nib.load(os.path.join(path,))
		img = np.swapaxes(img.get_data(),1,2)
		#img = np.flip(img,1)
		#img = np.flip(img,2)
		sp_size = 64
		img = resize(img, (sp_size,sp_size,sp_size), mode='constant')
		if self.augmentation:
			random_n = torch.rand(1)
			random_i = 0.3*torch.rand(1)[0]+0.7
			if random_n[0] > 0.5:
				img = np.flip(img,0)

			img = img*random_i.data.cpu().numpy()

		imageout = torch.from_numpy(img).float().view(1,sp_size,sp_size,sp_size)
		imageout = imageout*2-1

		return imageout

ProgramFiles/FederatedLearning/AsynchronousFL/run_websocket_client (5).py

import logging
import argparse
import sys
import asyncio
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
import math

import syft as sy
from syft.workers import websocket_client
from syft.frameworks.torch.fl import utils

LOG_INTERVAL = 25
logger = logging.getLogger("run_websocket_client")

Loss function
@torch.jit.script
def loss_fn(pred, target):
 return F.cross_entropy(input=pred, target=target)

Model
class Net(nn.Module):
 def __init__(self):
 super(Net, self).__init__()
 self.pool = nn.MaxPool3d(1, 2)
 self.drop_conv = nn.Dropout3d(0.2)
 self.drop_lin = nn.Dropout(0.3)
 #self.kernel = kernel.cuda()
 self.activation = nn.ReLU6()
 self.conv1 = nn.Conv3d(1, 32, 3, 1, 1) # (1 * 5*5*5 + 1) * 32 = 896
 self.bn1 = nn.BatchNorm3d(32)
 self.conv2 = nn.Conv3d(32, 64, 3, 1, 1) # (32 * 3*3*3 + 1) * 64 = 55360
 self.bn2 = nn.BatchNorm3d(64)
 self.conv3 = nn.Conv3d(64, 64, 3, 1, 1) # (64 * 3*3*3 + 1) *128 = 221312
 self.bn3 = nn.BatchNorm3d(64)
 self.conv4 = nn.Conv3d(64, 128, 3, 1, 1)
 self.bn4 = nn.BatchNorm3d(128)
 self.conv5 = nn.Conv3d(128, 64, 3, 1, 1)
 self.bn5 = nn.BatchNorm3d(64)
 self.fc1 = nn.Linear(512, 2048)
 #self.lin_bn1 = nn.BatchNorm1d(2048)
 self.fc2 = nn.Linear(2048, 1024)
 #self.lin_bn2 = nn.BatchNorm1d(1024)
 self.out = nn.Linear(1024, 3)
 def forward(self, x):
 #print(x.shape)
 x = self.activation(self.pool(self.conv1(x)))
 #print(x.shape)
 x = self.bn1(x)
 #print(x.shape)
 x = self.drop_conv(x)
 #print(x.shape)
 x = self.activation(self.pool(self.conv2(x)))
 #print(x.shape)
 x = self.bn2(x)
 #print(x.shape)
 x = self.drop_conv(x)
 #print(x.shape)
 x = self.activation(self.pool(self.conv3(x)))
 #print(x.shape)
 x = self.bn3(x)
 #print(x.shape)
 x = self.drop_conv(x)
 #print(x.shape)
 x = self.activation(self.pool(self.conv4(x)))
 #print(x.shape)
 x = self.bn4(x)
 #print(x.shape)
 x = self.drop_conv(x)
 #print(x.shape)
 x = self.activation(self.pool(self.conv5(x)))
 #print(x.shape)
 x = self.bn5(x)
 #print(x.shape)
 x = self.drop_conv(x)
 #print(x.shape)
 x = x.view(-1, 512)
 #print(x.shape)
 x = self.activation(self.fc1(x))
 #print(x.shape)
 x = self.drop_lin(x)
 #print(x.shape)
 x = self.activation(self.fc2(x))
 #print(x.shape)
 x = self.drop_lin(x)
 #print(x.shape)
 x = self.out(x) # (2000, 3)
 #print(x.shape)
 return F.log_softmax(x, dim=1)

def define_and_get_arguments(args=sys.argv[1:]):
 parser = argparse.ArgumentParser(
 description="Run federated learning using websocket client workers."
)
 parser.add_argument("--batch_size", type=int, default=7, help="batch size of the training")
 parser.add_argument(
 "--test_batch_size", type=int, default=7, help="batch size used for the test data"
)
 parser.add_argument(
 "--training_rounds", type=int, default=3, help="number of federated learning rounds"
)
 parser.add_argument(
 "--federate_after_n_batches",
 type=int,
 default=20,
 help="number of training steps performed on each remote worker before averaging",
)
 parser.add_argument("--lr", type=float, default=0.001, help="learning rate")
 parser.add_argument("--cuda", action="store_true", help="use cuda")
 parser.add_argument("--seed", type=int, default=1, help="seed used for randomization")
 parser.add_argument("--save_model", action="store_true", help="if set, model will be saved")
 parser.add_argument(
 "--verbose",
 "-v",
 action="store_true",
 help="if set, websocket client workers will be started in verbose mode",
)

 args = parser.parse_args(args=args)
 return args

async def fit_model_on_worker(
 device,
 worker: websocket_client.WebsocketClientWorker,
 traced_model: torch.jit.ScriptModule,
 batch_size: int,
 curr_round: int,
 max_nr_batches: int,
 lr: float,
):
 """Send the model to the worker and fit the model on the worker's training data.

 Args:
 worker: Remote location, where the model shall be trained.
 traced_model: Model which shall be trained.
 batch_size: Batch size of each training step.
 curr_round: Index of the current training round (for logging purposes).
 max_nr_batches: If > 0, training on worker will stop at min(max_nr_batches, nr_available_batches).
 lr: Learning rate of each training step.

 Returns:
 A tuple containing:
 * worker_id: Union[int, str], id of the worker.
 * improved model: torch.jit.ScriptModule, model after training at the worker.
 * loss: Loss on last training batch, torch.tensor.
 """

 train_config = sy.TrainConfig(
 model=traced_model,
 loss_fn=loss_fn,
 batch_size=batch_size,
 shuffle=True,
 max_nr_batches=max_nr_batches,
 epochs=1,
 optimizer="SGD",
 optimizer_args={"lr": lr},
)

 #print(worker)

 #print(train_config)

 train_config.send(worker)

 #print("TEST PETTE")
 #print()

 loss = await worker.async_fit(dataset_key="mnist", return_ids=[0])
 #print("after loss")
 print(loss)
 model = train_config.model_ptr.get().obj

 #print(model)

 #print("after train_config")

 return worker.id, model, loss

def evaluate_model_on_worker(
 model_identifier,
 worker,
 dataset_key,
 model,
 nr_bins,
 batch_size,
 device,
 print_target_hist=True,
):
 model.eval()

 # Create and send train config
 train_config = sy.TrainConfig(
 batch_size=batch_size, model=model, loss_fn=loss_fn, optimizer_args=None, epochs=1
)

 train_config.send(worker)

 result = worker.evaluate(
 dataset_key=dataset_key,
 return_histograms=True,
 nr_bins=nr_bins,
 return_loss=True,
 return_raw_accuracy=True,
 device=device,
)
 test_loss = result["loss"]
 correct = result["nr_correct_predictions"]
 len_dataset = result["nr_predictions"]
 hist_pred = result["histogram_predictions"]
 hist_target = result["histogram_target"]

 logger.info("Target histogram: %s, Histogram Prediction: %s", hist_target, hist_pred)

 logger.info(
 "%s: Average loss: %s, Accuracy: %s/%s (%s%%)",
 model_identifier,
 f"{test_loss:.4f}",
 correct,
 len_dataset,
 f"{100.0 * correct / len_dataset:.2f}",
)

async def main():

 args = define_and_get_arguments()

 hook = sy.TorchHook(torch)

 kwargs_websocket = {"hook": hook, "verbose": args.verbose, "host": "0.0.0.0"}
 alice = websocket_client.WebsocketClientWorker(id="alice", port=8777, **kwargs_websocket)
 bob = websocket_client.WebsocketClientWorker(id="bob", port=8778, **kwargs_websocket)
 #charlie = websocket_client.WebsocketClientWorker(id="charlie", port=8779, **kwargs_websocket)
 testing = websocket_client.WebsocketClientWorker(id="testing", port=8780, **kwargs_websocket)

 for wcw in [alice, bob, testing]:
 wcw.clear_objects_remote()

 worker_instances = [alice, bob]

 torch.manual_seed(args.seed)

 args.save_model = True

 device = torch.device("cpu")

 model = Net().to(device)

 #print(model)

 traced_model = torch.jit.trace(model, torch.zeros([7, 1, 64, 64, 64], dtype=torch.float).to(device))

 #print("after JITDRITT")

 learning_rate = args.lr

 #print("før training")

 for curr_round in range(1, args.training_rounds + 1):
 logger.info("Training round %s/%s", curr_round, args.training_rounds)

 results = await asyncio.gather(
 *[
 fit_model_on_worker(
 device = device,
 worker=worker,
 traced_model=traced_model,
 batch_size=args.batch_size,
 curr_round=curr_round,
 max_nr_batches=args.federate_after_n_batches,
 lr=learning_rate,
)
 for worker in worker_instances
]
)
 models = {}
 loss_values = {}

 test_models = True
 if test_models:
 logger.info("Evaluating models")
 np.set_printoptions(formatter={"float": "{: .0f}".format})
 for worker_id, worker_model, _ in results:
 evaluate_model_on_worker(
 model_identifier="Model update " + worker_id,
 worker=testing,
 dataset_key="mnist_testing",
 model=worker_model,
 nr_bins=3,
 batch_size=args.batch_size,
 device=device,
 print_target_hist=True,
)

 # Federate models (note that this will also change the model in models[0]
 for worker_id, worker_model, worker_loss in results:
 if worker_model is not None:
 models[worker_id] = worker_model
 loss_values[worker_id] = worker_loss

 traced_model = utils.federated_avg(models)

 if test_models:
 evaluate_model_on_worker(
 model_identifier="Federated model",
 worker=testing,
 dataset_key="mnist_testing",
 model=traced_model,
 nr_bins=3,
 batch_size=args.batch_size,
 device=device,
 print_target_hist=True,
)

 # decay learning rate
 #learning_rate = max(0.98 * learning_rate, args.lr * 0.01)

 if args.save_model:
 torch.save(traced_model.state_dict(), "saved_model.pt")

if __name__ == "__main__":
 # Logging setup
 FORMAT = "%(asctime)s | %(message)s"
 logging.basicConfig(format=FORMAT)
 logger.setLevel(level=logging.DEBUG)

 # Websockets setup
 websockets_logger = logging.getLogger("websockets")
 websockets_logger.setLevel(logging.INFO)
 websockets_logger.addHandler(logging.StreamHandler())

 # Run main
 asyncio.get_event_loop().run_until_complete(main())

ProgramFiles/FederatedLearning/AsynchronousFL/run_websocket_server (2).py

from multiprocessing import Process
import argparse
import os
import logging
import syft as sy
from syft.workers.websocket_server import WebsocketServerWorker
import torch
import numpy as np
from torchvision import datasets
from torchvision import transforms
from syft.frameworks.torch.fl import utils
import os
import torch
from torch.utils.data import DataLoader, Dataset
from torchvision.datasets import DatasetFolder

KEEP_LABELS_DICT = {
 "alice": [0,1,2],
 "bob": [0,1,2],
 "testing": list(range(3)),
 None: list(range(3)),
}

#mean_image = torch.from_numpy(np.load(os.path.join("/local/home/hesse/FL_RAND_dataset1/DL_dataset", "mean_image.npy")))
#mean_image = mean_image.unsqueeze(0)

data_transform = transforms.Compose([
 transforms.Lambda(lambda x: torch.Tensor(x).unsqueeze(0))

 #transforms.Lambda(lambda x: torch.from_numpy(x).ToTensor()),
 #transforms.Lambda(lambda x: torch.Tensor.sub(x, mean_image))
])

#takes inn a path for simens dataset and trian or test
def dataset_sim(path,TrainOrTest):
 params = {

 "classes": ["NC", "DLB", "AD"],
 "numb_workers": 5,
 "bs_val": 7

 }

 classes = params["classes"][0]
 for cls in params["classes"][1:]:
 classes = classes + "_" + cls

 params["tensor_data_path"] = os.path.join(path, TrainOrTest, classes)

 print("etter unsqueeze ting, mean image")

 testing_data_set = DatasetFolder(root=params["tensor_data_path"], extensions=tuple('npy'), loader=np.load, transform=data_transform)
 print("\nData set established. Number of data points: {}".format(len(testing_data_set)))
 print("Classes and corresponding index: {}\n".format(testing_data_set.class_to_idx))

 #test_loader = DataLoader(testing_data_set, batch_size=params["bs_val"], num_workers=params["numb_workers"], shuffle=False, drop_last=False)

 return testing_data_set

def start_websocket_server_worker(
 id, host, port, hook, verbose, keep_labels=None, training=True, pytest_testing=False
):
 """Helper function for spinning up a websocket server and setting up the local datasets."""

 server = WebsocketServerWorker(id=id, host=host, port=port, hook=hook, verbose=verbose)

 # hard coded test if alice or bob to get right dataset
 if id == "alice":
 ppp = "/local/home/hesse/FL_RAND_dataset1_64x64x64/DL_dataset"
 else:
 ppp = "/local/home/hesse/FL_RAND_dataset2_64x64x64/DL_dataset"

 if training:
 #load training set
 dataset1 = dataset_sim(ppp,"train")
 """
 indices = np.isin(dataset1.targets, keep_labels).astype("uint8")
 logger.info("number of true indices: %s", indices.sum())
 selected_data,selected_targets = dataset1.samples

 (
 torch.native_masked_select(dataset1.data.transpose(0, 2), torch.tensor(indices))
 .view([156, 189, 156, -1])
 .transpose(2, 0)
)
 logger.info("after selection: %s", selected_data.shape)
 selected_targets = torch.native_masked_select(dataset1.targets, torch.tensor(indices))
 """
 dat = dataset1.samples
 targ = dataset1.targets
 # liste = dat.keys()
 # print("Targets: {}".format(liste))
 #print("data: {}".format(dat[1][0]))
 listeDat = []
 for i in range(0, len(dat), 1):
 listeDat.append(np.load(dat[i][0]))

 selected_data = torch.LongTensor(listeDat)
 selected_targets = torch.LongTensor(targ)
 dataset = sy.BaseDataset(
 data=selected_data, targets=selected_targets, transform=data_transform
)
 key = "mnist"

 else:
 # load test set
 dataset1 = dataset_sim(ppp,"test")
 dat = dataset1.samples
 targ = dataset1.targets
 # liste = dat.keys()
 # print("Targets: {}".format(liste))
 # print("data: {}".format(dat[1][0]))
 listeDat = []
 for i in range(0, len(dat), 1):
 listeDat.append(np.load(dat[i][0]))

 selected_data = torch.torch.LongTensor(listeDat)
 selected_targets = torch.torch.LongTensor(targ)
 dataset = sy.BaseDataset(
 data=selected_data,
 targets=selected_targets,
 transform=data_transform,
)
 key = "mnist_testing"

 # Adding Dataset
 server.add_dataset(dataset, key=key)

 server.start()
 return server

if __name__ == "__main__":

 # Logging setup
 FORMAT = "%(asctime)s %(levelname)s %(filename)s(l:%(lineno)d, p:%(process)d) - %(message)s"
 logging.basicConfig(format=FORMAT)
 logger = logging.getLogger("run_websocket_server")
 logger.setLevel(level=logging.DEBUG)

 # Parse args
 parser = argparse.ArgumentParser(description="Run websocket server worker.")
 parser.add_argument(
 "--port",
 "-p",
 type=int,
 help="port number of the websocket server worker, e.g. --port 8777",
)
 parser.add_argument("--host", type=str, default="localhost", help="host for the connection")
 parser.add_argument(
 "--id", type=str, help="name (id) of the websocket server worker, e.g. --id alice"
)
 parser.add_argument(
 "--testing",
 action="store_true",
 help="if set, websocket server worker will load the test dataset instead of the training dataset",
)
 parser.add_argument(
 "--verbose",
 "-v",
 action="store_true",
 help="""if set, websocket server worker will be started in verbose mode""",
)
 parser.add_argument(
 "--notebook",
 type=str,
 default="normal",
 help="""can run websocket server for websockets examples of mnist/mnist-parallel or
 pen_testing/steal_data_over_sockets. Type 'mnist' for starting server
 for websockets-example-MNIST, `mnist-parallel` for websockets-example-MNIST-parallel
 and 'steal_data' for pen_tesing stealing data over sockets""",
)
 parser.add_argument("--pytest_testing", action="store_true", help="""Used for pytest testing""")
 args = parser.parse_args()

 # Hook and start server
 hook = sy.TorchHook(torch)

 # server = start_proc(WebsocketServerWorker, kwargs)

 if args.notebook == "mnist-parallel" or args.pytest_testing == True:
 server = start_websocket_server_worker(
 id=args.id,
 host=args.host,
 port=args.port,
 hook=hook,
 verbose=args.verbose,
 keep_labels=KEEP_LABELS_DICT[args.id]
 if args.id in KEEP_LABELS_DICT
 else list(range(3)),
 training=not args.testing,
)

ProgramFiles/FederatedLearning/AsynchronousFL/start_websocket_servers (3).py

import subprocess

from torchvision import datasets
from torchvision import transforms
from pathlib import Path

import signal
import sys

python = Path(sys.executable).name

#FILE_PATH = Path(__file__).resolve().parents[4].joinpath("run_websocket_server.py")

FILE_PATH = "run_websocket_server.py"

call_alice = [
 python,
 FILE_PATH,
 "--port",
 "8777",
 "--id",
 "alice",
 "--host",
 "0.0.0.0",
 "--notebook",
 "mnist-parallel",
]

call_bob = [
 python,
 FILE_PATH,
 "--port",
 "8778",
 "--id",
 "bob",
 "--host",
 "0.0.0.0",
 "--notebook",
 "mnist-parallel",
]

call_testing = [
 python,
 FILE_PATH,
 "--port",
 "8780",
 "--id",
 "testing",
 "--testing",
 "--host",
 "0.0.0.0",
 "--notebook",
 "mnist-parallel",
]

print("Starting server for Alice")
process_alice = subprocess.Popen(call_alice)

print("Starting server for Bob")
process_bob = subprocess.Popen(call_bob)

print("Starting server for Testing")
process_testing = subprocess.Popen(call_testing)

def keyboardInterruptHandler(sig, frame):
 print("You pressed Ctrl+C!")
 for p in [process_bob, process_alice, process_testing]:
 p.terminate()
 sys.exit(0)

signal.signal(signal.SIGINT, keyboardInterruptHandler)

while True:
 pass

ProgramFiles/FederatedLearning/federatedAverage.py

import logging
import argparse
import sys
import asyncio
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
import math

import syft as sy
from syft.workers import websocket_client
from syft.frameworks.torch.fl import utils

Model
class Net(nn.Module):
 def __init__(self):
 super(Net, self).__init__()
 self.pool = nn.MaxPool3d(1, 2)
 #self.drop_conv = nn.Dropout3d(0.2)
 #self.drop_lin = nn.Dropout(0.3)
 #self.kernel = kernel.cuda()
 self.activation = nn.ReLU6()
 self.conv1 = nn.Conv3d(1, 32, 3, 1, 1) # (1 * 5*5*5 + 1) * 32 = 896
 self.bn1 = nn.BatchNorm3d(32)
 self.conv2 = nn.Conv3d(32, 64, 3, 1, 1) # (32 * 3*3*3 + 1) * 64 = 55360
 self.bn2 = nn.BatchNorm3d(64)
 self.conv3 = nn.Conv3d(64, 64, 3, 1, 1) # (64 * 3*3*3 + 1) *128 = 221312
 self.bn3 = nn.BatchNorm3d(64)
 self.conv4 = nn.Conv3d(64, 128, 3, 1, 1)
 self.bn4 = nn.BatchNorm3d(128)
 self.conv5 = nn.Conv3d(128, 64, 3, 1, 1)
 self.bn5 = nn.BatchNorm3d(64)
 self.fc1 = nn.Linear(512, 2048)
 #self.lin_bn1 = nn.BatchNorm1d(2048)
 self.fc2 = nn.Linear(2048, 1024)
 #self.lin_bn2 = nn.BatchNorm1d(1024)
 self.out = nn.Linear(1024, 3)
 def forward(self, x):
 #print(x.shape)
 x = self.activation(self.pool(self.conv1(x)))
 #print(x.shape)
 x = self.bn1(x)
 #print(x.shape)
 #x = self.drop_conv(x)
 #print(x.shape)
 x = self.activation(self.pool(self.conv2(x)))
 #print(x.shape)
 x = self.bn2(x)
 #print(x.shape)
 #x = self.drop_conv(x)
 #print(x.shape)
 x = self.activation(self.pool(self.conv3(x)))
 #print(x.shape)
 x = self.bn3(x)
 #print(x.shape)
 #x = self.drop_conv(x)
 #print(x.shape)
 x = self.activation(self.pool(self.conv4(x)))
 #print(x.shape)
 x = self.bn4(x)
 #print(x.shape)
 #x = self.drop_conv(x)
 #print(x.shape)
 x = self.activation(self.pool(self.conv5(x)))
 #print(x.shape)
 x = self.bn5(x)
 #print(x.shape)
 #x = self.drop_conv(x)
 #print(x.shape)
 x = x.view(-1, 512)
 #print(x.shape)
 x = self.activation(self.fc1(x))
 #print(x.shape)
 #x = self.drop_lin(x)
 #print(x.shape)
 x = self.activation(self.fc2(x))
 #print(x.shape)
 #x = self.drop_lin(x)
 #print(x.shape)
 x = self.out(x) # (2000, 3)
 #print(x.shape)
 return F.log_softmax(x, dim=1)

hook = sy.TorchHook(torch)

device = torch.device('cpu')

model = Net().to(device)

models = {}

checkpoint1 = torch.load("best_model_adam1.pt",map_location=device)

model.load_state_dict(checkpoint1['model_state_dict'])

models[0] = model

model = Net().to(device)

checkpoint2 = torch.load("best_model_adam2.pt",map_location=device)

model.load_state_dict(checkpoint2['model_state_dict'])

models[1]= model

traced_model = utils.federated_avg(models)

torch.save(traced_model.state_dict(), "federated_model.pt")

print("Generated Federated Model")

ProgramFiles/fit.py

from system_resources import *

import torch.optim as optim

import torch

import pandas as pd

import time

from notify_run import Notify

from torchvision import transforms

import csv

import numpy as np

import torch

from torch.utils.data.dataset import Dataset

import os

from torchvision import transforms

from scipy import misc

from scipy.ndimage import rotate

def my_segmentation_transforms(img):

 # teller = teller +1

 # with open("tell.txt", "a") as text_file:

 # print("q", file=text_file)

 if random.random() > 0.1:

 if random.random() > 0.5:

 tt = random.randrange(1,6,1)

 else:

 tt = random.randrange(354, 359, 1)

 img = rotate(img, (tt),axes = (0,2), reshape=False)

 """

 if random.random() > 0.5:

 if random.random() > 0.5:

 tt = random.randrange(1, 6, 1)

 else:

 tt = random.randrange(354, 359, 1)

 img = rotate(img, tt, axes=(0, 1), reshape=False)

 if random.random() > 0.3:

 if random.random() > 0.5:

 tt = random.randrange(1, 30, 1)

 else:

 tt = random.randrange(330, 359, 1)

 img = rotate(img, tt, axes=(0,1), reshape=False)

 if random.random() > 0.2:

 if random.random() > 0.5:

 tt = random.randrange(1, 30, 1)

 else:

 tt = random.randrange(330, 359, 1)

 img = rotate(img, tt, axes=(0, 1), reshape=False)

 if random.random() > 0.6:

 img = np.flip(img,0)

 random_i = 0.3 * torch.rand(1)[0] + 0.7

 img = img * random_i.data.cpu().numpy()

 if random.random() > 0.7:

 img = gaussian_filter(img, sigma=1)

 if random.random() > 0.2:

 if random.random() > 0.3:

 tt = random.randrange(1, 4, 1)

 img = np.roll(img, tt, axis=0)

 if random.random() > 0.3:

 tt = random.randrange(1, 4, 1)

 img = np.roll(img, tt, axis=1)

 if random.random() > 0.3:

 tt = random.randrange(1, 4, 1)

 img = np.roll(img, tt, axis=2)

 if random.random() > 0.5:

 img = np.flip(img, 2)

 random_i = 0.3 * torch.rand(1)[0] + 0.7

 img = img * random_i.data.cpu().numpy()

 """

 if random.random() > 0.05:

 if random.random() > 0.33:

 tt = random.randrange(-4, 4, 1)

 img = np.roll(img, tt, axis=0)

 if random.random() > 0.33:

 tt = random.randrange(-4, 4, 1)

 img = np.roll(img, tt, axis=1)

 if random.random() > 0.33:

 tt = random.randrange(-4, 4, 1)

 img = np.roll(img, tt, axis=2)

 #if random.random() > 0.95:

 # img = gaussian_filter(img, sigma=1)

 # more transforms ...""

 return img

def fit_model(params): # Function for creating a model, takes a dictionary with system parameters as input

 # Timestamp to tag files

 start_time = time.time()

 timestamp = time.strftime("%Y-%m-%d_%H-%M")

 print("\nRun started: {}".format(timestamp))

 # Setting up device

 params["device"], numb_devices = device_setup(params["cuda_devices"])

 params["numb_workers"] = 10

 # Create data set

 if params["create_dataset"]:

 create_dataset(params["data_path"], params["csv_file"], params["split"], params["numpy_data_path"])

 # Load mean and std image

 mean_image = torch.from_numpy(np.load(os.path.join(params["numpy_data_path"], "mean_image.npy")))

 mean_image = mean_image.unsqueeze(0)

 # std_image = torch.from_numpy(np.load(os.path.join(params["numpy_data_path"], "std_image.npy")))

 # std_image = std_image.unsqueeze(0)

 # Chosing data tranformations

 data_transform = transforms.Compose([

 transforms.Lambda(lambda x:my_segmentation_transforms(x)),

 transforms.Lambda(lambda x: torch.from_numpy(x)),

 #transforms.RandomHorizontalFlip(),

 # transforms.RandomApply([

 # transforms.Lambda(lambda x: x.unsqueeze(0)),

 # transforms.Lambda(lambda x: x.unsqueeze(0)),

 # transforms.Lambda(lambda x: F.conv3d(x, kernel, padding=1)),

 # transforms.Lambda(lambda x: x[0, :, :, :, :])

 #], p=params["smooth"]),

 transforms.Lambda(lambda x: torch.Tensor.sub(x, mean_image))

 # transforms.Lambda(lambda x: np.divide(x, std_image, where=std_image > 0)),,

])

 # Instantiating model

 #model = ResNet3d(bottleNeck3d, [3, 4, 6, 3],3)

 #model = ResNet3d(baseBlock3d, [2, 3, 4, 2], 3)

 model = resnet18(1,3)

 print(model)

 params["model_name"] = model.__class__.__name__

 # Informing of training parameters

 print("\nModel will be trained with following parameters:")

 print(" Batch normalization: {}".format(params["bn"]))

 print(" Dropout: {}".format(params["dropout"]))

 print(" Log interval: {}".format(params["log_interval"]))

 print(" Shuffle: {}".format(params["shuffle"]))

 # Create folder to save files in

 params["report_path"] = os.path.join(params["report_path"], "LR_{:.7f}_L2_{:.4f}_DO_{:.2f}_SM_{:.2f}_".format(params["lr"], params["L2"], params["dropout"], params["smooth"]) + timestamp)

 if not os.path.exists(params["report_path"]):

 os.makedirs(params["report_path"])

 print("\nFiles will be saved to: " + params["report_path"])

 print("\nSetting up criterion function and optimizer..")

 criterion = nn.CrossEntropyLoss()

 optimizer = optim.SGD(model.parameters(), lr=params["lr"], momentum = params["momentum"] , dampening = 0, weight_decay=params["L2"], nesterov=True)

 #optimizer = optim.SGD(model.parameters(), lr=0.0009956, momentum=0.537948, dampening=0, weight_decay=0.0549, nesterov=True)

 print("Criterion function: {}\nOptimizer: {}".format(criterion.__class__.__name__, optimizer))

 # Save parameters

 params_df = pd.DataFrame.from_dict(params)

 params_df.to_csv(os.path.join(params["report_path"], "parameters.csv"))

 print("Parameters saved: parameters.csv")

 if params["cv_folds"] > 1:

 # Saving model so that it can be loaded from scratch for each fold

 torch.save({

 'model': model,

 'optimizer_state_dict': optimizer.state_dict(),

 'lr': params["lr"],

 'L2': params["L2"],

 'momentum': params["momentum"]

 }, os.path.join(params["report_path"], "clean_setup"))

 # Train model

 params["classes"], lowest_loss, highest_acc \

 = cross_validation(params["cv_folds"], params["epochs"], params["tensor_data_path"], data_transform, params["bs_train"], params["bs_val"], numb_devices, params["numb_workers"], params["shuffle"], criterion, params["log_interval"], params["device"], params["report_path"], params["patient"], params["random_seed"], params["smooth"])

 # Adding the average acc and loss to last row

 final_loss = lowest_loss.mean()

 final_acc = highest_acc.mean()

 lowest_loss = np.append(lowest_loss, final_loss)

 highest_acc = np.append(highest_acc, final_acc)

 print("Average lowest loss: {}".format(lowest_loss[-1]))

 print("Average highest accuracy: {}".format(highest_acc[-1]))

 # Saving best of each fold performance + average performance

 cv_performance = np.stack([lowest_loss, highest_acc], axis=1)

 cv_performance_pd = pd.DataFrame(cv_performance, columns=["Loss", "Acc"])

 cv_performance_pd.to_csv(r'{}/CV_performance.csv'.format(params["report_path"]))

 elif params["cv_folds"] <= 1:

 if numb_devices > 1:

 model = nn.DataParallel(model)

 print("Model set up to run in parallel")

 model.to(params["device"])

 # Loading data

 train_loader, val_loader, params["classes"] = load_data_folders(params["tensor_data_path"], data_transform,

 params["bs_train"], params["bs_val"],

 params["shuffle"], params["numb_workers"],

 params["val_size"])

 if params["cv_folds"] > 0:

 # Train model

 train_stat, val_stat, model = train(model, criterion, optimizer, train_loader, val_loader, params["epochs"],

 params["log_interval"], params["device"], params["report_path"],

 params["patient"], params["classes"], params["smooth"])

 # Gathering final validation data from best performing model during training

 model = resnet34(len(params["classes"]), params["dropout"])

 best_model = torch.load(os.path.join(params["report_path"], "best_model"))

 if best_model["model_paralell"]:

 model = nn.DataParallel(model)

 print("\nModel set up to run in parallel")

 # Load network parameters

 model.load_state_dict(best_model['model_state_dict'])

 model.cuda()

 # Validate model

 validation_stat, targets, predictions = validation(model, criterion, val_loader, params["device"], params["bn"])

 final_loss, final_acc = validation_stat

 # Saving training log

 train_stat_pd = pd.DataFrame(train_stat, columns=['T_epoch', 'T_batch', 'T_loss', 'T_acc'])

 val_stat_pd = pd.DataFrame(val_stat, columns=['V_loss', 'V_acc'])

 comp_stat = pd.concat([train_stat_pd, val_stat_pd], axis=1)

 comp_stat.to_csv(r'{}/final_log.csv'.format(params["report_path"]), header=model)

 print("\nFinal training log saved to: final_log.csv")

 # Model evaluation

 training_plot(train_stat, val_stat, params["report_path"])

 evaluation(validation_stat, targets, predictions, params["classes"], params["report_path"])

 # Save system parameters

 params["criterion"] = criterion.__class__.__name__

 params["optimizer"] = optimizer.__class__.__name__

 params["Time_elapsed"] = str(datetime.timedelta(seconds=time.time() - start_time))

 params_df = pd.DataFrame.from_dict(params)

 params_df.to_csv(os.path.join(params["report_path"], "parameters.csv"))

 print("Parameters saved: parameters.csv")

 # Send update

 print("\nRun started {} complete.".format(timestamp))

 print("Time elapsed:{}".format(params["Time_elapsed"]))

 print("Loss: {}, Acc: {}.".format(final_loss, final_acc))

 return final_loss, final_acc

ProgramFiles/Make_new_dataset_from_Simens_balance.py

import numpy as np

import torch

import os

from torch import nn

from torch import optim

from torch.nn import functional as F

from torch import autograd

from torch.autograd import Variable

import nibabel as nib

from torch.utils.data.dataset import Dataset

from torch.utils.data import dataloader

new_data_path = '/zfs1/home/simennl/results/output_files_reduceBias_frac02'

os.chdir(new_data_path)

navn_new_data = os.listdir(new_data_path)

#/zfs1/home/simennl/new_datasetts/frac02_reduceBias/DL_dataset

data_path = '/zfs1/home/petterm/EDLB_proc/DL_dataset/train/NC_DLB_AD/NC'

out_path = '/zfs1/home/simennl/new_datasetts/frac02_reduceBias/DL_dataset/test'

tre = ['NC_test','AD_test','DLB_test']

tre = ['NC', 'AD', 'DLB']

print((navn_new_data[0])[12:])

os.chdir(data_path)

navn = os.listdir(data_path)

print((navn[0])[:-3])

resizer treningsdata

for kk in range(0, 3, 1):

 data_path = '/zfs1/home/petterm/EDLB_proc/DL_dataset/train/NC_DLB_AD/' + tre[kk]

 out_path = '/zfs1/home/simennl/new_datasetts/frac02_reduceBias/DL_dataset/train/NC_DLB_AD/' + tre[kk]

 os.chdir(data_path)

 navn = os.listdir(data_path)

 for i in range(0, len(navn), 1):

 for j in range(0, len(navn_new_data), 1):

 if (((navn_new_data[j])[12:]) == ((navn[i])[:-4])):

 os.chdir(new_data_path+'/'+navn_new_data[j])

 get_data = os.listdir(new_data_path+'/'+navn_new_data[j])

 nii_subject = nib.load(new_data_path+'/'+navn_new_data[j]+'/' + get_data[0])

 np_sub = np.array(nii_subject.dataobj).astype(float)

 # Moving image to positive domain

 if np_sub.min() < 0:

 np_sub = np_sub - np_sub.min()

 # Normalize data

 np_sub = np.true_divide(np_sub, np_sub.max())

 np.save(os.path.join(out_path, navn[i]), np_sub, allow_pickle=True)

resizer test data

tre1 = ['NC_test', 'AD_test', 'DLB_test']

for kk in range(0, 3, 1):

 #data paths for testing data

 data_path = '/zfs1/home/petterm/EDLB_proc/DL_dataset/test/NC_DLB_AD/' + tre1[kk]

 out_path = '/zfs1/home/simennl/new_datasetts/frac02_reduceBias/DL_dataset/test/NC_DLB_AD/' + tre1[kk]

 os.chdir(data_path)

 navn = os.listdir(data_path)

 for i in range(0, len(navn), 1):

 for j in range(0, len(navn_new_data), 1):

 if (((navn_new_data[j])[12:]) == ((navn[i])[:-4])):

 os.chdir(new_data_path + '/' + navn_new_data[j])

 get_data = os.listdir(new_data_path + '/' + navn_new_data[j])

 nii_subject = nib.load(new_data_path + '/' + navn_new_data[j] + '/' + get_data[0])

 np_sub = np.array(nii_subject.dataobj).astype(float)

 # Moving image to positive domain

 if np_sub.min() < 0:

 np_sub = np_sub - np_sub.min()

 # Normalize data

 np_sub = np.true_divide(np_sub, np_sub.max())

 np.save(os.path.join(out_path, navn[i]), np_sub, allow_pickle=True)

ProgramFiles/NC_dataset.py

import csv
import numpy as np
import torch
from torch.utils.data.dataset import Dataset
import os
from torchvision import transforms
from skimage.transform import resize
from nilearn import surface
import nibabel as nib

class ADNI_NC_dataset(Dataset):
	def __init__(self, root='/zfs1/home/petterm/pette/augment/3dbraingen-master/DL_dataNii/train/NC_DLB_AD/NC', augmentation=False):
		self.root = root
		self.augmentation = augmentation
		f = open('NC_list.csv','r')
		rdr = csv.reader(f)
		name = []
		for line in rdr:
			name.append(line[0])
		name = np.asarray(name)
		self.name =name
	def __len__(self):
		return len(self.name)

	def __getitem__(self, index):
		path = os.path.join(self.root,self.name[index])
		img = nib.load(os.path.join(path,))
		img = np.swapaxes(img.get_data(),1,2)
		#img = np.flip(img,1)
		#img = np.flip(img,2)
		sp_size = 64
		img = resize(img, (sp_size,sp_size,sp_size), mode='constant')
		if self.augmentation:
			random_n = torch.rand(1)
			random_i = 0.3*torch.rand(1)[0]+0.7
			if random_n[0] > 0.5:
				img = np.flip(img,0)

			img = img*random_i.data.cpu().numpy()

		imageout = torch.from_numpy(img).float().view(1,sp_size,sp_size,sp_size)
		imageout = imageout*2-1

		return imageout

ProgramFiles/requirements.txt

absl-py==0.2.0

acme==0.31.0

alabaster==0.7.12

altgraph==0.16.1

app-version==1.0.1

asn1crypto==0.24.0

astor==0.6.2

astroid==2.1.0

attrs==19.1.0

Babel==2.6.0

backcall==0.1.0

bcrypt==3.1.6

beautifulsoup4==4.4.1

bleach==1.5.0

blessings==1.7

bottle==0.12.7

certbot==0.31.0

certifi==2017.4.17

cffi==1.11.5

chardet==3.0.4

Click==7.0

cloudpickle==0.5.6

ConfigArgParse==0.11.0

configobj==5.0.6

configparser==3.7.4

cryptography==2.5

cudnn-python-wrappers==1.0

cudnnenv==0.6.6

cx-Freeze==5.1.1

cycler==0.10.0

dask==1.1.0

decorator==4.3.0

defer==1.0.6

defusedxml==0.5.0

dicom==0.9.9.post1

dill==0.2.9

Django==2.2.1

docker-py==1.9.0

docutils==0.14

entrypoints==0.3

enum34==1.1.6

et-xmlfile==1.0.1

Faker==1.0.5

Flask==1.0.2

Flask-Login==0.4.1

Flask-SQLAlchemy==2.4.0

funcsigs==0.4

future==0.16.0

gast==0.2.0

gi==1.2

Glances==2.3

gpustat==0.5.0

grpcio==1.11.0

h5py==2.9.0

hdf5storage==0.1.15

html5lib==0.9999999

idna==2.5

igraph==0.1.11

image==1.5.27

imageio==2.5.0

imagesize==1.1.0

imgaug==0.2.9

influxdb==2.12.0

ipykernel==5.1.0

ipython==7.5.0

ipython-genutils==0.2.0

ipywidgets==7.4.2

isort==4.3.4

itsdangerous==1.1.0

jdcal==1.4.1

jedi==0.12.0

jeepney==0.4

Jinja2==2.10

joblib==0.14.1

josepy==1.1.0

jsonschema==3.0.1

jupyter==1.0.0

jupyter-client==5.2.4

jupyter-console==6.0.0

jupyter-core==4.4.0

Keras==2.2.4

Keras-Applications==1.0.6

Keras-Preprocessing==1.0.5

keyring==17.1.1

kiwisolver==1.0.1

language-selector==0.1

lazy-object-proxy==1.3.1

lxml==3.5.0

macholib==1.11

Markdown==2.6.11

MarkupSafe==1.0

matlab==0.1

matplotlib==3.0.3

mccabe==0.6.1

mistune==0.8.4

mock==2.0.0

mritopng==2.2

nbconvert==5.5.0

nbformat==4.4.0

ndg-httpsclient==0.4.2

netifaces==0.10.4

networkx==2.3

nibabel==3.0.1

notebook==5.7.8

notify==0.3.1

notify-run==0.0.13

np==1.0.2

numexpr==2.6.9

numpy==1.16.3

numpydoc==0.8.0

numutil==0.1.0

nvidia-ml-py==375.53.1

nvidia-ml-py3==7.352.0

opencv-python==4.1.0.25

openpyxl==2.6.2

openslide-python==1.1.1

packaging==19.0

pandas==0.24.2

pandas-ml==0.6.1

pandocfilters==1.4.2

paramiko==2.4.2

parsedatetime==2.4

parso==0.2.0

patsy==0.5.1

pbr==1.8.0

pefile==2019.4.18

pexpect==4.5.0

pickleshare==0.7.4

Pillow==6.0.0

pkgconfig==1.3.1

plotly==3.8.1

prometheus-client==0.3.1

prompt-toolkit==2.0.8

protobuf==3.6.1

psutil==5.0.1

ptyprocess==0.5.2

py2exe==0.9.2.2

py3nvml==0.2.3

pyaml==19.12.0

pyasn1==0.1.9

pycodestyle==2.5.0

pycparser==2.18

pycrypto==2.6.1

pycups==1.9.73

pycurl==7.43.0

pydicom==1.2.2

pyflakes==2.1.0

Pygments==2.2.0

pygobject==3.20.0

PyICU==1.9.2

pylint==2.2.2

PyNaCl==1.3.0

pyOpenSSL==17.3.0

pyparsing==2.2.0

pypng==0.0.19

PyQRCode==1.2.1

PyQt5==5.12.1

PyQt5-sip==4.19.14

PyQtWebEngine==5.12.1

pyreadline==2.1

pyRFC3339==1.0

pyrsistent==0.14.11

pysnmp==4.2.5

pystache==0.5.4

python-apt==1.1.0b1+ubuntu0.16.4.2

python-dateutil==2.7.3

python-debian==0.1.27

pytz==2014.10

pyvips==2.1.5

PyWavelets==0.5.2

pyxdg==0.25

PyYAML==3.12

pyzmq==17.0.0

QtAwesome==0.5.7

qtconsole==4.4.3

qtgui==0.0.1

QtPy==1.6.0

report==0.0.1

requests==2.22.0

requests-toolbelt==0.8.0

retrying==1.3.3

rope==0.12.0

sc-pylibs==0.1.4

scikit-image==0.15.0

scikit-learn==0.20.3

scikit-optimize==0.7.1

scipy==1.2.1

screen-resolution-extra==0.0.0

seaborn==0.9.1

SecretStorage==3.1.1

Send2Trash==1.5.0

Shapely==1.6.4.post2

simplegeneric==0.8.1

sip==4.19.8

six==1.12.0

sklearn==0.0

snowballstemmer==1.2.1

spams==2.6.1

Sphinx==1.8.4

sphinxcontrib-websupport==1.1.0

spyder==3.3.4

spyder-kernels==0.4.4

SQLAlchemy==1.2.17

sqlparse==0.3.0

ssh-import-id==5.5

staintools==2.1.2

statsmodels==0.9.0

system-service==0.3

tensorboard==1.13.1

tensorflow==1.13.1

tensorflow-estimator==1.13.0

tensorflow-gpu==1.13.1

termcolor==1.1.0

terminado==0.8.2

testpath==0.4.2

text-unidecode==1.2

tflearn==0.3.2

Theano==1.0.4

toolz==0.9.0

torch==1.2.0+cu92

torchvision==0.4.0+cu92

tornado==5.0.2

traitlets==4.3.2

typed-ast==1.3.1

unattended-upgrades==0.1

urllib3==1.21.1

validate-email==1.3

virtualenv==16.5.0

wcwidth==0.1.7

webencodings==0.5.1

websocket-client==0.18.0

Werkzeug==0.15.2

widgetsnbextension==3.4.2

wrapt==1.11.1

wurlitzer==1.0.2

xkit==0.0.0

XlsxWriter==1.1.8

xmltodict==0.11.0

zope.component==4.3.0

zope.event==4.2.0

zope.hookable==4.0.4

zope.interface==4.3.2

ProgramFiles/system_resources.py

import torch
import torch.nn as nn
from torch.utils.data import DataLoader, Dataset
import torch.nn.functional as F
from sklearn.model_selection import train_test_split
import time
import datetime
import csv
from sklearn.model_selection import StratifiedKFold
from torchvision.datasets import DatasetFolder
import torch.optim as optim
from notify_run import Notify
from PIL import Image
from scipy.ndimage import gaussian_filter
import random
import matplotlib
from matplotlib import pyplot as plt
import os
import nibabel as nib
import numpy as np
from sklearn.metrics import confusion_matrix, precision_recall_fscore_support
import pandas as pd
from scipy.ndimage.filters import gaussian_filter1d
import seaborn as sns
import torchvision.transforms as transforms
import torchvision

from functools import partial

from collections import OrderedDict

matplotlib.use('Agg')

kernel = np.zeros([3, 3, 3])
kernel[1, 1, 1] = 1
kernel = torch.from_numpy(gaussian_filter(kernel, sigma=1))
kernel = kernel.unsqueeze(0)
kernel = kernel.unsqueeze(0).float()

'''______________________ Network structures _____________________'''

class Conv3dAuto(nn.Conv3d):
 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)

 self.padding = (self.kernel_size[0] // 3, self.kernel_size[1] // 3, self.kernel_size[2] // 3) # dynamic add padding based on the kernel_size

conv3x3 = partial(Conv3dAuto, kernel_size=3, bias=False)

conv = conv3x3(in_channels=32, out_channels=64)
print(conv)
del conv

class ResidualBlock(nn.Module):
 def __init__(self, in_channels, out_channels):
 super().__init__()
 self.in_channels, self.out_channels = in_channels, out_channels
 self.blocks = nn.Identity()
 self.shortcut = nn.Identity()

 def forward(self, x):

 residual = x
 if self.should_apply_shortcut: residual = self.shortcut(x)
 x = self.blocks(x)
 x += residual
 return x

 @property
 def should_apply_shortcut(self):
 return self.in_channels != self.out_channels

from collections import OrderedDict

class ResNetResidualBlock(ResidualBlock):
 def __init__(self, in_channels, out_channels, expansion=1, downsampling=1, conv=conv3x3, *args, **kwargs):
 super().__init__(in_channels, out_channels)
 self.expansion, self.downsampling, self.conv = expansion, downsampling, conv
 self.shortcut = nn.Sequential(OrderedDict(
 {
 'conv': nn.Conv3d(self.in_channels, self.expanded_channels, kernel_size=1,
 stride=self.downsampling, bias=False),
 'bn': nn.BatchNorm3d(self.expanded_channels)

 })) if self.should_apply_shortcut else None

 @property
 def expanded_channels(self):
 return self.out_channels * self.expansion

 @property
 def should_apply_shortcut(self):
 return self.in_channels != self.expanded_channels

function to stack conv and batchnorm layer
from collections import OrderedDict
def conv_bn(in_channels, out_channels, conv, *args, **kwargs):
 return nn.Sequential(OrderedDict({'conv': conv(in_channels, out_channels, *args, **kwargs),
 'bn': nn.BatchNorm3d(out_channels) }))

class ResNetBasicBlock(ResNetResidualBlock):
 expansion = 1
 def __init__(self, in_channels, out_channels, activation=nn.ReLU, *args, **kwargs):
 super().__init__(in_channels, out_channels, *args, **kwargs)
 self.blocks = nn.Sequential(
 conv_bn(self.in_channels, self.out_channels, conv=self.conv, bias=False, stride=self.downsampling),
 nn.Dropout3d(p=0.05),
 activation(),

 conv_bn(self.out_channels, self.expanded_channels, conv=self.conv, bias=False),
)

class ResNetBottleNeckBlock(ResNetResidualBlock):
 expansion = 4
 def __init__(self, in_channels, out_channels, activation=nn.ReLU, *args, **kwargs):
 super().__init__(in_channels, out_channels, expansion=4, *args, **kwargs)
 self.blocks = nn.Sequential(
 conv_bn(self.in_channels, self.out_channels, self.conv, kernel_size=1),
 activation(),
 nn.Dropout3d(p=0.01),
 conv_bn(self.out_channels, self.out_channels, self.conv, kernel_size=3, stride=self.downsampling),
 activation(),
 nn.Dropout3d(p=0.01),
 conv_bn(self.out_channels, self.expanded_channels, self.conv, kernel_size=1),
)

class ResNetLayer(nn.Module):
 def __init__(self, in_channels, out_channels, block=ResNetBasicBlock, n=1, *args, **kwargs):
 super().__init__()
 # 'We perform downsampling directly by convolutional layers that have a stride of 2.'
 downsampling = 2 if in_channels != out_channels else 1

 self.blocks = nn.Sequential(
 block(in_channels, out_channels, *args, **kwargs, downsampling=downsampling),
 *[block(out_channels * block.expansion,
 out_channels, downsampling=1, *args, **kwargs) for _ in range(n - 1)]
)

 def forward(self, x):
 x = self.blocks(x)
 return x

class ResNetEncoder(nn.Module):
 """
 ResNet encoder composed by increasing different layers with increasing features.
 """

 def __init__(self, in_channels=3, blocks_sizes=[64, 128, 256, 512], deepths=[2, 2, 2, 2],
 activation=nn.ReLU, block=ResNetBasicBlock, *args, **kwargs):
 super().__init__()

 self.blocks_sizes = blocks_sizes

 self.gate = nn.Sequential(
 nn.Conv3d(in_channels, self.blocks_sizes[0], kernel_size=7, stride=2, padding=3, bias=False),
 nn.BatchNorm3d(self.blocks_sizes[0]),
 activation(),
 nn.MaxPool3d(kernel_size=3, stride=2, padding=1)
)

 self.in_out_block_sizes = list(zip(blocks_sizes, blocks_sizes[1:]))
 self.blocks = nn.ModuleList([
 ResNetLayer(blocks_sizes[0], blocks_sizes[0], n=deepths[0], activation=activation,
 block=block, *args, **kwargs),
 *[ResNetLayer(in_channels * block.expansion,
 out_channels, n=n, activation=activation,
 block=block, *args, **kwargs)
 for (in_channels, out_channels), n in zip(self.in_out_block_sizes, deepths[1:])]
])

 def forward(self, x):
 x = self.gate(x)
 for block in self.blocks:
 x = block(x)
 return x

class ResnetDecoder(nn.Module):
 """
 This class represents the tail of ResNet. It performs a global pooling and maps the output to the
 correct class by using a fully connected layer.
 """
 def __init__(self, in_features, n_classes):
 super().__init__()
 self.avg = nn.AdaptiveAvgPool3d((1, 1, 1))
 self.decoder = nn.Linear(in_features, n_classes)
 """self.decoder = nn.Sequential(

 nn.Linear(in_features, in_features),
 nn.BatchNorm1d(in_features),
 nn.Dropout(p=0.1),
 nn.Linear(in_features, int(in_features / 2)),
 nn.BatchNorm1d(int(in_features / 2)),
 nn.Dropout(p=0.1),

 nn.Linear(int(in_features / 2), n_classes)
)"""

 def forward(self, x):
 x = self.avg(x)
 x = x.view(x.size(0), -1)
 x = self.decoder(x)
 return x

class ResNet(nn.Module):

 def __init__(self, in_channels, n_classes, *args, **kwargs):
 super().__init__()
 self.encoder = ResNetEncoder(in_channels, *args, **kwargs)
 self.decoder = ResnetDecoder(self.encoder.blocks[-1].blocks[-1].expanded_channels, n_classes)

 def forward(self, x):
 x = self.encoder(x)
 x = self.decoder(x)
 return x

def resnet18(in_channels, n_classes):
 return ResNet(in_channels, n_classes, block=ResNetBasicBlock, deepths=[2, 2, 2, 2])

def resnet34(in_channels, n_classes):
 return ResNet(in_channels, n_classes, block=ResNetBasicBlock, deepths=[3, 4, 6, 3])

def resnet50(in_channels, n_classes):
 return ResNet(in_channels, n_classes, block=ResNetBottleNeckBlock, deepths=[3, 4, 6, 3])

def resnet101(in_channels, n_classes):
 return ResNet(in_channels, n_classes, block=ResNetBottleNeckBlock, deepths=[3, 4, 23, 3])

def resnet152(in_channels, n_classes):
 return ResNet(in_channels, n_classes, block=ResNetBottleNeckBlock, deepths=[3, 8, 36, 3])

class baseBlock3d(torch.nn.Module):
 expansion = 1

 def __init__(self, input_planes, planes, stride=1, dim_change=None):
 super(baseBlock3d, self).__init__()
 # declare convolutional layers with batch norms
 self.conv1 = torch.nn.Conv3d(input_planes, planes, stride=stride, kernel_size=3, padding=1)
 self.bn1 = torch.nn.BatchNorm3d(planes)
 self.conv2 = torch.nn.Conv3d(planes, planes, stride=1, kernel_size=3, padding=1)
 self.bn2 = torch.nn.BatchNorm3d(planes)
 self.dim_change = dim_change

 def forward(self, x, smooth=False):
 # Save the residue
 res = x
 output = F.relu(self.bn1(self.conv1(x)))
 output = self.bn2(self.conv2(output))

 if self.dim_change is not None:
 res = self.dim_change(res)

 output += res
 output = F.relu(output)

 return output

class bottleNeck3d(torch.nn.Module):
 expansion = 4

 def __init__(self, input_planes, planes, stride=1, dim_change=None):
 super(bottleNeck3d, self).__init__()

 self.conv1 = torch.nn.Conv3d(input_planes, planes, kernel_size=1, stride=1)
 self.bn1 = torch.nn.BatchNorm3d(planes)
 self.conv2 = torch.nn.Conv3d(planes, planes, kernel_size=3, stride=stride, padding=1)
 self.bn2 = torch.nn.BatchNorm3d(planes)
 self.conv3 = torch.nn.Conv3d(planes, planes * self.expansion, kernel_size=1)
 self.bn3 = torch.nn.BatchNorm3d(planes * self.expansion)
 self.dim_change = dim_change

 def forward(self, x,smooth=False, bn=True):
 res = x

 output = F.relu(self.bn1(self.conv1(x)))
 output = F.relu(self.bn2(self.conv2(output)))
 output = self.bn3(self.conv3(output))

 if self.dim_change is not None:
 res = self.dim_change(res)

 output += res
 output = F.relu(output)
 return output

class ResNet3d(torch.nn.Module):
 def __init__(self, block, num_layers, classes):
 super(ResNet3d, self).__init__()
 # according to research paper:
 self.input_planes = 64
 self.conv1 = torch.nn.Conv3d(1, 64, kernel_size=3, stride=1, padding=1)
 self.bn1 = torch.nn.BatchNorm3d(64)
 self.layer1 = self._layer(block, 64, num_layers[0], stride=1)
 self.layer2 = self._layer(block, 128, num_layers[1], stride=2)
 self.layer3 = self._layer(block, 256, num_layers[2], stride=2)
 self.layer4 = self._layer(block, 512, num_layers[3], stride=2)
 self.averagePool = torch.nn.AvgPool3d(kernel_size=4, stride=1)
 self.fc = torch.nn.Linear(2048*2 * block.expansion, classes)

 def _layer(self, block, planes, num_layers, stride=1):
 dim_change = None
 if stride != 1 or planes != self.input_planes * block.expansion:
 dim_change = torch.nn.Sequential(torch.nn.Conv3d(self.input_planes, planes * block.expansion, kernel_size=1, stride=stride),
 torch.nn.BatchNorm3d(planes * block.expansion))
 netLayers = []
 netLayers.append(block(self.input_planes, planes, stride=stride, dim_change=dim_change))
 self.input_planes = planes * block.expansion
 for i in range(1, num_layers):
 netLayers.append(block(self.input_planes, planes))
 self.input_planes = planes * block.expansion

 return torch.nn.Sequential(*netLayers)

 def forward(self, x, smooth=False, bn=True):
 x = F.relu(self.bn1(self.conv1(x)))

 x = self.layer1(x)
 x = self.layer2(x)
 x = self.layer3(x)
 x = self.layer4(x)

 x = F.avg_pool3d(x, 4)
 #print(x.shape[0])
 x = x.view(x.size(0), -1)
 #x = x.view(x.shape[0], x.shape[1] * x.shape[2] * x.shape[3])
 #print(x.shape)
 x = self.fc(x)

 return x

#################DENCE NET#########################

"""
	The Network Class

import torch
import torch.nn as nn
import math

class Dense_Block(nn.Module):
 def __init__(self, in_channels):
 super(Dense_Block, self).__init__()

 self.relu = nn.ReLU(inplace=True)
 self.bn = nn.BatchNorm3d(num_features=in_channels)

 self.conv1 = nn.Conv3d(in_channels=in_channels, out_channels=32, kernel_size=3, stride=1, padding=1)
 self.conv2 = nn.Conv3d(in_channels=32, out_channels=32, kernel_size=3, stride=1, padding=1)
 self.conv3 = nn.Conv3d(in_channels=64, out_channels=32, kernel_size=3, stride=1, padding=1)
 self.conv4 = nn.Conv3d(in_channels=96, out_channels=32, kernel_size=3, stride=1, padding=1)
 self.conv5 = nn.Conv3d(in_channels=128, out_channels=32, kernel_size=3, stride=1, padding=1)

 def forward(self, x):
 bn = self.bn(x)
 conv1 = self.relu(self.conv1(bn))

 conv2 = self.relu(self.conv2(conv1))
 c2_dense = self.relu(torch.cat([conv1, conv2], 1))

 conv3 = self.relu(self.conv3(c2_dense))
 c3_dense = self.relu(torch.cat([conv1, conv2, conv3], 1))

 conv4 = self.relu(self.conv4(c3_dense))
 c4_dense = self.relu(torch.cat([conv1, conv2, conv3, conv4], 1))

 conv5 = self.relu(self.conv5(c4_dense))
 c5_dense = self.relu(torch.cat([conv1, conv2, conv3, conv4, conv5], 1))

 return c5_dense

class Transition_Layer(nn.Module):
 def __init__(self, in_channels, out_channels):
 super(Transition_Layer, self).__init__()

 self.relu = nn.ReLU(inplace=True)
 self.bn = nn.BatchNorm3d(num_features=out_channels)
 self.conv = nn.Conv3d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=False)
 self.avg_pool = nn.AvgPool3d(kernel_size=2, stride=2, padding=0)

 def forward(self, x):
 bn = self.bn(self.relu(self.conv(x)))
 out = self.avg_pool(bn)

 return out

class DenseNet(nn.Module):
 def __init__(self, nr_classes):
 super(DenseNet, self).__init__()

 self.lowconv = nn.Conv3d(in_channels=1, out_channels=64, kernel_size=7, padding=3, bias=False)
 self.relu = nn.ReLU()

 # Make Dense Blocks
 self.denseblock1 = self._make_dense_block(Dense_Block, 64)
 self.denseblock2 = self._make_dense_block(Dense_Block, 128)
 self.denseblock3 = self._make_dense_block(Dense_Block, 128)

 # Make transition Layers
 self.transitionLayer1 = self._make_transition_layer(Transition_Layer, in_channels=160, out_channels=128)
 self.transitionLayer2 = self._make_transition_layer(Transition_Layer, in_channels=160, out_channels=128)
 self.transitionLayer3 = self._make_transition_layer(Transition_Layer, in_channels=160, out_channels=64)

 # Classifier
 self.bn = nn.BatchNorm3d(num_features=64)
 self.pre_classifier = nn.Linear(32768, 512)
 self.classifier = nn.Linear(512, nr_classes)

 def _make_dense_block(self, block, in_channels):
 layers = []
 layers.append(block(in_channels))
 return nn.Sequential(*layers)

 def _make_transition_layer(self, layer, in_channels, out_channels):
 modules = []
 modules.append(layer(in_channels, out_channels))
 return nn.Sequential(*modules)

 def forward(self, x):
 out = self.relu(self.lowconv(x))

 out = self.denseblock1(out)
 out = self.transitionLayer1(out)

 out = self.denseblock2(out)
 out = self.transitionLayer2(out)

 out = self.denseblock3(out)
 out = self.transitionLayer3(out)

 out = self.bn(out)
 print(out.shape)
 out = out.view(9, -1)
 print(out.shape)
 out = self.pre_classifier(out)
 #print(out.shape)
 out = self.classifier(out)
 #print(out.shape)

 return out
"""
################END DENCE NET #####################
class Simen_net(nn.Module):
 def __init__(self, numb_classes, dropout):
 super(Simen_net, self).__init__()
 print("\nInstantiating {} model..".format(self.__class__.__name__))

 self.pool = nn.MaxPool3d(3, 2)

 self.drop_conv = nn.Dropout3d(p=dropout*0.5)
 self.drop_lin = nn.Dropout(p=dropout)

 self.kernel = kernel.cuda()

 self.activation = nn.ReLU6()

 self.conv1 = nn.Conv3d(1, 32, 3, stride=1, bias=False, padding=1) # (1 * 5*5*5 + 1) * 32 = 896
 self.bn1 = nn.BatchNorm3d(32)

 self.conv2 = nn.Conv3d(32, 64, 3, stride=1, bias=False, padding=1) # (32 * 3*3*3 + 1) * 64 = 55360
 self.bn2 = nn.BatchNorm3d(64)

 self.conv3 = nn.Conv3d(64, 64, 3, stride=1, bias=False, padding=1) # (64 * 3*3*3 + 1) *128 = 221312
 self.bn3 = nn.BatchNorm3d(64)

 self.conv4 = nn.Conv3d(64, 128, 3, stride=1, bias=False, padding=1)
 self.bn4 = nn.BatchNorm3d(128)

 self.conv5 = nn.Conv3d(128, 256, 3, stride=1, bias=False, padding=1)
 self.bn5 = nn.BatchNorm3d(256)

 self.fc1 = nn.Linear(256 * 1 * 1 * 1, 2048)
 self.lin_bn1 = nn.BatchNorm1d(2048)

 self.fc2 = nn.Linear(2048, 1024)
 self.lin_bn2 = nn.BatchNorm1d(1024)

 self.out = nn.Linear(1024, numb_classes)

 def forward(self, x, smooth, bn=True):

 if smooth:
 x = F.conv3d(x, self.kernel, padding=1)

 # print(x.shape)

 # Verify that this actually is a picture of a brain
 # img = Image.fromarray(x[0][0][70].cpu().numpy() * 255)
 # img.show()

 x = self.activation(self.pool(self.conv1(x)))
 if bn: x = self.bn1(x)
 x = self.drop_conv(x)
 # print(x.shape)

 x = self.activation(self.pool(self.conv2(x)))
 if bn: x = self.bn2(x)
 x = self.drop_conv(x)

 # print(x.shape)

 x = self.activation(self.pool(self.conv3(x)))
 if bn: x = self.bn3(x)
 x = self.drop_conv(x)
 # print(x.shape)

 x = self.activation(self.pool(self.conv4(x)))
 if bn: x = self.bn4(x)
 x = self.drop_conv(x)
 # print(x.shape)

 x = self.activation(self.pool(self.conv5(x)))
 if bn: x = self.bn5(x)
 x = self.drop_conv(x)
 # print(x.shape)

 x = x.view(-1, 256 * 1 * 1 * 1)

 x = self.activation(self.fc1(x))
 if bn: x = self.lin_bn1(x)
 x = self.drop_lin(x)

 x = self.activation(self.fc2(x))
 if bn: x = self.lin_bn2(x)
 x = self.drop_lin(x)

 x = self.out(x) # (2000, 3)

 return x

class Split_net(nn.Module): # Identical to Simen_net, but has a changed size of the fist FC layer as the images are smaller
 def __init__(self, numb_classes, dropout):
 super(Split_net, self).__init__()
 print("\nInstantiating {} model..".format(self.__class__.__name__))

 self.pool = nn.MaxPool3d(3, 2)

 self.drop_conv = nn.Dropout3d(p=dropout * 0.5)
 self.drop_lin = nn.Dropout(p=dropout)

 self.kernel = kernel.cuda()

 self.activation = nn.ReLU6()

 self.conv1 = nn.Conv3d(1, 32, 3, stride=1, bias=False, padding=1) # (1 * 5*5*5 + 1) * 32 = 896
 self.bn1 = nn.BatchNorm3d(32)

 self.conv2 = nn.Conv3d(32, 64, 3, stride=1, bias=False, padding=1) # (32 * 3*3*3 + 1) * 64 = 55360
 self.bn2 = nn.BatchNorm3d(64)

 self.conv3 = nn.Conv3d(64, 64, 3, stride=1, bias=False, padding=1) # (64 * 3*3*3 + 1) *128 = 221312
 self.bn3 = nn.BatchNorm3d(64)

 self.conv4 = nn.Conv3d(64, 128, 3, stride=1, bias=False, padding=1)
 self.bn4 = nn.BatchNorm3d(128)

 self.conv5 = nn.Conv3d(128, 256, 3, stride=1, bias=False, padding=1)
 self.bn5 = nn.BatchNorm3d(256)

 self.fc1 = nn.Linear(256 * 1 * 4 * 3, 2048)
 self.lin_bn1 = nn.BatchNorm1d(2048)

 self.fc2 = nn.Linear(2048, 1024)
 self.lin_bn2 = nn.BatchNorm1d(1024)

 self.out = nn.Linear(1024, numb_classes)

 def forward(self, x, bn=True, smooth=False):

 if smooth:
 x = F.conv3d(x, self.kernel, padding=1)

 # print(x.shape)

 # Verify that this actually is a picture of a brain
 # img = Image.fromarray(x[0][0][70].cpu().numpy() * 255)
 # img.show()

 x = self.activation(self.pool(self.conv1(x)))
 if bn: x = self.bn1(x)
 x = self.drop_conv(x)
 # print(x.shape)

 x = self.activation(self.pool(self.conv2(x)))
 if bn: x = self.bn2(x)
 x = self.drop_conv(x)

 # print(x.shape)

 x = self.activation(self.pool(self.conv3(x)))
 if bn: x = self.bn3(x)
 x = self.drop_conv(x)
 # print(x.shape)

 x = self.activation(self.pool(self.conv4(x)))
 if bn: x = self.bn4(x)
 x = self.drop_conv(x)
 # print(x.shape)

 x = self.activation(self.pool(self.conv5(x)))
 if bn: x = self.bn5(x)
 x = self.drop_conv(x)
 # print(x.shape)

 x = x.view(-1, 256 * 1 * 4 * 3)

 x = self.activation(self.fc1(x))
 if bn: x = self.lin_bn1(x)
 x = self.drop_lin(x)

 x = self.activation(self.fc2(x))
 if bn: x = self.lin_bn2(x)
 x = self.drop_lin(x)

 x = self.out(x) # (2000, 3)

 return x

'''______________________ Training _______________________________'''

def train(model, criterion, optimizer, train_loader, val_loader, epochs, log_interval, device, report_path, patient, classes, smooth_prob):

 print("\nTraining model for {} epochs with a batch size of {} and patients of {}..\n".format(epochs, train_loader.batch_size, patient))
 start_time = time.time()

 current_best_val_loss = 1.5 # Variable to keep track of currently best validation accuracy
 current_best_val_acc = 30

 train_stat = np.empty([4])
 val_stat = np.empty([2])

 patient_count = 0

 for epoch in range(epochs):
 model.train()
 epoch_time = time.time()

 # Variables for epoch statistics
 epoch_loss = 0.0
 epoch_corrects = 0

 # Variables for batch statistics
 running_loss = 0.0
 running_corrects = 0

 # Keeping track if current model is saved or not
 saved = False

 for batch_nr, (data, target) in enumerate(train_loader):
 inputs, labels = data.to(device, dtype=torch.float), target.to(device, dtype=torch.long)

 # zero the parameter gradients
 optimizer.zero_grad()

 if random.random() < smooth_prob:
 smooth = True
 else:
 smooth = False

 # Forward pass
 outputs = model(inputs)#, bn)
 _, preds = torch.max(outputs, 1)

 # Calculate loss by use of the chosen criterion function
 loss = criterion(outputs, labels)

 # Update gradients
 loss.backward()

 # Update weights
 optimizer.step()

 # Gather statistics
 running_loss += loss.item()
 running_corrects += torch.sum(preds == labels).float()

 epoch_loss += loss.item()
 epoch_corrects += torch.sum(preds == labels).float()

 # Print status
 if batch_nr % log_interval == log_interval - 1: # print every X batches
 train_stat = np.vstack([train_stat,
 [epoch + 1, batch_nr + 1, running_loss / log_interval,
 100 * running_corrects.item() / (log_interval * train_loader.batch_size)]])
 print("[{} {}] Ave. Loss: {:.4f}, Acc:{:.2f}%".format(train_stat[-1, 0], train_stat[-1, 1],
 train_stat[-1, 2], train_stat[-1, 3]))
 running_loss = 0
 running_corrects = 0

 # Epoch:
 print('\nEpoch:{} Ave. loss:{:.4f} Acc:{:.2f}%'.format(epoch + 1, epoch_loss / len(train_loader),
 100 * epoch_corrects / len(train_loader.dataset)))
 print("Labels: {}\nPreds: {}".format(labels, preds))

 validation_stat, targets, predictions = validation(model, criterion, val_loader, device)
 val_stat = np.vstack([val_stat, validation_stat])

 if len(val_stat) <= 5:
 current_best_val_loss_mean = val_stat[:, 0].mean()
 current_best_val_acc_mean = val_stat[:, 1].mean()
 elif round(val_stat[-5:, 0].mean(), 3) < current_best_val_loss_mean:
 current_best_val_loss_mean = round(val_stat[-5:, 0].mean(), 3)
 patient_count = 0
 elif round(val_stat[-5:, 1].mean(), 2) > current_best_val_acc_mean:
 current_best_val_acc_mean = round(val_stat[-5:, 1].mean(), 2)
 patient_count = 0
 else:
 patient_count += 1

 # Saving best performing model by loss
 if validation_stat[0] < current_best_val_loss:

 patient_count = 0
 current_best_val_loss = validation_stat[0]
 print("New lowest loss: {:.4f}\n".format(current_best_val_loss))

 if os.path.exists(os.path.join(report_path, "best_model_loss")):

 best_model_loss = torch.load(os.path.join(report_path, "best_model_loss"))
 if best_model_loss['loss'] > current_best_val_loss:
 evaluation(validation_stat, targets, predictions, classes, os.path.join(report_path, "best_loss_eval"))

 torch.save({
 'model_state_dict': model.state_dict(),
 'model_paralell': str(model.__class__).__contains__("DataParallel"),
 'optimizer_state_dict': optimizer.state_dict(),
 'loss': validation_stat[0],
 'acc': validation_stat[1]
 }, os.path.join(report_path, "best_model_loss"))
 print("Loss model saved.\n")
 saved = True
 else:
 evaluation(validation_stat, targets, predictions, classes, os.path.join(report_path, "best_loss_eval"))

 torch.save({
 'model_state_dict': model.state_dict(),
 'model_paralell': str(model.__class__).__contains__("DataParallel"),
 'optimizer_state_dict': optimizer.state_dict(),
 'loss': validation_stat[0],
 'acc': validation_stat[1]
 }, os.path.join(report_path, "best_model_loss"))
 print("Loss model saved.\n")
 saved = True

 # Check if model is better then currently best ever found model /zfs1/home/petterm/ResNet3d/BayernOptim/test1
 best_ever_loss = np.loadtxt("/zfs1/home/petterm/ResNet3d/BayernOptim/test1/report/best_loss.txt") #ENDRE
 if best_ever_loss > current_best_val_loss:
 print("Previous best ever model loss: {:.4f}".format(best_ever_loss))
 np.savetxt("/zfs1/home/petterm/ResNet3d/BayernOptim/test1/report/best_loss.txt", np.asarray([current_best_val_loss])) #ENDRE
 torch.save({
 'model_state_dict': model.state_dict(),
 'model_paralell': str(model.__class__).__contains__("DataParallel"),
 'optimizer_state_dict': optimizer.state_dict(),
 'loss': validation_stat[0],
 'acc': validation_stat[1]
 }, "/zfs1/home/petterm/ResNet3d/BayernOptim/test1/report/best_model")
 print("New best loss model ever saved.\n")
 print("New best loss model: {:.4f}".format(current_best_val_loss))
 else:
 print("Current lowest loss: {:.4f}, Patient:{}\n".format(current_best_val_loss, patient_count))

 # Saving best performing model by accuracy
 if validation_stat[1] > current_best_val_acc:

 patient_count = 0
 current_best_val_acc = validation_stat[1]
 print("New highest acc: {:.2f}%\n".format(current_best_val_acc))

 if os.path.exists(os.path.join(report_path, "best_model_acc")) and not saved:

 best_model_acc = torch.load(os.path.join(report_path, "best_model_acc"))
 if best_model_acc['acc'] < current_best_val_acc:

 evaluation(validation_stat, targets, predictions, classes, os.path.join(report_path, "best_acc_eval"))

 torch.save({
 'model_state_dict': model.state_dict(),
 'model_paralell': str(model.__class__).__contains__("DataParallel"),
 'optimizer_state_dict': optimizer.state_dict(),
 'loss': validation_stat[0],
 'acc': validation_stat[1]
 }, os.path.join(report_path, "best_model_acc"))
 print("Best acc model saved.\n")

 elif not saved:

 evaluation(validation_stat, targets, predictions, classes, os.path.join(report_path, "best_acc_eval"))

 torch.save({
 'model_state_dict': model.state_dict(),
 'model_paralell': str(model.__class__).__contains__("DataParallel"),
 'optimizer_state_dict': optimizer.state_dict(),
 'loss': validation_stat[0],
 'acc': validation_stat[1]
 }, os.path.join(report_path, "best_model_acc"))
 print("Acc model saved.\n")

 # Check if model is better then currently best ever found model
 best_ever_acc = np.loadtxt("/zfs1/home/petterm/ResNet3d/BayernOptim/test1/report/best_acc.txt")

 if best_ever_acc < current_best_val_acc:
 print("Previous best ever model acc: {:2f}%".format(best_ever_acc))
 np.savetxt("/zfs1/home/petterm/ResNet3d/BayernOptim/test1/report/best_acc.txt", np.asarray([current_best_val_acc]))
 torch.save({
 'model_state_dict': model.state_dict(),
 'model_paralell': str(model.__class__).__contains__("DataParallel"),
 'optimizer_state_dict': optimizer.state_dict(),
 'loss': validation_stat[0],
 'acc': validation_stat[1]
 }, "/zfs1/home/petterm/ResNet3d/BayernOptim/test1/report/best_model")
 print("New best acc model ever saved.\n")
 print("New best acc model: {:.2f}%".format(current_best_val_acc))

 else:
 print("Current highest acc: {:.2f}%, Patient:{}\n".format(current_best_val_acc, patient_count))

 if epoch % 10 == 9 or epoch == 0 or patient_count >= patient:
 if epoch == 0:
 train_stat = np.delete(train_stat, 0, axis=0)
 val_stat = np.delete(val_stat, 0, axis=0)

 training_plot(train_stat, val_stat, report_path)

 print("\nTime elapsed:{}".format(str(datetime.timedelta(seconds=(time.time() - start_time)))))
 print("Epoch time:{}".format(str(datetime.timedelta(seconds=(time.time() - epoch_time)))))
 print("Estimated remaining time:{}\n".format(
 str(datetime.timedelta(seconds=((time.time() - epoch_time) * (epochs - epoch - 1))))))

 np.savetxt(os.path.join(report_path, "training_stat.csv"), train_stat, delimiter=",")
 print("Saved file: training_stat.csv")

 np.savetxt(os.path.join(report_path, "validation_stat.csv"), val_stat, delimiter=",")
 print("Saved file: validation_stat.csv\n")

 if patient_count >= patient:
 print("\nOut of patient. Terminating\n")
 break

 print("\nFinished training")
 print("Time elapsed:{}\n".format(str(datetime.timedelta(seconds=(time.time() - start_time)))))

 np.savetxt(os.path.join(report_path, "training_stat.csv"), np.asarray(train_stat), delimiter=",")
 print("\nSaved file: training_stat.csv")

 np.savetxt(os.path.join(report_path, "validation_stat.csv"), val_stat, delimiter=",")
 print("Saved file: validation_stat.csv\n")

 return train_stat, val_stat, model, current_best_val_loss, current_best_val_acc

def cross_validation(cv_folds, epochs, train_data_path, transforms, bs_train, bs_val, numb_devices, numb_workers, shuffle, criterion,
 log_interval, device, report_path, patient, random_seed, smooth_prob):
 print("\nRunning {}-fold CV with {} epochs for each fold..".format(cv_folds, epochs))
 skf = StratifiedKFold(n_splits=cv_folds, random_state=random_seed)
 fold_numb = 1
 print("error Linjen satan: {}".format(train_data_path))
 training_data_set = DatasetFolder(root=train_data_path, loader=np.load, extensions=tuple('npy'), transform=transforms)
 print("\nData set established. Number of data points: {}".format(len(training_data_set)))
 print("Classes and corresponding index: {}".format(training_data_set.class_to_idx))

 temp_classes = [None] * len(training_data_set.class_to_idx)
 for cls, cls_numb in training_data_set.class_to_idx.items():
 temp_classes[cls_numb] = cls
 classes = temp_classes

 train_data = [row[0] for row in training_data_set.samples]
 train_targets = [row[1] for row in training_data_set.samples]

 per_sub = len(train_data) / len(np.unique([x[:-6] for x in train_data]))

 if not per_sub.is_integer():
 per_sub = 1

 print("Images per subject: {}".format(per_sub))

 training_index = np.arange(start=0, stop=len(train_data), step=per_sub, dtype=int)

 np.random.shuffle(training_index)

 train_targets2 = np.take(train_targets, training_index)
 train_data2 = np.take(train_data, training_index)

 for train_index, val_index in skf.split(train_data2, train_targets2):
 # Converting index to shuffeled data
 train_index = np.take(training_index, train_index)
 val_index = np.take(training_index, val_index)

 if per_sub != 1:
 for i in range(1, int(per_sub)):
 for train_sub_index in train_index:
 train_index = np.append(train_index, train_sub_index + i)
 for val_sub_index in val_index:
 val_index = np.append(val_index, val_sub_index + i)

 print("\nStarting {}. fold".format(fold_numb))

 # Loading clean model
 clean_setup = torch.load(os.path.join(report_path, "clean_setup"))
 model = clean_setup['model']

 #optimizer = optim.SGD(model.parameters(), lr=clean_setup["lr"], momentum = clean_setup["momentum"] , dampening = 0, weight_decay=clean_setup["L2"], nesterov=True)
 optimizer = optim.SGD(model.parameters(), lr=0.0009956, momentum=0.537948, dampening=0, weight_decay=0.0549, nesterov=True)
 optimizer.load_state_dict(clean_setup['optimizer_state_dict'])

 print("Clean model loaded.")

 if numb_devices > 1:
 model = nn.DataParallel(model)
 print("\nModel set up to run in parallel")

 model.to(device)

 training_set = torch.utils.data.Subset(training_data_set, train_index)
 validation_set = torch.utils.data.Subset(training_data_set, np.sort(val_index))

 train_loader = DataLoader(training_set, batch_size=bs_train, num_workers=numb_workers,
 shuffle=shuffle, drop_last=True)
 val_loader = DataLoader(validation_set, batch_size=bs_val, num_workers=numb_workers,
 shuffle=True, drop_last=True)

 # Folder for fold data
 fold_path = os.path.join(report_path, "fold_{}".format(fold_numb))
 os.makedirs(fold_path)
 print("\nFolder for fold number {} created.".format(fold_numb))
 print("Training data: {}. Validation: {}".format(len(train_loader.dataset), len(val_loader.dataset)))

 temp_train_stat, temp_val_stat, _, temp_min_val_loss, temp_max_val_acc =\
 train(model, criterion, optimizer, train_loader, val_loader, epochs, log_interval, device, fold_path,
 patient, classes, smooth_prob)

 training_plot(temp_train_stat, temp_val_stat, fold_path)

 if fold_numb == 1:
 lowest_loss = temp_min_val_loss
 highest_acc = temp_max_val_acc
 else:
 lowest_loss = np.append(lowest_loss, temp_min_val_loss)
 highest_acc = np.append(highest_acc, temp_max_val_acc)

 fold_numb += 1

 # Remove unnecessary data
 os.remove(os.path.join(report_path, "clean_setup"))

 return classes, lowest_loss, highest_acc

'''______________________ validation ________________________________'''

def validation(model, criterion, val_loader, device):

 print("\nValidating..")
 model.eval()

 # Variables for statistics
 val_loss = 0.0
 val_corrects = 0

 targets = torch.Tensor()
 predictions = torch.Tensor()

 with torch.no_grad():
 for batch_nr, (data, target) in enumerate(val_loader):
 inputs, labels = data.to(device, dtype=torch.float), target.to(device, dtype=torch.long)
 # Forward pass
 outputs = model(inputs)
 _, preds = torch.max(outputs, 1)

 # Calculate loss by use of the chosen criterion function
 loss = criterion(outputs, labels)

 # Gather statistics
 targets = torch.cat((targets, labels.to("cpu", dtype=torch.float)), 0)
 predictions = torch.cat((predictions, preds.to("cpu", dtype=torch.float)), 0)

 val_loss += loss.item()
 val_corrects += torch.sum(preds == labels).float()

 stat = np.array([val_loss / len(val_loader), 100 * val_corrects / len(val_loader.dataset)], dtype=float)
 print("Validation report: Ave. Loss: {:.4f}, Acc:{:.2f}%".format(stat[0], stat[1]))
 print("Labels: {}\nPreds: {}\n".format(labels, preds))

 return stat, targets.numpy(), predictions.numpy()

'''______________________ Device setup ___________________________'''

def device_setup(cuda_devices):

 print("\nSetting up device..")

 os.environ['CUDA_VISIBLE_DEVICES'] = cuda_devices

 if torch.cuda.is_available():
 numb_devices = torch.cuda.device_count()
 device = torch.device("cuda:0")
 print("Network will run on {} GPU(s): {}".format(numb_devices, cuda_devices))
 else:
 device = torch.device("cpu")
 numb_devices = 1
 print("Network will be run on CPU")

 return device, numb_devices

'''______________________ Data ___________________________________'''

def create_dataset(data_path, csv_file, split=None, tensor_data_path="data"):
 # Loads data from specified source, splits and shuffles data before it returns test and validation dataloaders.
 # If data collected from directories the data will be saved in tensor files at the given location. If none is specified it will be saved in a
 # data folder in the current directory

 # Match data in CSV-file with data in folder
 print("\nLoading data from {}..".format(data_path))

 pd_metadata = pd.read_excel(csv_file)
 folder_subjects = os.listdir(data_path)

 confirmed_subjects = pd.DataFrame(columns=list(pd_metadata))
 missing_subjects = []

 for subject in folder_subjects:
 if subject.__contains__("_subject_id_"):
 os.rename(os.path.join(data_path, subject), os.path.join(data_path, subject[len("_subject_id_"):]))
 subject = subject[len("_subject_id_"):]

 if subject in pd_metadata["MRCODE"].to_numpy():
 confirmed_subjects = confirmed_subjects.append(pd_metadata.loc[pd_metadata["MRCODE"] == subject])
 else:
 missing_subjects.append(subject)

 if len(missing_subjects) > 0:
 with open(os.path.join(tensor_data_path, "data_not_included.txt"), 'w', newline='') as myfile:
 wr = csv.writer(myfile, quoting=csv.QUOTE_ALL)
 wr.writerow(missing_subjects)
 myfile.close()

 print("Subjects in folder not found in metadata saved as data/missing_subjects.csv")

 NC_metadata = confirmed_subjects.loc[confirmed_subjects["Diagnosis"] == 0]
 DLB_metadata = confirmed_subjects.loc[confirmed_subjects["Diagnosis"] == 1]
 AD_metadata = confirmed_subjects.loc[confirmed_subjects["Diagnosis"] == 3]

 print("Total amount of data in each class: NC: {}, DLB: {}, AD: {}"
 .format(len(NC_metadata), len(DLB_metadata), len(AD_metadata)))
 number_of_train = round(len(DLB_metadata) * (1 - 0.2))
 print("Size of training/test set {}/{}, {}% training"
 .format(number_of_train, len(DLB_metadata) - number_of_train, (1 - 0.2)*100))

 # Save csv file with metadata for current data set
 confirmed_metadata = pd.concat([NC_metadata, DLB_metadata, AD_metadata])
 confirmed_metadata.to_csv(os.path.join(tensor_data_path, "confirmed_metadata.csv"))
 print("\nConfirmed metadata metadata saved to {}".format(tensor_data_path))

 train_NC_data = NC_metadata[NC_metadata["data_set_type"] == "train"]
 train_DLB_data = DLB_metadata[DLB_metadata["data_set_type"] == "train"]
 train_AD_data = AD_metadata[AD_metadata["data_set_type"] == "train"]
 test_NC_data = NC_metadata[NC_metadata["data_set_type"] == "test"]
 test_DLB_data = DLB_metadata[DLB_metadata["data_set_type"] == "test"]
 test_AD_data = AD_metadata[AD_metadata["data_set_type"] == "test"]

 print("\nDataset statistics:")
 print("Matched Template: Length: {}, Mean: {:.2f}, Std:{:.2f}, Males: {}, Females: {}".
 format(len(train_DLB_data["MRCODE"].unique()), train_DLB_data['ageatbaseline'].mean(),
 train_DLB_data['ageatbaseline'].std(), len(train_DLB_data[(train_DLB_data['gender0M1F'] == 0)]),
 len(train_DLB_data[(train_DLB_data['gender0M1F'] == 1)])))

 print("Matched AD data: Length: {}, Mean: {:.2f}, Std:{:.2f}, Males: {}, Females: {}".
 format(len(train_AD_data["MRCODE"].unique()), train_AD_data['ageatbaseline'].mean(),
 train_AD_data['ageatbaseline'].std(), len(train_AD_data[(train_AD_data['gender0M1F'] == 0)]),
 len(train_AD_data[(train_AD_data['gender0M1F'] == 1)])))

 print("Matched NC data: Length: {}, Mean: {:.2f}, Std:{:.2f}, Males: {}, Females: {}".
 format(len(train_NC_data["MRCODE"].unique()), train_NC_data['ageatbaseline'].mean(),
 train_NC_data['ageatbaseline'].std(), len(train_NC_data[(train_NC_data['gender0M1F'] == 0)]),
 len(train_NC_data[(train_NC_data['gender0M1F'] == 1)])))

 print("Remaining template: Length: {}, Mean: {:.2f}, Std:{:.2f}, Males: {}, Females: {}".
 format(len(test_DLB_data["MRCODE"].unique()), test_DLB_data['ageatbaseline'].mean(),
 test_DLB_data['ageatbaseline'].std(), len(test_DLB_data[(test_DLB_data['gender0M1F'] == 0)]),
 len(test_DLB_data[(test_DLB_data['gender0M1F'] == 1)])))

 print("Remaining AD data: Length: {}, Mean: {:.2f}, Std:{:.2f}, Males: {}, Females: {}".
 format(len(test_AD_data["MRCODE"].unique()), test_AD_data['ageatbaseline'].mean(),
 test_AD_data['ageatbaseline'].std(), len(test_AD_data[(test_AD_data['gender0M1F'] == 0)]),
 len(test_AD_data[(test_AD_data['gender0M1F'] == 1)])))

 print("Remaining NC data: Length: {}, Mean: {:.2f}, Std:{:.2f}, Males: {}, Females: {}".
 format(len(test_NC_data["MRCODE"].unique()), test_NC_data['ageatbaseline'].mean(),
 test_NC_data['ageatbaseline'].std(), len(test_NC_data[(test_NC_data['gender0M1F'] == 0)]),
 len(test_NC_data[(test_NC_data['gender0M1F'] == 1)])))

 print("\nSaving tensor files to {}..".format(tensor_data_path))
 matched_NC_files, train_NC_mean_image, train_NC_std_image =\
 nii_to_numpy(data_path, train_NC_data, os.path.join(tensor_data_path, "NC_train"), split)
 # np.save(os.path.join(tensor_data_path, "NC_train_numpy.npy"), matched_NC_files, allow_pickle=True)
 print("NC training numpy saved")

 matched_DLB_files, train_DLB_mean_image, train_DLB_mean_std =\
 nii_to_numpy(data_path, train_DLB_data, os.path.join(tensor_data_path, "DLB_train"), split)
 # np.save(os.path.join(tensor_data_path, "DLB_train_numpy.npy"), matched_DLB_files, allow_pickle=True)
 print("DLB training numpy saved")

 matched_AD_files, train_AD_mean_image, train_AD_mean_std =\
 nii_to_numpy(data_path, train_AD_data, os.path.join(tensor_data_path, "AD_train"), split)
 # np.save(os.path.join(tensor_data_path, "AD_train_numpy.npy"), matched_AD_files, allow_pickle=True)
 print("AD training numpy saved")

 test_NC_files, test_NC_mean_image, test_NC_mean_std =\
 nii_to_numpy(data_path, test_NC_data, os.path.join(tensor_data_path, "NC_test"), split)
 # np.save(os.path.join(tensor_data_path, "NC_test_numpy.npy"), test_NC_files, allow_pickle=True)
 print("NC test numpy saved")

 test_DLB_files, test_DLB_mean_image, test_DLB_mean_std =\
 nii_to_numpy(data_path, test_DLB_data, os.path.join(tensor_data_path, "DLB_test"), split)
 # np.save(os.path.join(tensor_data_path, "DLB_test_numpy.npy"), test_DLB_files, allow_pickle=True)
 print("DLB test numpy saved")

 test_AD_files, test_AD_mean_image, test_AD_mean_std =\
 nii_to_numpy(data_path, test_AD_data, os.path.join(tensor_data_path, "AD_test"), split)
 # np.save(os.path.join(tensor_data_path, "AD_test_numpy.npyt"), test_AD_files, allow_pickle=True)
 print("AD test Numpy saved")
 print("\nAll files saved")

 mean_image_dataset = np.array([train_NC_mean_image, train_DLB_mean_image, train_AD_mean_image, test_NC_mean_image, test_DLB_mean_image, test_AD_mean_image])
 std_image_dataset = np.array([train_NC_mean_image, train_DLB_mean_image, train_AD_mean_image, test_NC_mean_image, test_DLB_mean_image, test_AD_mean_image])

 mean_image = mean_image_dataset.mean(axis=0)
 std_image = std_image_dataset.mean(axis=0)

 np.save(os.path.join(tensor_data_path, "mean_image.npy"), mean_image, allow_pickle=True)
 np.save(os.path.join(tensor_data_path, "std_image.npy"), std_image, allow_pickle=True)
 print("Estimated dataset mean and std images saved")

 return

def load_data_folders(train_data_path, data_transform, bs_train, bs_val, shuffle, numb_workers, val_size):

 training_data_set = DatasetFolder(root=train_data_path, extensions=tuple('npy'),
 loader=np.load, transform=data_transform)
 print("\nData set established. Number of data points: {}".format(len(training_data_set)))
 print("Classes and corresponding index: {}\n".format(training_data_set.class_to_idx))

 train_val_data = [row[0] for row in training_data_set.samples]
 train_val_targets = [row[1] for row in training_data_set.samples]

 per_sub = len(train_val_data) / len(np.unique([x[:-6] for x in train_val_data]))
 if not per_sub.is_integer():
 per_sub = 1

 print("Images per subject: {}".format(per_sub))
 training_index = np.arange(start=0, stop=len(train_val_data), step=per_sub, dtype=int)

 train_index, val_index, _, _ = train_test_split(training_index, train_val_targets, shuffle=shuffle,
 test_size=val_size, stratify=train_val_targets)

 if per_sub != 1 and per_sub.is_integer():
 for i in range(1, int(per_sub)):
 for train_sub_index in train_index:
 train_index = np.append(train_index, train_sub_index + i)
 for val_sub_index in val_index:
 val_index = np.append(val_index, val_sub_index + i)

 training_set = torch.utils.data.Subset(training_data_set, train_index)
 validation_set = torch.utils.data.Subset(training_data_set, np.sort(val_index))

 train_loader = DataLoader(training_set, batch_size=bs_train, num_workers=numb_workers,
 shuffle=shuffle, drop_last=True)
 val_loader = DataLoader(validation_set, batch_size=bs_val, num_workers=numb_workers,
 shuffle=True, drop_last=True)

 print("Training data: {}. Validation: {}".format(len(train_loader.dataset), len(val_loader.dataset)))

 return train_loader, val_loader, training_data_set.class_to_idx

def nii_to_numpy(data_path, subjects, save_path, split=None, data_count="10000000", dec=17):
 # Collects all NIfTI files from data path, checks size, normalizes the intensity between 0 and 1 saves data as numpy
 # Returns:
 # - list of subjects, found, converted and saved
 # - Mean and std image of the loaded data
 subs = []
 sub_images = []
 misses = []
 data_shape = None
 print('\nCollecting images form "{}"..'.format(data_path))
 print("Saving them to {}".format(save_path))

 if not split == None:
 print("Splitting data by {} plane".format(split))

 for path, subdirs, files in os.walk(data_path):
 for name in files:
 subject = path[(len(data_path) + 1):].split("/")[0]
 if name.__contains__(".nii") and subject in subjects["MRCODE"].to_numpy():
 sub_path = os.path.join(path, name)
 nii_subject = nib.load(sub_path)
 if data_shape is None:
 data_shape = nii_subject.shape
 print("Shape of data in set determined as: {}".format(data_shape))

 if nii_subject.shape == data_shape:
 np_sub = np.array(nii_subject.dataobj).astype(float)

 # Moving image to positive domain
 if np_sub.min() < 0:
 np_sub = np_sub - np_sub.min()

 # Normalize data
 np_sub = np.true_divide(np_sub, np_sub.max())

 if dec < 17:
 np_sub = np.around(np_sub, 10)

 if not os.path.exists(save_path):
 os.makedirs(save_path)

 if split == "sagittal":
 np_sub_a, np_sub_b = np.array_split(np_sub, 2, axis=0) # Sagittal split
 np_sub_a = np.flip(np_sub_a[1:, :, :], axis=0)
 np.save(os.path.join(save_path, "{}_a.npy".format(subject)), np_sub_a, allow_pickle=True)
 np.save(os.path.join(save_path, "{}_b.npy".format(subject)), np_sub_b, allow_pickle=True)
 sub_images.append([np_sub_a, np_sub_b])

 elif split == "coronal":
 np_sub_a, np_sub_b = np.array_split(np_sub, 2, axis=1) # Coronal split
 np_sub_a = np_sub_a[:, 1:, :]
 np.save(os.path.join(save_path, "{}_a.npy".format(subject)), np_sub_a, allow_pickle=True)
 np.save(os.path.join(save_path, "{}_b.npy".format(subject)), np_sub_b, allow_pickle=True)
 sub_images.append([np_sub_a, np_sub_b])

 elif split == "transverse":
 np_sub_a, np_sub_b = np.array_split(np_sub, 2, axis=2) # Transverse split
 np.save(os.path.join(save_path, "{}_a.npy".format(subject)), np_sub_a, allow_pickle=True)
 np.save(os.path.join(save_path, "{}_b.npy".format(subject)), np_sub_b, allow_pickle=True)
 sub_images.append([np_sub_a, np_sub_b])

 else:
 np.save(os.path.join(save_path, "{}.npy".format(subject)), np_sub, allow_pickle=True)
 sub_images.append(np_sub)

 subs.append(subject)

 else:
 print("{} of size {} does not match the registered size: {}"
 .format(subject, nii_subject.shape, data_shape))
 misses.append([sub_path, nii_subject.shape])

 if len(subs) == data_count:
 break

 if len(subs) == data_count:
 break

 np_sub_images = np.array(sub_images)
 mean_image = np_sub_images.mean(axis=0)
 std_image = np_sub_images.std(axis=0)

 print("Data at {} collected. \nNumber of data points found: {}. Number of data points not retrieved: {}"
 .format(data_path, len(subs), len(misses)))

 return subs, mean_image, std_image

def evaluation(validation_stat, targets, predictions, classes, report_path):
 # Evaluets a models performance, plots the confusion matrix and saves all the mentioned to path

 if not os.path.exists(report_path):
 os.makedirs(report_path)

 print("Model evaluation:")
 loss, acc = validation_stat
 print("\nValidation results:\nLoss:{}, Acc:{}%".format(loss, acc))

 # Calculate performance metrics
 precision, recall, f_beta, support = precision_recall_fscore_support(targets, predictions)
 print("Precision:{}\nRecall:{}\nF_beat:{}\nSupport:{}".format(precision, recall, f_beta, support))

 # Creating and plotting normalized confusion matrix
 conf_matrix = confusion_matrix(targets, predictions)
 conf_df = pd.DataFrame(conf_matrix, index=classes, columns=classes)
 print("Confusion matrix:\n", conf_df)

 conf_plot = sns.heatmap(conf_df, annot=True).get_figure()
 conf_plot.suptitle('Confusion plot')
 plt.xlabel("Predicted label")
 plt.ylabel("True label")

 conf_plot.savefig(os.path.join(report_path, "confusion_plot.png"), format='png', dpi=300)
 print("\nNormalized confusion matrix saved: " + "confusion_plot.png")
 plt.close()

 # Saving predictions and targets
 points_pd = pd.DataFrame([targets, predictions], index=["Targets", "Predictions"])
 points_pd.to_csv(r'{}/targets_preds.csv'.format(report_path))
 print("Targets and predictions saved: targets_preds.csv")

 # Creating final evaluation file
 stat = np.array([precision, recall, f_beta, support])
 stat_df = pd.DataFrame(stat, index=["Precision", "Recall", "F_beta", "Support"], columns=classes)

 validation_stat_df = pd.DataFrame(np.transpose([validation_stat, [None, None], [None, None]]),
 index=["Loss", "Acc"], columns=classes)

 eval_df = pd.concat((conf_df, stat_df, validation_stat_df))
 eval_df.to_csv(r'{}/evaluation.csv'.format(report_path))
 print("Evaluation report saved: evaluation.csv")

 return

def training_plot(train_stat, val_stat, report_path): # Plots training and validation data
 # Plot settings
 alpha = 0.15

 # Computing smoothed plots
 train_loss_smooth = gaussian_filter1d(train_stat[:, 2], sigma=len(train_stat[:, 2]) / 60)
 train_acc_smooth = gaussian_filter1d(train_stat[:, 3], sigma=len(train_stat[:, 3]) / 60)
 val_loss_smooth = gaussian_filter1d(val_stat[:, 0], sigma=1 + len(val_stat[:, 0]) / 75)
 val_acc_smooth = gaussian_filter1d(val_stat[:, 1], sigma=1 + len(val_stat[:, 1]) / 75)

 # Computing max acc and min loss
 x_loss_min = np.argmin(val_stat[:, 0])
 y_loss_min = val_stat[:, 0][x_loss_min]
 x_loss_min = x_loss_min * len(train_stat[:, 2]) / len(val_stat[:, 0])
 loss_span = val_stat[:, 0].max() - val_stat[:, 0].min()

 x_acc_max = np.argmax(val_stat[:, 1])
 y_acc_max = val_stat[:, 1][x_acc_max]
 x_acc_max = x_acc_max * len(train_stat[:, 2]) / len(val_stat[:, 0])

 batches_per_epoch = round(len(train_stat[:, 2]) / len(val_stat[:, 0]))
 t_epoch = np.arange(batches_per_epoch, len(train_stat[:, 2]) + batches_per_epoch, batches_per_epoch)

 # Saving plot og training statistics
 plt.clf()

 fig, ax = plt.subplots()

 ax.plot(train_stat[:, 2], 'b', alpha=alpha)
 ax.plot(train_loss_smooth, 'b', label="Train")
 ax.plot(t_epoch, val_stat[:, 0], 'g', alpha=alpha)
 ax.plot(t_epoch, val_loss_smooth, 'g--', label="Validation")
 ax.set_title("Loss")
 ax.set_xlabel('Batch')
 ax.legend()
 ax.grid(linestyle='--', linewidth=1, alpha=0.3)
 ax.set_ylabel('Loss')
 ax.annotate("{:.3f}".format(y_loss_min), xy=(x_loss_min, y_loss_min),
 xytext=(x_loss_min, y_loss_min + 0.1 * (loss_span)), color='g')
 ax.spines['top'].set_visible(False)
 ax.spines['right'].set_visible(False)
 ax.spines['bottom'].set_visible(False)
 ax.spines['left'].set_visible(False)

 fig.tight_layout()

 plt.savefig(os.path.join(report_path, "loss_plot.png"), format='png', dpi=300)
 print("Loss plot saved: loss_plot.png")
 plt.clf()

 # Saving plot og training statistics
 fig, ax = plt.subplots()

 ax.plot(train_stat[:, 3], 'b', alpha=alpha)
 ax.plot(train_acc_smooth, 'b', label="Train")
 ax.plot(t_epoch, val_stat[:, 1], 'g', alpha=alpha)
 ax.plot(t_epoch, val_acc_smooth, 'g--', label="Validation")
 ax.set_title("Accuracy")
 ax.set_xlabel('Batch')
 ax.legend()
 ax.grid(linestyle='--', linewidth=1, alpha=0.3)
 ax.set_ylabel('Acc[%]')
 ax.annotate("{:.1f}%".format(y_acc_max), xy=(x_acc_max, y_acc_max), xytext=(x_acc_max, y_acc_max), color='g')
 ax.spines['top'].set_visible(False)
 ax.spines['right'].set_visible(False)
 ax.spines['bottom'].set_visible(False)
 ax.spines['left'].set_visible(False)

 fig.tight_layout()

 plt.savefig(os.path.join(report_path, "accuracy_plot.png"), format='png', dpi=300)
 print("Accuracy plot saved: accuracy_plot.png")

 plt.close('all')
 return

def cv_results(report_path): # Gathers, saves and returns the overall performance of a CV run
 numb_points = 0

 if len(os.listdir(report_path)) < 5:
 print("Not enough data found at: {}".format(report_path))
 return

 for subdir in os.listdir(report_path):
 sub_path = os.path.join(report_path, subdir)
 try:
 performance_pd = pd.read_csv(os.path.join(sub_path, "CV_performance.csv"))
 parameters_pd = pd.read_csv(os.path.join(sub_path, "parameters.csv"))

 data = pd.concat(
 [parameters_pd[["lr", "dropout", "report_path"]].iloc[-1], performance_pd[["Loss", "Acc"]].iloc[-1]],
 axis=0)
 if numb_points > 0:
 report = pd.concat([report, data], axis=1)
 else:
 report = data

 numb_points += 1
 except:
 continue

 try:
 report = report.T.sort_values(by=['Acc'], ascending=False).reset_index(drop=True)
 except:
 print("No viable data found at: {}".format(report_path))
 return

 print("Data:")
 print(report)

 report.to_csv(os.path.join(report_path, "CV_total_performance.csv"))

 return report

ProgramFiles/TestingAllFoldsInCVfold.py

from system_resources import *

import torch.optim as optim

import pandas as pd

import time

from notify_run import Notify

from torchvision import transforms

import torch

import torch

import torch.nn as nn

from torch.utils.data import DataLoader, Dataset

import torch.nn.functional as F

from sklearn.model_selection import train_test_split

import time

import datetime

import csv

from sklearn.model_selection import StratifiedKFold

from torchvision.datasets import DatasetFolder

from PIL import Image

from scipy.ndimage import gaussian_filter

import random

import matplotlib

from matplotlib import pyplot as plt

import os

import nibabel as nib

import numpy as np

from sklearn.metrics import confusion_matrix, precision_recall_fscore_support

from scipy.ndimage.filters import gaussian_filter1d

import seaborn as sns

'''______________________ Parameters ____________________________'''

params = {

 # Paths

 "numpy_data_path": "/zfs1/home/simennl/new_datasetts/frac025_removeEye/DL_dataset", # Path to already split and sorted data on tensor form

 "report_path": "/zfs1/home/petterm/BayernOptim/raport",

 # Data

 "classes": ["NC", "DLB", "AD"], # Data will be labeled according to index

 "shuffle": True, # To shuffle or not to shuffle the data

 "val_size": 0.166, # % of data in validation set

 "bs_val": 7, # Batch size validation set

 "cv_folds": 6, # Choose number of CV folds, 1 = no CV, 0 = validation of best model found so far

 "smooth": 0, # probability of an image being smoothed

 # System configurations

 "cuda_devices": '2', # Which GPUs to run on

 "CuDNN": True, # Use CuDNN or not

 # Network parameters

 "bn": True, # Chose to use batch normalization

 "lr": 1e-6, # Learning rate

 "epochs": 200, # Maximum number of epochs

 "L2": 0, # Weight decay in optimizer

 "dropout": 0, # Probability for a node to be zeroed

 "log_interval": 10, # Batches between logging of statistics while training

 "patience": 20, # Number of epochs run after best performance before quitting

 "random_seed": 22, # Parameter for choosing random seed

}

np.random.seed(params["random_seed"])

torch.backends.cudnn.enable = params["CuDNN"]

torch.manual_seed(params["random_seed"])

classes = params["classes"][0]

for cls in params["classes"][1:]:

 classes = classes + "_" + cls

params["tensor_data_path"] = os.path.join(params["numpy_data_path"], "test", classes)

'''______________________ Run ___________________________________'''

def main(model_path):

 # Setting up device

 params["device"], numb_devices = device_setup(params["cuda_devices"])

 params["numb_workers"] = numb_devices * 10

 # Load mean and std image

 mean_image = torch.from_numpy(np.load(os.path.join(params["numpy_data_path"], "mean_image.npy")))

 mean_image = mean_image.unsqueeze(0)

 # std_image = torch.from_numpy(np.load(os.path.join(params["numpy_data_path"], "std_image.npy")))

 # std_image = std_image.unsqueeze(0)

 # Chosing data tranformations

 data_transform = transforms.Compose([

 transforms.Lambda(lambda x: torch.from_numpy(x)),

 # transforms.RandomApply([

 # transforms.Lambda(lambda x: x.unsqueeze(0)),

 # transforms.Lambda(lambda x: x.unsqueeze(0)),

 # transforms.Lambda(lambda x: F.conv3d(x, kernel, padding=1)),

 # transforms.Lambda(lambda x: x[0, :, :, :, :])

 #], p=params["smooth"]),

 transforms.Lambda(lambda x: torch.Tensor.sub(x, mean_image))

 # transforms.Lambda(lambda x: np.divide(x, std_image, where=std_image > 0)),,

])

 # Instantiating model

 model = resnet34(1,3)

 print(model)

 params["model_name"] = model.__class__.__name__

 list = ['/zfs1/home/petterm/BayernOptim/raport/LR_0.0009807_L2_0.1399_DO_0.00_SM_0.00_2020-06-23_10-57_BayOpt_Resnet34(3lin01conv0.05)_removeEye025/LR_0.0009934_L2_0.0355_DO_0.00_SM_0.00_2020-06-24_09-11/LR_0.0000146_L2_0.1005_DO_0.00_SM_0.00_2020-06-25_03-00/LR_0.0003459_L2_0.0471_DO_0.00_SM_0.00_2020-06-25_20-31/LR_0.0000214_L2_0.0345_DO_0.00_SM_0.00_2020-06-26_21-49/LR_0.0005519_L2_0.0686_DO_0.00_SM_0.00_2020-06-28_05-18/LR_0.0006567_L2_0.1168_DO_0.00_SM_0.00_2020-06-29_03-22/LR_0.0002560_L2_0.0140_DO_0.00_SM_0.00_2020-06-30_01-08/LR_0.0003936_L2_0.1244_DO_0.00_SM_0.00_2020-06-30_20-21/LR_0.0000066_L2_0.0090_DO_0.00_SM_0.00_2020-07-01_16-58/LR_0.0001639_L2_0.0001_DO_0.00_SM_0.00_2020-07-03_03-17-AVG78.65']

 lll = ['/best_model_loss','/best_model_acc']

 bestACC = 0

 bestLoss = 10

 lossR = ""

 accR = ""

 avv = []

 arr = []

 app = []

 recall =0

 precision =0

 for i in range(0, len(list), 1):

 for j in range(1, 7):

 besteAv2 = 0.0

 besteAv2Recall = 0

 besteAv2Press = 0

 for k in range(0, 2):

 try:

 model_path = "{}/fold_{}{}".format(list[i], j, lll[k])

 print(model_path)

 best_model = torch.load(model_path)

 model.load_state_dict(best_model['model_state_dict'])

 model.to(params["device"])

 print("\nSetting up criterion function and optimizer..")

 criterion = nn.CrossEntropyLoss()

 # Informing of training parameters

 print("\nModel will be trained with following parameters:")

 print(" Batch normalization: {}".format(params["bn"]))

 print(" Dropout: {}".format(params["dropout"]))

 print(" Log interval: {}".format(params["log_interval"]))

 print(" Shuffle: {}".format(params["shuffle"]))

 testing_data_set = DatasetFolder(root=params["tensor_data_path"], extensions=tuple('npy'), loader=np.load, transform=data_transform)

 print("\nData set established. Number of data points: {}".format(len(testing_data_set)))

 print("Classes and corresponding index: {}\n".format(testing_data_set.class_to_idx))

 test_loader = DataLoader(testing_data_set, batch_size=params["bs_val"], num_workers=params["numb_workers"], shuffle=False, drop_last=False)

 params["classes"] = testing_data_set.class_to_idx

 test_stat, targets, predictions = validation(model, criterion, test_loader, params["device"])

 evaluation(test_stat, targets, predictions, params["classes"], os.path.join(params["report_path"], "test"))

 loss, acc = test_stat

 precision, recall, f_beta, support = precision_recall_fscore_support(targets, predictions)

 except:

 print("")

 if (k == 0):

 besteAv2Recall = recall

 besteAv2Press = precision

 if (k == 1):

 if (besteAv2 > acc):

 avv.append(besteAv2)

 arr.append(besteAv2Recall)

 app.append(besteAv2Press)

 with open("CVtestResults.txt", "a") as text_file:

 print("{}, fold: {}".format(besteAv2, j), file=text_file)

 else:

 with open("CVtestResults.txt", "a") as text_file:

 avv.append(acc)

 arr.append(recall)

 app.append(precision)

 print("{}, fold: {}".format(acc, j), file=text_file)

 if (j == 6):

 ave = 0

 avR = 0

 avP = 0

 for ll in avv:

 ave += ll

 for ll in arr:

 avR += ll

 for ll in app:

 avP += ll

 with open("CVtestResults.txt", "a") as text_file:

 print("{}, Average for CV\n".format((ave / 6)), file=text_file)

 print("{}, Average recall \n".format((avR / 6)), file=text_file)

 print("{}, Average for presition \n".format((avP / 6)), file=text_file)

 arr.clear()

 avv.clear()

 app.clear()

 besteAv2 = acc

 if acc > bestACC:

 bestACC = acc

 accR = model_path

 if loss < bestLoss:

 bestLoss = loss

 lossR = model_path

 print("Best ACC {} round: {} \nbest LOSS {} round:{}".format(bestACC,accR, bestLoss, lossR))

 with open("best.txt", "w") as text_file:

 print("Best ACC {} round: {} \n best LOSS {} round:{}".format(bestACC,accR, bestLoss, lossR), file=text_file)

if __name__ == '__main__':

 main('/zfs1/home/petterm/ResNet3d/New_resnet3d_2_test/raport/LR_0.0009871_L2_0.1872_DO_0.00_SM_0.00_2020-05-24_22-39/fold_1/best_model_acc')

ProgramFiles/upscaleGANimages.py

import numpy as np

import torch

import os

from skimage.transform import resize

from torch import nn

from torch import optim

from torch.nn import functional as F

from torch import autograd

from torch.autograd import Variable

import nibabel as nib

from torch.utils.data.dataset import Dataset

from torch.utils.data import dataloader

data_path = '/zfs1/home/petterm/pette/GAN_generated_images/DLB_npy'

out_path = '/zfs1/home/petterm/pette/GAN_generated_images/DLB_157x189x156'

os.chdir(data_path)

navn = os.listdir(data_path)

for i in range(0, len(navn), 1):

 img = np.load(data_path + '/' + navn[i])

 img = resize(img, (157, 189, 156), mode='constant')

 new_image = nib.Nifti1Image(img, affine=np.eye(4))

 np.save(os.path.join(out_path, navn[i]), img, allow_pickle=True)

data_path = '/zfs1/home/petterm/pette/GAN_generated_images/NC_npy'

out_path = '/zfs1/home/petterm/pette/GAN_generated_images/NC_157x189x156'

os.chdir(data_path)

navn = os.listdir(data_path)

for i in range(0, len(navn), 1):

 img = np.load(data_path + '/' + navn[i])

 img = resize(img, (157, 189, 156), mode='constant')

 new_image = nib.Nifti1Image(img, affine=np.eye(4))

 np.save(os.path.join(out_path, navn[i]), img, allow_pickle=True)

Admin
Filvedlegg
ProgramFiles.7z

Appendix A. Python Code Appendix A Appendix A

A.5 test.py

File containing setup for testing a model on the test set.

A.6 data_resources.py

A file containing code for creating specific metadata needed for the create_dataset
function.

A.7 NormalizeSkullStripPipeline.py

Code for running prepossessing.

A.8 TestingAllFoldsInCVfold.py

Code used to test all folds inside a k-fold CV run.

A.9 upscaleGANimages.py

Code used to upscale GAN images.

A.10 Make_new_dataset_from_Simens_balance.py

Code used to make new datasets with Simens dataset balance.

A.11 AD_dataset.py, DLB_dataset.py, NC_dataset.py

Code used to load our dataset into the GAN training.

A.12 federatedAverage.py

File containing code for loading two models and calculating a new federated model.

Appendix A. Python Code 93

A.13 start_websocket_server.py

Part of the asynchronous federated learning setup. Starts websocket clients on set ports.
(Requires customized PySyft version)

A.14 run_websocket_server.py

Part of the asynchronous federated learning setup. File which contains code for the
websocket server. (Requires customized PySyft version)

A.15 run_websocket_client.py

Part of the asynchronous federated learning setup. Starts the federated learning process.
(Requires customized PySyft version) Appendix A

-

Appendix B

Appendix B

Table B.1: Results from experiment with different models

95

Augmentation results Appendix B Appendix B

Table B.2: Results from experiment with different models

Table B.3: Results from test without augmentation

Augmentation results 97

Table B.4: Augmentation Results from Rotate in XZ direction

Augmentation results Appendix B Appendix B

Table B.5: Augmentation Results from Rotate in XY direction

Table B.6: Augmentation Results from Rotate in YZ direction

Augmentation results 99

Table B.7: Augmentation Results from Translating/Roll

Augmentation results Appendix B Appendix B

Table B.8: Augmentation Results from Mirroring(Flip(0))

Table B.9: Augmentation Results from flipping left/right (Flip(1))

Augmentation results 101

Table B.10: Augmentation Results from flipping upside/down (Flip(2))

Augmentation results Appendix B Appendix B

Table B.11: Augmentation Results from Gaussian Blur

Augmentation results 103

Table B.12: Augmentation Results from different combinations 1

Augmentation results Appendix B Appendix B

Table B.13: Augmentation Results from different combinations 2

Augmentation results 105

Table B.14: Augmentation Results from different combinations 3

Table B.15: 6-CV Augmentation Results with no Augmentation

Augmentation results Appendix B Appendix B

Table B.16: 6-CV Augmentation Results for Rotation in the XZ plane

Augmentation results 107

Table B.17: 6-CV Augmentation Results for Rotation in the XZ plane

Augmentation results Appendix B Appendix B

Table B.18: 6-CV Augmentation Results for Rotation in the XY plane

Table B.19: 6-CV Augmentation Results for Rotation in the YZ plane

Augmentation results 109

Table B.20: 6-CV Augmentation Results for Translations

Table B.21: 6-CV Augmentation Results for Mirroring

Augmentation results Appendix B Appendix B

Table B.22: 6-CV Augmentation Results for Gaussian Blur

Table B.23: 6-CV Augmentation Results from Different Combinations

Augmentation results 111

Table B.24: 6-CV Augmentation Results from Different Combinations

Augmentation results Appendix B Appendix B

Table B.25: 6-CV Augmentation Results from Different Combinations

Table B.26: 6-CV Augmentation Results from Different Combinations

Augmentation results 113

Table B.27: Augmentation Results with GAN

Table B.28: Augmentation Results with GAN

Table B.44: 6-CV Augmentation Results with 50%GAN Images

Augmentation results Appendix B Appendix B

Table B.29: Frac0.5 Dataset with augmentations

Table B.45: 6-CV Result Frac=0.5 dataset, No Augmentation

Augmentation results 115

Table B.30: Frac0.25 Dataset with augmentations

Augmentation results Appendix B Appendix B

Table B.31: Frac0.4 Dataset with augmentations

Table B.32: Frac0.25 Remove Eyes Dataset with augmentations

Table B.46: 6-CV Augmentation Results with 50%GAN Images, Roll and Rotate
Augmentations

Augmentation results 117

Table B.33: Frac0.25 Remove Eyes Dataset with augmentations

Table B.34: Frac0.1 Reduce Bias Dataset with augmentations

Augmentation results Appendix B Appendix B

Table B.35: Frac0.2 Reduce Bias Dataset with augmentations

Table B.36: Experiments from the Frac0.25 Remove Eye Dataset: ResNet18

Augmentation results 119

Table B.37: Experiments from the Frac0.25 Remove Eye Dataset: ResNet34 with
LeakyReLU

Table B.38: Experiments from the Frac0.25 Remove Eye Dataset: ResNet34 with
Different Hyperparameters

Table B.47: 6-CV Result Frac=0.5 dataset, With Roll and Rotate Augmentations

Augmentation results Appendix B Appendix B

Table B.39: Experiments from the Frac0.25 Remove Eye Dataset: ResNet34 with
Different Rotation, chance=70

Table B.48: Accuracy plot for train-
ing upscaled GAN Experiment1

Table B.49: Loss plot for training
upscaled GAN Experiment1

Augmentation results 121

Table B.40: Experiments from the Frac0.25 Remove Eye Dataset: ResNet34 with
Different Rotation, chance=90

Table B.50: Accuracy plot for train-
ing upscaled GAN Experiment2

Table B.51: Loss plot for training
upscaled GAN Experiment2

Augmentation results Appendix B Appendix B

Table B.41: Experiments from the Frac0.25 Remove Eye Dataset: ResNet34 with
Different Rotation, chance=98

Table B.42: Experiments from the Frac0.25 Remove Eye Dataset: ResNet34 with
Different Rotation=+-30 Degree, and Bigger Translations

Augmentation results 123

Table B.43: Experiments from the Frac0.25 Remove Eye Dataset: ResNet34 with
Different Rotation=+-6 Degree, and Bigger Translations

Table B.52: Accuracy and Loss graphs from the training of fold 6 from table 4.7

Augmentation results Appendix B Appendix B

Table B.53: Accuracy and Loss graphs from the training of fold 6 from table 4.27

Table B.54: Accuracy and Loss graphs from the training of fold 2 from table 4.31

Table B.56: Accuracy plot of best
local model, set 1, trained with the

Adam optimizer

Table B.57: Loss plot of best local
model, set 1, trained with the Adam

optimizer

Augmentation results 125

Table B.55: Experiments with training proposed model on NC vs AD data, so it can
be compared to other results easier

Table B.58: Accuracy plot of the fed-
erated model, set 1, trained with the

Adam optimizer

Table B.59: Loss plot of the feder-
ated model, set 1, trained with the

Adam optimizer

Table B.60: Accuracy plot of best
local model, set 2, trained with the

Adam optimizer

Table B.61: Loss plot of best local
model, set 2, trained with the Adam

optimizer

Augmentation results Appendix B Appendix B

Table B.62: Accuracy plot of the fed-
erated model, set 2, trained with the

Adam optimizer

Table B.63: Loss plot of the feder-
ated model, set 2, trained with the

Adam optimizer

Appendix B

Bibliography

[1] Engineering National Academies of Sciences, Medicine, et al. Improving diagnosis
in health care. National Academies Press, 2015.

[2] Liam Peytona Mana Azarm-Daigle, Craig Kuziemsky. A Review of Cross Organiza-
tional Healthcare Data Sharing. URL https://www.sciencedirect.com/science/

article/pii/S1877050915024989.

[3] Zeynettin Akkus Timothy L. Kline Bradley J. Erickson, Panagiotis Korfiatis. Machine
learning for medical imaging. URL https://pubs.rsna.org/doi/10.1148/rg.

2017160130.

[4] National Institute on Aging. What is Dementia? Symptoms,
Types, and diagnosis. URL https://www.nia.nih.gov/health/

what-dementia-symptoms-types-and-diagnosis.

[5] The World Health Organization. Dementia, 2020. URL https://www.who.int/

news-room/fact-sheets/detail/dementia.

[6] Alzheimer’s Association. Vascular dementia, date: 2020-07-13. URL https://

www.alz.org/alzheimers-dementia/what-is-dementia/types-of-dementia/

vascular-dementia.

[7] Alz.org. Lewy body dementia, . URL https://www.alz.

org/alzheimers-dementia/what-is-dementia/types-of-dementia/

lewy-body-dementia.

[8] Alz.org. What Is Dementia?, . URL https://www.alz.org/alzheimers-dementia/

what-is-dementia.

[9]

[10] National Institute on aging. Alzheimer’s Disease Fact Sheet. URL https://www.

nia.nih.gov/health/alzheimers-disease-fact-sheet.

127

https://www.sciencedirect.com/science/article/pii/S1877050915024989
https://www.sciencedirect.com/science/article/pii/S1877050915024989
https://pubs.rsna.org/doi/10.1148/rg.2017160130
https://pubs.rsna.org/doi/10.1148/rg.2017160130
https://www.nia.nih.gov/health/what-dementia-symptoms-types-and-diagnosis
https://www.nia.nih.gov/health/what-dementia-symptoms-types-and-diagnosis
https://www.who.int/news-room/fact-sheets/detail/dementia
https://www.who.int/news-room/fact-sheets/detail/dementia
https://www.alz.org/alzheimers-dementia/what-is-dementia/types-of-dementia/vascular-dementia
https://www.alz.org/alzheimers-dementia/what-is-dementia/types-of-dementia/vascular-dementia
https://www.alz.org/alzheimers-dementia/what-is-dementia/types-of-dementia/vascular-dementia
https://www.alz.org/alzheimers-dementia/what-is-dementia/types-of-dementia/lewy-body-dementia
https://www.alz.org/alzheimers-dementia/what-is-dementia/types-of-dementia/lewy-body-dementia
https://www.alz.org/alzheimers-dementia/what-is-dementia/types-of-dementia/lewy-body-dementia
https://www.alz.org/alzheimers-dementia/what-is-dementia
https://www.alz.org/alzheimers-dementia/what-is-dementia
https://www.nia.nih.gov/health/alzheimers-disease-fact-sheet
https://www.nia.nih.gov/health/alzheimers-disease-fact-sheet

Bibliography BIBLIOGRAPHY

[11] BruceBlaus. Alzheimersdisease.jpg, date: 2020-07-08, license: Creative commons
attribution-share alike 4.0 international. URL https://commons.wikimedia.org/

wiki/File:Alzheimers_Disease.jpg.

[12] alzheimers.org.uk. What Is Alzheimer’s Disease? URL https://www.alzheimers.

org.uk/about-dementia/types-dementia/alzheimers-disease.

[13] Knut Engedal Store Norske Leksikon. Demens med lewylegemer. URL https:

//sml.snl.no/demens_med_lewylegemer.

[14] National Institute on Aging. What is Lewy Body Dementia. URL https://www.

nia.nih.gov/health/what-lewy-body-dementia.

[15] Suraj Rajan. Lewy bodies(alpha synuclein inclusions)1.jpg, date: 2020-
07-08, license: Creative commons attribution-share alike 4.0 international.
URL https://commons.wikimedia.org/wiki/File:Lewy_bodies_(alpha_

synuclein_inclusions)_1.jpg.

[16] National Health Service. Dementia with Lewy bodies. URL https://www.nhs.uk/

conditions/dementia-with-lewy-bodies/.

[17] National Institute of Biomedical Imaging and Bioengineering. Magnetic Reso-
nance Imaging (MRI. URL https://www.nibib.nih.gov/science-education/

science-topics/magnetic-resonance-imaging-mri.

[18] Marilyn S Albert, Steven T DeKosky, Dennis Dickson, Bruno Dubois, Howard H Feld-
man, Nick C Fox, Anthony Gamst, David M Holtzman, William J Jagust, Ronald C
Petersen, et al. The diagnosis of mild cognitive impairment due to alzheimer’s dis-
ease: recommendations from the national institute on aging-alzheimer’s association
workgroups on diagnostic guidelines for alzheimer’s disease. Alzheimer’s & dementia,
7(3):270–279, 2011.

[19] Laura Bonanni, Astrid Thomas, and Marco Onofrj. Diagnosis and management of
dementia with lewy bodies: Third report of the dlb consortium. Neurology, 66(9):
1455–1455, 2006. ISSN 0028-3878. doi: 10.1212/01.wnl.0000224698.67660.45. URL
https://n.neurology.org/content/66/9/1455.1.

[20] EJ Burton, R Barber, EB Mukaetova-Ladinska, J Robson, RH Perry, E Jaros,
RN Kalaria, and JT O’brien. Medial temporal lobe atrophy on mri differentiates
alzheimer’s disease from dementia with lewy bodies and vascular cognitive impair-
ment: a prospective study with pathological verification of diagnosis. Brain, 132(1):
195–203, 2009.

https://commons.wikimedia.org/wiki/File:Alzheimers_Disease.jpg
https://commons.wikimedia.org/wiki/File:Alzheimers_Disease.jpg
https://www.alzheimers.org.uk/about-dementia/types-dementia/alzheimers-disease
https://www.alzheimers.org.uk/about-dementia/types-dementia/alzheimers-disease
https://sml.snl.no/demens_med_lewylegemer
https://sml.snl.no/demens_med_lewylegemer
https://www.nia.nih.gov/health/what-lewy-body-dementia
https://www.nia.nih.gov/health/what-lewy-body-dementia
https://commons.wikimedia.org/wiki/File:Lewy_bodies_(alpha_synuclein_inclusions)_1.jpg
https://commons.wikimedia.org/wiki/File:Lewy_bodies_(alpha_synuclein_inclusions)_1.jpg
https://www.nhs.uk/conditions/dementia-with-lewy-bodies/
https://www.nhs.uk/conditions/dementia-with-lewy-bodies/
https://www.nibib.nih.gov/science-education/science-topics/magnetic-resonance-imaging-mri
https://www.nibib.nih.gov/science-education/science-topics/magnetic-resonance-imaging-mri
https://n.neurology.org/content/66/9/1455.1

Bibliography 129

[21] Federica Agosta, Sebastiano Galantucci, and Massimo Filippi. Advanced magnetic
resonance imaging of neurodegenerative diseases. Neurological sciences, 38(1):41–51,
2017.

[22] Elijah Mak, Li Su, Guy BWilliams, Rosie Watson, Michael Firbank, Andrew Blamire,
and John O’Brien. Differential atrophy of hippocampal subfields: a comparative
study of dementia with lewy bodies and alzheimer disease. The American Journal
of Geriatric Psychiatry, 24(2):136–143, 2016.

[23] Simen Norrheim Larsen. Data-assisted differential diagnosis of dementia by deep
neural networks, 2019. URL http://hdl.handle.net/11250/2620347.

[24] SH Shabbeer Basha, Shiv Ram Dubey, Viswanath Pulabaigari, and Snehasis Mukher-
jee. Impact of fully connected layers on performance of convolutional neural networks
for image classification. Neurocomputing, 378:112–119, 2020.

[25] Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht.
The marginal value of adaptive gradient methods in machine learning. In Advances
in Neural Information Processing Systems, pages 4148–4158, 2017.

[26] Sebastian Ruder. An overview of gradient descent optimization algorithms, date:
2020-07-14. URL https://arxiv.org/pdf/1609.04747.pdf.

[27] Jimmy Lei Ba Diederik P. Kingma. Adam: A method for stochastic optimization.
Published as a conference paper at ICLR 2015, 2015.

[28] DanB. Rectified linear units (relu) in deep learning, date:
2020-07-14. URL https://www.kaggle.com/dansbecker/

rectified-linear-units-relu-in-deep-learning.

[29] Anas Al-Masri. What are overfitting and underfitting in machine
learning?, date: 2020-07-14. URL https://towardsdatascience.com/

what-are-overfitting-and-underfitting-in-machine-learning-a96b30864690.

[30] Gringer. Overfitting svg, date: 2020-07-14, license: Creative commons attribution 3.0
unported. URL https://en.wikipedia.org/wiki/File:Overfitting_svg.svg.

[31] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimiza-
tion. The Journal of Machine Learning Research, 13(1):281–305, 2012.

[32] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

http://hdl.handle.net/11250/2620347
https://arxiv.org/pdf/1609.04747.pdf
https://www.kaggle.com/dansbecker/rectified-linear-units-relu-in-deep-learning
https://www.kaggle.com/dansbecker/rectified-linear-units-relu-in-deep-learning
https://towardsdatascience.com/what-are-overfitting-and-underfitting-in-machine-learning-a96b30864690
https://towardsdatascience.com/what-are-overfitting-and-underfitting-in-machine-learning-a96b30864690
https://en.wikipedia.org/wiki/File:Overfitting_svg.svg

Bibliography BIBLIOGRAPHY

[33] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Advances in neural information processing systems, pages 2672–2680, 2014.

[34] Hao-Wen Dong, Wen-Yi Hsiao, Li-Chia Yang, and Yi-Hsuan Yang. Musegan: Multi-
track sequential generative adversarial networks for symbolic music generation and
accompaniment. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[35] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Generating videos with
scene dynamics. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett, editors, Advances in Neural Information Processing Systems 29, pages
613–621. Curran Associates, Inc., 2016. URL http://papers.nips.cc/paper/

6194-generating-videos-with-scene-dynamics.pdf.

[36] Kevin Schawinski, Ce Zhang, Hantian Zhang, Lucas Fowler, and Gokula Krishnan
Santhanam. Generative adversarial networks recover features in astrophysical
images of galaxies beyond the deconvolution limit. Monthly Notices of the Royal
Astronomical Society: Letters, 467(1):L110–L114, 2017.

[37] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao,
and Chen Change Loy. Esrgan: Enhanced super-resolution generative adversarial
networks. In The European Conference on Computer Vision (ECCV) Workshops,
September 2018.

[38] GAN — Why it is so hard to train Generative Ad-
versarial Networks, https://medium.com/@jonathan_hui/

gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b,
(Accessed: 25/06/2020).

[39] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

[40] Mihaela Rosca, Balaji Lakshminarayanan, David Warde-Farley, and Shakir Mohamed.
Variational approaches for auto-encoding generative adversarial networks. arXiv
preprint arXiv:1706.04987, 2017.

[41] Wolfgang Grieskamp Dzmitry Huba Alex Ingerman Vladimir Ivanov Chloe Kiddon
Jakub Konecny Stefano Mazzocchi H. Brendan McMahan Timon Van Overveldt
David Petrou Daniel Ramage Jason Roselander Keith Bonawitz, Hubert Eichner.
Towards federated learning at scale: System design. 2019.

[42] Felix X. Yu Ananda Theertha Suresh Dave Bacon Jakub Konecny, H. Brendan McMa-
han. Federated learning: Strategies for improving communication efficiency. 2017.

http://papers.nips.cc/paper/6194-generating-videos-with-scene-dynamics.pdf
http://papers.nips.cc/paper/6194-generating-videos-with-scene-dynamics.pdf
https://medium.com/@jonathan_hui/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b
https://medium.com/@jonathan_hui/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b

Bibliography 131

[43] Daniel Ramage Jakub Konecny, H. Brendan McMahan. Federated optimization:
Distributed optimization beyond the datacenter. 2015.

[44] Marc Tommasi Paul Vanhaesebrouck, Aurelien Bellet. Decentralized collaborative
learning of personalized models over networks. 2017.

[45] Brendan McMahan and Daniel Ramage. Federated Learning: Collaborative Machine
Learning without Centralized Training Data. URL https://ai.googleblog.com/

2017/04/federated-learning-collaborative.html.

[46] Jeromemetronome. Federated learning general process in central orchestrator setup,
date: 2020-07-13, license: Creative commons attribution-share alike 4.0 inter-
national. URL https://en.wikipedia.org/wiki/Federated_learning#/media/

File:Federated_learning_process_central_case.png.

[47] Daniel Ramage Seth Hampson Blaise Aguera y Arcas H. Brendan McMahan, Ei-
der Moore. Communication-efficient learning of deep networks from decentralized
data. arXiv preprint arXiv:1602.05629v3, 2017.

[48] PyTorch. PyTorch. URL https://pytorch.org/.

[49] Open Minded. PySyft. URL https://github.com/OpenMined/PySyft/.

[50] Inc Red Hat. Docker. URL https://opensource.com/resources/what-docker/.

[51] Krzysztof Gorgolewski, Christopher D Burns, Cindee Madison, Dav Clark,
Yaroslav O Halchenko, Michael L Waskom, and Satrajit S Ghosh. Nipype: a
flexible, lightweight and extensible neuroimaging data processing framework in
python. Frontiers in neuroinformatics, 5:13, 2011.

[52] Nipype. Nipype Dockerimage. URL https://hub.docker.com/r/nipype/nipype/.

[53] Alzheimer’s Disease Neuroimaging Initiative(ADNI) databases, http://adni.loni.

usc.edu/data-samples/access-data/, (Accessed: 13/07/2020).

[54] SPM12 - Statistical Parametric Mapping, https://www.fil.ion.ucl.ac.uk/spm/

software/spm12/, (Accessed: 14/06/2020).

[55] Stephen M Smith. Fast robust automated brain extraction. Human brain mapping,
17(3):143–155, 2002.

[56] Mark Jenkinson, Mickael Pechaud, Stephen Smith, et al. Bet2: Mr-based estimation
of brain, skull and scalp surfaces. In Eleventh annual meeting of the organization
for human brain mapping, volume 17, page 167. Toronto., 2005.

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://en.wikipedia.org/wiki/Federated_learning#/media/File:Federated_learning_process_central_case.png
https://en.wikipedia.org/wiki/Federated_learning#/media/File:Federated_learning_process_central_case.png
https://pytorch.org/
https://github.com/OpenMined/PySyft/
https://opensource.com/resources/what-docker/
https://hub.docker.com/r/nipype/nipype/
http://adni.loni.usc.edu/data-samples/access-data/
http://adni.loni.usc.edu/data-samples/access-data/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/

Bibliography BIBLIOGRAPHY

[57] Valeriu Popescu, Marco Battaglini, WS Hoogstrate, Sander CJ Verfaillie, IC Sluimer,
Ronald A van Schijndel, Bob W van Dijk, Keith S Cover, Dirk L Knol, Mark
Jenkinson, et al. Optimizing parameter choice for fsl-brain extraction tool (bet) on
3d t1 images in multiple sclerosis. Neuroimage, 61(4):1484–1494, 2012.

[58] Adrien Payan and Giovanni Montana. Predicting alzheimer’s disease: a neuroimaging
study with 3d convolutional neural networks. arXiv preprint arXiv:1502.02506,
2015.

[59] Francesco Saverio Zuppichini — Implementing ResNet in Pytorch, https://github.

com/francescosaveriozuppichini/resnet, (Accessed: 04/07/2020).

[60] Xiang Li, Shuo Chen, Xiaolin Hu, and Jian Yang. Understanding the disharmony
between dropout and batch normalization by variance shift. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 2682–2690,
2019.

[61] Marios Aspris — Simple Implementation of Densely Connected Convolutional Net-
works in PyTorch, https://github.com/con-mi/deep-learning-projects/

blob/master/simple_implementation_of_densely_connected_neural_

networks.ipynb, (Accessed: 04/07/2020).

[62] Gihyun Kwon, Chihye Han, and Dae-shik Kim. Generation of 3d brain mri using
auto-encoding generative adversarial networks. In International Conference on
Medical Image Computing and Computer-Assisted Intervention, pages 118–126.
Springer, 2019.

[63] Generation of 3d brain mri using auto-encoding generative adversarial networks.

[64] OpenMinded. Websockets mnist example. URL https://github.com/OpenMined/

PySyft/tree/master/examples/tutorials/advanced/websockets_mnist.

[65] Akihiko Wada, Kohei Tsuruta, Ryusuke Irie, Koji Kamagata, Tomoko Maekawa,
Shohei Fujita, Saori Koshino, Kanako Kumamaru, Michimasa Suzuki, Atsushi
Nakanishi, et al. Differentiating alzheimer’s disease from dementia with lewy bodies
using a deep learning technique based on structural brain connectivity. Magnetic
Resonance in Medical Sciences, 18(3):219, 2019.

[66] Ketil Oppedal, Trygve Eftestøl, Kjersti Engan, Mona K Beyer, and Dag Aarsland.
Classifying dementia using local binary patterns from different regions in magnetic
resonance images. International journal of biomedical imaging, 2015, 2015.

[67] Junhao Wen, Elina Thibeau-Sutre, Mauricio Diaz-Melo, Jorge Samper-González,
Alexandre Routier, Simona Bottani, Didier Dormont, Stanley Durrleman, Ninon

https://github.com/francescosaveriozuppichini/resnet
https://github.com/francescosaveriozuppichini/resnet
https://github.com/con-mi/deep-learning-projects/blob/master/simple_implementation_of_densely_connected_neural_networks.ipynb
https://github.com/con-mi/deep-learning-projects/blob/master/simple_implementation_of_densely_connected_neural_networks.ipynb
https://github.com/con-mi/deep-learning-projects/blob/master/simple_implementation_of_densely_connected_neural_networks.ipynb
https://github.com/OpenMined/PySyft/tree/master/examples/tutorials/advanced/websockets_mnist
https://github.com/OpenMined/PySyft/tree/master/examples/tutorials/advanced/websockets_mnist

Bibliography 133

Burgos, Olivier Colliot, et al. Convolutional neural networks for classification of
alzheimer’s disease: Overview and reproducible evaluation. Medical Image Analysis,
page 101694, 2020.

[68] Jyoti Islam and Yanqing Zhang. Brain mri analysis for alzheimer’s disease diagnosis
using an ensemble system of deep convolutional neural networks. Brain informatics,
5(2):2, 2018.

[69] Mingxia Liu, Jun Zhang, Ehsan Adeli, and Dinggang Shen. Landmark-based deep
multi-instance learning for brain disease diagnosis. Medical image analysis, 43:
157–168, 2018.

[70] Karl Bäckström, Mahmood Nazari, Irene Yu-Hua Gu, and Asgeir Store Jakola. An
efficient 3d deep convolutional network for alzheimer’s disease diagnosis using mr
images. In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI
2018), pages 149–153. IEEE, 2018.

[71] Karim Aderghal, Alexander Khvostikov, Andrei Krylov, Jenny Benois-Pineau, Karim
Afdel, and Gwenaelle Catheline. Classification of alzheimer disease on imaging
modalities with deep cnns using cross-modal transfer learning. In 2018 IEEE
31st International Symposium on Computer-Based Medical Systems (CBMS), pages
345–350. IEEE, 2018.

[72] Upul Senanayake, Arcot Sowmya, and Laughlin Dawes. Deep fusion pipeline for
mild cognitive impairment diagnosis. In 2018 IEEE 15th International Symposium
on Biomedical Imaging (ISBI 2018), pages 1394–1997. IEEE, 2018.

[73] Yuekai Sun Dimitris Papailiopoulos Yasaman Khazaeni Hongyi Wang,
Mikhail Yurochkin. Federated learning with matched averaging. Published as
a conference paper at ICLR 2020, 2020.

[74] Tensorflow. Federated learning, date: 2020-07-13. URL https://www.tensorflow.

org/federated/federated_learning.

[75] Hien Tran Khanh Tran Tien-Dung Cao, Tram Truong-Huu. A federated learning
framework for privacy-preserving and parallel training. arXiv:2001.09782v2, 2020.

https://www.tensorflow.org/federated/federated_learning
https://www.tensorflow.org/federated/federated_learning

	Abstract
	Acknowledgements
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Problem Definition
	1.3 Thesis division
	1.4 Thesis Outline

	2 Background
	2.1 Dementia
	2.1.1 Alzheimer's disease
	2.1.2 Dementia with Lewy bodies

	2.2 MRI
	2.2.1 MRI Markers

	2.3 Preprocessing
	2.3.1 Spatial Normalization
	2.3.2 Brain Extraction
	2.3.3 Data Normalization

	2.4 Deep Learning
	2.4.1 Artificial Neural Networks
	2.4.2 Convolutional Nerural Networks
	2.4.3 Pooling Layer
	2.4.4 Fully Connected Layer
	2.4.5 Loss Function
	2.4.6 Batch Normalization
	2.4.7 Optimizers
	2.4.8 Activation Functions
	2.4.9 Overfitting
	2.4.10 Dropout
	2.4.11 Augmentation
	2.4.12 K-Fold Cross Validation
	2.4.13 hyperparameters
	2.4.14 Models
	2.4.15 Evaluation Metrics
	2.4.16 Generative Models
	2.4.17 Federated Learning
	2.4.18 Federated Averaging

	2.5 Software
	2.5.1 PyTorch
	2.5.2 PySyft
	2.5.3 SciPy
	2.5.4 Docker
	2.5.5 Nipype

	2.6 Previous work on detecting AD-DLB-NC with machine learning

	3 Materials and method
	3.1 Reproduce Larsen's results and Python Environment
	3.2 Data
	3.2.1 Preprocessing
	3.2.2 Dataset
	3.2.3 Federated learning Data Set

	3.3 Models
	3.3.1 Federated Learning Models

	3.4 Augmentation
	3.4.1 Simple Single Augmentation
	3.4.2 Simple Augmentation Combinations
	3.4.3 GAN

	3.5 Existing Approaches/Baselines
	3.5.1 Asynchronous federated learning on MNIST

	4 Experimental Evaluation / Results
	4.1 Reproducing Simen Larsen's results
	4.2 Overview
	4.3 Prepossessing
	4.4 Generating MRI Images with GAN
	4.5 Experiment - ML Models
	4.6 Augmenting
	4.6.1 Augmenting with GAN

	4.7 Datasets
	4.8 Final Evaluation of Three Class Classification
	4.9 Two Class Classification
	4.10 Federated Learning Experimental Setup
	4.10.1 Federated learning Dataset Benchmarking
	4.10.2 Federated Learning experiment using Federated Averaging
	4.10.3 Asynchronous Federated Learning experiment using Federated Averaging

	4.11 Federated Learning Experiment Results
	4.11.1 Federated Average experiment result
	4.11.2 Asynchronous Federated Learning experiment results

	5 Discussion
	5.1 Preprocessing and Datasets
	5.1.1 Federated Learning Data Set

	5.2 Models
	5.3 Augmentations
	5.4 GAN
	5.4.1 GAN
	5.4.2 Upscaled GAN

	5.5 Final Evaluation
	5.5.1 Clasification of AD-DLB-NC
	5.5.2 State of the art

	5.6 Federated Learning
	5.6.1 Federated Model Generation Method
	5.6.2 Federated Learning Framework/Software Choice
	5.6.3 Network Structure, Optimizer and Parameter Choices
	5.6.4 Federated Learning and Privacy
	5.6.5 Federated Learning Experiment Results

	6 Conclusion and Future Directions
	6.1 Conclusion
	6.1.1 GAN and improving the existing classifier
	6.1.2 Federated Learning

	6.2 Future Directions
	6.2.1 GAN
	6.2.2 Visualizing the Model with Grad-CAM
	6.2.3 Federated Learning

	List of Figures
	List of Tables
	A Appendix A
	A.1 requirements.txt
	A.2 fit.py
	A.3 Main_setup.py
	A.4 system_resources.py
	A.5 test.py
	A.6 data_resources.py
	A.7 NormalizeSkullStripPipeline.py
	A.8 TestingAllFoldsInCVfold.py
	A.9 upscaleGANimages.py
	A.10 Make_new_dataset_from_Simens_balance.py
	A.11 AD_dataset.py, DLB_dataset.py, NC_dataset.py
	A.12 federatedAverage.py
	A.13 start_websocket_server.py
	A.14 run_websocket_server.py
	A.15 run_websocket_client.py

	B Appendix B
	Bibliography

