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Abstract

There is a significant increase in e-commerce, and groceries are entering the online
platform. With this development, and with customers wanting to change their shopping
habits from brick-and-mortar stores to the online platform, automation is needed to re-
lieve the manual labor required for picking products and making order fulfillment effective.

The objective of this thesis is to create a solution for picking products out of dis-
tribution containers and examine the challenges and limitations of the proposed solution.
The system installation used in the approach is a robot with five degrees of freedom,
three for navigating the X,Y, Z-coordinates, and two for rotating the end-effector.

The proposed solution is developed with some assumptions. Two of these being that
the products are not stacked in height and that the cardboard is not covering the top
of the product. The approach is to capture a depth image of the scene and to apply a
scale-invariant feature transform to detect and create a bounding box of the product.
The region contained by the bounding box is compared to a reference image, and the
color differences of the images are used for cardboard estimation. With the estimated
cardboard, combined with the depth information from the camera, a collision map is
created for collision detection.

Two experiments are conducted. In the first experiment, the products are reset to
the initial states for each pick, and a path planner based on rapidly exploring random
tree is used to create the robot’s path for retrieving the product. The second experiment is
based on the same approach, but the product is skewed and picked with Cartesian control.

From the results, and within the assumptions and constraints of this thesis, a Carte-
sian control is sufficient for retrieving the products, and the cardboard estimation
proves robust for a delimited range of products. However, future analyses are needed
to determine the range of products the solution applies to, and it is suggested to do
some research into deep neural networks, to see if it can outperform the proposed solution.

Video recording of an excerpt of the products used in the experiments is available
from [1, Expiration date: August 1, 2021].
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Chapter 1

Introduction

1.1 About Pickr.ai

Pickr.ai [2] proposed this master’s thesis in cooperation with the University of Stavanger.
Pickr.ai is a start-up company founded in 2016, located in Stavanger, Norway.

Pickr.ai is an automation company specializing in order fulfillment. The company
is still in the start-up phase, thereby the goal and direction of development might adjust
or change depending on the need and demands of the customers.

One of Pickr’s objectives is to make their product cost-efficient and to enable com-
panies to transfer to an online market with an automated solution and make a profit on
products with a low margin for profit.

1.2 Motivation

In the world, as well as Norway, e-commerce is increasing rapidly. From 2016 to 2019,
e-commerce had a growth of 35.2 % 1 in Norway [4]2.

Not only is e-commerce growing, but a new target is entering the online platform,
namely the grocery industry. According to Swisslog [5], in the United States, the e-
groceries have not been affected in the same way as the retail stores when looking at
e-commerce growth, with ≈ 3% of the groceries being shopped online in 2019.

1The data was retrieved from Statistics Norway. It includes retail sales over the internet and mail.
More information about the content is found in [3], with code: 47.91.

2There is a known bug with the link. It sometimes directs to an empty table. The fix, if encountering
this problem, is to click the link two times (or copy-paste into the browser twice).

1
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However, from a report by Brick Meets Click from 2018 [6], online grocery spend-
ing has increased by 22% from 2017 to 2018. Furthermore, in an analysis by Fabric from
2019 [7], looking at the grocery industry in the United States, the increasing popularity of
online groceries is a fact. Not only are the customers willing to pay more to get same-day
delivery on their products, but they are also willing to switch to retailers that offer this
feature.
For the stores to offer these online features, there is a need for automation as the company
is losing money on the manually picked products, and these can be reduced by, e.g.,
introducing an automated micro-fulfillment system [7].

Pickr.ai is interested in looking deeper into the warehouse picking of groceries, and
the possibilities of picking the products directly from the distribution package. The task
of picking out of distribution packages is a task many warehouses do manually, and the
general picking-problem is of interest for research, e.g., Zhu et al. [8] and Shao et al. [9].

1.3 System Overview

The system used in this thesis is a small-scale test system used for testing new functionality
and creating proof-of-concept demos without risk of damaging the stable release of Pickr’s
system. Figure 1.1 shows the system used.

The robot is a gantry robot 3 with 3-DOF (degrees of freedom) operating the X-Y-Z
axis and a 2-DOF robotic arm. The robotic arm operating in the system workspace is
displayed in figure 1.3. Along with the joint connecting the end effector, an RGB-D (Red,
Green, Blue, and Depth) camera is mounted. The camera is positioned to capture the
whole shelf compartment, as shown in figure 1.2.

Robot Constraints

The robot has 5-DOF, three prismatic joints, and two rotational joints. However, the
joints have limitations in extensions and rotations, leading to restrictions in the reachable
workspace.

The extension in the Z-direction is limited to 50cm, resulting in a reach of ≈ 20cm within
the shelf’s depth. For the rotational joints, the rotational freedom is illustrated in figure

3Gantry robot (also referred to as Cartesian or linear robots) is a robot working in an X-Y-Z coordinate
system (three prismatic joints).
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Figure 1.1: The figure displays the system in which this thesis revolves around. On
the left is the robot operating the system (highlighted in blue), and on the right is the
warehouse shelf (highlighted in green). On the bottom is a conveyor belt (highlighted in

red), but is not used in this thesis.

1.3 and 1.4, and gives 90° rotation vertically, 0° rotation horizontally and ±90° around
the Z-axis (around itself).
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Figure 1.2: The figure displays an image captured by the RGB-D camera. The dotted
red line marks the boundary of one of the shelf compartments. The figure only displays

the RGB part of the image.

(a) Top view of the robotic arm. (b) Side view of the robotic arm.

Figure 1.3: The figure illustrates the rotational freedom of the robotic arm. Figure
(a) shows the horizontal rotation, and figure (b) the vertical rotation. The coordinate
system is also illustrated, where the Z-axis is marked in blue, X-axis in red, and Y -axis

in green.

End Effector

The end effectors used in this setup were suction cups. The choice of using suction cups
was made by Pickr, but they are considered to be one of the most versatile and robust
end effectors to pick objects [10]. As shown in figure 1.4, the end effector has a rotation
of 180° around the Z-axis.
Two different suction cups were used. The default suction cup is shown in figure 1.5(a),
it is oval, with the majority of the area in the vertical direction. Having a large area in
the vertical direction allows for more stable level picks because the gravity is pushing the
object down. In those cases, the additional stability of a larger suction cup is beneficial.
However, there was experimented with skewed products. With those products, it proved
beneficial to change the suction cup to a kind with some flexibility and contraction of
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the bellow, as this allowed for additional pushing to achieve a sufficient vacuum. This
suction cup is seen in figure 1.5(b).

Coordinate
System

+ 90 degree
rotation

- 90 degree
rotation

Total: 180 degree rotation

Figure 1.4: The figure displays the orientation of the suction cup with the coordinate
system. The end effector has a rotation of ±90°.

(a) The default suction cup. (b) Suction cup for picking
skewed products..

Figure 1.5: The figure displays the two different suction cups used in this setup. The
suction cup in figure (a) was most suitable for products positioned perpendicular to
the end-effector. From (b) the suction cup for picking skewed products is shown, this
suction cup has a larger bellow with more flexibility and the possibility for contraction,
making it more suitable for skewed products. The drawback is more sensitivity to the

weight of the products.

Constraints of the Reachable Workspace

Because the end-effector has only 90° rotation in the vertical direction (from level to
top-down), the end effector is not capable of reaching above 0°. Because of this, the shelf
has a negative slope of ≈ 6°, compensating for the limitation, and avoiding potential
ambiguity if the shelf was level-oriented4.

Since the end-effector have no rotation in the horizontal direction (around the Y -axis),
all pick-points with an orientation around this axis is unreachable. However, because

4When the shelf has an 0° angle, the product could have a minor orientation, e.g., 0.1°, resulting in
an unreachable orientation.
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of flexibility in the suction cup’s bellow, and allowing some pushing to get a suitable
suction region, picking products with a rotation in the horizontal direction is possible.
The implementation of the solution is described in section 3.5.1.

1.4 Problem Definition

The objective of this thesis is to look into a solution of a robotic system for picking
grocery products out of distribution packages, illustrated by figure 1.6.

Figure 1.6: The figure displays grocery products placed on the shelf within the original
distribution package. The objective of this thesis is to create a proof-of-concept system

for picking products out of the distribution packages.

Picking out of distribution packages is a desired feature as it reduces the time and manual
labor spent picking from shelves before the automatic process begins.

However, picking products out of shelves introduces several challenges compared to
picking products in a workspace without obstructions. It is necessary to look at the
robot path planning for retrieving the products, as the robot path is not necessarily a
straight line. Furthermore, a collision map is necessary when generating the robot path
because of potential collisions with the cardboard, the shelf, or other products.

Constraints of the Problem

Some assumptions and limitations were introduced to narrow the scope of the problem.

• The products are not stacked on top of each other: If stacked products are
considered, it expands the problem to evaluate whether or not the product for
retrieval is at the top. If the product is at the bottom, the products above might
fall when the product is removed.
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• Cylindrical products are not evaluated: Cylindrical products are not ideal with the
proposed object detection method. Pickr.ai already has a suitable object detection
method for cylindrical objects.

• Products need to have a solid surface: Plastic containers, e.g., bags of chips, have
not been evaluated. For those products, the shape can change and is unreliable in
the proposed cardboard detection method.

• Small products can not be picked: Small products, with not large enough area for
the suction cup to access, have not been evaluated.

• The cardboard can not cover the top of the product: This constraint was introduced
since the camera is pointing directly at the shelf, and detecting the cardboard’s
small width was not optimal with the proposed solution.

Main Challenges

The problem can be divided into three main parts.

• Detecting the products and estimate the cardboard: The first step in this approach
was to find a method to distinguish between products and cardboard. The product
for extraction had to be detected, and the cardboard had to be estimated.

• Generate and implement an accurate collision map: For the robot to extract the
product without collision, obstructions had to be estimated and used in a collision
map. The cardboard, shelf, and the other products are all objects that the robot
should avoid.

• Generate a working robot-path for retrieving the product: When the steps men-
tioned above are complete, a robot-path had to be made.

The result of this thesis should evaluate the following issues:

• How accurate and reliable is the cardboard and product detection?

• What is the success rate when picking products?

• If failure, are there any obvious reasons?

• How is the performance of the solution when picking skewed products?

• Is Cartesian control sufficient for picking products in distribution packages?

• What can be improved upon the proposed solution?
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1.5 Thesis Outline

Chapter 2 - Background:

This chapter introduces relevant information about the current state of the problem that
this thesis revolves, in addition to related work and research by others, and the current
approach by Pickr.

Chapter 3 - Solution Approach:

This chapter covers the approach used to solve the problem. The chapter explains the
implementation and uses the methods described in Chapter 2.

Chapter 4 - Experimental Evaluation:

This chapter covers the setup of the conducted experiments, with the corresponding
results. The evaluation metrics used in the evaluation are also described.

Chapter 5 - Discussion and Future Directions:

This chapter covers the interpretations of the results of the conducted experiments, with
suggested future work and possible other directions.

Chapter 6 - Conclusion:

This chapter describes the conclusion of this thesis.



Chapter 2

Background

This chapter introduces the background to the work in section 3: Solution Approach.
The background includes related work in similar domains, the baseline of Pickr’s system,
and methods relevant for the solution approach.

2.1 Current Approach/Baseline

The current baseline for picking products in Pickr’s system does not involve picking from
distribution containers, but instead, picking out of standardized boxes, illustrated by
figure 2.1.

Figure 2.1: The figure displays the products placed in standardized boxes. The robotic
system is the same as described in section 1.3: System Overview.

9
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The background to the current system is based, among others, on the work by Eriksen
[11] master’s thesis in 2017.

INIT

PRODUCT_DETECTION

PICK_PRODUCT

DELIVER_ITEM

Figure 2.2: Simplified layout of the current system.

Figure 2.2 shows a simplified flow chart of the system. The camera mounted on the robot
captures an RGB-D image of the container with the products, illustrated in 2.1. The
current system is mainly focused on cylindrical shaped objects and detects a suitable
surface for the suction cup. Because there is no occlusion to account for, the path is a
straight line.

2.2 Related Work

The problem related to robotic pick-and-place is a highly popular research area, and
on system level, the problem includes robot-vision, object recognition, and robotic path
planning [12]. Evaluation of such systems has been done in the Amazon Picking Challenge
(APC) and the competition held at the International Conference on Intelligent Robots
and Systems (IROS). Those competitions, although the APC has discontinued, aims to
provide a benchmark for the variety of problems involved in a robotic pick-and-place
system [13].

In the APC, the goal was to use state-of-the-art technology for warehouse automa-
tion [14]. The winner of the 2017 APC challenge, Zeng et al. [15], used an RGB-D
camera to capture an image of the scene. From the image, different picking options
were evaluated, and the option satisfying their criteria was chosen. When the object
was retrieved, it was positioned in front of the camera, before identifying the object by
matching it against numerous product images.

Another popular method to solve the picking problem is through Reinforcement Learning
(RL). It was used in the paper by Breyer et al. [16], Zeng et al. [17], and was initially
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suggested as an interesting approach to solving the problem in this thesis. RL is part
of the Machine Learning category and is used in various applications, ranging from
playing video games to complex robotic maneuvering [18]. RL is a "trial and error"
based approach that increase or decrease a score depending on the behavior and ought
to gain the highest possible score [19, p. 331]. More information about RL is found in
[19, chap. 17].

Within object detection, Faster R-CNN, Ren et al. [20], is considered the state-of-
the-art [21]. A method that extends the Faster R-CNN is the Mask R-CNN, He et al.
[22], which in addition to detect objects, creates a segmented mask around the object.
Another popular method used in object detection is YOLO (You Only Look Once), and
was used in the object detection problem by Wang et al. [23], as it proved to have some
improved speed compared to Faster R-CNN.

There are numerous path planners to choose from when it comes to generating a path
from point A to point B. Sampling-based motion planning is a popular path planning
method within robotics [24], and one alternative within the sampling scheme is Rapidly
Exploring Random Trees (RRT), introduced by LaValle and Kuffner [25], LaValle [26].
Several other implementations based upon RRTs are, e.g., Bath Informed Trees (BIT*),
Gammell et al. [27], and RRT-Connect, Kuffner and LaValle [28]. More information
about motion planning, BIT*, and RRT-Connect is in section 2.8.

2.3 Random Sample Consensus

Random Sample Consensus (RANSAC), Fischler and Bolles [29], is an iterative algorithm
for model fitting. Given some data and a model (e.g., a line, plane, or cylinder), RANSAC
ought to find a model that maximizes the number of inliers (points residing within some
distance from the model). The algorithm starts by randomly choosing a set of points
sufficient for creating an instance of the model (e.g., two points for a line), then counting
the number of points residing within some distance threshold from the line. This process
is repeated X times, and the instance of the model with the highest number of inliers
is given as the final estimate, Szeliski [30, p. 281-282] and Hartley and Zisserman [31,
p. 117]. The RANSAC algorithm is illustrated in figure 2.3.
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(a) (b)

Figure 2.3: The figure shows two iterations of the RANSAC algorithm for estimating
a line through some data. Figure (a) show one iteration, and (b) shows another
iteration with the best fit. The red dots are the points from the data considered
inliers. The figure is reprinted in unaltered form from Wikimedia commons,

File:RANSAC LINIE Animiert.gif, released into the public domain.

2.4 Color Space: Hue, Saturation and Value

The Hue, Saturation, and Value (HSV) color space is another way to represent colors
than the traditional Red, Green, and Blue (RGB) color space. The difference lies in the
separation of the components. In HSV, the Hue represents the colors, the Saturation
describes the intensity or purity of the color, and the Value represents the brightness [32,
p. 1300]. This is illustrated in figure 2.4.

Figure 2.4: The figure shows illustration of the HSV color space. The figure
is reprinted in unaltered form from Wikimedia commons, File:HSV color

solid cone.png, licensed under CC BY-SA 3.0.

The benefit of the HSV color space in the application in this thesis is that it separates
the Hue, Saturation, and Value, and where the color information is contained in the Hue
component. Because the purpose is to evaluate color differences between two images,
this separation enables for a more convenient comparison of the images compared to

https://commons.wikimedia.org/wiki/File:RANSAC_LINIE_Animiert.gif
https://commons.wikimedia.org/wiki/File:HSV_color_solid_cone.png
https://commons.wikimedia.org/wiki/File:HSV_color_solid_cone.png
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the RGB color space, which has three components, all containing color information (RGB).

However, if the Saturation value approaches 0, there is little to no information about the
color (Hue) in the image, giving the image only different shades of gray. If evaluating
images based on Hue, this introduces a problem when the Saturation is low. When the
Saturation is below some threshold, it is possible to evaluate the pixel value based on
the Value (brightness) [33].
One way to decide this threshold is based on equation 2.1, where V is the Value (bright-
ness), and thsat is the suggested threshold for the Saturation, as suggested by Sural et al.
[33]. The equation is rewritten to suit the value range used in this thesis, having H, S,
and V ∈ [0− 255].

thsat(V) = 255− 0.8V (2.1)

The threshold thsat gives information about whether the information in the pixel is more
distinct by the Hue or the Value, giving the following evaluation:

Evaluate =

Hue, if S ≥ thsat(V)

Value(brightness), otherwise

2.5 Binary Image Morphology

Binary morphology in image processing are operations that change the shape of binary
images [30, p. 112]. In this thesis, the operation was used to remove structural outliers
in the cardboard estimate.
Morphological operations use a structuring element to change the shape of an image.
The structuring element has a specific shape (e.g., rectangle or ellipse), and has a defined
origin, which acts as a reference point for the structuring element (it points to the pixel
to be changed). When the structuring element traverses through the binary image, the
region contained by the structuring element is evaluated, and depending on the values
and the morphological operation, the pixel of the origin is changed [34, p. 75-77].

2.5.1 Dilation and Erosion

There are two basic morphological operations, dilation and erosion, and they can be
applied together to obtain other operations [35, sec. 7.2.].
Dilation can be thought of as an OR operation. If any positive value of the structuring
element overlaps with a positive value of the binary image, the value of the binary image
is changed to a positive value. Otherwise, it is set to zero [34, p. 78].
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Erosion, on the other hand, can be thought of as an AND operation. All of the structuring
element’s positive values have to overlap with the binary image’s positive values in order
for the evaluated pixel to be set positive. Otherwise, it is set to zero [34, p. 79].

2.5.2 Opening and Closing

Combining erosion and dilatation, using the same structuring element, creates the new
operations: opening and closing. Opening is the use of erosion followed by dilation, while
closing is the use of dilation followed by erosion [35, sec. 7.3.].
The desired outcome by using these operations, in this thesis, is to fill holes in the binary
image and smooth the outer edges. Figure 2.5 displays the mentioned four operations.
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(e) Erosion of image (c).
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(f) Dilation of image (d).

Figure 2.5: The figure displays the use of Dilation, Erosion, Opening, and Closing, of
an image (a) with structuring element (b). The operation shown in (e) is the same
as closing (a), and the operation in (f) is achieved by opening (a). The figure is

inspired by Shapiro and Stockman [34, figure 3.13, p. 80].

2.6 Point Clouds

Point cloud, in general, is used to represent multi-dimensional points. In this implemen-
tation, the point clouds were used to represent points in three dimensions from captured
images.
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Regular images have (x, y) coordinates for each pixel, with color values representing
them. Point clouds have (x, y, z) coordinates, with the z-value representing the depth
(from the captured depth image).

With a 3D representation of the environment, it is possible to do image processing
in traditional 2D, and use the processed data to make changes to the point cloud.

2.7 Scale-Invariant Feature Transform

Scale-invariant feature transform (SIFT) is an algorithm introduced by Lowe [36, 37].

The purpose of using this method is to identify the products in the scene. The identifi-
cation is achieved by finding matching features in a reference image and corresponding
matches in the captured scene image. These images will be referred to as "reference
image" and "scene image" correspondingly.

2.7.1 Keypoints and Descriptors

The SIFT algorithm is used to find features, also called keypoints. Keypoints are as the
name suggests points of interest in the image (e.g., a corner). These keypoints holds
information about the location, scale, and orientation of the feature [37, p. 14], as shown
in figure 2.6.

(a) Keypoints from reference image. (b) Keypoints from scene image.

Figure 2.6: The figure shows keypoints from the SIFT algorithm, with size and orien-
tation (the circles in the images). The scene image (b) is cropped to only display one

product.
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To each of these keypoints a corresponding descriptor are computed. These descriptors
are invariant to rotation, translation and scaling in the image domain [38, p. 1], and are
used to compare the features.

2.7.2 Matching Images

The product detection is achieved by finding keypoints in the two images and using their
descriptors to compare and match the images [38, p. 6]. The method used in this thesis
to compare the keypoint descriptor was Fast Library for Approximate Nearest Neighbors
(FLANN). This approach to estimate nearest neighbors is described in the article by
Muja and Lowe [39].
Because some of the matches might not correspond to the product of interest, Lowe [37,
p. 20] proposed to use a ratio test to reject false matches. The matching and detection of
the product "tea" are seen in figure 2.7, with a bounding box placed around the product.

Figure 2.7: The figure illustrates the SIFT feature matching. The features in the
reference image (left) are matched with those in the scene image (right). If there is a
match, a bounding box is drawn around the product (bold green line in the right image).

2.7.3 Homography

Homography maps points between two images, represented by a 3 × 3 matrix with
eight degrees of freedom, and requires four corresponding points from the images to be
determined [31, p. 88]. The homography is used to calculate the bounding box from
figure 2.7. In the same manner, the homography is used to remove projective distortion
from the scene image, relative to the reference image, as will be described in section
3.3.2.
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2.8 Motion Planning

This section describes motion planning, the planners used in this thesis, and an introduc-
tion to optimal motion planning. The configuration space Q is the possible configurations
of the robot and consists of Qfree, configuration without obstacles, and Qobs, configura-
tion with obstacles [24, p. 2]. Figure 2.8 displays a sampled configuration space with a
generated path. Where qinit is the start position, and qgoal is the target position.

Figure 2.8: The figure illustrates a sampling approach for finding a path from
qinit to qgoal. The path is marked with a red line. The black dots are the samples
within Qfree, and the grey area is occupied space, Qobs. The figure is only meant
for illustration purposes and not meant for describing any specific path planning
algorithm. The figure is reprinted and annotated with custom text from
Wikimedia commons, File:Motion planning configuration space road map

path.svg, licensed under CC BY-SA 3.0.

2.8.1 Sampling-Based Planners

The idea of sampling-based planners is to explore the Q-space with a sampling approach.
The following two terms will be used, [24, p. 2-3]:

• Probabilistic Completeness: If a solution exists, the planner will find a solution
when given infinite samples.

https://commons.wikimedia.org/wiki/File:Motion_planning_configuration_space_road_map_path.svg
https://commons.wikimedia.org/wiki/File:Motion_planning_configuration_space_road_map_path.svg
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• Asymptotic optimality: The planner converges to the optimal solution when given
infinite samples.

The terms describe some of the properties of the planners in this section. For more
information about the subject Sampling-Based Planners, see [40, chap. 5], and Bekris
and Shome [24].

Rapidly Exploring Random Tree (RRT)

Rapidly Exploring Random Tree (RRT) is a sampling-based motion planner introduced
by LaValle and Kuffner [25], LaValle [26].
The RRT algorithm is probabilistic complete. However, it does not necessarily find the
optimal path between two points. I.e., if a solution is found, continuing to explore Qfree

does not alter the outcome, even if there is a shorter path among the samples.
Pseudocode of the RRT algorithm is shown in algorithm 1, inspired from Karaman and
Frazzoli [41, p. 13], where qinit is the start state, qgoal is the target state, ε is the length
for which the new node extends from the nearest node, and K is the number of iterations.
The Extend function links the random point qrandom with the neighboring node qnear,
and finds a point extended ε along that path, creating the new node qnew, [28, p. 2].

Algorithm 1 RRT(qinit, qgoal, ε,K)
1: G(N,E) . Initialize empty graph (G) containing Nodes (N) and Edges (E).
2: G() ← qstart, qgoal . Insert goal and start node to the graph.
3: for iteration : 1→ K do
4: qrandom ← RandomPosition( ) . Find a random position qrandom ∈ Qfree.
5: qnear ← G.GetNearestNode(qrandom) . Get the node closest to qrandom.
6: qnew ← Extend(qrandom, qnear, ε) . Extend the new node with distance ε.
7: G.AddNode(qnew) . Add the new node to the graph.
8: G.AddEdge(qnear, qnew) . Add the edge between the nodes.
9: end for

Figure 2.9 shows the RRT algorithm after 100 and 800 iterations.

RRT-Connect

The path planning algorithm used in this thesis was the RRT-connect, Kuffner and
LaValle [28]. The basic idea is that it builds two RRTs, one at the start position, qstart and
one at the goal position, qgoal, and use a Connect heuristic. The Connect heuristic is an
alternative to the Extend function used in the RRT algorithm 1. The Connect function
iterates the Extend function until qrandom is reached or until detecting an obstacle, [28,
p. 3].
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(a) RRT algorithm after 100 iterations (b) RRT algorithm after 800 iterations

Figure 2.9: The figure shows the RRT algorithm after 100 iterations (a) and 800
iterations (b). The different nodes are marked in red circles, and the goal is the
yellow marker at the bottom right (a) and marked as green in (b). One new node is
added for each iteration, starting with one node. In figure (b), a path has been found,
marked by a green line. The figure is generated from [42], licensed under:

CC BY-NC-SA.

2.8.2 Optimal Motion Planning

Optimal motion planning try to optimize some path. The optimization objective could
be, e.g., generating the shortest path. In contrast, the non-optimal planner finds any
feasible solution [40, p. 357]. One of such optimal planner is the RRT*, Karaman and
Frazzoli [41]. The RRT* is an asymptotically optimal version of the RRT algorithm,
and it is probabilistic complete [41, p. 20-21]. More information about optimal motion
planning are available from [40, chap. 7.7].

Batch Informed Trees (BIT*)

Batch Informed Trees (BIT*), Gammell et al. [27], is a sampling-based optimal planner.
The planner is probabilistic complete and asymptotically optimal. Simplified, the
algorithm creates a graph 1 of Qfree and explores the graph (in the direction of qgoal) by
a heuristic search 2. When a solution is found, the batch is complete. The process is
repeated with a denser graph and continued until a satisfied solution is reached [27, p. 3].

1The graph is a Random Geometric Graphs (RGG). It will not be explained here, but more information
is found in [43].

2Heuristic search is, as quoted from [44]: "a search strategy that attempts to optimize a problem by
iteratively improving the solution based on a given heuristic function or a cost measure."
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A descriptive video illustrating the algorithm is available from [45], and more information
about BIT* is found in Gammell et al. [27, 46].
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Solution Approach

This section introduces the tools and resources used in the solution approach, along with
the implementation.

3.1 Tools and Resources

This section describes the different libraries and tools used in the implementation, in
addition to the evaluation metric used to evaluate the experiment.

3.1.1 Labeling Tool: Labelbox

Labelbox [47] is a tool for labeling data. It was used to label all the images after the
experiment for evaluating the performance of the product detection and cardboard
estimation against some ground truth. The labeling process is described in section 4.1.2.

3.1.2 Robot Operating System

The Robot Operating System (ROS) [48] is a framework for developing robot software.
It is not an operating system. Instead, it is a collection of tools and libraries to ease the
troubles of working on different robotic platforms. ROS has a peer-to-peer structure,
meaning that the system has several independent processes communicating through a
master. It also supports several different programming languages so that the code can
be written in, e.g., Python or C++ [49, 50].

21
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A simple example is illustrated in figure 3.1, where the node pub_node is publish-
ing some message. The messages are published on the topic \some_topic, and the other
node sub_node is listening on the same topic and receives the information published.

ROS
Master

/some_topic

Node
(Publishing)

Node
(Subscribing)

Name:
"pub_node"

Name:
"sub_node"

Figure 3.1: The figure illustrates the basic ROS setup. The ROS master manages and
sets up communication between the nodes. The communication is in this illustration

done through the topic \some_topic.

ROS Master

The ROS master is at the core of the system and manages all topics, nodes, and sets up
communication [51].

ROS Node

ROS nodes are program modules that execute some operation. The nodes are independent
(standalone program) and can be programmed in one programming language and still
communicate with other nodes programmed in a different language [52].

ROS Topic

Topics are channels where information is transferred. A node publishes information on a
topic (e.g.,\some_topic in figure 3.1), and a receiving node subscribes to the same topic
[53].

3.1.3 Depth Camera

The camera used in the implementation is the Intel RealSense D435 [54]. The camera
was already part of the implementation by Pickr, and have proved to be of satisfaction.
The camera is a stereo vision depth camera capable of capture images in stereo depth
and RGB [55, p. 11].
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The camera has a Z-accuracy 1 ≤ 2%, within 2 meters, and 80 % of FOV [55, table. 4-9,
p. 61]. I.e., within the workspace of this setup (ranging from 0 to 1 meter), the expected
error is on the range of 0− 20mm.

3.1.4 Programming Languages

Pickr’s existing system is mainly developed in C++, and some of the libraries used in
this thesis have limited to no support for other languages. Therefore it was natural to
use C++ for the implementation and development of code in this thesis.
However, for the experiment evaluation, Python was used to manage and evaluate
the different images produced, including retrieving and sorting the images stored in
Labelbox’s cloud.

3.1.5 Product Information

Information about the products was received from the customer and saved in a JSON2

file for quick retrieval. The JSON management tool used was RapidJSON [58]. The
exception to the data retrieved from the customer is the reference image, which is
captured manually and is described in section 3.3.1. In table 3.1, the information about
the product "Tea" is displayed. This file will be referred to as Product File.

Table 3.1: The table illustrates the information available in the JSON file for each
product when picking the items. "D-Pack" is short for "Distribution Package."

Type Of Information Value Data Type Unit

Product Width 0.15 Double Meter
Product Height 0.14 Double Meter
Product Depth 0.078 Double Meter
D-Pack Width 0.305 Double Meter
D-Pack Height 0.144 Double Meter
D-Pack Depth 0.402 Double Meter
Reference Image "/path/to/file.png" String N/A

3.1.6 Point Cloud Library

The Point Cloud Library (PCL) [59] is used for 2D/3D image and point cloud processing.
In this thesis, it is mainly used for processing point clouds and doing 3D calculations.

1Z-accuracy, or absolute error, is the difference between the measured depth and the actual depth
(ground truth) [56, p. 7].

2JSON is a lanugage-independent format for data exchange [57, chap. 2].
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Furthermore, as stated by Rusu and Cousins [60]: "PCL is a comprehensive free, BSD
licensed, library for n-D Point Clouds and 3D geometry processing." ROS also supports
the library.

3.1.7 Open Source Computer Vision Library

Open Source Computer Vision Library (OpenCV) is "an open source computer vision
and machine learning software library" [61], and has been used in this implementation
for image processing in 2D. The OpenCV library is licensed under the 3-clause BSD
License [62].

3.1.8 Motion Planning Framework: MoveIt!

MoveIt! [63] is a motion planning framework that runs on top of ROS, and are licensed
by BSD License v3. MoveIt! provides motion, path planning, and collision checking used
in this thesis.

3.1.9 Open Motion Planning Library

The Open Motion Planning Library (OMPL) [64], is a library consisting of state-of-the-art
sampling-based motion planning algorithms, and was used with MoveIt! to generate
robot-paths. The OMPL library is licensed under the BSD License [65].

3.1.10 Octrees and OctoMap

Octrees are a tree structure where each node, called voxel, can have eight children.
Voxels are similar to pixels, only represented in 3D, and are mostly used to represent a
three-dimensional space or volume. For using voxels to represent occupancy, the voxel
could contain some binary information, e.g., whether or not the voxel represents occupied
space. In octrees, the voxel is sub-divided into eight new voxels, as illustrated in figure
3.2, until some user limit is reached (the resolution of the tree). By the hierarchical
structure of the octrees, if all children of a node have the same state, it can be represented
by the parent node. Representing the tree by a node closer to the root reduces the
number of nodes in the tree, thus reducing capacity and resources [66, p. 4].

The occupancy estimation method used in this thesis is OctoMap [67]. OctoMap is, as
the title of the paper states: a "Probabilistic 3D Mapping Framework Based on Octrees,"
developed by Hornung et al. [66].
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Figure 3.2: The figure illustrates the octrees subdivisions. Each node (circle in the image)
has eight children nodes. The figure is reprinted in unaltered from Wikimedia

commons, File:Octree2.svg, licensed under CC BY-SA 3.0.

OctoMap was used to generate a collision map in MoveIt!, and supports the use of point
clouds as inputs. The library is available as a self-contained source distribution.

3.1.11 Visualization Tool: RViz

Rviz [68] is a visualization tool for ROS. It allows for a visual representation of the
robotic world and simulation. It supports both ROS and MoveIt!.

3.2 Solution Overview

The developed program runs a state machine created by a "switch-case" in the main.cpp
file. This state machine also describes the system in a simplified manner, as the essential
functions are located within each state.
Figure 3.3 illustrates the state-machine of the developed program. The illustration
contains the important modules in the program:

• Product Detection and Cardboard Estimation

• Collision Map Generation

• Robot Path Planning

These three parts are what is described in the rest of this chapter: "Solution Approach."
The exception is the state INIT, which is the initialization state. Before transitioning from
this state, the Product File is loaded, objects are instantiated, and ROS are initialized.

https://commons.wikimedia.org/wiki/File:Octree2.svg
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INIT

PRODUCT_DETECTION

CARDBOARD_ESTIMATION

GENERATE_COLLISIONMAP

PICK_PRODUCT

DELIVER_ITEM

Robot-path Product Detection and 
Cardboard Estimation

Collision map

Figure 3.3: The figure displays an illustration of the state-machine. The first state
(INIT) moves the robot to a predefined location (in this case, it is the position in front
of the shelf) and loads information from the Product File. The next states are divided

into the three categories described in this section.

3.3 Proposed Solution for Detecting the Product and Estimat-
ing the Cardboard

In this section, the proposed solution for detecting the product and estimating the
cardboard is described. The purpose was first to detect the product and create a
bounding box of the product. Then, estimate the cardboard covering the product by
comparing the difference between the bounding box and a reference image. A simplified
flow chart of the process described in this section is available in figure C.5. The cardboard
estimation was used for collision detection, which is described in section 3.4.

3.3.1 Reference Image

The method used for product detection (SIFT) requires a reference image of the product
in order to detect the product in the scene image. For product detection and card-
board estimation to deal with fewer dissimilarities, the reference image is captured
under the same environment and with the same camera. The reason for this, instead
of using an image given by, e.g., the manufacturer, is to preserve similarities (e.g., the
same lighting conditions and resolution) between the reference image and the scene image.

A problem occurs when the product does not have a rectangular shape. In those
cases, the reference image, when captured in the robot environment, will have segments
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of the background included in the reference image. These segments create an unpre-
dictable nature for the approach described in the following sections when evaluation a
region consisting of the background. The solution was to crop out the background from
the product manually.
When comparing similarities, if the reference image’s pixel is transparent, the pixel is
ignored and thereby not classified as cardboard. An image before and after removal of
the background is shown in figure 3.4.

(a) The original ref-
erence image.

(b) The refer-
ence image with
the background
removed.

Figure 3.4: The figure shows the reference image with a non-rectangular shape. As
shown in (a), the image contains part of the background. These areas are undesired as
the solution approach is based upon comparing image regions against each other. The

solution was to remove the background manually, as seen in (b).

3.3.2 Product Detection

The first step was to identify the product from the image captured by the camera.
Because the camera captures the images in RGB-D, the point cloud of the image was
stored for use in the creation of the collision map (section 3.4), while the 2D-RGB part
was used for product detection and cardboard estimation.

The SIFT method (described in section 2.7) was used to identify the product in the scene
image. The product detection solution was implemented with OpenCV and its tutorial
[69]. If the product was identified, a bounding box containing the product was created
(this was illustrated in figure 2.7).

When the product was identified, the image from the bounding box was aligned with
the reference image by doing a perspective transformation. This transformation gave
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the scene image the same dimensions and perspective as the reference image, as seen
from figure 3.5. The transformation was accomplished with the function warpPerspective()

from OpenCV. Having the images aligned made the pixels of the two images appear
approximately in the same place, which was necessary for the cardboard estimation.

(a) Scene image cropped. (b) Scene image aligned. (c) Reference image.

Figure 3.5: The figure shows the result of the perspective transformation of the image
(a) to the frame of image (c). The result is shown in (b).

3.3.3 Cardboard Detection

The approach for estimating the cardboard is based on measuring differences in the
reference image and the scene image. If a region in the images differs, it was classified as
cardboard. In practice, the estimated region could contain anything, but this approach
goes under the assumption that the estimated occlusion is cardboard. The approach uses
the HSV color space for comparing the differences. Thus, three new images were cre-
ated for the reference image and the aligned image, one for each component (H, S, and V).

This approach is only estimating the cardboard, other possible collisions (e.g., with
other products or the shelf) had to be taken into account. The solution for including
other collisions will be described in section 3.4.

Smoothing

Before the images were evaluated, there could be much noise in the images due to, e.g.,
reflection. By iterating through the image with a window of a predefined size, setting all
the pixels within the window to the mean value of the region, the result provided images
more suitable for evaluation. The process is seen in figure 3.6.
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(a) Scene image (RGB). (b) Scene image (only Hue). (c) Scene image (Hue) after window.

Figure 3.6: The figure shows the processing of the Hue image. Although the figure
only displays the Hue image, the process is done for the Saturation and Value as well.
Figure (a) displays the original (aligned) image, figure (b) displays the Hue channel of
the original image, and finally, figure (c) displays the Hue after a window of 25 pixels.

Evaluation

As described in section 2.4, evaluating Hue does only make sense when the saturation is
above some threshold. Therefore, depending on the values of H, S, and V, the evaluation
was conducted on the component with the most dominant traits. In addition to the
description in section 2.4 is the inclusion of saturation. If the saturation is low on, e.g.,
the scene image, and high on the reference image, this suggests that there is occlusion
present. This is the case with figure 3.6(a), where the white cardboard covers parts of
the yellow product. Therefore, if the difference of the saturation is above some threshold,
it is classified as cardboard. A detailed description of the evaluation is in equation 3.1,
where the different variables are described in table 3.2.

Table 3.2: Description of the variables use in the following section.

Variable Description

Satref Saturation value of the reference image.
Satscene Saturation value of the scene image.
thsat(V)ref Threshold value (saturation) of the reference image.
thsat(V)scene Threshold value (saturation) of the scene image.
Diffhue | Hueref −Huescene |
Diffsat | Satref − Satscene |
Diffval | Valref −Valscene |
V V (brightness) from the HSV color space.
THRESH_HUE Threshold value Hue.
THRESH_SAT Threshold value Sat.
THRESH_VAL Threshold value Val.
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Evaluate =



Saturation, if Diffsat ≥ Satthres

Hue, elseif Satref ≥ thsat(V)ref

or Satscene ≥ thsat(V)scene

Value/Brightness, else

(3.1)

The component (H, S, or V) chosen to be most suitable for evaluation was determined by
equation 3.1. From that component, the absolute difference between the reference image
and the aligned image was computed. The classification was executed by checking the
absolute difference against a threshold value. If the difference was higher, it was classified
as cardboard, as seen in equation 3.2, where X is eighter Hue, Saturation, or Value.

Classify pixel as =

Cardboard, if DiffX ≥ THRESH_X

Product, else
(3.2)

Figure 3.7 shows the results after classifying the pixels. The resulting image does contain
outliers that are undesirable when computing a robot path.

(a) Scene image. (b) Reference image. (c) The estimated cardboard.

Figure 3.7: The figure illustrates the cardboard estimation on the product Oboy. Figure
(a) is the scene image, with a perspective transform to align with the reference image

(b). The result after conducting the evaluation is displayed in (c).

Opening and Closing

The detection method described in the previous section will potentially produce misde-
tection as False Positives (FP) or False Negative (FN), as seen in figure 3.7(c).
By assuming that the only occlusion is cardboard, and that the cardboard and product
will occupy continuous areas, it is possible to remove or fill the structural outliers. The
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method used is morphological operations by opening and closing, described in section
2.5. The implementation was done with OpenCV, and the method preserves the overall
structure of the estimate.

The chosen approach for opening and closing was to first to close the image (filling
the holes) then continue by opening (removing outliers).
The process of closing and opening of the original classification is illustrated in figure 3.8.

(a) Original binary image. (b) Binary image after closing oper-
ation.

(c) Binary image after opening oper-
ation.

Figure 3.8: The figure shows the morphological operation with closing and opening.
The process is conducted on binary images, i.e., the illustration with the background
is only meant for illustration purposes. Figure (a) display the original estimate, (b)
display the image after closing, closing the gap between some of the pixels. Then, in (c),
the opening removes some of the structural outliers. The window size of the structuring
element is 2x the size of the moving window. From figure (c), a region of misclassification

is shown.

As shown, the process is removing some of the outliers, but also creating a region of
misclassifications. These misclassifications had to be removed as they could occlude the
robot path. The problem was handled by only keeping the biggest contours.

Contours

Contours represent the outline of a shape. In this case, the outline of the white pixels
in the binary image. By finding the contour with the largest area, removing everything
else, the remaining cardboard estimation will be in one continuous area. However, if the
estimated cardboard was detected in the wrong area, giving a lot of FP, the resulting
estimate after morphological operations and contours can create a large misclassified
area (this can be seen in figure C.6.1). The result after beneficial use of contours is seen
in figure 3.9.
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(a) Estimated cardboard after mor-
phological operation.

(b) Estimated cardboard after keep-
ing largest contours.

Figure 3.9: Figure (a) display the image after the morphological operation. Only
keeping the largest contours, the resulting cardboard estimate is displayed in figure (b).

The result from figure 3.9(b) is transformed back to the original frame with the inverse
warpPerspective() by additional the flag WARP_INVERSE_MAP, also done in OpenCV.

Figure 3.10: The figure displays the resulting cardboard estimation in front of the
product, marked in green. As seen from the figure, the cardboard is only estimated in
front of the detected product. With the estimated cardboard, this image is the basis for

generating the collision map in section 3.4.

3.4 Proposed Solution for Collision Map

This section describes the proposed solution for generating the collision map. The
collision map is created with OctoMap, which can use point cloud as input.

The collision map should contain all visible obstacles and account for areas not in
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the FOV of the camera. The target product (the one the robot is about to pick) should
be removed from the point cloud as it should not be included in the collision map.
The point clouds for representing the Collision Point Cloud consists of four point clouds,
which will be described in detail in this section. Those are:

• The Product Point Cloud: used to represent the area within the point cloud
that belongs to the product. The depth of the product (which is not available from
the point cloud) was retrieved from the Product File.

• The Cardboard Point Cloud: because the Product Point Cloud’s area was
removed from the Collision Point Cloud, part of the cardboard could be removed
in the process. Therefore, the Cardboard Point Cloud was created and inserted
after the processing of the point clouds.

• The Occlusion Point Cloud: this point cloud contains everything within the
cameras FOV. Besides, because of the undefined area behind the FOV, this point
cloud contains projected points into the depth axis to restrict movement in obscured
areas.

• The Restriction Point Cloud: this point cloud was for restricting the robot’s
movement to be contained within the shelf, and not colliding with areas outside
the FOV.

Illustrating images of the point clouds described is available in figure C.1, C.2, and C.3.

3.4.1 Product Point Cloud

From section 3.3.2, the product and the corresponding bounding box were estimated in
2D. By matching the pixels from the bounding box in the 2D image to the point cloud,
the area contained by the product were found. Because the 2D image was created from
the information in the point cloud, both images contain the same pixels, and looking
up the 2D point in the point cloud is achieved by point_cloud->at(x,y), where (x, y) is the
pixel from the 2D image.

However, it was also necessary to know the pose 3 of the product. The rotation and
translation of the product, relative to the camera’s origin, were estimated by comparing
the product’s normal with the origin’s normal. The normal to the product was calculated
by finding the plane passing through the product’s front. The plane was estimated by
finding the best match of a plane from the SIFT-keypoints belonging to the product.

3Pose is the position and the orientation of the object [34, p. 585].



Chapter 3 Solution Approach 34

Because the keypoints did not necessarily correspond to the product of interest, all
keypoints outside the bounding box were rejected. Illustration of the inliers and the
rejected keypoints are shown in figure 3.11.

Figure 3.11: The figure shows the product of interest, marked with the green bounding
box. The blue circles are the keypoint inliers, and the red circles are the keypoint

outliers. This figure is cropped to only show information of interest.

The plane was created by making an optimal model of a plane, given a set of known inliers
(SIFT-keypoints). The method used RANSAC as the estimator, described in section 2.3,
and was implemented with inspiration from the PCL tutorial [70]. The method requires
the point cloud along with the inliers as input. The output is the coefficients satisfying
the equation of the plane given by equation 3.3 [71, p. 408].

ax+ by + cz + d = 0 (3.3)

Where a, b, c, d is some constant. From this equation, the normal to the plane is also
provided by vnormal = (a, b, c).
By comparing the normal vector of the plane to the origin vector vorigin = (0, 0, 1), the
rotation of the plane was calculated and gives the rotation in quaternions 4.

The translation from origin to the plane is just the normal vector vnormal = (a, b, c), given
by the coefficient from equation 3.3. The result is shown in figure 3.12, where a white
bounding box is the estimate of the pose of the product. The size of the bounding box
(width, height, and depth) was available from the Product File. Because of the inaccuracy
of the camera (see section 3.1.3), the bounding box is 2cm larger in all directions.

4Quaternions are another way to represent rotation. It was essential for the code’s implementation
when using PCL, but it is not necessary for understanding this report. More information about quaternions
is found in [72, chap. 5].
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Figure 3.12: The figure displays the bounding box of the product, illustrated by the
white cuboid.

3.4.2 Cardboard Point Cloud

The Cardboard Point Cloud contains the points in the point cloud belonging to the
cardboard. These points were located by looking up the (x, y) coordinate from the binary
image to the corresponding (x, y, z) point in the point cloud, as illustrated by figure 3.13.

(a) 2D Image with the estimated cardboard. (b) The cardboard estimated in the pointcloud.

Figure 3.13: The figures illustrate the estimated cardboard pixels in the point cloud,
highlighted in green. As can be seen from (b), some of the cardboard’s points in (a)
are projected into the product. For illustration purposes, the image (a) is not a binary
image, but the actual image of the scene with the estimated cardboard highlighted in

green.

Remove Outliers from Cardboard Point Cloud

Because some pixels from the Cardboard Point Cloud does not necessarily belong to the
cardboard, those points had to be removed, as these outliers will contribute to occupy



Chapter 3 Solution Approach 36

the area where the product resides.
The way to resolve this issue was to find the closest cardboard point and remove all points
with a depth difference of more than 2cm. The reason was because of the assumption
that the cardboard will be located in front of the scene. In the case where the product is
adjacent to the cardboard (i.e., closer than 2cm), the pixels will not be removed. The
solution to compensate if the points are included is described in section 3.4.6.

3.4.3 Restriction Point Cloud

Because the adjacent shelves and the shelf compartment located above were all outside
the FOV, the robot path had to be restricted. A point cloud representing the area
outside the FOV was created to restrict the movement to be within the product’s shelf
compartment. This Restriction Point Cloud consists of points for every 5mm around the
workspace, assuming that the shelves are of known size.

3.4.4 Occlusion Point Cloud

The point cloud generated from the depth camera does not contain any information
about the area behind the visible space. I.e., the area behind the products are not
defined. When using the point cloud as the input for the collision map, all undefined
spaces are interpreted as free space. If not dealing with the undefined areas, this could
create collisions, as all concealed areas could contain obstacles. For this reason, the point
cloud of the scene (the raw point cloud, not processed in any way) was projected into
the depth for every 5cm, adding the new assumption that all unseen/occluded areas are
collisions. However, the previously created bounding box of the product was used to
remove the area defined by the product, because the product is not part of the collision
map. The resulting point cloud is seen in figure 3.14.

3.4.5 Combining Point Clouds and Creating the Collision Map

With the point clouds created, they were combined to create the Collision Point Cloud.
A color-coded version of figure 3.14 is in figure C.1, C.2, and C.3. The point cloud was
published to ROS, and the resulting collision map is shown in figure 3.15, visualized in
RViz.
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Figure 3.14: The figure displays the occlusion point cloud, with the product for retrieval
cropped out, illustrated by the withe bounding box.

Figure 3.15: The figure displays the resulting OctoMap used for collision detection.
The image is captured from RViz. The voxels are color-coded, with green representing

voxels close to the camera, and red voxels further away.

3.4.6 Attaching the Product to the Robot

For the robot to retrieve the product, it had to navigate the provided path and check
for collisions. Furthermore, the generated path had to be calculated concerning the
attached product. In other words, if the product is not accounted for when generating a
robot-path, it is likely to find a shorter path where the product collides with obstacles.
This problem was solved by attaching a cuboid with the bounding box’s dimensions
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to the robot’s tool-tip (suction cup) when it had reached the pick-point destination.
However, due to inaccuracy and the problem mentioned in section 3.4.2 (when cardboard
is adjacent to the product), the virtual product was reduced by 0.5cm in all directions.
The robot with an attached product is seen in figure 3.16.

Figure 3.16: The figure displays the collision map in RViz. The purple cuboid is the
virtual product attached to the robot. When the product is attached, it acts as part of
the robot, and the robot path will not make the attached product collide with collisions.

3.4.7 Changes to Collision Map when Picking Skewed Products

When picking skewed products, several problems occur. Because the collision map and
pose estimation of the product was created before the pick, the position and orientation
of the physical product cannot be assumed to be the same after the robot has reached
the pick point. This is because when the product is picked, it is attached perpendicular
to the tool-tip. It might also be pushed to straighten and to achieve a sufficient vacuum,
depending on the degree of orientation. This additional push might move the product
into the estimated collision. The problem with the product being moved into the collision
is illustrated in figure 3.17. Do note that the illustrated scene is staged, and the figure is
only supposed to demonstrate the situation.
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(a) The collision map in RViz with the product at-
tached with the estimated pose.

(b) The collision map in RViz with the product at-
tached perpendicular to the robot.

Figure 3.17: The pictures show the problem of picking a skewed product. The collision
map was created considering the skewed product’s pose, and the area contained by the
product was removed, as seen in (a). When the robot moves to the product’s pick-point,
there is some additional pushing to achieve a sufficient vacuum, and the product is
mounted perpendicular to the robot’s tool-top, as seen in image (b). Not having the
same pose of the product in the visualizer and on the real robot means that the collision
map, which was estimated when the product was skewed, could be a false representation.
The error in the pose could lead to the product being located within a collision, as
illustrated in figure (b), where the top left corner is inside a collision and can lead to no

viable path for retrieval.

The solution to picking skewed products is based on the assumption that the product’s
width is larger than the depth. Furthermore, the solution breaks with the previous
assumption that all unseen areas are collisions. When removing the area contained by
the product from the point cloud, the orientation is ignored, using the width instead of
the depth. This creates a larger bounding box and means that the cropped area is large
enough for the product to be oriented without being stuck in collisions.
The resulting collision map is shown in figure 3.18.
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Figure 3.18: The figure display the final collision map in RViz. The red rectangle is
the new cropped area for the product. The purple box is the virtual product, and is

0.5cm reduced in all directions.

The solution for picking skewed products is not optimal, and are discussed in chapter 5:
Discussion and Future Directions. The reason for the implementation was to be able to
test picking of skewed products.

3.5 Proposed Solution for Robot Path

The path planning algorithm used was the RRT-Connect, described in section 2.8. The
purpose of the solution in this section was to generate a robot path to the pick-point (i.e.,
target location), attach a virtual product to the robot (as explained in section 3.4.6),
and retrieve the product back to the initial position.

3.5.1 Generating Pick-Point

The pick-point for each product has a position and rotation. In this approach, the
pick-point was chosen to the center, and with the same orientation as the product.
However, as described in section 1.3, the end-effector can not rotate around the Y -axis.
Meaning that pick-points with an orientation around the Y -axis will be unreachable for
the end-effector. This is the case if, e.g., the product is skewed.
The solution for this was setting the orientation around the Y -axis to 0°, regardless of
the degree of orientation.
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3.5.2 Cartesian Control for Picking Skewed Product

The proposed solution for picking skewed products was with the use of Cartesian control.
There were two primary reasons for this. The first was to test whether a Cartesian
control was sufficient for picking products. The second reason was for the predictability
of a Cartesian control compared to the RRT based planners. With Cartesian control,
the undesired random movement within the distribution container is removed. However,
there are some new uncertainties in the collision map when picking skewed products, as
mention in 3.4.7.

A list of waypoints is used to implement the Cartesian path in MoveIt!. The robot moves
in a linear path between each waypoint, and if collisions are detected, the path fails. The
idea was to use the point cloud and the available data in the Product File to calculate
waypoints for retrieving the product without collisions.
Two waypoints are needed to extract the product from the distribution container. The
first waypoint is needed to move to the product above the cardboard, while the second
waypoint moves the product outside the shelf.

There are several ways to implement such a solution. One way, assuming the card-
board is covering the lower region of the products, is explained below:
This solution worked on the products in the first row, where the cardboard was adequately
estimated. The distance needed to lift the product above the cardboard (Waypoint 1)
equals the height of the cardboard (denoted h) + some safety distance (denoted ε). This
is illustrated in figure 3.19.
The distance needed to move the product out of the shelf (Waypoint 2) equals the
pick-point’s Distance to the Cardboard (denoted ZDC) + the Product’s Depth (denoted
ZP D) + ε. Illustrated in figure 3.20.

However, because the front cardboard is not visible for all the rows, and therefore
not necessarily estimated, the mentioned approach needs some restructuring to work
sufficient for all the products. The problem is illustrated in figure C.11. A suggested
workaround is to estimate the cardboard in the first row for all the products and save
the estimated Cardboard Point Cloud to use on the rest of the products.

The implemented solution used in the experiment is a simplification of the approach
mentioned above. Waypoint 1 was created with a fixed height of 10cm above the pick-
point. This ensures that the product is above collisions, as no cardboard extended for
more than 10cm. For the retraction, Waypoint 2 was created a fixed safe distance away
from the shelf (≈ 20cm outside the shelf).
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Pick-Point

Bottom of
Cardboard

Waypoint 1

Figure 3.19: The figure illustrates the calculation of Waypoint 1, the upward distance
in Y -direction. h is the distance from the pick-point to the bottom of the product

marked in red. ε is the buffer distance to ensure clearance to the cardboard.

Waypoint 1

Waypoint 2

Figure 3.20: The figure illustrates the calculation of Waypoint 2, the retraction in Z-
direction. The ZP D is the product’s depth, and ZDC is the distance from the pick-point

to the cardboard. The retraction in the Z-direction is ZP D + ZDC + ε.



Chapter 4

Experimental Evaluation

In this chapter, the conducted experiments and corresponding results are presented.
Two experiments were conducted, "Picking from Distribution Containers" and "Picking
Skewed Products."

4.1 Evaluation Metrics

The evaluation metric used in this thesis is presented in this section.

4.1.1 True Positive, True Negative, False Positive, False Negative

The terms "True Positive (TP)," "True Negative (TN)," "False Positive (FP)," and "False
Negative (FN)," are used in the classification and for calculating the score of the other
evaluation metrics. Figure 4.1 explains the use of the different terms.

Actual Values

Predicted
Values

Positive

Negative

Positive Negative

TP FP

FN TN

Figure 4.1: The figure displays the use of the terms "True Positive," "True Negative,"
"False Positive," and "False Negative."

43
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4.1.2 Ground Truth: Segmentation of the Images

In both the conducted experiments, the ground truth images were manually segmented,
and created with Labelbox. The output from Labelbox, after the segmentation, was a
binary image with white pixels representing the object of interest, and everything else as
black pixels, this is seen in figure C.4.
When segmenting the product, it could be partly occluded (by, e.g., the cardboard). The
segmentation had to be "guessed" in the areas the product was not visible. This leads to
some error-margin as the ground truth does not necessarily become perfect.

The same approach was used for the cardboard segmentation, but with one differ-
ence, the ground truth image was manually labeled from the predicted bounding box
of the scene image. If the SIFT method failed to identify the product, the resulting
bounding box would be distorted, and the segmentation would yield no cardboard visible.
This is seen in the product tea05 (figure C.6) and tea06 (figure C.7).

4.1.3 Intersection over Union

The Intersection over Union (IoU), is illustrated by 4.2. It is the area of overlap divided
by the union and is one of the most used metrics in object detection [73].

Figure 4.2: The figure illustrates the IoU metric. Two bounding boxes are evaluated on
the degree of overlap, and the intersection is divided by the union. If the two bounding
boxes are correctly aligned, a score of 1 or 100% is given. The figure is reprinted
in unaltered form from Wikimedia commons, File:Intersection over Union -

visual equation.png, licensed under CC BY-SA 4.0.

The IoU was used slightly different when evaluating the performance of product detection
and cardboard estimation. The two different IoU implementations are described below.

https://commons.wikimedia.org/wiki/File:Intersection_over_Union_-_visual_equation.png
https://commons.wikimedia.org/wiki/File:Intersection_over_Union_-_visual_equation.png
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Evaluation Product Detection

In this scenario, it is only the product that is of interest. The IoU is calculated as in
equation 4.1, where ε is a small number to avoid potential division by zero if there is no
product in the scene. The IoU for evaluation of the product is denoted IoUPD in this
thesis, "PD" for Product Detection.

IoUPD = TP
TP + FN + FP + ε

(4.1)

A real example of this is seen in figure 4.3, where the product oboy got an IoUPD of
92.84%.

Figure 4.3: The image illustrates the product detection of the product "oboy01." The
green bounding box is the estimated region of the product. The blue and red circles are

not relevant to the image.

Evaluation Cardboard Detection

There are two cases for every pixel when using IoU for evaluating the performance
of cardboard detection. Either, the pixel represents cardboard, or it represents "no
cardboard." When evaluating the cardboard, both the TP (the pixel representing the
cardboard) and the TN (the pixel representing the background) is essential to classify.
If using the IoU for evaluating the performance of the cardboard alone, it will yield 0% for
all cases where there is no cardboard in the image, because there will be no intersection.
The IoU for evaluating the cardboard is denoted IoUCD, "CD" for Cardboard Detection.

To make the IoUCD score account for the problem when there is no occlusion, the
IoU is calculated separately for the cardboard (denoted IoUcardboard) and the background
(denoted IoUbackground) before taking the mean, i.e., the mean IoU. When evaluating the
background, the classification is "inverted," giving TP to the background and FN to the



Chapter 4 Experimental Evaluation 46

cardboard.

IoUcardboard = TP
TP + FN + FP + ε

True class is Cardboard. (4.2)

IoUbackground = TP
TP + FN + FP + ε

True class is Background. (4.3)

IoUCD = IoUcardboard + IoUbackground
2 Mean IoU combining the classes. (4.4)

4.1.4 Accuracy

The Accuracy metric is shown in equation 4.5, as implemented in this thesis.

Accuracy = TP + TN
TP + TN + FP + FN (4.5)

The Accuracy gives information about the proportion of the data that was correctly
classified. One drawback of the Accuracy metric is when there is no cardboard in the
scene. If there is no cardboard, and the estimation yield "no-cardboard," the Accuracy will
be 100%. Furthermore, since the cardboard in most cases only covers a small proportion
of the image, if the prediction never estimates any cardboard, the Accuracy would still
be very high. Therefore, the Accuracy metric is not suitable for evaluating the classifier’s
performance, but rather to see the overall proportion of correctly classified pixels, as this
is useful when evaluating if the detection is "good enough" to use to with the collision
map.

4.1.5 Succsess Rate

For robot path planning, there are only two results. Either the path planning succeeds, or
it fails. The success rate is the number of successful experiments divided by the number
of conducted experiments.

4.2 Table Overview

In this section, detailed information of the header abbreviations of the tables and the
information it contains is described.

Position (Pos.): The row within the distribution pack the product was located.
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ID: The identification of the product. The ID is unique within each experiment.

Category: For each pick, the product was categorized based on the "reason for failure."
The different terms are described here:

• Target: The pick failed and did not manage to find a path to the target (pick-
point).

• Home: The robot picked the product, but did not find a path back to the initial
state.

• Collision: The product collided during the extraction.

• Success: The pick was successful.

• Not reachable: The product was out of reach.

Some additional information regarding collisions: Collisions are allowed, but only to
some extent, divided into "soft-collisions" and "hard-collision." Those terms are not used
in the tables, but all collisions resulting in an unsuccessful pick is a "hard-collision." The
distinction between the two terms used in this thesis is whether or not they manipulate
the workspace, i.e., if the initial position of the setup is changed. If a product collides
with the cardboard, but are still successfully extracted, this would be a successful pick but
with a "soft-collision." Due to the difficulties in objectively determine all "soft-collisions,"
the term is not used in the tables with results, resulting in the collision category only
consisting of "hard-collisions."

4.3 Experiment: Picking from Distribution Containers

The purpose of this experiment was to evaluate the performance of the proposed solution
under simplified environments. E.g., everything is set back to the initial state before each
pick. Using data gathered from this simplified experiment allows for testing in edge-case
scenarios, detecting the limits and constraints of the system. Testing in both a "normal"
situation and in an "edge-case" setting can give insight about where the system falls short
or needs improvements.

The Procedure of the Experiment

• The reference image was captured under the same environment and light as the
conducted experiment.



Chapter 4 Experimental Evaluation 48

• The success rate on the picking was evaluated both in simulation and on the
physical robot, denoted "SR Sim." and "SR. Rob." correspondingly.

• If a pick failed, the product was manually removed from the distribution package.

• A pick was classified as "failed" if no valid robot path was found, or if there was a
"hard-collision."

• Everything was set back to the initial state if there were any collisions or movement
within the distribution package.

• Products that were not reachable, because of limitation in the reach of the end-
effector, does not count in on the success rate on the robot path planning.

4.3.1 Experimental Setup

In this section, the setup of the experiment is described. The experiment contained
eight different product types. The product types were chosen from a pallet of groceries
that fulfilled the assumptions and criteria from section 1.4. Those products, with the
corresponding reference images and images captured from the robot, are available in
Appendix A. A total of 88 products were evaluated for cardboard detection. In contrast,
the path planner evaluation only contained 38 products because the end-effector did not
manage to reach within all the rows of the distribution pack. The planner used was the
RRT-Connect, described in section 2.8.1.

Figure 4.4: The figure displays the setup of the experiment. In the figure, one product
have already been picked by the robot. All the products are in initial states.
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Experimental Settings

Table 4.1: The table displays the image processing settings used in this experiment.
"Morph. op." refers to morphological operation.

Setting Value Unit

Threshold hue 35 ∈ [0− 255]
Threshold saturation 40 ∈ [0− 255]
Threshold value 50 ∈ [0− 255]
Window smoothing 25 pixels
Window morph. op. 55 pixels

4.3.2 Experimental Results

Here, the results of the conducted experiment are presented. Table 4.2 displays the
average score for each product type.

Table 4.2: The table shows the average score for each product type. The data is from
the experiment "Picking from Distribution Containers," with all the 88 products.

Product TP TN FN FP Accuracy IoUCD IoUPD

oboy 11.66% 84.07% 3.02% 1.26% 95.73% 75.15% 90.58%
granola 3.14% 80.51% 2.28% 14.07% 83.65% 53.54% 94.78%
juice 4.13% 82.75% 5.30% 7.82% 86.88% 52.01% 93.11%
tea 4.09% 72.80% 2.89% 20.22% 76.88% 48.79% 73.53%
blenda 8.38% 75.85% 1.90% 13.88% 84.23% 65.60% 78.71%
asana 0.00% 76.60% 9.02% 14.39% 76.60% 38.30% 34.77%
kvikklunch 17.13% 32.39% 7.75% 42.73% 49.52% 33.84% 72.15%
sun 0.00% 61.15% 6.78% 32.06% 61.15% 30.58% 61.11%

Due to the cardboard location in front of the distribution pack, it was worth evaluate
the product types based only on the first row. This is shown in table 4.3.

Table 4.4 displays the reason for failure, along with the statistics from the cardboard
estimation.

Table 4.5 list the overall success rate of the product types along with the number of
products evaluated (not all 88 products were used due to the limiting reach of the
end-effector).
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Table 4.3: The table shows the evaluation of the product types when only considering
the first row ("Row 1"). The percentage is the average of all the products within each
distribution pack in the first row. The data is from the experiment, "Picking from

Distribution Containers."

Product Accuracy IoUCD IoUPD

oboy 99.04% 97.52% 92.19%
granola 99.26% 96.87% 91.83%
juice 96.24% 90.05% 86.68%
tea 92.44% 78.61% 91.14%
blenda 91.93% 72.23% 85.46%
asana 68.75% 34.37% 45.42%
kvikklunch 65.43% 43.77% 86.06%
sun 60.75% 30.37% 54.92%

Table 4.4: The table lists the different categories along with the statistic from the
cardboard estimation. For "Success," this means that 19 products had a successful
extraction. The Accuracy, IoU, and FP are also included, which is the average value of the
products within each each category. The category "Not Reachable" is not supplemented
to the table as it provides no useful information when evaluating "Reason for Failure."
The data in this table is from the experiment, "Picking from Distribution Containers."

Category Num. Prod Accuracy IoUCD IoUPD FP

Target 4 55.62% 27.81% 2.30% 44.38%
Home 8 71.47% 35.74% 86.65% 16.41%
Collision 6 86.95% 57.90% 88.90% 0.41%
Succsess 19 93.58% 73.22% 90.47% 1.01%

Table 4.5: The table lists the success rate for the products used in this experiment,
with the simulator’s success rate (SR Sim.) and the success rate on the physical robot
(SR Rob.). Along is the statistics from the cardboard evaluation. The data is from the

experiment, "Picking from Distribution Containers."

Product Num.
Prod. SR Sim. SR Rob. IoUPD FP Accuracy

oboy 6 100.00% 100.00% 92.83% 1.38% 96.95%
granola 4 100.00% 75.00% 93.57% 0.84% 96.05%
juice 4 100.00% 75.00% 90.67% 0.84% 90.84%
tea 4 100.00% 100.00% 91.83% 1.66% 92.93%
blenda 4 100.00% 75.00% 86.08% 0.70% 94.58%
asana 4 25.00% 25.00% 67.34% 15.95% 74.73%
kvikklunch 4 100.00% 25.00% 80.01% 1.21% 80.29%
sun 9 0.00% 0.00% 56.83% 30.20% 61.99%
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4.4 Experiment: Picking Skewed Products

This experiment was performed to explore the possibilities of picking skewed products.
Picking skewed products are of importance since the products can not be assumed to
be stationary. If a collision within the distribution container occurs, the product might
move.

The Procedure of the Experiment

• The reference image was captured by the same camera.

• The skewed product was always rotated anti-clockwise when looking from the
camera’s position. As seen in figure 4.5.

• All products have to stand upright and have a depth > 5 cm.

• A pick was classified as "failed" if the robot path failed to generate a valid path, or
if there was a "hard-collision."

• Only the reachable products were evaluated, i.e., the first two rows of the products
in this experiment.

• The product of retrieval was skewed, with the right side of the product moved 3
cm back in the scene.

• All other products, except for the product for retrieval, was turned backward, to
force the product detector only to detect the skewed product (because SIFT uses a
reference image of the front of the product).

• Cartesian control was used to pick the products instead of RRT-Connect.

4.4.1 Experimental Setup

The products used in this experiment are the ones with an IoUPD > 80% and Accuracy >
80% from the first experiment from table 4.5, namely "oboy," "granola," "juice," "blenda,"
and "tea." The experiment was conducted on the first two rows, providing a total of
22 products. The product "Kvikklunch" was not included in the experiment because
the depth (surface the product balances) is 2.4cm and will not be suitable due to the
experiment’s procedure.
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Figure 4.5: The figure displays the setup of the experiment. One product was skewed
while the rest was in the original position. Because the skewed product occupies a larger
area, the row in the back was removed. The other products were turned backward to

force product detection to detect the skewed product.

Experimental Settings

Table 4.6: The table displays the image processing settings used in this experiment.
"Morph. op." refers to morphological operation.

Setting Value Unit

Threshold hue 35 ∈ [0− 255]
Threshold saturation 40 ∈ [0− 255]
Threshold value 50 ∈ [0− 255]
Window smoothing 25 pixels
Window morph. op. 55 pixels

4.4.2 Experimental Results

The tables evaluating the experiment are listed below in table 4.7, 4.8, and 4.9.

Table 4.7: The table shows the average score for each product type examining the
cardboard evaluation. The data is from the experiment, "Picking Skewed Products."

Product TP TN FN FP Accuracy IoUCD IoUPD

oboy 15.77% 76.88% 3.16% 4.19% 92.65% 82.34% 90.59%
granola 3.76% 89.38% 4.77% 2.09% 93.14% 61.82% 95.34%
juice 10.36% 81.85% 5.59% 2.21% 92.21% 68.46% 88.13%
tea 5.66% 64.02% 4.76% 25.56% 69.68% 53.43% 69.96%
blenda 11.39% 83.61% 2.03% 2.97% 95.00% 84.00% 70.73%
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Table 4.8: The table lists the different categories along with the statistic from the
cardboard estimation. For "Success," this means that 19 products had a successful
extraction. The Accuracy, IoU, and FP are also included, which is the average value of
the products in the experiment. The category "Not Reachable" is not supplemented to
the table as it provides no useful information when evaluating "Reason for Failure." The

data in this table is from the experiment, "Picking Skewed Products."

Category Num. Prod Accuracy IoUCD IoUPD FP

Target 1 0.00% 0.00% 3.79% 100.00%
Home 2 78.47% 39.23% 91.93% 11.11%
Collision 0 N/A N/A N/A N/A
Succsess 19 94.48% 76.68% 87.46% 1.72%

Table 4.9: The table lists the success rate for the products used in this experiment,
with the simulator’s success rate (SR) and the success rate (SR) on the physical robot.
Along is the statistics from the cardboard evaluation. The data is from the experiment,

"Picking Skewed Products."

Product Num.
Prod. SR Sim. SR Robot IoUPD FP Accuracy

oboy 6 83.33% 83.33% 90.59% 4.19% 92.65%
granola 4 75.00% 75.00% 95.34% 2.09% 93.14%
juice 4 100.00% 100.00% 88.13% 2.21% 92.21%
tea 4 75.00% 75.00% 69.96% 25.56% 69.68%
blenda 4 100.00% 100.00% 70.73% 2.97% 95.00%

4.5 Comparing Experiment

In this section, an excerpt from the statistics in the two experiments is used. The term
"Normal" is referring to products used in the experiments "Picking from Distribution
Packages," and "Skewed" is referring to the "Picking Skewed Products" experiments, in
order to shorten the names.
Because the two experiments did not have the same number of product types, only the
products used in both experiments are compared, and only the first two rows of each
distribution pack. This means that only "Oboy," "Granola," Juice," "Blenda," and "Tea"
have been compared.
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Table 4.10: The table compares the average IoUPD from the two experiments. "Normal"
is referring to the experiment "Picking for Distribution Containers" and "Skewed,"
referring to "Picking Skewed Products." Only the two first rows of the distribution

container are evaluated.

Product IoUPD
Normal

IoUPD
Skewed

Accuracy
Normal

Accuracy
Skewed

oboy 92.83% 90.59% 96.95% 92.65%
granola 93.57% 95.34% 96.05% 93.14%
juice 90.67% 88.13% 90.84% 92.21%
tea 91.83% 69.96% 92.93% 69.68%
blenda 86.08% 70.73% 94.58% 95.00%

Table 4.11: The table list the categorizes for failure or success for the two experiments,
with the number of products placed within each category. FP is the average False

Positive of the products in both experiments.

Category Normal Skewed FP IoUPD Accuracy

Target 0 1 100.00% 3.79% 0.00%
Home 0 2 11.11% 91.93% 78.47%
Collision 3 0 0.09% 92.15% 89.92%
Succsess 18 19 1.47% 89.15% 94.61%

Table 4.12: The products that failed from table 4.11 are listed in this table with the
individual product and the statistics. "Type" is referring to the experiment type, and
the ID is the identification of the product. The "Normal" products all failed due to
"Collision," and the "Skewed" products failed either because of "Home" or "Target."

Type ID TP TN FN FP Accuracy IoUPD

Normal granola04 0.00% 92.01% 7.99% 0.00% 92.01% 95.89%
Normal juice03 0.00% 82.63% 17.37% 0.00% 82.63% 93.67%
Normal blenda02 12.54% 82.58% 4.59% 0.28% 95.12% 86.88%
- - - - - - - -
Skewed oboy06 0.00% 69.27% 13.98% 16.74% 69.27% 88.98%
Skewed granola03 0.00% 87.66% 6.87% 5.47% 87.66% 94.87%
Skewed tea04 0.00% 0.00% 0.00% 100.00% 0.00% 3.79%

Table 4.13: The table displays the success rate of the two experiments, for both
the simulator and the physical robot. Information about the Accuracy and IoUPD is
supplemented for comparison. The products used in the evaluation was "Tea," "Juice,"

"Oboy," "Granola," and "Blenda," on the first two rows.

Experiment Simulator Robot IoUPD Accuracy

Normal 100.00% 85.00% 91.00% 94.27%
Skewed 86.67% 86.67% 82.95% 88.53%
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Discussion and Future Directions

5.1 Discussion

This section discusses the result from section 4: Experimental Evaluation, followed by
suggested further directions. This section also answers the main thesis’ questions from
section 1.4.

5.1.1 Product and Cardboard Detection

For some of the products, the image from the bounding box of the product is perspective
distorted compared to the reference image. This distortion is seen by looking at "tea05"
and "tea06" in figure C.6 and C.7, with their classification results from table B.2. The
products have an IoUPD of around 3% and 5%, respectively, resulting in an unreliable
cardboard estimation. Because of the approach used for evaluating the cardboard, it
is essential to have a high precision bounding box of the product, i.e., high IoUPD. In
this approach, because the cardboard estimation is based upon the bounding box of the
product, the IoUPD should be closer to, or above, 80% to yield a sufficient estimate for
evaluating the cardboard. The reason for not proposing the estimate to be above 90% is
because of the error-margin in the ground truth images, as described in section 4.1.2.

The cardboard will only occupy the outer edges of the distribution container. If the
cardboard estimation is "flawlessly" estimated on the first row of products, it is not
necessary on the rest of the products, because the cardboard estimation has already
been performed on the first row. The result when only evaluating the first row is shown
in table 4.3, with all product performing with an Accuracy > 90% and IoUPD > 80%,
except "Asana," "Kvikklunch," and "Sun." Only evaluating the first row will also benefit
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the cardboard estimation, as the cardboard is most prominent in the first row, and
the degree of presence varies in the other rows because of the position of the camera
compared to the products, as seen in figure C.11.

Comparing the product detection and cardboard estimation of the two experiments
from table 4.10, the IoUPD on "tea" and "blenda" decreased with about 15% and 20% on
the "Skewed" experiment, lowering the IoUPD to < 80%, and consequently, categorizing
the product as unsuitable for picking when skewed.

5.1.2 Robot Path Planning

This section discusses the results with the use of RRT-Connect and Cartesian control, as
well as the cardboard estimation’s influence on the generated path.

Evaluating the robot path planning from table 4.4, it is natural that when the IoUPD =
2.30% (in category "Target"), there is no valid robot path to the target/pick-point since
the product was not correctly identified. Looking at table 4.5, in the column "SR Sim.",
"Asana" and "Sun" succeeded in only 25% and 0%, respectively, whereas the rest had
an "SR.Sim" of 100%. Those two products also have an IoUPD < 70%, and, partly
due to the low IoUPD, the two products have FP of about 16% and 30%, compared to
the successful products with FP about 1%. A high number of FP indicates that the
cardboard estimation after the post-processing with opening, closing, and contours, is
located in the wrong area, thus restricting the generation of a valid path, as seen in
figure C.8 and C.9.

The RRT-Connect is time-consuming and uses unnecessary long trajectories, although
not directly measured in the experiment. Looking at the video recording from one of the
picks with RRT-Connect, [1, File: normal_granola.mp4, ID: granola04], the collision is
due to a trajectory into the side of the cardboard tray. The RRT-Connect does have
randomness involved when calculating the robot path (randomness from the sampling
with exploring trees). This randomness, if combined with uncertainty or allowing for
error-margin in the estimation, increases the possibility for collisions.

Cartesian control was used in the experiment with skewed products. The results from ta-
ble 4.8 show that there were no collisions with the use of Cartesian control. Furthermore,
Cartesian control used a calculation time < 1sec in the conducted experiment, compared
to RRT-Connect, which from the video, [1, File: normal_granola.mp4, ID: granola01],
used a time of ≈ 30sec. Because the Cartesian control has linear paths, and the path
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is a list of determined waypoints, there is no randomness in the same manner as with
RRT-Connect. The drawback is that it will not find any other path if the waypoints are
unreachable.

There is a noticeable difference between the two experiments when examining table 4.11
and the "Categories." The "Normal" products failed due to "Collision," with FP ≈ 0%,
meaning they had a "hard-collision" in the path back to the initial state. In contrast,
the "Skewed" products with Cartesian control had no collision. Instead, they all failed
due to "Target" or "Home," i.e., there was no valid path to retrieve the products. With
the "Target" having an FP = 100%, there was naturally no valid path to the target,
while for "Home," the FP is ≈ 11% comparing to ≈ 1% of "Success" and "Collision."
The "Home" category indicates that the classified region of cardboard is in the wrong area.

The overall success rate from the two experiments is displayed in table 4.13. The
"Normal" experiment did have ≈ 10% higher Accuracy and IoUPD than the "Skewed"
experiment. However, worth noticing is that the "Skewed" experiment with Cartesian
control succeeded with all the products that were successful in the simulator. This
consistency is valuable as the simulator represents the robot’s interpretation of the world.
The SR on the physical robot should be as close as possible to the simulator’s SR.

5.1.3 Picking Skewed Products

The solution for enabling picking of skewed products was to remove a more substantial
area around the product in the collision map. This allowed for pushing while the product
remained outside the collision map. The approach introduced uncertainties that need to
be examined to determine if the approach is a safe and reliable solution. Safety is an issue
because the approach assumes that there is no collision when pushing the product. This
can not always be assumed if the products can move within the distribution container.
That said, the robot path when allowing for pushing, succeeded 19 out of 22 times and did
not have any "hard-collisions," indicating that the approach is worth further exploring.

5.2 Future Work

This section suggests future work and direction based on the results and research done
in this thesis.
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5.2.1 Product and Cardboard Detection

The main challenge with generating a collision map in this thesis was the estimation
of the cardboard. Estimating cardboard by comparing a reference image to a captured
image of the products are sensitive to adjustments like light and shadows. This was
compensated by capturing the reference image in the same environment as the conducted
experiment. It is interesting to look into ways to use images received from third parties,
e.g., the manufacturer. However, these images are not captured in the same environment
as the system and will have increased color differences compared to the scene image.
The light has a severe effect on the performance of the product detector (SIFT) and
the cardboard estimation. If possible, introducing some flat light to brighten the scene
without creating reflection can improve the result of the low-feature products.

The pose estimation method used in this thesis assumes a flat surface of the prod-
uct. If the product does not have a flat front surface, the estimated pose will be
unreliable. Pose estimating was part of the work done by Skutvik [74] on the same
system in his master’s thesis. However, the result was not conclusive, but the thesis digs
deeper into pose estimation techniques, which have not been a significant part of this
project.

Suggested future work for the estimation of cardboard is diverging in two directions.
Either continue with primary color differences, creating an estimation method that works
on a defined area of products, and maybe using machine learning to optimize the param-
eters. If only evaluating the first row and assuming that there is a cardboard present, it
is possible to eliminate the variables by determining the threshold for classification by
using, e.g., Otsu’s method. Otsu’s method selects the threshold value that maximizes
the classes’ separability by evaluating the histogram [75, p. 541]. However, the drawback
and one of the reasons for not being used in this solution is because it separates the data
into two classes, whether or not they exist [75, p. 545].

The other direction is looking into deep neural networks. With the machine learn-
ing segmentation algorithm like Mask R-CNN, as mentioned in section 2.2, one possible
approach for further work is to use a segmentation based product detector to locate
the product, and assume that everything else is collisions. Detecting and segmenting a
product instead of the cardboard will probably be easier as one can rely upon similar
products. One of the challenges with Mask R-CNN, as with most machine learning
techniques, is that it requires a lot of labeled data.
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5.2.2 Robot Path Planning

The following analysis and suggestion are only focusing on path planning and assumes
that the cardboard, occlusion, and collision detection is of no concern.
It is interesting to investigate the performance of different planners, e.g., BIT*, RRT-
Connect, and Cartesian control, when introduced to an unpredictable environment. I.e.,
if the cardboard shape is more complex, where a linear path (up and back) is not sufficient
to retrieve the products. If continuing with experiments on different planners and more
complex cardboard shapes, it is valuable to evaluate the planners on calculation time as
well as the length of the path.
Reconstructing the program to estimate the cardboard in the first row and saving it
to use in the collision map looks promising for future work if continuing with the same
assumptions as in the conducted experiments. Furthermore, as mentioned in section
3.5.2, it is well suited for Cartesian control.

5.2.3 Picking Skewed Products

It is suggested to consider modifications to the system in order to improve the picking of
skewed products. If additional DOF were introduced to the end effector in the horizontal
direction (i.e., around the Y -axis), the tool-tip would be able, in some cases, to pick
products without pushing. It would also be beneficial with an additional camera to
capture depth images from above after the robot has picked a product to account for
changes in the scene.
If not considering physical changes, another possibility is to calculate the new pose of
the product after pushing. This could be achieved by reprogramming the code to update
the collision map after the robot has reached the product.
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Conclusion

This thesis had the purpose of proposing a solution and looking into the challenges of
picking products from distribution containers. Because of the wide scope of the problem,
limitations and assumptions were set in order to evaluate a solution in a defined and
delineate environment.

Three particular statistics stood out from the experiment. When the IoUPD is low,
e.g., < 20%, the method cannot give a proper bounding box of the product. Without
an accurate bounding box, the resulting cardboard evaluation is unreliable. The IoUPD

should, in this implementation, have a value above 80% to give a reliable product and
cardboard detection.
The second observation is when the path planner fails to generate a robot-path in the
simulator. In those cases in the experiment "Picking from Distribution Containers," the
FP was ≈ 44% compared to the successful ones with ≈ 1%. With an increased number
of FP, it is more likely that the pick-point is occluded.
The last observation is with the use of Cartesian control. With the constraints and
assumptions in this thesis, Cartesian control is sufficient and more reliable than RRT-
Connect. The SR was 100% in simulation and 85% on the physical robot when using
RRT-Connect, whereas the Cartesian control had 86.67% in both cases. The robustness
of the Cartesian control, being able to pick the same products as the simulator, is a
desired trait.

From the result of this thesis, it can be concluded that the proposed solution can
work within the given assumptions and constraints. However, more work is necessary to
see the performance of a larger number of products and product types. The products
performing with an IoUPD > 80% and Accuracy > 90%, in both skewed and normal
position, was "Oboy," "Granola," and "Juice."
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Before continuing with the proposed solution, it is suggested to investigate possible
machine learning methods, e.g., Mask R-CNN, as it could be superior in performance
when detecting products and evaluating cardboard. For the robot path planner, a Carte-
sian control for products located in standard trays is from the conducted experiment
considered to be "good enough." However, if introducing more complex shaped cardboard
trays, the use of a path planner to find solutions could benefit, and the BIT* planner is
an interesting planner to explore.
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Appendix A

Experimental Products

All the products used in this thesis are listed here. All the product where used in the
experiment "Picking from Distribution Containers" while A.1, A.2, A.3, A.4, and A.5
were used in the experiment "Picking Skewed Products."

A.1 Oboy

(a) Image captured by the camera on robot. (b) Reference image.

Figure A.1: Product Oboy: The figure display the Reference image and the captured
image of the scene at the first iteration of the experiment.
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A.2 Granola

(a) Image captured by the camera on robot. (b) Reference image.

Figure A.2: Product Granola: The figure display the Reference image and the
captured image of the scene at the first iteration of the experiment.

A.3 Juice

(a) Image captured by the camera on robot. (b) Reference image.

Figure A.3: Product Juice: The figure display the Reference image and the captured
image of the scene at the first iteration of the experiment.
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A.4 Tea

(a) Image captured by the camera on robot. (b) Reference image.

Figure A.4: Product Tea: The figure display the Reference image and the captured
image of the scene at the first iteration of the experiment.

A.5 Blenda

(a) Image captured by the camera on robot. (b) Reference im-
age.

Figure A.5: Product Blenda: The figure display the Reference image and the captured
image of the scene at the first iteration of the experiment.
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A.6 Asana

(a) Image captured by the camera on robot. (b) Reference im-
age.

Figure A.6: Product Asana: The figure display the Reference image and the captured
image of the scene at the first iteration of the experiment.

A.7 Kvikklunch

(a) Image captured by the camera on robot. (b) Reference
image.

Figure A.7: Product Kvikklunch: The figure display the Reference image and the
captured image of the scene at the first iteration of the experiment.
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A.8 Sun

(a) Image captured by the camera on robot. (b) Reference
image.

Figure A.8: Product Sun: The figure display the Reference image and the captured
image of the scene at the first iteration of the experiment.



Appendix B

Experimental Results

B.1 Experiment: Picking Products from Distribution Contain-
ers

Table B.1: Product: Oboy. Table describing the individual results from the experiment
"Picking Products from Distribution Containers."

ID Cat. Pos. TP TN FN FP Accuracy IoUCD IoUPD

oboy01 N/A Row 1 25.75% 73.52% 0.63% 0.10% 99.27% 98.14% 92.84%
oboy02 N/A Row 2 15.47% 74.43% 2.12% 7.99% 89.90% 74.27% 92.05%
oboy03 N/A Row 1 23.67% 74.23% 1.97% 0.13% 97.90% 94.55% 92.30%
oboy04 N/A Row 1 25.79% 74.15% 0.00% 0.05% 99.95% 99.86% 91.42%
oboy05 N/A Row 2 15.25% 82.84% 1.91% 0.00% 98.09% 93.32% 93.72%
oboy06 N/A Row 2 15.25% 81.36% 3.39% 0.00% 96.61% 88.91% 94.63%
oboy07 N/A Row 3 9.43% 85.68% 2.01% 2.87% 95.11% 80.23% 83.73%
oboy08 N/A Row 3 4.38% 87.63% 6.21% 1.77% 92.01% 63.53% 84.80%
oboy09 N/A Row 3 4.90% 87.25% 5.70% 2.16% 92.15% 65.08% 94.72%
oboy10 N/A Row 4 0.00% 95.13% 4.87% 0.00% 95.13% 47.56% 83.57%
oboy11 N/A Row 4 0.00% 96.40% 3.60% 0.00% 96.40% 48.20% 86.32%
oboy12 N/A Row 4 0.00% 96.19% 3.81% 0.00% 96.19% 48.09% 96.83%

Table B.2: Product: Tea. Table describing the individual results from the experiment
"Picking Products from Distribution Containers."

ID Cat. Pos. TP TN FN FP Accuracy IoUCD IoUPD

tea01 Plastic Row 1 14.19% 78.20% 5.59% 2.01% 92.40% 78.13% 91.72%
tea02 Plastic Row 1 15.32% 77.15% 4.15% 3.37% 92.48% 79.09% 90.56%
tea03 Plastic Row 2 0.00% 93.10% 6.90% 0.00% 93.10% 46.55% 94.70%
tea04 Plastic Row 2 3.39% 90.36% 4.99% 1.25% 93.75% 64.35% 90.34%
tea05 Plastic Row 3 0.00% 13.78% 0.00% 86.22% 13.78% 6.89% 3.05%
tea06 Plastic Row 3 0.00% 56.39% 0.00% 43.61% 56.39% 28.19% 4.95%
tea07 Plastic Row 4 0.00% 74.96% 0.00% 25.04% 74.96% 37.48% 93.35%
tea08 Plastic Row 4 2.84% 85.16% 2.34% 9.67% 88.00% 53.39% 86.57%
tea09 Plastic Row 5 5.14% 79.09% 4.97% 10.80% 84.23% 53.97% 83.01%
tea10 Plastic Row 5 0.00% 79.76% 0.00% 20.24% 79.76% 39.88% 96.99%
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Appendix C

Illustration Images

C.1 Collision Point Cloud

Figure C.1: The figure displays the Collision Point Cloud consisting of the different
sub point clouds. The red area is the Occlusion Point Cloud, consisting of everything
within the FOV. The white cube is the area removed by the Product Point Cloud, and
the blue area is the Cardboard Point Cloud inserted due to the possibility of removed

with the product.

Figure C.2: The figure displays the same information as figure C.1, but the problem
with the cardboard being removed is clearer, as it resides within the bounding box of

the Product Point Cloud.
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Figure C.3: The figure displays the Restriction Point Cloud (green points), restricting
movement outside the shelf compartment. Inside the green qube, the red Occlusion
Point Cloud, blue Cardboard Point Cloud and the white bounding box of the product is

displayed.

C.2 Labelbox Images

(a) The output from Labelbox when labeling the product. (b) The output from Labelbox
when labeling the cardboard.

Figure C.4: The figure displays the output images from Labelbox. Figure (a) is the
ground truth image for comparing the product detection performance, while (b) is the

ground truth image used for comparing the cardboard detection performance.
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C.3 Flow Chart of Image Processing

2

3

1

2: Convert to HSV and calculate
the absolute difference of the two

images, for each channel.

Reference
image

Captured image of the scene

H S V

Detected product.

3: Threshold each
channel and combine to

binary image.
4: Morphological operation and

contours.

1: Perspective transformation of
bounding box to reference image.

4

5: Transform image to back
original frame

4

Finished binary image

Figure C.5: The figure shows a principle flow chart for estimating the cardboard. 1:
The product was detected with SIFT, and the estimated region was transformed to the
same perspective as the reference image. 2: The reference image and the scene image
were converted to the HSV color space, and the absolute difference calculated on each
channel. 3: For each channel, a threshold was set to determine if the regions differs
enough to be considered cardboard. 4: The binary image undergoes morphological
operations, and the largest contour is kept. 5: The binary image is transformed back to

the original scene image.
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C.4 Distortion

C.4.1 Product: tea05, Experiment: Picking from Distribution Containers

(a) The captured image with SIFT estimation of the product. (b) The estimated product
from figure (a).

Figure C.6: The figure display the SIFT estimation green line in (a), with the corre-
sponding bounding box. The image from the bounding box is illustrated in (b), and

yield a distorted image. This product got an IoUPD of 3.05%.

C.4.2 Product: tea06, Experiment: Picking from Distribution Containers

(a) The captured image with SIFT estimation of the product. (b) The estimated product
from figure (a).

Figure C.7: The figure display the SIFT estimation green line in (a), with the corre-
sponding bounding box. The image from the bounding box is illustrated in (b), and

yield a distorted image. This product got an IoUPD of 4.95%.
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C.5 Cardboard Estimation Failure

C.5.1 Product: sun09, Experiment: Picking from Distribution Containers

(a) Reference im-
age.

(b) Scene image. (c) Estimated
cardboard.

Figure C.8: The figure display the product sun09 with the reference image (a), the
bounding box of the product used for cardboard detection in (b), and the estimated
cardboard in (c). The product are from the experiment "Picking from Distribution

Containers" and have an IoUPD = 92.5% and FP = 22.66%.

C.5.2 Product: asana03, Experiment: Picking from Distribution Containers

(a) Reference image. (b) Scene image. (c) Estimated card-
board.

Figure C.9: The figure display the product asana03 with the reference image (a), the
bounding box of the product used for cardboard detection in (b), and the estimated
cardboard in (c). The product are from the experiment "Picking from Distribution

Containers" and have an IoUPD = 89.86% and FP = 15.76%.
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C.6 Contours Failure

C.6.1 Product: oboy06, Experiment: Picking Skewed Products

(a) Estimated cardboard. (b) Estimated cardboard after
morphological operations.

(c) Resulting estimate after
keeping largest contours.

Figure C.10: The figure illustrates the possible drawback of the cardboard estimation
procedure. If the FP pixels get clustered in a continuous area and the number of FP >

TP, the method will keep the FP and discard the TP, as seen in (c).

C.7 Cardboard Estimation

C.7.1 Product Type: Oboy, Experiment: Picking from Distribution Contain-
ers

(a) Oboy03, Row 1 (b) Oboy05, Row 2 (c) Oboy08, Row 3 (d) Oboy11, Row 4.

Figure C.11: The figures shows the cardboard’s prominence for each row, highlighted
in green. In row 1 (a), the cardboard is clearly visible, but for row 4 (d), this is not the

case, and the cardboard estimation might not detect any cardboard.



Appendix D

Code

The program developed in this thesis is dependent on Pickr’s confidential code. Because
of this, the attached main.cpp is not compilable and is only attached to get some insight
into the code. The illustration in figure 3.3 displays the simplified structure of the
program.

D.1 main.cpp

The code in the main.cpp file is the main code of the system. The code is commented
to some extent. This file uses some other classes created in this thesis is. Those classes
are not attached since they are explained in the thesis and cannot compile due to
dependencies. The mentioned classes are:

• SiftCode: The class for object detection with SIFT. As explained in section 3.3.2.

• Hsv: The class for estimating the cardboard. As explained in section 3.3.3.

• OcclusionMap: In short, generate the collision map. As explained in section 3.4.

• ImageProsessing: Helper methods to execute image processing functions.
E.g., convertBGRtoHSV().

In addition to the classes mentioned above, the main.cpp use one of the already existing
files from Pickr. This class has not been created during this thesis but is essential for
controlling the robot. The file is the SystemInterface class. The class is used for
controlling and moving the physical robot.
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main.cpp/*
---- Include directories and libraries
*/

#include <iostream>
#include "opencv2/core.hpp"
#include <pcl/io/pcd_io.h>
#include <pcl/common/io.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/filters/crop_box.h>
#include <sensor_msgs/PointCloud2.h>
#include <ros/ros.h>
#include <sensor_msgs/PointCloud2.h>
#include <pcl/io/pcd_io.h>
#include <pcl/common/common.h>
#include <pcl_conversions/pcl_conversions.h>
#include <moveit/planning_scene_monitor/planning_scene_monitor.h>
#include <sys/stat.h>
#include <Eigen/Geometry>
#include <fstream>
#include <cstdlib>
#include <rapidjson/document.h>
#include <rapidjson/istreamwrapper.h>
#include <rapidjson/writer.h>
#include <rapidjson/stringbuffer.h>
#include <rapidjson/ostreamwrapper.h>

#include "../Objects/SystemInterface/SystemInterface.h"
#include "pick_n_pack/OpMode.h"

#include "helper.h"
#include "siftCode.h"
#include "imageProsessing.h"
#include "hue.h"
#include "ssim.h"
#include "occlusionMap.h"
#include "templateMatching.h"
#include "cylindrical.h"

using namespace rapidjson;


/*
---- Define the different states
*/
namespace testsystem_msc{
    const unsigned int INIT = 0;
    const unsigned int OBJECT_DETECTION = 1;
    const unsigned int CARDBOARD_DETECTION = 2;
    const unsigned int GENERATE_COLLISIONMAP = 3;
    const unsigned int PICK_UP_PRODUCT = 4;
    const unsigned int DELIVER_ITEM = 5;
    const unsigned int END = 6;
    const unsigned int TAKE_PICTURE = 7;
}


/*
---- The main file require two input, the product type and a number (ID) 
*/
int main( int argc, char* argv[]){
    int STATE = testsystem_msc::INIT;

    string product_counter = argv[2]; // product_counter is the ID, e.g., "01"
    string product_type = argv[1]; // product_type is the type, e.g., "Oboy"


    /*
    ---- Make directories for saving the files 
    */
    string data_root = "data_" + product_type + product_counter;
    mkdir((data_root).c_str(), S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH);
    mkdir((data_root + "/pictures").c_str(), S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH);
    mkdir((data_root + "/pcd_files").c_str(), S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH);
    mkdir((data_root + "/image_eval").c_str(), S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH);


    /*
    ---- Initialize ROS
    */
    ros::init(argc, argv, "main_thesis");
    ros::NodeHandle nh;
    ros::Publisher publisher = nh.advertise<sensor_msgs::PointCloud2>("/publish_collisionmap", 1, true);

    /*
    ---- Creating JSON object, and loading info of the product
    */
    std::ifstream ifs_products { R"(../../../src/pick_n_pack/src/thesis_files/products.json)" };
    if ( !ifs_products.is_open() )
    {
        std::cerr << "JSON_1: Could not open file for reading!\n";
        return EXIT_FAILURE;
    }
    IStreamWrapper isw_products { ifs_products };
    Document doc_products {};
    doc_products.ParseStream( isw_products );
    const Value& product = doc_products[argv[1]];
    string reference_image_path = product["Reference Image"].GetString();
    string pcd_path = product["PCD file"].GetString();

    /*
    ---- Creating JSON object, and loading info of settings
    */
    std::ifstream ifs_settings { R"(../../../src/pick_n_pack/src/thesis_files/settings.json)" };
    if ( !ifs_settings.is_open() )
    {
        std::cerr << "JSON_2: Could not open file for reading!\n";
        return EXIT_FAILURE;
    }
    IStreamWrapper isw_settings { ifs_settings };
    Document doc_settings {};
    doc_settings.ParseStream( isw_settings );
    const Value& settings_robot = doc_settings["robot"];
    const Value& settings_image_processing = doc_settings["image_processing"];

    /*
    ---- Set variables
    */
    const bool LIVE_IMAGES = settings_robot["LIVE_IMAGES"].GetBool();
    const bool PICKING_PRODUCT = settings_robot["PICKING_PRODUCT"].GetBool();

    // Position x,y,z in meters
    const double INIT_POS_X = 0.7365;
    const double INIT_POS_Y = 0.8565;
    const double INIT_POS_Z = 0.543;
    // Rotation in quaternions
    const double INIT_ROT_X = 0.0;
    const double INIT_ROT_Y = 0.0;
    const double INIT_ROT_Z = 0.0;
    const double INIT_ROT_W = 1.0;

    const double EXTRA_SUCTION_DISTANCE = settings_robot["EXTRA_SUCTION_DISTANCE"].GetDouble();
    const double EXTRA_CROPPING_DISTANCE = settings_robot["EXTRA_CROPPING_DISTANCE"].GetDouble();
    const double ATTACHED_PRODUCT_REDUCED_SIZE = settings_robot["ATTACHED_PRODUCT_REDUCED_SIZE"].GetDouble();
    const double PICK_POINT_OFFSET_X = settings_robot["PICK_POINT_OFFSET_X"].GetDouble();
    const double PICK_POINT_OFFSET_Y = settings_robot["PICK_POINT_OFFSET_Y"].GetDouble();
    
    const double PICK_SPEED = settings_robot["PICK_SPEED"].GetDouble();
    const double DELIVER_SPEED = settings_robot["DELIVER_SPEED"].GetDouble();
    // CARTESIAN = bool value, if true: use Cartesian control, else: use default path planner (RRT-Connect)
    const bool CARTESIAN = settings_robot["CARTESIAN"].GetBool();

    bool run_loop = true;
    int numberOfProducts = product["Number of products"].GetInt();

    /*
    ---- Initiate objects
    */
    SiftCode sift(data_root);
    ImageProsessing image_prosessing(data_root);
    SystemInterface system_interface;
    OcclusionMap occlusionMap = OcclusionMap(product, settings_robot, data_root);

    /*
    ---- Import files
    */
    Mat img_ref = imread(reference_image_path, IMREAD_UNCHANGED);

    // Check if the reference image is cropped, i.e., if it has the "alpha" value.
    Mat alpha(img_ref.rows, img_ref.cols, CV_8UC1);
    if (img_ref.channels() == 4){
        std::vector<cv::Mat> channels;
        cv::split(img_ref, channels);
        alpha = channels[3];
    }

    /*
    ---- Creating empty image files
    */
    pcl::PointCloud<pcl::PointXYZRGB>::Ptr pointcloud_scene (new pcl::PointCloud<pcl::PointXYZRGB>);
    std::vector<cv::Mat> hsv_channels_aligned;                      
    std::vector<cv::Mat> hsv_channels_aligned_mean;                 
    std::vector<cv::Mat> hsv_channels_ref;                         
    std::vector<cv::Mat> hsv_channels_ref_mean;                     
    Mat binary_image_original(img_ref.rows, img_ref.cols, CV_8UC1);
    Mat binary_image_hue(img_ref.rows, img_ref.cols, CV_8UC1);
    Mat difference_image_hue(img_ref.rows, img_ref.cols, CV_8UC1);
    Mat img_aligned;
    Mat homography;
    Mat scene_with_occlusion;
    Mat binary_image_full;
    Mat img_scene_2d_rgb;
    Mat binary_image_couturs;
    Mat binary_image_after_morphology;

    /* The position of the product */
    geometry_msgs::PoseStamped product_pos;

    // Define the initial position for the robot
    geometry_msgs::PoseStamped init_pos;
    init_pos.pose.position.x = INIT_POS_X;
    init_pos.pose.position.y = INIT_POS_Y;
    init_pos.pose.position.z = INIT_POS_Z;
    init_pos.pose.orientation.x = INIT_ROT_X;
    init_pos.pose.orientation.y = INIT_ROT_Y;
    init_pos.pose.orientation.z = INIT_ROT_Z;
    init_pos.pose.orientation.w = INIT_ROT_W;
    init_pos.header.frame_id = tf_frames::BASE_LINK;

    /*
    ---- Start the loop
    */        
    while (run_loop == true) {
        switch (STATE) {
            case testsystem_msc::INIT: {
                ROS_INFO("STATE :: INIT");
                /*
                ---- Move robot to start position
                */
                system_interface.move_to_pose(init_pos, manipulators::EEF_PICKING, 0.5);

                // LIVE_IMAGES, if true, the camera is used, else a saved PCD files is used.
                if (!LIVE_IMAGES) {
                    pcl::io::loadPCDFile(pcd_path, *pointcloud_scene);
                    img_scene_2d_rgb = image_prosessing.createMatFromPcl(pointcloud_scene);
                    imwrite((data_root + "/pictures/scene_image_2d.png").c_str(), img_scene_2d_rgb);
                    STATE = testsystem_msc::OBJECT_DETECTION;
                } else {
                    STATE = testsystem_msc::TAKE_PICTURE;
                }

                break;
            }
            case (testsystem_msc::OBJECT_DETECTION): {
                /*
                ---- Detecting the product
                */
                ROS_INFO("STATE :: OBJECT_DETECTION");

                sift.create(img_scene_2d_rgb, img_ref);
                img_aligned = sift.getImageAligned();
                image_prosessing.storeImageAligned(img_aligned);
                homography = sift.getHomography();

                Mat img_matches = sift.getImgMatches();
                image_prosessing.countoursTest(img_matches);

                /* Converting both the reference image and the scene image (aligned) to HSV */
                hsv_channels_aligned = image_prosessing.convertBGRtoHSV(img_aligned);
                hsv_channels_ref = image_prosessing.convertBGRtoHSV(img_ref);

                /* Saving images */
                imwrite((data_root + "/image_eval/0_img_ref.png").c_str(), img_ref);
                imwrite((data_root + "/image_eval/0_img_aligned.png").c_str(), img_aligned);

                imwrite((data_root + "/" + product_type + product_counter + "_scene.png").c_str(), img_aligned);
                imwrite((data_root + "/" + product_type + product_counter + "_ref.png").c_str(), img_ref);

                STATE = testsystem_msc::CARDBOARD_DETECTION;
                break;
            }
            case (testsystem_msc::CARDBOARD_DETECTION): {
                ROS_INFO("STATE :: CARDBOARD_DETECTION");
                /*
                ---- Cardboard estimation
                */

               if (img_ref.channels() == 4){
                Hsv hsv = Hsv(hsv_channels_aligned, hsv_channels_ref, img_aligned, alpha, data_root);

                hsv_channels_ref_mean = hsv.getRefMean();
                hsv_channels_aligned_mean = hsv.getAlignedMean();
                binary_image_original = hsv.getBinary();
               }
               else{
                Hsv hsv = Hsv(hsv_channels_aligned, hsv_channels_ref, img_aligned, data_root);

                hsv_channels_ref_mean = hsv.getRefMean();
                hsv_channels_aligned_mean = hsv.getAlignedMean();
                binary_image_original = hsv.getBinary();
               }

                binary_image_after_morphology = image_prosessing.closeOpen(binary_image_original, settings_image_processing["WINDOW_SIZE_OPENING"].GetInt());

                binary_image_couturs = image_prosessing.countours(binary_image_after_morphology);
                imwrite((data_root + "/" + product_type + product_counter + "_binary.png").c_str(), binary_image_couturs);

                Mat temp_save = img_aligned.clone();
                image_prosessing.illustrateBoundary(binary_image_couturs, temp_save);
                imwrite((data_root + "/image_eval/6_4binary_counturs.png").c_str(), temp_save);

                if (!PICKING_PRODUCT) {
                    STATE = testsystem_msc::END;
                    break;
                } else {
                    STATE = testsystem_msc::GENERATE_COLLISIONMAP;
                    break;
                }

            }
            case testsystem_msc::GENERATE_COLLISIONMAP: {
                ROS_INFO("STATE :: GENERATE_COLLISIONMAP");
                /*
                ---- Generate collison map
                */

                warpPerspective(binary_image_couturs, binary_image_full, homography, img_scene_2d_rgb.size());
                scene_with_occlusion = img_scene_2d_rgb.clone();
                image_prosessing.illustrateBoundary(binary_image_full, scene_with_occlusion);

                imwrite((data_root + "/pictures/scene_with_occlusion.png").c_str(), scene_with_occlusion);
                imwrite((data_root + "/pictures/binary_image_full.png").c_str(), binary_image_full);

                std::vector<Point2f> scene_corners = sift.getSceneCorners();
                occlusionMap.generateCollisionMap(pointcloud_scene, sift.getSiftPoints(), scene_corners,
                                                scene_with_occlusion);

                /*
                ---- Publishing pointcloud
                */
                pcl::PointCloud<pcl::PointXYZRGB>::Ptr temp_load_collision (new pcl::PointCloud<pcl::PointXYZRGB>);
                pcl::io::loadPCDFile ((data_root + "/pcd_files/collisionPointcloud.pcd").c_str(), *temp_load_collision);

                sensor_msgs::PointCloud2 pointcloud_ROS;
                pcl::toROSMsg(*temp_load_collision, pointcloud_ROS);
                pointcloud_ROS.header.frame_id = "pointcloud_link";

                publisher.publish(pointcloud_ROS);

                ROS_INFO("--> Publishing Pointcloud!");

                ROS_WARN(":::::::::::::::::::::::::::::");
                ROS_WARN("-----------------------------");
                ROS_WARN("MOVING ROBOT! ARE YOU SURE? ");
                ROS_WARN("-----------------------------");
                ROS_WARN(":::::::::::::::::::::::::::::");
                ROS_WARN("Press any key to continue!");
                cin.get();

                STATE = testsystem_msc::PICK_UP_PRODUCT;
                break;
            }
            case testsystem_msc::PICK_UP_PRODUCT: {
                ROS_INFO("STATE :: PICK_UP_PRODUCT");
                /*
                ---- Moving product to pickpoint location
                */

                Eigen::Quaternionf product_rotation;
                product_rotation.x() = occlusionMap.getCenterRotation().x();
                product_rotation.y() = occlusionMap.getCenterRotation().y();
                product_rotation.z() = occlusionMap.getCenterRotation().z();
                product_rotation.w() = occlusionMap.getCenterRotation().w();

                // The orientation for the target is wrong
                Eigen::Quaternionf correction_rotation;
                correction_rotation.x() = 0.0;
                correction_rotation.y() = 0.0;
                correction_rotation.z() = -1.0;
                correction_rotation.w() = 0.0;

                Eigen::Quaternionf correct_product_rotation;
                correct_product_rotation = product_rotation * correction_rotation;

                product_pos.pose.position.x = occlusionMap.getPickPoint().x + PICK_POINT_OFFSET_X;
                product_pos.pose.position.y = occlusionMap.getPickPoint().y + PICK_POINT_OFFSET_Y;
                product_pos.pose.position.z = occlusionMap.getPickPoint().z + EXTRA_SUCTION_DISTANCE + ATTACHED_PRODUCT_REDUCED_SIZE/2;
                product_pos.pose.orientation.x = correct_product_rotation.x();
                product_pos.pose.orientation.y = correct_product_rotation.y();
                product_pos.pose.orientation.z = correct_product_rotation.z();
                product_pos.pose.orientation.w = correct_product_rotation.w();
                product_pos.header.frame_id = "pointcloud_link";
                product_pos = system_interface.transformToFrame(product_pos, tf_frames::BASE_LINK);

                if (PICKING_PRODUCT) {
                    ROS_INFO("-- Turning vaccum ON!");
                    system_interface.controlVacuum(true);
                }

                /*
                ---- Add product as collision object and move to position
                */
                ROS_INFO("-- Moving to product position!");
                if(CARTESIAN){
                    std::cout << "USING CARTESIAN CONTROL: TO TARGET" << endl;
                    std::vector<geometry_msgs::PoseStamped> waypoints_target;
                    geometry_msgs::PoseStamped product_offset = product_pos;
                    product_offset.pose.position.z -= 0.1;
                    waypoints_target.push_back(product_offset);
                    product_offset.pose.position.z += 0.05;
                    waypoints_target.push_back(product_offset);
                    waypoints_target.push_back(product_pos);
                    system_interface.move_with_waypoints(waypoints_target, manipulators::EEF_PICKING);
                }
                else{
                    std::cout << "USING DEFAULT PLANNER: TO TARGET" << endl;
                    system_interface.move_to_pose(product_pos, manipulators::EEF_PICKING, PICK_SPEED);
                }

                STATE = testsystem_msc::DELIVER_ITEM;
                break;

            }
            case testsystem_msc::DELIVER_ITEM: {
                ROS_INFO("STATE :: DELIVER_ITEM");
                /*
                ---- Move robot to delivery position
                */
                if(CARTESIAN){
                    std::cout << "USING CARTESIAN CONTROL: TO HOME" << endl;
                    double buffer_up = 0.02;
                    double buffer_back = 0.02;
                    double highestCardboardPoint = occlusionMap.getHighestCardboard();
                    double lowestProductPoint = occlusionMap.getPickPoint().y + product["Product Height"].GetDouble()/2;                    
                    double up = product["Product Height"].GetDouble()/2 + buffer_up;
                    double closestCardboardPoint = occlusionMap.getClosestCardboard();
                    double furthestProductPoint = occlusionMap.getPickPoint().z + product["Product Depth"].GetDouble();
                    double back = abs(furthestProductPoint-closestCardboardPoint) + buffer_back;

                    std::vector<geometry_msgs::PoseStamped> waypoints_home;
                    geometry_msgs::PoseStamped temp1_home = product_pos;
                    waypoints_home.push_back(temp1_home);
                    temp1_home.pose.position.y += up;
                    waypoints_home.push_back(temp1_home);
                    temp1_home.pose.position.z -= back;
                    waypoints_home.push_back(temp1_home);

                    temp1_home.pose.position.x = INIT_POS_X;
                    temp1_home.pose.position.y = INIT_POS_Y;
                    temp1_home.pose.position.z = INIT_POS_Z;
                    waypoints_home.push_back(temp1_home);

                    /* The difference with this "move_to_pose" is that is attaches a viritual product to the tooltip*/
                    system_interface.move_to_pose_cartesian(waypoints_home, manipulators::EEF_PICKING, product, settings_robot);
                }
                else{
                    std::cout << "USING DEFAULT PLANNER: TO HOME" << endl;
                    system_interface.move_to_pose_planner(init_pos, 
                                                    manipulators::EEF_PICKING, 
                                                    DELIVER_SPEED,
                                                    product,
                                                    settings_robot);
                }
                if (PICKING_PRODUCT) {
                    ROS_INFO("-- Item delivered. Turning vaccum OFF!");
                    system_interface.controlVacuum(false);
                }

                if (numberOfProducts > 1) {
                    STATE = testsystem_msc::INIT;
                    numberOfProducts -= 1;
                } else {
                    STATE = testsystem_msc::END;
                }

                break;
            }
            case testsystem_msc::TAKE_PICTURE: {
                ROS_INFO("STATE :: TAKE_PICTURE");

                ROS_INFO("--> Sleep for 1 seconds to stabilize robot!");
                ros::Duration(1.0).sleep();
                sensor_msgs::PointCloud2 pointcloud_scene_p2 = *ros::topic::waitForMessage<sensor_msgs::PointCloud2>("/picking_camera/depth_registered/points");
                pcl::fromROSMsg(pointcloud_scene_p2, *pointcloud_scene);
                img_scene_2d_rgb = image_prosessing.createMatFromPcl(pointcloud_scene);
                pcl::io::savePCDFileASCII((data_root + "/pcd_files/pointcloud_scene.pcd").c_str(), *pointcloud_scene);

                STATE = testsystem_msc::OBJECT_DETECTION;
                break;
            }
            case testsystem_msc::END: {
                ROS_INFO("STATE :: END");

                std::ifstream  src("../../../src/pick_n_pack/src/thesis_files/settings.json", std::ios::binary);
                std::ofstream  dst((data_root + "/settings.json").c_str(),   std::ios::binary);

                dst << src.rdbuf();

                run_loop = false;
                break;
            }
        }
    }
    ROS_INFO(":::::::::::: FINISHED :::::::::::");
}
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