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Summary

In this report, survival data from a german breast cancer study has been anal-
ysed using the programming software R. For the 686 female patients partici-
pating in the study, the value of eight explanatory variables were recorded at
the start of the study. These variables were age, menopause status, whether
the patient received tamoxifen or not, tumor grade, tumor size, number of
positive lymph nodes, and amount of progesterone and estrogen bound to
proteins in the cytosol of the primary tumor. Both time to recurrence of tu-
mor and time to death were recorded for each patient. The focus has been to
find out how important the explanatory variables are when it comes to time
to recurrence and time to death. After creating Kaplan-Meier curves and do-
ing log-rank tests, the data were analysed using Cox regression. The method
of purposeful selection was used to choose which of the explanatory variables
that should be included in the Cox regression model. Schoenfeld residuals
plots were used to identify wheter or not the assumption of proportional
hazards has been obeyed. Martingale residuals plots were used to detect the
functional form that should be used for the explanatory variable values in
the models. After performing purposeful selection, size, grade, nodes and
progesterone were the variables that remained for time to death. For time
to recurrence, tamoxifen, grade, nodes and progesterone were the ones that
remained. An attempt to model recurrence as a time-dependent variable was
made for time to death, and it was found that people experiencing recurrence
has a much higher chance of death than those not experiencing recurrence.
Weibull distributed survival times were simulated by assuming the value
of three explanatory variables (normally, exponentially and uniformly dis-
tributed) and their associated regression coefficients. A data frame of the
simulated survival data were created, and Cox regression were runned on
this data frame to check if the assumed regression coefficients were repro-
duced. The 95 % confidence intervals for the regression coefficients produced
by the Cox regression machinery were found to include the assumed regres-
sion coefficient values. It was found that increasing the standard deviation of
the normally distributed explanatory variable increased the accuracy of the
regression coefficient estimates. Increasing the number of simulations was
also found to increase the accuracy of the estimates.
Survival data which had non-proportional hazards were simulated by an in-
built R-function called sim.survdata. These data were used to test whether
or not the Schoenfeld residuals plot could detect the assumed functional form
of a time-dependent regression coefficient. From the plot it was possible to
detect that the assumed functional form had the graph of a parabola.
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Chapter 1

Introduction

This report is about Survival Analysis and how to use Cox Regression to
analyse survival data. Before presenting any details, a short explanation of
the content in the different chapters in this report will be given.

In chapter 2 an introduction to basic survival analysis is given. Basic ter-
minology and principles are presented. The survivor and hazard function,
the Kaplan-Meier estimator and the log-rank test are the important topics
in this chapter.

In chapter 3, the basics of Cox Regression is presented. The main focus is
the proportional hazard model. Schoenfeld and Martingale residuals are also
important topics in this chapter.

In chapter 4, the theory established in the two first chapters is applied on
survival data from a german breast cancer study. Analysis is done for both
time to death and time to recurrence.

In chapter 5, it is shown how to simulate survival data where the survival
times are Weibull distributed. Cox regression is then applied to the simu-
lated survival data to see if the values of the regression coefficients that was
assumed during simulation are reproduced.

In chapter 6 the main focus is to present conclusions of the results from chap-
ter 4 and 5. Suggestions to further work will also be given.

To do the estimates and simulations in chapter 4 and 5, the programming
software R was used. The scripts showing the code that was used are found
in Appendix A that follows right after chapter 6.

The report is ended with a bibliography list, showing the literary works used
in this report. In this report the IEEE reference style was used.
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Chapter 2

Intoduction to Survival Analysis

In this chapter, there will be given an introduction to a branch of Statistics
called ”Survival Analysis”. The source of information is Chapter 1 and 2
in David Collett’s book ”Modelling Survival Data in Medical Research” [1].

In survival analysis, the data being analysed is time. The times are measured
”from a well-defined origin until the occurence of some particular event or
end-point.”, [1, p. 1]. Later in this report, time data from medical research
will be analysed. In medical research, the time origin t0 is set to be the time
a patient enters the medical study[1]. If the end-point is the death of the
patient, the time data is called ”survival data” [1]. If the end-point is not
the death of the patient (but some other event), then the time data is called
”time to event data”[1]. Study time[1] is the time from start of study tstart

until the end of study tend. During the study time patients are recruited and
followed up. When the study time is over, the analysis of the survival times
starts. Patient time is the time a patient spends in a study[1].

Now, consider a medical research study that looks at survival data for a
group of patients during the study time in the interval [tstart, tend]. Since the
study is interested in survival data, the information of interest is when the
patients in the study dies. A particular patient enters the study at time t0.
Now one of three events can happen to the patient during the study time[1]:
1) The patient dies
2) The patient is lost to follow-up
3) The patient is alive when the study time is over

In case 1, the patient stays in the study from t0 to t0+ t, where t is called the
patient’s survival time. That is, the patient dies t time units after it entered
the study. Since the patient is not confirmed ”dead” in case 2 and 3, these
cases will not give rise to actual survival times. They will give rise to censored
survival times. When a patient’s survival time is censored, it simply means
that an actual death/ end point is not observed for that particular patient.
In case 2, for some reason the patient is lost to follow-up (the patient could
have moved to another city or country, which would make it difficult to show
up to participate in the study). The only thing known is that the patient
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was alive during the last show-up at the research center, which was at time
t0 + c2. This makes c2 a censored survival time.
At time t0 + c3 the study time is over, and the patient from case 3 is still
alive. c3 is also a censored survival time.
Note that, each patient has its own t0, the time the patient enters the study.
This time is not used when the survival data analysis is made. Then, only
the censored and actual survival times c and t are being used. A patient’s
survival time (actual or censored) starts at zero (this is usually when the
patient is diagnosed with a disease), and ends when one of the three events
mentioned above occurs.

There exist different types of censoring. Three types are mentioned in Chap-
ter 1 of Collett’s book [1]:

1) Left censoring
This is when we only know that the actual survival time is smaller than
the censored one. That is, t < c, where t and c are actual and censored
survival times, respectively. An example could be recurrence of a cancer
tumor. Imagine you have a patient who’s cancer tumor has been removed by
surgery. One is interested in finding how long it goes before the tumor recurs.
The survival time of the patient starts after the tumor is removed, and ends
when the tumor’s recurrence is observed. At the time incident the tumor is
observed to recur (this will be the censored survival time), one knows that
the actual time of recurrence must have been some time before the observed
time (tumors do not grow in a second). If we had drawn a time line, the
actual time would lie to the left of the censored time. This is the reason this
kind of censoring is called ”left censoring”.

2) Right censoring
This is when we observe that the actual survival times is larger than the
censored one. That is, when c < t. An example of this could be if a patient
is alive when the study time is over. Then the only information we have is
that the patient will die at some later time. If we again had drawn a time
line, this actual time would lie to the right of the censored time.

3) Interval censoring
Interval censoring is when the actual survival time is known to lie inside a
specific time interval.

Another aspect of censoring is whether the censoring is informative or not.
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The three type of censoring mentioned above can all be subject to informative
censoring. Assume a medical research study is investigating whether a given
treatment is increasing the survival time of the patients participating in the
study. It could happen that, the treatment has such a negative effect on
the health of some of the patients that the treatment must be withdrawn
from the study for those patients. For the sake of the study, continuing
observing patients who is not receiving treatment anymore makes no sense.
For this reason, the study must be terminated for those patients it concerns,
and the patients’ survival times must be censored. This type of censoring
is called ”informative. As a matter of fact, in this example the survival
time is also right censored, since it is known that the patient is alive after
the censored survival time. Collett emphasizes in his book that, for the
methods presented in his book to be valid, the censored survival times must
be of non-informative character. Non-informative censoring means that the
censoring is ”not related to any factors associated with the actual survival
time”[1, p. 318]. In other words, the censored survival time doesn’t carry
any information about the patient’s risk of death. Non-informative censoring
will be assumed in the remainder of this report.

2.1 Survivor and hazard function

In the following, the survivor function and the hazard function will be pre-
sented similar to how Collett presents them in chapter 1.3 of his book [1,
p. 11-13]. To understand these functions and the relationship between them,
it is necessary to establish an understanding of the following terminology:
Continuous random variable, Probability distribution and
Cumulative density function. Løv̊as presents these terms in his book in Statis-
tics [2]:

1) Continuous random variable
The survival time of persons in medical research studies is an example of
a continuous random variable. The randomness is manifested in that it is
not possible to predict the survival time of a patient (he/ she could die at
any instant), and the continuity arises from the fact that the survival time
of a patient constitutes a time interval from time origin to end-point (and
since there is infinitely many discrete time values inside this time interval,
the variable is continuous, opposed to discrete).
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2) Probability distribution
A probability distribution presents how the probability is distributed among
the different possible values of a random variable. For a continuous random
variable the probability distribution is represented by a function f(x) that is
called the ”probability density function” (often denoted by ”pdf”). A pdf has
the following properties [2, p. 133]:

a) The total area under the function’s curve is equal to 1

b) The probability for the random variable to have a value between a and
b (denoted by P (a ≤ X ≤ B)) is equal to the area under the curve of the
function f(x) from a to b. With integral notation, this is written as

P (a ≤ X ≤ b) =

∫ b

a

f(x)dx (2.1)

c) The curve is never negative, that is f(x) ≥ 0.

3) Cumulative distribution function (cdf)
The cumulative distribution function F(x) (often abbrevated as ”cdf”) is de-
fined such that its first order derivative yields the corresponding probability
density function f(x). That is, F’(x)=f(x), which means F (x) =

∫ x
−∞ f(x)dx.

Its properties is such that it converges to zero when the argument approaches
minus infinity from above, and it converges to one when the argument ap-
proches plus infinity from below. For any two arbitrary constants a and b
(assuming a < b), the cdf obeys the following three properties [2, p. 125,135]:

a)
P (a ≤ X ≤ b) = F (b)− F (a) (2.2)

b)

P (X > a) = 1− F (a) = 1−
∫ a

−∞
f(x)dx (2.3)

c)

P (X ≤ b) = F (b) =

∫ b

−∞
f(x)dx (2.4)

Now we have established the terminology needed to define the survivor and
hazard function.
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Let T be a continuous random variable representing the survival time t of
a patient. f(t) is the pdf representing the probability distribution of T. The
cdf of T is ”given by

F (t) = P (T < t) =

∫ t

0

f(u)du, (2.5)

and represents the probability that the survival time is less than some value
t.” [1, p. 11]. The survivor function is then defined as

S(t) = P (T ≥ t) = 1− F (t), (2.6)

which is ”the probability that the survival time is greater than or equal to t.
[1, p. 11].
The hazard function, sometimes denoted by ”hazard rate, the instantaneous
death rate, the intensity rate, or the force of morality.”[1, p. 11], is given by

h(t) = lim
δt→0

P (t ≤ T < t+ δt|T ≥ t)

δt
. (2.7)

P (t ≤ T < t+ δt|T ≥ t) is the probability that T has a value in the interval
[t, t+ δt], given that T is greater than or equal to t.
It is of interest to establish a relationship between the hazard and survivor
function. A first step in doing so is to make use of Bayes’ Theorem. By using
Bayes’ Theorem, it is possible to obtain an expression for the probability in
the numerator of the hazard function. Given two events A and B, Bayes’
Theorem is given by [1, p. 86]

P (B|A) =
P (B)P (A|B)

P (A)
, (2.8)

both P (B|A) and P (A|B) being conditional probabilities, where P (B|A) is
the probability of B given that A has occured, and P (A|B) is the probability
of A given that B has occured. P (A) and P (B) are the individual probabil-
ities of A and B, respectively.
Now let A be the event ”T ≥ t” and B the event ”t ≤ T < t+ δt”. Inserting
this into Bayes’ Theorem yields:

P (t ≤ T < t+δt|T ≥ t) =
P (t ≤ T < t+ δt)P (T ≥ t|t ≤ T < t+ δt)

P (T ≥ t)
(2.9)
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Observing that P (T ≥ t|t ≤ T < t+ δt) = 1 simplifies the equation to

P (t ≤ T < t+ δt|T ≥ t) =
P (t ≤ T < t+ δt)

P (T ≥ t)
(2.10)

Usıng property a of the cdf given by (2.2), the numerator of (2.10) can be
written as:

P (t ≤ T < t+ δt) = F (t+ δt)− F (t) (2.11)

The denominator of (2.10) is simply the survivor function defined in (2.6).
Substituting the results from (2.11) and (2.6) into (2.10) gives:

P (t ≤ T < t+ δt|T ≥ t) =
F (t+ δt)− F (t)

S(t)
(2.12)

Replacing the numerator of the the hazard function (2.7) by the result from
(2.12) yields:

h(t) = lim
δt→0

F (t+ δt)− F (t)

δt

1

S(t)
(2.13)

Note that

lim
δt→0

F (t+ δt)− F (t)

δt
= F ′(x) = f(x).

Thus, the hazard function can be rewritten as

h(t) =
f(t)

S(t)
(2.14)

By further manipulating the expression of the hazard function it is possible
to end up with a function called the ”integrated or cumulative hazard” [1,
p. 12]. Let’s do this manipulation. First step is to take the natural logaritm
of the survivor function:

ln(S(t)) = ln(1− F (t)) (2.15)

Taking the first order derivative of this gives:

d

dt
ln(S(t)) =

1

1− F (t)

d

dt
(−F (t)) (2.16)

Recognizing that d
dt

(−F (t)) is equal to −f(t) results in:
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d

dt
ln(S(t)) =

−f(t)

1− F (t)
(2.17)

Multiplying both sides by -1 and identifying the denominator of (2.17) as the
survivor function gives:

− d

dt
ln(S(t)) =

f(t)

S(t)
(2.18)

With a closer look, one can see that the right hand side of (2.18) is the hazard
function. Thus,

− d

dt
ln(S(t)) = h(t) (2.19)

Integrating both sides of (2.19) from zero to t gives:∫ t

0

− d

dt
ln(S(u))du =

∫ t

0

h(u)du (2.20)

− [ln(S(u))]t0 =

∫ t

0

h(u)du (2.21)

ln(S(t))− ln(S(0)) = −
∫ t

0

h(u)du (2.22)

Noting that ln(S(0)) = P (T ≥ 0) = 1 yields ln(S(0)) = ln(1) = 0. Thus

ln(S(t)) = −
∫ t

0

h(u)du (2.23)

−ln(S(t)) =

∫ t

0

h(u)du (2.24)

The right-hand side of (2.24) is the cumulative hazard function H(t).

H(t) =

∫ t

0

h(u)du (2.25)

Note that the survivor function can be expressed through the cumulative
hazard function:

S(t) = e−H(t) (2.26)

8



2.2 The Kaplan-Meier estimator

In the following, methods for estimating the survivor, hazard and cumulative
hazard functions associated with a group of survival data will be presented.
The Log Rank test (method for comparing two or more groups of survival
times) will also be considered. The source of information is Chapter 2 i
Collett’s book [1].

When none of the survival times in a survival data set is censored, the sur-
vivor function ”can be estimated by the empirical survivor function, given
by”[1, p. 15]

Ŝ(t) =
Numer of individuals with survival times ≥ t

Number of individuals in the data set
= 1− F̂ (t), (2.27)

where F̂ (t) is the empirical cumulative distribution function defined by

F̂ (t) =
Numer of individuals alive at time t

Number of individuals in the data set
. (2.28)

It is possible to plot the empirical survivor function. Collett mentions three
features of this plot [1, p. 15-16]:

1) For survival times less than the lowest survival time in the data set, the
empirical survivor function is equal to 1

2) For survival times larger than the largest survival time in the data set, it
is equal to 0

3) Its value between two adjacent survival times are constant

Now, imagine that there exist 11 patients with the following survival times
(in months), where no censoring is assumed:

12 14 14 14 14 14 15 15 16 16 18

From this data set it is possible to create a plot of the estimated survivor
function. To make such a plot, I’ve used the in-built function ”StepGraph”
belonging to the software ”GeoGebra”. I did the calculation of the values of
the estimated survivor function using Microsoft Excel. See the plot in figure
2.1 below.
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Figure 2.1: Plot of estimated survivor function for 11 imaginary survival
times, no censoring.

Along the vertical axis of figure 2.1 you have the values of the estimated
survivor function calculated from (2.27) using Microsoft Excel. Along the
horisontal axis you have the corresponding survival times in months. From
the plot, you can see that the survivor function has a step-wise nature.

When there exist censored survival times in a data set, other methods than
the empirical survivor function must be used to estimate the survivor func-
tion. The Kaplan-Meier estimate of the survivor function (”a generalisation
of the empirical survivor function” [1, p. 22]) is one such method. The
method can be summarized in the following four steps [1]:

1) Start with a data set consisting of the survival times from n different pa-
tients, that is, the survival times t1, t2, t3, ..., tn. Allowing different patients
to have the same survival time, find out at which times there are death events
(actual survival times). Write down the death event times and count how
many they are. Label the counted number as ”r”. This will give rise to the
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iteration variable j = 1, 2, 3, ..., r.

2) Now that you know at which times there are death events, order these
death event times in ascending order:
t1 < t2 < t3 < · · · < tr

3) Now you have to use the survival times from step 2 to create intervals. The
idea is that, inside each interval, there is only one death event time. In Figure
2.2 below, a time line is drawn to illustrate how the intervals are constructed.

0 t1 − δ t1 t2 − δ t2 tr−1 tr − δ tr

Figure 2.2: Illustration of Kaplan-Meier estimate interval

From Figure 2.2 you see that the first time value is 0. This is the time of
diagnosis of the different patients, which is set as the time origin. Then you
have t1− δ, which is the time just before the first death time, which is at t1.
δ is infinitesimal. In other words, in the interval stretching from 0 to t1 − δ,
there are no deaths. Now we allow ourselves to let the first death time t1 lie
inside the interval stretching from t1 − δ to t1. The next time on the time
line is t2− δ. This is the time right before the second death time, which is at
t2. Similarly, there are no deaths in the interval stretching from t1 to t2 − δ,
and we let the second death time fall inside the interval stretching from t2−δ
to t2. If generalising by using the iteration variable j, we can say that: The
interval stretching from tj − δ to tj is the time interval where the deaths
occurs, and the interval stretching from tj to tj+1 − δ is the interval without
any deaths. In addition to this, we denote nj to be the number of patients
alive at the beginning of the time interval from tj − δ to tj (including deaths
at tj). Also, we denote dj to be the number of patients who’s deaths lie inside
the interval from tj − δ to tj, keeping in mind that we allow several patients
to die at the same time. The censored survival times are constructed to lie
inside those time intervals without any deaths. What is meant by that, is:
If it happened that a censored survival time was exactly the same as a death
time tj, then this censored survival time is placed in the interval from tj to
tj+1 − δ.
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4) Now that the intervals are constructed, it is possible to start calculating
with probabilities that will eventually lead to an estimate of the survivor
function. The question of interest is: What is the probability of surviving
through the different intervals constructed in step 3 above? Since there are no
deaths occuring in the intervals stretching from tj to tj+1 − δ, the estimated
probability of surviving through each of these intervals is 1. What about the
intervals in which deaths occur, the intervals from tj − δ to tj? For each of
these intervals, the probability of dying is estimated by

P (death) =
dj
nj
. (2.29)

Using the Complement rule [2, p. 77] of Statistics, the probability of surviving
through one of these intervals is estimated by:

P (survival) = 1− dj
nj

=
nj
nj
− dj
nj

=
nj − dj
nj

. (2.30)

Recall from (2.6) that, the survivor function S(t) gives the probability that
the survival time is greater than or equal to an arbitrary survival time t. If
you were to choose a survival time in the interval [0, t1 − δ], then Ŝ(t) = 1,
because no one has died yet. On the other hand, if you choose t inside the
interval [tr,∞], then one of two things can happen (depending on whether
the largest survival time is censored or not):
a) If the largest survival time is an actual death event time, then Ŝ(t) = 0,
because everyone is dead after tr.
b) If there exists a censored event time c that is larger than the largest death
time tr, then Ŝ(t) will not tend to zero, but will remain constant. The reason
for this is that, when the largest survival time in the data set is censored,
the last observed event is not a death. Thus, Ŝ(t) will never become zero,
because one or several individuals are not observed to be dead during the
course of the study (as a matter of fact, these individuals’ survival times are
right censored).
What if you were to choose t to lie inside any of the intervals between t1 and
tr (that is, t1 ≤ t < tr)? What would Ŝ(t) be then? To calculate this, we
must make use of the multiplication rule of independent events [2, p. 94]:

P (A1 ∩ A2 ∩ A3 ∩ · · · ∩ An) = P (A1) · P (A2) · P (A3) · . . . · P (An) (2.31)
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To exemplify, let’s assume we have a data set with 20 death times, where we
look at the four first of them. Also, define the following events:

A1 = Survival through the interval [0, t1 − δ]
A2 = Survival through the interval [t1 − δ, t1], given survival up to t1 − δ
A3 = Survival through the interval [t1, t2 − δ], given survival up to t1
A4 = Survival through the interval [t2 − δ, t2], given survival up to t2 − δ
A5 = Survival through the interval [t2, t3 − δ], given survival up to t2
A6 = Survival through the interval [t3 − δ, t3], given survival up to t3 − δ
A7 = Survival through the interval [t3, t4 − δ], given survival up to t3
A8 = Survival through the interval [t4 − δ, t4], given survival up to t4 − δ

If we choose t to lie in the interval [t4−δ, t4], then the Kaplan-Meier estimate
of S(4) would be:

Ŝ(t) = P (A1) · P (A2) · P (A3) · P (A4) · P (A5) · P (A6) · P (A7) · P (A8)
(2.32)

Setting the probability to be 1 for those intervals where there are no deaths
gives:

Ŝ(t) = 1 · P (A2) · 1 · P (A4) · 1 · P (A6) · 1 · P (A8) (2.33)

With a closer examination of (2.33), one can see that each of the remaining
probabilities in the product are given by (2.30). Thus:

Ŝ(t) = P (A2) · P (A4) · P (A6) · P (A8)

=
n1 − d1

n1

· n2 − d2

n2

· n3 − d3

n3

· n4 − d4

n4

(2.34)

It is possible to generalise (2.34) for any t bounded by
tk ≤ t < tk+1, where k = 1, 2, 3, . . . , r. The generalized formula is known as
the Kaplan-Meier estimate of the survivor function, and is given by:

Ŝ(t) =
k∏
j=1

nj − dj
nj

. (2.35)
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Earlier, it was mentioned that the Kaplan-Meier estimate of the survivor
function is a generalisation of the empirical survivor function. Let’s show
how this is the case.
If we assume no censoring, then the numerator in (2.35) becomes nj+1. If we
insert this into the equation and espand the product, we get:

Ŝ(t) =
k∏
j=1

nj+1

nj
=

n2

n1

· n3

n2

· n4

n3

· . . . · nk−1

nk−2

· nk
nk−1

· nk+1

nk
(2.36)

If we cancel common factors, we are left with:

Ŝ(t) =
nk+1

n1

(2.37)

The empirical survivor function from (2.27) was given by

Ŝ(t) =
Numer of individuals with survival times ≥ t

Number of individuals in the data set
= 1− F̂ (t).

The numerator of (2.27) corresponds to nk+1 (”the number of individuals with
survival times greater than or equal to tk+1” [1, p. 21]), and the denominator
corresponds to n1 (”the number of individuals in the sample”).

Recall that, (2.29) gave us the estimated probability of dying through the
jth interval from tj to tj+1:

P (death) =
dj
nj
.

If we divide (2.29) by τj = tj+1− tj, we get the Kaplan-Meier estimate of the
hazard function:

ĥ(t) =

dj
nj

τj
(2.38)

The Kaplan-Meier estimate of the hazard function ”is an estimate of the risk
of death per unit time in the jth interval”[1, p. 31].

By combining (2.24) and (2.25) we get the following expression for the cu-
mulative hazard function:
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H(t) = −ln(S(t)). (2.39)

So, an estimate of the cumulative hazard function would be

Ĥ(t) = −ln(Ŝ(t)). (2.40)

If we insert the expression for Ŝ(t) from (2.35) into (2.40) we get

Ĥ(t) = −ln

(
k∏
j=1

nj − dj
nj

)
. (2.41)

Recall that, for two numbers a and b,

ln(a · b) = ln(a) + ln(b). (2.42)

If we apply the result from (2.42) to (2.41) we get:

Ĥ(t) = −
k∑
j=1

ln

(
nj − dj
nj

)
. (2.43)

Another well-known estimate of the cumulative hazard function Ĥ(t) is the
Nelson-Aalen estimate [1, p. 33]:

H̃(t) =
k∑
j=1

dj
nj
. (2.44)

2.3 The log-rank test

Now the log-rank test for comparing two groups of survival data will be
presented. The method ”can be extended to enable three or more groups
of survıval data to be compared ’[1, p. 48], but this will not be shown for
the moment being. Before continuing, it is recommended to recap what
was presented under the section concerning the Kaplan-Meier estimate of
the survivor function, because the content covered there founds the basis of
what is to be presented.

The first step in constructing the log-rank test is to start with two separate
groups of patients (Group 1 and Group 2) with each their set of survival
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times. Then, looking at the survival times from both groups simultaneously,
note down the death event times. Thereafter, exactly the same as we did
when establishing the Kaplan-Meier estimate of the survivor function, we
order the death event times in ascending order and note down how many
deaths that occur at each death time, and how many that is alive right be-
fore a given death time (see section about Kaplan-Meier estimate of survivor
function for further details about how this is done). Let now d1j and d2j

represent the deaths occuring at time tj in group 1 and 2, respectively. Fur-
ther, let n1j and n2j be the number of patients alive right before tj (including
those dying at tj) in group 1 and 2, respectively. The difference n1j−d1j and
n2j − d2j are the number of patients surviving beyond the time tj in group
1 and 2, respectively. Also define the following quantities: dj = d1j + d2j,
nj = n1j +n2j and nj−dj = (n1j−d1j)+(n2j−d2j). The different quantities
are summarized in Table 2.1 below (reconstruction of table 2.7 in
Collett [1, p. 42]).

Group number Number of
deaths at tj

Number surviv-
ing beyond tj

Number at risk
just before tj

1 d1j n1j − d1j n1j

2 d2j n2j − d2j n2j

Total dj nj − dj nj

Table 2.1: Log-rank test table for group I and II

The parameters in the table are needed to construct the test statistic used
in the hypothesis testing procedure associated with the log-rank test. For
a detailed explanation about what is meant with hypothesis testing and
its related terminology, take a look in Løv̊as [2] or Collett [1] (both give
a comprehensive introduction to the topic). The test statistic is a quantity
used to determine whether or not to reject the null hypothesis of interest. In
the hypothesis test associated with the log-rank test, the null hypothesis is
the following event [1, p. 42]:

H0 : No difference in survival experience between the two patient groups.

A possible scenario would be that patients in group 1 and 2 have the same
disease, but they receive different treatment. The question one wishes to
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find the answer to is then if one of the treatments are better (gives rise to
longer survival time) than the other. In case of difference between the two
treatments, H0 must be rejected. Assuming the null hypothesis is true, the
test statistic is given by [1, p. 44]:

WL =
(UL)2

VL
, (2.45)

where WL has an asssociated probability distribution known as chi-squared
distribution with one degree of freedom. For those interested in knowing how
to derive this test statistic, see Collett[1]. UL, VL and their related quantities
are given by [1, p. 42-43]:

UL =
r∑
j=1

(d1j − e1j). (2.46)

e1j =
n1j

nj
· dj. (2.47)

VL =
r∑
j=1

v1j. (2.48)

v1j =
n1jn2jdj(nj − dj)

(nj)2(nj − 1)
. (2.49)

Here (2.47) is the theoretical (expected) number of patients who dies in group
1 at time tj, under the assumption that there are no differences between the
two patient groups. (d1j − e1j) gives the difference between the observed
and expected number of patients who dies in group 1 at time tj, under the
assumption of no difference. The smaller the sum of these differences UL are
(given by (2.46)), the stronger indication exists of there being no difference
between the two groups. VL is an estimator of the variance of UL. Thus,
large values of WL indicate that H0 does not hold.

The next step is to calculate the probability value (p-value) associated with
WL, which is given by

P − value = P (WL ≥ wL) = 1− P (WL ≤ wL) = 1− F (w), (2.50)

where F (w) is the cumulative distribution function of the chi-squared distri-
bution with one degree of freedom (which values’ are calculated by numerical
integration performed by computers [2]).
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When do we reject the null hypothesis and conclude that one of the group
of patients tend to live longer than the other? Collett suggests the following
approach [1, p. 40]:

If we denote the p-value by ”P”, then:

1) If P > 0.1, there is no evidence to reject the null hypothesis

2) If 0.05 < P ≤ 0.1, there is slight evidence against the null hypothesis

3) If 0.01 < P ≤ 0.05, there is moderate evidence against the null
hypothesis

4) If 0.001 < P ≤ 0.01, there is strong evidence against the null hypothesis

5) If P ≤ 0.001, the evidence against the null hypothesis is overwhelming.
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Chapter 3

Cox Regression

In chapter 2, methods for analysing survival times were presented. In addi-
tion to survival time data, information like gender, age, heart rate, size of
tumour, life style (smoking, physical activity, dietary etc.) and other factors
that may play a role on the patient’s survival time will be recorded in a med-
ical research study. Such factors are called explanatory variables. Collett
states that, there are two types of explanatory variables [1]: variates and
factors. Variates are explanatory variables that take numerical values, like
age, amount of hemoglobin in your blood stream, size of tumor etc. Factors
on the other hand is not numerical, but categorical. Exaples of factors are
sex (male or female), degree of burns (first, second or third), if you have
been pregnant or not (yes/ no) etc. By making use of statistical modeling
it is possible to establish a relationship between the survival time and the
explanatory variables associated with a patient [1].
The main emphasis in this chapter will be to establish a statistical regression
model for survival data, and this model will be based on the hazard function.
The model that will be used is called Cox regression model (also known by
”proportional hazard model”). It is worth mentioning that no particular
probability distribution is assumed for the Cox regression model [1]. The
main source of information will be chapter 3 of Collett [1].

3.1 Introducing the model

Now, consider two groups of patients. All the patients are diagnosed with
the same disease, but each group receives different treatment: One of the
groups receives a standard treatment and the other one a new treatment.
Each of the groups have their associated hazard function at time t, denoted
by hS(t) and hN(t) for the patients on the standard and the new treatment,
respectively. The proportional hazard model is then given by [1, 56]:

hN(t) = ψhS(t), (3.1)

where ψ is a constant called the relative hazard or hazard ratio. The reason
for adopting these two names to ψ can be understood by observing that

ψ =
hN(t)

hS(t)
. (3.2)
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Depending on whether ψ < 1 or ψ > 1, there is less or greater risk of death
associated with the new treatment compared to the standard treatment,
respectively.
It is possible to express (3.1) by

hi(t) = eβxih0(t). (3.3)

The terms in (3.3) are as follows:

� hi(t) is the hazard function associated with patient i, where i goes from
1 to n.

� xi is either zero or 1, depending on whether the patient is on the stan-
dard or the new treatment, respectively.

� β = ln(ψ).

� h0(t) is the hazard function for a patient on the standard treatment.

Now, assume you have p explanatory variables X1, X2, X3, . . . , Xp who’s val-
ues are x1, x2, x3, . . . , xp. Assume for the time being that these variables are
given specific values at the start of the study. Further, define

x = [x1, x2, x3, . . . , xp]
T =


x1

x2

x3
...
xp

 (3.4)

as the vector containing the explanatory variable values, where T denotes the
transpose of the row vector. In addition, we define h0(t) to be the baseline
hazard function[1, p. 57], the hazard function corresponding to x = 0 (all the
explanatory variable values are zero). The hazard function associated with
patient i is then given by [1, 58]:

hi(t) = ψ(xi)h0(t), (3.5)

where ψ(xi) is the relative hazard function associated with the explanatory
variable values of patient i. xi is the column vector given by
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xi = [x1i, x2i, x3i, . . . , xpi]
T . (3.6)

The relation given by (3.5) is also known by the name general proportional
hazard model. We then rewrite ψ(xi) in the following form:

ψ(xi) = eβ
Txi , (3.7)

where βTxi is defined as

βTxi =

p∑
j=1

βjxji = β1x1i + β2x2i + β3x3i + · · ·+ βpxpi. (3.8)

The βi’s are ”the coefficients of the explanatory variables x1, x2, x3, . . . , xp
in the model”[1, p. 58], and ”βTxi is called the linear component of the
model”[1, 58].
βT is the transposed of a column vector containing the coefficients of the p
explanatory variables:

βT = [β1, β2, β3, . . . , βp]. (3.9)

With the terminology defined above, the expression for the Cox proportional
hazard model is given by [1, p. 63]:

hi(t) = eβ
Txih0(t) (3.10)

Let’s now look at the interpretation of hazard ratio by looking at a simple
special case. Assume you have a proportional hazard model on the form
given by (3.10), where you only have one continuous explanatory variable X
[1]. Then, the proportional hazard model becomes

hi(t) = eβxih0(t), (3.11)

where β is the coefficient of the explanatory variable value xi corresponding
to patient i. Now, assume xi takes the value x. This gives rise to the hazard
function

h1(t) = eβxh0(t). (3.12)

Further, increase xi by 1. This gives rise to

h2(t) = eβ(x+1)h0(t). (3.13)
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Then, dividing h2(t) by h1(t) gives:

h2(t)

h1(t)
=
eβ(x+1)h0(t)

eβxh0(t)
=
eβ(x+1)

eβx
= eβ(x−x+1) = eβ. (3.14)

Thus, eβ can be interpreted as the hazard ratio associated with a one unit
increase in the explanatory variable.
Taking the natural logaritm of (3.14) gives an expression for β:

β = ln

(
h2(t)

h1(t)

)
. (3.15)

In other words, β can be interpreted as the natural logaritm of the rela-
tive change in the hazard function when the explanatory variable value ”is
increased by one unit.”[1, p. 90].
In the proportional hazard model it is assumed that the β’s of the model
(often called regression coefficients) doesn’t vary with time. By applying nu-
merical methods together with ”the method of maximum likelihood”[1, p. 63],
it is possible to estimate these coefficients. After estimates of these coeffi-
cients have been obtained, it is possible to estimate the baseline hazard func-
tion h0(t) [1]. In our case, a script runned by the computer software R will
estimate the coefficients and the baseline hazard function. The likelihood
function used to estimate the coefficients will now be stated and explained to
some degree, but for further details, see Collett [1]. It is worth mentioning
that, the likelihood function that we now present assumes no ties (no patients
have the same survival time), but with some modification it can easily be
adjusted to be valid for situations with ties. Ties can occur in a data set if for
example the patient’s survival time is rounded to the nearest whole integer.
Say for example that one patient has survival time 14.4 and the other patient
14.3. Then both of them could be rounded to 14, which would result in a tie
(even if they to start with didn’t have the same survival time).
It is worth mentioning that the accuracy of the proportional hazard model
can be further increased by allowing the explanatory variable values to de-
pend on time [1].
Start with assuming you have n patients, among which r will result in death
and n−r will be right-censored. Assume further that, all the death times are
different from one another. You will then get the following ascending order
of death times: t1 < t2 < t3 < · · · < tr
Further, let tj denote the j th death time. Then, define the risk set R(tj) to
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be the group of patients ”who are alive and uncensored at a time just prior
to tj”[1, p. 63]. Then, the likelihood function is given by [1, p. 63]:

L(β) =
r∏
j=1

h0(tj)e
βTxj∑

l∈R(tj)
h0(tj)eβ

Txl
=

r∏
j=1

eβ
Txj∑

l∈R(tj)
eβTxl

. (3.16)

The product in (3.16) is an expression for the probability of observing that
the patient who dies among the people in the risk set R(tj) is patient j.

The sum
∑

l∈R(tj)
eβ

T xl is the sum of the exponential terms corresponding to

all the patients in the risk set R(tj). The idea is to find those β-coefficients
that will maximize the value of the likelihood function defined by (3.16).
The likelihood procedure can also give rise to standard deviation, confidence
intervals and p-values associated with the β-coefficients. Harrell gives a de-
scription of how this is done [3]. A summary of the results from Harrell will
now be given.

Start with defining `(β) as the natural logaritm of (3.16). This gives:

`(β) = ln(L(β)) =
r∑
j=1

[
βTxj − ln

(∑
l∈R(tj)

eβ
Txl

)]
. (3.17)

Then, take the first order derivative of (3.17) and set the result equal to zero:

`′(β)) = 0 (3.18)

The equation in (3.18) gives rise to a set of equations that must be solved
numerically.
After some calculations, (3.18) will give rise to the column vector β̂ contain-
ing the different regression coefficient estimates. Then, define

I(β) = −`′′(β)) (3.19)

to be the negative of the matrix of second order derivative of (3.17), and
define

J(β) = I−1(β) (3.20)

to be the inverse of (3.19). It can then be shown that, the regression coef-
ficient estimates β̂ are approximately normally distributed with expectation
β and covariance matrix J(β̂):
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β̂ ≈ N(β, J(β̂)) (3.21)

In particular, this gives that the regression coefficient estimate corresponding
to individual i is also approximately normally distributed:

β̂i ≈ N(βi, Jii), (3.22)

where Jii is element ii in J(β) and is the estimated variance of β̂i . Now,
define the test statistic

–Z =
β̂i − βi√
Jii

≈ N(0, 1), (3.23)

which is approximately standard normally distributed (expectation is zero,
variance is 1). Then, perform a two-sided hypothesis test called the Wald
test to check the null hypothesis

H0 : βi = 0

against the hypothesis
H1 : βi 6= 0.

Depending on which p-values the Wald test gives you, either reject or accept
the null hypothesis. Rejecting the null hypothesis will in this situation mean
that we conclude that βi 6= 0 and thus that the survival times depends on
the explanatory variable βi. The p-value is calculated by

p− value = 2 · P (–Z ≥ |z|) = 2(1− P (–Z ≤ |z|)) = 2(1−G(|z|)), (3.24)

where z is the observed value of Z in 3.23, and G(z) is the cumulative dis-
tribution function of the standard normal distribution given by [2, p. 178])

G(z) = P (Z ≤ z) =
1√
2π

∫ z

−∞
e

−t2
2 dt. (3.25)

The value of G(z) is calculated by numerical integration executed by a com-
puter software. The associated confidence interval becomes:

[
β̂i − --zα/2 ·

√
Jii, β̂i + --zα/2 ·

√
Jii

]
, (3.26)
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where --zα/2 is the α/2-quantile of Z defined by

P (−--zα/2 < Z < --zα/2) = 1− α. (3.27)

The associated confidence interval for the hazard ratio becomes:[
eβ̂i−--zα/2·

√
Jii , eβ̂i+--zα/2·

√
Jii

]
. (3.28)

3.2 Interactions

The idea of interactions will now be illustrated by the help of an example.

Given a patient group with two associated explanatory variables X1 and X2,
representing for instance age and size of tumor, respectively. Their hazard
function becomes

hi(t) = eβ1x1+β2x2h0(t) (3.29)

What now, if the effect of the size of the tumor depended on the age of the
patient? One way to model this would be to include a so-called interaction
term, being the product of the values of the two variables:

hi(t) = eβ1x1+β2x2+β12·x1·x2h0(t), (3.30)

where β12 is the regression coefficient corresponding to the interaction be-
tween X1 and X2. When doing Cox regression, it is of interest to check
whether there exists any interaction between some of the explanatory vari-
ables involved in the data set.

3.3 Including categorical variables in the model

In his book, Collett says that the hazard function can depend on two types
of variables: variates and factors, where variates are continuous (for ex-
ample age, height, blood pressure) and factors are catergoric (for example
gender)[1]. Including a variate in the hazard function is straight forward:
You include it in the linear component of the model by multiplying the re-
gression coefficient with its associated variate value, as shown in (3.8). When
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the variable is categorical, the story is a little bit different. To illustrate how
it is done, start imagining you have a group of patients with a specific dis-
ease. This disease have three stages; Stage 1, 2 and 3. Each stage has its
own regression coefficient, but they are all part of the same explanatory vari-
able, which we here denote Xstage. Then, we define stage 1 to be the reference
state, in which the regression coefficient value is assigned the value zero. The
regression coefficients of stage 2 and 3 will take values with respect to the
reference state stage 1. The three possible values of Xstage is summarized in
equation 3.31 below.

Xstage =


1

2

3

(3.31)

For the patient group, the hazard function takes the following form:

hi(t) = eβ1·I2+β2·I3h0(t), (3.32)

where β1 and β2 are the regression coefficients of stage 2 and 3, respectively,
and I2 and I3 are defined by

I2 =

{
1, if Xstage = 2

0, else
(3.33)

I3 =

{
1, if Xstage = 3

0, else
(3.34)

Depending on the stage of the particular patient, the hazard function be-
comes:

Xstage = 1⇒ h(t) = h0(t)

Xstage = 2⇒ h(t) = h0(t) · eβ1

Xstage = 3⇒ h(t) = h0(t) · eβ2
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3.4 Residuals

How can we know if the proposed proportional hazard model is a good model
for our target patient group? One way to explore this is by looking at so-
called residuals. Residuals are values one calculates in such a way that they
may reveal whether the model assumptions are fulfilled. The estimated pro-
portional hazard model for the ith patient is given by

ĥi(t) = eβ̂
Txiĥ0(t), (3.35)

where ĥi(t) is the estimated hazard function for patient i and ĥ0(t) is the
estimated baseline hazard function. β̂Txi is given by

β̂Txi = β̂1x1i + β̂2x2i + β̂3x3i + · · ·+ β̂pxpi, (3.36)

which corresponds to (3.8) defined earlier. β̂T is the estimate of the regression
coefficient vector given by (3.9).

3.4.1 Schoenfeld residuals

Recall that, for the Cox regression (proportional hazard model) to be valid,
the regression coefficients must be assumed to be independent of time. This
assumption is called the proportional hazards assumption. If the proportional
hazards assumption is not satisfied, Cox regression in its basic form cannot
be used. One type of residuals called the Schoenfeld residuals can be used
to check whether the assumption of time-independent regression coefficients
is reasonable. Schoenfeld residuals are about assigning a residual for each
explanatory variable. Begin with defining ”an event indicator”[1, p. 114] δi,
who’s value is zero or unity depending on whether the patient’s survival time
is censored or not, respectively. The Schoenfeld residual for the ith patient
associated with the jth explanatory variable Xj is given by [1, p. 117]

rPji = δi(xji − âji), (3.37)

where xji is the value of the jth explanatory variable and aji is given by [1,
p. 117]
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aji =

∑
l∈R(tj)

xjle
β̂T xl∑

l∈R(tj)
eβ̂T xl

. (3.38)

R(tj) is the risk set defined in the previous section.

Now, create a row vector consisting of the Schoenfeld residuals for the ith
patient:

rT Pi = [rP1i, rP2i, rP3i, . . . , rPpi]. (3.39)

Further, denote the scaled Schoenfeld residual associated with the jth ex-
planatory variable Xj for the ith patient by r∗Pji . The r∗Pji ’s are the com-
ponents of the row vector defined by [1, p. 118]

rT Pi
∗

= f · var(β̂) · rT Pi, (3.40)

where f is number of deaths and var(β̂) is the variance-covariance matrix
associated with the β-coefficients estimates.

It can be shown that [1, p. 144], the expected value of the r∗Pji ’s is approxi-
mately given by

E(r∗Pji) ≈ βj(ti)− β̂j, (3.41)

where βj(ti) is set to be the β-coefficient associated with explanatory variable
Xj at death time ti. If the calculated value of r∗Pji is close to its expected
value, we would get that

r∗Pji ≈ βj(ti)− β̂j. (3.42)

Adding β̂j to both sides of (3.42) gives

r∗Pji + β̂j ≈ βj(ti). (3.43)

If you plot r∗Pji + β̂j as a function of survival time, the appearance of the
points in the plot would resemble the functional form of the regression co-
efficient as a function of survival time. Thus, if the points fits a horizon-
tal straight line, it would mean that βj(ti) is constant. Thus, a horizontal
straight line would indicate no change in the β-coefficients with time, thus in-
dicating the validity of using the proportional hazard model. Anything other
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than a straight horizontal line would indicate that the regression coefficients
are time-dependent. To handle time-dependent regression coefficients, an ex-
tension must be done to the Cox model.
In addition to making a plot of (3.43) as a function of survival time, a hy-
pothesis test with the following test statistic can be performed:

βj(t) = βj + θj(gj(t)− ḡj), j = 1, . . . , p, (3.44)

where p is the number of explanatory variables. It can be shown that, if
the null hypothesis of θ = 0 is not rejected, there is evidence of that the
assumption of proportional hazards holds. Thus, the lower the p-value, the
less evidence there is for proportional hazards. For further details about this
hypothesis test, see [4].

3.4.2 Martingale residuals

The Martingale residual for the ith individual is defined as [1, p. 115]

rMi = δi − rCi, (3.45)

where δi is defined as in section 3.4.1, and rCi is the Cox-Snell residual for
the ith individual given by [1, p. 112]

rCi = eβ̂
TxiĤ0(ti), (3.46)

where Ĥ0(ti) is the Nelson-Aalsen/ Breslow estimate of the baseline cumula-
tive hazard function given by [1, p. 101]

H̃0(t) =
k∑
j=1

dj∑
l∈R(tj)

eβ̂T xl
(3.47)

If you are unsure about the functional form of the explanatory variable that
should be used, you can start with creating a scatter plot by plotting the
martingale residuals for the null model against the value of the explanatory
variable. The null model is the model without explanatory variables. It is
possible to show that, this scatter plot reveales the functional form of the
explanatory variable [4]. But there is no guarantee that it will be crystal
clear from this scatter plot what the functional form should be.
It is also possible to suggest a functional form that should be used for the
explanatory variable in the model. In section 4.2.3 Collett presents how this
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is done [1]. What is done is to create a scatter plot by plotting the martin-
gale residuals for the null model against the suggested functional form of the
explanatory variable. Because such scatter plots can become quite noisy and
therefore difficult to interpret, Collett suggests using the ”LOESS smoother”
[1, p. 127], an algoritm used to create a smooth curve to the data points
in the plot. If the LOESS smoother resembles a straight line, this would
indicate that he correct functional form is used. If not, it is suggested to try
another functional form to see if this would make the LOESS smoother more
straight.
It is also possible to create the martingale scatter plot described above by
using a non-empty model (that is, the explanatory variables are included).
Then, in addition to being straight, the LOESS smoother should be horizon-
tal if the correct functional form of the explanatory variable has been used.

Note that, making plots of martingale residuals gives meaning for continuous
variables but not for categorical. It makes sense to talk about the functional
form of a continuous variable, but not of a categorical. For this reason, plots
of martingale residuals will not be created for explanatory variables that are
categorical.

3.5 Time-dependent explanatory variables

Recall that, the assumtion of proportional hazards is that the regression
coefficients are independent of time. It is possible to let the values of the
explanatory variables to be time-dependent, at the same time assuming that
the regression coefficients stay constant. Assume now that the hazard func-
tion only contains one explanatory variable X1 with regression coefficient β1

and explanatory variable value x1. If the explanatory variable value is time
dependent, the hazard function would take the form of [5, p. 15]

h(t) = h0(t)eβ1x1(t) (3.48)

where x1(t) is the time-dependent explanatory variable value. On the other
hand: If the proportional hazard assumtion is not satisfied, the regression
coefficients are time-dependent, and the hazard function will then take the
form

h(t) = h0(t)eβ1(t)x1 , (3.49)

30



where β1(t) is the time-dependent regression coefficient. If it was the case
that both the explanatory variable value and the regression coefficients were
time-dependent, the hazard function would become

h(t) = h0(t)eβ1(t)x1(t), (3.50)

where both β1(t) and x1(t) are functions depending on time.
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Chapter 4

Application

In this chapter, the theory presented in the two previous chapters will be
applied on a survival data set available in the programming software R.
Before showing applications, the data set will be presented in detail.

4.1 Introducing the data set

The name of the data set is ”German Breast Cancer Study Data”, and con-
tains survival data from 686 female patients, all diagnosed with breast cancer.
The data set is accessed from the statistical software R by executing the com-
mand ”data(”gbcsCS”)” after installing and loading the condSURV -library.
If the data is inspected in R, 16 columns will appear. In the following, each
of these columns will be explained. The source of information is a book [6]
and a research paper [7].
Column 1 is ”id” and is simply an integer number from 1 to 686 to make it
possible to distinguish between the different patients.
In column 2, 3 and 4 the three dates ”diagdateb”, ”recdate” and ”deathdate”
are registered. These are the date of diagnosis, recurrence and death, re-
spectively. Diagnosis date is the date the patient is diagnosed with breast
cancer. Soon after this date the breast cancer cells are removed by surgery.
It is of interest to find out how long it goes before the breast cancer cells
recurs. When the breast cancer cells recurs, the recurrence date is registered.
Column 13 is called ”rectime” and is the number of days from diagnosis to
recurrence, also known as the recurrence time. In column 14 you have ”cen-
srec”, which is a variable that takes the value zero if censoring occurs and
the value ”1” if a true recurrence date is registered. Note that, if ”censrec” is
zero, censoring has occured, and the recurrence time is equal to the patient’s
survival time ”survtime” found in column 15. The survival times is in days.
Also note that, if ”censrec” is zero, so is ”censdead” in colum 16, which is
a variable that takes the value zero if censoring occurs and a value ”1” if
an actual death is observed. See table 4.1 below for an interpretation of the
different combinations of the censoring variables ”censrec” and ”censdead”
that are possible.
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censrec censdead Interpretation

0 0 Censoring oc-
curs before
any recurrence
is registered.
Thus, no death.

1 0 Censoring oc-
curs after the
recurrence date
is registered. No
death

1 1 No censoring oc-
curs. Both ac-
tual recurrence
and death are
registered.

Table 4.1: Censoring in German Breast Cancer Study Data

In addition to recurrence and survival time, each patient has different ex-
planatory variables associated with it. Let’s inspect these explanatory vari-
ables one by one.

First, we have a look at the age of the patients, which is found in column
5. In the data set, the age of a patient is given as an integer number. The
youngest of the patients was 21 years old and the oldest 80. The average age
was 53. By using R a histogram is drawn to visualize the age distribution of
the patients (see figure 4.1 below). Along the horisontal axis you have age,
which is split into intervals of five years. Along the vertical axis you have
the number of patients in each age group. The histogram tells us that there
are most patients in the age group from 45 to 50. The second most crowded
patient group is from 60 to 65.

Figure 4.1: Histogram showing the age distribution of the patients.

The next variable of interest is menopause. A woman who has reached
menopause doesn’t have any menstrual bleeding anymore. For patients who
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has reached menopause the menopause variables is given the value ”2”, and
for patients who hasn’t reached menopause the variable is given the value
”1”. 396 of the women (58%) had reached menopause while 290 (42%) had
not.

Another variable of interest is hormone. This variable has either the value
”1” or ”2”, depending on whether the patient is receiving a daily dose of
30 mg tamoxifen or not, respectively. The growth of breast cancer cells are
stimulated if the female sex hormone estrogen binds to the estrogen receptors
in breast cancer cells [8]. Tamoxifen is a drug that binds to the estrogen
receptors in breast cancer cells and thus prevents estrogen from binding to
these receptors and thus inhibits stimulation of breast cancer cell growth [8].
64 % were receiving tamoxifen and 36 % were not.

The next variable is the size of the primary tumor in millimeter, denoted as
”size”.

Tumor grade is the next variable, with three possible values: ”1”, ”2” or ”3”.
These values are scores ”that tells you how different the cancer cells’ appear-
ance and growth patterns are from those of normal, healthy breast cells.” [9].
The variable is denoted as ”grade”.

Next on the list is number of positive lymph nodes, denotes as ”nodes”. A
lymph node is positive if it contains cancer cells [10].

The last two explanatory variables are the amount of progesterone and es-
trogen bound to proteins in the cytosol of the primary tumor (measured in
10−15 moles per milligram cytosol protein). These variables are denoted as
”prog recp” and ”estrg recp”, respectively.

Here follows a figure showing histograms and pie charts of the explanatory
variables.
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Figure 4.2: Figure showing histograms and pie charts illustrating the distri-
bution of the explanatory variables

From figure 4.2 it seems like the age and size variable have a fairly symmetric
distribution. The menopause, hormone and grade variable are all categorical.
The nodes, estrg recp and prog recp seem to have a right skewed distribu-
tion. Knowledge about how the explanatory variables are distributed can
become useful in the chapter about simulation, where the values of the ex-
planatory variables will be simulated. Also, have in mind that, there is a
correlation between the age and menopause variable. The reason for this is
that women reach menopause in a specific period of their life, usually around
their fifthies. It was also checked for correlation between the other variables
(by plotting their scatter plots in the same figure and looking for patterns),
but none were found.

Let’s now present a table that summarizes the descriptive statistics (mean,
standard deviation, percentage) of the explanatory variables.
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Explanatory
variable

Descriptive
statistics

Age x̄=53.1, σx̄=0.4
Menopause Yes:(42%)

No:(58%)
Hormone Yes:(64%)

No:(36%)
Size x̄=29.3, σx̄=0.5
Grade 1:(12%) 2:(65%)

3:(23%)
Nodes x̄=5.0, σx̄=0.2
Progesteron x̄=110, σx̄=8
Estrogen x̄=96.3, σx̄=6.0

Table 4.2: Descriptive statistics of explanatory variables associated with Ger-
man Breast Cancer Study Data. x̄ denotes the mean, σx̄ denotes the standard
deviation of the mean and % denotes percentage.

In table 4.2, the standard deviation of the mean is given by

σx̄ =
σx√
N
, (4.1)

where σx is the sample standard deviation.

4.2 Kaplan-Meier curves

It is possible to use the statistical software R to create Kaplan-Meier curves
of the time to recurrence and the time to death. See the appendix for the
R-code used in this report.

(a) Kaplan-Meier curve of the time to re-
currence

(b) Kaplan-Meier curve of the time to
death

Figure 4.3: Kaplan-Meier curves for time to death and time to recurrence.

The red solid curve in figure 4.3a above is the Kaplan-Meier curve for the time
to recurrence. The dashed blue curves above and below the red solid curve
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are the upper and lower confidence interval curves, respectively. Equivalently,
figure 4.3b shows the Kaplan-Meier curve (red) and the associated confidence
interval curves (blue) for time to death.

The Kaplan-Meier curves in figure 4.3a and 4.3b includes all the patients
in the data set, regardless of the values of their explanatory variables. It
is also possible to create Kaplan-Meier curves for specific categories of pa-
tients. One way to do this is to group together those patients who have
the same or similar values of a specific explanatory variable. For example,
you could make two Kaplan-Meier curves in the same plot, where one of
the curves is of those who has reached menopause and the other of those
who hasn’t. In the following, such categoric Kaplan-Meier curves for time to
death will be presented. Based on the appearance of such plots it is possible
to get an understanding of how the values of the explanatory variables af-
fect the survival time of the patients. Each of the Kaplan-Meier curve plots
below have a legend in the bottom left corner which describes which curve
is associated with the given value of the explanatory variable. Menopause,
hormone and grade were already categorized from the start of, but each of
the explanatory variables age, size, nodes, progesterone and estrogen I had
to categorize myself. These variables were grouped into intervals, each inter-
val containing approximately the same amount of patients. This resulted in
several Kaplan-Meier curves for a given explanatory variable, one curve for
each possible categorical value. First, let’s do this for time to death, then for
time to recurrence.
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4.2.1 Time to death

(a) age (b) menopause

(c) hormone (d) size

(e) grade (f) nodes

(g) estrogen (h) progesterone

Figure 4.4: Kaplan-Meier curves for time to death for the different explana-
tory variables.

From figure 4.4a it doesn’t seem that age plays a difference in the survival
experience of the patients. The Kaplan-Meier curves lie approximately upon
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each other. As seen from figure 4.4b, the Kaplan-Meier curve doesn’t change
much for patient who has and hasn’t reached menopause. This indicates that
menopause seem to not play a crusial role in the survival experience of the
patients. In figure 4.4c the red curve (receiving tamoxifen) is for the most
under the blue curve (not receiving tamoxifen). This indicates that those
patients receiving tamoxifen seem to have a higher mortality than those not
receiving tamoxifen. In figure 4.4d you can se that, the Kaplan-Meier curves
of those patients with smaller tumors is above those with larger tumors.
This indicates those with smaller tumors seem to have better odds surviving
compared to those with larger tumors. In figure 4.4e it is observed that,
the Kaplan-Meier curve of grade 1 is above grade 2, and the Kaplan-Meier
curve of grade 2 is above grade 3. This indicates that the lower the grade,
the better odds there are for survival. From figure 4.4f the trend is that, the
patients with few positive nodes have Kaplan-Meier curves above those with
many positive nodes. This suggest that people with few positive nodes have
better odds of survival. The appearance of the curves in plot 4.4g suggests
that, the larger amount of estrogen that is bound to proteins in the cytosol
of the primary tumor, the better survival experience. Thus, individuals with
large values of the explanatory variable ”estrg recp” seem to have better
odds of surviving compared with individual with low values of this variable.
Similar to plot 4.4g, the appearance of the curves in plot 4.4h suggests that,
the larger amount of progesterone that is bound to proteins in the cytosol
of the primary tumor, the better the survival experience of the individual.
Thus, individuals with large values of the explanatory variable ”prog recp”
seem to have better odds of surviving compared with individual with low
values of this variable.
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4.2.2 Time to recurrence

(a) age (b) menopause

(c) hormone (d) size

(e) grade (f) nodes

(g) estrogen (h) progesterone

Figure 4.5: Kaplan-Meier curves for time to recurrence for the different ex-
planatory variables.
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Figure 4.5a have a small indication of that, the younger the patients, the
higher the risk of recurrence. From 4.5b it doesn’t seem that menopause
status plays a role when it comes to time to recurrence. Figure 4.5c indicates
that, those patients receiving tamoxifen have a higher chance of recurrence.
Confirming our intuition, figure 4.5d indicates that, the bigger the larger
the primary tumor, the higher risk of recurrence. Figure 4.5e indicate that,
the chance of recurrence increase with increasing grade. Figure 4.5f indicate
that, the more positive nodes, the larger the chance for recurrence. Figure
4.5g indicate that the odds of recurrence increase with decreasing value of
the estrg recp variable. From figure 4.5h it is indicated that the chance of
recurrence is increasing with decreasing value of the prog recp variable.

When comparing the results from the Kaplan-Meier plots in section 4.2.1 and
4.2.2, one see that, for most of the time, the same variables important for
time to recurrence is also important for time to death. Later on (in section
4.4.3), recurrence will be included in the model as a time-dependent variable
for time to death. Then recurrence’s importance when it comes to time to
death will become more clear.

4.3 Log-rank test

By just looking at the Kaplan-Meier curves in section 4.2, we could get an
idea of how the survival experience of the patients depended on the differ-
ent explanatory variables. Now, the Log-rank test presented in section 2.3
will be applied to compare the different groups of patients presented in the
Kaplan-Meier curve plots found in section 4.2. Each Kaplan-Meier curve in
a given plot corresponds to a group, and the log-rank test was executed to
compare all the groups associated with a given plot. If the p-value from the
log-rank test was less than 0.05, it was concluded that there were evidence
for rejecting the null hypothesis ”No difference in survival experience between
the patient groups”. The results from the log-rank test was found by applying
the function ”survdiff” in R to the groups of interest. The p-values associ-
ated with the different explanatory variables for time to death and time to
recurrence are listed in table 4.3 and 4.4 below, respectively.
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4.3.1 Time to death

Explanatory
variable

p-value

Age 0.9
Menopause 0.5
Hormone 0.1
Grade 3 · 10−7

Size 1 · 10−4

Nodes 9 · 10−15

Progesterone 6 · 10−13

Estrogen 2 · 10−7

Table 4.3: p-values from log-rank test. Time to death

The p-values in table 4.3 confirms the observations made by inspecting the
Kaplan-Meier curves in section 4.2.1. Both the age and hormone variables
have p-values indicating that they do not play an important role when it
comes to the survival of the patient. The hormone variable has a p-value of
0.1, which is close to 0.05. For this reason, combined with the observation
done from the Kaplan-Meier curve in figure 4.4c, there is a slight indication
that the value of the hormone variable might have an influence on the survival
experience of the patients. The remaining variables’ p-value are less than
0.05, thus they indicate significant difference in survival experience between
the patient groups.

4.3.2 Time to recurrence

Explanatory
variable

p-value

Age 0.1
Menopause 0.6
Hormone 0.003
Grade 3 · 10−5

Size 0.001
Nodes 2 · 10−16

Progesterone 1 · 10−7

Estrogen 4 · 10−4

Table 4.4: p-values from log-rank test. Time to recurrence

The p-values in table 4.4 confirms observations done in section 4.2.2. The
p-value of the age variable is 0.1, not far from 0.05. This, combined with the
appearance of figure 4.5a, there is indication of that the age variable plays a
role when it comes to recurrence, with indications of younger patients being
more exposed to recurrence. As observed from figure 4.5a, the p-value of
0.6 of the menopause variable gives strong indications of that the menopause
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variable doesn’t play a role when it comes to recurrence. The remaining
variables have p-values suggesting that they play a significant role when it
comes to recurrence.

4.4 Determining the regression coefficients

It is of interest to find out at which extent the survival times of a patient
group depends on the different explanatory variables. The different explana-
tory variables contribute differently and thus will have different regression
coefficient values in the hazard function. Based on knowledge about contri-
bution you can choose to include in the model those explanatory variables
that would make the model more close to reality. In chapter 3.6 Collett em-
phasizes that there could be several equally good models. For this reason, he
suggest to not restrict your focus on finding one superior model, but rather
allowing the possibility to find several models that individually gives a good
representation of the dependence between survival time and explanatory vari-
ables [1]. There exist several methods for selecting which explanatory vari-
ables should be included in your survival analysis model. One such method
is purposeful selection, and Hosmer, Lemeshow and May gives a step-by-step
explanation of this method [6]. In the following these steps will be applied
with the aim of finding a suitable combination of explanatory variables to be
included in our model.

Depending on whether you consider the explanatory variables together (mul-
tivariable analysis) or seperately (univariable analysis) you will obtain differ-
ent values for the regression coefficients for each explanatory variable. The
choice of looking at uni - or multivariable model is made by specifying in the
programming script how many variables your model should include and thus
for how many variables regression coefficients should be estimated for. For
more information on how this is done, look up the documentation for the
function ”Coxph” in R. Also, see appendix.

Let’s start with univariable analysis, that is, considering each explanatory
variable separately, one at a time, and investigate their survival time con-
tribution (in practice, this means letting the hazard function only depend
on one variable and thus omitting the existance of the other explanatory
variables). For each of them, we use R to calculate the regression coeffi-
cient, hazard ratio confidence interval, and p-value from Wald test. Then,
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we present the results in a table. We start with time to death. Then, we re-
peat the same procedure for time to reccurence. After that is done, we repeat
the procedure once again for time to death, but by treating the recurrence
time as a time-dependent explanatory variable.

Before presenting the results from the analysis part, two remarks will be
given.

The nodes variable of patient with ID variable value 684 had 51 positive
nodes, a much larger value compared with the rest of the patient group. After
running the analysis it was found that the large nodes value dominated the
result compared with the more common smaller observations, in particular
for the univariable martingale plot for time to death . For this reason, it was
decided to remove this patient from the data set and then run the analysis.
This turned out to be successful. Figure 4.6 below shows the martingale
residuals plots before and after removal of ID 684, respectively.

(a) Before removal of patient with ID 684 (b) After removal of patient with ID 684

Figure 4.6: Univariable martingale residuals plots for time to death associ-
ated with the nodes variable. Figure 4.6a is before and figure 4.6b is after
removal of the patient from the data se, respectively.

In the Martingale residuals plots in figure 4.6 above, the red line is the
LOESS smoother and the dashed lines are the accompanied confidence in-
terval boundaries (95% confidence interval). See appendix for details on how
the Martingale residuals plots are created.
It was also found to be an issue that, large values of the progesterone and
estrogen receptor variables were suppressing their associated smaller values.
The largest values of the variables prog recp and estrg recp were 2380 and
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1144, respectively. These values are a magnitude larger than their mean val-
ues of 110 and 96.3, respectively. This big difference resulted in suppression
of the smaller values. The skewed distribution of these two variables can be
seen from their histograms in figure 4.2. Both the Schoenfeld and Martin-
gale residuals plots were affected by the suppression. To reduce the effect of
suppression, a log transformation [11] was performed to these two variables.
The Schoenfeld residuals plot and its associated p-value were compared be-
fore and after log transformation, and it was found that the requirements
were better met for the log transformation case (the p-values from the hy-
pothesis test became larger and it was easier to fit a straight horizontal line
in the plots). Also, the Martingale residuals plots were compared before and
after log transformation, and the plot requirements were better met after log
transformation. The comparison of the situation before and after log trans-
formation is shown in figure 4.7 for the Schoenfeld residuals and in figure
4.8 for the Martingale residuals. Since the values of both the prog recp and
estrg recp variables could take the value zero, the number ”1” were added to
all values corresponding to these variables before performing the log trans-
formation. If not else stated, log transformation will be performed to these
two variables during Cox regression calculations.

(a) Estrogen before log transformation. Asso-
ciated p-value from hypothesis test: 0.00006.

(b) Estrogen after log transformation. Asso-
ciated p-value from hypothesis test: 0.021.
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(c) Progesterone before log transformation.
Associated p-value from hypothesis test:
0.00031.

(d) Progesterone after log transformation.
Associated p-value from hypothesis test:
0.018.

Figure 4.7: Univariable Schoenfeld residuals plots for time to death before
and after log transform of the estrogen and progesterone variable. Figure
4.7a and 4.7b show the Schoenfeld residuals plots for the estrogen variable
before and after log transform, respectively. Similarly, figure 4.7c and 4.7d
show the Schoenfeld residuals plots for the progesterone variable before and
after log transform, respectively.

In the Schoenfeld residuals plots shown above, the two dashed curves illustate
upper and lower confidence interval boundaries. The solid curve visible in
betwen the two dotted curves is a curve fitted to the points in the plot and
should work as an aid to detect any trends in the plot. A rough interpretation
of these plots is that, if it is possible to fit a straight horizontal line in between
the two dashed curves, the assumption of proportional hazards holds. Details
on how to create the Schoenfeld residuals plot can be found in appendix.

(a) Estrogen before log transformation. (b) Estrogen after log transformation.
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(c) Progesterone before log transformation. (d) Progesterone after log transformation.

Figure 4.8: Univariable Martingale residuals plots for time to death before
and after log transform of the estrogen and progesterone variable. Figure
4.8a and 4.8b show the Martingale residuals plots for the estrogen variable
before and after log transform, respectively. Similarly, figure 4.8c and 4.8d
show the Martingale residuals plots for the progesterone variable before and
after log transform, respectively.

4.4.1 Time to death

Explanatory
variable

β̂ eβ̂ Confidence
interval for eβ

p-value

age 0.0016 1.0016 [0.99, 1.0] 0.83
menopause = 1 ref
menopause = 2 0.11 1.1 [0.82, 1.5] 0.48
hormone = 1 ref
hormone = 2 -0.26 0.77 [0.56, 1.1] 0.11
size 0.021 1.0 [1.01, 1.03] 8.54 · 10−7

grade 1 ref
grade 2 1.2 3.5 [1.5, 7.9] 0.0030
grade 3 1.9 6.4 [2.8, 15] 1.4 · 10−5

nodes 0.078 1.1 [1.06, 1.10] 2 · 10−16

prog recp -0.32 0.72 [0.67, 0.78] 2 · 10−16

estrg recp -0.21 0.81 [0.75, 0.88] 1.22 · 10−7

Table 4.5: Regression coefficient table from univariable analysis. Time to
death. ”ref ” means reference group for categorical variables.

The first column in table 4.5 tells you which explanatory variable is con-
sidered. The remaining columns from left to right are quantities associated
with the explanatory variable in column 1. The quantities are as follows:
Estimated regression coefficient β̂, estimate of hazard ratio eβ̂, 95 percent
confidence interval for the hazard ratio eβ and p-value from Wald test. Note
that menopause, hormone and grade are all categoric. For these variables
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the quantities in column 2 to 5 is calculated with respect to a reference state.
For menopause the reference state is ”menopause is reached”, for hormone
it is ”is receiving tamoxifen” and for grade it is ”grade 1 ”. The regression
coefficient of the reference state is zero, and thus the corresponding hazard
ratio is 1. To illustrate this principle, consider the grade variable. This vari-
able has three categories: Grade 1, Grade 2 and Grade 3. When reporting
a hazard ratio for the grade variable, Grade 1 is put as the reference state
(that is, β = 0 and thus e0 = 1 for Grade 1). If eβ̂ = 3.5 for Grade 2, this
means that the hazard rate of Grade 2 is 3.5 times bigger that of Grade 1.
Similarly, if eβ̂ = 6.4 for Grade 3, it means that the hazard rate of Grade 3 is
6.4 times that of Grade 1. Note that, the p-values in figure 4.5 are almost the
same as those in figure 4.3. Some differences exist, though. The differences
occur because, to calculate the p-values in figure 4.5, regression coefficient
estimates calculated from Cox regression are required. To calculate the p-
values in table 4.3 on the other hand, regression coefficient estimates and
thus Cox regression is not required.

(a) age (b) menopause

(c) hormone (d) size
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(e) grade = 2 (f) grade = 3

(g) nodes (h) progesterone

(i) estrogen

Figure 4.9: Schoenfeld residuals plots associated with the different explana-
tory variables to check assumption of proportional hazards. Univariable anal-
ysis. Time to death.

In all the plots in figure 4.9 the solid black curve fitting the points was found
to be quite horizontal. It was possible to fit a straight horizontal line between
the dashed curves for all variables, except for the estrogen and progesterone
variable. Even if the requirement was not quite satisfied for these two, the
solid fitted curve had a non-monotonic nature (neither monotonically increas-
ing nor monotonically decreasing). Because of the non-monotonic nature of
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the plots and the deviations not being large, the deviations from proportional
hazards was concluded to not be severe/ critical, and therefore a decision
was made to continue the analysis without introducing methods for handling
non-proportional hazards.

Explanatory
variable

p-value

Age 0.96
Menopause = 2 0.55
Hormone = 2 0.31
Size 0.59
Grade = 2 0.090
Grade = 3 0.043
Nodes 0.55
Progesterone 0.018
Estrogen 0.021

Table 4.6: p-values for hypothesis test of proportional hazards. Univariable
analysis. Time to death

It is of interest to check whether the functional form of the variables included
in the model are on a preferable form. This is done by looking at the plot
resulting from plotting the martingale residuals against a given functional
form of the explanatory variable value of interest. The plots are shown below.
Along the vertical axis is the martingale residuals, and along the horizontal
axis is the functional form of the explanatory variable value. As mentioned in
the introduction of this section, the red line is the LOESS smoother and the
dashed lines are the boundaries of a 95% confidence interval. As explained in
section 3.4.2, if the LOESS smoother resembles a straight line, this indicates
that the functional form that is used along the horisontal axis is adequate.
If it was possible to fit a straight line in between the dashed lines, it was
concluded that the suggested functional form was adequate. See R-code in
appendix to see how the plots were created.

(a) age (b) size
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(c) nodes (d) progesterone

(e) estrogen

Figure 4.10: Martingale residuals plots associated with the different explana-
tory variables. Univariable analysis. Time to death.

None of the variables has a LOESS smoother that perfectly fits a straight
line, but they all meet the requirement of fitting a straight line inside the
confidence interval boundaries.

Now that we have performed our univariable analysis, it is time to start the
multivariable analysis. The first step is to decide which of the explanatory
variables the hazard function should depend on. To start with, we will include
all those explanatory variables whose p-value in table 4.5 is lower than 0.2.
Then, we will use R to calculate the new regression coefficient estimates for
the explanatory variables included in the model. One by one, we will remove
from the model those explanatory variables that have a Wald test p-value
larger than 0.05. If several variables have p-values larger than 0.05, the
one with the largest p-value will be removed, and then regression coefficient
estimates will be calculated again for the remaining variables. This process
will be repeated until none of the explanatory variables’ p-values are larger
than 0.05. For the grade variable, it was decided to include it if either one

51



or both of grade = 2 or grade = 3 had a p-value smaller than 0.05. In
table 4.7 below you can see which explanatory variables remained after the
elimination process was finished.

Explanatory
variable

β̂ eβ̂ Confidence
interval for eβ

p-value

size 0.011 1.0 [1.00, 1.02] 0.02
grade 1 ref
grade 2 0.71 2.0 [0.88, 4.7] 0.10
grade 3 0.94 2.6 [1.1, 6.1] 0.037
nodes 0.061 1.1 [1.04, 1.08] 5.0 · 10−9

prog recp -0.27 0.77 [0.71, 0.83] 1.87 · 10−10

Table 4.7: Regression coefficient table from multivariable analysis. Time to
death. ”ref ” means reference group for categorical variables.

Based on the regression coefficient estimate values in table 4.7 the assumption
of proportional hazard for each of the explanatory variables will now be
checked.

Explanatory
variable

p-value

Size 0.68
Grade = 2 0.15
Grade = 3 0.081
Nodes 0.79
Progesteron 0.024

Table 4.8: p-values for hypothesis test of proportional hazards. Multivariable
analysis. prog recp is transformed to log(prog recp+ 1). Time to death

We choose to assume that the assumption of proportional hazards is met
if the p-value in table 4.8 is larger than 0.05, combined with checking if
it is possible to fit a horizontal straight line inside the confidence interval
boundaries in the residual plots. Under these requirements, we see that
the progesterone variable is not accepted. The associated residual plots are
shown below.
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(a) size (b) grade = 2

(c) grade = 3 (d) nodes

(e) progesterone

Figure 4.11: Schoenfeld residuals plots associated with the different explana-
tory variables to check assumption of proportional hazards. Multivariable
analysis. Time to death.

All of the variables fulfill the requirement of fitting a straight horizontal
line inside the confidence interval boundaries, except for the progesterone
variable. But since the variation is small and the smoother doesn’t show any
monotone behavior, the deviance from horizontal linear behavior is concluded
to not be critical.
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The martingale residuals plots corresponding to the model including the
explanatory variables are as follows:

(a) size (b) nodes

(c) progesterone

Figure 4.12: Martingale plots associated with the different explanatory vari-
ables. Univariable analysis. Time to death.

Plot 4.12b suggests that the nodes variable has some issues for large values
of nodes. Then the functional form suggested does not hold the requirement
of fitting a straight horizontal line. Further investigation can be done to see
if any transformation of the nodes variable will meet the requirement better.
Note also that the requirement of fitting a straight horizontal line is not fully
met for the progesterone variable in plot 4.12c, but since there is only a minor
non-monotonic behavior of the smoother, the deviance is not considered to
be serious.

Next in the multivariable analysis, we check for interactions. The number of
possible interactions are

(
4
2

)
= 6, and they are:
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1) size iteracted with nodes
2) size interacted with grade
3) size interacted with prog recp
4) grade interacted with nodes
5) grade interacted with prog recp
6) prog recp interacted with nodes

To check for intractions, the programming script in R was runned six times,
each time with one of the interactions listen above together with the explana-
tory variables in table 4.7. For each run of the script it was checked if the
interaction’s p-value was smaller than 0.05. After having identified which of
the interactions had a p-value smaller than 0.05, the script was runned again
with these interactions together with the explanatory variables in table 4.7.
Then, one at a time, those interactions who’s p-values were larger than 0.05
were eliminated (if several of the interactions had p-value larger than 0.05,
the one with the largest was eliminated first). After each elimination, the
script was runned again. The elimination process was executed until none of
the interactions had a p-value larger than 0.05.
After executing the procedure explained above, it turned out that none of
the interactions listen above survived, and it was concluded that there were
no interactions between the variables in 4.7 for time to death.

4.4.2 Time to recurrence

Explanatory
variable

β̂ eβ̂ Confidence
interval for eβ

p-value

age -0.0045 1.0 [0.98, 1.0] 0.46
menopause = 1 ref
menopause = 2 0.064 1.1 [0.85, 1.3] 0.59
hormone = 1 ref
hormone = 2 -0.37 0.69 [0.54, 0.89] 0.0035
size 0.015 1.02 [1.008, 1.020] 1.84 · 10−5

grade 1 ref
grade 2 0.87 2.4 [1.5, 3.9] 0.00039
grade 3 1.2 3.2 [1.9, 5.3] 1.0 · 10−5

nodes 0.071 1.1 [1.06, 1.09] 2 · 10−16

prog recp -0.21 0.81 [0.76, 0.86] 5.0 · 10−13

estrg recp -0.14 0.87 [0.82, 0.93] 9.4 · 10−6

Table 4.9: Regression coefficient table from univariable analysis. Time to
reccurence. ”ref ” means reference group for categorical variables.
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Explanatory
variable

p-value

Age 0.0025
Menopause = 2 0.011
Hormone = 2 0.63
Size 0.27
Grade = 2 0.062
Grade = 3 0.0014
Nodes 0.66
Progesteron 0.012
Estrogen 0.0007

Table 4.10: p-values for hypothesis test of proportional hazards. Univariable
analysis. Time to recurrence

(a) age (b) menopause

(c) hormone (d) size
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(e) grade = 2 (f) grade = 3

(g) nodes (h) progesterone

(i) estrogen

Figure 4.13: Schoenfeld plots associated with the different explanatory vari-
ables to check assumption of proportional hazards. Univariable analysis.
Time to recurrence.

The p-values in table 4.10 show that the hormone, size, grade = 2 and nodes
variables all have p-values above the chosen significance level of 0.05. Having
a glance at their associated residuals plots in figure 4.13 shows that it is pos-
sible to fit a straight horizontal line inside the confidence interval boundaries
for all of them, without any of them showing any serious sign of monotonic
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trend. The age, menopause, grade = 3, progesterone and estrogen variables
on the other hand all have p-values below 0.05. Of these, the age, menopause
and estrogen variables show a monotonic increasing behavior, indicating de-
viation from proportional hazards. Thus, investigation should be made to
see of it is possible to modify the Cox model to take their time-dependent
coefficients into consideration. For the grade = 3 and progesterone variables
it is possible to fit a straight line inside the confidence interval boundaries.

The martingale residuals plots associated with the continuous variables in
table 4.7 are shown in figure 4.10 below.

(a) age (b) size

(c) nodes (d) progesterone
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(e) estrogen

Figure 4.14: Martingale residuals plots associated with the different explana-
tory variables. Univariable analysis. Time to recurrence.

It is clear from plot 4.14c that, the nodes variable doesn’t meet the require-
ment of fitting a straight line inside the dahsed boundary lines. Therefore, it
must be done some investigation to find a transformation of this variable to
make it meet the requirement. The same applies for the age variable. One
possibility is to find a transformation that would meet the requirement. An
alternative approach would be to categorize these continuous variables into
subgroups, such that each subgroup corresponds to a specific interval contain-
ing a portion of the continuous variable’s values. The subgroups’ intervals
are chosen in a such way that the requirement for the martingale residuals
are met for each group. It was found useful to compare the Kaplan-Meier
curves with the martingale plots. It turned out that, for both the age and
the nodes variable, the martingale requirement was met if the variables were
grouped into the same intervals used in the Kaplan-meier curve plots.
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Figure 4.15: Comparison of Martingale residuals plot and Kaplan-Meier
curve of the age variable. Time to recurrence.

The upper part of figure 4.15 is the martingale residuals plot from figure
4.14a and the lower part is the Kaplan-Meier curve plot from figure 4.5a.
The yellow, blue and green straight lines drawn onto the martingale residuals
plot is resembling the following age groups: Group 1 (0 to 45 years), groups
2 (46 to 60 years) and group 3 (61 to 80 years). By categorizing the age
variable in this way it was found possible to meet the martingale residuals
requirement.
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Figure 4.16: Comparison of Martingale residuals plot and Kaplan-Meier
curve of the nodes variable. Time to recurrence.

The upper part of figure 4.16 is the martingale residuals plot from figure 4.14c
and the lower part is the Kaplan-Meier curve plot from figure 4.5f. The blue,
green and yellow straight lines drawn onto the martingale residuals plot is
resembling the following nodes groups: Group 1 (1 to 3 nodes), groups 2 (4 to
6 nodes) and group 3 (7 to 51 nodes). By categorizing the nodes variable in
this way it was found possible to meet the martingale residuals requirement.

After the elimination process (by only including those variables from table
4.9 that has a p-value below 0.05), we see that the variables that the hazard
function depends on for time to recurrence is hormone, grade, nodes and
prog recp. Note that these are almost the same set of variables as for time
to death. The difference is that hormone has taken the place of the size vari-
able. The nodes variable was made a categorical variable before performing
the multivariable analysis. The results of the multivariable Cox regression
analysis are shown in table 4.11 below.
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Explanatory
variable

β̂ eβ̂ Confidence
interval for eβ

p-value

hormone -0.37 0.69 [0.54, 0.88] 0.0033
grade 1 ref
grade 2 0.52 1.7 [1.0, 2.7] 0.039
grade 3 0.57 1.8 [1.0, 3.0] 0.039
nodescategorical
= 1

ref

nodescategorical
= 2

0.74 2.1 [1.6, 2.8] 1.4 · 10−6

nodescategorical
= 3

1.1 2.9 [2.2, 3.7] 4.9 · 10−15

prog recp -0.17 0.84 [0.79, 0.90] 8.0 · 10−8

Table 4.11: Regression coefficient table from multivariable analysis. Time to
recurrence. ”ref ” means reference group for categorical variables.

In table 4.11, ”nodescategorical = 1”, ”nodescategorical = 2” and ”nodescategorical =
3” are the categorical nodes groups earlier refered to as group 1 (1 to 3 nodes),
group 2 (4 to 6 nodes) and group 3 (7 to 51 nodes), respectively.

Explanatory
variable

p-value

hormone 0.64
Grade = 2 0.10
Grade = 3 0.0039
nodescategorical
= 2

0.46

nodescategorical
= 3

0.23

Progesteron 0.025

Table 4.12: p-values for hypothesis test of proportional hazards. Multi-
variable analysis. prog recp is transformed to log(prog recp + 1). Time to
recurrence

(a) hormone (b) grade = 2
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(c) grade = 3 (d) nodescategorical = 2

(e) nodescategorical = 3 (f) Progesterone

Figure 4.17: Schoenfeld plots associated with the different explanatory vari-
ables to check assumption of proportional hazards. Multivariable analysis.
Time to recurrence.

It is possible to fit a straight horizontal line inside the confidence interval
boundaries for all variables in figure 4.20. The p-values in table 4.12 is below
0.05 for the progesterone variable, but since figure 4.17f doesn’t show any
clear sign of monotonic increasing or monotonic decreasing behavior, the
variable is accepted to follow proportional hazards.

Only one of the variables in table 4.11 are continuous, the progesterone vari-
able. Thus, only one Martingale plot will result for the multivariable case
for time to recurrence. The plot is shown in figure 4.18 below.
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Figure 4.18: Martingale plot of the progesterone variable. Multivariable
analysis. Time to recurrence.

For time to recurrence, the number of possible interactions are
(

4
2

)
= 6, and

they are:

1) hormone iteracted with grade
2) hormone interacted with nodescategoric
3) hormone interacted with prog recp
4) grade interacted with nodescategoric
5) grade interacted with prog recp
6) prog recp interacted with nodescategoric

After executing the elimination process, the interactions listed above that
survived were 3 (hormone interacted with prog recp
) and 4 (grade interacted with nodescategoric).
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4.4.3 Recurrence as time-dependent variable

In section 3.5 the idea about time-dependent explanatory variables was in-
troduced. In this section, the analysis procedure presented in section 4.4.1
and 4.4.2 will be executed on the same data set as before, but now looking at
time to death and considering recurrence as a separate explanatory variable
who’s value is time-dependent but regression coefficient is constant. This
will result in a separate regression coefficient for the recurrence. Details of
how this is implemented in R is explained in the literature [5]. What was
done was to assign a new categorical explanatory variable ”rec” that either
took the value zero or unity, depending on if a recurrence was observed or
not, respectively. When recurrence occured, the variable ”rec” would change
value from 0 to 1 at the recurrence time. Intuition tells that the regression
coefficient of the ”rec” variable should be large, because recurrence is a bad
sign when it comes to chance of fatality for cancer patients. The larger the
regression coefficient, the more likely it is for the patient to die.

Explanatory
variable

β̂ eβ̂ Confidence
interval for eβ

p-value

rec 3.7 42 [26, 69] 2 · 10−16

age 0.0013 1 [0.99, 1.0] 0.87
menopause = 1 ref
menopause = 2 0.11 1.1 [0.82, 1.5] 0.50
hormone = 1 ref
hormone = 2 -0.26 0.77 [0.56, 1.0] 0.11
size 0.021 1.0 [1.01, 1.03] 9.16 · 10−7

grade 1 ref
grade 2 1.2 3.5 [1.5, 7.9] 0.0031
grade 3 1.9 6.5 [2.8, 15] 1.3 · 10−5

nodes 0.068 1.1 [1.05, 1.09] 2.79 · 10−16

prog recp -0.32 0.72 [0.67, 0.78] 2 · 10−16

estrg recp -0.21 0.81 [0.75, 0.87] 1.1 · 10−7

Table 4.13: Regression coefficient table from univariable analysis. ”ref ”
means reference group for categorical variables. Time to death. Recurrence
as explanatory variable.

In principle, except of an additional row for the recurrence variable ”rec”,
the values in table 4.13 should be the same as found in table 4.5. But since
another script was used in the model with recurrence as time dependent
variable (and the structure of this script was a little bit different), some minor
differences were observed. The schoenfeld residuals plots and martingale
residuals plots for the univariable analysis part should in principle also be
the same as found in section 4.4.1. In the second column of the rec variable,
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note the value of eβ = 42. An interpreation of this number is that, a person
with recurrence has 42 times higher chance of dying at a particular time
incident compared with a person that didn’t have recurrence.

Figure 4.19: Plot to check assumption of proportional hazards for the recur-
rence variable. Univariable analysis. Time to death. Recurrence as explana-
tory variable.

From figure 4.19 it is visible that a horizontal straight line is not possible to
fit between the confidence boundaries, and the assumption of proportional
hazards doesn’t hold. The associated p-value was found to be 0.00079, which
isn’t adequate. Measures must be done to solve this issue.

Explanatory
variable

β̂ eβ̂ Confidence
interval for eβ

p-value

rec 3.5 35 [21, 57] 2 · 10−16

size 0.012 1.0 [1.0, 1.02] 0.0068
prog recp -0.19 0.83 [0.76, 0.89] 2.2 · 10−6

Table 4.14: Regression coefficient table from multivariable analysis. Time to
death. ”ref ” means reference group for categorical variables. Recurrence as
explanatory variable

After executing the elimination procedure, the explanatory variables left are
rec, size and prog recp. Before including recurrence in the model, size and
prog recp were also significant, together with nodes and grade (see table
4.7). By including recurrence in the model nodes and grade turned out to
not be significant anymore. But it is important to know that both nodes and
grade are important variables when it comes to time to recurrence (see figure
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4.5e and 4.5f for Kaplan-Meier curves and table 4.9 and 4.11 for regression
coefficients). So, both of the nodes and grade variables are important in this
model too, but through the recurrence variable.

(a) recurrence (b) size

(c) progesterone

Figure 4.20: Schoenfeld residuals plots associated with the different explana-
tory variables to check assumption of proportional hazards. Multivariable
analysis. Time to death. Recurrence included as explanatory variable.

Explanatory
variable

p-value

rec 0.0016
size 0.68
prog recp 0.041

Table 4.15: p-values for hypothesis test of proportional hazards. Multivari-
able analysis. Time to death. Recurrence included as explanatory variable.

From table 4.15 it can be seen that, the p-value for the size variable is very
acceptable, but the progesterone variable’s p-value is quite low and there
is reason to ask the question of whether this variable has a time-dependent
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regression coefficient or not. The Schoenfeld residuals plots of size and pro-
gesterone in figure 4.20b and 4.20c, respectively, show no sign of either mono-
tonically increasing or decreasing pattern, and therefore it is assumed that
both variables do not have time-dependent regression coefficients.
As seen from table 4.15 the recurrence variable has a low p-value, combined
with difficulty of fitting a horizontal straight line inside the dashed confi-
dence interval boundary curves in figure 4.20a. For most of the time span,
its Schoenfeld residuals plot shows a montonically decreasing linear pattern,
indicating a negative linear time-dependent regression coefficient. For sur-
vival times below 500 it seems like there is some non-linear behavior which
will be neglected for the moment being (this because of few points follow this
non-linear trend).
An attempt was made to resolve this issue by modifying the Cox model to
allow time-dependent regression coefficients. This was done by including a
so-called ”tt”-term in the in-built coxph-function used in R to perform the
Cox regression analysis. A linear term in time was used as the tt-term. The
results are shown in table 4.16 below.

Explanatory
variable

β̂ eβ̂ Confidence
interval for eβ

p-value

rec 4.81 122 [44.2, 337] 2 · 10−16

size 0.0109 1.01 [1.00, 1.02] 0.0101
prog recp -0.190 0.827 [0.764, 0.895] 2.39 · 10−6

tt(rec) -0.00135 0.999 [0.998, 1.00] 0.00170

Table 4.16: Regression coefficient table from multivariable analysis. Time to
death. Recurrence as explanatory variable.

The total expression of the hazard function based on the variables in table
4.16 is given by

h(t) = h0(t)e(β0+β1·t)·rec+β2·size+β3·prog recp. (4.2)

In (4.2), rec takes the value zero or unity depending on whether recurrence
is absent or present, respectively. The term β0 + β1 · t make up the function
of a straight line, where t is survival time, and β0 and β1 is the regression
coefficients of rec and tt(rec) in table 4.16, respectively. Both β0 and β1 in
(4.2) can be associated with figure 4.20a, where β0 can be thought of as the
intercept of a straight line with the vertical axis and β1 is the slope of the
line. If we insert a straight line with intercept equal to β0 = 4.81 and slope
of β1 = −1.35 · 103 into the plot in figure 4.20a, we see the following:
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Figure 4.21: Figure 4.20a with inserted red straight line, showing the linear
time-dependent recurrence variable.

The red line is the function y = 4.81 − 0.00135t. Over all, the line seem to
represent the points in the plot quite well.

Let’s now have a look at the Martingale residuals plots.

(a) size (b) progesterone

Figure 4.22: Martingale plots associated with the different explanatory vari-
ables. Multivariable analysis. Time to death. Recurrence included as ex-
planatory variable.

It is observed from figure 4.22a and figure 4.22b that, both of the size and pro-
gesterone variables have trouble meeting the requirement of fitting a straight
horizontal line inside the confidence interval boundaries in the martingale
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residuals plots, respectively. It can be discussed whether the size variable’s
deviance from the requirement is so small that it should be accepted. For the
progesterone variable the situation is more severe. It should be investigated
more closely what can be done to these two variables for them to better meet
the requirement.

Possible interactions are:

1) rec with size
2) rec with prog recp
3) size with prog recp

None of these interactions were found to be significant.
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Chapter 5

Simulations

In this chapter there will be simulated survival times that will be analysed
using Cox regression. First, survival data for which the assumption of pro-
portional hazards is satisfied will be simulated, assuming that the survival
times follow a probability distribution known as the Weibull distribution.
Next, survival data for which the proportional hazards assumption is not
satisfied will be simulated, with the aim of finding out how good are the
methods for detecting non-proportional hazards used in chapter 4. Before
starting with simulations and applying the Cox regression analysis procedure
to the simulated data, a short presentation of the Weibull distribution and
its relation to Cox regression will be presented.

5.1 The Weibull distribution

A Weibull distributed continuous random variable T with scale parameter λ
and shape parameter γ is denoted by T ∼ W (λ, γ) [1, p. 155]. The hazard
function of T ∼ W (λ, γ) is given by [1, p. 154]

h(t) = λγtγ−1. (5.1)

Recalling (2.23) given by

ln(S(t)) = −
∫ t

0

h(u)du

the survivor function becomes [1, p. 127]

S(t) = e−
∫ t
0 λγu

γ−1du = e−λt
γ

. (5.2)

Using the results from (5.1) and (5.2) together with (2.14) given by

h(t) =
f(t)

S(t)

gives the following expression for the pdf of T:

f(t) = h(t)S(t) = λγtγ−1e−λt
γ

. (5.3)

Further, it can be shown that, the expectation of T is given by [1, p. 155]
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E(T ) = λ
−1
γ Γ(γ−1 + 1), (5.4)

where Γ(x) is defined by [1, p. 155]

Γ(x) =

∫ ∞
0

ux−1e−udu = (x− 1)!. (5.5)

Recall the general proportional hazard model given by (3.10):

hi(t) = eβ
Txih0(t)

.
If the baseline hazard function h0(t) in (3.10) is replaced by the right-hand
side of (5.1), we get [1, p. 176]

hi(t) = eβ
Txiλγtγ−1. (5.6)

The corresponding survivor function becomes [1, p. 176]

Si(t) = e−λt
γeβ

T xi . (5.7)

5.2 The Inverse Transform Method for gen-

erating random variables

How do we generate random numbers? The computer software R has a
PRNG (pseudo random number generator) for uniformly distributed num-
bers. The in-built function in R functioning as a PRNG to generate uniformy
distributed numbers is ”runif ”. By combining this uniform PRNG with a
method called The Inverse Transform Method, it is possible to generate ran-
dom numbers from a probability distribution of interest. Rizzo summarizes
the Inverse Transform Method in her book [12, p. 50]. First, start with
finding the cumulative distribution function given by

F (x) =

∫ x

−∞
f(x)dx, (5.8)

where f(x) is the probability density function of your random variable X.
Then, let
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U = F (x). (5.9)

Solve 5.9 for x, which gives

x = F−1(U), (5.10)

where F−1 denotes the inverse of the cumulative distribution function F.
Then, generate a uniformly distributed number ”U” between 0 and 1 (de-
noted by U ∼ Uniform(0, 1)). Inserting this U into 5.10 yields a random
variable value x.

5.2.1 Applying The Inverse Transform Method on a
Weibull distributed random variable

Recall from (2.6) that, the survivor function can be expressed as

S(t) = P (T ≥ t) = 1− F (t),

where F (t) is the cumulative distribution function. Solving for S(t) yields

F (t) = 1− S(t). (5.11)

Let now S(t) be expressed as in (5.7), but do the following substitution:

λ∗i = λ · eβTxi . (5.12)

Substituting (5.12) into (5.7) yields

Si(t) = e−λ
∗
i t
γ

. (5.13)

By substituting (5.13) into (2.6) we get

Fi(t) = 1− Si(t) = 1− e−λ∗i tγ . (5.14)

Doing as in (5.9) gives

U = 1− e−λ∗i tγ . (5.15)

Solving 5.15 for t gives the following expression for the survival time of patient
number i:
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ti = F−1
i (U) =

(
− ln(1− U)

λ∗i

) 1
γ

. (5.16)

In the following, the expression in (5.16) will be used to generate Weibull
distributed survival times. Values of λ, βT and γ will be chosen, U will
be simulated by the in-built R-function runif and xi will be simulated from
specific probability distributions chosen for the explanatory variables.

5.3 Simulation of Weibull distributed survival

times

Now, the simulated survival data will be presented together with the Cox
regression analysis that was performed.

In the simulations, it was to some extent made an attempt to mimic the
German Breast Cancer Data presented in chapter 4. It was simulated 700
non-censored survival times with three associated explanatory variables. The
scale parameter λ was set to 1.5 and the shape parameter γ was set to 0.75.
The explanatory variables used were intended to present the size, proges-
terone and nodes variable. Now each explanatory variable will be presented.

1) Explanatory variable 1
This explanatory variable was to mimic the size variable, which was contin-
uous and fairly symmetrically distributed. This variable was simulated from
a normal distribution, using the in-built R-function called ”rnorm”. The
input in this function were number of simulated values, mean and standard
deviation. The mean was set to 30, and the standard deviation was to start
with set to 0.5 but later altered to illustrate some observations about the
Cox analysis machinery (to be presented later). Before running simulations,
it was checked if some of the simulated values were negative (this could hap-
pen if a large enough standard deviation was chosen). If negative values
appeared, then a smaller standard deviation was chosen such that negative
values did not appear.

2) Explanatory variable 2
This explanatory variable was to mimic the progesterone variable, which was
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continuous and non-symmetrically distributed. This variable was simulated
from an exponential distribution, using the in-built R-function called ”rexp”.
Input to this function were number of simulated values, including a rate pa-
rameter. The rate parameter was set to 0.4.

3) Explanatory variable 3
This explanatory variable was to mimic the nodes variable, which was a
discrete variable. This variable was simulated from an uniform distribution
rounded to the nearest integer number. The in-built R-function used to sim-
ulate from the uniform distribution is ”runif ”. Input to this function were
number of simulated values, minumum value and maximum value, which was
set to 1 and 15, respectively.

To allow the reader of the report to reproduce the results presented in this
report, the seed used was ”123 ”. See R-code in appendix for how to set the
seed.
After simulating values of survival times and assiciated explanatory variables,
it is possible to analyse these data with the Cox regression analysis scripts
used in chapter 4. This will now be done to check if the scripts are able to
reproduce the regression coefficients assumed when simulating the survival
times.

5.3.1 Trying to predict the regression coefficients’ val-
ues

Denote the three explanatory variables by X1, X2 and X3. Further, assume
their associated regression coefficients are time-independent and equal to
β1 = 0.0110, β2 = −0.0610 and β3 = −0.270, respectively. Given these
parametric values, we can simulate survival times from (5.16). By organizing
the survival times and associated explanatory variable values in a data frame
in R, and then running the Cox regression analysis methods from chapter 4
on the data frame produce the following for the multivariable case:

Explanatory
variable

β̂ eβ̂ Confidence
interval for eβ

Confidence
interval for β

p-value

X1 0.0838 1.09 [0.929, 1.27] [-0.0736, 0.239] 0.297
X2 -0.0841 0.919 [0.892, 0.948] [-0.114,-0.0534] 4.45 · 10−8

X3 -0.278 0.757 [0.738, 0.777] [-0.304, -0.252] 2 · 10−16
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Table 5.1: Regression coefficient table from multivariable analysis. Time to
death.

As seen from table 5.1, the regression coefficients are not estimated to be the
exact value that was assumed in the simulations. Nonetheless, the assumed
regression coefficient values of β1 = 0.0110, β2 = −0.0610 and β3 = −0.270
lies inside the associated 95 percent confidence intervals of [-0.0736, 0.239],
[-0.114,-0.0534] and [-0.304, -0.252], respectively.
It is of interest to check what can be done to increase the accuracy of the
regression coefficient estimates. It was found that the accuracy of the esti-
mates was increased by changing the value of some of the parametric variables
contained in (5.16). The associated findings will now be presented.

5.3.1.1 Changing the standard deviation

Let us now try to estimate the regression coefficients again, but now by
changing the standard deviation of X1 from 0.5 to 5, and then observe if the
estimates becomes more or less accurate.

Explanatory
variable

β̂ eβ̂ Confidence
interval for eβ

Confidence
interval for β

p-value

X1 0.0181 1.02 [1.00, 1.03] [0, 0.0296] 0.0249
X2 -0.0846 0.919 [0.892, 0.947] [-0.114,-0.0545] 3.62 · 10−8

X3 -0.279 0.757 [0.737, 0.776] [-0.305, -0.254] 2 · 10−16

Table 5.2: Regression coefficient table from multivariable analysis. Time to
death.

If comparing table 5.1 and 5.2, it can be seen that, when increasing the
standard deviation of X1 from 0.5 to 5, the accuracy of the estimates of
the regression coefficients of X1 and X2 increases, but that of X3 decreases
(changes from 0.278 to 0.279, so the decrease in accuracy is not that large).
Checking for standard deviation equal to 10:

Explanatory
variable

β̂ eβ̂ Confidence
interval for eβ

Confidence
interval for β

p-value

X1 0.0145 1.01 [1.01, 1.02] [0, 0.0198] 0.000348
X2 -0.0841 0.919 [0.892, 0.947] [-0.0823,-0.0704] 4.39 · 10−8

X3 -0.279 0.757 [0.737, 0.777] [-0.677, -0.587] 2 · 10−16

Table 5.3: Regression coefficient table from multivariable analysis. Time to
death.
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Table 5.3 shows that increasing the standard deviation of X1 from 5 to 10
increases the accuracy of the regression coefficient estimates of X1 and X2,
but no increase for X3. In the following simulation examples, the standard
deviation of X1 will be assumed to be 10. All other parameters will also be
assumed to stay constant if else is not mentioned.

5.3.1.2 Changing the number of simulated values

In table 5.3, 700 survival times were simulated. What will happen to the
regression coefficient estimates if the number of simulations is increased?
Simulations were done for 700, 7000, 70 000 and 700 000 simulations, and
the regression coefficient estimates were reported in table 5.4 below.

Number of simu-
lations

700 7000 70 000 700 000

β̂1 0.01447 0.01118 0.01103 0.01092

β̂2 -0.08413 -0.06080 -0.06017 -0.06141

β̂3 -0.2787 -0.2725 -0.2704 -0.2697

Table 5.4: Regression coefficient table from multivariable analysis. Time to
death.

From table 5.4 it can be seen that, when increasing the number of simulations
from 700 to 7000, the accuracy of the regression coefficient estimates increases
for all of the variables. When increasing the number of simulations from 7000
to 70 000, the accuracy of the regression coefficient estimates increases for
X1 and X3, but not for X2. When increasing the number of simulations
from 70 000 to 700 000, the accuracy of the regression coefficient estimates
increases for X2 and X3, but not for X1. Summarized, increasing the number
of simulations will increase the overall accuracy of the regression coefficient
estimates.

5.3.1.3 Trying to detect a non-linear term

Now, it will be investigated if it will be possible to detect from the martin-
gale residuals plot if the assumed functional form of one of the explanatory
variables is not linear. Martingale residuals plot for non-empty model will
be used (see section 3.4.2).
The following form of (5.12) is used in the simulation:
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λ∗i = λ · eβ1·x1+β2·x2+β3·x3+β4·(x3−x3)2 , (5.17)

where x3 is the mean of x3. Parameter values are as before. The only new
parameter value is β4 = 0.1.
When using the R-script to create the Martingale residuals plot, only the
term β3 ·x3 is assumed for the X3 variable. Then the resulting plot looks like
the following:

Figure 5.1: Martingale plot of the X3 variable when only assuming linear
term.

The curve in figure 5.1 resembles a parabola. If we now in the model add
a quadric term in the model assumption (accomplished in R by adding the
term ”I(x3

2)”), the plot changes to the following:
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Figure 5.2: Martingale plot of the X3 variable when including a quadric term
in the model assumption.

As seen from figure 5.2, the LOESS smoother is now approximately straight
and horizontal. It is fully possible to fit a straight horizontal line inside the
confidence interval boundaries, which indicate that the correct functional
form is assumed.

5.4 Survival data for which the proportional

hazards assumtion is not satisfied

The library ”coxed” in the programming software R has an in-built function
with the name ”sim.survdata”. This function can be used to simulate sur-
vival data. In the following, this function will be used to simulate survival
data. Then, these data will be used to illustrate how good the Schoenfeld
residuals are to detect non-proportional hazards.

What was done was to copy the example shown in senction 3.9 of the article
”How to simulate survival data with the sim.survdata function” [13, p. 50].
The only difference is that we defined β1 to be

β1 =
(t− 25)2

100
, (5.18)
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and we set T equal to 50 instead of 100 (have a look in the documentation
of the sim.survdata-function for an understanding of the terminology). The
Schoenfeld residuals plot corresponding to the simulated data is shown in
5.3b below. Figure 5.3a is a plot of (5.18).

(a) Plot of (5.18).
(b) Schoenfeld residuals plot of β1 defined in
5.18.

Figure 5.3: Comparison of theoretical and observed functional form of re-
gression coefficient from simulated survival data.

As seen from figure 5.3, the Schoenfeld residuals plot in 5.3b resembles a
parabola, which is the shape of the theoretical form of the regression coeffi-
cient function shown in figure 5.3a. Thus, the Schoenfeld residuals plot seems
to do its job in being an aid to identify the functional form of the regression
coefficient.
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Chapter 6

Conclusion

In this chapter, conclusions for the results from chapter 4 and 5 will be given.
In addition, a suggestion to further work will be given.

6.1 Chapter 4: Application

6.1.1 Time to death

The Kaplan-Meier curves for time to death indicated that size, grade, nodes,
estrogen and progesterone were the explanatory variables that had an influ-
ence on the survival experience of the patients. The Kaplan-Meier curves
indicated that

1) The larger the size of the tumor, the bigger risk of death exists.

2) The risk of death increaes with increasing grade.

3) Increasing number of positive lymph nodes increases the risk of death in
the patient.

4) The lower the amount of estrogen and progesterone bound to proteins in
the cytosol of the primary tumor, the bigger the risk of death.

For the univariable Cox regression analysis, all except of the estrogen and
progesterone variables were found to meet the Schoenfeld residuals plot re-
quirement (fit a straight and horizontal line inside the confidence interval
boundaries). Because of no critical deviance (no monotonically decreasing
or increasing trend), multivariable analysis procedure was initiated without
introducing methods for handling non-proportional hazards.

After performing Cox regression using the method of purposeful selection
for the multivariable case, size, grade, nodes and progesterone were the vari-
ables remaining in the model. There were observed some deviance from the
Schoenfeld and Martingale residuals plots for the progesterone variable, but
the deviances were considered to not be critical. For the nodes variable the
requirement for the Martingale residuals plot were not met for large nodes
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values. A possible fix of this could either be to find a suitable transformation
or to categorize the variable.

6.1.2 Time to recurrence

For time to recurrence, the Kaplan-Meier curves indicated that all the vari-
ables except the menopause variable had an effect on the time to recurrence.
More specifically,

1) There is a small indication of that younger patients have higher risk of
recurrence.

2) Patients receiving tamoxifen have a higer risk of recurrence.

3) The larger the primary tumor, the higher the risk of recurrence.

4) Increasing grade increases the chance of recurrence.

5) The more positive lymph nodes, the higher the risk of recurrence.

6) The risk of recurrence increases with increasing amount of estrogen and
progesterone bound to proteins in the cytosol of the primary tumor.

On the univariable level, monotonic increasing behavior of the age, menopause
and estrogen variables were observed in the Schoenfeld residuals plots, indi-
cating that these variables may have time-dependent regression coefficients.
A decision was made to continue with the multivariable analysis without
doing anything about these variable’s possible deviance from proportional
hazards. Also, Martingale residuals plot requirement was not met for the
age and nodes variables on the univariable level. Before continuing on mul-
tivariable level, these variables were categorized to make sure these variables
met the Maringale residuals plot requirement.

After performing the procedure for the multivariable case, hormone, grade,
categorical nodes variable and the progesterone variable were the variables
left in the model. All of them satisfied the Schoenfeld residuals plot require-
ment. It was found indication of that hormone may be interacted with the
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progesterone variable and also that the grade variable may be interacted with
the categorical nodes variable.

6.1.3 Recurrence as time-dependent variable

Recurrence was modelled as a time-dependent variable for time to death. For
the multivariable case, recurrence, size and progesterone turned out to be the
important variables, with recurrence having a very large hazard rate. Thus,
it was concluded that patients experiencing recurrence had a much higher
risk of dying compared to patients not experiencing recurrence. It is impor-
tant to keep in mind that, those variables important to recurrence are also
important to time to death, but through the recurrence variable. For exam-
ple are nodes and grade important for time to recurrence and therefore also
important for time to death, even if they didn’t survive the purposeful selec-
tion method for time to death when including recurrence as time-dependent
variable.
Both the uni - and multivariable analysis showed that the Schoenfeld resid-
uals plot had a monotonically decreasing linear behavior for the recurrence
variable. The multivariable analysis was then runned again, now by mod-
elling the recurrence variable with a time-dependent regression coefficient.
The Martingale residuals plot requirement was not met for the size and pro-
gesterone variables.

6.2 Chapter 5: Simulations

6.2.1 Simulation of Weibull distributed survival times

When running Cox regression on the simulated Weibull distributed survival
times, the programming script managed to estimate the regression coeffi-
cients inside its confidence interval boundaries. It was found that increasing
the standard deviation of the normally distributed explanatory variable in-
creased the accuracy of the estimated regression coefficient values. Increas-
ing the number of simulated survival times also increased the accuracy of
the estimates. When letting the value of one of the explanatory variables be
expressed as a non-linear function (in our case a parabola) but assuming a
linear term in the model, the Martingale residuals plot managed to detect
this. After assuming the correct functional form in the model, the Martingale
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residuals plot requirement were met.

6.2.2 Survival data for which the proportional hazards
assumtion is not satisfied

When using the sim.survdata-function from the coxed -library to simulate
survival data for which the proportional hazards assumtion were not satis-
fied, the Schoenfeld residuals plot showed that one of the three explanatory
variables had a time-dependent regression coefficient, resembling a parabola,
in consistence with the quadric function that was chosen as input in the
simulation script.

6.3 Further work

After working on this report, some possible extensions have been identified.
They are:
1) Investigate more closely the cases were time-dependent regression coeffi-
cients may be present. For example have a look at the age, menopause and
estrogen variables for time to recurrence (non-proportional hazards observed
for these variables on the univariable level).
2) Have a closer look on the interactions that were found and see how they
will affect the models. Examples for time to recurrence are the interaction
between hormone and progesterone and between grade and categorical nodes
variable.

3) Investigate if there exist some transformations of the explanatory vari-
ables from chapter 4 that would make the Martingale residuals for some
of the variables fit better, or alternatively categorize them in suitable cate-
gories. Examples are the nodes variable for time to death, and the size and
progesterone variables for time to death when including recurrence as time-
dependent variable.

4) Further experiment with the sim.survdata function to investigate the good-
ness of the Schoenfeld residuals plot and its ability to detect time-dependent
regression coefficients and their nature.
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5) Investigate more closely the topic of non-proportional hazards. Informa-
tion about this topic can be found in the literature [1, p. 313-318].

6) Have a look at multi-state models. In his book, Collett gives a short pre-
sentation of this topic [1, p. 323-326]. In a diagram, he presents a three-state
model for analysing survival data from a patient group similar to that we
have been working on in chapter 4 (patients with cancer, recurrence and sur-
vival time recorded) [1, p. 324]. In figure 6.1 below you see a reconstruction
of this diagram.

Figure 6.1: Diagram of three-state model that can be used in cancer studies.

In figure 6.1 you see three rectangles. These presents the state of the pa-
tient. Depending on whether the patient experiences recurrence or not, we
can work with three different hazard functions:

1) hD(t). This is the hazard function the patient depends on if you look at
time to death and ignore whether the patient has experienced recurrence or
not.

2) hR(t). This is the hazard function the patient depends on if you look at
time to recurrence.

3) hRD(t). This is the hazard function the patient depends on if you look at
time to death, given that the patient has experienced recurrence.
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In this report we have modelled case 1 (hD(t)) and 2 (hR(t)) above. The
closest we have been to 3 (hRD(t)) is when we modelled recurrence as a time-
dependent variable. The main challenge with case 3 is that only patients
who’s recurrence time is known can be included in the study. But the reality
is that people get recurrence at different times. Someone get recurrence after
the study is finished, while others get recurrence after they have been cen-
sored. Such patients cannot be included in case 3, because their recurrence
time will remain unknown. To investigate case 3, Collett suggests using a
technique called conditional logistic regression [1, p. 325]. A possible pro-
gression of this report work could for example be to use conditional logistic
regression to model case 3 above.
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Appendix A

A.1 Programming script from the R software

rm(list=ls()) # Clearing the variables stored in the Global Environment

#### Libraries

# Below follows a list of the packages I have been using in my R scripts.
Remember to first install these packages before calling them by the

library function.

install .packages(”condSURV”)
library(condSURV) # Contains the German Breast Cancer study data

frame

install .packages(”survival”)
library(survival) # Contains the coxph and cox.zph functions needed to

perform Cox regression

install .packages(”coxed”)
library(coxed) # Includes the sim.survdata function. Used to simulate

survival times for which the assumption of proportional hazards is
not satisfied .

#### Data frame

# The German Breast Cancer study data frame’s is loaded as shown below
.

data(”gbcsCS”) # Loading the data frame of the German Breast Cancer
study
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#### Drawing histograms and pie charts

# In the report histograms and pie charts were drawn.
# Below it is shown how they are drawn using R

agevector<=gbcsCS[,”age”] # Extracting the age column in the gbcsCS
data frame

# Histogram of the age variable:
hist(agevector,breaks=c (20,25,30,35,40,45,50,55,60,65,70,75,80,85) , freq=

TRUE,
col=”red”, main=”Age histogram”, xlab=”Age”,ylab=”Number of

patients”,border=”blue”)

# Figure showing the histograms and pie charts of the eight explanatory
variables in the same figure:

par(mfrow=c(4,2)) # Making a figure consisting of eight subfigures,
ordered with four rows and two columns.

# age

agevector<=gbcsCS[,”age”]
hist(agevector, prob = TRUE,nclass=sqrt(length(agevector)),

main=”Histogram of the age variable”)

# size

sizevector<=gbcsCS[,”size”]
hist( sizevector , prob = TRUE,nclass=sqrt(length(sizevector)),

main=”Histogram of the size variable”)

# menopause
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menopausevector<=gbcsCS[,”menopause”]
meno1<=sum(menopausevector==1)
meno2<=sum(menopausevector==2)
# pie(c(meno1,meno2),labels=c(”Menopause=1”,”Menopause=2”),edges =

1000, radius=1, clockwise=FALSE, init.angle=0, density=NULL,
angle=45, col=c(1,2), border=NULL, main=”Pie chart of the
menopause variable”)

slices <= c(meno1,meno2)
lbls <= c(”Menopause=1”,”Menopause=2”)
pct <= round(slices/sum(slices)*100)
lbls <= paste(lbls, pct) # add percents to labels
lbls <= paste(lbls,”%”,sep=””) # ad % to labels
pie( slices ,labels = lbls , col=rainbow(length(lbls)),

main=”Pie Chart of the menopause variable”)

# hormone

hormonevector<=gbcsCS[,”hormone”]
hormone1<=sum(hormonevector==1)
hormone2<=sum(hormonevector==2)
slices <= c(hormone1,hormone2)
lbls <= c(”Hormone=1”,”Hormone=2”)
pct <= round(slices/sum(slices)*100)
lbls <= paste(lbls, pct) # add percents to labels
lbls <= paste(lbls,”%”,sep=””) # ad % to labels
pie( slices ,labels = lbls , col=rainbow(length(lbls)),

main=”Pie Chart of the hormone variable”)

# grade

gradevector<=gbcsCS[,”grade”]
grade1<=sum(gradevector==1)
grade2<=sum(gradevector==2)
grade3<=sum(gradevector==3)
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slices <= c(grade1,grade2,grade3)
lbls <= c(”Grade=1”,”Grade=2”,”Grade=3”)
pct <= round(slices/sum(slices)*100)
lbls <= paste(lbls, pct) # add percents to labels
lbls <= paste(lbls,”%”,sep=””) # ad % to labels
pie( slices ,labels = lbls , col=rainbow(length(lbls)),

main=”Pie Chart of the grade variable”)

# nodes

nodesvector<=gbcsCS[,”nodes”]
hist(nodesvector, prob = TRUE,nclass=sqrt(length(nodesvector)),

main=”Histogram of the nodes variable”)

# prog recp

progvector<=gbcsCS[,”prog recp”]
hist(progvector, prob = TRUE,nclass=sqrt(length(progvector)),

main=”Histogram of the prog recp variable”)

# estrg recp

estrgvector<=gbcsCS[,”estrg recp”]
hist(estrgvector , prob = TRUE,nclass=sqrt(length(estrgvector)),

main=”Histogram of the estrg recp”)

par(mfrow=c(1,1))

#### Kaplan=Meier curves without categories

# Kaplan=Meier curves for time to death.
Kaplanmeier <= survfit(Surv(survtime,censdead) ˜ 1, data = gbcsCS,

conf.type = ”plain”)
plot(Kaplanmeier, xlab=”Survival time (days)”,ylab=”Estimated survivor

function value”, main=”Plot of Kaplan=Meier curve”,col=c(”red”,”
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blue”,”blue”))

# Kaplan=Meier curves for time to recurrence.
Kaplanmeier <= survfit(Surv(rectime,censrec) ˜ 1, data = gbcsCS, conf.

type = ”plain”)
plot(Kaplanmeier, xlab=”Recurrence time (days)”,ylab=”Estimated

survivor function value”, main=”Plot of Kaplan=Meier curve”,col=c(”
red”,”blue”,”blue”))

#### Kaplan=Meier curves with categories, with associated log=rank
test. Only shown for time to death. For time to recurrence, change
survfit(Surv(survtime,censdead) in the code to survfit(Surv(rectime,
censrec).

## Age

# Categorizing the age variable
agevector<=gbcsCS[, ”age”]
agecategory<=cut(agevector,c(0,45,60,Inf))
mygbcsCS<=data.frame(gbcsCS,agecategory)

# Kaplan=Meier curve with confidence interval
Kaplanmeierage <= survfit(Surv(survtime,censdead) ˜ agecategory, data

= mygbcsCS, conf.type = ”plain”)
plot(Kaplanmeierage, xlab=”Survival time (days)”,ylab=”Estimated

survivor function value”, main=”Plot of Kaplan=Meier curve, age”,
col=c(”red”,”blue”,”green”))

legend(”bottomleft”,
c(”0=45”,”46=60”,”61=80”),
fill =c(”red”,”blue”,”green”))

# Log=rank test
survdiff (formula=Surv(survtime,censdead)˜ agecategory, data=

mygbcsCS)
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## Menopause

# Kaplan=Meier curve with confidence interval
Kaplanmeiermenopause <= survfit(Surv(survtime,censdead) ˜ menopause,

data = mygbcsCS, conf.type = ”plain”)
plot(Kaplanmeiermenopause, xlab=”Survival time (days)”,ylab=”

Estimated survivor function value”, main=”Plot of Kaplan=Meier
curve, menopause”,col=c(”red”,”blue”))

legend(”bottomleft”,
c(”Reached menopause”, ”Not reached menopause”),
fill =c(”red”,”blue”))

# Log=rank test
survdiff (formula=Surv(survtime,censdead)˜ menopause, data=

mygbcsCS)

## Hormone

# Kaplan=Meier curve with confidence interval
Kaplanmeierhormone <= survfit(Surv(survtime,censdead) ˜ hormone,

data = mygbcsCS, conf.type = ”plain”)
plot(Kaplanmeierhormone, xlab=”Survival time (days)”,ylab=”Estimated

survivor function value”, main=”Plot of Kaplan=Meier curve, hormone
”,col=c(”red”,”blue”))

legend(”bottomleft”,
c(”Receive tamoxifen”, ”Doesn’t receive tamoxifen”),
fill =c(”red”,”blue”))

# Log=rank test
survdiff (formula=Surv(survtime,censdead)˜ hormone, data=mygbcsCS)

## Grade

# Kaplan=Meier curve with confidence interval
Kaplanmeiergrade <= survfit(Surv(survtime,censdead) ˜ grade, data =

mygbcsCS, conf.type = ”plain”)
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plot(Kaplanmeiergrade, xlab=”Survival time (days)”,ylab=”Estimated
survivor function value”, main=”Plot of Kaplan=Meier curve, grade”,
col=c(”red”,”blue”,”green”))

legend(”bottomleft”,
c(”Grade 1”, ”Grade 2”, ”Grade 3”),
fill =c(”red”,”blue”, ”green”))

# Log=rank test
survdiff (formula=Surv(survtime,censdead)˜ grade, data=mygbcsCS)

## Size

# Categorizing the size variable
sizevector<=gbcsCS[,”size”]
sizecategory<=cut(sizevector,c(0,22,30,Inf))
mygbcsCS<=data.frame(gbcsCS,sizecategory)

# Kaplan=Meier curve with confidence interval
Kaplanmeiersize <= survfit(Surv(survtime,censdead) ˜ sizecategory, data

= mygbcsCS, conf.type = ”plain”)
plot(Kaplanmeiersize, xlab=”Survival time (days)”,ylab=”Estimated

survivor function value”, main=”Plot of Kaplan=Meier curve, size”,
col=c(”red”,”blue”,”green”))

legend(”bottomleft”,
c(”0=22”, ”23=30”, ”31=120”),
fill =c(”red”,”blue”, ”green”))

# Log=rank test
survdiff (formula=Surv(survtime,censdead)˜ sizecategory, data=

mygbcsCS)

## Nodes

# Categorizing the nodes variable
nodesvector<=gbcsCS[,”nodes”]
nodescategory<=cut(nodevector,c(0,1,3,6,Inf))
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mygbcsCS<=data.frame(gbcsCS,nodescategory)

# Kaplan=Meier curve with confidence interval
Kaplanmeiernode <= survfit(Surv(survtime,censdead) ˜ nodescategory,

data = mygbcsCS, conf.type = ”plain”)
plot(Kaplanmeiernode, xlab=”Survival time (days)”,ylab=”Estimated

survivor function value”, main=”Plot of Kaplan=Meier curve, nodes”,
col=c(”red”,”blue”,”green”,”yellow”))

legend(”bottomleft”,
c(”1”, ”2=3”, ”4=6”,”7=51”),
fill =c(”red”,”blue”, ”green”,”yellow”))

# Log=rank test
survdiff (formula=Surv(survtime,censdead)˜ nodescategory, data=

mygbcsCS)

## Prog recp

# Categorizing the progesterone variable
progesteronevector<=gbcsCS[,”prog recp”]
progesteronecategory<=cut(progesteronevector,c(0,12,84,Inf))
mygbcsCS<=data.frame(gbcsCS,progesteronecategory)

# Kaplan=Meier curve with confidence interval
Kaplanmeierprogesterone <= survfit(Surv(survtime,censdead) ˜

progesteronecategory, data = mygbcsCS, conf.type = ”plain”)
plot(Kaplanmeierprogesterone, xlab=”Survival time (days)”,ylab=”

Estimated survivor function value”, main=”Plot of Kaplan=Meier
curve, progesterone”, col=c(”red”,”blue”,”green”,”yellow”))

legend(”bottomleft”,
c(”0=12”, ”13=84”, ”85=2380”),
fill =c(”red”,”blue”, ”green”))

# Log=rank test
survdiff (formula=Surv(survtime,censdead)˜ progesteronecategory, data=

mygbcsCS)
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## Estrg recp

# Categorizing the estrogen variable
estrogenvector<=gbcsCS[,”estrg recp”]
estrogencategory<=cut(estrogenvector,c(0,13,79,Inf))
mygbcsCS<=data.frame(gbcsCS,estrogencategory)

# Kaplan=Meier curve with confidence interval
Kaplanmeierestrogen <= survfit(Surv(survtime,censdead) ˜

estrogencategory, data = mygbcsCS, conf.type = ”plain”)
plot(Kaplanmeierestrogen, xlab=”Survival time (days)”,ylab=”Estimated

survivor function value”, main=”Plot of Kaplan=Meier curve, estrogen
”, col=c(”red”,”blue”,”green”))

legend(”bottomleft”,
c(”0=13”, ”14=79”, ”80=1144”),
fill =c(”red”,”blue”, ”green”))

# Log=rank test
survdiff (formula=Surv(survtime,censdead)˜ estrogencategory, data=

mygbcsCS)

#### Using Cox regression to determine regression coeffisients. Only for
time to death will be shown. To estimate regression coefficients for
time to recurrence, replace coxph(Surv(survtime,censdead) in the
script with coxph(Surv(rectime,censrec).

mygbcsCS<=gbcsCS[=684,] # Deleting from the data set the patient that
seem to make problems for the residuals plots.

## Univariable

# age variable
coxmod1age <= coxph(Surv(survtime,censdead) ˜ age, data = mygbcsCS

)
coxmod1age
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summary(coxmod1age)

# menopause variable
coxmod1menopause <= coxph(Surv(survtime,censdead) ˜ menopause,

data = mygbcsCS)
coxmod1menopause
summary(coxmod1age)

# hormone variable
coxmod1hormone <= coxph(Surv(survtime,censdead) ˜ hormone, data =

mygbcsCS)
coxmod1hormone
summary(coxmod1hormone)

# size variable
coxmod1size <= coxph(Surv(survtime,censdead) ˜ size, data =

mygbcsCS)
coxmod1size
summary(coxmod1size)

# grade variable
coxmod1grade <= coxph(Surv(survtime,censdead) ˜ as.factor(grade),

data = mygbcsCS)
coxmod1grade
summary(coxmod1grade)

# nodes variable
coxmod1nodes <= coxph(Surv(survtime,censdead) ˜ nodes, data =

mygbcsCS)
coxmod1nodes
summary(coxmod1nodes)

# prog recp variable
coxmod1progesterone <= coxph(Surv(survtime,censdead) ˜ log(prog recp

+1), data = mygbcsCS)
coxmod1progesterone
summary(coxmod1progesterone)
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# estrg recp variable
coxmod1estrogen <= coxph(Surv(survtime,censdead) ˜ log(estrg recp+1),

data = mygbcsCS)
coxmod1estrogen
summary(coxmod1estrogen)

## Multivariable

# Showing one example of a multivariable model consisting of the
variables size , grade, nodes and progesterone.

coxmod1multi <= coxph(Surv(survtime,censdead) ˜ size + as.factor(
grade) + nodes + log(prog recp+1) , data = mygbcsCS)

coxmod1multi
summary(coxmod1multi)

#### Residuals

### Univariable

## Schoenfeld residuals

# Age
resmod1age <= cox.zph(coxmod1age)
resmod1age
plot(resmod1age)

# Menopause
resmod1menopause <= cox.zph(coxmod1menopause)
resmod1menopause
plot(resmod1menopause)

# Hormone
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resmod1hormone <= cox.zph(coxmod1hormone)
resmod1age
plot(resmod1hormone)

# Grade
resmod1grade <= cox.zph(coxmod1grade , transform=”km”, terms=

FALSE, singledf=FALSE, global=TRUE)
resmod1grade
plot(resmod1grade)

# Size
resmod1size <= cox.zph(coxmod1size)
resmod1size
plot(resmod1size)

# Nodes
resmod1nodes <= cox.zph(coxmod1nodes)
resmod1nodes
plot(resmod1nodes)

# Prog recp
resmod1progesterone <= cox.zph(coxmod1progesterone)
resmod1progesterone
plot(resmod1progesterone)

# Estrg recp
resmod1estrogen <= cox.zph(coxmod1estrogen)
resmod1estrogen
plot(resmod1estrogen)

## Martingale residuals
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## Shown only for one of the variables. The method is similar for the
other variables

# Prog recp

progesteronevector<=gbcsCS[,”prog recp”]
progesteronetransformation<=log(progesteronevector+1) # Make the

transformation you wish for
mygbcsCS<=data.frame(gbcsCS,progesteronetransformation)
mygbcsCS<=mygbcsCS[=684,] # Deleting the observation that seem to

make problems for the residuals plots
fit = coxph(Surv(survtime, censdead) ˜ 1, data=mygbcsCS)
martingaleresiduals = residuals(fit, type=”martingale”)

# Ordne residualene etter stigende kovariatverdi
martingaleresidualsv2 <= martingaleresiduals[order(mygbcsCS$

progesteronetransformation)]
progesteronetransformationv2 <= mygbcsCS$progesteronetransformation[

order(mygbcsCS$progesteronetransformation)]

plot(progesteronetransformationv2, martingaleresidualsv2, xlab=”log(prog
recp+1)”, ylab=”Martingale Residuals”)

# Glattet kurve med 95% konfidensintervall
plx<=predict(loess(martingaleresidualsv2 ˜

progesteronetransformationv2), se=T)
lines(progesteronetransformationv2,plx$fit ,col=2)
lines(progesteronetransformationv2,plx$fit = qt(0.975,plx$df)*plx$se, lty

=2)
lines(progesteronetransformationv2,plx$fit + qt(0.975,plx$df)*plx$se, lty

=2)
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### Multivariable

## Schoenfeld residuals. Showing for model with size, grade, nodes and
progesterone as variables .

coxmod1multiv2 <= coxph(Surv(survtime,censdead) ˜ size + as.factor(
grade) + nodes + log(prog recp+1) , data = mygbcsCS)

resmod1multiv2 <= cox.zph(coxmod1age, transform=”km”, terms=
FALSE, singledf=FALSE, global=TRUE)

resmod1multiv2
plot(resmod1multiv2 )

## Martingale residuals. Shown only for one of the variables . The
method is similar for the other variables .

#Prog recp

fit = coxph(Surv(survtime, censdead) ˜ size + as.factor(grade) + nodes
+ log(prog recp+1), data=mygbcsCS)

martingaleresiduals = residuals(fit, type=”martingale”)

# Ordering the residuals in increasing variable value
martingaleresidualsv2 <= martingaleresiduals[order(mygbcsCS$

progesteronetransformation)]
progesteronetransformationv2 <= mygbcsCS$progesteronetransformation[

order(mygbcsCS$progesteronetransformation)]

plot(progesteronetransformationv2, martingaleresidualsv2, xlab=”log(prog
recp+1)”, ylab=”Martingale Residuals”)

# Smooth curves with 95% confidence interval
plx<=predict(loess(martingaleresidualsv2 ˜

progesteronetransformationv2), se=T)
lines(progesteronetransformationv2,plx$fit ,col=2)
lines(progesteronetransformationv2,plx$fit = qt(0.975,plx$df)*plx$se, lty

=2)
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lines(progesteronetransformationv2,plx$fit + qt(0.975,plx$df)*plx$se, lty
=2)

#### Categorizing the age and nodes variable for time to recurrence

### Categorizing the age variable for time to recurrence

agevector<=gbcsCS[, ”age”]
agecategorical<= rep(NA, length(agevector))
for ( i in 1:length(agevector)) {

if (agevector[ i ] <= 45)
{agecategorical [ i ] = 1} else if (agevector[ i ] >= 46 & agevector[i]

<= 60)
{agecategorical [ i ] = 2} else
{agecategorical [ i ] = 3}

}

### Categorizing the nodes variable for time to recurrence

nodesvector<=gbcsCS[, ”nodes”]
nodescategorical<= rep(NA, length(nodesvector))
for ( i in 1:length(nodesvector)) {

if (nodesvector[i ] <= 3)
{nodescategorical[ i ] = 1} else if (nodesvector[i ] >= 4 &

nodesvector[i] <= 6)
{nodescategorical[ i ] = 2} else
{nodescategorical[ i ] = 3}

}

### Calculating regression coefficients for time to recurrence in
multivariable model. For time to recurrence, the hormone, grade,
nodes and progesterone variables turned out to be significant .

mygbcsCS<=data.frame(gbcsCS,nodescategorical)
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coxmod1 <= coxph(Surv(rectime,censrec) ˜ hormone + as.factor(grade)
+ as.factor(nodescategorical) + log(prog recp+1) , data =
mygbcsCS)

coxmod1
summary(coxmod1)

#### Recurrence as time=dependent variable

# Se https://cran.r=project.org/web/packages/survival/vignettes/
timedep.pdf

# Creating a new data frame on the ”start=stop” form and adding
recurrence as time=dependent variable.

gbcsTD <= tmerge(gbcsCS[,c(1,5:12)], gbcsCS[,c(1,13:14,15:16)],
id=id, censdead=event(survtime, censdead),
rec=tdc(rectime))

head(gbcsTD,20)

mygbcsTD<=gbcsTD[=684,] # Deleting from the data set the patient
that seem to make problems for the residuals plot

# Model with only recurrence
coxmoduni <= coxph(Surv(tstart,tstop,censdead) ˜ rec , data =

mygbcsTD)
summary(coxmoduni)

# Model with recurrence and other variables
coxmodmultiv3 <= coxph(Surv(tstart,tstop,censdead) ˜ rec + size + log(

prog recp+1) , data = mygbcsTD)
summary(coxmodmultiv3)
#resmod1rec <= cox.zph(coxmod)

# Associated Schoenfeld residuals plot
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resmod1rec <= cox.zph(coxmodmultiv3, transform=”km”, terms=
FALSE, singledf=FALSE, global=TRUE)

plot(resmod1rec)

## Accounting for that recurrence has a time=dependent regression
coefficient.

# Calculating regression coefficients
coxmod1rec <= coxph(Surv(tstart,tstop,censdead) ˜ rec + size + log(

prog recp+1) +tt(rec), data = mygbcsTD,
tt = function(x, t, ...) x * t)

summary(coxmod1rec)

# Creating associated Schoenfeld residuals plots .
resmod1rec <= cox.zph(coxmod1rec)
resmod1rec
plot(resmod1rec)

##### Simulation of Weibull distributed survival times using the inverse
transform method

Nsim<=700000 # Number of simulations
scalelambda <= 1.5 # Scale parameter of Weibull distribution.
shapegamma <= 0.75 # Shape parameter of Weibull distribution.

## Covariates
set.seed(123) # Setting a particular seed to ensure user of the script

can reproduce results
cv1<=rnorm(Nsim, mean = 30, sd= 10) # Covariate 1, similar to the

size variable

105



cv2<=rexp(Nsim,rate=0.4) # Covariate 2, similar to the progesterone
variable

cv3<=round(runif(Nsim,min=1, max=15)) # Covariate 3, similar to
the nodes variable

## Setting the regression coefficients
betacv1 <= 0.011 # Regression coefficient of covariate 1
betacv2 <= =0.061# Regression coefficient of covariate 2
betacv3 <= =0.27# Regression coefficient of covariate 3
betacv4 <= 0.1

#### Assuming linear effect

lambdastar <= scalelambda*exp(betacv1*cv1+betacv2*cv2+betacv3*
cv3)

max(lambdastar)
min(lambdastar)
mean(lambdastar)
sd(lambdastar)

set.seed(123)
survtime <= (=log(1=runif(Nsim))/(lambdastar))ˆ(1/shapegamma)
max(survtime)
min(survtime)
mean(survtime)
sd(survtime)

### Making data frame to use the Cox regression analysis on

id<=1:Nsim # Patient id number
censdead<=rep(1,Nsim) # No censoring for time to death
gbcsCSsimu<= data.frame(id,cv1,cv2,cv3,survtime,censdead)
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### Multivariable Cox regression analysis to check if we can reproduce
the regression coefficients assumed in the simulation

coxmod1 <= coxph(Surv(survtime,censdead) ˜ cv1 + cv2 + cv3 , data =
gbcsCSsimu)

coxmod1
summary(coxmod1)

### Producing Martingale plot associated with the cv3 variable.

cvcategory<=cv3 # Make the transformation you wish for
mygbcsCSsimu<=data.frame(gbcsCSsimu,cvcategory)

fit = coxph(Surv(survtime, censdead) ˜ cvcategory, data=mygbcsCSsimu
)

martingaleresiduals = residuals(fit, type=”martingale”)

# Ordering the residuals in increasing variable value
omartingaleresiduals <= martingaleresiduals[order(mygbcsCSsimu$

cvcategory)]
ocvcategory <= mygbcsCSsimu$cvcategory[order(mygbcsCSsimu$

cvcategory)]
plot(ocvcategory, omartingaleresiduals, xlab=”cv”, ylab=”Martingale

Residuals”)

# Smooth curves with 95% confidence interval
plx<=predict(loess(omartingaleresiduals ˜ ocvcategory), se=T)
lines(ocvcategory,plx$fit ,col=2)
lines(ocvcategory,plx$fit = qt(0.975,plx$df)*plx$se, lty=2)
lines(ocvcategory,plx$fit + qt(0.975,plx$df)*plx$se, lty=2)

#### Repeating the procedure, but now by assuming non=linear effect:
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lambdastar <= scalelambda*exp(betacv1*cv1+betacv2*cv2+betacv3*
cv3

+betacv4*(cv3=mean(cv3))ˆ2)
survtime <= (=log(1=runif(Nsim))/(lambdastar))ˆ(1/shapegamma)
id<=1:Nsim # Patient id number
censdead<=rep(1,Nsim) # No censoring for time to death
gbcsCSsimu<= data.frame(id,cv1,cv2,cv3,survtime,censdead)
cvcategory<=cv3 # Make the transformation you wish for
mygbcsCSsimu<=data.frame(gbcsCSsimu,cvcategory)

### Cheking if the Martingale plot manages to identify the non=linear
relation

fit = coxph(Surv(survtime, censdead) ˜ cvcategory, data=mygbcsCSsimu
)

martingaleresiduals = residuals(fit, type=”martingale”)

# Ordering the residuals in increasing variable value
omartingaleresiduals <= martingaleresiduals[order(mygbcsCSsimu$

cvcategory)]
ocvcategory <= mygbcsCSsimu$cvcategory[order(mygbcsCSsimu$

cvcategory)]
plot(ocvcategory, omartingaleresiduals, xlab=”cv”, ylab=”Martingale

Residuals”)

# Smooth curves with 95% confidence interval
plx<=predict(loess(omartingaleresiduals ˜ ocvcategory), se=T)
lines(ocvcategory,plx$fit ,col=2)
lines(ocvcategory,plx$fit = qt(0.975,plx$df)*plx$se, lty=2)
lines(ocvcategory,plx$fit + qt(0.975,plx$df)*plx$se, lty=2)

### Checking if the Martingale residuals plot is satisfied after
assuming the correct functional form of the cv3 variable

fit = coxph(Surv(survtime, censdead) ˜ cvcategory+I(cvcategoryˆ2),
data=mygbcsCSsimu)
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martingaleresiduals = residuals(fit, type=”martingale”)

# Ordering the residuals in increasing variable value
omartingaleresiduals <= martingaleresiduals[order(mygbcsCSsimu$

cvcategory)]
ocvcategory <= mygbcsCSsimu$cvcategory[order(mygbcsCSsimu$

cvcategory)]
plot(ocvcategory, omartingaleresiduals, xlab=”cv”, ylab=”Martingale

Residuals”)

# Smooth curves with 95% confidence interval
plx<=predict(loess(omartingaleresiduals ˜ ocvcategory), se=T)
lines(ocvcategory,plx$fit ,col=2)
lines(ocvcategory,plx$fit = qt(0.975,plx$df)*plx$se, lty=2)
lines(ocvcategory,plx$fit + qt(0.975,plx$df)*plx$se, lty=2)

##### Simulation of survival data for which the proportional hazards
assumption is not satisfied

ttstop<=50
Nsim<=1000
fracnumb<=100

beta.mat <= data.frame(beta1 = (1:ttstop = 25)ˆ2/fracnumb,
beta2 = .5,
beta3 = =.25)

head(beta.mat)

simdata <= sim.survdata (N=Nsim,T=ttstop,type=”tvbeta”, num.data.
frames = 1,beta=beta.mat)

head(simdata)

head(simdata$data, 10)

mycensoring<=rep(TRUE,times=Nsim)
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mysimdata<=data.frame(simdata$data,mycensoring)

par(mfrow=c(1,2))

plot(1:ttstop ,(1: ttstop=25)ˆ2/fracnumb,type=”l”,xlab=”Survival time”,
ylab=”(t=25)ˆ2/100”)

coxmodsimsurvdata <= coxph(Surv(y,failed) ˜ X1, data = simdata$data
) # You can replace ”failed” in coxmodsimsurvdata with ”mycensoring
” defined earlier if you want to remove censoring.

resmodsimsurvdata <= cox.zph(coxmodsimsurvdata)
resmodsimsurvdata
plot(resmodsimsurvdata,xlab=”Survival time”)
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