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Summary 

The aim of this thesis is to provide contributions to the assessment of 
critical infrastructure risk. In particular, the thesis gains insights as to 
how critical infrastructure is modelled, the role of such models in risk 
assessment and how to assess risks related to critical infrastructure.  

Various governments and scientific articles have proposed a variety of 
definitions of critical infrastructure. Some countries define critical 
infrastructure in terms of the service provided by the infrastructure. 
Other countries, however, define critical infrastructure in the context of 
societal function. In such cases, critical infrastructure comprises that 
which is needed to ensure a vital societal function is met. Broadly 
speaking, critical infrastructure is infrastructure that provides a service 
that is essential to some society, i.e. a country, region or organisation. 

Within modern society, many critical infrastructures are reliant on each 
other in order to perform effectively. Such interactions between the 
infrastructures are referred to as dependencies. The term ‘interdependent 
systems’ is used to refer to a group of infrastructures that interact or 
depend on each other. When modelling critical infrastructure with the 
aim of assessing the impacts of disruptions, it is important to account for 
the dependencies between different infrastructures and how these can 
cause the effects to cascade throughout the interdependent system. 

Network models are commonly used to represent infrastructure systems 
when simulating the effects of disruptions to infrastructure systems. A 
network consists of nodes and edges. When modelling infrastructure 
systems, the nodes represent important components within the system, 
and the edges, the connections or interactions between such components. 
Improving methods of assessing infrastructure that contain network 
models allows for a better assessment of the disruptions of various events 
that can have negative effects on infrastructure systems and, thus, the 
associated risk. 
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Paper I reviews different methods that are used to model 
interdependencies between different systems, where the systems are 
represented as networks. The different methods are summarised into 
categories, based on the structural form of the model; previously, 
interdependencies were categorised based on the functionality of the 
dependency. The suggested categorisation of dependencies is twofold. 
The first is whether the network has full or partial dependency on 
another; that is, do all nodes in the network have dependencies, or does 
only a subset have dependencies? The second is whether a node depends 
on one and only one or multiple nodes in another network. The categories 
suggested can be referred to when developing models for a simpler way 
to provide information on how to model the dependencies than the 
functional categorisations previously suggested.  

Paper II investigates the topological properties of a network within an 
interdependent system that can be used to characterise the network’s 
robustness when an event causes an initial disruption within a network it 
depends upon. A variety of network sizes and levels of dependencies 
were explored to provide results that are generalisable to interdependent 
network systems. The results suggest the important topological 
properties that should be considered when developing new infrastructure 
systems or updating existing systems to improve the robustness of the 
infrastructure against the cascading effects of a disruption within an 
interdependent system. The topological properties found to be most 
important are those pertaining to the level of network redundancy. 

Although it is important to account for interdependencies when 
modelling infrastructure, it is equally important that the initiating event 
be modelled in a way that provides sufficient representation of the event. 
Paper III suggests an improved method of simulating spatial failures. 
Current methods simulate spatial failures by failing all components of a 
network within a specified area, with all components outside the affected 
area classed as functional. The method suggested in Paper III instead 
assigns a probability of failure to each component that is dependent on 
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the component’s position in relation to the hazard. This provides a more 
realistic method of simulating spatial failures that is still relatively simple 
to simulate. Within the paper, the method was applied to independent 
network systems only, but it can easily be adapted for simulating spatial 
failures to interdependent systems. 

Paper IV develops a model of the dependent electric power and water 
system of St. Kitts. The aim of the paper is to show that the development 
of such a model is possible in a poor-data setting context. After 
developing the model, simulations of tropical storms were used to cause 
disruptions to the dependent system. These simulations supplied 
illustrations of how the model can be used to perform analyses that 
provide useful information when considering improvements to the 
system. Such analyses included identifying which components of the 
electric power system are most important to the water system and where 
best to incorporate redundancy measures such as back-up generators 
within the water system. 

Paper V explores the feasibility of Probabilistic Risk Analysis (PRA) of 
infrastructure systems. Although PRA aims to provide a complete 
description of the associated risk, it is not a method commonly used to 
assess infrastructure. Due to the complexity of modern infrastructure, to 
carry out a PRA of such systems requires a substantial amount of both 
time and data. Vast amounts of data can be collected in relation to 
infrastructure systems, but deciding which data is relevant when 
performing PRA can also add to the time taken to assess the system. The 
shortcomings of non-PRA methods currently used to assess 
infrastructure performance were also discussed. Common shortcomings 
of non-PRA methods included not considering the likelihood of the 
scenarios assessed and only considering a subset of the possible 
scenarios that can affect infrastructure systems. This provides 
information on how to extend current methods in order to improve 
critical infrastructure risk analysis. 
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1 Introduction 

1.1 Background 
With advancements in technology, societies, especially in developed 
countries, become increasingly reliant on critical infrastructure. It is only 
when something goes wrong that we become aware of how much critical 
infrastructure is a part of everyday life and how a significant disruption 
can affect the normal rhythm of a region. These disruptions can be 
caused by both internal and external events. Examples can be seen in 
infrastructure such as electric power systems, where outages are caused 
either by internal disruptions such as the tripping of transmission lines in 
Italy in 2003 (Corsi and Sabelli 2004) or by external events like the 1998 
ice storm in North America (Chang et al. 2007). The recent occurrence 
of events that have the potential to cause large-scale disruptions has led 
to an increased focus on how to analyse infrastructure to aid in preparing 
for and protecting against such events. 

Although critical infrastructure is a commonly used term, there are many 
definitions of what exactly is meant by critical infrastructure and which 
infrastructures are considered to be critical. Table 1 contains some 
definitions, demonstrating the range of variability in how critical 
infrastructure is defined. Depending on whether the definition is 
proposed by a government or within a scientific article, there are some 
differences in the focus of the definition. This is also true when 
considering the background or focus of the article defining critical 
infrastructure. A basic high-level definition of critical infrastructure 
which encompasses the many definitions available is an infrastructure 
that provides a service that is essential to some society, i.e. a country, 
region or organisation. 
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Table 1: Definitions of critical infrastructure from various sources. 

Definition Source Source type 
“Infrastructure is the basic systems and 
services, such as transport and power 
supplies, that a country or organisation 
uses in order to work effectively.” 

Cambridge 
Dictionary, Walter 
(2008, p. 741) 

Dictionary 

“Critical infrastructure is the systems, 
assets, facilities and networks that provide 
essential services and are necessary for the 
national security, prosperity and health 
and safety of the nation.” 

Public Safety and 
Emergency 
Preparedness 
Canada (2014, p. 
2) 

Government 

“Critical infrastructure are the facilities 
and systems that are absolutely necessary 
to maintain the critical functions of 
society which in turn cover the basic 
needs of society and the sense of security 
of the population.”1 

NOU (2006:6, p. 
32) 

Government 

“Critical infrastructure are the 
organisations delivering goods and 
services in an economy that is 
fundamental to the functioning of society 
and the economy.” 

Macaulay (2008, 
p. 8) 

Literature 

“Critical infrastructure are large, spatially-
distributed systems with high degrees of 
complexity.” 

Johansson and 
Hassel (2010, p. 
1335) 

Literature 

“Critical infrastructure are defined by 
their role in society: they support the 
services that are vital for life and 
sustainable economic growth.” 

Comes and Van de 
Walle (2014, p. 
190) 

Literature 

In Norway, critical infrastructure is defined in the scope of vital societal 
function. The definition is seen in the third row of Table 1 as given by 
NOU (2006:6). The Norwegian Directorate for Civil Protection 
(Direktoratet for Samfunnssikkerhet og Beredskap, DSB) defines vital 
societal function as “functions that society could not cope without for 
seven days or less without this threatening the safety and/or security of 

 
1 This is a translation of the definition given in Norwegian by NOU (2006:6, p. 32). 
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the population” (DSB 2017). To put this definition into context, consider 
the following example. If having access to food is classified as a function 
that society could not cope without for seven days, the infrastructure 
needed in order to have access to food includes: 

 transportation: in order to travel to where the food is, as well as 
the ability for food to be transported throughout the society, 

 electricity: in order to both store and cook the food, 
 communication: in order to receive information on where is 

food available. 

These are just a few examples of critical infrastructure needed for society 
to have access to food. Others, such as financial institutions’ ability to 
purchase food, could also be included, depending on the situation and 
the interpretation of the definition. This view enables thought of how 
disruptions to infrastructure may affect society but also allows the 
infrastructure defined as critical to change, depending on the situation. 

When using critical infrastructure definitions that focus more on physical 
systems, deciding which infrastructures are critical also differs from 
country to country. Critical Five is an international forum, comprising 
members from government agencies from five countries that are 
responsible for critical infrastructure protection and resilience. The five 
countries are Australia, Canada, New Zealand, USA and UK.  In 2014, 
they published a report entitled, “Forging a Common Understanding for 
Critical Infrastructure: A Shared Understanding”, providing a 
comparison of which infrastructure is categorised as critical within the 
five different countries. They found that all five countries categorised the 
following infrastructure as critical: energy systems, communication 
systems, water systems (including wastewater and storm water systems), 
transportation and healthcare. Other infrastructure considered by some 
of the five countries to be critical includes banking, education, food and 
agriculture and government facilities (Public Safety and Emergency 
Preparedness Canada 2014). 
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After the importance of critical infrastructure became more recognised 
in governmental policies and the literature of how to analyse and protect 
infrastructure became more widespread, the importance of the 
interdependencies between systems then emerged as an important aspect 
to be considered. Interdependence is often used to describe a group of 
infrastructure systems in which interactions are needed between the 
systems for all to function. Rinaldi et al. (2001) state that, for systems to 
be interdependent, the relationship between the systems needs to be 
bidirectional. This means that any two systems need to directly depend 
on each other to be considered interdependent.  

Many authors have suggested different ways to categorise infrastructure 
interdependencies, some of which have been compared by Ouyang 
(2014, Table 1). The most commonly referred to categorisation is that 
proposed by Rinaldi et al. (2001), who suggested four types of 
interdependencies: physical, cyber, geographic and logical. Physical 
interdependencies are those where an infrastructure depends on some 
physical input from another. This can be electrical power, water or fuel. 
Cyber interdependencies cover the input of data or information from one 
system to another. Geographic interdependencies account for the 
physical proximity of infrastructures such that, if a disruption occurs 
within a given region, the systems, or parts of the systems within the 
area, will all be affected. The final category, logical, covers all other 
interdependencies that cannot be categorised as one of the previous three 
types and includes legislation, policy and human behaviour. 

A simple example of how interdependencies can exacerbate the effects 
of a disruption can be seen from when a blackout occurred in the Italian 
electric power system in 2003. As mentioned previously, the tripping of 
transmission lines resulted in the separation of Italy from the Continent 
(Corsi and Sabelli 2004). This resulted in a loss of power to areas of the 
Internet communication network. The loss of communication caused 
further failures within Italian power stations, increasing the disruption of 
the initial outage (Buldyrev et al. 2010). If interdependencies, such as the 
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example given here, are not taken into account, the effects of the 
disruptions can be underestimated. 

The importance of critical infrastructure within society, as well as the 
costs associated with downtime and major repairs for the owners and 
operators, highlights why risk assessment of the systems is crucial. 
Understanding how different scenarios, whether they are natural 
disasters, intentional disruptions or cascading effects due to 
dependencies, can help the operators of such systems decide how best to 
protect against and prepare for interruptions within the infrastructure.  

Probabilistic Risk Analysis (PRA) was developed in the 1970s to assess 
infrastructure systems, specifically nuclear power plant systems. The 
aim of PRA is to present a full description of the assessed system’s risk, 
with results of all possible scenarios presented in a way that allows for 
easy comparison. However, the method is currently not commonly used 
to assess infrastructure systems, with more recently developed methods 
being preferred. With modern infrastructure systems becoming 
increasingly complex due to increased demand from society and 
advances in technology, PRA also becomes more complex. Even for 
relatively small infrastructure systems, considerable amounts of data and 
information are required for PRA to be performed, which may contribute 
to PRA’s lack of popularity for assessing infrastructure systems.  

There are many, more recent non-PRA, methods of modelling critical 
infrastructure systems, including network-based, inoperability input-
output and agent-based models (Ouyang 2014). Such methods focus on 
the performance of the system given the occurrence of an event and can 
be extended to include interdependencies between infrastructure 
systems. The use of such models within risk assessment can be useful 
when planning new infrastructure or upgrades to existing systems. They 
provide information to those making decisions on how to better protect 
infrastructure from disruptive events. Therefore, it is important that the 
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results of such models adequately communicate the risks/potential 
disruptions associated with infrastructure systems. 

1.2 Objectives 
The overall objective of this thesis is to gain insights on critical 
infrastructure and its modelling, and to provide guidance on how to 
assess and manage risk related to such infrastructure. Specifically, the 
thesis addresses the following sub-objectives: 

 To understand the extent to which network-based approaches 
for modelling infrastructure interdependencies and their 
associated metrics are relevant for evaluating the effects of 
cascading disruptions.  

 To understand the robustness of interdependent power-law 
networks to random failures and independent power-law 
networks to spatially correlated failures. 

 To demonstrate that it is possible in a low-data setting to produce 
a simple model of a real-world dependent infrastructure to 
support risk management decision-making.  

 To investigate the feasibility of probabilistic risk assessment 
(PRA) methodology for the analysis of infrastructure systems.  

1.3 Scientific approach/Research methods 
The Norwegian Research Council proposes that quality research is 
linked to the following three aspects (NRC 2000): 

 Originality 
 Solidity 
 Relevance. 

The presented work in this thesis covers these aspects in the following 
way. The work is original in that is presents new methods for assessing 
infrastructure performance, as well as using existing methods in a 
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different manner. The work is solid, as it provides a clear explanation of 
any methods or data, is based on existing literature and has been or will 
be peer reviewed. It is relevant, as it provides information that aims to 
further the field of infrastructure risk assessment and explores some gaps 
within this field, as well as providing methods that are generalisable.   

Kothari (2004) suggests several basic categorisations of research: 
descriptive vs analytical, applied vs fundamental, quantitative vs 
qualitative and conceptual vs empirical. The research presented is 
analytical, applied and fundamental, conceptual and both quantitative 
and qualitative.  It is analytical, as is aims to describe “the world”, as 
well as to analyse and understand such situations. This research is 
fundamental in that it is mainly concerned with generalisations. 
However, there is also an applied element of the research in which 
generalisations are applied to specific situations, for example, the case 
study of St. Kitts’ electric power and water system or analysing the risk 
associated with a drinking water distribution system. Although the 
research is mainly quantitative, with the use of simulation approaches to 
generate relevant data and information of infrastructure systems, it is also 
qualitative, through its discussion of the practicalities and feasibility of 
methods and models within risk analysis. Finally, the research is 
conceptual, as it aims to generate knowledge that is related to concepts 
for risk analysis, namely, improvements for risk assessment within the 
area of critical infrastructure. 

The characteristic of replicability is highlighted as being an important 
quality of research by Kothari (2004) and is specifically relatable to the 
description of models and simulations in this research. The explanation 
of the method used to produce the models and simulation procedures 
should be clearly stated, so that others can follow these descriptions and 
produce the same results as found in the papers. 

This thesis follows the structure of a “PhD by publication” (Park 2007), 
which consists of two parts: a scientific contribution that consists of 
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individually published papers (Part II of this thesis) and an introduction 
that places the published papers in a broader context within the area of 
risk analysis (Part I). 

1.4 Thesis structure 
This thesis has two parts. Part I describes the background, objectives, 
research methods, main contributions, and potential future directions of 
the research presented in the thesis. Among the main purposes of Part I 
are to motivate the performed research, to present and tie together the 
scientific contributions, and to frame these in the broader context of 
relevant related literature. Part I thus provides a summary of and context 
for Part II, which consists of a collection of papers that present and make 
up the scientific contributions of the thesis. 

Specifically, Part II consists of five papers. Two of these papers are 
already published; one paper is published in the peer-reviewed 
proceedings of the European Safety and Reliability (ESREL) conference, 
and one paper is published in the peer-reviewed journal, Reliability 
Engineering & System Safety. Two papers have been revised and 
resubmitted to peer-review journals. The final paper is currently being 
revised to be resubmitted to a peer-reviewed journal. 

The remainder of Part I is organised as follows. Section 2 summarises 
and contextualises the contributions of the scientific papers in Part II. 
Section 3 then outlines some ideas for further research, building on the 
scientific contributions of the thesis papers. 
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2 Research areas and problems 

This section presents the main scientific contributions of the papers 
presented in Part II of the thesis. The five papers included in Part II 
address the thesis objectives stated in Section 1.2 in the following way: 

 To understand the extent that network-based approaches for 
modelling infrastructure interdependencies and their associated 
metrics are relevant for evaluating the effects of cascading 
disruptions. 
o Paper I: Review of network-theoretic approaches to 

characterise interdependences in critical infrastructure. 

 To understand the robustness of interdependent power-law 
networks to random failures and independent power-law 
networks to spatially correlated failures. 
o Paper II: Characterising the robustness of coupled power-law 

networks. 
o Paper III: Characterizing the robustness of power-law 

networks that experience spatially-correlated failures. 

 To demonstrate that it is possible in a low-data setting to produce 
a simple model of a real-world dependent infrastructure to 
support risk management decision-making. 
o Paper IV: Dependent infrastructure system modeling: A case 

study of real-world power and water distribution systems. 

 To investigate the feasibility of probabilistic risk assessment 
(PRA) methodology for the analysis of infrastructure systems.  
o Paper V: Feasibility study of PRA for critical infrastructure 

risk analysis. 

When assessing critical infrastructure, the main focus in the literature is 
on the performance of the system or systems given some event. The 
event may be specified, for example an earthquake disrupting an 
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interdependent electric power and gas system, as presented by Dueñas-
Osorio et al. (2007), or more generally modelled as random failures 
within the system, as presented by Johansson and Hassel (2010). The 
first three objectives are concerned with how to improve some of the 
current methods for assessing the performance of infrastructure when 
events disrupt such systems.  

Improvements to the methods of simulating disruptions within 
infrastructure systems, both independent and interdependent, lead to 
better estimations of how events can affect systems. However, when 
trying to improve such methods, the implementation needs to be 
affordable, in terms of the computational power required and the time 
taken to run the simulation. A balance needs to be found between the 
level of detail and the time- and computation expense of performing the 
assessment. When suggesting improvements to current methods of 
assessing infrastructure performance, this has been taken into account.  

There is also a need to expand on assessing the effects of events to 
infrastructure systems, to include the likelihood of such disruptive events 
occurring and extending the methods to better incorporate/state the 
uncertainties associated with the simulated consequences. This provides 
a more comprehensive description of the system’s risk, with more 
information that allows for risk mitigation measures to be implemented 
that are based on a broader knowledge base. An example of this is that, 
when only looking at the magnitude of the consequences, one disruption 
may cause a much larger disruption than others and should be addressed; 
however, when the likelihood of the event and uncertainties associated 
with the magnitude of consequences are also assessed, another 
mitigation procedure could reduce the overall risk of the system (Kaplan 
and Garrick 1981).  

One such method that aims to provide a complete risk description is 
PRA. For some industries, such as nuclear power generation, offshore 
petroleum activities and air transportation, PRA is used to provide a 
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description of the risk (Aven et al. 2013). However, in all other 
industries, PRA is not commonly used to assess infrastructure risk. 
Investigating the reasons why PRA is not a common tool for the 
assessment of infrastructure systems provides direction on where 
improvements can be made, in order to better infrastructure assessment. 

The remainder of the section is structured as follows. Section 2.1 first 
describes network models and their use in representing critical 
infrastructure, before presenting the scientific contribution of Papers I – 
IV within the subsections. Section 2.2 provides some background on the 
method of PRA, before presenting the scientific contribution of Paper V. 

2.1 Network-based approaches for modelling 
critical infrastructure 

Network models are a popular choice to represent infrastructure systems, 
as the structure or topology of the system is included in the network. A 
network or graph is composed of nodes (or vertices) and the connections 
between them, which are referred to as edges (or links) (Newman 2010). 
The nodes represent the (important) components of the infrastructure, 
and the edges, the connections between the components (Ouyang 2014). 
In most cases, the edges represent physical connections, such as 
transmission or distribution lines within an electrical power system or 
water pipes within a water system, but they can also represent other 
connection types such as the need for information from one component 
to another.  

When the network is not constructed based on a specific infrastructure 
system, there are three main types of networks that are commonly used 
to assess the effect of disruptions to network systems. The first is random 
networks, where the size of the network, that is the number of nodes 
within the network, is defined and the probability that an edge exists 
between each pair of nodes is the same (Barabási and Albert 1999). The 
second type is small-world networks, which are also referred to as Watts-
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Strogatz networks (Watts and Strogatz 1998). To construct a small-world 
network, a regular network is first formed with v nodes, each of which is 
connected to its n closest neighbours. Then, with probability p, an edge 
is removed and replaced with one that joins two uniformly randomly 
chosen nodes. The final type is power-law networks, where the nodal 
degree distribution follows that of a power-law distribution. Both 
random and small-world networks produce networks that have a 
homogeneous nodal degree, with most nodes having approximately the 
same number of edges, whereas power-law networks produce non-
homogeneous networks, with the majority of nodes having a low number 
of edges and a few nodes having a high nodal degree (Albert et al. 2000). 

Power-law networks have been extended to include an exponential cutoff 
such that the nodal degree distribution follows that of a power-law 
distribution with exponential cutoff (Barabási et al. 1999). This is 
popular for modelling networks, as it incorporates how “expensive” it 
can be to add edges to a node with a high nodal degree, which is often 
the case in real network systems. 

Network models were first used to investigate the effects of disruptions 
to independent networks (e.g. Callaway et al. 2000, Cohen et al. 2001, 
Holme et al. 2002, Motter and Lai 2002), that is networks that are self-
sufficient and do not require input from other networks, before being 
extended to model “system of systems” models that include multiple 
network systems and account for interdependencies between the systems 
(e.g. Buldyrev et al. 2010, Gao et al. 2012, Schneider et al. 2013).  

2.1.1 Independent network-based models 
Although it is important to account for interdependencies when 
modelling infrastructure systems as networks, the initial impact of an 
event on each infrastructure needs to be sufficiently simulated and, in 
some cases, the initial disruption to network systems may occur in only 
one of the networks. Improving methods of simulating failures in 
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independent networks can first be focused on, before applying the failure 
simulation methods to interdependent networks. The main methods of 
initiating disruptions in network models are random failures and spatial 
failures. When modelling random failures, the initial disruption is 
modelled by removing a percentage of the nodes (or edges) in the 
network that are randomly chosen; that is, each node has the same 
probability of failure (Holme et al. 2002). Random failure simulations 
can be used to assess situations where the initial disruption is caused by 
internal disruptions, e.g. component failure due to age or lack of 
maintenance. 

Spatial failures allow initial disruptions that are caused by a geographic 
event, including earthquakes or adverse weather such as hurricanes. 
Spatially localised failures, as discussed in the introduction of Paper III, 
provide a simple starting point to model spatial failures. Localised failure 
methods assume that all nodes (and/or edges) within a specified area of 
the network are disrupted; that is, all nodes (edges) in the affected area 
have a probability of failing of 1, and all nodes (edges) outside the area 
have a failure probability of 0 (e.g. Jenelius and Mattsson 2008, Hu et al. 
2016, Ouyang et al. 2019). 

To extend the assessment of the impacts of spatial failures, Paper III 
presents a method to model spatially correlated failure events. Rather 
than specifying an area within the network in which all nodes fail, each 
node is assigned a failure probability that is dependent on its position in 
relation to the hazard. Different hazard scenarios were simulated with 
varying degrees of strength and position of the epicentre in relation to 
the network. The robustness of a range of power-law networks with 
exponential cutoff was assessed given the occurrence of spatially 
correlated failures. Here the robustness was measured as the fraction of 
nodes that were functional after the disruption occurred. The results of 
the disruption simulations were used to study the relationship between 
the topological properties of the networks and their robustness to 
spatially correlated failures. Topological properties of a network are 
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properties that provide various information about the structure of the 
network. 

When exploring the relationship between the topological properties of 
the network and its robustness to spatially correlated failures, in Paper 
III, several network topological properties were found to be significant 
when characterising network robustness. To find which topological and 
hazard properties were significant in characterising network robustness, 
a regression analysis was carried out, where the possible explanatory 
variables were the mean, minimum, maximum and standard deviation of 
the four topological properties presented in Table 2, as well as the two 
hazard properties also given in Table 2. The observed response variable 
in the regression analysis was network robustness to each hazard 
scenario, given as the fraction of functional nodes at the end of each 
simulation of spatially correlated failure. Table 2 gives a brief overview 
of the significant topological properties, as well as two properties of the 
spatial hazard that were also significant when characterising network 
robustness. 
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Table 2: Significant topological and hazard properties for characterising the robustness of power-
law networks to spatially correlated failures, as found in Paper III. 

Topological and hazard 
properties investigated 

Brief description Significant 
properties 

Topology 
properties 

 

 

 

 

 

 

Nodal degree (k) Number of connections a node has. 
Gives an indication of network 
redundancy. 

Mean k 

Betweenness 
centrality (Cb) 

Fraction of shortest paths that pass 
through the node. Gives an indication 
of node criticality. 

Mean Cb 

Maximum Cb 

Clustering 
coefficient (C) 

Measure how well the neighbourhood 
of a node is connected, where two 
nodes are neighbours if an edge 
between them exists. Gives an 
indication of local redundancy. 

Mean C 

C standard 
deviation 

Path length (l) Shortest path length between each 
nodal pair, i.e. the path that traverses 
the least number of edges. 

Maximum l 

l standard 
deviation 

Hazard 
properties 

 

Distance Distance of the hazard epicentre from 
the centre of the network. 

Distance 

Covariance Measure of the spatial variance of the 
hazard. The greater the covariance 
the more concentrated the hazard. 

Covariance 
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Figure 1: The influence of the significant topology measures on the robustness of the networks 
for 10%, 25% and 50% of node failures, as shown in Paper III (Johnson, Reilly et al. submitted 
p.8, Figure 1). The influence is given by the  value from the regression model. 

Figure 1 shows the influence of the significant properties in 
characterising network robustness to spatially correlated failures. 
Variables with a positive influence indicate that the more this value 
increases, the more robust the network is to spatially correlated failures. 
Variables with a negative influence indicate that, as their value increases, 
the robustness of the network decreases. The distance of the hazard from 
the centre of the network unsurprisingly had a positive influence on 
network robustness, indicating that the further the hazard epicentre is 
from the centre of the network, the more robust the network is. 
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Therefore, if a hazard epicentre is known, or can be estimated, for 
example in earthquake scenarios, then the positioning of the network 
system to the epicentre should be considered when designing new 
systems. The results indicated that the same network topological 
properties were significant in characterising network robustness to 
spatially correlated failures, as those that were found by LaRocca and 
Guikema (2015) to be significant when characterising network 
robustness to random failures. The most influential topological 
properties for both random and spatially correlated failures are the mean 
nodal degree and mean clustering coefficient. These properties provide 
some indication of the global and local redundancy of the network, 
respectively. These results can be taken into account by infrastructure 
management when designing new systems or upgrading existing 
systems, with the aim of increasing the robustness of the system to both 
random and spatially correlated failures.  

Paper III thus provides an alternative method of simulating spatial 
failures to the localised failure method. Our alternative method assesses 
the impacts of spatial failures on a network in a more realistic manner 
that is easy to implement with a low computational burden. This allows 
those assessing infrastructure systems to assess which areas of the system 
are more susceptible to spatially correlated failures, therefore indicating 
areas where improvements could be made to increase robustness. 

2.1.2 Interdependent network-based models 
With the increased attention on the assessment of critical infrastructure 
in relation to events that have the potential to cause large outages, the 
need to account for interdependencies between infrastructure systems 
was called into focus (e.g. Rinaldi et al. 2001, Dudenhoeffer et al. 2006, 
Buldyrev et al. 2010). Acquiring data about infrastructures to model the 
system itself is difficult, due to many being privately owned utilities that 
view sharing such information as a safety and security issue (Rinaldi et 
al. 2001, Macaulay 2008, Winkler et al. 2010). Incorporating 
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interdependencies into infrastructure models is equally difficult, given 
that it requires data from multiple systems in order to provide a realistic 
model. Given the difficulties in modelling real systems, theoretical 
interdependent models were suggested in the literature, to construct 
models that represent a system of systems (Parshani et al. 2011, Shao et 
al. 2011, Havlin et al. 2015).  

When referring to the different edges or connections in interdependent 
models, a distinction between the edges within each network and 
between the networks can be made. Edges within one network are 
referred to as intra-connections, whereas the edges between networks, 
which represent the interdependencies, are referred to as inter-
connections. Inter-connections can be modelled to be unidirectional or 
bidirectional. When a dependency exists between two nodes of different 
networks which are both dependent on each other, the dependency is said 
to be bidirectional. When the dependency only exists where one node 
depends on input from a node in another network, the dependency is said 
to be unidirectional. 

2.1.2.1 Categorising interdependencies in network-based 
models 

In Paper I, different methods suggested in the literature for modelling 
interdependencies in network-based models were reviewed, as well as 
the metrics used to assess the effects of disruptions in interdependent 
systems. The first categorisation for how interdependencies are modelled 
was fully or partially dependent. In fully dependent models, each node 
in a network is dependent on input from another network. In partially 
dependent models, only a fraction of nodes in a network are dependent 
on nodes in other networks. These two categories were then 
subcategorised by single or multiple dependencies per node. In models 
with single dependencies, each node that is dependent on another 
network has one and only one inter-connection. Models with multiple 
dependencies allow inter-connections to form, such that each node that 
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is dependent on another network can have multiple inter-connections. 
Most of the literature reviewed focused on modelling two interdependent 
systems, with few papers suggesting methods of extending 
interdependent models to systems containing more than two networks. 

Although others have suggested categories of interdependencies, these 
categories are descriptions of the functionality of dependencies found 
between infrastructures. For example, Rinaldi et al. (2001) suggested 
four types of interdependencies: physical, cyber, geographic and logical. 
Others have suggested similar categories, including functional or spatial 
by Zimmerman (2001) and physical, geospatial, policy or informational 
by Dudenhoeffer et al. (2006). Paper I aims to categorise the 
dependencies, not on the functionality of the dependency but based on 
the structure of the interdependent systems. When creating an initial 
model to see whether it is of use to investigate the interdependent system 
further, it is important that the structure is a good representation of the 
interdependent system, regardless of dependency functionality. 

Table 3 shows the methods of forming inter-connections between 
interdependent networks. Random attachment is when the inter-
connection is randomly assigned between nodes of different networks. 
When the model contains only two networks that are both fully 
dependent with single dependencies, the networks must be the same size, 
i.e. contain the same number of nodes. Buldyrev et al. (2010) presented 
this model to demonstrate the need to account for interdependencies 
between networks, and so the model is simple to construct and not 
representative of real infrastructure interdependencies. This model was 
then extended such that the dependencies were formed due to some 
condition. Both Parshani et al. (2011) and Buldyrev et al. (2011) 
suggested that nodes were more likely to be dependent on other nodes 
with the same nodal degree. Buldyrev et al. (2011) suggested that each 
inter-connection be formed between two nodes with the same nodal 
degree. Thus, the distribution of nodal degree must be the same in both 
networks within the system. Parshani et al. (2011) suggested a method 
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of forming dependencies with an inter degree-degree correlation of rAB; 
that is the percentages of inter-connections that form dependencies 
between nodes with the same degree is rAB. 

Table 3: Methods for forming inter-connections found in the literature, as described in Paper I. 

 

For methods where each node with a dependency can have multiple 
inter-connections, preferential attachment is modelled such that the inter-
nodal degree distribution follows a power-law distribution. The inter-
nodal degree is the number of inter-connections a node has. The inter-
connections are formed such that it is preferential for dependent nodes 
to depend on a node with a high nodal degree. In such cases, the 
dependencies can be formed preferentially, based on either inter-nodal 
degree or total nodal degree (i.e. the summation of both intra and inter-
nodal degrees). Conditional preferential attachment applies when there 
are more than two networks within the system and accounts for the 
structure of the system of systems. For example, there can be one 
network which forms a hub for all other networks in the system. In this 
case, the hub network is dependent on all other networks in the system. 
All other networks are only dependent on the hub network. 

Within the literature reviewed in Paper I, the main metric used to 
evaluate the effects of disruption to an interdependent network system is 
the giant connected component (GCC). After the disruption and 
cascading effects have been simulated, the system fragments into several 
smaller subsystems. The GCC is the subsystem which contains the 
greatest number of nodes (Shao et al. 2015). To allow for easy 

Fully or partially 
dependent networks 

Dependencies per node 
Single
  

Multiple 

Fully dependent 
networks 

Random or conditional 
attachment 

Random or preferential 
attachment 

Partially dependent 
networks 

Random Conditional preferential 
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comparison between networks of different sizes, the relative GCC is 
often used. The relative GCC gives the percentage of nodes that are 
present in the GCC rather than the number, which can then be compared 
to the relative GCC of other networks. The relative GCC can be 
evaluated either individually for each network in the modelled system or 
for the system as a whole.  

The different methods of forming interdependencies between networks 
allow for a variety of systems to be analysed. When modelling real 
systems, the most relevant method of forming dependencies can be 
chosen to construct the model. Some methods are easier to construct than 
others, e.g. fully dependent models with single dependencies, but are less 
representative of real systems than those that are more complex to 
construct. The interdependency method to be used should be chosen in 
relation to the time and resources available, as well as the purpose of the 
analysis. For an initial analysis, a less complex model may be used as a 
starting point, to see if a more in-depth analysis needs to be performed. 

2.1.2.2 Robustness of interdependent networks 

When investigating interdependent network systems, the focus of the 
analysis is mainly how disruptive an event is to the system, where, as 
previously discussed, the GCC or relative GCC is used to measure the 
level of disruption. Paper II investigates whether the robustness of 
coupled networks can be characterised by the topological properties of 
the network, as previously explored for independent networks by 
LaRocca and Guikema (2015). 

The effects of network topology on the robustness of interdependent 
networks have previously been investigated. However, this usually 
involves ranking the nodes of the network according to a certain 
topological property and using this ranking to identify nodes to remove, 
in order to simulate a targeted attack on the interdependent system. Both 
Motter and Lai (2002) and Huang et al. (2011) used nodal degree to rank 
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nodes before removing the highest ranked nodes to simulate targeted 
attacks. Zhang and Peeta (2011) investigated both nodal degree and 
betweenness centrality (which they referred to as “load”) as a measure 
of node importance, while Chai et al. (2016) also included shortest path; 
both authors then explored the differences in system robustness to 
targeted attacks for the different node rankings. Rather than focus on 
only one topological property, Paper II aims to characterise the 
robustness of coupled networks, using a collection of topological 
properties, providing a relationship that is generalisable to a range of 
coupled network structures.  

In order to investigate the relationship between the robustness of 
networks in interdependent systems and topological properties, several 
different interdependent systems were explored. Each system contained 
two networks of equal size (i.e. equal number of nodes), ranging from 
100 nodes to 1000 nodes, hereafter referred to as Network A and 
Network B. Both networks in the system were power-law networks with 
exponential cutoff. All dependencies formed between the two networks 
were bidirectional. Both dependent and interdependent systems were 
explored, to allow the results to be generalisable for a range of coupled 
systems. In the dependent systems, Network A was dependent on 
Network B, and Network B was independent, whereas, in the 
interdependent systems, Networks A and B were both dependent on each 
other. The inter-connections were formed conditionally on the closest 
node in the dependent system, where both networks occupied the same 
space and coordinates were assigned to each node.  

As Network A is always dependent on Network B, Paper II explored the 
robustness of Network A to random failures in Network B. All initial 
disruptions occurred in Network B and were modelled by choosing a 
percentage of nodes randomly that would fail. Three levels of disruption 
in Network B were considered: 10%, 25% and 50%. To simulate these 
initial failures, the chosen nodes were removed from the network, 
causing the network to fragment. Systems where Network B both did and 
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did not contain source nodes were investigated, with two different 
methods of simulating failures used, depending on the presence of source 
nodes. Source nodes are nodes which need to be functional in order for 
the network to function. This is representative of systems, such as 
electric power systems, where the source nodes represent the power 
plants generating electricity.   

When source nodes are not present in the model, the GCC is considered 
the only functional cluster in the network after the initial disruption, as 
described above. All nodes in Network A that are dependent on non-
functional nodes in Network B are also considered non-functional. This 
causes Network A to fragment, and only nodes in the GCC are 
considered functional. If Network B depends on Network A, any nodes 
in Network B dependent on non-functional nodes in Network A are now 
also non-functional. This process iterates until no additional node 
failures occur.  

When source nodes are present in Network B, after the initial random 
failures (as previously described), only the clusters that contain source 
nodes are functional; all other nodes are non-functional. The disruptions 
then cascade into Network A as before, where all nodes dependent on 
non-functional nodes in Network B are considered non-functional, 
causing fragmentation within Network A. Any clusters in Network A 
that receive input from functional nodes in Network B are considered 
functional, with all other clusters considered non-functional. If Network 
B depends on Network A, any nodes dependent on non-functional nodes 
are then considered non-functional, causing further fragmentation. The 
process iterates again until no more node failures occur. 

The level of dependency was also varied, to allow the relationship of 
topological properties and network robustness to be explored. For both 
dependent and interdependent systems, the levels of dependency were 
modelled as either fixed or random. For fixed levels of dependency, the 
percentage of nodes that were dependent on the other network in the 
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system was predefined as either 10%, 30%, 50% or 100%. For random 
levels of dependency, the percentage of nodes with dependencies in each 
network was randomly assigned by drawing a variable from a uniform 
distribution with a range of 1 to 100. Table 4 shows the different levels 
of dependency explored. 

Table 4: Summary of dependency types modelled in Paper II. 

Type of dependency 
Network A has on 
Network B 

Type of dependency 
Network B has on 
Network A 

Percentage of 
source nodes in 
Network B 

Fixed, 10% - - 
Fixed, 30% - - 
Fixed, 50% - - 
Fixed, 100% - - 
Fixed, 50% Fixed, 50% - 
Random - - 
Random - 2 
Random - 5 
Random - 10 
Random Random - 
Random Random 2 
Random Random 5 
Random Random 10 

 

The topological properties investigated to characterise the robustness of 
coupled networks included the mean, minimum, maximum and standard 
deviation of the nodal degree, betweenness centrality, clustering 
coefficient and path length. The same properties were investigated in 
Paper III and by LaRocca and Guikema (2015), and are described in 
Table 2. Three additional topological properties were also included in 
the analysis of Paper II that accounted for the properties of the 
dependencies and source nodes. The first two additional properties are 
related to the dependencies. When the level of dependency was randomly 
assigned, the percentage of dependent nodes in the network was 
included. The mean intra-nodal degree of dependent nodes was also 
included as a topological property. The final additional property included 
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in the analysis was the mean nodal degree of source nodes, which was 
included when source nodes were present in Network B.  

Following the method used in Paper III, a regression analysis was used 
to find which topological properties are significant in characterising the 
robustness of coupled networks.  A regression analysis was performed 
that included the topological properties of Network A but not those of 
Network B. This is representative of the data available when assessing 
real-world systems, as an infrastructure system will likely know its own 
structure but does not necessarily know the structure of the network 
systems it depends on. 

Figure 2, Figure 3 and Figure 4 show the significant topological 
properties, as found in the regression analyses of the various coupled 
networks investigated in Paper II. For all the different types of coupled 
network systems investigated, three topological properties of Network A 
were always significant for characterising the robustness: mean nodal 
degree, mean intra-nodal degree of dependent nodes and, when 
applicable, the percentage of dependent nodes in the network. Mean 
nodal degree had a positive influence on the robustness of the network 
to cascading failures. This is as expected, as the mean nodal degree 
indicates the level of redundancy within a network: therefore, the greater 
the mean nodal degree, the greater the level of redundancy in the 
network. The mean intra-nodal degree of dependent nodes had a negative 
influence on the robustness. Again, this is as expected, as the disruption 
cascades from Network B into Network A through the dependent nodes. 
The greater the number of nodes within Network A that are connected to 
the dependent nodes, the greater the effect the disruption has on Network 
A. The level of dependency also had a negative influence on network 
robustness. This again is intuitive, as the more nodes in Network A that 
depend on Network B, the greater the chance of nodes in Network A 
being affected by the disruption that initiates in Network B. 
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When the level of dependency was fixed within the coupled networks, 
the mean clustering coefficient, nodal degree standard deviation and path 
length standard deviation are always significant and have a weak 
influence on network robustness. Mean clustering coefficient has a 
positive influence, whereas mean standard deviation and path length 
standard deviation both have a negative influence. When source nodes 
are present in Network B, path length standard deviation of Network A 
is no longer significant. Mean clustering coefficient and nodal degree 
path length are still significant, but the influence of each is reversed such 
that they have a weak negative and positive influence, respectively. 
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Using the results of the coupled network systems analysis alongside 
those of LaRocca and Guikema (2015) can provide useful information 
for those designing or upgrading networked infrastructure systems. 
When designing new infrastructure systems that are dependent on others, 
the level of dependency should be considered. The dependency level 
should be as low as possible to reduce the effects of cascading 
disruptions that occur in the network that is depended upon. The nodes 
that are dependent on another network should also be considered. When 
nodes with a higher nodal degree are dependent on input from another 
network, the cascading effects are greater, although this may not be 
straightforward to implement, as in reality the functionality of the node 
determines whether the node depends on another network. In this case, 
providing redundancy, such as generators for nodes that are dependent 
on input from an electric power system, at dependent nodes with a high 
intra-nodal degree, can be implemented. The results are consistent over 
a range of different coupled network systems, suggesting that the 
important topological properties are the same for different structures of 
coupled networks, which provides a general overview of the most 
influential properties to consider. 

2.1.2.3 Real world case studies with limited data 

There have been many suggestions for modelling and analysing 
interdependent systems, as presented in Papers I and II. However, there 
are few real case studies of interdependent systems (see Dueñas-Osorio 
et al. 2007, Johansson and Hassel 2010, Chai et al. 2016). Such models 
focus on data-rich areas in developed countries, primarily the US and 
Europe. The aim of Paper IV is to provide a real-world interdependent 
infrastructure system model in a data-poor context, by presenting a 
model of the dependent water and electric power system of St. Kitts. 

St. Kitts is one of the twin islands of the Federation of St. Kitts and Nevis, 
located in the eastern Caribbean Sea. St. Kitts provides a good case 
study, as both the power and water systems are self-contained on the 
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island; that is, they do not require or provide input from/to external 
geographic areas. Due to the location of the island, tropical storms pose 
a significant hazard to the islands’ infrastructure. Network models of the 
two infrastructures were first developed before being incorporated into a 
simulation model that estimated the effects of tropical storms on the 
dependent network system.  

The water system was modelled using the publicly available computer 
program, EPANET 2.0 (Rossman 2000), and was based on data obtained 
from the St. Kitts Water Department. The model includes the distribution 
system pipes, along with supply sources and demand nodes. Supply 
sources consist of 30 groundwater wells, 30 surface storage tanks and six 
river reserves. The 30 wells are dependent on input from the electric 
power system to function. 

The actual electric power system of St. Kitts contains 12 main trunk 
lines, with power generated from 10 diesel generators, located in the 
island’s capital, Basseterre. Due to the limited information available 
about the electric power system, only three of the 12 main trunk lines 
were included in the model. These three trunk lines stretch along the 
coastline of the island, with one going along the peninsula to the 
southernmost point of the island and the other two running up to the north 
around each side of the island. The nine remaining trunk lines that are 
not included in the model service Basseterre and the surrounding area. 
The network model of the power system contains power poles, 
represented as nodes, and the transmission line as the edges between each 
node. Each of the three modelled trunk lines begins at Basseterre, 
moving away from the capital. 

Figure 5 shows the schematics of the modelled water and power 
networks. As previously stated, the dependency between the two 
infrastructures is the dependency the wells in the water network have on 
input from the electricity network. To model this dependency, each water 
well is dependent on the closest power node in the network. When a 
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power pole that a well depends on is non-functional, the dependent well 
is also classed as non-functional.  

Due to tropical storms being a common disruption to St. Kitts, such 
events were used as scenario events that caused disruptions to the 
dependent water and electric power system of St. Kitts. A parametric 
wind model used in previous work (e.g. Han et al. 2009, Guikema et al. 
2014) was used to simulate tropical storms within the vicinity of St. Kitts. 
The model estimates the maximum wind speed during a tropical storm 
at predefined locations on the island. These locations were one in each 
parish of the island, with the exception of St. George, which was given 
three points, as it encompasses the long southern peninsula. Using the 
estimated maximum wind speeds experienced in a storm, their effect on 
the electric power system was estimated. A fragility curve of the wooden 
power poles present in the simulation of disruptions was used to find the 
probability of damage for each modelled pole. When a power pole fails, 
all downstream poles also fail, as it is assumed in the model that power 
is not able to flow downstream of poles damaged by strong winds. The 
cascading effect of the disruption from the power network to the water 
network was then simulated. This model was then used to demonstrate 
how such real-world interdependent models could be used for various 
analyses. 
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The first analysis demonstrated how to identify which components in the 
power system are critical to the performance of the water system. To do 
this, each pole was failed individually, and the effects on the water 
system were recorded as the number of components to experience low or 
negative pressures. We define low pressure to be less than 20 psi, as this 
is the minimum pressure standard in several US states for fire-fighting 
activities. This was modelled for power outages of both 12 hours and 24 
hours. From Figure 6, it can be seen that, for both durations of outages, 
disruptions within the southern line had little effect on the water system, 
whereas disruptions anywhere along the northern line resulted in 
cascading effects within the water network. 

The second analysis investigated the importance of redundancy within 
the water network to reduce the effects of cascading disruptions from the 
power network. For each well, its dependency on the power network was 
removed before a 72-hour power outage was simulated. This represents, 
for example, the inclusion of a back-up generator at the well, such that 
the well is able to function without input from the power network. The 
results of each dependency being removed one at a time were compared 
to the base case, where all wells were dependent on the power network 
and a 72-hour power outage was simulated. The reduction in negative 
pressures was recorded for the removal of each well dependency and can 
be seen in Figure 7. The results show that providing redundancy to any 
wells along the western side of the island increases the resilience of the 
water network to power outages. 
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Figure 7: The percentage of reduction in the number of negative water node pressures 
compared to the worst-case scenario, as shown in Paper IV (Stødle et al. submitted, p. 12, 
Figure 10). 

Although limited data was available to model the electric power network 
of St. Kitts, an estimate of the system was generated using publicly 
available information. The generation of the dependent power and water 
network system of St. Kitts presented in Paper IV provides an example 
to infrastructure management that, even with limited knowledge of the 
networks they depend on, simulations of cascading disruptions can still 
be performed to highlight areas that are more vulnerable to cascading 
disruptions, indicating areas that can be hardened to such disruptions. 
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2.2 Risk analysis approaches for critical 
infrastructure 

Although network models allow for an analysis of the performance of 
infrastructure systems, they are only part of a full risk assessment of such 
systems. Network models allow the effects of scenarios or disruptions to 
infrastructure to be assessed but do not consider the likelihood of the 
scenario occurring and therefore do not provide a complete description 
of the risk. Probabilistic risk assessment (PRA) is one method that does 
aim to provide a complete risk description of the system. Currently 
however, PRA is not common in the assessment of infrastructure risk. 
The aim of Paper V is to discuss the feasibility of PRA for networked 
infrastructure systems, as well as comparing non-PRA methods of 
assessment, to highlight the shortcomings of these more popular 
methods. 

PRA is comprised of three main elements: 1) scenario identification of 
what can go wrong, 2) a calculation of the associated likelihood of each 
scenario and 3) the assessment of the consequences of each scenario 
(Kaplan and Garrick 1981). Kaplan and Garrick (1981) are credited with 
first proposing the method that is now considered modern PRA. The 
PRA method for assessing systems was common during the 1970s within 
the nuclear power industry (Bedford and Cooke 2001). However, in more 
recent years, other methods have been more prevalent when assessing 
infrastructure systems. To understand why this is the case, the feasibility 
of PRA for critical infrastructure was investigated in Paper V. To help 
illustrate the process of infrastructure PRA, an analysis of one scenario 
was performed on the water distribution system of the virtual city of 
Micropolis (Brumbelow et al. 2007). 

Micropolis’ water distribution system was chosen for assessment, as the 
system is a virtual one, created by Brumbelow et al. (2007), to allow 
publicly available information to be used rather than needing to acquire 
data from real-world infrastructure systems, which often is difficult for 
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safety and security reasons. The water distribution system of Micropolis 
is constructed so that it contains characteristics found in real systems, 
such as development over time, leading to a range of pipe materials and 
diameters. 

Before performing a scenario assessment of Micropolis, a formulation of 
PRA in terms of infrastructure systems was devised. The infrastructure 
system is regarded as a system of components, in which, in the simplest 
realisation, each component is either in a functional or a non-functional 
state. This can be extended for components to have multiple states that 
represent varying levels of functionality, but, for the purpose of studying 
the feasibility of PRA of infrastructure, the simple case of functional vs 
non-functional state is sufficient. The consequence associated with a 
scenario, si, can then be expressed in terms of the component states after 
the scenario has occurred and can be expressed as xi(ci), where xi is the 
consequence, which is a function of , the vector 
of the states of the n components.  

To provide an illustration of the infrastructure PRA process, a single 
earthquake intensity scenario was analysed. An earthquake of magnitude 
6 on the Modified Morcalli Intensity (MMI) scale was simulated to affect 
the water distribution network of Micropolis. Given the Peak Ground 
Velocity (PGV) resulting from the earthquake, the probability of main 
pipe failures was calculated. A Monte Carlo simulation was then run, to 
determine which main pipes experienced failures, i.e. if their state was 
fully functional or performing at a reduced capacity due to the 
earthquake. This simulation was run for 100,000 iterations. For each 
iteration, the effects of the earthquake were modelled using EPANet 2.0 
(Rossman 2000). If a pipe failed, a demand of 200 gallons per minute 
(gpm) was placed on the junction at the end of the pipe, to simulate a 
leakage occurring within the failed pipe. The EPANet simulation of 
Micropolis’ water distribution system was then run over a 72-hour 
period, and the number of terminal nodes (end users (residential and 
commercial buildings) and fire hydrants) experiencing insufficient 
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pressure during the 72 hours was recorded as the consequence of the 
scenario. 

 
Figure 8: Cumulative frequency of terminal nodes with insufficient pressure due to an 
earthquake of magnitude 6 on the MMI scale, with a log scale on the y-axis, as shown in Paper 
V (Johnson, Flage et al. submitted, p. 13, Figure 5). 

Figure 8 shows the results of the 100,000 iterations presented as an FN 
curve with a log scale on the y-axis. A high number of iterations (64,027) 
resulted in no pipe failures. The FN curve shows the frequency of the 
consequences for the 100,000 simulations run for an earthquake affecting 
the Micropolis water distribution system. When failures did occur, either 
a low number (between 1 and 22) or a high number (693 to 725) of 
terminal nodes experienced insufficient pressures, with no iterations 
resulting in a number of failures in the range of 23 to 692 inclusively. 
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This suggests there is a subset of pipe failures that have a relatively low 
impact on the function of the system and another subset that has a 
relatively large impact on the function of the system. To complete the 
analysis of the earthquake scenario within a PRA, the likelihood of an 
earthquake of magnitude 6 occurring would also need to be assessed. 
However, as Micropolis is a virtual city, determining the likelihood of 
an earthquake is not particularly meaningful. 

When assessing the consequences associated with a scenario, 
assumptions have to be made which simplify the scenario to one that can 
be assessed in a reasonable timeframe. This creates a trade-off between 
the comprehensiveness of the analysis and the time and resources 
(including data) available to perform the assessment.  As well as 
assessing single scenarios, the combination of scenarios that have the 
potential to occur at the same time also needs to be included in the PRA. 
The process of infrastructure PRA is time-consuming and requires access 
to large quantities of relevant data. It is only with recent technological 
advances that acquiring and storing system data has become achievable. 
However, the acquisition and storage of such data can still be expensive, 
and the relevance is hard to determine without a process of trial and error 
to see what should be stored and processed. 

Other methods that are more prevalent in assessing infrastructure 
systems include N-k analysis (including N-1 analysis), network models, 
both theoretic and flow-based, and statistical learning theory. N-1 
analysis is popular within the electric power sector of the US, as 
regulations state that generation and transmission systems should be able 
to function with the loss of one element (U.S. Department of Energy 
2015). N-k analysis is an extension of N-1 that assesses the functionality 
of a system when k components are non-functional (Chen and McCalley 
2005). For network models, both theoretic and flow-based, a subset of 
nodes or edges is removed, to study the effects of loss of functionality in 
such components (Motter and Lai 2002, LaRocca and Guikema 2015, 
Ouyang 2016, Johnson et al. 2019). Both N-k (including N-1 analysis) 
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and network-based models assess the performance of the systems, given 
certain components are non-functional, allowing the consequences of the 
scenario to be seen. However, neither method includes a likelihood 
assessment of the scenario that results in the assessed component 
failures. 

Statistical learning theory is another popular method for assessing the 
impacts of natural events on critical infrastructure. Using knowledge 
available about the infrastructure, its surrounding environment and the 
natural hazard, statistical models are built that estimate the impact the 
hazard has on the infrastructure (Guikema 2009). Han et al. (2009) 
present such a model that estimates the impact of hurricanes on an 
electric power system in terms of number of customers without power. 
As with N-k analysis and network models, the likelihood of the scenario 
is not included in the model, as such methods have been developed to 
provide quick feedback when there is an indication of a natural hazard 
occurring in the near future. 

All three of these methods are less complex than PRA but only assess 
the infrastructure for a subset and not all possible scenarios. These 
methods also do not consider the likelihood of the initial scenarios (that 
they model) occurring. Although PRA is not feasible in an infrastructure 
setting, the elements of PRA that are not yet covered by the more 
prevalent non-PRA methods used to assess infrastructure should be 
incorporated into infrastructure assessments.



Further work 

42 

3 Further work 

This section proposes further work that ensues from the papers presented 
in Part II of the thesis.  

The first suggestion for further work would be to use the method of 
simulating spatially correlated failures, as proposed in Paper III, to create 
disruptions to the coupled network systems assessed in Paper II. This 
would allow an exploration of the significant topological properties of 
the coupled network system that characterise the robustness of the 
network to spatial failures. These could then be compared to the results 
of random failures found in Paper II, to see whether the same topological 
properties are significant or whether other properties should be 
considered in relation to spatial failures. The findings of this work could 
provide information to those designing or upgrading infrastructure 
systems.   

Another extension of Paper II would be to investigate different categories 
of dependency types between the coupled systems. All the coupled 
network systems in Paper II had only single dependency; that is, if a node 
was dependent on another network, it had a maximum of one and only 
one dependency. Varying the number of dependencies that a node has on 
another network may produce different topological properties to be 
significant in characterising the robustness of the network. This could be 
explored for both random failures, as simulated in Paper II, and spatially 
correlated failures, as simulated in Paper III. This again may provide 
useful information on which topological properties are the most 
important to consider when designing or updating infrastructure systems. 

In Paper IV, an attempt to validate the model of the dependent electric 
power and water system of St. Kitts was made, using Hurricane Maria, 
which hit St. Kitts in September 2017. However, due to a lack of publicly 
available data, finding the actual effects that the hurricane had on the two 
infrastructures was difficult. Therefore, from Paper IV, possible further 
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work would be to validate the dependent electric power and water model 
developed in the paper, if actual outage data for an event relating to the 
dependent system could be acquired. If a more thorough validation of the 
model were possible, this could provide suggestions on how to better 
improve the dependent model.  

Paper V highlights the complications involved in performing a PRA for 
modern infrastructure systems, as well as some of the shortcomings 
associated with more common non-PRA methods currently used to 
assess infrastructure performance with regard to risk. Developing a 
method that better incorporates the aims of PRA to improve current 
methods of assessing critical infrastructure risk could be an interesting 
extension of Paper V. A further improvement of such a framework would 
be to find a way in which black swan events (that is, surprising, high-
impact events) could be better incorporated into the risk assessment of 
critical infrastructure. 
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A B S T R A C T

Many networks exhibit a power-law configuration, where the number of connections each node has follows a

power-law distribution, including the Internet, terrorist cells, species relationships and infrastructure. Given the

prevalence of power-law networks, studying the effects of disruptions on their performance is of interest.

Previous work has investigated the influence of network topology on the effects of random node failures for

independent networks. Many networks depend on others to function and thus, exploring the influence of net-

work topology on the effects of failures in interdependent networks is of interest. The present paper extends the

previous work to coupled power-law network systems. For a set of randomly generated coupled systems, each

containing two networks, we investigate the significant topological factors for different dependency types.

Failures in the coupled networks are simulated and the effects on the system performance are analysed by

performing a beta regression. The results are consistent across the dependency types, with the most influential

topological factors being mean nodal degree and factors relating to the dependency type. The results are also

compared with those of the independent networks and their potential relevance to the design of interdependent

networks is indicated, for example, their use within an infrastructure setting.

1. Introduction

It is well established that to model and evaluate the robustness (or

vulnerability) of critical infrastructure, the dependencies that exist

between infrastructure systems need to be accounted for [7,32,34].

Over the years, there have been many methods suggested for how to

model dependencies between infrastructures, including the use of agent

based and network based approaches [29]. Network models are based

on a network representation of the important components of each in-

frastructure, represented as nodes, and the connections between the

components within the same network, as well as between the different

networks, represented as edges. The edges between nodes of different

networks represent the dependencies between the different infra-

structures.

Infrastructure networks are a special case of the broader class of

interdependent networks. For example, the metabolic pathways of

different species in an ecosystem can be interdependent (e.g., one

species depends on an output from another species as an input).

Similarly, economies, when represented as networks of consumers and

producers, are strongly interdependent across regions within a country

and across different countries.

There have been many differing methods suggested for modelling

the dependencies between infrastructures using network models. Some

examples of the different methods are given by Parshani et al. [31],

Gaogao et al. [19] Jiang et al. [20], and Cheng and Cao [10]. The main

structural differences between the models can be characterised by

whether the infrastructures are fully or partially dependent (i.e., if each

node has at least one dependency to a node in the other network or only

a fraction of the nodes do) and if components with dependencies have

single or multiple dependencies (each dependent node has one or more

than one dependency) [17].

For both independent and interdependent networks, percolation

theory has been used to find analytical solutions to disruptions across

an array of different network types and dependency methods [7,10,18].

Such papers show the number or fraction of nodes removed in the in-

itial disruption that lead to complete collapse of the investigated

system. This can be used as a measure of the system's robustness and to

compare the robustness of different system models [18,20]. However,

this measure does not convey information about what happens to net-

work performance at lower levels of node removals and does not di-

rectly provide information about the relative importance of different

topological properties of the network in terms of their influence on

network robustness.

Network flow models are an extension of the network models that
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include the addition of load to the nodes and/or edges of the network.

The load represents the amount of commodity present at each node and

or/edge. Each node and/or edge is also assigned a maximum capacity.

When a disruption occurs the load of any failed nodes and edges is

redistributed throughout the remaining functional network compo-

nents. The reassignment of the load can lead to additional failures if the

load of nodes or edges exceeds their maximum capacity [14,38].

Scala et al. [35] investigated the inclusion of physical flow to both

independent and interdependent networks, with a focus on how edge

overload affected the robustness of the networks. They used a mean

field model to redistribute the load of failed edges throughout the

system, that is, they assumed when an edge failed its load was redis-

tributed evenly throughout the existing edges within the network.

The addition of commodity flow within networks is useful when

looking into the cascading mechanisms between specific infrastructure

network types, such as electric power and telecommunication. The in-

teraction between the types of infrastructure can be explored to see how

the redistribution of commodity flow can influence the cascading ef-

fects of disruptions [22,38]. One conclusion from the literature is that

the inclusion of network flow shows an increased level of cascading

effects [42], while others argue that including “smart” interactions

(which occur due to buffers within real dependent infrastructure sys-

tems) between the two networks decreases the cascading effects within

the interdependent power-communication system [22].

The use of network flow models is effective when studying a specific

system, such as one including an electric power system. However, when

investigating the effects of dependencies between general infrastructure

networks, the type of infrastructure is not specified, and thus the flow of

the commodity cannot be included. Instead the structure of the net-

works can be explored. The effects of network structure, or topology, on

the robustness of independent networks have previously been in-

vestigated [3,23]. Different topological factors can be calculated, which

capture particular structural features of a network.

Four of these topological factors are nodal degree, path length,

betweenness centrality and clustering coefficient. Nodal degree spe-

cifies the number of edges connected to each node. Path length pro-

vides the shortest path between each nodal pair within a network.

Here the shortest path is considered as the path that traverses the least

number of edges. Betweenness centrality indicates the extent to which

a node lies on the shortest path between two other nodes within the

network [27]. Clustering coefficient (also referred to as transitivity)

indicates the how likely it is for the neighbours of a node to also be

neighbours, where if an edge exists between two nodes, then they are

neighbours. Clustering coefficient gives an indication of local re-

dundancy within a network.

Alipour et al. [3] used topological based and reliability based

measures to identify weak nodes within power transmission networks.

The topology based measures included factors such as nodal degree and

betweenness centrality. The reliability based measures incorporates

what the author refers to as the reliability of the edges within the

system. To do this, a weight is assigned to each edge that represents the

probability that the edge is functional. The topological factors are then

calculated including the weights of the edges. They also compared the

robustness of the independent power transmission networks to random

and targeted attacks, using efficiency as a measure of robustness. Effi-

ciency is defined as the inverse of the average of the shortest paths

between each nodal pair within the network. The targeted attacks were

simulated by removing the most central nodes of the network. The most

central nodes are defined as those who had the highest cumulative rank

score in relation to the reliability based measure, i.e., the greater the

value of each reliability based measure a node has the lower it is

ranked.

LaRocca and Guikema [23] provide a general overview of the

topological factors that have a significant influence on the robustness

of independent networks when random failures occur. The focus of

the paper was the robustness of networks, of which the nodal degree

followed a power-law distribution with exponential cut-off. Here,

robustness was defined as the percentage of functional nodes after

disruptions. Their findings show that the following topological factors

are significant when characterising the robustness of independent

networks: mean nodal degree, mean betweenness centrality, mean

clustering coefficient, standard deviation of clustering coefficient and

standard deviation of path length. However, the influence of the to-

pology on the robustness of interdependent networks has not been

explored. In this paper, characterising the robustness of networks

with topological factors is extended to the case of coupled network

systems.

LaRocca et al. [24] compared the use of network topology and

network flow models to simulate electric power networks. They con-

cluded that using only network topology as performance measures for

particular power networks under specific disruption scenarios provides

poor estimates of system performance, relative to when commodity

flow is taken into account. However, they also find that an average of

some performance measures, such as largest connected subgraph, may

capture the average behaviour of the system when random failures

occur. If investigating the effects of disruption to a specific system that

includes at least one infrastructure for which the flow of the commodity

can be modelled, then the use of a physical flow model is more ap-

propriate than a network theoretic model. However, this paper aims to

give an overview for any type of networks within a coupled system and

thus does not include physical flow. The inclusion of flow limits the

connections within an individual network to all be of the same type of

connection, e.g. physical if the flow of a commodity (e.g. power of

water) or of information. By not including physical flow, the connec-

tions within the model can represent different types of connections,

rather than just one.

To extend the work of LaRocca and Guikema [23] the present paper

aims to provide a general overview of which topological factors are

important when random disruptions occur in coupled network systems

for a variety of different dependency types. The various dependency

types allow for the investigation of both dependent and interdependent

coupled systems. The 2000 coupled network systems are generated such

that each system consists of two networks, both of which are scale-free

networks that follow a power-law distribution with exponential cut-off.

The two networks present in each coupled system are referred to as

Network A and Network B. The dependencies between the two net-

works are directional (or unidirectional), i.e., if node i in Network A

depends on node j in Network B, node j does not necessarily depend on

node i in Network A.

In our analysis, the robustness of Network A is explored when

random disruptions occur within the coupled system. Robustness here

is considered as the percentage of functional nodes after a disruption

occurs. The analysis aims to advance the understanding of how the

robustness is affected within a short time frame after the initial dis-

ruption. All initial failures occur within Network B, thus investigating

the first order effects of a disruption on Network A. A first order effect

refers to the effect of a disruption that initiates in Network B and affects

Network A through the dependencies Network A has on Network B

[34]. After the disruptions are simulated within the coupled system, a

beta regression is performed to provide an overview of which topolo-

gical factors are significant in characterising the robustness of Network

A. A comparison of the significant topological factors across the dif-

ferent types of dependencies modelled is made, as well as a comparison

to the significant factors reported for independent networks in LaRocca

and Guikema [23].

The remainder of this paper is structured as follows: Section 2

provides an overview of the different network related terminology used

throughout the paper. The methods used to generate and analyse the

coupled network systems are outlined in Section 3, with the results of

the regression analysis are presented in Section 4. A discussion of the

findings is given in Section 5, followed by the conclusion in Section 6.
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2. Network terminology

Networks consisting of nodes and edges can be used to construct a

simplified representation of an infrastructure system. The nodes re-

present important components of the system and the edges represent

the connections between such components. The network or graph can

be denoted as =G V E{ , }, where V is the set of vertices or nodes in
the network and E is the set of edges, which form connections between

the nodes. The size of the network, N, is equal to the number of vertices

[5]. The edges in a network can either be directed or undirected. When

the edges are directed, the direction of each edge is specified and can

only be traversed in the specified direction. When the edges are un-

directed, the edges can be traversed in either direction. For simplicity,

the networks generated to be included the coupled systems in this paper

are undirected.

Barabási and Albert [4] first observed that the nodal degree of some

networks can be described as following a power-law distribution, given

by:

P k k( )

such that P(k) is the probability that a node is connected to k neigh-

bours and γ is some constant. It has since been suggested that the

power-law distribution with exponential cut-off is more accurate as it

takes into account the physical cost of adding additional edges to a

node, providing an upper limit to the number of edges a node can have.

The power-law distribution with exponential cut-off is given as:

P k k e( ) k K( / )

where K is the cut-off at which it becomes too costly to add additional

edges to a node [2, 26].

It has recently been questioned if power-law networks are as pre-

valent in the real world as the mountain of literature stating this would

have us believe. Broido and Clauset [6] investigated if the best fitting

power-law distribution for the nodal degree of 3662 simple graphs

(constructed from 928 real-world networks) was better than alternative

(non-scale-free) distributions. They use the term scale-free networks to

refer to networks which nodal degree follows a power-law distribution.

Likelihood ratio tests were compared for the best fitting model from

four alternative degree distributions. One such distribution they com-

pared was the power-law with exponential cut-off, where 56% of the

results favoured the power-law distribution with exponential cut-off.

This result led Broido and Clauset [6, p. 5] to state “a majority of

networks favor the power law with cutoff model, indicating that finite-

sized effects may be common”. This topic of discussion will likely gain

much attention in the near future, and may lead to a different under-

lying degree distribution to be proposed. However, for the time being,

the power-law distribution with exponential cut-off is one of the better

methods to use when constructing simulated networks.

2.1. Network topology

The structure or topology of a network can be described using dif-

ferent network parameters. Four such parameters that are particularly

useful for characterising the network structure are: nodal degree, be-

tweenness centrality, clustering coefficient and path length. Each of

these four topological parameters can be calculated for any network

[23].

2.1.1. Nodal degree

The degree, k, of any node in an undirected network is the number

of edges connected to the node. The mean nodal degree of the network

is expressed as

=k
N

k1

i V
i

where V is the set of nodes in the network, and ki is the degree of node i.

2.1.2. Path length

The length of the shortest path for each pair of nodes within a

network is calculated as the least number of edges traversed to get from

one node in the pair to the other. The shortest path from node i to node j

in a network is denoted as pij. For undirected graphs =p pij ji. For the

remainder of the paper, the set of shortest paths between each nodal

pair in a network is denoted as L.

2.1.3. Betweenness centrality

For each node i in the network, the betweenness centrality is defined

as:

=Bc
p
p

b, a i,i
a b

aib

ab

where paib is the number of shortest paths from node a to node b that

pass through node i, and pab is the total number of shortest paths from

node a to node b.

2.1.4. Clustering coefficient

The clustering coefficient of a node specifies how connected its

neighbours are to each other and is an indication of local redundancy in

the network. The neighbours of a node is the set of nodes to which it is

connected to. For node i, which has ki neighbours, the clustering coef-

ficient is defined as:

=Cc E
k k

2
( 1)i

i

i i

where Ei is the number of edges between the neighbours of node i.

2.2. Giant connected component and source node clusters

When disruptions occur to a network, the network can fragment into

several clusters. The largest connected cluster present after the network

fragments is referred to as the Giant Connected Component (GCC). The

relative size of the GCC is the percentage of nodes within the GCC

[9,10,36]. The relative size of the GCC can be used as a measure of

network performance after disruption has occurred [17,22]. We ac-

knowledge that this is an imperfect measure of network robustness,

especially given that it does not account for source and sink nodes or for

the physics of network flows. However, this simple, widely-used mea-

sure, provides an initial view of the influence of topological factors on

the topological robustness of a network.

Source nodes can also be included into a network. Source nodes

represent components of the network that must be functioning in order

for the network to be functional. When a disruption occurs within a

network containing source nodes, only the clusters that contain source

nodes are considered functional.

2.3. Network dependencies

Connections between different networks can also be formed to

generate a system of dependent networks. These connections represent

the dependencies that exist between different infrastructure networks,

for example the dependency a water network has on an electricity

network to power electric pumps [13]. To distinguish between the

edges within each network and between the networks the terms intra-

connections and inter-connections are used. Intra-connections refer to

the connections or edges between two nodes within the same network.

Inter-connections refer to the connections or edges between two dif-

ferent networks, i.e. the dependencies between the networks.

For the remainder of the article, all intra-connections are assumed

to be undirected and all inter-connections are assumed to be directed.

This is representative of situations such as a drinking water network

and its dependency on a power network. The water within the network

can flow in both directions, such that the intra-connections are un-

directed. However, some components of the water network, such as the
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pumps, rely on electricity to function and thus the dependency is di-

rectional from the power network to the water network. Another ex-

ample is a transportation network and its dependency on a power

network. Within the transportation network traffic flows in both di-

rections, whereas the dependency is directed from the power network

to the transportation network, for example, to signals within the

transportation network that requires electricity. The power network can

also be dependent on the transportation network, for example, the

transportation of fuel (e.g., coal) or spare parts, but not necessarily on

the component that depends on the power network, such as the signals.

For coupled system where the networks have partial dependency

(i.e., only a percentage of the nodes in the network depend on another),

the influence of additional variables on the robustness of the system are

considered. These variables are the percentage of nodes in the network

which are dependent on another network, denoted Dp, and the intra-

nodal degree (number of intra-connections a node has) of these de-

pendent nodes, which is denoted as Dk. When source nodes are in-

cluded in the coupled systems, the influence of the additional variable

of the source nodes’ intra-nodal degree is also considered, and denoted

as Sk.

3. Methods

A total of 4000 networks were generated following the process

outlined in Section 3.1 before being sorted into pairs to give 2000

coupled network systems. The two networks within each system are

referred to as Network A and Network B. Different types of de-

pendencies between the two networks were explored and are described

in Section 3.2.1. For each dependency type, failure scenarios were si-

mulated within the 2000 coupled systems and the robustness of Net-

work A was recorded. More information on simulating the failure sce-

narios is given in Section 3.3. To characterise the robustness of Network

A from the topological factors of the coupled network system a beta

regression analysis was performed as described in Section 3.4.

3.1. Generating networks

The 4000 networks were generated using the preferential attach-

ment variation algorithm presented by LaRocca and Guikema [23]. This

algorithm assigns the degree of each node from the power-law dis-

tribution with exponential cut-off before assigning intra-connections

preferentially, based on nodal degree. All intra-connections are as-

sumed to be undirected.

An assortment of simulated networks was produced using combi-

nations of different network sizes and parameter groups for the nodal

degree distribution. Five different power-law distributions with ex-

ponential cut-off were used to assign the nodal degree of the networks.

The parameter groups of the five power-law distributions used are

shown in Table 1. These distributions are the same as those used pre-

viously by LaRocca and Guikema [23] and were chosen as they re-

presented nodal degree distributions exhibited by real-world networks

studied in Albert and Barabási [2]. Twenty different network sizes

ranging from 100 to 1000 nodes were chosen from a uniform dis-

tribution and can be seen in Table 2. Therefore, for each combination of

network size and nodal degree distribution 40 networks were

generated.

After generating the networks, the mean, minimum, maximum and

standard deviation of the four topological factors of each network was

calculated. A summary can be seen in Table 3.

3.2. Generating coupled network systems

The 4000 networks generated were then paired such that each pair

of networks, referred to as Network A and Network B, were the same

size and of the same parameter group for the nodal degree distribution.

Each pair was used to form a coupled network system, resulting in 2000

systems. The two networks within each coupled system were assumed

to occupy the same spatial area. The layout of each network was

decided using the layout.graphopt function in the igraph R package

[12]. This assigned each node a Cartesian (x, y) coordinate.

The inclusion of source nodes within the coupled network systems

was also explored to see if their presence caused a change in which

topological factors were significant to network robustness. When source

nodes were present in the coupled system, a random subset of nodes in

Network B were chosen to represent these source nodes. The size of the

subset was varied at 2%, 5% and 10% of the network's size. These re-

latively low percentages of source nodes are representative of systems

such as infrastructure where the large majority of nodes are demand

points and demand is met by a relatively small number of major source

nodes; for example, natural gas networks [15, 33, 37], electric power

systems [1, 39–41] and water distribution systems [21, 25, 28]. The

analysis could be extended to networks with much higher percentages

of source nodes, but this is not explored in this paper.

3.2.1. Forming dependencies

For each type of dependency, Network A is always dependent on

Network B, however Network B was either independent (did not de-

pend on Network A) or was dependent on Network A. For each de-

pendency type, a subset of nodes in Network A is randomly chosen to

depend on Network B. This subset is denoted as AD. Each node in AD
depends on the closest node in Network B (based on Euclidean dis-

tance). This allows multiple nodes in AD to be dependent on the same

node in Network B. The method of forming dependencies based on

geographic proximity is used by Dueñas-Osorio et al. [13] when mod-

elling the interdependent power and water system of Shelby County,

Tennessee and Ouyang et al. [30] to simulate coupled power and water

systems with features similar to those of real infrastructure.

For dependency types that include Network B depending on

Network A, the dependencies Network A has on Network B are first

formed, using the method described in the previous paragraph. Next a

random subset of nodes in Network B is chosen to depend on Network

A. This subset is denoted as BD. Each node in BD is dependent on the

closest node in Network A (based on Euclidean distance) that is not

present in the subset AD. This allows for multiple nodes in BD to depend

on the same node in Network A.

Table 1

Power-law parameters used for generating networks.

Power-law distribution parameters

γ K

1.1 40

1.7 200

2.0 900

2.1 400

2.4 2000

Table 2

Summary of generated networks.

Number

of nodes

Number of

degree

distributions

Number

of

networks

Number

of nodes

Number of

degree

distributions

Number

of

networks

100 5 40 485 5 40

133 5 40 509 5 40

142 5 40 536 5 40

232 5 40 547 5 40

249 5 40 690 5 40

350 5 40 697 5 40

361 5 40 752 5 40

448 5 40 862 5 40

464 5 40 896 5 40

467 5 40 1000 5 40
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The size of the dependent subsets AD and BD vary for each de-

pendency type. An overview of the size of the dependent subsets is

given in Table 4. When the percentage of dependency is referred to as

fixed, this means that each of the 2000 coupled systems have the same

fixed percentage of dependent nodes. When Network B was in-

dependent, 10%, 30%, 50% and 100% of dependency levels (of Net-

work A on Network B) were considered. These levels were picked such

that a range of levels that could be observed by infrastructure systems

were covered. When both Network A and B were dependent on each

other, a fixed percentage of 50% was considered, though this could be

extended in future work. When the percentage is referred to as random,

the percentage of nodes to be chosen for the subset(s) AD (and BD) is

randomly assigned to Network A (and Network B) in each of the 2000

coupled network systems. The percentage of dependent nodes is as-

signed using a uniform distribution with a range from 1/N% to 100%,

where N is the size of the network, for each dependent network. This

provides a range of dependency from only one node being dependent in

a network to the network being fully dependent.

3.3. Simulating failures

Each failure scenario was simulated by randomly choosing a subset

of nodes in Network B to fail. The percentage of nodes randomly chosen

to initially fail in Network B was investigated at the 10%, 25% and 50%

level. These failed nodes were then removed from the network and the

cascading effect throughout the coupled system was observed. For each

dependency type, 100 failure scenarios were run for each of the 2000

coupled network systems. The percentage of nodes functional in

Network A was averaged over the 100 failure scenarios run on each

coupled network system and recorded. Two different methods were

used to simulate the cascading effects of the initial disruption. When the

coupled network systems did not contain source nodes, only nodes in

the GCC of Network A were considered as functional. When source

nodes were present in the coupled network system, only nodes that

could be reached from source nodes after disruption were considered as

functional. A more in-depth explanation to the two methods used to

simulate the cascade effects are given in Sections 3.3.1 and 3.3.2.

3.3.1. Giant connected component (source nodes not present)

When source nodes were not present in the coupled system, only

nodes present in the GCC were considered as functional. The initial

disruption removed a percentage of nodes in Network B, causing the

network to fracture into clusters. Of these clusters, only the largest, the

GCC, is considered as functional and thus all nodes outside the GCC are

also considered as failed. Any nodes in AD that depend on failed nodes

in Network B also fail and are removed from Network A. This causes

Network A to fragment into clusters. As with Network B, only the lar-

gest cluster, the GCC, of Network A is considered functional and all

nodes outside of the GCC are also considered as failed. Any nodes in BD
that depend on nodes in Network A which have failed are also con-

sidered failed. This process iterates until an equilibrium is reached (no

additional node failures occur). In the dependency types where

Network B is independent, BD will be an empty set and thus the failures

of Network A will not affect Network B and the system will reach

equilibrium after any nodes outside of the GCC of Network A are con-

sidered as failed.

3.3.2. Source node clusters (source nodes present)

When source nodes are present in the coupled system, the initial

failures occur within Network B, the failed nodes are removed and the

network fragments as with the method described in Section 3.3.1.

However, with the inclusion of source nodes, only the clusters which

contain source nodes will be considered as functional and all nodes

outside of these clusters are also considered as failed. As before, any

nodes in ADwhich depend on failed nodes in Network B fail and Net-

work A fragments into clusters. The set of functioning dependent nodes

in Network A is denoted as ADf. Now only clusters that have input from

Network B are functional. This means that only clusters containing the

nodes in ADf are functional. Nodes outside of these functional clusters

are also considered as failed. Any nodes in BD that depend on failed

nodes in Network A are now considered as failed, causing further

fragmentation to Network B. As before, this process iterates until the

Table 3

Summary of the topological characteristics of the generated networks, separated into Network A and Network B.

Network A Network B

Parameter Within-network measure Mean Min Max Std dev Mean Min Max Std dev

Network size (N) 496 100 1000 253.5 496 100 1000 253.5

Degree (k) Mean 5.35 2.34 12.94 2.35 5.37 2.49 12.44 2.37

Minimum 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00

Maximum 372 39 999 241 374 42 998 241

Std dev 20.50 6.77 37.18 6.24 20.62 6.83 36.94 6.23

Betweenness centrality (Bc) Mean 706 95 2948 535 700 95 2953 528

Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Maximum 214,499 1766 995,119 236,109 216,959 1752 993,561 236,791

Std dev 9049 368 31,468 7608 9131 344 31,419 7633

Clustering coefficient (Cc) Mean 0.31 0.04 0.66 0.11 0.31 0.03 0.69 0.12

Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Maximum 1.00 0.90 1.00 0.00 1.00 1.00 1.00 0.00

Std dev 0.40 0.11 0.49 0.08 0.40 0.10 0.49 0.08

Path length (L) Mean 2.36 1.96 4.00 0.53 2.35 1.95 3.98 0.52

Minimum 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00

Maximum 4.75 2.00 14.00 2.20 4.74 2.00 17.00 2.32

Std dev 0.46 0.06 1.38 0.33 0.46 0.06 1.90 0.33

Table 4

Summary of dependency types considered.

Type of dependency

Network A has on Network

B

Type of dependency

Network B has on

Network A

Percentage of source

nodes in Network B

Fixed, 10% – –

Fixed, 30% – –

Fixed, 50% – –

Fixed, 100% – –

Fixed, 50% Fixed, 50% –

Random – –

Random – 2

Random – 5

Random – 10

Random Random –

Random Random 2

Random Random 5

Random Random 10
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system reaches an equilibrium. Again, in the dependency types where

Network B is independent, the set BD will be empty and the failures will

not cascade back into Network B.

3.4. Regression model

After simulating the various failure scenarios, regression analyses

were performed on the recorded outcomes. The analyses present the

significant topological measures of the coupled network system that

affect the robustness of Network A. For each method of forming de-

pendencies, and each percentage of initial node failures in Network B,

two regression analyses were completed, one that included the topo-

logical factors of Network A only and one including the topological

factors of both Networks A and B. In real-world situations the two

different infrastructures are commonly owned by different private

companies that do not share infrastructure data for safety and security

reasons. Therefore, if the owner or management of Network A wanted a

general overview of the most important topological factors to consider

in relation to robustness of random failure events they would be able to

have an good overview of their own structure but would likely have

little or no information regarding the topological structure of the net-

work they are dependent on.

The dependent variable for the regression was the average percen-

tage of nodes in Network A considered functional after a random dis-

ruption occurs in Network B over the 100 failure scenarios. The beta

regression model was chosen as the dependent variable was in the

range (0, 1). The beta regression model was proposed by Ferrari and

Cribari-Neto [16] for instances when the dependent variable follows a

beta distribution. The beta density they suggest for the regression

model is a parameterisation of the beta density to account for a re-

gression structure where the dependent variable is an average of the

response and is given as

= <f y μ
μ μ

y y y( ; ; ) ( )
( ) ((1 ) )

(1 ) , 0 1, 0μ μ1 (1 ) 1

and the mean and variance of y are

=E y μ( )

and

=

+

Var y V μ( ) ( )
1

.

The parameter estimation is performed using the maximum like-

lihood method. For our analysis the logit link function was used.

When only the topology of Network A is considered, the in-

dependent variables were the mean, minimum, maximum and standard

deviation of the four topology factors (shown in Table 3) as well as the

percentage of dependency and mean nodal degree of dependent nodes,

when applicable. When considering the topology of Network A and

Network B the independent variables also included the mean,

minimum, maximum and standard deviation of the four topological

factors for Network B, as well as the percentage of dependency, mean

nodal degree of dependent nodes and mean nodal degree of source

nodes, when applicable.

Any of the within network topological factors that have a standard

deviation of zero in Table 3 were removed from the data set as they do

not impact the results. After removing variables with a standard de-

viation of zero, the Variance Inflation Factor (VIF) method was used to

remove multicollinear variables. The VIF of each variable gives an in-

dication of how well each variable can be explained by a combination

of the other variables. A VIF of 1 indicates the variable is not explain-

able with the others, with a larger VIF indicating a larger degree of

redundancy with the other variables. The variable with the largest VIF

was removed iteratively until all variables had a VIF value of less than

10. For the regression models which only included the topological

factors of Network A and for the model including the topological factors

of both Networks A and B, the following variables of Network A were

Table 5

Significant covariates when Network A is dependent on Network B and Network B is independent and the effect of change of these covariates. The sign indicates if the

covariate has a positive or negative influence on the percentage of nodes considered functional in Network A after random failures in Network B. The colour indicates

the covariate coefficient value with the darker the colour indicating the further the value is from 0.
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removed due to multicollinearity: maximum nodal degree, betweenness

centrality standard deviation, clustering coefficient standard deviation,

mean path length and maximum path length. Additionally, for the re-

gression model including topological factors from both Networks A and

B the variables maximum nodal degree and mean betweenness cen-

trality of Network A were removed due to multicollinearity as well as

the following variables from Network B: mean nodal degree, maximum

nodal degree, maximum betweenness centrality, betweenness centrality

standard deviation, clustering coefficient standard deviation, mean

path length and maximum path length.

After removing variables due to multicollinearity, the remaining

variable were normalised before fitting a beta regression model using

the betareg R package [11]. After fitting the initial beta regression

model, the least significant variable was removed iteratively, until all

remaining variables were significant at the = 0.05 level. The results of
the regression analysis are shown in Section 4.

4. Results

The results of the beta regression analyses are shown in Tables 5 and

6. Table 5 contains the results for regression analyses relating to the

dependent coupled systems (i.e., Network A depends on Network B and

Network B is independent). Table 6 contains the results for the re-

gression analyses relating to the interdependent coupled systems (i.e.

Networks A depends on Network B and Network B depends on Network

A). The full results of the beta regression models are given in

Appendix A.

Each column of Tables 5 and 6 represents the result of the regression

analysis for a dependency type and percentage of initial failures oc-

curring in Network B. For example, the first column in Table 5 shows

the results for when, in each of the 2000 coupled network systems, 10%

of nodes in Network A are dependent on Network B, Network B has no

source nodes and 10% of nodes in Network B are randomly chosen to

fail initially. If a topological factor was significant in a beta regression

model, then the cell in the corresponding column is shaded and con-

tains either a positive or negative sign. The sign indicates if the topo-

logical factor has a positive of negative influence on the robustness of

Network A, and the shading indicates how strong of an influence it has,

the darker the shading the more influential the factor is (i.e., the further

the covariate coefficient is from 0). Table 7 shows the values associated

with the levels of shading for both Tables 5 and 6 (the same scale has

been used to shade both Tables 5 and 6). If a factor has a positive in-

fluence on the robustness of Network A, this indicates the greater the

values of the topological factor the more robust Network A is. When a

factor has a negative influence on the robustness of Network A this

means the greater the value of the topological factor the less robust

Network A is.

Table 6

Significant covariates when Network A and Network B are interdependent and the effect of change of these covariates.

The sign indicates if the covariate has a positive or negative influence on the percentage of nodes considered functional

in Network A after random failures in Network B. The colour indicates the covariate coefficient value with the darker

the colour the further the value is from 0.
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4.1. General observations

The level or percentage of dependency Network A had on Network B

(Dp, A) was always significant (when included in the applicable re-

gression models) and has a great negative on the robustness of Network

A. Given that all initial failures occur in Network B, it seems intuitive

that the more dependent Network A is on Network B, the greater the

cascading effects will be in Network A. The mean intra-nodal degree of

dependent nodes in Network A (Dk, mean A) consistently has a negative

effect on the robustness of Network A. The structure of power-law

networks is described as containing hubs [8]. The greater the mean

nodal degree of dependent nodes, the more likely it is for the central

nodes of the hubs to be dependent on Network B. When one of the

central nodes of a hub fails, the network is more likely to fragment into

many clusters that contain only a small number of nodes. Therefore, the

higher the intra-nodal degree of dependent nodes in Network A, the

greater the chance that a central node of a hub fails, and thus the less

robust the network is when initial failures occur in Network B.

The mean nodal degree of Network A (k, mean A) is significant in

every regression model with a positive influence on the robustness of

Network A. This is expected as the greater the mean nodal degree, the

more edges or connections are present in the network. This increases

the chance of alternative pathways within the networks, increasing the

redundancy of the network.

4.2. Dependent coupled systems

Table 5 shows the results for the dependent coupled systems, that is

when Network A depends on Network B and Network B is independent.

The top section of Table 5 shows the regression results when only the

topological factors of Network A were included as covariates in the

regression model. The bottom section of Table 5 shows the results when

both the topological factors of Networks A and B were included in the

regression model.

4.2.1. Topological factors of Network A only

When Network A has a fixed partial dependency on Network B, the

first three columns in Table 5, the two most influential topological

factors are the mean nodal degree (k, mean A) and the mean intra-nodal

degree of dependent nodes (Dk, mean A). The mean nodal degree has a

positive influence on the robustness of Network A, whereas the mean

intra-nodal degree of dependent nodes has a negative influence. For

Network A fully dependent on Network B (100% dependency), as

shown in column four, it can be seen that the mean nodal degree (k,

mean A) still has a positive influence on the robustness of Network A,

but is less influential compared to when Network A is partially de-

pendent. The standard deviation of both nodal degree and path length

(k, std dev A and L, std dev A) have a weak negative influence on the

robustness of Network A for all fixed dependency types. The mean

clustering coefficient (Cc, mean A) has a weak positive influence on the

robustness of Network A.

When the level of dependency is randomly assigned to each of the

2000 coupled systems, the percentage of dependent nodes in Network A

(Dp, A) becomes the most influential factor, with a negative influence

on the robustness of the network. The mean nodal degree and mean

intra-nodal degree of dependent nodes (k, mean A and Dk, mean A)

consistently have a positive and negative influence, respectively, on the

robustness of Network A, however to a lesser extent than when the

dependency level is fixed.

4.2.2. Topological factors of Network A and Network B

The topological factors with the greatest influence when the topo-

logical factors of both networks are included in the regression model

are consistent of those when only the factors of Network A are con-

sidered. For fixed levels of dependency the mean nodal degree of

Network A (k, mean A) has the greatest positive influence on the ro-

bustness of Network A and the mean intra-nodal degree of dependent

nodes in Network A (Dk, mean A) has the greatest negative influence.

When the level of dependency is randomly assigned to each coupled

system again the percentage of dependency (Dp, A) becomes the most

influential factor, with a negative influence on the robustness of

Network A. The nodal degree standard deviation of Network A (k, std

dev A) is no longer significant, however path length standard deviation

of Network A (L, std dev A) is sometimes significant, mainly when the

initial percentage of node failures is 10% and 25%, again with a ne-

gative influence on the robustness of Network A.

When source nodes are not present in the model the nodal degree

standard deviation of Network B (k, std dev B) is significant with a weak

negative influence on the robustness of Network A. When source nodes

are present the nodal degree standard deviation of Network B (k, std

dev B) is sometimes significant, mostly with a weak positive influence

on the robustness of Network B. However, the inclusion of source nodes

within the coupled system does not change which topological factors

are the most influential on the robustness of the network.

4.3. Interdependent coupled systems

Table 6 shows the result for interdependent coupled systems, that is

when Network A and B both depend on each other. The top section of

Table 6 shows the regression results when only the topological factors

of Network A are included in the regression model. The bottom section

of Table 6 shows the results when the topological factors of both net-

works were included in the regression model.

4.3.1. Topological factors of Network A only

The first column in Table 6 shows the results when both Network A

and Network B had a fixed level of dependency at 50%. Similar to the

results for fixed levels of dependency in Table 5, the mean nodal degree

and mean intra-nodal degree of dependent nodes in Network A (k, mean

A and Dk, mean A) have the greatest influence on the robustness of

Network A. Again, the mean nodal degree (k, mean A) has a positive

influence and the mean intra-nodal degree of dependent nodes (Dk,

mean A) has a negative influence. The remaining columns in Table 6

show the results when the level of dependency was randomly assigned

to Networks A and B separately, with the level of dependency for

Network A (Dp, A) included in the regression model. Again, this now

becomes the most influential factor, with a negative influence on the

robustness of Network A. The influence of the mean nodal degree and

mean intra-nodal degree (k, mean A and Dk, mean A) are still influential

with a positive and negative influence, respectively.

For a fixed 50% dependency and random dependency when no

source nodes are present both the standard deviation of the nodal

Table 7

Reference for the covariate coefficient values represented in Tables 5 and 6.
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degree and path length (k, std dev A and L, std dev A) have a weak

negative influence on the robustness of Network A. When source nodes

are present the influence of both nodal degree standard deviation and

path length standard deviation (k, std dev A and L, std dev A) have a

weak influence, when significant, but now both have a positive influ-

ence on the robustness of Network A.

4.3.2. Topological factors of Network A and Network B

Comparing the bottom section on Table 6 with that of Table 5, the

results look similar, with the main difference being that now that

Network B depends on Network A the percentage of dependency Net-

work B has on Network A (Dp, B) is now included in the model, and is

significant with a negative influence on the robustness of Network A.

The mean intra-nodal degree of the dependent nodes in Network B (Dk,

mean B) is significant in some of the regression models, however the

influence it has is not as great as the mean intra-nodal degree of the

dependent nodes in Network A (Dk, mean A).

Nodal degree standard deviation of Network A (k, std dev A) is no

longer significant for any regression models. However, path length

standard deviation of Network A (L, std dev A) is still sometimes sig-

nificant, with a weak negative influence when significant. Nodal degree

standard deviation of Network B (k, std dev B) is often significant, with

a weak influence on the robustness of Network A. When source nodes

are not present in Network B this influence is negative, but becomes

positive when source nodes are present in Network B.

5. Discussion

In the analysis presented, the first order effects of a disruption

within a coupled system have been explored for different structures of

coupled systems. Across the various methods of forming dependencies

(both dependent and interdependent systems) as well as two different

methods of simulating failures, the majority of the results were con-

sistent.

The most influential factors across all the coupled network struc-

tures investigated are the mean nodal degree of Network A, the mean

intra-nodal degree of dependent nodes in Network A and, when ap-

plicable, the percentage of dependency Network A has on Network B. It

is worth noting that of the three most influential factors, two were in

relation to the dependency Network A has on Network B. However, this

analysis only covers scenarios where initial failures occurred in

Network B and so these results are to be expected.

The analysis which included the topological factors of Network B (in

addition to those of Network A) concluded some addition factors were

significant, but have only minor influence on the robustness of Network

A. This suggests that even for interdependent networks, the most im-

portant topological factors when characterising the robustness are those

relating to the network's own structure.

The most influential factor was the percentage of dependency

Network A had on Network B. This has a negative effect on the ro-

bustness of a network in relation to first order effects. All initial dis-

ruptions occurred within Network B, and so, the more nodes in Network

A depending on Network B, the more likely it is for failures to cascade

into Network A. Increased percentage of dependency increases the

number of paths available for the disruption to cascade from Network B

to Network A.

The mean nodal degree of Network A has a positive influence on the

network's robustness, however, the mean nodal degree of dependent

nodes in Network A has a negative influence. The positive influence of

the mean nodal degree can be attributed to the fact that the higher the

mean nodal degree a network has, the more intra-connections are

present, increasing the likelihood of available paths between the nodes,

and so, increasing the redundancy of the network. The negative influ-

ence of the mean intra-nodal degree of dependent nodes in Network A is

intuitive. Any dependent node in Network A fails if the node it depends

on fails. If the dependent nodes have a high intra-degree, when they fail

they have a greater potential to affect the robustness of Network A.

Some factors were significant over the different system structures,

but their effect on the robustness of the network changed. For example,

when source nodes are present in Network B, the standard deviation of

the nodal degree of Network A has a positive influence. However, when

neither network within the coupled system contains source nodes, the

standard deviation of Network A's nodal degree has a negative effect on

its robustness. The mean clustering coefficient of Network A also

changes from having a positive influence when source nodes not are

present in Network B, to a negative influence when source nodes are

present in the coupled system.

The change in the influence of the clustering coefficient may be due

to the different methods of assessing which nodes are functional for the

different coupled system structures. When source nodes are not present

within the system, the GCC method is used to assess which nodes are

functional after disruption. When this method is used the more con-

nections between a neighbourhood of nodes, the less likely the neigh-

bourhood is to fragment when disruptions occur, leaving a cluster with

a high population. However, when source nodes are present, a node is

only functional if there is a path available from any source node to that

node. If neighbourhoods of nodes are highly connected, they may be

reliant on only a small number of nodes in the neighbourhood to re-

ceive input from the source nodes. When these nodes fail, the other

members of the neighbourhood will no longer have a path from a

source node to itself, causing the entire neighbourhood to fail.

When comparing the results of the coupled system analysis to those

found by LaRocca and Guikema [23], some factors which were sig-

nificant for independent networks were no longer significant for de-

pendent networks. Other factors remained significant but the influence

of the factors on the robustness of the network changed. LaRocca and

Guikema [23] found that the mean clustering coefficient was the most

influential topological factor for independent networks when 10% and

25% of nodes initially failed. When 50% and 75% nodes initially failed

in an independent network the mean nodal degree was the most in-

fluential factor. However, when looking at the robustness of a network

in a coupled system, the influence of the mean nodal degree is always

more influential that the mean clustering coefficient. This suggests that

for first order disruptions the overall redundancy of the network is more

important than the local redundancy.

These results can be used alongside those of LaRocca and Guikema

[23] to provide some direction on which topological factors should be

given more focus on when planning improvements or developing new

networks. The influence of the significant topological factors shown by

LaRocca and Guikema [23] for failures within a network and those

presented in this paper for first order disruptions can be used together

to plan the structure of networks, such as infrastructure, so that it is

robust to disruptions that both directly affect it and, through de-

pendencies, indirectly affect it.

If a new network is being designed, attention should be given to the

level of dependency. Our results show that for each dependency type

we investigated, the higher the level of dependency, the less robust the

network is to first order disruptions. This suggests that the level of

dependency a network has should be low as possible.

The nodes which have dependencies should also be carefully con-

sidered. Our results show that the greater the nodal degree of the

components that are dependent on another network, the less robust the

network is to first order disruptions. This suggests that dependent nodes

should have the fewest number of intra-connection possible. However,

in reality, the components which have dependencies are guided by

functionality. In this case, the results can be considered when deciding

how to increase redundancy within the network. For example, in a

water supply network, the dependency on the power network is

through pumps within the network. The nodal degree of the dependent

pumps could be taken into consideration when deciding where to im-

prove redundancy, such as the addition of a back-up generator.

This extension of LaRocca and Guikema [23] to interdependent

C.A. Johnson, et al.



networks has covered a range of coupled network structures to provide

a generalised overview of the important topological factors for char-

acterising robustness of a dependent network, however, there are nu-

merous ways of modelling dependencies between networks, as well as

multiple failure scenarios. The results give a general overview of the

important topological factors for a network present in a coupled in-

frastructure system, where each dependent node has one and only one

dependency, concerning the first order effects of a random disruption.

The results presented in this paper highlight to networks, such as

infrastructure, that even though they depend on another infrastructure,

the most influential factors are primarily those attributed within their

own structure, or topology. Therefore, changes to their own structure

can help to increase their robustness to random failures in the depen-

dent networks. Although when applicable, the percentage of de-

pendency was the most influential topological factor, the dependency of

one infrastructure on another is defined by the need for the input (or

the utility) that the infrastructure produces and thus is not easy to

change to increase the robustness of the dependent infrastructure.

Therefore, the more important topological factors to consider when

designing or improving infrastructure are nodal degree and the intra-

nodal degree of the dependent networks. The topology of components

(or nodes) with dependencies on other networks are shown to be im-

portant and thus gives an indication that providing some redundancy

into the infrastructure, such as back-up generators for those dependent

on the power network, for example, could improve their own robust-

ness.

6. Conclusion

In conclusion we find that the most influential topological factors

associated with the robustness of coupled power-law networks with

exponential cut-off are those related to the dependency the network has

on the network in which the disruption originates. These factors are the

percentage of dependency and the mean nodal degree of the dependent

nodes in the coupled power-law network system. However, in networks

such as infrastructure the dependency an infrastructure has on another,

and which components need input from another infrastructure is de-

termined by the operational needs of the network and thus is difficult to

change. The mean nodal degree of the network has also shown to be

very influential on the robustness of the network, with the greater the

mean degree the more robust the network was to first order effects of a

disruption. Although a variety of dependency types have been explored,

the results remained consistent over the different coupled network

structures. The results provide a general overview of the most influ-

ential topological factors for a coupled network system and can be used

as a basis of which topological factors should be considered by, for

example, infrastructure owners or management when developing or

improving their infrastructure.
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Appendix A

Tables A.1–A.6 show the full beta regression results for the various regression analyses performed as part of the current paper.

Table A.1

Full beta regression results for fixed dependency types when topology of Network A only are included in the regression analysis.

10% initial failures 25% initial failures 50% initial failures

Dependency type Topology

measure

Co-efficient Std error p value Topology

measure

Co-efficient Std error p value Topology

measure

Co-efficient Std error p value

Network A fixed 10%

dependency

Network B

independent

Intercept 3.904 0.007 0.000 Intercept 2.991 0.007 0.000 Intercept 2.328 0.007 0.000

k, mean A 0.460 0.010 0.000 k, mean A 0.500 0.013 0.000 k, mean A 0.554 0.014 0.000

Bc, mean A −0.049 0.008 0.000 k, std dev A −0.030 0.007 0.000 k, std dev A −0.029 0.008 0.000

L, std dev A −0.041 0.011 0.000 Cc, mean A 0.036 0.009 0.000 Cc, mean A 0.034 0.010 0.000

Dk, mean A −0.491 0.006 0.000 L, std dev A −0.064 0.014 0.000 L, std dev A −0.066 0.016 0.000

Dk, mean A −0.562 0.006 0.000 Dk, mean A −0.652 0.007 0.000

Network A fixed 30%

dependency

Network B

independent

Intercept 2.712 0.005 0.000 Intercept 1.741 0.005 0.000 Intercept 0.964 0.006 0.000

k, mean A 0.581 0.013 0.000 k, mean A 0.634 0.012 0.000 k, mean A 0.769 0.015 0.000

K, std dev A −0.042 0.006 0.000 K, std dev A −0.037 0.006 0.000 K, std dev A −0.032 0.007 0.000

Cc, mean A 0.021 0.007 0.003 Cc, mean A 0.023 0.007 0.001 Cc, mean A 0.031 0.008 0.000

L, std dev A −0.052 0.012 0.000 L, std dev A −0.041 0.011 0.000 L, std dev A −0.031 0.013 0.020

Dk, mean A −0.509 0.009 0.000 Dk, mean A −0.576 0.008 0.000 Dk, mean A −0.729 0.010 0.000

Network A fixed 50%

dependency

Network B

independent

Intercept 2.168 0.004 0.000 Intercept 1.129 0.004 0.000 Intercept 0.232 0.005 0.000

k, mean A 0.607 0.013 0.000 k, mean A 0.689 0.012 0.000 k, mean A 0.894 0.015 0.000

K, std dev A −0.049 0.005 0.000 K, std dev A −0.046 0.004 0.000 K, std dev A −0.045 0.006 0.000

Cc, mean A 0.012 0.006 0.040 Cc, mean A 0.015 0.005 0.005 Cc, mean A 0.020 0.007 0.002

L, std dev A −0.048 0.010 0.000 L, std dev A −0.038 0.009 0.000 L, std dev A −0.026 0.011 0.015

Dk, mean A −0.498 0.011 0.000 Dk, mean A −0.581 0.010 0.000 Dk, mean A −0.790 0.012 0.000

Network A fixed 100%

dependency

Network B

independent

Intercept 1.396 0.003 0.000 Intercept 0.184 0.003 0.000 Intercept −1.176 0.004 0.000

k, mean A 0.158 0.006 0.000 k, mean A 0.178 0.006 0.000 k, mean A 0.233 0.007 0.000

K, std dev A −0.078 0.007 0.000 K, std dev A −0.086 0.007 0.000 K, std dev A −0.102 0.006 0.000

Bc, max A 0.017 0.007 0.013 Bc, max A 0.017 0.007 0.010 Bc, mean A 0.021 0.008 0.009

L, std dev A −0.067 0.006 0.000 Cc, mean A 0.012 0.004 0.005 Cc, mean A 0.037 0.006 0.000

L, std dev A −0.054 0.007 0.000 L, std dev A −0.049 0.010 0.000

Network A fixed 50%

dependency

Network B fixed 50%

dependency

Intercept 1.941 0.005 0.000 Intercept 0.932 0.005 0.000 Intercept 0.092 0.006 0.000

k, mean A 0.634 0.016 0.000 k, mean A 0.746 0.016 0.000 k, mean A 0.977 0.018 0.000

K, std dev A −0.061 0.006 0.000 K, std dev A −0.053 0.006 0.000 K, std dev A −0.051 0.007 0.000

Cc, mean A 0.019 0.007 0.006 Cc, mean A 0.027 0.007 0.000 Cc, mean A 0.036 0.008 0.000

L, std dev A −0.081 0.012 0.000 L, std dev A −0.058 0.012 0.000 L, std dev A −0.026 0.013 0.045

Dk, mean A −0.528 0.013 0.000 Dk, mean A −0.641 0.013 0.000 Dk, mean A −0.887 0.015 0.000
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Table A.2

Full beta regression results for fixed dependency types when the topology of both Network A and Network B are included in the regression analysis.

10% initial failures 25% initial failures 50% initial failures

Dependency type Topology

measure

Co-efficient Std error p value Topology

measure

Co-efficient Std error p value Topology

measure

Co-efficient Std error p value

Network A fixed 10%

dependency

Network B

independent

Intercept 3.904 0.007 0.000 Intercept 2.991 0.007 0.000 Intercept 2.328 0.007 0.000

k, mean A 0.467 0.011 0.000 k, mean A 0.492 0.013 0.000 k, mean A 0.547 0.014 0.000

L, std dev A −0.065 0.012 0.000 Cc, mean A 0.038 0.009 0.000 Cc, mean A 0.037 0.009 0.000

Dk, mean A −0.491 0.006 0.000 L, std dev A −0.053 0.013 0.000 L, std dev A −0.056 0.014 0.000

k, std dev B −0.017 0.008 0.029 Dk, mean A −0.563 0.006 0.000 Dk, mean A −0.652 0.007 0.000

Bc, mean B −0.032 0.010 0.001 k, std dev B −0.026 0.007 0.000 k, std dev B −0.025 0.007 0.000

Network A fixed 30%

dependency

Network B

independent

Intercept 2.712 0.005 0.000 Intercept 1.741 0.005 0.000 Intercept 0.964 0.006 0.000

k, mean A 0.568 0.012 0.000 k, mean A 0.622 0.011 0.000 k, mean A 0.746 0.011 0.000

L, std dev A −0.034 0.010 0.001 L, std dev A −0.024 0.009 0.011 Dk, mean A −0.729 0.010 0.000

Dk, mean A −0.509 0.009 0.000 Dk, mean A −0.576 0.008 0.000 k, std dev B −0.025 0.006 0.000

k, std dev B −0.037 0.005 0.000 k, std dev B −0.032 0.005 0.000 Cc, mean B 0.044 0.006 0.000

Cc, mean B 0.030 0.006 0.000 Cc, mean B 0.034 0.006 0.000

Network A fixed 50%

dependency

Network B

independent

Intercept 2.168 0.004 0.000 Intercept 1.129 0.004 0.000 Intercept 0.232 0.005 0.000

k, mean A 0.593 0.013 0.000 k, mean A 0.678 0.012 0.000 k, mean A 0.874 0.012 0.000

L, std dev A −0.030 0.008 0.000 L, std dev A −0.023 0.007 0.001 Dk, mean A −0.789 0.012 0.000

Dk, mean A −0.497 0.011 0.000 Dk, mean A −0.580 0.010 0.000 k, std dev B −0.039 0.005 0.000

k, std dev B −0.043 0.004 0.000 k, std dev B −0.041 0.004 0.000 Cc, mean B 0.029 0.005 0.000

Cc, mean B 0.019 0.005 0.000 Cc, mean B 0.019 0.005 0.000

Network A fixed 100%

dependency

Network B

independent

Intercept 1.396 0.003 0.000 Intercept 0.184 0.003 0.000 Intercept −1.176 0.004 0.000

k, mean A 0.146 0.005 0.000 k, mean A 0.162 0.006 0.000 k, mean A 0.210 0.004 0.000

L, std dev A −0.029 0.006 0.000 L, std dev A −0.017 0.006 0.007 k, std dev B −0.078 0.004 0.000

k, std dev B −0.058 0.004 0.000 k, std dev B −0.064 0.004 0.000 Cc, mean B 0.044 0.004 0.000

L, std dev B −0.026 0.006 0.000 Cc, mean B 0.016 0.004 0.000

L, std dev B −0.020 0.006 0.002

Network A fixed 50%

dependency

Network B fixed 50%

dependency

Intercept 1.941 0.005 0.000 Intercept 0.932 0.005 0.000 Intercept 0.092 0.006 0.000

k, mean A 0.659 0.018 0.000 k, mean A 0.758 0.017 0.000 k, mean A 0.958 0.015 0.000

L, std dev A −0.047 0.010 0.000 L, std dev A −0.039 0.010 0.000 Cc, mean A 0.024 0.011 0.022

Dk, mean A −0.529 0.013 0.000 Dk, mean A −0.639 0.013 0.000 Dk, mean A −0.886 0.015 0.000

k, std dev B −0.059 0.006 0.000 k, std dev B −0.046 0.005 0.000 k, std dev B −0.044 0.006 0.000

Cc, mean B 0.021 0.007 0.003 Cc, mean B 0.033 0.006 0.000 Cc, mean B 0.023 0.011 0.033

L, std dev B −0.030 0.011 0.007 Dk, mean B −0.030 0.011 0.006

Dk, mean B −0.032 0.011 0.005

Table A.3

Full beta regression results for when Network A has random dependency types, Network B is independent and the topology of Network A only is included in the

regression analysis. .

10% initial failures 25% initial failures 50% initial failures

Dependency group Topology

measure

Co-efficient Std error p value Topology

measure

Co-efficient Std error p value Topology

measure

Co-efficient Std error p value

Network A random

dependency

Network B

independent

Intercept 2.347 0.009 0.000 Intercept 1.319 0.009 0.000 Intercept 0.397 0.010 0.000

k, mean A 0.128 0.013 0.000 k, mean A 0.147 0.013 0.000 k, mean A 0.264 0.011 0.000

k, std dev A −0.035 0.009 0.000 k, std dev A −0.037 0.010 0.000 k, std dev A −0.029 0.010 0.002

L, std dev A −0.039 0.013 0.003 L, std dev A −0.040 0.014 0.005 Dp, A −1.064 0.011 0.000

Dp, A −0.693 0.008 0.000 Dp, A −0.814 0.009 0.000 Dk, mean A −0.453 0.020 0.000

Dk, mean A −0.037 0.007 0.000 Dk, mean A −0.057 0.007 0.000

Network A random

dependency

Network B

independent with 2%

source nodes

Intercept 2.430 0.008 0.000 Intercept 1.312 0.008 0.000 Intercept 0.178 0.010 0.000

k, mean A 0.230 0.013 0.000 k, mean A 0.277 0.016 0.000 k, mean A 0.332 0.023 0.000

k, std dev A 0.105 0.015 0.000 k, std dev A 0.238 0.017 0.000 k, std dev A 0.495 0.026 0.000

Bc, mean A 0.025 0.010 0.015 Bc, mean A 0.052 0.016 0.001 Bc, mean A 0.076 0.024 0.001

Bc, max A −0.061 0.016 0.000 Bc, max A −0.134 0.018 0.000 Bc, max A −0.246 0.022 0.000

Dp, A −0.576 0.008 0.000 Cc, mean A −0.042 0.013 0.002 Cc, mean A −0.102 0.017 0.000

Dk, mean A −0.162 0.011 0.000 Dp, A −0.618 0.008 0.000 L, std dev A 0.083 0.027 0.002

Dk, mean A −0.211 0.012 0.000 Dp, A −0.705 0.010 0.000

Dk, mean A −0.300 0.016 0.000

Network A random

dependency

Network B

independent with 5%

source nods

Intercept 2.512 0.008 0.000 Intercept 1.446 0.008 0.000 Intercept 0.431 0.009 0.000

k, mean A 0.214 0.011 0.000 k, mean A 0.254 0.012 0.000 k, mean A 0.353 0.014 0.000

Dp, A −0.622 0.008 0.000 k, std dev A 0.016 0.007 0.033 k, std dev A 0.143 0.019 0.000

Dk, mean A −0.143 0.012 0.000 Dp, A −0.695 0.008 0.000 Bc, max A −0.066 0.019 0.001

Dk, mean A −0.169 0.012 0.000 Cc, mean A −0.034 0.010 0.001

Dp, A −0.832 0.009 0.000

Dk, mean A −0.251 0.013 0.000

Network A random

dependency

Network B

independent with 10%

source nodes

Intercept 2.533 0.009 0.000 Intercept 1.482 0.008 0.000 Intercept 0.516 0.009 0.000

k, mean A 0.166 0.011 0.000 k, mean A 0.191 0.011 0.000 k, mean A 0.318 0.013 0.000

k, std dev A −0.019 0.007 0.010 Dp, A −0.687 0.008 0.000 Dp, A −0.843 0.010 0.000

Dp, A −0.616 0.008 0.000 Dk, mean A −0.125 0.011 0.000 Dk, mean A −0.258 0.014 0.000

Dk, mean A −0.108 0.011 0.000
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Table A.4

Full beta regression results for when Networks A and B have random dependency type and the topology of Network A only is included in the regression analysis.

10% initial failures 25% initial failures 50% initial failures

Dependency group Topology

measure

Co-efficient Std error p value Topology

measure

Co-efficient Std error p value Topology

measure

Co-efficient Std error p value

Network A random

dependency

Network B random

dependency

Intercept 1.969 0.012 0.000 Intercept 0.994 0.011 0.000 Intercept 0.148 0.011 0.000

k, mean A 0.384 0.022 0.000 k, mean A 0.453 0.022 0.000 k, mean A 0.548 0.017 0.000

k, std dev A −0.072 0.012 0.000 k, std dev A −0.071 0.012 0.000 k, std dev A −0.054 0.011 0.000

L, std dev A −0.096 0.018 0.000 L, std dev A −0.078 0.018 0.000 Cc, mean A 0.040 0.011 0.000

Dp, A −0.935 0.012 0.000 Dp, A −1.111 0.012 0.000 Dp, A −1.369 0.013 0.000

Dk, mean A −0.284 0.019 0.000 Dk, mean A −0.338 0.018 0.000 Dk, mean A −0.475 0.017 0.000

Network A random

dependency

Network B random

dependency with 2%

source nodes

Intercept 2.043 0.013 0.000 Intercept 0.952 0.012 0.000 Intercept −0.164 0.013 0.000

k, mean A 0.254 0.024 0.000 k, mean A 0.338 0.026 0.000 k, mean A 0.343 0.032 0.000

k, std dev A 0.111 0.021 0.000 k, std dev A 0.260 0.026 0.000 k, std dev A 0.571 0.036 0.000

Bc, mean A 0.046 0.014 0.001 Bc, mean A 0.072 0.023 0.001 Bc, mean A 0.078 0.032 0.014

Bc, max A −0.075 0.023 0.001 Bc, max A −0.161 0.026 0.000 Bc, max A −0.283 0.030 0.000

Dp, A −0.768 0.012 0.000 Cc, mean A −0.045 0.019 0.020 Cc, mean A −0.125 0.023 0.000

Dk, mean A −0.219 0.023 0.000 Dp, A −0.874 0.013 0.000 L, std dev A 0.127 0.037 0.001

Dk, mean A −0.285 0.022 0.000 Dp, A −1.005 0.015 0.000

Dk, mean A −0.317 0.023 0.000

Network A random

dependency

Network B random

dependency with 5%

source nodes

Intercept 2.054 0.013 0.000 Intercept 1.038 0.012 0.000 Intercept 0.077 0.012 0.000

k, mean A 0.228 0.018 0.000 k, mean A 0.309 0.019 0.000 k, mean A 0.499 0.020 0.000

Bc, max A 0.026 0.011 0.023 Bc, max A 0.038 0.012 0.002 k, std dev A 0.122 0.012 0.000

Cc, mean A 0.044 0.011 0.000 Cc, mean A 0.047 0.012 0.000 Dp, A −1.090 0.014 0.000

Dp, A −0.787 0.012 0.000 Dp, A −0.919 0.013 0.000 Dk, mean A −0.359 0.021 0.000

Dk, mean A −0.153 0.018 0.000 Dk, mean A −0.202 0.019 0.000

Network A random

dependency

Network B random

dependency with 10%

source nodes

Intercept 2.139 0.012 0.000 Intercept 1.148 0.011 0.000 Intercept 0.254 0.011 0.000

k, mean A 0.235 0.016 0.000 k, mean A 0.394 0.019 0.000 k, mean A 0.536 0.018 0.000

Bc, mean A −0.050 0.012 0.000 Bc, mean A −0.042 0.012 0.001 k, std dev A 0.037 0.011 0.001

Dp, A −0.810 0.012 0.000 Dp, A −0.939 0.012 0.000 Dp, A −1.143 0.013 0.000

Dk, mean A −0.159 0.014 0.000 Dk, mean A −0.339 0.020 0.000 Dk, mean A −0.488 0.020 0.000

Table A.5

Full beta regression results for when Network A has random dependency types, Network B is independent and the topology of Network A and Network B is included

in the regression analysis.

10% initial failures 25% initial failures 50% initial failures

Dependency group Topology

measure

Co-efficient Std error p value Topology

measure

Co-efficient Std error p value Topology

measure

Co-efficient Std error p value

Network A random

dependency

Network B

independent

Intercept 2.347 0.009 0.000 Intercept 1.319 0.009 0.000 Intercept 0.397 0.010 0.000

k, mean A 0.122 0.012 0.000 k, mean A 0.142 0.013 0.000 k, mean A 0.264 0.011 0.000

L, std dev A −0.031 0.012 0.012 L, std dev A −0.032 0.013 0.017 Dp, A −1.064 0.011 0.000

Dp, A −0.693 0.008 0.000 Dp, A −0.814 0.009 0.000 Dk, mean A −0.453 0.020 0.000

Dk, mean A −0.037 0.007 0.000 Dk, mean A −0.057 0.007 0.000 k, std dev B −0.032 0.010 0.001

k, std dev B −0.035 0.008 0.000 k, std dev B −0.036 0.009 0.000

Network A random

dependency

Network B

independent with 2%

source nodes

Intercept 2.431 0.008 0.000 Intercept 1.312 0.008 0.000 Intercept 0.179 0.010 0.000

k, mean A 0.221 0.016 0.000 k, mean A 0.240 0.017 0.000 k, mean A 0.306 0.023 0.000

Bc, max A −0.061 0.015 0.000 Bc, max A −0.122 0.017 0.000 Bc, max A −0.210 0.021 0.000

L, std dev A −0.050 0.015 0.001 L, std dev A −0.077 0.017 0.000 L, std dev A −0.122 0.021 0.000

Dp, A −0.575 0.008 0.000 Dp, A −0.615 0.008 0.000 Dp, A −0.701 0.010 0.000

Dk, mean A −0.162 0.011 0.000 Dk, mean A −0.210 0.012 0.000 Dk, mean A −0.295 0.016 0.000

k, std dev B 0.126 0.016 0.000 k, std dev B 0.234 0.018 0.000 k, std dev B 0.458 0.024 0.000

L, std dev B 0.084 0.016 0.000 Bc, mean B 0.058 0.018 0.001 Bc, mean B 0.089 0.025 0.000

L, std dev B 0.121 0.022 0.000 Cc, mean B −0.052 0.016 0.001

Sk, B 0.018 0.009 0.034 L, std dev B 0.228 0.027 0.000

Sk, B 0.037 0.010 0.000

Network A random

dependency

Network B

independent with 5%

source nodes

Intercept 2.512 0.008 0.000 Intercept 1.446 0.008 0.000 Intercept 0.431 0.009 0.000

k, mean A 0.214 0.011 0.000 k, mean A 0.254 0.012 0.000 k, mean A 0.324 0.018 0.000

Dp, A −0.622 0.008 0.000 Dp, A −0.695 0.008 0.000 Bc, max A −0.061 0.017 0.000

Dk, mean A −0.143 0.012 0.000 Dk, mean A −0.169 0.012 0.000 L, std dev A −0.048 0.017 0.004

k, std dev B 0.016 0.007 0.024 Dp, A −0.832 0.009 0.000

Dk, mean A −0.250 0.013 0.000

k, std dev B 0.149 0.018 0.000

L, std dev B 0.088 0.018 0.000

Network A random

dependency

Network B

independent with 10%

source nodes

Intercept 2.534 0.008 0.000 Intercept 1.482 0.008 0.000 Intercept 0.516 0.009 0.000

k, mean A 0.167 0.011 0.000 k, mean A 0.191 0.011 0.000 k, mean A 0.296 0.015 0.000

Dp, A −0.616 0.008 0.000 Dp, A −0.687 0.008 0.000 Dp, A −0.842 0.010 0.000

Dk, mean A −0.109 0.011 0.000 Dk, mean A −0.125 0.011 0.000 Dk, mean A −0.256 0.013 0.000

k, std dev B −0.021 0.007 0.005 Bc, mean B 0.039 0.014 0.005

Cc, mean B 0.037 0.012 0.002

C.A. Johnson, et al.



References

[1] Albert R, Albert I, Nakarado GL. Structural vulnerability of the North American

power grid. Phys Rev E 2004;69(2):025103.

[2] Albert R, Barabási A-L. Statistical mechanics of complex networks. Rev Mod Phys

2002;74(1):47.

[3] Alipour Z, Monfared MAS, Zio E. Comparing topological and reliability-based vul-

nerability analysis of Iran power transmission network. Proc Inst Mech Eng Part O: J

Risk Reliab 2014;228(2):139–51.

[4] Barabási A-L, Albert R. Emergence of scaling in random networks. Science

1999;286:509–12.

[5] Barabási A-L, Albert R, Jeong H. Mean-field theory for scale-free random networks.

Physica A 1999;272(1–2):173–87.

[6] Broido AD, Clauset A. Scale-free networks are rare. Nat Commun 2019;10(1).

[7] Buldyrev SV, Parshani R, Paul G, Stanley HE, Havlin S. Catastrophic cascade of

failures in interdependent networks. Nature 2010;464(7291):1025–8.

[8] Buldyrev SV, Shere NW, Cwilich GA. Interdependent networks with identical de-

grees of mutually dependent nodes. Phys Rev E 2011;83(1):016112.

[9] Chai WK, Kyritsis V, Katsaros KV, Pavlou G. Resilience of interdependent commu-

nication and power distribution networks against cascading failures. Proceedings of

the IFIP Networking Conference (IFIP Networking) and Workshops, 2016. IEEE;

2016.

[10] Cheng Z, Cao J. Cascade of failures in interdependent networks coupled by different

type networks. Physica A 2015;430:193–200.

[11] Cribari-Neto F, Zeileis A. Beta regression in R. J Stat Softw 2010;34:24.

[12] Csardi G, Nepusz T. The igraph software package for complex network research. Int

J Complex Syst 2006;1695(5):1–9.

[13] Dueñas-Osorio L, Craig JI, Goodno BJ. Seismic response of critical interdependent

networks. Earthq Eng Struct Dyn 2007;36(2):285–306.

[14] Dueñas-Osorio L, Vemuru SM. Cascading failures in complex infrastructure systems.

Struct Saf 2009;31(2):157–67.

[15] Fang J, Zeng Q, Ai X, Chen Z, Wen J. Dynamic optimal energy flow in the integrated

natural gas and electrical power systems. IEEE Trans Sustain Energy

2017;9(1):188–98.

[16] Ferrari S, Cribari-Neto F. Beta regression for modelling rates and proportions. J

Appl Stat 2004;31(7):799–815.

[17] Fu G, Dawson R, Khoury M, Bullock S. Interdependent networks: vulnerability

analysis and strategies to limit cascading failure. Eur Phys J B 2014;87(7):148.

[18] Gao J, Buldyrev SV, Havlin S, Stanley HE. Robustness of a network of networks.

Phys Rev Lett 2011;107(19):195701.

[19] Dong G, Tian L, Zhou D, Du R, Xiao J, Stanley HE. Robustness of n interdependent

networks with partial support-dependence relationship. EPL (Europhys Lett)

2013;102(6):68004.

[20] Jiang J, Li W, Cai X. The effect of interdependence on the percolation of inter-

dependent networks. Physica A 2014;410:573–81.

[21] Jolly MD, Lothes AD, Bryson LS, Ormsbee L. Research database of water distribu-

tion system models. J Water Resour Plann Manag 2013;140(4):410–6.

[22] Korkali M, Veneman JG, Tivnan BF, Bagrow JP, Hines PD. Reducing cascading

failure risk by increasing infrastructure network interdependence. Sci Rep

2017;7(1):44499.

[23] LaRocca S, Guikema SD. Characterizing and predicting the robustness of power-law

networks. Reliab Eng Syst Saf 2015;133:157–66.

[24] LaRocca S, Johansson J, Hassel H, Guikema S. Topological performance measures as

surrogates for physical flow models for risk and vulnerability analysis for electric

power systems. Risk Anal 2015;35(4):608–23.

[25] Lippai I. Colorado springs utilities case study: water system Calibration/ optimi-

zation. Proceedings of the Pipeline Division Specialty Conference. 2005.

[26] Mossa S, Barthélémy M, Stanley HE, Nunes Amaral LA. Truncation of power law

behavior in “Scale-Free” network models due to information filtering. Phys Rev Lett

2002;88(13):138701.

[27] Newman M. Networks: an introduction. Oxford University Press; 2010.

[28] Ostfeld A, Uber JG, Salomons E, Berry JW, Hart WE, Phillips CA, Watson JP, Dorini

G, Jonkergouw P, Kapelan Z, di Pierro F, Khul S-T, Savic D, Eliades D, Polycarpou

Table A.6

Full beta regression results for when Networks A and B have random dependency types and the topology of Network A and Network B is included in the regression

analysis.

10% initial failures 25% initial failures 50% initial failures

Dependency group Topology

measure

Co-efficient Std error p value Topology

measure
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Dk, mean B 0.023 0.010 0.024 Sk, B 0.058 0.013 0.000

Sk, B 0.032 0.010 0.002

Network A random

dependency

Network B random

dependency with 5%

source nodes

Intercept 2.141 0.010 0.000 Intercept 1.090 0.010 0.000 Intercept 0.098 0.011 0.000
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Dp, B −0.293 0.010 0.000 k, std dev B 0.175 0.024 0.000

L, std dev B 0.121 0.024 0.000
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Network A random

dependency

Network B random

dependency with 10%

source nodes
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k, mean A 0.234 0.012 0.000 k, mean A 0.422 0.016 0.000 k, mean A 0.537 0.020 0.000
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Dk, mean A −0.164 0.010 0.000 Dk, mean A −0.392 0.016 0.000 Dk, mean A −0.531 0.018 0.000

Bc, mean B −0.042 0.009 0.000 Bc, mean B −0.031 0.010 0.002 k, std dev B 0.081 0.017 0.000

Dp, B −0.313 0.008 0.000 Dp, B −0.277 0.009 0.000 Bc, mean B −0.063 0.020 0.001

Dk, mean B 0.021 0.009 0.024 L, std dev B 0.082 0.026 0.001

Dp, B −0.215 0.011 0.000
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Figure 1: Risk curve resulting from plotting the consequences against the cumulative likelihood. 
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Figure 2: Example of an event tree. 
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Figure 3: Distribution network of Micropolis water system. 
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Table 1: Pipe material adjustment factor, K, used to calculate failure rate of water pipes. 
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Figure 4: Results of the Monte Carlo simulation of 100,000 iterations showing the frequency of the number of terminal nodes 
had insufficient pressure on a log scale. The fill represents the number of pipes which failed due to the earthquake. 



Figure 5: Cumulative frequency of terminal nodes with insufficient pressure due to an 
earthquake of magnitude 6 on the MMI scale, with a log scale on the y-axis. 
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