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Summary

The aim of this thesis is to provide contributions to the assessment of
critical infrastructure risk. In particular, the thesis gains insights as to
how critical infrastructure is modelled, the role of such models in risk
assessment and how to assess risks related to critical infrastructure.

Various governments and scientific articles have proposed a variety of
definitions of critical infrastructure. Some countries define critical
infrastructure in terms of the service provided by the infrastructure.
Other countries, however, define critical infrastructure in the context of
societal function. In such cases, critical infrastructure comprises that
which is needed to ensure a vital societal function is met. Broadly
speaking, critical infrastructure is infrastructure that provides a service
that is essential to some society, i.e. a country, region or organisation.

Within modern society, many critical infrastructures are reliant on each
other in order to perform effectively. Such interactions between the
infrastructures are referred to as dependencies. The term ‘interdependent
systems’ is used to refer to a group of infrastructures that interact or
depend on each other. When modelling critical infrastructure with the
aim of assessing the impacts of disruptions, it is important to account for
the dependencies between different infrastructures and how these can
cause the effects to cascade throughout the interdependent system.

Network models are commonly used to represent infrastructure systems
when simulating the effects of disruptions to infrastructure systems. A
network consists of nodes and edges. When modelling infrastructure
systems, the nodes represent important components within the system,
and the edges, the connections or interactions between such components.
Improving methods of assessing infrastructure that contain network
models allows for a better assessment of the disruptions of various events
that can have negative effects on infrastructure systems and, thus, the
associated risk.



Paper I reviews different methods that are used to model
interdependencies between different systems, where the systems are
represented as networks. The different methods are summarised into
categories, based on the structural form of the model; previously,
interdependencies were categorised based on the functionality of the
dependency. The suggested categorisation of dependencies is twofold.
The first is whether the network has full or partial dependency on
another; that is, do all nodes in the network have dependencies, or does
only a subset have dependencies? The second is whether a node depends
on one and only one or multiple nodes in another network. The categories
suggested can be referred to when developing models for a simpler way
to provide information on how to model the dependencies than the
functional categorisations previously suggested.

Paper II investigates the topological properties of a network within an
interdependent system that can be used to characterise the network’s
robustness when an event causes an initial disruption within a network it
depends upon. A variety of network sizes and levels of dependencies
were explored to provide results that are generalisable to interdependent
network systems. The results suggest the important topological
properties that should be considered when developing new infrastructure
systems or updating existing systems to improve the robustness of the
infrastructure against the cascading effects of a disruption within an
interdependent system. The topological properties found to be most
important are those pertaining to the level of network redundancy.

Although it is important to account for interdependencies when
modelling infrastructure, it is equally important that the initiating event
be modelled in a way that provides sufficient representation of the event.
Paper III suggests an improved method of simulating spatial failures.
Current methods simulate spatial failures by failing all components of a
network within a specified area, with all components outside the affected
area classed as functional. The method suggested in Paper III instead
assigns a probability of failure to each component that is dependent on
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the component’s position in relation to the hazard. This provides a more
realistic method of simulating spatial failures that is still relatively simple
to simulate. Within the paper, the method was applied to independent
network systems only, but it can easily be adapted for simulating spatial
failures to interdependent systems.

Paper IV develops a model of the dependent electric power and water
system of St. Kitts. The aim of the paper is to show that the development
of such a model is possible in a poor-data setting context. After
developing the model, simulations of tropical storms were used to cause
disruptions to the dependent system. These simulations supplied
illustrations of how the model can be used to perform analyses that
provide useful information when considering improvements to the
system. Such analyses included identifying which components of the
electric power system are most important to the water system and where
best to incorporate redundancy measures such as back-up generators
within the water system.

Paper V explores the feasibility of Probabilistic Risk Analysis (PRA) of
infrastructure systems. Although PRA aims to provide a complete
description of the associated risk, it is not a method commonly used to
assess infrastructure. Due to the complexity of modern infrastructure, to
carry out a PRA of such systems requires a substantial amount of both
time and data. Vast amounts of data can be collected in relation to
infrastructure systems, but deciding which data is relevant when
performing PRA can also add to the time taken to assess the system. The
shortcomings of non-PRA methods currently used to assess
infrastructure performance were also discussed. Common shortcomings
of non-PRA methods included not considering the likelihood of the
scenarios assessed and only considering a subset of the possible
scenarios that can affect infrastructure systems. This provides
information on how to extend current methods in order to improve
critical infrastructure risk analysis.
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Introduction

1 Introduction

1.1 Background

With advancements in technology, societies, especially in developed
countries, become increasingly reliant on critical infrastructure. It is only
when something goes wrong that we become aware of how much critical
infrastructure is a part of everyday life and how a significant disruption
can affect the normal rhythm of a region. These disruptions can be
caused by both internal and external events. Examples can be seen in
infrastructure such as electric power systems, where outages are caused
either by internal disruptions such as the tripping of transmission lines in
Italy in 2003 (Corsi and Sabelli 2004) or by external events like the 1998
ice storm in North America (Chang et al. 2007). The recent occurrence
of events that have the potential to cause large-scale disruptions has led
to an increased focus on how to analyse infrastructure to aid in preparing
for and protecting against such events.

Although critical infrastructure is a commonly used term, there are many
definitions of what exactly is meant by critical infrastructure and which
infrastructures are considered to be critical. Table 1 contains some
definitions, demonstrating the range of variability in how critical
infrastructure is defined. Depending on whether the definition is
proposed by a government or within a scientific article, there are some
differences in the focus of the definition. This is also true when
considering the background or focus of the article defining critical
infrastructure. A basic high-level definition of critical infrastructure
which encompasses the many definitions available is an infrastructure
that provides a service that is essential to some society, i.e. a country,
region or organisation.
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Table 1: Definitions of critical infrastructure from various sources.

“Infrastructure is the basic systems and Cambridge Dictionary
services, such as transport and power Dictionary, Walter
supplies, that a country or organisation (2008, p. 741)

uses in order to work effectively.”

“Critical infrastructure is the systems, Public Safety and Government
assets, facilities and networks that provide | Emergency

essential services and are necessary for the = Preparedness

national security, prosperity and health Canada (2014, p.

and safety of the nation.” 2)

“Critical infrastructure are the facilities NOU (2006:6, p. Government
and systems that are absolutely necessary | 32)

to maintain the critical functions of

society which in turn cover the basic

needs of society and the sense of security

of the population.”!
“Critical infrastructure are the Macaulay (2008, Literature
organisations delivering goods and p- 8)

services in an economy that is
fundamental to the functioning of society
and the economy.”

“Critical infrastructure are large, spatially- | Johansson and Literature
distributed systems with high degrees of Hassel (2010, p.

complexity.” 1335)

“Critical infrastructure are defined by Comes and Van de | Literature
their role in society: they support the Walle (2014, p.

services that are vital for life and 190)

sustainable economic growth.”

In Norway, critical infrastructure is defined in the scope of vital societal
function. The definition is seen in the third row of Table 1 as given by
NOU (2006:6). The Norwegian Directorate for Civil Protection
(Direktoratet for Samfunnssikkerhet og Beredskap, DSB) defines vital
societal function as “functions that society could not cope without for
seven days or less without this threatening the safety and/or security of

! This is a translation of the definition given in Norwegian by NOU (2006:6, p. 32).
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the population” (DSB 2017). To put this definition into context, consider
the following example. If having access to food is classified as a function
that society could not cope without for seven days, the infrastructure
needed in order to have access to food includes:

e transportation: in order to travel to where the food is, as well as
the ability for food to be transported throughout the society,

e clectricity: in order to both store and cook the food,

e communication: in order to receive information on where is
food available.

These are just a few examples of critical infrastructure needed for society
to have access to food. Others, such as financial institutions’ ability to
purchase food, could also be included, depending on the situation and
the interpretation of the definition. This view enables thought of how
disruptions to infrastructure may affect society but also allows the
infrastructure defined as critical to change, depending on the situation.

When using critical infrastructure definitions that focus more on physical
systems, deciding which infrastructures are critical also differs from
country to country. Critical Five is an international forum, comprising
members from government agencies from five countries that are
responsible for critical infrastructure protection and resilience. The five
countries are Australia, Canada, New Zealand, USA and UK. In 2014,
they published a report entitled, “Forging a Common Understanding for
Critical Infrastructure: A Shared Understanding”, providing a
comparison of which infrastructure is categorised as critical within the
five different countries. They found that all five countries categorised the
following infrastructure as critical: energy systems, communication
systems, water systems (including wastewater and storm water systems),
transportation and healthcare. Other infrastructure considered by some
of the five countries to be critical includes banking, education, food and
agriculture and government facilities (Public Safety and Emergency
Preparedness Canada 2014).
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After the importance of critical infrastructure became more recognised
in governmental policies and the literature of how to analyse and protect
infrastructure became more widespread, the importance of the
interdependencies between systems then emerged as an important aspect
to be considered. Interdependence is often used to describe a group of
infrastructure systems in which interactions are needed between the
systems for all to function. Rinaldi et al. (2001) state that, for systems to
be interdependent, the relationship between the systems needs to be
bidirectional. This means that any two systems need to directly depend
on each other to be considered interdependent.

Many authors have suggested different ways to categorise infrastructure
interdependencies, some of which have been compared by Ouyang
(2014, Table 1). The most commonly referred to categorisation is that
proposed by Rinaldi et al. (2001), who suggested four types of
interdependencies: physical, cyber, geographic and logical. Physical
interdependencies are those where an infrastructure depends on some
physical input from another. This can be electrical power, water or fuel.
Cyber interdependencies cover the input of data or information from one
system to another. Geographic interdependencies account for the
physical proximity of infrastructures such that, if a disruption occurs
within a given region, the systems, or parts of the systems within the
area, will all be affected. The final category, logical, covers all other
interdependencies that cannot be categorised as one of the previous three
types and includes legislation, policy and human behaviour.

A simple example of how interdependencies can exacerbate the effects
of a disruption can be seen from when a blackout occurred in the Italian
electric power system in 2003. As mentioned previously, the tripping of
transmission lines resulted in the separation of Italy from the Continent
(Corsi and Sabelli 2004). This resulted in a loss of power to areas of the
Internet communication network. The loss of communication caused
further failures within Italian power stations, increasing the disruption of
the initial outage (Buldyrev et al. 2010). If interdependencies, such as the
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example given here, are not taken into account, the effects of the
disruptions can be underestimated.

The importance of critical infrastructure within society, as well as the
costs associated with downtime and major repairs for the owners and
operators, highlights why risk assessment of the systems is crucial.
Understanding how different scenarios, whether they are natural
disasters, intentional disruptions or cascading effects due to
dependencies, can help the operators of such systems decide how best to
protect against and prepare for interruptions within the infrastructure.

Probabilistic Risk Analysis (PRA) was developed in the 1970s to assess
infrastructure systems, specifically nuclear power plant systems. The
aim of PRA is to present a full description of the assessed system’s risk,
with results of all possible scenarios presented in a way that allows for
easy comparison. However, the method is currently not commonly used
to assess infrastructure systems, with more recently developed methods
being preferred. With modern infrastructure systems becoming
increasingly complex due to increased demand from society and
advances in technology, PRA also becomes more complex. Even for
relatively small infrastructure systems, considerable amounts of data and
information are required for PRA to be performed, which may contribute
to PRA’s lack of popularity for assessing infrastructure systems.

There are many, more recent non-PRA, methods of modelling critical
infrastructure systems, including network-based, inoperability input-
output and agent-based models (Ouyang 2014). Such methods focus on
the performance of the system given the occurrence of an event and can
be extended to include interdependencies between infrastructure
systems. The use of such models within risk assessment can be useful
when planning new infrastructure or upgrades to existing systems. They
provide information to those making decisions on how to better protect
infrastructure from disruptive events. Therefore, it is important that the
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results of such models adequately communicate the risks/potential
disruptions associated with infrastructure systems.

1.2 Objectives

The overall objective of this thesis is to gain insights on critical
infrastructure and its modelling, and to provide guidance on how to
assess and manage risk related to such infrastructure. Specifically, the
thesis addresses the following sub-objectives:

e To understand the extent to which network-based approaches
for modelling infrastructure interdependencies and their
associated metrics are relevant for evaluating the effects of
cascading disruptions.

e To understand the robustness of interdependent power-law
networks to random failures and independent power-law
networks to spatially correlated failures.

e To demonstrate that it is possible in a low-data setting to produce
a simple model of a real-world dependent infrastructure to
support risk management decision-making.

e To investigate the feasibility of probabilistic risk assessment
(PRA) methodology for the analysis of infrastructure systems.

1.3 Scientific approach/Research methods

The Norwegian Research Council proposes that quality research is
linked to the following three aspects (NRC 2000):

e Originality
e Solidity
e Relevance.

The presented work in this thesis covers these aspects in the following
way. The work is original in that is presents new methods for assessing
infrastructure performance, as well as using existing methods in a
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different manner. The work is solid, as it provides a clear explanation of
any methods or data, is based on existing literature and has been or will
be peer reviewed. It is relevant, as it provides information that aims to
further the field of infrastructure risk assessment and explores some gaps
within this field, as well as providing methods that are generalisable.

Kothari (2004) suggests several basic categorisations of research:
descriptive vs analytical, applied vs fundamental, quantitative vs
qualitative and conceptual vs empirical. The research presented is
analytical, applied and fundamental, conceptual and both quantitative
and qualitative. It is analytical, as is aims to describe “the world”, as
well as to analyse and understand such situations. This research is
fundamental in that it is mainly concerned with generalisations.
However, there is also an applied element of the research in which
generalisations are applied to specific situations, for example, the case
study of St. Kitts’ electric power and water system or analysing the risk
associated with a drinking water distribution system. Although the
research is mainly quantitative, with the use of simulation approaches to
generate relevant data and information of infrastructure systems, it is also
qualitative, through its discussion of the practicalities and feasibility of
methods and models within risk analysis. Finally, the research is
conceptual, as it aims to generate knowledge that is related to concepts
for risk analysis, namely, improvements for risk assessment within the
area of critical infrastructure.

The characteristic of replicability is highlighted as being an important
quality of research by Kothari (2004) and is specifically relatable to the
description of models and simulations in this research. The explanation
of the method used to produce the models and simulation procedures
should be clearly stated, so that others can follow these descriptions and
produce the same results as found in the papers.

This thesis follows the structure of a “PhD by publication” (Park 2007),
which consists of two parts: a scientific contribution that consists of
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individually published papers (Part II of this thesis) and an introduction
that places the published papers in a broader context within the area of
risk analysis (Part I).

1.4 Thesis structure

This thesis has two parts. Part I describes the background, objectives,
research methods, main contributions, and potential future directions of
the research presented in the thesis. Among the main purposes of Part I
are to motivate the performed research, to present and tie together the
scientific contributions, and to frame these in the broader context of
relevant related literature. Part I thus provides a summary of and context
for Part II, which consists of a collection of papers that present and make
up the scientific contributions of the thesis.

Specifically, Part II consists of five papers. Two of these papers are
already published; one paper is published in the peer-reviewed
proceedings of the European Safety and Reliability (ESREL) conference,
and one paper is published in the peer-reviewed journal, Reliability
Engineering & System Safety. Two papers have been revised and
resubmitted to peer-review journals. The final paper is currently being
revised to be resubmitted to a peer-reviewed journal.

The remainder of Part I is organised as follows. Section 2 summarises
and contextualises the contributions of the scientific papers in Part IL
Section 3 then outlines some ideas for further research, building on the
scientific contributions of the thesis papers.
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2 Research areas and problems

This section presents the main scientific contributions of the papers
presented in Part II of the thesis. The five papers included in Part 11
address the thesis objectives stated in Section 1.2 in the following way:

To understand the extent that network-based approaches for

modelling infrastructure interdependencies and their associated

metrics are relevant for evaluating the effects of cascading

disruptions.

0 Paper I: Review of network-theoretic approaches to
characterise interdependences in critical infrastructure.

To understand the robustness of interdependent power-law

networks to random failures and independent power-law

networks to spatially correlated failures.

0 Paper II: Characterising the robustness of coupled power-law
networks.

0 Paper III: Characterizing the robustness of power-law
networks that experience spatially-correlated failures.

To demonstrate that it is possible in a low-data setting to produce

a simple model of a real-world dependent infrastructure to

support risk management decision-making.

0 Paper IV: Dependent infrastructure system modeling: A case
study of real-world power and water distribution systems.

To investigate the feasibility of probabilistic risk assessment

(PRA) methodology for the analysis of infrastructure systems.

0 Paper V: Feasibility study of PRA for critical infrastructure
risk analysis.

When assessing critical infrastructure, the main focus in the literature is
on the performance of the system or systems given some event. The
event may be specified, for example an earthquake disrupting an
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interdependent electric power and gas system, as presented by Duefias-
Osorio et al. (2007), or more generally modelled as random failures
within the system, as presented by Johansson and Hassel (2010). The
first three objectives are concerned with how to improve some of the
current methods for assessing the performance of infrastructure when
events disrupt such systems.

Improvements to the methods of simulating disruptions within
infrastructure systems, both independent and interdependent, lead to
better estimations of how events can affect systems. However, when
trying to improve such methods, the implementation needs to be
affordable, in terms of the computational power required and the time
taken to run the simulation. A balance needs to be found between the
level of detail and the time- and computation expense of performing the
assessment. When suggesting improvements to current methods of
assessing infrastructure performance, this has been taken into account.

There is also a need to expand on assessing the effects of events to
infrastructure systems, to include the likelihood of such disruptive events
occurring and extending the methods to better incorporate/state the
uncertainties associated with the simulated consequences. This provides
a more comprehensive description of the system’s risk, with more
information that allows for risk mitigation measures to be implemented
that are based on a broader knowledge base. An example of this is that,
when only looking at the magnitude of the consequences, one disruption
may cause a much larger disruption than others and should be addressed;
however, when the likelihood of the event and uncertainties associated
with the magnitude of consequences are also assessed, another
mitigation procedure could reduce the overall risk of the system (Kaplan
and Garrick 1981).

One such method that aims to provide a complete risk description is
PRA. For some industries, such as nuclear power generation, offshore
petroleum activities and air transportation, PRA is used to provide a

10
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description of the risk (Aven et al. 2013). However, in all other
industries, PRA is not commonly used to assess infrastructure risk.
Investigating the reasons why PRA is not a common tool for the
assessment of infrastructure systems provides direction on where
improvements can be made, in order to better infrastructure assessment.

The remainder of the section is structured as follows. Section 2.1 first
describes network models and their use in representing critical
infrastructure, before presenting the scientific contribution of Papers I —
IV within the subsections. Section 2.2 provides some background on the
method of PRA, before presenting the scientific contribution of Paper V.

2.1 Network-based approaches for modelling
critical infrastructure

Network models are a popular choice to represent infrastructure systems,
as the structure or topology of the system is included in the network. A
network or graph is composed of nodes (or vertices) and the connections
between them, which are referred to as edges (or links) (Newman 2010).
The nodes represent the (important) components of the infrastructure,
and the edges, the connections between the components (Ouyang 2014).
In most cases, the edges represent physical connections, such as
transmission or distribution lines within an electrical power system or
water pipes within a water system, but they can also represent other
connection types such as the need for information from one component
to another.

When the network is not constructed based on a specific infrastructure
system, there are three main types of networks that are commonly used
to assess the effect of disruptions to network systems. The first is random
networks, where the size of the network, that is the number of nodes
within the network, is defined and the probability that an edge exists
between each pair of nodes is the same (Barabasi and Albert 1999). The
second type is small-world networks, which are also referred to as Watts-

11
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Strogatz networks (Watts and Strogatz 1998). To construct a small-world
network, a regular network is first formed with v nodes, each of which is
connected to its n closest neighbours. Then, with probability p, an edge
is removed and replaced with one that joins two uniformly randomly
chosen nodes. The final type is power-law networks, where the nodal
degree distribution follows that of a power-law distribution. Both
random and small-world networks produce networks that have a
homogeneous nodal degree, with most nodes having approximately the
same number of edges, whereas power-law networks produce non-
homogeneous networks, with the majority of nodes having a low number
of' edges and a few nodes having a high nodal degree (Albert et al. 2000).

Power-law networks have been extended to include an exponential cutoff
such that the nodal degree distribution follows that of a power-law
distribution with exponential cutoff (Barabasi et al. 1999). This is
popular for modelling networks, as it incorporates how “expensive” it
can be to add edges to a node with a high nodal degree, which is often
the case in real network systems.

Network models were first used to investigate the effects of disruptions
to independent networks (e.g. Callaway et al. 2000, Cohen et al. 2001,
Holme et al. 2002, Motter and Lai 2002), that is networks that are self-
sufficient and do not require input from other networks, before being
extended to model “system of systems” models that include multiple
network systems and account for interdependencies between the systems
(e.g. Buldyrev et al. 2010, Gao et al. 2012, Schneider et al. 2013).

2.1.1 Independent network-based models

Although it is important to account for interdependencies when
modelling infrastructure systems as networks, the initial impact of an
event on each infrastructure needs to be sufficiently simulated and, in
some cases, the initial disruption to network systems may occur in only
one of the networks. Improving methods of simulating failures in

12
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independent networks can first be focused on, before applying the failure
simulation methods to interdependent networks. The main methods of
initiating disruptions in network models are random failures and spatial
failures. When modelling random failures, the initial disruption is
modelled by removing a percentage of the nodes (or edges) in the
network that are randomly chosen; that is, each node has the same
probability of failure (Holme et al. 2002). Random failure simulations
can be used to assess situations where the initial disruption is caused by
internal disruptions, e.g. component failure due to age or lack of
maintenance.

Spatial failures allow initial disruptions that are caused by a geographic
event, including earthquakes or adverse weather such as hurricanes.
Spatially localised failures, as discussed in the introduction of Paper III,
provide a simple starting point to model spatial failures. Localised failure
methods assume that all nodes (and/or edges) within a specified area of
the network are disrupted; that is, all nodes (edges) in the affected area
have a probability of failing of 1, and all nodes (edges) outside the area
have a failure probability of 0 (e.g. Jenelius and Mattsson 2008, Hu et al.
2016, Ouyang et al. 2019).

To extend the assessment of the impacts of spatial failures, Paper III
presents a method to model spatially correlated failure events. Rather
than specifying an area within the network in which all nodes fail, each
node is assigned a failure probability that is dependent on its position in
relation to the hazard. Different hazard scenarios were simulated with
varying degrees of strength and position of the epicentre in relation to
the network. The robustness of a range of power-law networks with
exponential cutoff was assessed given the occurrence of spatially
correlated failures. Here the robustness was measured as the fraction of
nodes that were functional after the disruption occurred. The results of
the disruption simulations were used to study the relationship between
the topological properties of the networks and their robustness to
spatially correlated failures. Topological properties of a network are
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properties that provide various information about the structure of the
network.

When exploring the relationship between the topological properties of
the network and its robustness to spatially correlated failures, in Paper
111, several network topological properties were found to be significant
when characterising network robustness. To find which topological and
hazard properties were significant in characterising network robustness,
a regression analysis was carried out, where the possible explanatory
variables were the mean, minimum, maximum and standard deviation of
the four topological properties presented in Table 2, as well as the two
hazard properties also given in Table 2. The observed response variable
in the regression analysis was network robustness to each hazard
scenario, given as the fraction of functional nodes at the end of each
simulation of spatially correlated failure. Table 2 gives a brief overview
of the significant topological properties, as well as two properties of the
spatial hazard that were also significant when characterising network
robustness.

14



Research areas and problems

Table 2: Significant topological and hazard properties for characterising the robustness of power-
law networks to spatially correlated failures, as found in Paper III.

Topological and hazard

properties investigated

Brief description

Significant
properties

Topology
properties

Hazard
properties

Nodal degree (k)

Betweenness
centrality (Cb)

Clustering
coefficient (C)

Path length (1)

Distance

Covariance

Number of connections a node has.
Gives an indication of network
redundancy.

Fraction of shortest paths that pass
through the node. Gives an indication
of node criticality.

Measure how well the neighbourhood
of a node is connected, where two
nodes are neighbours if an edge
between them exists. Gives an
indication of local redundancy.

Shortest path length between each
nodal pair, i.e. the path that traverses
the least number of edges.

Distance of the hazard epicentre from
the centre of the network.

Measure of the spatial variance of the
hazard. The greater the covariance
the more concentrated the hazard.
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C standard
deviation
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Figure 1: The influence of the significant topology measures on the robustness of the networks
for 10%, 25% and 50% of node failures, as shown in Paper III (Johnson, Reilly et al. submitted
p.8, Figure 1). The influence is given by the 8 value from the regression model.

Figure 1 shows the influence of the significant properties in
characterising network robustness to spatially correlated failures.
Variables with a positive influence indicate that the more this value
increases, the more robust the network is to spatially correlated failures.
Variables with a negative influence indicate that, as their value increases,
the robustness of the network decreases. The distance of the hazard from
the centre of the network unsurprisingly had a positive influence on
network robustness, indicating that the further the hazard epicentre is
from the centre of the network, the more robust the network is.
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Therefore, if a hazard epicentre is known, or can be estimated, for
example in earthquake scenarios, then the positioning of the network
system to the epicentre should be considered when designing new
systems. The results indicated that the same network topological
properties were significant in characterising network robustness to
spatially correlated failures, as those that were found by LaRocca and
Guikema (2015) to be significant when characterising network
robustness to random failures. The most influential topological
properties for both random and spatially correlated failures are the mean
nodal degree and mean clustering coefficient. These properties provide
some indication of the global and local redundancy of the network,
respectively. These results can be taken into account by infrastructure
management when designing new systems or upgrading existing
systems, with the aim of increasing the robustness of the system to both
random and spatially correlated failures.

Paper Il thus provides an alternative method of simulating spatial
failures to the localised failure method. Our alternative method assesses
the impacts of spatial failures on a network in a more realistic manner
that is easy to implement with a low computational burden. This allows
those assessing infrastructure systems to assess which areas of the system
are more susceptible to spatially correlated failures, therefore indicating
areas where improvements could be made to increase robustness.

2.1.2 Interdependent network-based models

With the increased attention on the assessment of critical infrastructure
in relation to events that have the potential to cause large outages, the
need to account for interdependencies between infrastructure systems
was called into focus (e.g. Rinaldi et al. 2001, Dudenhoeffer et al. 2006,
Buldyrev et al. 2010). Acquiring data about infrastructures to model the
system itself is difficult, due to many being privately owned utilities that
view sharing such information as a safety and security issue (Rinaldi et
al. 2001, Macaulay 2008, Winkler et al. 2010). Incorporating
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interdependencies into infrastructure models is equally difficult, given
that it requires data from multiple systems in order to provide a realistic
model. Given the difficulties in modelling real systems, theoretical
interdependent models were suggested in the literature, to construct
models that represent a system of systems (Parshani et al. 2011, Shao et
al. 2011, Havlin et al. 2015).

When referring to the different edges or connections in interdependent
models, a distinction between the edges within each network and
between the networks can be made. Edges within one network are
referred to as intra-connections, whereas the edges between networks,
which represent the interdependencies, are referred to as inter-
connections. Inter-connections can be modelled to be unidirectional or
bidirectional. When a dependency exists between two nodes of different
networks which are both dependent on each other, the dependency is said
to be bidirectional. When the dependency only exists where one node
depends on input from a node in another network, the dependency is said
to be unidirectional.

2.1.2.1 Categorising interdependencies in network-based
models

In Paper I, different methods suggested in the literature for modelling
interdependencies in network-based models were reviewed, as well as
the metrics used to assess the effects of disruptions in interdependent
systems. The first categorisation for how interdependencies are modelled
was fully or partially dependent. In fully dependent models, each node
in a network is dependent on input from another network. In partially
dependent models, only a fraction of nodes in a network are dependent
on nodes in other networks. These two categories were then
subcategorised by single or multiple dependencies per node. In models
with single dependencies, each node that is dependent on another
network has one and only one inter-connection. Models with multiple
dependencies allow inter-connections to form, such that each node that
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is dependent on another network can have multiple inter-connections.
Most of the literature reviewed focused on modelling two interdependent
systems, with few papers suggesting methods of extending
interdependent models to systems containing more than two networks.

Although others have suggested categories of interdependencies, these
categories are descriptions of the functionality of dependencies found
between infrastructures. For example, Rinaldi et al. (2001) suggested
four types of interdependencies: physical, cyber, geographic and logical.
Others have suggested similar categories, including functional or spatial
by Zimmerman (2001) and physical, geospatial, policy or informational
by Dudenhoeffer et al. (2006). Paper I aims to categorise the
dependencies, not on the functionality of the dependency but based on
the structure of the interdependent systems. When creating an initial
model to see whether it is of use to investigate the interdependent system
further, it is important that the structure is a good representation of the
interdependent system, regardless of dependency functionality.

Table 3 shows the methods of forming inter-connections between
interdependent networks. Random attachment is when the inter-
connection is randomly assigned between nodes of different networks.
When the model contains only two networks that are both fully
dependent with single dependencies, the networks must be the same size,
i.e. contain the same number of nodes. Buldyrev et al. (2010) presented
this model to demonstrate the need to account for interdependencies
between networks, and so the model is simple to construct and not
representative of real infrastructure interdependencies. This model was
then extended such that the dependencies were formed due to some
condition. Both Parshani et al. (2011) and Buldyrev et al. (2011)
suggested that nodes were more likely to be dependent on other nodes
with the same nodal degree. Buldyrev et al. (2011) suggested that each
inter-connection be formed between two nodes with the same nodal
degree. Thus, the distribution of nodal degree must be the same in both
networks within the system. Parshani et al. (2011) suggested a method
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of forming dependencies with an inter degree-degree correlation of rag;
that is the percentages of inter-connections that form dependencies
between nodes with the same degree is I'as.

Table 3: Methods for forming inter-connections found in the literature, as described in Paper 1.

Fully dependent Random or conditional Random or preferential
networks attachment attachment

Partially dependent Random Conditional preferential
networks

For methods where each node with a dependency can have multiple
inter-connections, preferential attachment is modelled such that the inter-
nodal degree distribution follows a power-law distribution. The inter-
nodal degree is the number of inter-connections a node has. The inter-
connections are formed such that it is preferential for dependent nodes
to depend on a node with a high nodal degree. In such cases, the
dependencies can be formed preferentially, based on either inter-nodal
degree or total nodal degree (i.e. the summation of both intra and inter-
nodal degrees). Conditional preferential attachment applies when there
are more than two networks within the system and accounts for the
structure of the system of systems. For example, there can be one
network which forms a hub for all other networks in the system. In this
case, the hub network is dependent on all other networks in the system.
All other networks are only dependent on the hub network.

Within the literature reviewed in Paper I, the main metric used to
evaluate the effects of disruption to an interdependent network system is
the giant connected component (GCC). After the disruption and
cascading effects have been simulated, the system fragments into several
smaller subsystems. The GCC is the subsystem which contains the
greatest number of nodes (Shao et al. 2015). To allow for easy
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comparison between networks of different sizes, the relative GCC is
often used. The relative GCC gives the percentage of nodes that are
present in the GCC rather than the number, which can then be compared
to the relative GCC of other networks. The relative GCC can be
evaluated either individually for each network in the modelled system or
for the system as a whole.

The different methods of forming interdependencies between networks
allow for a variety of systems to be analysed. When modelling real
systems, the most relevant method of forming dependencies can be
chosen to construct the model. Some methods are easier to construct than
others, e.g. fully dependent models with single dependencies, but are less
representative of real systems than those that are more complex to
construct. The interdependency method to be used should be chosen in
relation to the time and resources available, as well as the purpose of the
analysis. For an initial analysis, a less complex model may be used as a
starting point, to see if a more in-depth analysis needs to be performed.

2.1.2.2 Robustness of interdependent networks

When investigating interdependent network systems, the focus of the
analysis is mainly how disruptive an event is to the system, where, as
previously discussed, the GCC or relative GCC is used to measure the
level of disruption. Paper II investigates whether the robustness of
coupled networks can be characterised by the topological properties of
the network, as previously explored for independent networks by
LaRocca and Guikema (2015).

The effects of network topology on the robustness of interdependent
networks have previously been investigated. However, this usually
involves ranking the nodes of the network according to a certain
topological property and using this ranking to identify nodes to remove,
in order to simulate a targeted attack on the interdependent system. Both
Motter and Lai (2002) and Huang et al. (2011) used nodal degree to rank
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nodes before removing the highest ranked nodes to simulate targeted
attacks. Zhang and Peeta (2011) investigated both nodal degree and
betweenness centrality (which they referred to as “load”) as a measure
of node importance, while Chai et al. (2016) also included shortest path;
both authors then explored the differences in system robustness to
targeted attacks for the different node rankings. Rather than focus on
only one topological property, Paper II aims to characterise the
robustness of coupled networks, using a collection of topological
properties, providing a relationship that is generalisable to a range of
coupled network structures.

In order to investigate the relationship between the robustness of
networks in interdependent systems and topological properties, several
different interdependent systems were explored. Each system contained
two networks of equal size (i.e. equal number of nodes), ranging from
100 nodes to 1000 nodes, hereafter referred to as Network A and
Network B. Both networks in the system were power-law networks with
exponential cutoff. All dependencies formed between the two networks
were bidirectional. Both dependent and interdependent systems were
explored, to allow the results to be generalisable for a range of coupled
systems. In the dependent systems, Network A was dependent on
Network B, and Network B was independent, whereas, in the
interdependent systems, Networks A and B were both dependent on each
other. The inter-connections were formed conditionally on the closest
node in the dependent system, where both networks occupied the same
space and coordinates were assigned to each node.

As Network A is always dependent on Network B, Paper II explored the
robustness of Network A to random failures in Network B. All initial
disruptions occurred in Network B and were modelled by choosing a
percentage of nodes randomly that would fail. Three levels of disruption
in Network B were considered: 10%, 25% and 50%. To simulate these
initial failures, the chosen nodes were removed from the network,
causing the network to fragment. Systems where Network B both did and
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did not contain source nodes were investigated, with two different
methods of simulating failures used, depending on the presence of source
nodes. Source nodes are nodes which need to be functional in order for
the network to function. This is representative of systems, such as
electric power systems, where the source nodes represent the power
plants generating electricity.

When source nodes are not present in the model, the GCC is considered
the only functional cluster in the network after the initial disruption, as
described above. All nodes in Network A that are dependent on non-
functional nodes in Network B are also considered non-functional. This
causes Network A to fragment, and only nodes in the GCC are
considered functional. If Network B depends on Network A, any nodes
in Network B dependent on non-functional nodes in Network A are now
also non-functional. This process iterates until no additional node
failures occur.

When source nodes are present in Network B, after the initial random
failures (as previously described), only the clusters that contain source
nodes are functional; all other nodes are non-functional. The disruptions
then cascade into Network A as before, where all nodes dependent on
non-functional nodes in Network B are considered non-functional,
causing fragmentation within Network A. Any clusters in Network A
that receive input from functional nodes in Network B are considered
functional, with all other clusters considered non-functional. If Network
B depends on Network A, any nodes dependent on non-functional nodes
are then considered non-functional, causing further fragmentation. The
process iterates again until no more node failures occur.

The level of dependency was also varied, to allow the relationship of
topological properties and network robustness to be explored. For both
dependent and interdependent systems, the levels of dependency were
modelled as either fixed or random. For fixed levels of dependency, the
percentage of nodes that were dependent on the other network in the
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system was predefined as either 10%, 30%, 50% or 100%. For random
levels of dependency, the percentage of nodes with dependencies in each
network was randomly assigned by drawing a variable from a uniform
distribution with a range of 1 to 100. Table 4 shows the different levels
of dependency explored.

Table 4: Summary of dependency types modelled in Paper II.

Fixed, 10% - -
Fixed, 30% - -
Fixed, 50% - -
Fixed, 100% -

Fixed, 50% Fixed, 50%

Random - -
Random - 2
Random - 5
Random - 10
Random Random -
Random Random 2
Random Random 5
Random Random 10

The topological properties investigated to characterise the robustness of
coupled networks included the mean, minimum, maximum and standard
deviation of the nodal degree, betweenness centrality, clustering
coefficient and path length. The same properties were investigated in
Paper III and by LaRocca and Guikema (2015), and are described in
Table 2. Three additional topological properties were also included in
the analysis of Paper II that accounted for the properties of the
dependencies and source nodes. The first two additional properties are
related to the dependencies. When the level of dependency was randomly
assigned, the percentage of dependent nodes in the network was
included. The mean intra-nodal degree of dependent nodes was also
included as a topological property. The final additional property included
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in the analysis was the mean nodal degree of source nodes, which was
included when source nodes were present in Network B.

Following the method used in Paper III, a regression analysis was used
to find which topological properties are significant in characterising the
robustness of coupled networks. A regression analysis was performed
that included the topological properties of Network A but not those of
Network B. This is representative of the data available when assessing
real-world systems, as an infrastructure system will likely know its own
structure but does not necessarily know the structure of the network
systems it depends on.

Figure 2, Figure 3 and Figure 4 show the significant topological
properties, as found in the regression analyses of the various coupled
networks investigated in Paper II. For all the different types of coupled
network systems investigated, three topological properties of Network A
were always significant for characterising the robustness: mean nodal
degree, mean intra-nodal degree of dependent nodes and, when
applicable, the percentage of dependent nodes in the network. Mean
nodal degree had a positive influence on the robustness of the network
to cascading failures. This is as expected, as the mean nodal degree
indicates the level of redundancy within a network: therefore, the greater
the mean nodal degree, the greater the level of redundancy in the
network. The mean intra-nodal degree of dependent nodes had a negative
influence on the robustness. Again, this is as expected, as the disruption
cascades from Network B into Network A through the dependent nodes.
The greater the number of nodes within Network A that are connected to
the dependent nodes, the greater the effect the disruption has on Network
A. The level of dependency also had a negative influence on network
robustness. This again is intuitive, as the more nodes in Network A that
depend on Network B, the greater the chance of nodes in Network A
being affected by the disruption that initiates in Network B.
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When the level of dependency was fixed within the coupled networks,
the mean clustering coefficient, nodal degree standard deviation and path
length standard deviation are always significant and have a weak
influence on network robustness. Mean clustering coefficient has a
positive influence, whereas mean standard deviation and path length
standard deviation both have a negative influence. When source nodes
are present in Network B, path length standard deviation of Network A
is no longer significant. Mean clustering coefficient and nodal degree
path length are still significant, but the influence of each is reversed such
that they have a weak negative and positive influence, respectively.
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Using the results of the coupled network systems analysis alongside
those of LaRocca and Guikema (2015) can provide useful information
for those designing or upgrading networked infrastructure systems.
When designing new infrastructure systems that are dependent on others,
the level of dependency should be considered. The dependency level
should be as low as possible to reduce the effects of cascading
disruptions that occur in the network that is depended upon. The nodes
that are dependent on another network should also be considered. When
nodes with a higher nodal degree are dependent on input from another
network, the cascading effects are greater, although this may not be
straightforward to implement, as in reality the functionality of the node
determines whether the node depends on another network. In this case,
providing redundancy, such as generators for nodes that are dependent
on input from an electric power system, at dependent nodes with a high
intra-nodal degree, can be implemented. The results are consistent over
a range of different coupled network systems, suggesting that the
important topological properties are the same for different structures of
coupled networks, which provides a general overview of the most
influential properties to consider.

2.1.2.3 Real world case studies with limited data

There have been many suggestions for modelling and analysing
interdependent systems, as presented in Papers I and II. However, there
are few real case studies of interdependent systems (see Duefias-Osorio
et al. 2007, Johansson and Hassel 2010, Chai et al. 2016). Such models
focus on data-rich areas in developed countries, primarily the US and
Europe. The aim of Paper IV is to provide a real-world interdependent
infrastructure system model in a data-poor context, by presenting a
model of the dependent water and electric power system of St. Kitts.

St. Kitts is one of the twin islands of the Federation of St. Kitts and Nevis,
located in the eastern Caribbean Sea. St. Kitts provides a good case
study, as both the power and water systems are self-contained on the
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island; that is, they do not require or provide input from/to external
geographic areas. Due to the location of the island, tropical storms pose
a significant hazard to the islands’ infrastructure. Network models of the
two infrastructures were first developed before being incorporated into a
simulation model that estimated the effects of tropical storms on the
dependent network system.

The water system was modelled using the publicly available computer
program, EPANET 2.0 (Rossman 2000), and was based on data obtained
from the St. Kitts Water Department. The model includes the distribution
system pipes, along with supply sources and demand nodes. Supply
sources consist of 30 groundwater wells, 30 surface storage tanks and six
river reserves. The 30 wells are dependent on input from the electric
power system to function.

The actual electric power system of St. Kitts contains 12 main trunk
lines, with power generated from 10 diesel generators, located in the
island’s capital, Basseterre. Due to the limited information available
about the electric power system, only three of the 12 main trunk lines
were included in the model. These three trunk lines stretch along the
coastline of the island, with one going along the peninsula to the
southernmost point of the island and the other two running up to the north
around each side of the island. The nine remaining trunk lines that are
not included in the model service Basseterre and the surrounding area.
The network model of the power system contains power poles,
represented as nodes, and the transmission line as the edges between each
node. Each of the three modelled trunk lines begins at Basseterre,
moving away from the capital.

Figure 5 shows the schematics of the modelled water and power
networks. As previously stated, the dependency between the two
infrastructures is the dependency the wells in the water network have on
input from the electricity network. To model this dependency, each water
well is dependent on the closest power node in the network. When a
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power pole that a well depends on is non-functional, the dependent well
is also classed as non-functional.

Due to tropical storms being a common disruption to St. Kitts, such
events were used as scenario events that caused disruptions to the
dependent water and electric power system of St. Kitts. A parametric
wind model used in previous work (e.g. Han et al. 2009, Guikema et al.
2014) was used to simulate tropical storms within the vicinity of St. Kitts.
The model estimates the maximum wind speed during a tropical storm
at predefined locations on the island. These locations were one in each
parish of the island, with the exception of St. George, which was given
three points, as it encompasses the long southern peninsula. Using the
estimated maximum wind speeds experienced in a storm, their effect on
the electric power system was estimated. A fragility curve of the wooden
power poles present in the simulation of disruptions was used to find the
probability of damage for each modelled pole. When a power pole fails,
all downstream poles also fail, as it is assumed in the model that power
is not able to flow downstream of poles damaged by strong winds. The
cascading effect of the disruption from the power network to the water
network was then simulated. This model was then used to demonstrate
how such real-world interdependent models could be used for various
analyses.
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The first analysis demonstrated how to identify which components in the
power system are critical to the performance of the water system. To do
this, each pole was failed individually, and the effects on the water
system were recorded as the number of components to experience low or
negative pressures. We define low pressure to be less than 20 psi, as this
is the minimum pressure standard in several US states for fire-fighting
activities. This was modelled for power outages of both 12 hours and 24
hours. From Figure 6, it can be seen that, for both durations of outages,
disruptions within the southern line had little effect on the water system,
whereas disruptions anywhere along the northern line resulted in
cascading effects within the water network.

The second analysis investigated the importance of redundancy within
the water network to reduce the effects of cascading disruptions from the
power network. For each well, its dependency on the power network was
removed before a 72-hour power outage was simulated. This represents,
for example, the inclusion of a back-up generator at the well, such that
the well is able to function without input from the power network. The
results of each dependency being removed one at a time were compared
to the base case, where all wells were dependent on the power network
and a 72-hour power outage was simulated. The reduction in negative
pressures was recorded for the removal of each well dependency and can
be seen in Figure 7. The results show that providing redundancy to any
wells along the western side of the island increases the resilience of the
water network to power outages.
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Figure 7: The percentage of reduction in the number of negative water node pressures
compared to the worst-case scenario, as shown in Paper IV (Stedle et al. submitted, p. 12,
Figure 10).

Although limited data was available to model the electric power network
of St. Kitts, an estimate of the system was generated using publicly
available information. The generation of the dependent power and water
network system of St. Kitts presented in Paper IV provides an example
to infrastructure management that, even with limited knowledge of the
networks they depend on, simulations of cascading disruptions can still
be performed to highlight areas that are more vulnerable to cascading
disruptions, indicating areas that can be hardened to such disruptions.
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2.2 Risk analysis approaches for critical
infrastructure

Although network models allow for an analysis of the performance of
infrastructure systems, they are only part of a full risk assessment of such
systems. Network models allow the effects of scenarios or disruptions to
infrastructure to be assessed but do not consider the likelihood of the
scenario occurring and therefore do not provide a complete description
of the risk. Probabilistic risk assessment (PRA) is one method that does
aim to provide a complete risk description of the system. Currently
however, PRA is not common in the assessment of infrastructure risk.
The aim of Paper V is to discuss the feasibility of PRA for networked
infrastructure systems, as well as comparing non-PRA methods of
assessment, to highlight the shortcomings of these more popular
methods.

PRA is comprised of three main elements: 1) scenario identification of
what can go wrong, 2) a calculation of the associated likelihood of each
scenario and 3) the assessment of the consequences of each scenario
(Kaplan and Garrick 1981). Kaplan and Garrick (1981) are credited with
first proposing the method that is now considered modern PRA. The
PR A method for assessing systems was common during the 1970s within
the nuclear power industry (Bedford and Cooke 2001). However, in more
recent years, other methods have been more prevalent when assessing
infrastructure systems. To understand why this is the case, the feasibility
of PRA for critical infrastructure was investigated in Paper V. To help
illustrate the process of infrastructure PRA, an analysis of one scenario
was performed on the water distribution system of the virtual city of
Micropolis (Brumbelow et al. 2007).

Micropolis’ water distribution system was chosen for assessment, as the
system 1is a virtual one, created by Brumbelow et al. (2007), to allow
publicly available information to be used rather than needing to acquire
data from real-world infrastructure systems, which often is difficult for
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safety and security reasons. The water distribution system of Micropolis
is constructed so that it contains characteristics found in real systems,
such as development over time, leading to a range of pipe materials and
diameters.

Before performing a scenario assessment of Micropolis, a formulation of
PRA in terms of infrastructure systems was devised. The infrastructure
system is regarded as a system of components, in which, in the simplest
realisation, each component is either in a functional or a non-functional
state. This can be extended for components to have multiple states that
represent varying levels of functionality, but, for the purpose of studying
the feasibility of PRA of infrastructure, the simple case of functional vs
non-functional state is sufficient. The consequence associated with a
scenario, Si, can then be expressed in terms of the component states after
the scenario has occurred and can be expressed as Xi(Ci), where X; is the
consequence, which is a function of ¢; = (c}, ciz, cl-3, ., CfY), the vector
of the states of the n components.

To provide an illustration of the infrastructure PRA process, a single
earthquake intensity scenario was analysed. An earthquake of magnitude
6 on the Modified Morcalli Intensity (MMI) scale was simulated to affect
the water distribution network of Micropolis. Given the Peak Ground
Velocity (PGV) resulting from the earthquake, the probability of main
pipe failures was calculated. A Monte Carlo simulation was then run, to
determine which main pipes experienced failures, i.e. if their state was
fully functional or performing at a reduced capacity due to the
earthquake. This simulation was run for 100,000 iterations. For each
iteration, the effects of the earthquake were modelled using EPANet 2.0
(Rossman 2000). If a pipe failed, a demand of 200 gallons per minute
(gpm) was placed on the junction at the end of the pipe, to simulate a
leakage occurring within the failed pipe. The EPANet simulation of
Micropolis’ water distribution system was then run over a 72-hour
period, and the number of terminal nodes (end users (residential and
commercial buildings) and fire hydrants) experiencing insufficient
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pressure during the 72 hours was recorded as the consequence of the
scenario.

Freguency

Terminal nodes with nsufficient pressune

Figure 8: Cumulative frequency of terminal nodes with insufficient pressure due to an
earthquake of magnitude 6 on the MMI scale, with a log scale on the y-axis, as shown in Paper
V (Johnson, Flage et al. submitted, p. 13, Figure 5).

Figure 8 shows the results of the 100,000 iterations presented as an FN
curve with a log scale on the y-axis. A high number of iterations (64,027)
resulted in no pipe failures. The FN curve shows the frequency of the
consequences for the 100,000 simulations run for an earthquake affecting
the Micropolis water distribution system. When failures did occur, either
a low number (between 1 and 22) or a high number (693 to 725) of
terminal nodes experienced insufficient pressures, with no iterations
resulting in a number of failures in the range of 23 to 692 inclusively.
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This suggests there is a subset of pipe failures that have a relatively low
impact on the function of the system and another subset that has a
relatively large impact on the function of the system. To complete the
analysis of the earthquake scenario within a PRA, the likelihood of an
earthquake of magnitude 6 occurring would also need to be assessed.
However, as Micropolis is a virtual city, determining the likelihood of
an earthquake is not particularly meaningful.

When assessing the consequences associated with a scenario,
assumptions have to be made which simplify the scenario to one that can
be assessed in a reasonable timeframe. This creates a trade-off between
the comprehensiveness of the analysis and the time and resources
(including data) available to perform the assessment. As well as
assessing single scenarios, the combination of scenarios that have the
potential to occur at the same time also needs to be included in the PRA.
The process of infrastructure PRA is time-consuming and requires access
to large quantities of relevant data. It is only with recent technological
advances that acquiring and storing system data has become achievable.
However, the acquisition and storage of such data can still be expensive,
and the relevance is hard to determine without a process of trial and error
to see what should be stored and processed.

Other methods that are more prevalent in assessing infrastructure
systems include N-k analysis (including N-1 analysis), network models,
both theoretic and flow-based, and statistical learning theory. N-1
analysis is popular within the electric power sector of the US, as
regulations state that generation and transmission systems should be able
to function with the loss of one element (U.S. Department of Energy
2015). N-k analysis is an extension of N-1 that assesses the functionality
of a system when k components are non-functional (Chen and McCalley
2005). For network models, both theoretic and flow-based, a subset of
nodes or edges is removed, to study the effects of loss of functionality in
such components (Motter and Lai 2002, LaRocca and Guikema 2015,
Ouyang 2016, Johnson et al. 2019). Both N-k (including N-1 analysis)
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and network-based models assess the performance of the systems, given
certain components are non-functional, allowing the consequences of the
scenario to be seen. However, neither method includes a likelihood
assessment of the scenario that results in the assessed component
failures.

Statistical learning theory is another popular method for assessing the
impacts of natural events on critical infrastructure. Using knowledge
available about the infrastructure, its surrounding environment and the
natural hazard, statistical models are built that estimate the impact the
hazard has on the infrastructure (Guikema 2009). Han et al. (2009)
present such a model that estimates the impact of hurricanes on an
electric power system in terms of number of customers without power.
As with N-k analysis and network models, the likelihood of the scenario
is not included in the model, as such methods have been developed to
provide quick feedback when there is an indication of a natural hazard
occurring in the near future.

All three of these methods are less complex than PRA but only assess
the infrastructure for a subset and not all possible scenarios. These
methods also do not consider the likelihood of the initial scenarios (that
they model) occurring. Although PRA is not feasible in an infrastructure
setting, the elements of PRA that are not yet covered by the more
prevalent non-PRA methods used to assess infrastructure should be
incorporated into infrastructure assessments.
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3 Further work

This section proposes further work that ensues from the papers presented
in Part II of the thesis.

The first suggestion for further work would be to use the method of
simulating spatially correlated failures, as proposed in Paper 11, to create
disruptions to the coupled network systems assessed in Paper II. This
would allow an exploration of the significant topological properties of
the coupled network system that characterise the robustness of the
network to spatial failures. These could then be compared to the results
of random failures found in Paper 11, to see whether the same topological
properties are significant or whether other properties should be
considered in relation to spatial failures. The findings of this work could
provide information to those designing or upgrading infrastructure
systems.

Another extension of Paper Il would be to investigate different categories
of dependency types between the coupled systems. All the coupled
network systems in Paper II had only single dependencys; that is, if a node
was dependent on another network, it had a maximum of one and only
one dependency. Varying the number of dependencies that a node has on
another network may produce different topological properties to be
significant in characterising the robustness of the network. This could be
explored for both random failures, as simulated in Paper 11, and spatially
correlated failures, as simulated in Paper IIl. This again may provide
useful information on which topological properties are the most
important to consider when designing or updating infrastructure systems.

In Paper IV, an attempt to validate the model of the dependent electric
power and water system of St. Kitts was made, using Hurricane Maria,
which hit St. Kitts in September 2017. However, due to a lack of publicly
available data, finding the actual effects that the hurricane had on the two
infrastructures was difficult. Therefore, from Paper IV, possible further
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work would be to validate the dependent electric power and water model
developed in the paper, if actual outage data for an event relating to the
dependent system could be acquired. If a more thorough validation of the
model were possible, this could provide suggestions on how to better
improve the dependent model.

Paper V highlights the complications involved in performing a PRA for
modern infrastructure systems, as well as some of the shortcomings
associated with more common non-PRA methods currently used to
assess infrastructure performance with regard to risk. Developing a
method that better incorporates the aims of PRA to improve current
methods of assessing critical infrastructure risk could be an interesting
extension of Paper V. A further improvement of such a framework would
be to find a way in which black swan events (that is, surprising, high-
impact events) could be better incorporated into the risk assessment of
critical infrastructure.

43



References

Albert, R., Jeong, H. & Barabasi, A.-L. 2000. Error and attack tolerance of
complex networks. Nature, 406, 378.

Aven, T., Baraldi, P., Flage, R. & Zio, E. 2013. Uncertainty in risk
assessment: the representation and treatment of uncertainties by
probabilistic and non-probabilistic methods, John Wiley & Sons.

Barabasi, A.-L. & Albert, R. 1999. Emergence of scaling in random networks.
Science, 286, 509-512.

Barabasi, A.-L., Albert, R. & Jeng, H. 1999. Mean-field theory for scale-free
random networks. Physica A, 272, 173-187.

Bedford, T. & Cooke, R. 2001. Probabilistic risk analysis: Foundations and
methods, Cambridge University Press.

Brumbelow, K., Torres, J., Guikema, S., Bristow, E. & Kanta, L. 2007. Virtual
cities for water distribution and infrastructure system research. World
Environmental and Water Resources Congress.

Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E. & Havlin, S. 2010.
Catastrophic cascade of failures in interdependent networks. Nature,
464, 1025.

Buldyrev, S. V., Shere, N. W. & Cwilich, G. A. 2011. Interdependent networks
with identical degrees of mutually dependent nodes. Physical Review
E, 83,016112.

Callaway, D. S., Newman, M. E., Strogatz, S. H. & Watts, D. J. 2000. Network
robustness and fragility: Percolation on random graphs. Physical
Review Letters, 85, 5468.

Chai, W. K., Kyritsis, V., Katsaros, K. V. & Pavlou, G. 2016. Resilience of
interdependent communication and power distribution networks
against cascading failures. IFIP Networking Conference (IFIP
Networking) and Workshops, 2016. IEEE.

Chang, S. E., McDaniels, T. L., Mikawoz, J. & Peterson, K. 2007.
Infrastructure failure interdependencies in extreme events: power

44



outage consequences in the 1998 Ice Storm. Natural Hazards, 41, 337-
358.

Chen, Q. & McCalley, J. D. 2005. Identifying high risk N-k contingencies for
online security assessment. IEEE Transactions on Power Systems, 20,
823-834.

Cohen, R., Erez, K., Ben-Avraham, D. & Havlin, S. 2001. Breakdown of the
internet under intentional attack. Physical Review Letters, 86, 3682.

Comes, T. & Van de Walle, B. 2014. Measuring disaster resilience: The
impact of hurricane Sandy on

Corsi, S. & Sabelli, C. 2004. General blackout in Italy Sunday September 28,
2003, h. 03:28:00. IEEE Power Engineering Society General Meeting,
2004.

DSB 2017. Vital functions in society. Tensberg.
https://www.dsb.no/globalassets/dokumenter/rapporter/kiks-
ii_english_version.pdf Accessed on 25 September 2019.

Dudenhoeffer, D. D., Permann, M. R. & Manic, M. 2006. CIMS: A framework
for infrastructure interdependency modeling and analysis. Proceedings
of the 38th conference on winter simulation. Winter Simulation
Conference.

Duenas-Osorio, L., Craig, J. I. & Goodno, B. J. 2007. Seismic response of
critical interdependent networks. Earthquake Engineering & Structural
Dynamics, 36, 285-306.

Gao, J., Buldyrev, S. V., Stanley, H. E. & Havlin, S. 2012. Networks formed
from interdependent networks. Nature Physics, 8, 40.

Guikema, S. D. 2009. Natural disaster risk analysis for critical infrastructure
systems: An approach based on statistical learning theory. Reliability
Engineering & System Safety, 94, 855-860.

Guikema, S. D., Nateghi, R., Quiring, S. M., Staid, A., Reilly, A. C. & Gao,
M. 2014. Predicting hurricane power outages to support storm
response planning. IEEE Access, 2, 1364-1374.

Han, S.-R., Guikema, S. D., Quiring, S. M., Lee, K.-H., Rosowsky, D. &
Davidson, R. A. 2009. Estimating the spatial distribution of power

45



outages during hurricanes in the Gulf coast region. Reliability
Engineering & System Safety, 94, 199-210.

Havlin, S., Stanley, H. E., Bashan, A., Gao, J. & Kenett, D. Y. 2015.
Percolation of interdependent network of networks. Chaos, Solitons &
Fractals, 72, 4-19.

Holme, P., Kim, B. J., Yoon, C. N. & Han, S. K. 2002. Attack vulnerability of
complex networks. Physical Review E, 65, 056109.

Hu, F., Yeung, C. H., Yang, S., Wang, W. & Zeng, A. 2016. Recovery of
infrastructure networks after localised attacks. Scientific Reports, 6,
24522,

Huang, X., Gao, J., Buldyrev, S. V., Havlin, S. & Stanley, H. E. 2011.
Robustness of interdependent networks under targeted attack. Physical
Review E, 83, 065101.

Jenelius, E. & Mattsson, L.-G. 2008. The vulnerability of road networks under
area-covering disruptions. INFORMS annual meeting, Washington
DC, USA.

Johansson, J. & Hassel, H. 2010. An approach for modelling interdependent
infrastructures in the context of vulnerability analysis. Reliability
Engineering and System Safety, 95, 1335-1344.

Johnson, C. A., Flage, R. & Guikema, S. D. 2019. Characterising the
robustness of coupled power-law networks. Reliability Engineering &
System Safety, 191, 106560.

Johnson, C. A., Flage, R. & Guikema, S. D. submitted. Feasibility study of
PRA for critical infrastructure risk analysis. Manuscript submitted for
publication.

Johnson, C. A, Reilly, A. C., Flage, R. & Guikema, S. D. submitted.
Characterizing the robustness of power-law networks that experience
spatially-correlated failures. Manuscript submitted for publication.

Kaplan, S. & Garrick, B. J. 1981. On the quantitative definition of risk. Risk
Analysis, 1, 11-27.

Kothari, C. R. 2004. Research methodology: Methods and techniques, New
Age International.

46



LaRocca, S. & Guikema, S. D. 2015. Characterizing and predicting the
robustness of power-law networks. Reliability Engineering & System
Safety, 133, 157-166.

Macaulay, T. 2008. Critical infrastructure: Understanding its component
parts, vulnerabilities, operating risks, and interdependencies, CRC
Press.

Motter, A. E. & Lai, Y.-C. 2002. Cascade-based attacks on complex networks.
Physical Review E, 66, 065102.

Newman, M. 2010. Networks: An introduction, Oxford University Press.

NOU 2006:6 Nar sikkerheten er viktigst: Beskyttelse av landets kritiske
infrastrukturer og kritiske samfunnsfunksjoner.
https://www.regjeringen.no/contentassets/c8b710bela284bab8aea8fd95
5b39fa0/no/pdfs/nou200620060006000dddpdfs.pdf Accessed on 25
September 2019.

NRC 2000. Kvalitet i norsk forskning - En oversikt over begreper, metoder og
virkemidler. [online]
https://www.forskningsradet.no/siteassets/publikasjoner/120352827572
5.pdf Accessed on 20 January 2020.

Ouyang, M. 2014. Review on modeling and simulation of interdependent
critical infrastructure systems. Reliability Engineering & System
Safety, 121, 43-60.

Ouyang, M. 2016. Critical location identification and vulnerability analysis of
interdependent infrastructure systems under spatially localized attacks.
Reliability Engineering & System Safety, 154, 106-116.

Ouyang, M., Tian, H., Wang, Z., Hong, L. & Mao, Z. 2019. Critical
infrastructure vulnerability to spatially localized failures with
applications to Chinese railway system. Risk Analysis, 39, 180-194.

Park, C. 2007. Redefining the doctorate. [online]
https://eprints.lancs.ac.uk/id/eprint/435/1/RedefiningTheDoctorate.pdf
Accessed on 17 January 2020.

Parshani, R., Rozenblat, C., letri, D., Ducruet, C. & Havlin, S. 2011. Inter-
similarity between coupled networks. EPL (Europhysics Letters), 92,
68002.

47



Public Safety and Emergency Preparedness Canada 2014. Forging a common
understanding for critical infrastructure: shared narrative. Public
Safety Canada, Ottawa.
http://publications.gc.ca/collections/collection 2017/sp-ps/PS4-221-
2014-eng.pdf Accessed on 25 September 2019.

Rinaldi, S. M., Peerenboom, J. P. & Kelly, T. K. 2001. Identifying,
understanding and analyzing critical infrastructure interdependencies.
IEEE Control Systems, 21, 11-25.

Rossman, L. 2000. EPANET 2 Users Manual. https://epanet.es/wp-
content/uploads/2012/10/EPANET User Guide.pdf Accessed on 21
January 2020.

Schneider, C. M., Yazdani, N., Aratjo, N. A., Havlin, S. & Herrmann, H. J.
2013. Towards designing robust coupled networks. Scientific Reports,
3, 1969.

Shao, J., Buldyrev, S. V., Havlin, S. & Stanley, H. E. 2011. Cascade of
failures in coupled network systems with multiple support-dependence
relations. Physical Review E, 83, 036116.

Shao, S., Huang, X., Stanley, H. E. & Havlin, S. 2015. Percolation of localized
attack on complex networks. New Journal of Physics, 17, 023049.

Stedle, K., Johnson, C. A., Brunner, L. G., Saliani, J. N., Flage, R. &
Guikema, S. D. submitted. Dependent infrastructure system modeling:
A case study of real-world power and water distribution systems.
Manuscript submitted for publication.

US® Department of Energy 2015. United States Electricity Industry Primer.
https://www.energy.gov/sites/prod/files/2015/12/f28/united-states-
electricity-industry-primer.pdf Accessed on 21 January 2020.

Walter, E. 2008. Cambridge advanced learner's dictionary, Cambridge
University Press.

Watts, D. J. & Strogatz, S. H. 1998. Collective dynamics of ‘'small-world'
networks. Nature, 393, 440-442.

Winkler, J., Duefias-Osorio, L., Stein, R. & Subramanian, D. 2010.
Performance assessment of topologically diverse power systems

48



subjected to hurricane events. Reliability Engineering & System
Safety, 95, 323-336.

Zhang, P. & Peeta, S. 2011. A generalized modeling framework to analyze
interdependencies among infrastructure systems. Transportation
Research Part B: Methodological, 45, 553-579.

Zimmerman, R. 2001. Social Implications of infrastructure network
interactions. Journal of Urban Technology, 8, 97-119.

49



50



Part 11

51






Paper |

Review of network-theoretic approaches to
characterise interdependencies in critical
infrasturctures.

Authors: Caroline A Johnson, Roger Flage and Seth D Guikema

Published in: M. Cepin, & R. Bris (Eds.), Safety & Reliability, Theory and
Applications. Proceedings of the European Safety and Reliability (ESREL)
Conference 2017 (Slovenia), Portoroz, Slovenia, 18-22 June (pp. 765-772).
CRC Press.

Please note: This paper is not in Brage for copyright reasons.






Paper i

Characterising the robustness of power-law networks.

Authors: Caroline A Johnson, Roger Flage and Seth D Guikema

Published in: Reliability Engineering & System Safety, 191, 106560.






Reliability Engineering and System Safety 191 (2019) 106560

Contents lists available at ScienceDirect

Reliability Engineering and System Safety i

journal homepage: www.elsevier.com/locate/ress _—

Characterising the robustness of coupled power-law networks M)

Gheok for
Updates.

Caroline A. Johnson™*, Roger Flage®, Seth D. Guikema®

2 University of Stavanger, P.O. Box 8600 Forus, 4036 Stavanger, Norway
® University of Michigan, USA

ARTICLE INFO ABSTRACT

Keywords:
Network topology
Power-law networks
Interdependent networks
Coupled networks
Network robustness

Many networks exhibit a power-law configuration, where the number of connections each node has follows a
power-law distribution, including the Internet, terrorist cells, species relationships and infrastructure. Given the
prevalence of power-law networks, studying the effects of disruptions on their performance is of interest.
Previous work has investigated the influence of network topology on the effects of random node failures for
independent networks. Many networks depend on others to function and thus, exploring the influence of net-
work topology on the effects of failures in interdependent networks is of interest. The present paper extends the
previous work to coupled power-law network systems. For a set of randomly generated coupled systems, each
containing two networks, we investigate the significant topological factors for different dependency types.
Failures in the coupled networks are simulated and the effects on the system performance are analysed by
performing a beta regression. The results are consistent across the dependency types, with the most influential
topological factors being mean nodal degree and factors relating to the dependency type. The results are also
compared with those of the independent networks and their potential relevance to the design of interdependent
networks is indicated, for example, their use within an infrastructure setting.

1. Introduction

It is well established that to model and evaluate the robustness (or
vulnerability) of critical infrastructure, the dependencies that exist
between infrastructure systems need to be accounted for [7,32,34].
Over the years, there have been many methods suggested for how to
model dependencies between infrastructures, including the use of agent
based and network based approaches [29]. Network models are based
on a network representation of the important components of each in-
frastructure, represented as nodes, and the connections between the
components within the same network, as well as between the different
networks, represented as edges. The edges between nodes of different
networks represent the dependencies between the different infra-
structures.

Infrastructure networks are a special case of the broader class of
interdependent networks. For example, the metabolic pathways of
different species in an ecosystem can be interdependent (e.g., one
species depends on an output from another species as an input).
Similarly, economies, when represented as networks of consumers and
producers, are strongly interdependent across regions within a country
and across different countries.

There have been many differing methods suggested for modelling
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the dependencies between infrastructures using network models. Some
examples of the different methods are given by Parshani et al. [31],
Gaogao et al. [19] Jiang et al. [20], and Cheng and Cao [10]. The main
structural differences between the models can be characterised by
whether the infrastructures are fully or partially dependent (i.e., if each
node has at least one dependency to a node in the other network or only
a fraction of the nodes do) and if components with dependencies have
single or multiple dependencies (each dependent node has one or more
than one dependency) [17].

For both independent and interdependent networks, percolation
theory has been used to find analytical solutions to disruptions across
an array of different network types and dependency methods [7,10,18].
Such papers show the number or fraction of nodes removed in the in-
itial disruption that lead to complete collapse of the investigated
system. This can be used as a measure of the system's robustness and to
compare the robustness of different system models [18,20]. However,
this measure does not convey information about what happens to net-
work performance at lower levels of node removals and does not di-
rectly provide information about the relative importance of different
topological properties of the network in terms of their influence on
network robustness.

Network flow models are an extension of the network models that
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include the addition of load to the nodes and/or edges of the network.
The load represents the amount of commodity present at each node and
or/edge. Each node and/or edge is also assigned a maximum capacity.
When a disruption occurs the load of any failed nodes and edges is
redistributed throughout the remaining functional network compo-
nents. The reassignment of the load can lead to additional failures if the
load of nodes or edges exceeds their maximum capacity [14,38].

Scala et al. [35] investigated the inclusion of physical flow to both
independent and interdependent networks, with a focus on how edge
overload affected the robustness of the networks. They used a mean
field model to redistribute the load of failed edges throughout the
system, that is, they assumed when an edge failed its load was redis-
tributed evenly throughout the existing edges within the network.

The addition of commodity flow within networks is useful when
looking into the cascading mechanisms between specific infrastructure
network types, such as electric power and telecommunication. The in-
teraction between the types of infrastructure can be explored to see how
the redistribution of commodity flow can influence the cascading ef-
fects of disruptions [22,38]. One conclusion from the literature is that
the inclusion of network flow shows an increased level of cascading
effects [42], while others argue that including “smart” interactions
(which occur due to buffers within real dependent infrastructure sys-
tems) between the two networks decreases the cascading effects within
the interdependent power-communication system [22].

The use of network flow models is effective when studying a specific
system, such as one including an electric power system. However, when
investigating the effects of dependencies between general infrastructure
networks, the type of infrastructure is not specified, and thus the flow of
the commodity cannot be included. Instead the structure of the net-
works can be explored. The effects of network structure, or topology, on
the robustness of independent networks have previously been in-
vestigated [3,23]. Different topological factors can be calculated, which
capture particular structural features of a network.

Four of these topological factors are nodal degree, path length,
betweenness centrality and clustering coefficient. Nodal degree spe-
cifies the number of edges connected to each node. Path length pro-
vides the shortest path between each nodal pair within a network.
Here the shortest path is considered as the path that traverses the least
number of edges. Betweenness centrality indicates the extent to which
a node lies on the shortest path between two other nodes within the
network [27]. Clustering coefficient (also referred to as transitivity)
indicates the how likely it is for the neighbours of a node to also be
neighbours, where if an edge exists between two nodes, then they are
neighbours. Clustering coefficient gives an indication of local re-
dundancy within a network.

Alipour et al. [3] used topological based and reliability based
measures to identify weak nodes within power transmission networks.
The topology based measures included factors such as nodal degree and
betweenness centrality. The reliability based measures incorporates
what the author refers to as the reliability of the edges within the
system. To do this, a weight is assigned to each edge that represents the
probability that the edge is functional. The topological factors are then
calculated including the weights of the edges. They also compared the
robustness of the independent power transmission networks to random
and targeted attacks, using efficiency as a measure of robustness. Effi-
ciency is defined as the inverse of the average of the shortest paths
between each nodal pair within the network. The targeted attacks were
simulated by removing the most central nodes of the network. The most
central nodes are defined as those who had the highest cumulative rank
score in relation to the reliability based measure, i.e., the greater the
value of each reliability based measure a node has the lower it is
ranked.

LaRocca and Guikema [23] provide a general overview of the
topological factors that have a significant influence on the robustness
of independent networks when random failures occur. The focus of
the paper was the robustness of networks, of which the nodal degree
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followed a power-law distribution with exponential cut-off. Here,
robustness was defined as the percentage of functional nodes after
disruptions. Their findings show that the following topological factors
are significant when characterising the robustness of independent
networks: mean nodal degree, mean betweenness centrality, mean
clustering coefficient, standard deviation of clustering coefficient and
standard deviation of path length. However, the influence of the to-
pology on the robustness of interdependent networks has not been
explored. In this paper, characterising the robustness of networks
with topological factors is extended to the case of coupled network
systems.

LaRocca et al. [24] compared the use of network topology and
network flow models to simulate electric power networks. They con-
cluded that using only network topology as performance measures for
particular power networks under specific disruption scenarios provides
poor estimates of system performance, relative to when commodity
flow is taken into account. However, they also find that an average of
some performance measures, such as largest connected subgraph, may
capture the average behaviour of the system when random failures
occur. If investigating the effects of disruption to a specific system that
includes at least one infrastructure for which the flow of the commodity
can be modelled, then the use of a physical flow model is more ap-
propriate than a network theoretic model. However, this paper aims to
give an overview for any type of networks within a coupled system and
thus does not include physical flow. The inclusion of flow limits the
connections within an individual network to all be of the same type of
connection, e.g. physical if the flow of a commodity (e.g. power of
water) or of information. By not including physical flow, the connec-
tions within the model can represent different types of connections,
rather than just one.

To extend the work of LaRocca and Guikema [23] the present paper
aims to provide a general overview of which topological factors are
important when random disruptions occur in coupled network systems
for a variety of different dependency types. The various dependency
types allow for the investigation of both dependent and interdependent
coupled systems. The 2000 coupled network systems are generated such
that each system consists of two networks, both of which are scale-free
networks that follow a power-law distribution with exponential cut-off.
The two networks present in each coupled system are referred to as
Network A and Network B. The dependencies between the two net-
works are directional (or unidirectional), i.e., if node i in Network A
depends on node j in Network B, node j does not necessarily depend on
node i in Network A.

In our analysis, the robustness of Network A is explored when
random disruptions occur within the coupled system. Robustness here
is considered as the percentage of functional nodes after a disruption
occurs. The analysis aims to advance the understanding of how the
robustness is affected within a short time frame after the initial dis-
ruption. All initial failures occur within Network B, thus investigating
the first order effects of a disruption on Network A. A first order effect
refers to the effect of a disruption that initiates in Network B and affects
Network A through the dependencies Network A has on Network B
[34]. After the disruptions are simulated within the coupled system, a
beta regression is performed to provide an overview of which topolo-
gical factors are significant in characterising the robustness of Network
A. A comparison of the significant topological factors across the dif-
ferent types of dependencies modelled is made, as well as a comparison
to the significant factors reported for independent networks in LaRocca
and Guikema [23].

The remainder of this paper is structured as follows: Section 2
provides an overview of the different network related terminology used
throughout the paper. The methods used to generate and analyse the
coupled network systems are outlined in Section 3, with the results of
the regression analysis are presented in Section 4. A discussion of the
findings is given in Section 5, followed by the conclusion in Section 6.
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2. Network terminology

Networks consisting of nodes and edges can be used to construct a
simplified representation of an infrastructure system. The nodes re-
present important components of the system and the edges represent
the connections between such components. The network or graph can
be denoted as G = {V, E}, where V is the set of vertices or nodes in
the network and E is the set of edges, which form connections between
the nodes. The size of the network, N, is equal to the number of vertices
[5]. The edges in a network can either be directed or undirected. When
the edges are directed, the direction of each edge is specified and can
only be traversed in the specified direction. When the edges are un-
directed, the edges can be traversed in either direction. For simplicity,
the networks generated to be included the coupled systems in this paper
are undirected.

Barabasi and Albert [4] first observed that the nodal degree of some
networks can be described as following a power-law distribution, given
by:

P(k) ~ k77

such that P(k) is the probability that a node is connected to k neigh-
bours and y is some constant. It has since been suggested that the
power-law distribution with exponential cut-off is more accurate as it
takes into account the physical cost of adding additional edges to a
node, providing an upper limit to the number of edges a node can have.
The power-law distribution with exponential cut-off is given as:

P (k) ~ k7e~k/K)

where K is the cut-off at which it becomes too costly to add additional
edges to a node [2, 26].

It has recently been questioned if power-law networks are as pre-
valent in the real world as the mountain of literature stating this would
have us believe. Broido and Clauset [6] investigated if the best fitting
power-law distribution for the nodal degree of 3662 simple graphs
(constructed from 928 real-world networks) was better than alternative
(non-scale-free) distributions. They use the term scale-free networks to
refer to networks which nodal degree follows a power-law distribution.
Likelihood ratio tests were compared for the best fitting model from
four alternative degree distributions. One such distribution they com-
pared was the power-law with exponential cut-off, where 56% of the
results favoured the power-law distribution with exponential cut-off.
This result led Broido and Clauset [6, p. 5] to state “a majority of
networks favor the power law with cutoff model, indicating that finite-
sized effects may be common”. This topic of discussion will likely gain
much attention in the near future, and may lead to a different under-
lying degree distribution to be proposed. However, for the time being,
the power-law distribution with exponential cut-off is one of the better
methods to use when constructing simulated networks.

2.1. Network topology

The structure or topology of a network can be described using dif-
ferent network parameters. Four such parameters that are particularly
useful for characterising the network structure are: nodal degree, be-
tweenness centrality, clustering coefficient and path length. Each of
these four topological parameters can be calculated for any network
[23].

2.1.1. Nodal degree

The degree, k, of any node in an undirected network is the number
of edges connected to the node. The mean nodal degree of the network
is expressed as

1
k=~ Yk
W

where V is the set of nodes in the network, and k; is the degree of node i.
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2.1.2. Path length

The length of the shortest path for each pair of nodes within a
network is calculated as the least number of edges traversed to get from
one node in the pair to the other. The shortest path from node i to node j
in a network is denoted as p;. For undirected graphs p; = p;. For the
remainder of the paper, the set of shortest paths between each nodal
pair in a network is denoted as L.

2.1.3. Betweenness centrality
For each node i in the network, the betweenness centrality is defined
as:
Be, = Z Z Paip :
ci = —=, a#Fb#I,
@ b P
where pq is the number of shortest paths from node a to node b that

pass through node i, and pg, is the total number of shortest paths from
node a to node b.

2.1.4. Clustering coefficient

The clustering coefficient of a node specifies how connected its
neighbours are to each other and is an indication of local redundancy in
the network. The neighbours of a node is the set of nodes to which it is
connected to. For node i, which has k; neighbours, the clustering coef-
ficient is defined as:

2E;

Cep= ————
kiCki = 1)

where E; is the number of edges between the neighbours of node i.
2.2. Giant connected component and source node clusters

When disruptions occur to a network, the network can fragment into
several clusters. The largest connected cluster present after the network
fragments is referred to as the Giant Connected Component (GCC). The
relative size of the GCC is the percentage of nodes within the GCC
[9,10,36]. The relative size of the GCC can be used as a measure of
network performance after disruption has occurred [17,22]. We ac-
knowledge that this is an imperfect measure of network robustness,
especially given that it does not account for source and sink nodes or for
the physics of network flows. However, this simple, widely-used mea-
sure, provides an initial view of the influence of topological factors on
the topological robustness of a network.

Source nodes can also be included into a network. Source nodes
represent components of the network that must be functioning in order
for the network to be functional. When a disruption occurs within a
network containing source nodes, only the clusters that contain source
nodes are considered functional.

2.3. Network dependencies

Connections between different networks can also be formed to
generate a system of dependent networks. These connections represent
the dependencies that exist between different infrastructure networks,
for example the dependency a water network has on an electricity
network to power electric pumps [13]. To distinguish between the
edges within each network and between the networks the terms intra-
connections and inter-connections are used. Intra-connections refer to
the connections or edges between two nodes within the same network.
Inter-connections refer to the connections or edges between two dif-
ferent networks, i.e. the dependencies between the networks.

For the remainder of the article, all intra-connections are assumed
to be undirected and all inter-connections are assumed to be directed.
This is representative of situations such as a drinking water network
and its dependency on a power network. The water within the network
can flow in both directions, such that the intra-connections are un-
directed. However, some components of the water network, such as the
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pumps, rely on electricity to function and thus the dependency is di-
rectional from the power network to the water network. Another ex-
ample is a transportation network and its dependency on a power
network. Within the transportation network traffic flows in both di-
rections, whereas the dependency is directed from the power network
to the transportation network, for example, to signals within the
transportation network that requires electricity. The power network can
also be dependent on the transportation network, for example, the
transportation of fuel (e.g., coal) or spare parts, but not necessarily on
the component that depends on the power network, such as the signals.

For coupled system where the networks have partial dependency
(i.e., only a percentage of the nodes in the network depend on another),
the influence of additional variables on the robustness of the system are
considered. These variables are the percentage of nodes in the network
which are dependent on another network, denoted Dp, and the intra-
nodal degree (number of intra-connections a node has) of these de-
pendent nodes, which is denoted as Dk. When source nodes are in-
cluded in the coupled systems, the influence of the additional variable
of the source nodes’ intra-nodal degree is also considered, and denoted
as Sk.

3. Methods

A total of 4000 networks were generated following the process
outlined in Section 3.1 before being sorted into pairs to give 2000
coupled network systems. The two networks within each system are
referred to as Network A and Network B. Different types of de-
pendencies between the two networks were explored and are described
in Section 3.2.1. For each dependency type, failure scenarios were si-
mulated within the 2000 coupled systems and the robustness of Net-
work A was recorded. More information on simulating the failure sce-
narios is given in Section 3.3. To characterise the robustness of Network
A from the topological factors of the coupled network system a beta
regression analysis was performed as described in Section 3.4.

3.1. Generating networks

The 4000 networks were generated using the preferential attach-
ment variation algorithm presented by LaRocca and Guikema [23]. This
algorithm assigns the degree of each node from the power-law dis-
tribution with exponential cut-off before assigning intra-connections
preferentially, based on nodal degree. All intra-connections are as-
sumed to be undirected.

An assortment of simulated networks was produced using combi-
nations of different network sizes and parameter groups for the nodal
degree distribution. Five different power-law distributions with ex-
ponential cut-off were used to assign the nodal degree of the networks.
The parameter groups of the five power-law distributions used are
shown in Table 1. These distributions are the same as those used pre-
viously by LaRocca and Guikema [23] and were chosen as they re-
presented nodal degree distributions exhibited by real-world networks
studied in Albert and Barabasi [2]. Twenty different network sizes
ranging from 100 to 1000 nodes were chosen from a uniform dis-
tribution and can be seen in Table 2. Therefore, for each combination of
network size and nodal degree distribution 40 networks were

Table 1
Power-law parameters used for generating networks.

Power-law distribution parameters

Y K
11 40
17 200
2.0 900
2.1 400
24 2000
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Table 2
Summary of generated networks.
Number Number of Number Number Number of Number
of nodes  degree of of nodes  degree of
distributions  networks distributions networks
100 5 40 485 5 40
133 5 40 509 5 40
142 5 40 536 5 40
232 5 40 547 5 40
249 5 40 690 5 40
350 5 40 697 5 40
361 5 40 752 5 40
448 5 40 862 5 40
464 5 40 896 5 40
467 5 40 1000 5 40
generated.

After generating the networks, the mean, minimum, maximum and
standard deviation of the four topological factors of each network was
calculated. A summary can be seen in Table 3.

3.2. Generating coupled network systems

The 4000 networks generated were then paired such that each pair
of networks, referred to as Network A and Network B, were the same
size and of the same parameter group for the nodal degree distribution.
Each pair was used to form a coupled network system, resulting in 2000
systems. The two networks within each coupled system were assumed
to occupy the same spatial area. The layout of each network was
decided using the layout.graphopt function in the igraph R package
[12]. This assigned each node a Cartesian (x, y) coordinate.

The inclusion of source nodes within the coupled network systems
was also explored to see if their presence caused a change in which
topological factors were significant to network robustness. When source
nodes were present in the coupled system, a random subset of nodes in
Network B were chosen to represent these source nodes. The size of the
subset was varied at 2%, 5% and 10% of the network's size. These re-
latively low percentages of source nodes are representative of systems
such as infrastructure where the large majority of nodes are demand
points and demand is met by a relatively small number of major source
nodes; for example, natural gas networks [15, 33, 37], electric power
systems [1, 39-41] and water distribution systems [21, 25, 28]. The
analysis could be extended to networks with much higher percentages
of source nodes, but this is not explored in this paper.

3.2.1. Forming dependencies

For each type of dependency, Network A is always dependent on
Network B, however Network B was either independent (did not de-
pend on Network A) or was dependent on Network A. For each de-
pendency type, a subset of nodes in Network A is randomly chosen to
depend on Network B. This subset is denoted as Ap. Each node in Ap
depends on the closest node in Network B (based on Euclidean dis-
tance). This allows multiple nodes in Ap, to be dependent on the same
node in Network B. The method of forming dependencies based on
geographic proximity is used by Duefas-Osorio et al. [13] when mod-
elling the interdependent power and water system of Shelby County,
Tennessee and Ouyang et al. [30] to simulate coupled power and water
systems with features similar to those of real infrastructure.

For dependency types that include Network B depending on
Network A, the dependencies Network A has on Network B are first
formed, using the method described in the previous paragraph. Next a
random subset of nodes in Network B is chosen to depend on Network
A. This subset is denoted as Bp. Each node in Bp is dependent on the
closest node in Network A (based on Euclidean distance) that is not
present in the subset Ap. This allows for multiple nodes in B, to depend
on the same node in Network A.
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Table 3
Summary of the topological characteristics of the generated networks, separated into Network A and Network B.
Network A Network B

Parameter Within-network measure Mean Min Max Std dev Mean Min Max Std dev

Network size (N) 496 100 1000 253.5 496 100 1000 253.5

Degree (k) Mean 5.35 234 12.94 2.35 5.37 249 12.44 237
Minimum 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00
Maximum 372 39 999 241 374 42 998 241
Std dev 20.50 6.77 37.18 6.24 20.62 6.83 36.94 6.23

Betweenness centrality (Bc) Mean 706 95 2948 535 700 95 2953 528
Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Maximum 214,499 1766 995,119 236,109 216,959 1752 993,561 236,791
Std dev 9049 368 31,468 7608 9131 344 31,419 7633

Clustering coefficient (Cc) Mean 0.31 0.04 0.66 0.11 0.31 0.03 0.69 0.12
Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Maximum 1.00 0.90 1.00 0.00 1.00 1.00 1.00 0.00
Std dev 0.40 0.11 0.49 0.08 0.40 0.10 0.49 0.08

Path length (L) Mean 2.36 1.96 4.00 0.53 2.35 1.95 3.98 0.52
Minimum 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00
Maximum 4.75 2.00 14.00 2.20 4.74 2.00 17.00 232
Std dev 0.46 0.06 1.38 0.33 0.46 0.06 1.90 0.33

Table 4
Summary of dependency types considered.

Type of dependency Type of dependency
Network A has on Network ~ Network B has on
B Network A

Percentage of source
nodes in Network B

Fixed, 10% - -
Fixed, 30% - -
Fixed, 50% - -
Fixed, 100%
Fixed, 50%
Random
Random - 2
Random - 5
Random - 10
Random Random -
Random Random 2
Random Random 5
Random Random 10

Fixed, 50%

The size of the dependent subsets Ap and Bp vary for each de-
pendency type. An overview of the size of the dependent subsets is
given in Table 4. When the percentage of dependency is referred to as
fixed, this means that each of the 2000 coupled systems have the same
fixed percentage of dependent nodes. When Network B was in-
dependent, 10%, 30%, 50% and 100% of dependency levels (of Net-
work A on Network B) were considered. These levels were picked such
that a range of levels that could be observed by infrastructure systems
were covered. When both Network A and B were dependent on each
other, a fixed percentage of 50% was considered, though this could be
extended in future work. When the percentage is referred to as random,
the percentage of nodes to be chosen for the subset(s) Ap (and Bp) is
randomly assigned to Network A (and Network B) in each of the 2000
coupled network systems. The percentage of dependent nodes is as-
signed using a uniform distribution with a range from 1/N% to 100%,
where N is the size of the network, for each dependent network. This
provides a range of dependency from only one node being dependent in
a network to the network being fully dependent.

3.3. Simulating failures

Each failure scenario was simulated by randomly choosing a subset
of nodes in Network B to fail. The percentage of nodes randomly chosen
to initially fail in Network B was investigated at the 10%, 25% and 50%
level. These failed nodes were then removed from the network and the
cascading effect throughout the coupled system was observed. For each
dependency type, 100 failure scenarios were run for each of the 2000

coupled network systems. The percentage of nodes functional in
Network A was averaged over the 100 failure scenarios run on each
coupled network system and recorded. Two different methods were
used to simulate the cascading effects of the initial disruption. When the
coupled network systems did not contain source nodes, only nodes in
the GCC of Network A were considered as functional. When source
nodes were present in the coupled network system, only nodes that
could be reached from source nodes after disruption were considered as
functional. A more in-depth explanation to the two methods used to
simulate the cascade effects are given in Sections 3.3.1 and 3.3.2.

3.3.1. Giant connected component (source nodes not present)

When source nodes were not present in the coupled system, only
nodes present in the GCC were considered as functional. The initial
disruption removed a percentage of nodes in Network B, causing the
network to fracture into clusters. Of these clusters, only the largest, the
GCC, is considered as functional and thus all nodes outside the GCC are
also considered as failed. Any nodes in Aj, that depend on failed nodes
in Network B also fail and are removed from Network A. This causes
Network A to fragment into clusters. As with Network B, only the lar-
gest cluster, the GCC, of Network A is considered functional and all
nodes outside of the GCC are also considered as failed. Any nodes in B,
that depend on nodes in Network A which have failed are also con-
sidered failed. This process iterates until an equilibrium is reached (no
additional node failures occur). In the dependency types where
Network B is independent, B, will be an empty set and thus the failures
of Network A will not affect Network B and the system will reach
equilibrium after any nodes outside of the GCC of Network A are con-
sidered as failed.

3.3.2. Source node clusters (source nodes present)

When source nodes are present in the coupled system, the initial
failures occur within Network B, the failed nodes are removed and the
network fragments as with the method described in Section 3.3.1.
However, with the inclusion of source nodes, only the clusters which
contain source nodes will be considered as functional and all nodes
outside of these clusters are also considered as failed. As before, any
nodes in Apwhich depend on failed nodes in Network B fail and Net-
work A fragments into clusters. The set of functioning dependent nodes
in Network A is denoted as A,y Now only clusters that have input from
Network B are functional. This means that only clusters containing the
nodes in Apy are functional. Nodes outside of these functional clusters
are also considered as failed. Any nodes in B, that depend on failed
nodes in Network A are now considered as failed, causing further
fragmentation to Network B. As before, this process iterates until the
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Table 5
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Significant covariates when Network A is dependent on Network B and Network B is independent and the effect of change of these covariates. The sign indicates if the
covariate has a positive or negative influence on the percentage of nodes considered functional in Network A after random failures in Network B. The colour indicates
the covariate coefficient value with the darker the colour indicating the further the value is from 0.

Type of dependency Network A has on Network B | Fixed, 10% | Fixed, 30% | Fixed, 50% | Fixed, 100% Random Random Random Random
Percentage of source nodes in Network B 0 0 0 0 2 5 10
Percentage of initial failures in Network B 10 25 50|10 25 50|10 25 50|10 25 50|10 25 S0|10 25 50|10 25 50|10 25 S0
Topology of Network A only in | k, mean A _ + + '+ + + Py . TN -
regression model & stddev A . L L. S le - - - - - [ - + I -

Be, mean A - + + e

Be, max A + o+ . . B N

Ce, mean A + o+ [+ o+ o+ |4 + + o+ 5 - s

L, std dev A = - < e = 2= R +

2 BEE

Dk, mean A A A = 2 A = A A A = A A A A A & A 2
Topology of Networks A and B | k, mean A + o+ 4+ |+ + + |+ + + |+ + o+ |+ + +

in regression model Be, max A _ ~ ~ ~

Ce, mean A oo
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Dk, mean A - e - P - - N T .
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Be, mean B - + o+ +

Ce, mean B + o+ o+ |+ + + o+ - +

L, std dev B S + B +

Sk, mean B o B

system reaches an equilibrium. Again, in the dependency types where
Network B is independent, the set Bp will be empty and the failures will
not cascade back into Network B.

3.4. Regression model

After simulating the various failure scenarios, regression analyses
were performed on the recorded outcomes. The analyses present the
significant topological measures of the coupled network system that
affect the robustness of Network A. For each method of forming de-
pendencies, and each percentage of initial node failures in Network B,
two regression analyses were completed, one that included the topo-
logical factors of Network A only and one including the topological
factors of both Networks A and B. In real-world situations the two
different infrastructures are commonly owned by different private
companies that do not share infrastructure data for safety and security
reasons. Therefore, if the owner or management of Network A wanted a
general overview of the most important topological factors to consider
in relation to robustness of random failure events they would be able to
have an good overview of their own structure but would likely have
little or no information regarding the topological structure of the net-
work they are dependent on.

The dependent variable for the regression was the average percen-
tage of nodes in Network A considered functional after a random dis-
ruption occurs in Network B over the 100 failure scenarios. The beta
regression model was chosen as the dependent variable was in the
range (0, 1). The beta regression model was proposed by Ferrari and
Cribari-Neto [16] for instances when the dependent variable follows a
beta distribution. The beta density they suggest for the regression
model is a parameterisation of the beta density to account for a re-
gression structure where the dependent variable is an average of the
response and is given as

T'($) - —pe
m}’” 11 =yl 0 < y(1, ¢)0

and the mean and variance of y are

foius ) =

E@) =u
and

_ Vv
Var(y) = s

The parameter estimation is performed using the maximum like-
lihood method. For our analysis the logit link function was used.

When only the topology of Network A is considered, the in-
dependent variables were the mean, minimum, maximum and standard
deviation of the four topology factors (shown in Table 3) as well as the
percentage of dependency and mean nodal degree of dependent nodes,
when applicable. When considering the topology of Network A and
Network B the independent variables also included the mean,
minimum, maximum and standard deviation of the four topological
factors for Network B, as well as the percentage of dependency, mean
nodal degree of dependent nodes and mean nodal degree of source
nodes, when applicable.

Any of the within network topological factors that have a standard
deviation of zero in Table 3 were removed from the data set as they do
not impact the results. After removing variables with a standard de-
viation of zero, the Variance Inflation Factor (VIF) method was used to
remove multicollinear variables. The VIF of each variable gives an in-
dication of how well each variable can be explained by a combination
of the other variables. A VIF of 1 indicates the variable is not explain-
able with the others, with a larger VIF indicating a larger degree of
redundancy with the other variables. The variable with the largest VIF
was removed iteratively until all variables had a VIF value of less than
10. For the regression models which only included the topological
factors of Network A and for the model including the topological factors
of both Networks A and B, the following variables of Network A were
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Table 6
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Significant covariates when Network A and Network B are interdependent and the effect of change of these covariates.

The sign indicates if the covariate has a positive or negative infl

on the of nodes c d functional

in Network A after random failures in Network B. The colour indicates the covariate coefficient value with the darker

the colour the further the value is from 0.

Type of interdependency
Networks A and B have Fixed, 50% Random Random Random Random
Percentage of source nodes in
Network B 0 2 5 10
Percentage of initial failures in | 10 25 50 | 10 25 50 50 [ 10 25 50
Network B
Topology of | k, mean A + +
Network A | gqdeva [ - . |- R +
only in
regression Bc, mean A + O+ o+ - -
model Bc, max A - - - oo
Ce,mean A | ¢ 4+ 4 + N
L,ystddevA | . - - - +
Dp, A
Dk, mean A
Topology of | k, mean A
Networks A
and B in Be, max A N - B B
regression Cc, mean A + + +
model 1 sddeva |- - - - B
Dp, A
Dk, mean A - - - - - - - - - - - - -
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Cec, mean B + o+ o+ - - - +
L, std dev B - - + BB + +
Dp, B - - - - - - A - - -
Dk, mean B - - + 4+ + o+
Sk, mean B + PP

removed due to multicollinearity: maximum nodal degree, betweenness
centrality standard deviation, clustering coefficient standard deviation,
mean path length and maximum path length. Additionally, for the re-
gression model including topological factors from both Networks A and
B the variables maximum nodal degree and mean betweenness cen-
trality of Network A were removed due to multicollinearity as well as
the following variables from Network B: mean nodal degree, maximum
nodal degree, maximum betweenness centrality, betweenness centrality
standard deviation, clustering coefficient standard deviation, mean
path length and maximum path length.

After removing variables due to multicollinearity, the remaining
variable were normalised before fitting a beta regression model using
the betareg R package [11]. After fitting the initial beta regression
model, the least significant variable was removed iteratively, until all
remaining variables were significant at the & = 0.05 level. The results of
the regression analysis are shown in Section 4.

4. Results

The results of the beta regression analyses are shown in Tables 5 and
6. Table 5 contains the results for regression analyses relating to the
dependent coupled systems (i.e., Network A depends on Network B and
Network B is independent). Table 6 contains the results for the re-
gression analyses relating to the interdependent coupled systems (i.e.

Networks A depends on Network B and Network B depends on Network
A). The full results of the beta regression models are given in
Appendix A.

Each column of Tables 5 and 6 represents the result of the regression
analysis for a dependency type and percentage of initial failures oc-
curring in Network B. For example, the first column in Table 5 shows
the results for when, in each of the 2000 coupled network systems, 10%
of nodes in Network A are dependent on Network B, Network B has no
source nodes and 10% of nodes in Network B are randomly chosen to
fail initially. If a topological factor was significant in a beta regression
model, then the cell in the corresponding column is shaded and con-
tains either a positive or negative sign. The sign indicates if the topo-
logical factor has a positive of negative influence on the robustness of
Network A, and the shading indicates how strong of an influence it has,
the darker the shading the more influential the factor is (i.e., the further
the covariate coefficient is from 0). Table 7 shows the values associated
with the levels of shading for both Tables 5 and 6 (the same scale has
been used to shade both Tables 5 and 6). If a factor has a positive in-
fluence on the robustness of Network A, this indicates the greater the
values of the topological factor the more robust Network A is. When a
factor has a negative influence on the robustness of Network A this
means the greater the value of the topological factor the less robust
Network A is.
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Table 7

Reference for the covariate coefficient values represented in Tables 5 and 6.
Coefficient
Value -0.4 -0.2

Colour

4.1. General observations

The level or percentage of dependency Network A had on Network B
(Dp, A) was always significant (when included in the applicable re-
gression models) and has a great negative on the robustness of Network
A. Given that all initial failures occur in Network B, it seems intuitive
that the more dependent Network A is on Network B, the greater the
cascading effects will be in Network A. The mean intra-nodal degree of
dependent nodes in Network A (Dk, mean A) consistently has a negative
effect on the robustness of Network A. The structure of power-law
networks is described as containing hubs [8]. The greater the mean
nodal degree of dependent nodes, the more likely it is for the central
nodes of the hubs to be dependent on Network B. When one of the
central nodes of a hub fails, the network is more likely to fragment into
many clusters that contain only a small number of nodes. Therefore, the
higher the intra-nodal degree of dependent nodes in Network A, the
greater the chance that a central node of a hub fails, and thus the less
robust the network is when initial failures occur in Network B.

The mean nodal degree of Network A (k, mean A) is significant in
every regression model with a positive influence on the robustness of
Network A. This is expected as the greater the mean nodal degree, the
more edges or connections are present in the network. This increases
the chance of alternative pathways within the networks, increasing the
redundancy of the network.

4.2. Dependent coupled systems

Table 5 shows the results for the dependent coupled systems, that is
when Network A depends on Network B and Network B is independent.
The top section of Table 5 shows the regression results when only the
topological factors of Network A were included as covariates in the
regression model. The bottom section of Table 5 shows the results when
both the topological factors of Networks A and B were included in the
regression model.

4.2.1. Topological factors of Network A only

When Network A has a fixed partial dependency on Network B, the
first three columns in Table 5, the two most influential topological
factors are the mean nodal degree (k, mean A) and the mean intra-nodal
degree of dependent nodes (Dk, mean A). The mean nodal degree has a
positive influence on the robustness of Network A, whereas the mean
intra-nodal degree of dependent nodes has a negative influence. For
Network A fully dependent on Network B (100% dependency), as
shown in column four, it can be seen that the mean nodal degree (k,
mean A) still has a positive influence on the robustness of Network A,
but is less influential compared to when Network A is partially de-
pendent. The standard deviation of both nodal degree and path length
(k, std dev A and L, std dev A) have a weak negative influence on the
robustness of Network A for all fixed dependency types. The mean
clustering coefficient (Cc, mean A) has a weak positive influence on the
robustness of Network A.

‘When the level of dep 1cy is randomly d to each of the
2000 coupled systems, the percentage of dependent nodes in Network A
(Dp, A) becomes the most influential factor, with a negative influence
on the robustness of the network. The mean nodal degree and mean
intra-nodal degree of dependent nodes (k, mean A and Dk, mean A)

consistently have a positive and negative influence, respectively, on the
robustness of Network A, however to a lesser extent than when the
dependency level is fixed.

4.2.2. Topological factors of Network A and Network B

The topological factors with the greatest influence when the topo-
logical factors of both networks are included in the regression model
are consistent of those when only the factors of Network A are con-
sidered. For fixed levels of dependency the mean nodal degree of
Network A (k, mean A) has the greatest positive influence on the ro-
bustness of Network A and the mean intra-nodal degree of dependent
nodes in Network A (Dk, mean A) has the greatest negative influence.
When the level of dependency is randomly assigned to each coupled
system again the percentage of dependency (Dp, A) becomes the most
influential factor, with a negative influence on the robustness of
Network A. The nodal degree standard deviation of Network A (k, std
dev A) is no longer significant, however path length standard deviation
of Network A (L, std dev A) is sometimes significant, mainly when the
initial percentage of node failures is 10% and 25%, again with a ne-
gative influence on the robustness of Network A.

When source nodes are not present in the model the nodal degree
standard deviation of Network B (k, std dev B) is significant with a weak
negative influence on the robustness of Network A. When source nodes
are present the nodal degree standard deviation of Network B (k, std
dev B) is sometimes significant, mostly with a weak positive influence
on the robustness of Network B. However, the inclusion of source nodes
within the coupled system does not change which topological factors
are the most influential on the robustness of the network.

4.3. Interdependent coupled systems

Table 6 shows the result for interdependent coupled systems, that is
when Network A and B both depend on each other. The top section of
Table 6 shows the regression results when only the topological factors
of Network A are included in the regression model. The bottom section
of Table 6 shows the results when the topological factors of both net-
works were included in the regression model.

4.3.1. Topological factors of Network A only

The first column in Table 6 shows the results when both Network A
and Network B had a fixed level of dependency at 50%. Similar to the
results for fixed levels of dependency in Table 5, the mean nodal degree
and mean intra-nodal degree of dependent nodes in Network A (k, mean
A and Dk, mean A) have the greatest influence on the robustness of
Network A. Again, the mean nodal degree (k, mean A) has a positive
influence and the mean intra-nodal degree of dependent nodes (Dk,
mean A) has a negative influence. The remaining columns in Table 6
show the results when the level of dependency was randomly assigned
to Networks A and B separately, with the level of dependency for
Network A (Dp, A) included in the regression model. Again, this now
becomes the most influential factor, with a negative influence on the
robustness of Network A. The influence of the mean nodal degree and
mean intra-nodal degree (k, mean A and Dk, mean A) are still influential
with a positive and negative influence, respectively.

For a fixed 50% dependency and random dependency when no
source nodes are present both the standard deviation of the nodal
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degree and path length (k, std dev A and L, std dev A) have a weak
negative influence on the robustness of Network A. When source nodes
are present the influence of both nodal degree standard deviation and
path length standard deviation (k, std dev A and L, std dev A) have a
weak influence, when significant, but now both have a positive influ-
ence on the robustness of Network A.

4.3.2. Topological factors of Network A and Network B

Comparing the bottom section on Table 6 with that of Table 5, the
results look similar, with the main difference being that now that
Network B depends on Network A the percentage of dependency Net-
work B has on Network A (Dp, B) is now included in the model, and is
significant with a negative influence on the robustness of Network A.
The mean intra-nodal degree of the dependent nodes in Network B (Dk,
mean B) is significant in some of the regression models, however the
influence it has is not as great as the mean intra-nodal degree of the
dependent nodes in Network A (Dk, mean A).

Nodal degree standard deviation of Network A (k, std dev A) is no
longer significant for any regression models. However, path length
standard deviation of Network A (L, std dev A) is still sometimes sig-
nificant, with a weak negative influence when significant. Nodal degree
standard deviation of Network B (k, std dev B) is often significant, with
a weak influence on the robustness of Network A. When source nodes
are not present in Network B this influence is negative, but becomes
positive when source nodes are present in Network B.

5. Discussion

In the analysis presented, the first order effects of a disruption
within a coupled system have been explored for different structures of
coupled systems. Across the various methods of forming dependencies
(both dependent and interdependent systems) as well as two different
methods of simulating failures, the majority of the results were con-
sistent.

The most influential factors across all the coupled network struc-
tures investigated are the mean nodal degree of Network A, the mean
intra-nodal degree of dependent nodes in Network A and, when ap-
plicable, the percentage of dependency Network A has on Network B. It
is worth noting that of the three most influential factors, two were in
relation to the dependency Network A has on Network B. However, this
analysis only covers scenarios where initial failures occurred in
Network B and so these results are to be expected.

The analysis which included the topological factors of Network B (in
addition to those of Network A) concluded some addition factors were
significant, but have only minor influence on the robustness of Network
A. This suggests that even for interdependent networks, the most im-
portant topological factors when characterising the robustness are those
relating to the network's own structure.

The most influential factor was the percentage of dependency
Network A had on Network B. This has a negative effect on the ro-
bustness of a network in relation to first order effects. All initial dis-
ruptions occurred within Network B, and so, the more nodes in Network
A depending on Network B, the more likely it is for failures to cascade
into Network A. Increased percentage of dependency increases the
number of paths available for the disruption to cascade from Network B
to Network A.

The mean nodal degree of Network A has a positive influence on the
network's robustness, however, the mean nodal degree of dependent
nodes in Network A has a negative influence. The positive influence of
the mean nodal degree can be attributed to the fact that the higher the
mean nodal degree a network has, the more intra-connections are
present, increasing the likelihood of available paths between the nodes,
and so, increasing the redundancy of the network. The negative influ-
ence of the mean intra-nodal degree of dependent nodes in Network A is
intuitive. Any dependent node in Network A fails if the node it depends
on fails. If the dependent nodes have a high intra-degree, when they fail
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they have a greater potential to affect the robustness of Network A.

Some factors were significant over the different system structures,
but their effect on the robustness of the network changed. For example,
when source nodes are present in Network B, the standard deviation of
the nodal degree of Network A has a positive influence. However, when
neither network within the coupled system contains source nodes, the
standard deviation of Network A's nodal degree has a negative effect on
its robustness. The mean clustering coefficient of Network A also
changes from having a positive influence when source nodes not are
present in Network B, to a negative influence when source nodes are
present in the coupled system.

The change in the influence of the clustering coefficient may be due
to the different methods of assessing which nodes are functional for the
different coupled system structures. When source nodes are not present
within the system, the GCC method is used to assess which nodes are
functional after disruption. When this method is used the more con-
nections between a neighbourhood of nodes, the less likely the neigh-
bourhood is to fragment when disruptions occur, leaving a cluster with
a high population. However, when source nodes are present, a node is
only functional if there is a path available from any source node to that
node. If neighbourhoods of nodes are highly connected, they may be
reliant on only a small number of nodes in the neighbourhood to re-
ceive input from the source nodes. When these nodes fail, the other
members of the neighbourhood will no longer have a path from a
source node to itself, causing the entire neighbourhood to fail.

When comparing the results of the coupled system analysis to those
found by LaRocca and Guikema [23], some factors which were sig-
nificant for independent networks were no longer significant for de-
pendent networks. Other factors remained significant but the influence
of the factors on the robustness of the network changed. LaRocca and
Guikema [23] found that the mean clustering coefficient was the most
influential topological factor for independent networks when 10% and
25% of nodes initially failed. When 50% and 75% nodes initially failed
in an independent network the mean nodal degree was the most in-
fluential factor. However, when looking at the robustness of a network
in a coupled system, the influence of the mean nodal degree is always
more influential that the mean clustering coefficient. This suggests that
for first order disruptions the overall redundancy of the network is more
important than the local redundancy.

These results can be used alongside those of LaRocca and Guikema
[23] to provide some direction on which topological factors should be
given more focus on when planning improvements or developing new
networks. The influence of the significant topological factors shown by
LaRocca and Guikema [23] for failures within a network and those
presented in this paper for first order disruptions can be used together
to plan the structure of networks, such as infrastructure, so that it is
robust to disruptions that both directly affect it and, through de-
pendencies, indirectly affect it.

If a new network is being designed, attention should be given to the
level of dependency. Our results show that for each dependency type
we investigated, the higher the level of dependency, the less robust the
network is to first order disruptions. This suggests that the level of
dependency a network has should be low as possible.

The nodes which have dependencies should also be carefully con-
sidered. Our results show that the greater the nodal degree of the
components that are dependent on another network, the less robust the
network is to first order disruptions. This suggests that dependent nodes
should have the fewest number of intra-connection possible. However,
in reality, the components which have dependencies are guided by
functionality. In this case, the results can be considered when deciding
how to increase redundancy within the network. For example, in a
water supply network, the dependency on the power network is
through pumps within the network. The nodal degree of the dependent
pumps could be taken into consideration when deciding where to im-
prove redundancy, such as the addition of a back-up generator.

This extension of LaRocca and Guikema [23] to interdependent
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networks has covered a range of coupled network structures to provide
a generalised overview of the important topological factors for char-
acterising robustness of a dependent network, however, there are nu-
merous ways of modelling dependencies between networks, as well as
multiple failure scenarios. The results give a general overview of the
important topological factors for a network present in a coupled in-
frastructure system, where each dependent node has one and only one
dependency, concerning the first order effects of a random disruption.

The results presented in this paper highlight to networks, such as
infrastructure, that even though they depend on another infrastructure,
the most influential factors are primarily those attributed within their
own structure, or topology. Therefore, changes to their own structure
can help to increase their robustness to random failures in the depen-
dent networks. Although when applicable, the percentage of de-
pendency was the most influential topological factor, the dependency of
one infrastructure on another is defined by the need for the input (or
the utility) that the infrastructure produces and thus is not easy to
change to increase the robustness of the dependent infrastructure.
Therefore, the more important topological factors to consider when
designing or improving infrastructure are nodal degree and the intra-
nodal degree of the dependent networks. The topology of components
(or nodes) with dependencies on other networks are shown to be im-
portant and thus gives an indication that providing some redundancy
into the infrastructure, such as back-up generators for those dependent
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on the power network, for example, could improve their own robust-
ness.

6. Conclusion

In conclusion we find that the most influential topological factors
associated with the robustness of coupled power-law networks with
exponential cut-off are those related to the dependency the network has
on the network in which the disruption originates. These factors are the
percentage of dependency and the mean nodal degree of the dependent
nodes in the coupled power-law network system. However, in networks
such as infrastructure the dependency an infrastructure has on another,
and which components need input from another infrastructure is de-
termined by the operational needs of the network and thus is difficult to
change. The mean nodal degree of the network has also shown to be
very influential on the robustness of the network, with the greater the
mean degree the more robust the network was to first order effects of a
disruption. Although a variety of dependency types have been explored,
the results remained consistent over the different coupled network
structures. The results provide a general overview of the most influ-
ential topological factors for a coupled network system and can be used
as a basis of which topological factors should be considered by, for
example, infrastructure owners or management when developing or
improving their infrastructure.

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.ress.2019.106560.

Appendix A

Tables A.1-A.6 show the full beta regression results for the various regression analyses performed as part of the current paper.

Table A.1

Full beta regression results for fixed dependency types when topology of Network A only are included in the regression analysis.

10% initial failures

25% initial failures

50% initial failures

Dependency type Topology Co-efficient Std error p value Topology Co-efficient  Std error p value Topology Co-efficient ~ Std error p value
measure measure measure

Network A fixed 10% Intercept 3.904 0.007 0.000 Intercept 2991 0.007 0.000 Intercept 2.328 0.007 0.000
dependency kmeanA  0.460 0010 0.000 kmeanA 0500 0013 0000 kmeanA 0554 0.014 0,000
Network B Bc, mean A —0.049 0.008 0.000 k, std dev A —0.030 0.007 0.000 k, std dev A —0.029 0.008 0.000
independent LstddevA —0.041 0011 0000 CcmeanA  0.036 0.009  0.000 Ce meanA  0.034 0010 0.000
Dk, mean A —0.491 0.006 0.000 L, std dev A —0.064 0.014 0.000 L, std dev A —0.066 0.016 0.000
Dk, mean A —0.562 0.006 0.000 Dk, mean A —0.652 0.007 0.000
Network A fixed 30%  Intercept 2712 0.005  0.000 Intercept 1.741 0.005  0.000 Intercept 0.964 0.006  0.000
dependency k, mean A 0.581 0.013 0.000 k, mean A 0.634 0.012 0.000 k, mean A 0.769 0.015 0.000
Network B K stddevA —0.042 0006 0000 KstddevA —0037 0006 0000 KstddevA —0032 0007  0.000
independent Cc, mean A 0.021 0.007 0.003 Cc, mean A 0.023 0.007 0.001 Cc, mean A 0.031 0.008 0.000
LstddevA —0052 0012 0000 ListddevA —0041 0011 0000 ListddevA —0031 0013 0020
Dk, mean A —0.509 0.009 0.000 Dk, mean A —0.576 0.008 0.000 Dk, mean A -0.729 0.010 0.000
Network A fixed 50% Intercept 2.168 0.004 0.000 Intercept 1.129 0.004 0.000 Intercept 0.232 0.005 0.000
dependency k meanA  0.607 0013 0000 kmeanA  0.689 0012 0000 kmeanA 0894 0015  0.000
Network B K, std dev A —0.049 0.005 0.000 K, std dev A —0.046 0.004 0.000 K, std dev A —0.045 0.006 0.000
independent Ce,mean A 0.012 0.006  0.040 Ce,meanA 0015 0.005  0.005 Cec meanA  0.020 0.007  0.002
L, std dev A —0.048 0.010 0.000 L, std dev A —0.038 0.009 0.000 L, std dev A —0.026 0.011 0.015
Dk meanA 0498 0011 0000 Dk meanA —0581 0010 0000 DkmeanA —079 0012  0.000
Network A fixed 100% Intercept 1.396 0.003 0.000 Intercept 0.184 0.003 0.000 Intercept -1.176 0.004 0.000
dependency k, mean A 0.158 0.006 0.000 k, mean A 0.178 0.006 0.000 k, mean A 0.233 0.007 0.000
Network B K, std dev A —0.078 0.007 0.000 K, std dev A —0.086 0.007 0.000 K, std dev A -0.102 0.006 0.000
independent Bc, max A 0.017 0.007 0.013 Bc, max A 0.017 0.007 0.010 Bc, mean A 0.021 0.008 0.009
LstddevA —0.067 0006 0000 CcmeanA  0.012 0.004 0005 Ce meanA  0.037 0.006  0.000
L, std dev A —0.054 0.007 0.000 L, std dev A —0.049 0.010 0.000
Network A fixed 50% Intercept 1.941 0005  0.000 Intercept 0.932 0.005  0.000 Intercept 0.092 0.006  0.000
dependency k, mean A 0.634 0.016 0.000 k, mean A 0.746 0.016 0.000 k, mean A 0.977 0.018 0.000
Network B fixed 50% K, stddevA  —0.061  0.006 0000 K stddevA —0.053 0006 0000 KstddevA —0051  0.007  0.000
dependency Cc, mean A 0.019 0.007 0.006 Cc, mean A 0.027 0.007 0.000 Cc, mean A 0.036 0.008 0.000
L, std dev A —0.081 0.012 0.000 L, std dev A —0.058 0.012 0.000 L, std dev A —0.026 0.013 0.045
Dk, meanA  —0.528 0013 0000 Dk meanA —0641 0013 0000 Dk meanA -0887 0015  0.000
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Table A.2
Full beta regression results for fixed dependency types when the topology of both Network A and Network B are included in the regression analysis.
10% initial failures 25Y% initial failures 50% initial failures
Dependency type Topology Co-efficient Std error p value Topology Co-efficient  Std error p value Topology Co-efficient  Std error p value
measure measure measure
Network A fixed 10% Intercept 3.904 0.007 0.000 Intercept 2.991 0.007 0.000 Intercept 2.328 0.007 0.000
dependency k, mean A 0.467 0.011 0.000  k, mean A 0.492 0.013 0.000  k, mean A 0.547 0.014 0.000
Network B L, std dev A —0.065 0.012 0.000 Cc, mean A 0.038 0.009 0.000 Cc, mean A 0.037 0.009 0.000
independent Dk, mean A —0.491 0.006 0.000 L, std dev A —0.053 0.013 0.000 L, std dev A —0.056 0.014 0.000
k, std dev B —0.017 0.008 0.029 Dk, mean A —0.563 0.006 0.000 Dk, mean A —0.652 0.007 0.000
Bc, mean B —0.032 0.010 0.001 k, std dev B —0.026 0.007 0.000 Kk, std dev B —0.025 0.007 0.000
Network A fixed 30% Intercept 2.712 0.005 0.000  Intercept 1.741 0.005 0.000  Intercept 0.964 0.006 0.000
dependency k, mean A 0.568 0.012 0.000 k, mean A 0.622 0.011 0.000 k, mean A 0.746 0.011 0.000
Network B L, std dev A —0.034 0.010 0.001 L, std dev A —0.024 0.009 0.011 Dk, mean A -0.729 0.010 0.000
independent Dk, mean A —0.509 0.009 0.000 Dk, mean A —0.576 0.008 0.000 k, std dev B —0.025 0.006 0.000
k, std dev B —0.037 0.005 0.000  k, std dev B —0.032 0.005 0.000  Cc, mean B 0.044 0.006 0.000
Cc, mean B 0.030 0.006 0.000 Cc, mean B 0.034 0.006 0.000
Network A fixed 50% Intercept 2.168 0.004 0.000  Intercept 1.129 0.004 0.000  Intercept 0.232 0.005 0.000
dependency k, mean A 0.593 0.013 0.000 k, mean A 0.678 0.012 0.000 k, mean A 0.874 0.012 0.000
Network B L, std dev A —0.030 0.008 0.000 L, std dev A —0.023 0.007 0.001 Dk, mean A —0.789 0.012 0.000
independent Dk, mean A —0.497 0.011 0.000 Dk, mean A —0.580 0.010 0.000  k, std dev B —0.039 0.005 0.000
k, std dev B —0.043 0.004 0.000 k, std dev B —0.041 0.004 0.000 Cc, mean B 0.029 0.005 0.000
Cc, mean B 0.019 0.005 0.000  Cc, mean B 0.019 0.005 0.000
Network A fixed 100% Intercept 1.396 0.003 0.000 Intercept 0.184 0.003 0.000 Intercept -1.176 0.004 0.000
dependency k, mean A 0.146 0.005 0.000  k, mean A 0.162 0.006 0.000  k, mean A 0.210 0.004 0.000
Network B L, std dev A —0.029 0.006 0.000 L, std dev A -0.017 0.006 0.007 k, std dev B —0.078 0.004 0.000
independent k, std dev B —0.058 0.004 0.000 k, std dev B —0.064 0.004 0.000 Cc, mean B 0.044 0.004 0.000
L, std dev B —0.026 0.006 0.000  Cc, mean B 0.016 0.004 0.000
L, std dev B —0.020 0.006 0.002
Network A fixed 50% Intercept 1.941 0.005 0.000  Intercept 0.932 0.005 0.000  Intercept 0.092 0.006 0.000
dependency k, mean A 0.659 0.018 0.000 k, mean A 0.758 0.017 0.000 k, mean A 0.958 0.015 0.000
Network B fixed 50% L, std dev A —0.047 0.010 0.000 L, std dev A —0.039 0.010 0.000  Cc, mean A 0.024 0.011 0.022
dependency Dk, mean A —0.529 0.013 0.000 Dk, mean A —0.639 0.013 0.000 Dk, mean A —0.886 0.015 0.000
k, std dev B —0.059 0.006 0.000  k, std dev B —0.046 0.005 0.000  k, std dev B —0.044 0.006 0.000
Cc, mean B 0.021 0.007 0.003 Cc, mean B 0.033 0.006 0.000 Cc, mean B 0.023 0.011 0.033
L, std dev B —0.030 0.011 0.007 Dk, mean B —0.030 0.011 0.006
Dk, mean B —0.032 0.011 0.005

Table A.3
Full beta regression results for when Network A has random dependency types, Network B is independent and the topology of Network A only is included in the
regression analysis. .

10% initial failures 25% initial failures 50% initial failures
Dependency group Topology ~ Co-efficient Std error p value Topology ~ Co-efficient Std error pvalue Topology — Co-efficient Std error p value
measure measure measure
Network A random Intercept 2.347 0.009 0.000 Intercept 1.319 0.009 0.000 Intercept 0.397 0.010 0.000
dependency kmeanA 0128 0013 0000 kmeanA 0147 0013 0000 kmeanA 0264 0011 0,000
Network B k, std dev A —0.035 0.009 0.000 k, std dev A —0.037 0.010 0.000 k,std dev A —0.029 0.010 0.002
independent L,stddevA —0.039 0.013 0.003 L,stddevA —0.040 0.014 0.005 Dp, A —1.064 0.011 0.000
Dp, A ~0.693 0008 0000 Dp, A -0.814 0009 0000 Dk meanA -0453  0.020  0.000
Dk, mean A —0.037 0.007 0.000 Dk, mean A —0.057 0.007 0.000
Network A random Intercept  2.430 0.008  0.000 Intercept 1.312 0.008 0000 Intercept 0178 0.010  0.000
dependency k, mean A 0.230 0.013 0.000 k, mean A 0.277 0.016 0.000 k, mean A 0.332 0.023 0.000
Network B k stddevA 0.105 0015 0000 kstddevA 0238 0017 0000 kstddevA 0495 002 0,000
independent with 2% Bc, mean A 0.025 0.010 0.015 Bc, mean A 0.052 0.016 0.001 Bc, mean A 0.076 0.024 0.001
source nodes Bc, max A —0.061 0.016 0.000 Bc, max A —0.134 0.018 0.000 Bc, max A —0.246 0.022 0.000
Dp, A ~0576 0008 0000 CemeanA —0042 0013 0002 CcmeanA —0102 0017  0.000
Dk, mean A —0.162 0.011 0.000 Dp, A —0.618 0.008 0.000 L,stddevA 0.083 0.027 0.002
Dk, meanA -0211 0012  0.000 Dp A ~0705 0010  0.000
Dk, mean A —0.300 0.016 0.000
Network A random Intercept 2512 0.008  0.000 Intercept 1.446 0.008 0000 Intercept  0.431 0.009  0.000
dependency k, mean A 0.214 0.011 0.000 k, mean A 0.254 0.012 0.000 k, mean A 0.353 0.014 0.000
Network B Dp, A —0.622 0.008 0.000 k, std dev A 0.016 0.007 0.033 k,std dev A  0.143 0.019 0.000
independent with 5% Dk, mean A -0.143 0.012 0.000 Dp, A —0.695 0.008 0.000 Bc, max A —0.066 0.019 0.001
source nods Dk, mean A —0.169 0.012 0.000 Cc, mean A —0.034 0.010 0.001
Dp, A -0.832 0009  0.000
Dk, mean A —0.251 0.013 0.000
Network A random Intercept 2,533 0009  0.000 Intercept 1.482 0008 0000 Intercept  0.516 0.009  0.000
dependency k, mean A 0.166 0.011 0.000 k, mean A 0.191 0.011 0.000 k, mean A 0.318 0.013 0.000
Network B kstddevA —0019 0007 0010 Dp, A ~0.687 0008 0000 Dp, A ~0.843 0010  0.000
independent with 10% Dp, A -0.616 0.008 0.000 Dk, mean A -0.125 0.011 0.000 Dk, mean A -0.258 0.014 0.000
source nodes Dk, mean A —0.108 0.011 0.000
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Table A.4
Full beta regression results for when Networks A and B have random dependency type and the topology of Network A only is included in the regression analysis.
10% initial failures 25% initial failures 50% initial failures
Dependency group Topology ~ Co-efficient Std error pvalue Topology ~ Co-efficient Std error pvalue Topology ~ Co-efficient Std error p value
measure measure measure
Network A random Intercept 1.969 0.012 0.000 Intercept 0.994 0.011 0.000 Intercept 0.148 0.011 0.000
dependency k, mean A 0.384 0.022 0.000  k, mean A 0.453 0.022 0.000  k, mean A 0.548 0.017 0.000
Network B random k, std dev A —0.072 0.012 0.000 k, std dev A —0.071 0.012 0.000 k, std dev A —0.054 0.011 0.000
dependency L,stddevA —0.096 0.018 0.000 L,stddevA —0.078 0.018 0.000  Cc,mean A 0.040 0.011 0.000
Dp, A 0.012 0.000 Dp, A —-1111 0.012 0.000 Dp, A —1.369 0.013 0.000
Dk, mean A 0.019 0.000 Dk, mean A —0.338 0.018 0.000 Dk, mean A —0.475 0.017 0.000
Network A random Intercept 0.013 0.000 Intercept 0.952 0.012 0.000 Intercept —0.164 0.013 0.000
dependency k, mean A 0.024 0.000 k, mean A 0.338 0.026 0.000 k, mean A 0.343 0.032 0.000
Network B random k, std dev A 0.021 0.000  k, stddevA 0.260 0.026 0.000  k, stddevA 0.571 0.036 0.000
dependency with 2% Bc, mean A 0.014 0.001 Bc, mean A 0.072 0.023 0.001 Bc, mean A 0.078 0.032 0.014
source nodes Bc, max A 0.023 0.001 Bc, max A —0.161 0.026 0.000  Bc, max A —0.283 0.030 0.000
Dp, A 0.012 0.000 Cc, mean A —0.045 0.019 0.020 Cc, mean A —0.125 0.023 0.000
Dk, mean A 0.023 0.000  Dp, A —0.874 0.013 0.000 L,stddevA 0.127 0.037 0.001
Dk, mean A —0.285 0.022 0.000 Dp, A —1.005 0.015 0.000
Dk, mean A —0.317 0.023 0.000
Network A random Intercept 2.054 0.013 0.000  Intercept 1.038 0.012 0.000  Intercept 0.077 0.012 0.000
dependency k, mean A 0.228 0.018 0.000 k, mean A 0.309 0.019 0.000 k, mean A 0.499 0.020 0.000
Network B random Bc, max A 0.026 0.011 0.023  Bc, max A 0.038 0.012 0.002  k stddevA 0.122 0.012 0.000
dependency with 5% Cc, mean A 0.044 0.011 0.000 Cc, mean A 0.047 0.012 0.000 Dp, A —1.090 0.014 0.000
source nodes Dp, A —0.787 0.012 0.000  Dp, A -0.919 0.013 0.000 Dk, mean A  —0.359 0.021 0.000
Dk, mean A —0.153 0.018 0.000 Dk, mean A —0.202 0.019 0.000
Network A random Intercept 2139 0.012 0.000 Intercept 1.148 0.011 0.000 Intercept 0.254 0.011 0.000
dependency k, mean A 0.235 0.016 0.000  k, mean A 0.394 0.019 0.000  k, mean A 0.536 0.018 0.000
Network B random 0.012 0.000 Bc, mean A —0.042 0.012 0.001 k, std dev A 0.037 0.011 0.001
dependency with 10% 0.012 0.000  Dp, A —0.939 0.012 0.000  Dp, A -1.143 0.013 0.000

source nodes Dk, mean A 0.014 0.000 Dk, mean A —0.339 0.020 0.000 Dk, mean A —0.488 0.020 0.000

Table A.5
Full beta regression results for when Network A has random dependency types, Network B is independent and the topology of Network A and Network B is included
in the regression analysis.

10% initial failures 25% initial failures 50% initial failures
Dependency group Topology Co-efficient  Std error p value Topology Co-efficient  Std error p value Topology Co-efficient  Std error p value
measure measure measure
Network A random Intercept 2.347 0.009 0.000 Intercept 1.319 0.009 0.000 Intercept 0.397 0.010 0.000
dependency k, mean A 0.122 0.012 0.000 k, mean A 0.142 0.013 0.000 k, mean A 0.264 0.011 0.000
Network B L,stddevA —0.031 0.012 0.012 L,std dev A —0.032 0.013 0.017 Dp, A —1.064 0.011 0.000
independent Dp, A —0.693 0.008 0.000 Dp, A —0.814 0.009 0.000 Dk, mean A —0.453 0.020 0.000

Dk, mean A —0.037 0.007 0.000 Dk, mean A  —0.057 0.007 0.000  k,stddevB  —0.032 0.010 0.001
k, std dev B  —0.035 0.008 0.000 k, std devB  —0.036 0.009 0.000

Network A random Intercept 2.431 0.008 0.000  Intercept 1.312 0.008 0.000  Intercept 0.179 0.010 0.000
dependency k, mean A 0.221 0.016 0.000 k, mean A 0.240 0.017 0.000 k, mean A 0.306 0.023 0.000
Network B Bc, max A —0.061 0.015 0.000 Bc, max A —0.122 0.017 0.000 Bc, max A —0.210 0.021 0.000
independent with 2% L,stddev A  —0.050 0.015 0.001 L,stddevA  —0.077 0.017 0.000 L,stddevA —0.122 0.021 0.000
source nodes Dp, A —0.575 0.008 0.000 Dp, A —0.615 0.008 0.000 Dp, A —0.701 0.010 0.000

Dk, mean A —0.162 0.011 0.000 Dk, mean A  —0.210 0.012 0.000 Dk, mean A  —0.295 0.016 0.000
k, std devB  0.126 0.016 0.000 k, std devB  0.234 0.018 0.000 k, std devB  0.458 0.024 0.000
L,stddevB  0.084 0.016 0.000  Bc, mean B 0.058 0.018 0.001 Bc, mean B 0.089 0.025 0.000
L, stddevB  0.121 0.022 0.000 Cc, mean B —0.052 0.016 0.001

Sk, B 0.018 0.009 0.034 L,stddevB 0.228 0.027 0.000

Sk, B 0.037 0.010 0.000

Network A random Intercept 2.512 0.008 0.000 Intercept 1.446 0.008 0.000 Intercept 0.431 0.009 0.000
dependency k, mean A 0.214 0.011 0.000  k, mean A 0.254 0.012 0.000  k, mean A 0.324 0.018 0.000
Network B Dp, A —0.622 0.008 0.000 Dp, A —0.695 0.008 0.000 Bc, max A —0.061 0.017 0.000
independent with 5% Dk, mean A —0.143 0.012 0.000 Dk, mean A —0.169 0.012 0.000 L,stddevA —0.048 0.017 0.004
source nodes k, std dev B 0.016 0.007 0.024 Dp, A -0.832 0.009 0.000

Dk, mean A —0.250 0.013 0.000
k, std devB  0.149 0.018 0.000
L,stddevB  0.088 0.018 0.000

Network A random Intercept 2.534 0.008 0.000  Intercept 1.482 0.008 0.000  Intercept 0.516 0.009 0.000
dependency k, mean A 0.167 0.011 0.000 k, mean A 0.191 0.011 0.000 k, mean A 0.296 0.015 0.000
Network B Dp, A -0.616 0.008 0.000  Dp, A —0.687 0.008 0.000  Dp, A —0.842 0.010 0.000
independent with 10% Dk, mean A —0.109 0.011 0.000 Dk, mean A —0.125 0.011 0.000 Dk, mean A —0.256 0.013 0.000
source nodes k, std dev B —0.021 0.007 0.005 Bc, mean B 0.039 0.014 0.005

Cc, mean B 0.037 0.012 0.002
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Table A.6
Full beta regression results for when Networks A and B have random dependency types and the topology of Network A and Network B is included in the regression
analysis.
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10% initial failures

25% initial failures

50% initial failures

Dependency group Topology Co-efficient  Std error p value Topology Co-efficient  Std error p value Topology Co-efficient  Std error p value
measure measure ‘measure
Network A random Intercept 2.045 0.010  0.000 Intercept 1.031 0.010 0.000  Intercept 0.159 0.010 0.000
dependency k mean A 0.421 0.018  0.000 k meanA  0.486 0.021 0.000 k,meanA  0.551 0.017 0.000
Network B random L,std dev A —0.050 0.016 0.002 L,stddevA —0.043 0.017 0.013 Cc,mean A  0.039 0.011 0.000
dependency Dp, A —-0.974 0.010  0.000 Dp, A -1.121 0.010 0.000 Dp, A -1.362 0.012 0.000
Dk, mean A —0.319 0.016 0.000 Dk, mean A —0.362 0.015 0.000 Dk, mean A —0.486 0.016 0.000
k stddevB —0.073 0.010  0.000 k stddevB —0.069 0.010 0.000 Kk, stddevB —0.055 0.010 0.000
L,stddevB  —0.065 0.016 0.000 I,stddevB —0.036 0.017 0.037  Dp, B —0.168 0.010 0.000
Dp, B -0.293 0.008  0.000 Dp,B —0.249 0.009 0.000
Dk, mean B —0.025 0.013 0.048
Network A random Intercept 0.010 0.000  Intercept 0.997 0.011 0.000  Intercept —0.145 0.013 0.000
dependency k, mean A 0.021 0.000 k meanA  0.364 0.025 0.000 k meanA  0.362 0.030 0.000
Network B random Bc, max A 0.017 0.003  Bc, max A =0.132 0.021 0.000  Bc, max A —0.221 0.026 0.000
dependency with 2% L, std dev A 0017 0016 L,stddevA —0.088 0.021 0.000 L stddevA —0.106 0.027 0.000
source nodes Dp, A 0.010 0.000  Dp, A -0.916 0.011 0.000  Dp, A —1.011 0.014 0.000
Dk, mean A 0.019  0.000 Dk meanA —0.302 0.019 0.000 Dk, meanA —0.326 0.021 0.000
k, std dev B 0.016 0.000  k, std devB  0.236 0.024 0.000  k, stddevB 0.479 0.030 0.000
Cc, mean B 0.011 0.002  Bc,mean B  0.058 0.026 0.024  Bc,mean B 0.124 0.031 0.000
Dp, B 0.009  0.000 Cc meanB  —0.048 0.016 0.003  Cc,meanB  —0.086 0.020 0.000
Dk, mean B 0.010 0.040  L,stddevB 0.071 0.027 0.008  L,stddevB 0.173 0.033 0.000
Sk, B 0.009 0014 Dp,B —0.274 0.010 0.000 Dp, B —0.245 0.013 0.000
Dk, mean B 0.023 0.010 0.024 Sk, B 0.058 0.013 0.000
Sk, B 0.032 0.010 0.002
Network A random Intercept 2.141 0.010 0.000  Intercept 1.090 0.010 0.000  Intercept 0.098 0.011 0.000
dependency k,mean A 0.235 0.014 0.000 k,meanA  0.307 0.016 0.000 k,meanA  0.448 0.025 0.000
Network B random Ce,mean A 0.031 0.009  0.001 Dp, A —0.967 0.011 0.000 Bc,maxA  —0.051 0.023 0.027
dependency with 5% Dp, A —0.867 0.010 0.000 Dk, mean A —0.214 0.016 0.000 L,stddevA —0.068 0.022 0.002
source nodes Dk, mean A —0.171 0.015  0.000 k stddevB 0.023 0.010 0.021  Dp, A -1.103 0.013 0.000
Dp, B —0.326 0.009 0.000  Cc,mean B 0.029 0.010 0.004 Dk, mean A —0.359 0.019 0.000
Dp, B -0.293 0.010 0.000 Kk, stddevB 0.175 0.024 0.000
L, stddevB 0.121 0.024 0.000
Dp, B -0.223 0.011 0.000
Network A random Intercept 2.222 0.010  0.000 Intercept 1.198 0.009 0.000  Intercept 0.275 0.010 0.000
dependency k, mean A 0.234 0.012 0.000  k, mean A 0.422 0.016 0.000  k, mean A 0.537 0.020 0.000
Network B random Dp, A . 0.009  0.000 Dp, A -0.979 0.010 0.000 Dp, A -1.153 0.012 0.000
dependency with 10% Dk, mean A —0.164 0.010 0.000 Dk, mean A —0.392 0.016 0.000 Dk, mean A —0.531 0.018 0.000
source nodes Bc,mean B —0.042 0.009  0.000 Bc,meanB  —0.031 0.010 0.002 Kk, stddevB 0.081 0.017 0.000
Dp, B —0.313 0.008 0.000  Dp, B -0.277 0.009 0.000  Bc,mean B  —0.063 0.020 0.001
Dk, mean B 0.021 0.009 0.024 L, stddevB 0.082 0.026 0.001
Dp, B —0.215 0.011 0.000
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Abstract:

Knowing the ability of networked infrastructure to maintain operability following a spatially distributed
hazard (e.g., an earthquake or a hurricane) is paramount to managing risk and planning for recovery.
Leveraging topological properties of the network, along with characteristics of the hazard field, may be
an expedient way of predicting network robustness compared to more computationally-intensive
simulation methods. Prior work has shown that the topological properties are insightful for predicting
robustness, considered here to be measured by the relative size of the largest connected subgraph after
failures, especially for networks experiencing random failures. While this does not equate to full
engineering-based performance, it does provide an indication of the robustness of the network. In this
work, we consider the effect that spatially-correlated failures have on network robustness using only
spatial properties of the hazard and topological properties of networks. The results show that the spatial
properties of the hazard together with the mean nodal degree, mean clustering coefficient, clustering
coefficient standard deviation and path length standard deviation are the most influential factors in
characterizing the network robustness. Using the results, recommendations are made for infrastructure
management/owners to consider when improving existing systems, or designing new infrastructure.
Recommendations include examining the known possible locations of potential hazards in relation to
the system and considering the level of redundancy within the system.

1. Introduction

Large-scale disasters can quickly destroy key components of networked infrastructure, leading to
widespread service interruptions. The likelihood that these components fail is highly correlated to their
location relative to the hazard. Take the case of Florida Power and Light (FPL), an electric-utility
company serving large portions of Florida’s coastline, following Hurricane Irma in 2017. Over 2,000
utility poles were felled by strong winds despite extensive system hardening, contributing to 4.5 million
customers losing power !. Failures in numerous other networked infrastructures (e.g., communication
systems, transportation systems) are similarly dependent on the spatial distribution of hazards, including
earthquakes and precipitation events. Being able to quickly model a network’s ability to withstand
spatially-correlated component failures is key for managing the risk facing the network and for
developing strategies that enhance network robustness.

Unfortunately, after many disasters, situational awareness of specific infrastructure component
performance is poor for some types of infrastructure. For example, after an earthquake, it may take days
for water utilities to determine which pipes are broken and in need of repair. Leveraging topological
properties of these networks — which are computationally quick to measure — and integrating these
properties with spatial information about the hazard may present an expedient way of estimating network
robustness quickly after a disaster, helping utilities target their damage inspection efforts better.

The goal of the present paper is to study the relationship among topological properties of networks,
spatial properties of hazards, and network robustness. Here, robustness is defined as the fraction of nodes
contained within the largest connected component after the failure event relative to the size of the



original network. Often after major disasters, the condition of networks are unknown, and computing
robustness measures is computationally taxing — thus potentially slowing recovery planning. Knowing
the relationship of the topological properties to network robustness allows for a quick assessment of
network robustness even for events that cause large-scale disruptions.

Presently, the influence of topology characteristics on network robustness for spatially-correlated
failures is unknown. Further, there are no methods for modeling network robustness using network
topology characteristics and spatial properties of the hazard. This paper aims to model the robustness of
power-law networks in anticipation of a spatially-correlated failure event using a network’s topological
properties. We also aim to develop an efficient heuristic for understanding robustness of networks
subjected to spatially-correlated failures based on easy to compute network topological properties and
properties of the hazard. LaRocca and Guikema 2 previously explored the relationship of topological
properties and network robustness for random failures, building from previous work in the literature
(e.g., 3-16). However, investigating spatially-correlated failures provides information that is more
relevant to events such as natural hazards. Earthquakes, tropical storms, fires, and other hazards affect
networks in a spatial manner, and this fact is not considered at all in the LaRocca and Guikema * work.
Therefore, exploring the relationship of topological properties of the network, spatial properties of the
hazard and network robustness provides insight into how the robustness of the network can be estimated
with regards to spatial events making this work much more practically relevant than that of LaRocca
and Guikema 2. If a relationship is found between the topological properties of a network, the spatial
properties of the hazard, and the network’s robustness, it can provide a heuristic to aid recovery planning.

The networks used in the analysis presented in this paper are constructed to have a power-law nodal
degree distributions with exponential cutoff. The use of power-law networks as estimations of real
networks was first proposed by Barabdsi and Albert *. They suggested that real networks have two main
developmental properties of growth and preferential attachment, which result in a power-law
distribution for the nodal degree of a network. Amaral et al. > investigated adding constraints to the
power-law distribution of networks. They suggested adding various cutoffs, including exponential
cutoffs, to the power-law distribution to better represent some real network systems. These cutoffs
represent situations such as where the cost of additional edges to a node become too costly, or where the
age of the node is taken into account, with older nodes being less preferable than modern nodes > ©.
Recently Broido and Clauset ' have raised the issue of how well power-law distributions represent real
network systems. They '° tested the fit of the power-law distribution and four alternative distributions,
including the power-law distribution with exponential cutoff, for 927 networks. They concluded that
43% of the networks demonstrated no evidence of having scale-free structure (networks with a power-
law distribution) and that the power-law distribution with exponential cutoff has superior fit compared
to other distributions.

Our work assumes that the failures are spatially-correlated and thus nodes closer to the hazard center
have a greater probability of failure. We assume that the failures result from an exogenous threat (e.g.,
an earthquake, a hurricane or a tornado) to the system. This differs from Daqing et al. 7 who investigated
spatial correlation of internal cascading failures resulting from functional overload (see: Motter '* and
Simonsen et al. ¥ for more information on internal cascading failures due to functional overload). When
spatially-correlated failures do occur due to an exogenous threat, it is difficult to know exactly where
failures have occurred within the network, but based on the intensity of the hazard, it may be possible
to estimate that fraction of the network that has been affected. Therefore, a reasonable goal is to
understand the largest subgraph that remains of the network.

Authors within the area of network graph theory have developed multiple methods to represent spatially-
localized failures within networks '°. One method is to randomly choose a “root” node (or edge) to be
the center of the hazard area and then fail the nodes/edges closest to the root node/edge until a percentage
of the nodes/edges have been removed from the graph '3, The largest connected component is then
used to indicate which nodes/edges are functional. Other methods involve partitioning the network by
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either geographic regions such as municipalities '* '° or imposing a grid over the space in which the
network is embedded 7 and failing all nodes within a particular region or grid space, or imposing a
hazard area, such as a circle, over the network such that the nodes within fail %°.

While the aforementioned work on methods to represent localized-failures offers a quick and simple
starting point to analyzing spatial failures, this body of knowledge assumes that failures are
deterministic. That is, for all spatially-localized failures, the probability that a component in the network
fails is either equal to one, if in hazard area, or zero, if not. This assumption allows for a quick analysis
of the robustness of the network to spatial failures, but is a very simplistic method for analyzing hazards
such as earthquakes or hurricanes. In actuality, when hazards do occur and disrupt a network, the
probability that infrastructure components fail depends on their proximity to the hazard’s intensity field.
It is not a certainty that components closest to the hazard’s most intense region fail, nor that components
far from the intense portions of the hazard field will remain operational.

Stochastic simulation approaches can be used to indicate the distribution of the network’s operability
after spatially-correlated disruptions, but can quickly become computationally expensive, especially for
large networks 2!*>*. Previous authors who have applied simulation methods to this problem have focused
on a specific component of the network, such as bridges in a transportation network, and run failure
scenarios that focus on the disruption to the particular component. Guikema and Gardoni *' and Haghighi
et al. 2 focus on the failure of bridges within a road network for earthquake events. Although these
simulations are not computationally expensive, they focus on the simulation of failure probabilities for
a small subset of the network’s components for one hazard event. If these models were to include the
effects of the hazard to other components of the network, or investigate the distribution over hazard
possibilities, the computational requirements can become large.

Winkler et al. ¥ simulated the effects of hurricanes on power systems by investigating link failures
within the network. Although this method allows for all edges, and not just a subset, to fail, the hazard
and network properties were constant for each of the 50 failure scenarios. The computational cost was
feasible as the runtime to the order of O(Nm) operations, where m is the number of edges in the network
and N is the number of failure sequences. However, if the effects of the hazard strength or different
hazard scenarios were to be explored, the computational costs increase with a runtime to the order of
O(HNm), were H is the number of different hazard strengths or scenarios investigated.

Adachi and Ellingwood ?® investigated the effects of earthquakes on a water network using closed-form
upper and lower bounds of component failure probability to estimate the damage to the system. The
probability of component failure is dependent on the Peak Ground Velocity (PGV), which is a measure
of ground motion due to an earthquake. The lower bound is calculated as the probability of component
failure when the PGV values at each component are statistically independent, while the upper bounds
are calculated as the component failure probability when the PGV values are perfectly correlated. To
demonstrate the feasibility of the method they apply it to Shelby County in Tennessee that is subject to
disruptions from the New Madrid Seismic Zone.

The objective of our work is distinct yet complementary to Hines et al. %, who examined whether
topological properties are good indicators of network reliability relative to power flow models for
electric power systems. Using a collection of vulnerability measures that cover network theoretic and
flow-based approaches, they analyze the outcomes of random and targeted attacks (looking at four
different means of targeted attack). They discover that which is expected to be the “worst” failure vector
(i.e., set of nodes to fail) strongly depends on which topology measure is used. This finding explains the
conflicting results presented by Albert et al. ** and Wang and Rong 3'. They 3% 3! use distinct topology
measures to examine how targeted removal of minor nodes in a power system may have disproportionate
effect on system survivability. However, their conclusions on the survivability of the system were
contradictory. These results provide further warning that topology measures are simply indicators of the
potential survivability of a network to failure.



In this work, we seek to understand how a suite of topology measures might characterize network
robustness — based on connectivity — after spatially-correlated node failures. Although we consider only
the topology of the network and not the full physical-flow, the results are useful in providing a quick
analysis of a spatially-correlated failure, even for large networks containing up to 1,000 nodes that
otherwise are computationally expensive to analyze with simulation methods.

Section 2 introduces the topology measures used to characterize the network robustness. Section 3
provides an overview of the methods used to simulate the networks, generate failure scenarios and
analyze the robustness of the network given these failure scenarios. The results of the analysis are given
in Section 4 which is followed by a discussion in Section 5. Finally, Section 6 contains the conclusion
of the paper.

2. Topology measures

A network or graph is denoted as G = [V, E] where V is the set of vertices or nodes and E is the set of
edges. The number of nodes in a network is equal to the number of elements in V, such that N = |V|.
The degree of each node, i, in V is the number of edges that are incident to it and denoted as k;. Graphs
can provide a simplified representation of a network system, such as infrastructure systems. The nodes
represent the important components, and edges represent the connections that exist between the
components. Although edges typically represent physical connections between the components, they
can also represent other connections, such as cyber or the sharing of information

The structure of networks can be described using several topology measures. These measures provide
indication of the configuration of the nodes within the network. In this paper, four topology measures
are used to characterize the robustness of power-law networks when spatially-correlated failures occur.
A brief overview of each of the four topology measures is provided in this section.

2.1. Nodal degree distribution
The nodal degree of node i, denoted £;, is the number of edges that are incident to that node. The average
nodal degree of the network, denoted (k), is then

1
0 =3k
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where N is the size of the network (the number of nodes in the network).

The distribution that the nodal degree of a network follows has been given much attention * ¥, As
stated in Section 1, many have compared the distribution of real network systems to that of the power-
law distribution and suggested that the nodal degree of such systems are well characterized by a power-
law distribution where the probability of a node having a degree of exactly k is

PUO~kY,

where y is some constant. More recently it has been suggested that a power-law distribution with
exponential cutoff is more appropriate as this incorporates the cost of adding many edges to a node **
3* The probability of a node having a degree of exactly k when an exponential cutoff is included is

P(k) ~ ke (&),

where K is the cutoff at which is becomes too costly to add more edges to a node. The nodal degree can
be a measure of network redundancy, as the higher the nodal degree, the more edges or connections are
present in the network. This work generates power-law networks with exponential cutoffs.



2.2. Path length

The path length of a nodal pair within the network is the length of the shortest path which connects the
two nodes. The length of the path is calculated as the number of edges traversed. The path length for the
pair of nodes i and j is denoted as d;;. The mean path length of a network is then calculated as

1
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where N is the size of the network. The set of path lengths for each node pair in a network is denoted by
L for the remainder of the paper.

2.3. Betweenness centrality
Betweenness centrality gives a measure of each node’s centrality by describing what fraction of all
shortest paths, for all node combinations the network, pass through that node. It is formally computed
by
Cb; = Ysev Ztevwa s#Fi#t
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where pg;; is the number of shortest paths from node s to node t that pass through node i, and py; is the
total number of shortest paths from node s to node t. The betweenness centrality of each node gives an
indication as to how critical it is in keeping the network connected.

2.4. Clustering coefficient
For each node in the network, the clustering coefficient measures of how well connected its neighbors
are. Two nodes are neighbors if an edge exists between them. The clustering coefficient for a node i in
an undirected network is

— __2E;
G= ki(k;=1)

where E; is the number of edges that exist between the neighbors of node i and k; is the number of
edges, or neighbors, node i has.

3. Methods

3.1. Simulation

While real network data are ideal, the number of networks for which real data are available is insufficient
for conducting statistical analyses. Thus, this work uses the 2,000 randomly-generated networks
produced in LaRocca and Guikema 2 to provide insights between network topologies and network
failures. Briefly, these synthetic networks possess power-law degree distributions with exponential
cutoffs and distribution parameters consistent with real-world scale-free networks °. The networks’ sizes
are uniformly distributed and range from 100 to 1,000 nodes. In total, 20 network sizes are used. The
differently-sized networks are each assigned five pairs of exponential cutoff degree distribution
parameters. These parameters are based on findings from Albert and Barabdsi © and are presented in
Table 1. For each network size-pair combination, 20 synthetic networks are generated using a variation
of preferential attachment 2, thus creating 2,000 networks.

Table 1. The five pairs of exponential cutoff degree distribution parameters used to generate networks.

y K
1.1 40
2.0 900
2.1 400
2.4 2,000
1.7 200



The mean, standard deviation, minimum and maximum values for the four topological properties
(degree, betweenness centrality, clustering coefficient, and path length) are calculated over the 2,000
networks and are presented in Table 2. These values have been shown to be consistent with other real
networks, including food webs, movie actors, and metabolic reactions 2.

Table 2. Summary of the topology measures of the networks and spatial properties of the hazard
scenarios.

Parameter Within- Mean Std Minimum Maximu
network deviation m
measure

Network size (N) 505 272 100 1,000
Mean 5.13 2.24 2.34 11.19
Degree (k) Minimum 1.00 0.00 1.00 1.00
Maximum 307 220 24 989
Std deviation 17.75 5.73 4.50 31.68
Betweenness Mean 746 452 105 2,287
centrality (Cb) Minimum 0.00 0.00 0.00 0.00
Maximum | 192,468 229,924 1,808 992,170
Std deviation 8,433 7,495 316 31,375
Clustering coefficient Mean 0.29 0.09 0.07 0.61
©) Minimum 0.00 0.00 0.00 0.00
Maximum 1.00 0.00 0.00 0.00
Std deviation 0.39 0.07 0.13 0.48
Mean 247 0.26 2.00 3.30
Path length (L) Minimum 1.00 0.00 1.00 1.00
Maximum 4.686 0.962 3.00 8.00
Std deviation 0.54 0.13 0.12 1.09
Hazard field properties

Distance from epicenter to graph 0.80 0.29 0.01 1.66

center
Hazard field covariance 0.28 0.19 0.00 0.89

The synthetic power-law networks are then translated to geometric graphs using the Graph function in
the software system SageMath **, such that the topological properties are maintained and the number of
intersecting edges is minimized. This translates the network to a 2 X 2 graph where the domain of the
graphs is between 0 and 2 and the range is between -1 and 1. The domain specifies the possible values
of the x-axis of the graph and the range the possible values of the y-axis. The graphs’ spatial centers are
identified by averaging nodal locations.

Next, 50 hazard scenarios, H, are generated. A hazard scenario, h € H, could be representative of an
earthquake, a hurricane, or any other spatially-distributed hazard with a single epicenter. The hazard is
modeled as a bivariate normal distribution. The distribution is parameterized using uniformly-generated
random coordinates within the graph’s domain and range to represent the hazard’s epicenter and a 2 x 2
randomly-generated positive semi-definite covariance matrix to represent the hazard’s spatial variance.

We then repeatedly and independently simulate 50 node failure sequences, F, for each hazard scenario,
h. The likelihood of a node failure is assumed proportional to its spatial positioning in the bivariate
normal distribution. More specifically, for each hazard field, each node is assigned a probability of
failure that is proportional to its position in the hazard field. These probabilities are then normalized so
that they sum to one and create their own cumulative density function. This density function is then
sampled using a Bernoulli trail, and the node that corresponds to the Bernoulli sample is removed from
the network. This is repeated until pN™ nodes are removed, where N™ is the number of initial nodes
in the network n, and p = [0.25, 0.5, 0.75] is the sequence of percentage of nodes removed. This creates
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one failure sequence, f, for the hazard scenario. This process is then repeated 50 times to represent 50
failure sequences, f € F, for each hazard field. This is procedure is illustrated in Figure 1. Afterward,
we count, N,f f" , the number of nodes in the largest connected subgraph that remain for a given network
n, hazard scenario A, failure sequence £, and fraction of the nodes that fail, p. Network robustness is
measured by

NPT

St =
giving the relative size of the largest connected subgraph after p failures, and is a measure of network
resistance to node failures *°. We elected to add the final step of removing pN™ nodes via a Bernoulli
trial as opposed to using solely the bivariate normal distribution to predict failures. This allows for a
systematic comparison of the importance of topology measures as a function of the fraction of nodes, p,
that are removed and for easier interpretation of the model later.

Network Generation, n € N (LaRocca and Guikema, 2015)
2000 networks, n, are generated in total, This represents 20 network sizes, 5 pairs of
exponantial cutoff degree distribution, and 20 synthetically-genarated nabwarks for each
netwark size-axponential cutolf degree distribulion combinations.

|

Translate networks to geometric graphs
This is modeled using SagehMath. The objective is to maintain the lopological properties of
each network while minimizing the number of intersecting edges

}

Generate 50 hazard scenarios, h € H
This ks modeled as a bivariate normal disiribution with unifarmiy-generated random
coordinates to represent the hazard's eplcenter and a randomiy-generated positive semi-
definite covariance matrix to represaent the hazard's spatial variance.

]

For each of network, n € N, and for each hazard h € H,
simulate 50 failure scenarios, f € F

Tha process for generaling a failure scenario is balow.

Assign node n a probability of
failure proportional to its ‘\

position in the hazard field, h

- . Repeat pN™ times
Mepmhabilmusmmmmhml_:lsum Here, p = [0.1,0.25,0.5] and is
thay sum to one and create their own the percentage of nodes to be
cumulative density function. ed. and N™ is the
1 number of initial nodes in
network »
Sample the cdf using a
Bernoulli trial, h -//
Remaove the node that comesponds ko the
sampla.
L
Evaluate network robustness, S[7

Count, N::'. the number of nodes in the largest connected subgraph that remain and
normalize by Mo,

Figure 1: A flowchart of the method.



3.2. Regression

Our goal is to model network robustness as measured by S,’:;l using the topological measures described
in Section 2 and the spatial proximity of the network to the hazard. As Sf}l is confined to [0, 1], we use
a Beta regression model with a standard logit-link function' 7. Beta regression models have some
superior properties for handling unit data compared to their logistic regression counterparts. The first
property is their explicit treatment of heteroskedasticity via a reparameterization of the Beta family
density function. Data confined to the unit interval typically possess heteroskedasticity, with more
variation closer to the mean than the extremes. Another beneficial property is their interpretability, in
that parameters can be directly interpreted in relation to the mean of the response variable without model
transformation *. The Ferrari and Cribari-Neto *’ approach for Beta regression model depends on a
reparameterization of the Beta density function:

r' (o)
rup)r(@ —we)

The mean and variance of the reparameterization are:

foru¢) = yH 11—yl o<y <1
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Therefore p is the mean of the response variable, y. Notice that the variance of the response variable is
a function of its expected value, p, and thus heteroskedasticity is explicitly present. The parameter ¢ is
often called the precision parameter and reflects the variance of the response variable where, for a fixed
u, the variance decreases as ¢ increases. When performing the Beta regression to determine the
significant topological characteristics the response variable, y, is the relative size of the largest connected
component, S, ,’:}1 . The Beta distribution is linked to the response variables through a link function. In this

paper we use the standard logit link function:

Ln(1 zy) =L+ zpﬁpxp

Our initial dataset includes 18 explanatory variables, 16 of which relate to network topology. The
topological characteristics are the mean, standard deviation, minimum and maximum values for degree,
betweenness centrality, clustering coefficient, and path length for a given network. The final two
explanatory variables relate to the hazard. The first is a Euclidean measure of distance between the
center of the graph and the center of the hazard field. The second is the hazard field’s covariance (i.e.,
the off-diagonals from the semi-definite covariance matrix). All variables with a standard deviation of
0 are excluded. These variables are minimum degree, minimum betweenness centrality, minimum
clustering coefficient, maximum clustering coefficient, and minimum path length. Further, we remove
variables with high degrees of correlation. In this case, we remove maximum degree, standard deviation
of degree, standard deviation of betweenness centrality, and mean path length. The data reduction is
consistent with LaRocca and Guikema 2. In total, 9 explanatory variables remain: mean nodal degree,
mean betweenness centrality, maximum betweenness centrality, mean clustering coefficient, standard
deviation of clustering coefficient, maximum path length, standard deviation of path length, distance
from hazard epicenter to the center of the network and the covariance of the hazard field.

! Other link functions are available. The logit link function offered the best fit as measured by its pseudo-R2



We consider a sequence of three levels of node removals (10%, 25%, and 50%), and as such, we build
three distinct regression models. A Beta regression model is fit to our data via maximum likelihood
estimation using the R package ‘BetaReg’ ** *. Covariates that lack statistical significance at @ = 0.05
are iteratively removed one-by-one based on the highest p-value and the model is refit. This is repeated
until the variables that remain are all statistically significant at « = 0.05.

The predictive accuracy of our model is evaluated using repeated random holdout validation. 80% of
the data are randomly selected to serve as training data and the remainder are saved to serve as validation
data. The training data are fit to a Beta regression model. This model is used to predict S,’f;i for the

explanatory data in the validation dataset. The predicted value of S ,f;’ is then compared to the simulated
outcome of S, ,f}l This validation step is repeated 100-times for each of the three levels of node removals.
The results follow.

4. Results

4.1. Influence of topology measures and hazard properties on relative graph size
Figure 2a and 2b show the mean size of the relative largest connected component, 5,':;‘ , and the MAE
values for each level of node removals, respectively. In Figure 2a it can be seen that at the 10% level of
node removals that the average size of the relative largest connected component is 85%, which then
decreases to just below 65% for the 25% level of node removals and finally is just under 35% for the
50% level of node removals. Figure 2b shows that the greater the level of node removals, the higher the
MAE value is, suggesting that the model is better at predicting the robustness of the network when fewer
nodes initially fail. However, the MAE values for all three levels of node removals are low compared to
the relative size of the largest connected component. This suggests that the regression model accurately
predicts the out of sample relative size of the largest connected component for spatially-correlated
failures.
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Figure 2: (a) The mean size of the relative largest connected component (.S',':;L Jfor each percentage of node failures and (b)
the mean MAE of the predictions of the holdout analysis. For both (a) and (b) the 95% confidence intervals are shown in
red.

Figure 3 shows the results of the covariates that are significant at @ = 0.05 for the beta regression
models. The first panel shows the results for the 10% level of node removals, the second the results at
the 25% level of node removals and third panel the results at the 50% level of node removals. The bars
show the # value for each statistically significant covariate and the error bars are the 95% confidence
interval for the covariate coefficient. We find that seven variables are statistically significant across all
levels of node removals: mean nodal degree (k, mean), mean clustering coefficient (C, mean), maximum
path length (L, max), path length standard deviation (L, std dev), the distance from the hazard epicenter
to the center of the network (Distance) and the covariance of the hazard field (Covariance), and were
almost always so in the training data. Across all levels of node removals mean nodal degree, mean
clustering coefficient, maximum path length, path length standard deviation, distance from hazard
epicenter to graph center and covariance of the hazard field have a positive influence on network
robustness. Clustering coefficient standard deviation had a negative influence for all levels of node
removals. For 10% and 25% of node removals, mean and maximum betweenness centrality (Cb, mean
and Ch, max) were also significant with the mean having a negative influence and the maximum a
positive influence.
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Figure 3: The influence of the significant topology measures on the robustness of the networks for 10%, 25% and 50% of
node failures. The influence is given by the B value from the regression model.
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From Figure 3, we can see that the most influential variable is the hazard field covariance, which has a
positive influence on network robustness. This indicates that the greater the value of the hazard field
covariance, the greater the size of the largest connected subgraph after node removals. Two hazard field
scenarios are plotted in Figure 4 to provide a visual aid to explain why this is the case. Figure 4a and b
show two of the 50 hazard field scenarios plotted atop one of our 2,000 simulated networks. The hazards’
epicenters are represented as crosses, X, and the location of the nodes are shown as circles, o. The size
of the network that is shown is 100 nodes. For the simplicity of this illustration, the edges are not shown.
Figure 4a has a larger covariance than that of Figure 4b, with the values of 0.885 and 0.3044 respectively.
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Figure 4: A network of size 100 with the hazard field distribution for (a) a hazard field with u = (0.9484, 0.8103) and covariance
0f 0.885 and (b) a hazard field with u = (0.8399, 0.9017) and covariance of 0.3044. Note that the network is identical in both
(a) and (b). The nodes of the network are represented by circles and the hazards’ epicentres are denoted with a cross.

We can see from Figure 4a that when the covariance of the hazard field is closer to 1, the hazard is more
concentrated. The probability of failure is higher close to the epicenter and decreases rapidly as the
distance from the epicenter increases. Therefore, the nodes closer to the epicenter have a much greater
probability of failure than those further from the epicenter. The hazard field in Figure 4b shows that
when the covariance of the network is closer to 0, the probability of failure is more uniform. The
probability of nodes that are close to the epicenter failing are not significantly greater than the probability
those further from the epicenter. Therefore, the greater the covariance of the hazard field, the more likely
nodes closer to the epicenter fail. This, in turn, means that node failures are more likely to be in close
proximity to each other and thus the propagation of the disruption through the network after the initial
node removals is smaller. Therefore, higher covariance suggests larger connected components after
failure.

The distance from the epicenter of the hazard and the center of the network similarly has a positive
influence on the relative size of the largest connected subgraph. The center of the network is calculated
as the average of the (x, y) coordinates of the nodes within the network. The network layout is
determined such that the number of edge intersections is minimized, which results in nodes with higher
nodal degree more likely to be toward the center of the network. The further the epicenter of the hazard
is from the network center, the less likely the nodes with high nodal degrees are to fail, minimizing the
propagation the effects of the disruption through the network.

Mean nodal degree and mean clustering coefficient are the two most influential network topology
measures for characterizing the relative size of the largest connected subgraph, both with a positive
influence. Both measures provide an indication of the redundancy of the network. The mean nodal
degree gives a measure of the general redundancy within the network, as the more edges the network
has, the more pathways that are available between each pair of nodes in the network. The mean clustering
coefficient indicates the level of local redundancy within the network, with a higher clustering
coefficient indicating more edges within neighborhoods (or clusters) of the network.
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For the 10% level of node removals, the mean clustering coefficient has a slightly greater influence on
the size of the largest connected subgraph than the mean nodal degree. This suggests for lower node
removals when spatially-correlated hazards occur, local redundancy is important. At the 25% level of
node removals, the influence of the two topology measures is similar. For the 50% level of node
removals, the mean nodal degree has a greater influence on the size of the largest connected subgraph
than the mean clustering coefficient. This suggests that when a large percentage of nodes fail as a result
of spatially-correlated hazards, the local redundancy is less important than the overall redundancy of the
network. When a large percentage of nodes are removed due to spatially-correlated failures, they are
more likely to be nodes within close proximity of each other. Thus, it is more likely for nodes within a
same neighborhood to be removed, decreasing the influence of the clustering coefficient.

The clustering coefficient standard deviation has a negative effect on the size of the largest connected
component for all levels of node removals. This is likely due to a combination of the clustering
coefficient distribution being asymmetric and is positively skewed and the relationship between the
clustering coefficient and the largest connected component being non-linear. The minimum value of the
clustering coefficient is always zero, as seen in Table 2. Therefore, when the standard deviation
increases, it is due to an increase in the larger clustering coefficient values rather than a decrease in the
lower clustering coefficient values. When a node is removed, it is more likely to be a node with a low
clustering coefficient value, i.e. a node with a low level of regional redundancy. This in turn leads to
many small clusters of the network remaining and thus less nodes in the largest connected component.
The influence of clustering coefficient standard deviation decreases as the percentage of initial failures
increased. This, as with the decreasing influence of the mean clustering coefficient, may be due to the
nature of the hazard being spatially-correlated, which increases the likelihood of nodes in a neighbor
being removed due to the hazard when a greater number of nodes are initially affected. The removal of
nodes from the same neighborhood decreases the importance of local redundancy, thus decreasing the
importance of the clustering coefficient parameters.

Both the maximum and standard deviation of the path length have a positive influence on the size of the
largest connected subgraph. The longer the maximum path length, the more likely that alternate paths
are available. Thus, if part of a route is removed, there is more likely to be alternative paths of the same
length still available. The influence of the maximum path length is small and decreases as the level of
node removal increases. This decrease may be due to more node removals, meaning more alternative
path lengths between nodal pairs are affected. Path length standard deviation has the opposite trend,
with an increasing influence as the level of node removals increase. One potential explanation that could
be further investigated is that the more variability there is in path length, the more variety of nodes are
traversed leading to more redundancy in paths between nodes.

Mean betweenness centrality has a negative influence on the size of the largest connected subgraph at
the 10% and 25% levels of node removals, but is no longer significantly significant at the 50% level of
node removals. The maximum betweenness centrality is similarly only significant at the 10% and 25%
levels of node removals, but with a positive influence on the size of the largest connected subgraph.
Betweenness centrality is a measure of how critical (or “central”) nodes are in terms of shortest path
length. As the percentage of node removals increases, it becomes more likely that the connection
between nodal pairs is no longer through the shortest path, which may explain why the mean and
maximum betweenness centrality is no longer statistically significant at the 50% level of node removals.

The greater the mean betweenness centrality, the more likely it is that there are fewer alternative shortest
paths between nodal pairs. This thus decreases network redundancy and implies a negative relationship
between mean betweenness centrality and relative network connectivity. The maximum shortest path
has positive influence on relative network size. This seems counterintuitive as the greater the maximum
betweenness centrality value, the more likely the network is to fragment if the node with the maximum
betweenness centrality is removed. However, the maximum betweenness centrality of the network also
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provides information on the number of shortest paths in the network, and so a network with a higher
betweenness centrality could indicate a greater number of alternate shortest paths.

4.2. Comparison to random failure scenarios

Our results of the significant topology measures for characterizing network robustness with regards to
spatially-correlated failures can be compared to those of LaRocca and Guikema? characterizing the
robustness of networks for random failure scenarios. The statistically significant topology measures for
the two different failure scenarios (random and spatially-correlated) are the same, except for maximum
betweenness centrality. It is significant when considering spatially-correlated failures, but not when
considering random failures. Betweenness centrality provides a measure of the importance of a given
node to shortest paths in the network. In a spatially correlated failure event, nodes near each other are
more likely to fail together, potentially impacting more of the shortest paths, leading betweenness
centrality to be a more important measure of network fragmentation in the spatially correlated failure
case. Maximum path length differs in the direction of the influence on the robustness of the network,
likely due to the more compact nature of the failures in the spatially correlated failure case.

In the results presented by LaRocca and Guikema?® both the mean nodal degree and mean clustering
coefficient have a steadily increasing positive influence on the size of the largest connected subgraph
for increased levels of node removals. The increase of the mean nodal degree in our results is not seen
to the same extent, and the influence of the mean clustering coefficient slightly decreased with increased
level of node removals. We hypothesize that this is because of the more compact nature of the spatially
correlated failures with clustering being less important at increased node removal levels in the spatially
correlated case because more concentrated clusters of nodes have already failed at the higher levels.

Other differences in the results of random and spatially-correlated failures are seen in relation to the
topology measures associated with path length. The first is the difference of when the maximum path
length is statistically significant. For random failure scenarios, maximum path length is only statistically
significant at the 75% level of node removals, but for spatially-correlated failures, it is significant for all
(10%, 25% and 50%) levels of node removals. The influence of the maximum path length also differs
for the two results, having a positive influence under spatially-correlated failure scenarios and a negative
influence, when significant, for random failure scenarios. We hypothesize that this occurs because
longer shortest paths suggest a network in which there are more intermediate nodes in the path between
any given set of nodes. Spatially correlated failures are more likely to lead to tighter clustering of node
failures for a given fraction of nodes failed. If the shortest paths are longer, there would more likely be
sub-paths of these paths still connected than if there were fewer edges in the path between a set of nodes,
leading to a larger connected subgraph. This is a hypothesis that subsequent work could focus on more.

The second difference regards the path length standard deviation. Although it has a positive influence
for both random and spatially-correlated failures, the influence of the path length standard deviation
increases more rapidly with the level of node removals in spatially-correlated failure scenarios than
random failure scenarios. We hypothesize that the reason for this is similar to the reason for the change
in the influence of path length — more diversity in path lengths leads to larger connected subgraphs after
a spatially correlated failure event.

Comparing Figure 2a to Figure 1b of LaRocca and Guikema? it can be seen that mean size of the largest
connected subgraph for both spatially-correlated and random failures is similar across all levels of node
removals. This suggests that there is a limit to the effects of removing a percentage of nodes within a
network, no matter the method of node removal. Figure 2b can also be compared with that of Figure 1c
in LaRocca and Guikema? to see the difference in the MAE values for the holdout regression. For
spatially-correlated failures, the MAE value increases with the level of node removals, but does not for
random failures. Instead, the MAE values for the 25% and 50% level of node removals are similar, with
the 50% level having a slightly smaller value for random failures.
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5. Discussion

In the analysis presented, we explore how useful network topology measures and spatial properties of
hazards are for characterizing network robustness. These results form the basis for recommendations to
infrastructure owners or management to consider when designing new system, or are in the process of
updating existing infrastructure.

The most influential variables were those associated with the hazard field: the distance from the
epicenter to the network center and the hazard field covariance. When a spatially-correlated failure
occurs, the location and covariance are dictated by the nature of the hazard and is not something that
infrastructure owners/management can control. However, for some hazards, such as earthquakes, there
is an understanding of the phenomena and reliable knowledge on the location of where faults are
situated, indicating areas that earthquakes can occur. Our results suggest that when constructing new
infrastructure, the center of the network should be placed as far from these known hazard areas as
possible.

If the position of the infrastructure cannot be changed, the results could also be used, in conjunction
with a flow model to take preemptive action in systems such as water systems, where parts of the
network can be shut down to reduce the occurrence of negative pressures in the system. This can be
done for events that can have some warning, such as tropical storms or earthquakes. When an estimation
of the location and strength of the hazard is available before the event, it can be used to construct an
estimate of the hazard field and identify areas of the infrastructure are more likely to be affected by the
event.

For some hazards, such as tornados, it is impossible to identify the epicenter or the intensity before the
event. Instead, infrastructure managers and owners can, to some extent, influence the topology when
designing new infrastructure or improving existing infrastructure. The results of our analysis, alongside
those from LaRocca and Guikema?, highlight the most important factors to consider. The mean nodal
degree and mean clustering coefficient are the most influential topology measures regardless of failure
scenario (i.e., random or spatially-correlated). Both these topology measures give an indication of the
level of redundancy the network has and suggest these are important measures to consider when
improving existing infrastructure or designing a new system. These results emphasize the importance of
redundancy within a network, regardless of the type of failure.

The method could also be used by infrastructure management to estimate how a variety of spatially-
correlated failures could affect their infrastructure. This analysis highlight areas within the system that
are more likely to be affected, and as such, show where improvements should be made to reduce the
effects of spatially-correlated failure events on the system.

The networks used in this research are simplified representations of real infrastructure. Using the largest
connected component as a measure of network robustness means that the method is quick to implement,
but this method could be extended to include sink and source nodes to better model the flow present in
a real infrastructure system. For specific infrastructures, the commodity flow, (e.g., the flow of
electricity in a power network), could be included to increase the accuracy of the results.

6. Conclusion

The relationship between the topological properties and the robustness of the networks is explored by
simulating the effects that spatially-correlated failure fields have on power-law networks. Because
topological properties are fast to calculate, the method discussed in this work can assist in quickly
estimating network robustness without excessive computational and data requirements. Further, by
simulating spatially-correlated failures, this method provides a more realistic representation of spatial
failures than previous methods that simulate spatially-localized failures. Rather than all nodes (or edges)
in a given area of the network failing, the probability of each component failing is dependent on its
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position relative to the hazards epicenter and the hazard’s spatial variance. To explore the relationship
between topological properties of the networks, spatial properties of the hazard and network robustness
and Beta regression model is used to identify which properties are significant to the robustness of the
networks.

We find that the factors relating to the hazard’s position and field covariance are the most influential on
the robustness of the network. The further the hazard’s epicenter is from the center of network, the more
robust the network is. The higher the hazard field covariance, the more concentrated the effects of the
hazard are, and thus the less disruption effects the network. For infrastructure management, the
important factors to consider are the topology measures that have the greatest influence on the network
robustness. These, to some degree, can be influenced or adapted to increase the robustness of the system
to failures. These factors are mean nodal degree, mean clustering coetficient, clustering coefficient
standard deviation and path length standard deviation. The most influential of these topology measures
are the mean nodal degree and mean clustering coefficient, which provide some indication of the global
and local redundancy of the network, respectively. Thus, giving attention to these factors could lead to
a more robust network to both random and spatially-correlated failures.
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Abstract

Critical infrastructure systems underlie the economy, national security, and health of modern society.
These infrastructures have become increasingly dependent on each other, which poses challenges when
modeling these systems. Although a number of methods have been developed for this problem, few case
studies that model real-world dependent infrastructures have been conducted. In this paper, we aim to
provide another example of such a case study by modeling a real-world water distribution system
dependent on a power system. Unlike in the limited previous case studies, our case study is in a
developing nation context. This makes the availability of data about the infrastructure systems in this
case study very limited, which is a common characteristic of real-world studies in many settings. Thus,
a main contribution of the paper is to show how one can still develop representative, useful models for
systems in the context of limited data. To demonstrate the utility of these types of models, two examples
of different analyses are performed, where the results provide information about the most vulnerable
parts of the infrastructures and critical linkages between the power and water distribution systems.

Key words: Critical infrastructures, dependencies, modeling, case study

1 Introduction

Critical infrastructures provide essential services to modern societies, and the functionality of these
infrastructures are important. There has been an increase in dependencies of a given infrastructure on
one or more other infrastructure systems, particularly dependencies on the power system. These
dependencies are often poorly understood in practice, despite assumptions to the contrary made by
academic modelers. Even when they are understood, modeling the cascading effects of failures from
one system onto other systems is challenging. Many methods for modeling dependent infrastructures
using network models have been developed and suggested in existing literature (e.g., Buldyrev et al.,
2010, Parshani et al., 2011, Fu et al., 2014). Many of these papers adopt a network theoretic perspective
(e.g, Gao et al., 2016, Johnson et al. 2019, Diu et al. 2020). That is, they conceptualize a set of
infrastructure networks as graphs of vertices and edges and approximate performance with one of a
number of topological or connectivity-based approaches. However, LaRocca et al. (2015) showed that
these network theory-based approaches, while useful for generic networks, provide poor approximations
of the performance of actual infrastructure systems. Despite this, relatively few detailed case studies of
the modeling of real-world dependent infrastructures are published in the scientific literature (e.g. Chai
et al., 2016; Duefias-Osorio, Craig and Goodno, 2007; Johansson and Hassel, 2010; Johansson, Hassel
and Cedergren, 2011; Poljansek, Bono and Gutiérrez, 2012; Thacker et al., 2017; Ouyang and Wang,
2015). Nearly all of these are done in unique data-rich environments that are not representative of the
situation faced by many infrastructure managers. Many infrastructure managers, even in developed
countries, face significant data limitations, especially about dependencies on other infrastructures. In
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many cases, performance models (e.g., hydraulic models for drinking water systems) are out of date or
have not been calibrated in many years. The main contribution of this paper is to show how real
infrastructure systems involving dependencies can be modeled in low-data environments in a way that
provides useful information on the performance of these systems during natural hazards.

This paper differs substantially from previous case studies in relatively data-rich areas such as the United
States and Europe. We present a case study where we analyze the effect of hurricane disruptions on the
performance of the power and water distribution systems of the Caribbean island of St. Kitts. The
available information about these infrastructure systems is highly limited, thus, the objective of this
paper is to develop a representative model for these systems despite significant data limitations. It should
be mentioned that the issue of limited data availability might be present for data-rich areas too. Although
the requisite data to develop models exist it can be unavailable due to confidentiality reasons. This adds
an additional motivation for this paper.

This paper is organized as follows: In the next section (Section 2), background information about St.
Kitts and its power and water distribution systems are given along with a description of the threat that
hurricanes pose to the island. Section 3 contains a description of the simulation model developed for
this case study. In order to demonstrate how this model can be used and what types of modeling results
that can be obtained, Section 4 presents the results of analyses aimed at identifying critical components
in the systems. Section 5 shows how the model can be used to simulate failures of recent or forecasted
hurricanes. Section 6 includes a discussion of the results as well as of the challenges associated with
modeling real-world infrastructure systems and the differences between modeling real-world systems
and fictional systems. Finally, Section 7 presents the conclusions.

2 Background for the case study

St. Kitts is one of the twin islands of the Federation of St. Kitts and Nevis, which is located in the eastern
Caribbean Sea. The nation has an estimated population of about 56,000, with most of the population
living on the island of St. Kitts (World Population Review, n.d.). St. Kitts is a small and elongated island
with an area of 69 square miles (The Official Website of St. Kitts and Nevis, n.d.). The island is of
volcanic origin and has a group of volcanic peaks in the middle of the island. Due to these steep
mountains, the majority of the population reside by the coastline around the island. The highest
populated area is in and around the capital of Basseterre, which is located in the south of the island
between the mountains and a peninsula (see the map in Figure 1).
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Figure 1: Map of St. Kitts with parish labels

The power system is operated by St. Kitts Electricity Company Limited (SKELEC), who provide power
from 10 diesel generators located at the power station near Basseterre. The power is distributed to the
community through 12 lines (11 kV), of which nine are located in and around Basseterre. The remaining
three lines stretch along the entire coastline around the island, where one goes along the peninsula to the
southernmost point of the island and the other two go up to the north following opposite sides of the
island (see the schematic of the main trunk lines in Figure 2).

St. Kitts is self-sufficient for fresh water. The water distribution system has a production capacity of up
to 7 million gallons per day (MGD), which meets the average demand of 5.5 MGD. The different types
of water sources come in the form of 30 groundwater wells, 30 surface storage tanks, and 6 river
reservoirs. Thus, there is a mixture of groundwater and surface water sources with, on average, 67% of
water provided from groundwater sources and 33% from surface water sources. The system is mainly
gravity fed. The exception is the wells that require electricity to pump water into the distribution system.
A visit to the site found that there were no back-up generators at the groundwater wells. Thus, the water
distribution system is dependent on the power system for water production (see the schematic of the
modeled water system in Figure 3).

Due to the location of St. Kitts, hurricanes pose a significant threat to the functionality of the island’s
critical infrastructure. The power system is particularly vulnerable to hurricanes due to its wooden power
poles that can fail during strong winds. In addition, the power system in St. Kitts is radial, at least at the
time of this case study. That is, there is no redundancy between the lines, particularly between the three
lines that provide power to most of the island, discussed further below. When a power outage occurs in
an area, the water wells in this area lose their power supply and stop functioning, which puts the water
distribution system at risk of negative pressures and insufficient delivery of water. Therefore, in this
case study, hurricanes are simulated and used as a natural cause of disruption to the power and water
distribution systems. St. Kitts has experienced many strong hurricanes that have caused disruptions to
infrastructure systems. Most notably was Hurricane Georges that made landfall on the island in 1998,
resulting in severe damage to the infrastructure across all parts of the island. Over 80 percent of all
homes were damaged, with some completely destroyed. Severe damages were also seen to other



buildings, including the airport, the seaport, the main hospital, schools, businesses, hotels, and
emergency shelters. Hurricane Georges resulted in five fatalities and left many people without homes
and work, with repair costs reaching approximately $445 million USD (Douglas, 1998: IFRC, 2002).

3 The simulation model

This section describes how the infrastructure systems and the hurricanes are modeled and how the
overall simulation process is performed. This process includes a description of how the power and water
system models are coupled together.

3.1 The modeled power system

Very limited information is available about the power system of St. Kitts. The data we do have is from
the SKELEC (St. Kitts Electric Company Limited) website (SKELEC, n.d.) and from a visit by one of
the authors to the island. Based on this information, the system is modeled as consisting of three main
power lines with their center located at the generators near Basseterre. Figure 2 presents a schematic of
the modeled power system. Each line mimics one of the three main trunk lines that surrounds the entire
island. In the remainder of this paper, these modeled lines are referred to as the Southern, Western, and
Northern power lines. The Southern power line (represented by dots in Figure 2) supplies Basseterre as
well as the peninsula, the Western power line (triangles) supplies the western coast up to the parish of
St. Anne, and the Northern power line (squares) supplies the eastern and northern coast to the point
where the Western power line stops. Due to limited information about the power network, the nine
smaller trunk lines that are located in and around Basseterre are not included. The exclusion of these
trunk lines makes the modeled power system in the Basseterre area a very simplified version of the real
system. This causes all the wells in Basseterre to be connected to the Southern power line in the model,
instead of potentially being connected to different smaller trunk lines. Without access to more detailed
power system data as well as data of exact locations of connection between water wells and the power
system, it is difficult to evaluate the severity of this simplification.
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Figure 2: Schematic of the modeled power system.

A network-based approach is used to model the power system, where the power poles are modeled as
nodes and the power lines as the links between the nodes. There are a total of 157 poles in the modeled
system, with pole spacing selected to give span lengths (between pole distances) typical of lower-voltage
power systems. The ability of the system to provide power at each pole location depends on the status
of all preceding poles. If one pole fails due to wind along any of the three lines, all the downstream
nodes switch to non-active status and are be unable to provide power. That is, there is no redundancy in
the system. Because of this lack of redundancy, the failure is assumed to be instantaneous. Note that this
is an approximation to the actual power flow. LaRocca et al. (2015) showed that such a connectivity-
based approach is a poor approximate to actual power flow for high voltage transmission systems.
However, for purely radial, lower voltage distribution systems such as the one in our case study, the
connectivity-based approach is a much better first order approximation.

3.2 The modeled water system

The water distribution system is modeled using the publicly available widely used software package
EPANET 2.0 (Rossman, 2000). EPANET models the hydraulics of water flow in pressurized pipe. We
used a demand-driven simulation mode (as opposed to pressure-driven) and assumed there were no pipe
breaks in the system. EPANET is widely used in infrastructure modeling in both practice and research,
and additional details are available in Rossman (2000). Our EPANET model includes the distribution
system pipes along with supply sources and demand nodes. A network schematic of the modeled water
system is presented in Figure 3. The network schematic, supply capacities, and demand values have
been provided and approximated based on information from the St. Kitts Water Department. The
department provided information on 24 of the 30 wells in terms of both their safe yield and their
respective elevations. Because water consumption data are not readily available, the total 5.5 MDG
average water demand is partitioned per parish based on its population.

Figure 3 shows the network flow model of the water system as modeled in EPANET. The red dots
represent the wells within the water system and are located around the perimeter of the island. The green
dots represent the demand nodes within the model. The water wells and demand nodes are collectively
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referred to as the water nodes within the model. The reservoirs are represented as black squares and
mainly located towards the center of the island, which is the mountainous region. The storage tanks are
shown as black dots. Using EPANET allows the movement of water within the system as well as the
pressures at each node to be modeled during a simulation of a specified duration.
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When the system was first fully mapped to replicate the St. Kitts water system based on the limited
information available, there were a significant number of nodes that produced low and negative
pressures under normal conditions. Low pressures are in this paper defined as pressures below 20 psi.
This pressure limit is chosen because a minimum pressure of 20 psi in water distribution systems is used
as a standard in several U.S. states based on pressures needed for fire-fighting activities (GLUMR Board,
2012). Some of the water nodes generate negative pressures that are very close to zero. Therefore, a
classification “rule” is made in this study saying that negative pressures are pressures below -1 psi.
EPANET was unable to handle the water demand magnitude of each parish effectively, likely because
these large demands for each parish are placed at only a few nodes instead of spreading the demand out
to replicate the true housing community. The details of these connections to the system were not
available, and even in the U.S., demand aggregation to a smaller number of representative nodes is
common in developing an approximate hydraulic model for a city. One of the wells in the parish of St.
Anne is divided into two wells in the model in order to keep the pressure within the parish from reaching
below 0 pounds per square inch [psi]. In order to further mitigate this limitation driven by the available
data, the magnitudes of the demands and inflows of water are reduced but kept at the same ratio in order
to accurately replicate the overall functionality of the distribution system.

Figure 3: Schematic of the modeled water system.

3.3 The hurricane model

Because hurricanes are one of the more frequent causes of disruption to the power and water systems of
St. Kitts, we focused on hurricane-induced damage to the power and water systems. Because of the
topography of the island and where the population is located, most of the power and water system
components that could be sensitive to flooding are either on poles or are at elevations higher than those
impacted by coastal flooding. We consequently focus on only wind-induced damage. To estimate wind



speeds, we use a parametric wind field model, the same model used in previous work (e.g., Han et al.,
2009 and Guikema et al., 2014). This model estimates gust wind speed at the location of each well by
assuming a parametric decrease in wind speed with distance from the center of the storm. The hurricane
track and intensity (central pressure) are input, and the storm is then translated along the track and rotated
on its axis to produce the wind speed estimates. The model has been validated against actual time-
varying wind speeds in the Gulf Coast region by comparing the wind field estimates with the actual
wind fields for hurricanes making landfall in the Gulf Coast region in previous research (e.g., Han et al.
2009) and has been widely used. Additional details are available in Han et al. (2009). An open source
version of the model is available for the R statistical language (CRAN, 2020).

This model estimates the maximum wind speed during a hurricane at predefined locations on the island.
St. Kitts is divided into nine parishes, each of which is represented by one location in the wind field
model. The only exception is for the southernmost parish of St. George which is given three locations
because it encompasses the long peninsula and therefore yields different wind speeds depending on
where the track is located. Thus, in total 11 locations at St. Kitts are used in this case study in the wind
field model. The model does not take into account the elevation of the mountainous landscape of St.
Kitts. This is likely not particularly limiting for this case study as the power lines are located on the
outskirts of the island, which is only slightly above sea level. There may be some reduction in wind
speeds on the side of the island sheltered behind the hills in the middle of the island for hurricanes that
are close to the island. However, the computational complexity of including these terrain effects would
be substantial, and the effects are generally not that large given the small size of the island relative to
the size of a strong hurricane.

Based on the resulting maximum wind speeds, the probability of damage to the power poles is computed
from the fragility curve presented in Figure 4. As the maximum wind speeds are simulated on a parish
level, also the resulting power pole failure probabilities are given on a parish level. For the case study,
this means that all power poles within each parish are given the same probability of failure during a
hurricane. The fragility curve was developed through expert judgement (co-author Guikema) based on
(1) damage reports of the impacts of previous hurricanes in St. Kitts, (2) previous research on fragility
functions for hurricane-induced failures (e.g., Han et al. 2014), (3) and informal observations of pole
conditions during a visit to the island. The damage reports for the Hurricanes Lenny!, Earl?, Georges
(IFRC, 2002), Jose?, Hugo*, and Luis® are publicly available. However, the reports are not consistent in
the information related to damages caused. Some only give information relaying which main island
structures were damaged, while others provided specific damage percentages pertaining to the island’s
power system. The maximum wind speed of Hurricane Georges is used to determine the on-island wind
speed that caused the failure of approximately 50% of the poles on the island. The distribution of the
fragility curve is based off the reports for Hurricanes Luis, Hugo, Lenny, and Jose using the framework
presented by Shafieezadeh et al. (2014). This resulted in a fragility curve with the 50% failure probability
associated with 117 mph or 102 kts on-island wind speed.

! https:/reliefweb.int/report/anguilla/hurricane-lenny-ocha-situation-report-no-7

2 https://reliefweb.int/report/antigua-and-barbuda/cdema-situation-report-3-hurricane-earl

3 https://reliefweb.int/report/anguilla/hurricane-jose-post-impact-situation-report-2

4 https://reliefweb.int/report/anguilla/hurricane-jose-post-impact-situation-report-2

> https:/reliefweb.int/report/antigua-and-barbuda/caribbean-hurricane-luis-sep-1995-un-dha-situation-reports-1-
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Figure 4: Estimated fragility curve of the power poles in the St. Kitts power system.

3.4 System dependencies

Since the wells within the water network rely on the input of electricity from the power network to
function, the dependencies in the model are formed between all 30 wells within the water network and
the power node which they are closest to, allowing multiple wells to depend on the same power node.
The electricity within the power network is generated by diesel generators (SKELEC, n.d.) and thus
does not rely on input from the water network. Figure 5 shows the position of the wells in relation to the
power nodes and which power nodes each well depends on. The networks within the island are self-
contained, and are fairly small in terms of size, making the network relatively simple to model. This
allows the electric power and water system of St. Kitts to make a good case study of a real-world
dependent infrastructure system.
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Figure 5: Schematic illustrating the dependencies within the model.



3.5 The simulation procedure

The process of simulating hurricanes and their corresponding damages to the power and water systems
of St. Kitts is a two-stage process. In the first stage, the hurricane of interest is simulated through the
hurricane model. As mentioned above, the hurricane model first simulates the maximum on-land wind
speeds for each parish before it computes the corresponding failure probability of the power poles.

In the second stage, a Monte-Carlo simulation model is used to couple the power and water system
models. First, the power system model simulates which power nodes break based on the power pole
failure probabilities. This is done by first assigning each power pole a random value between 0 and 1.
The random value is then compared to the respective node’s probability of power pole failure. If a node’s
failure probability is higher than the randomly generated value, the node is set to be failed. This process
generates a set of power node failures. We then use a connectivity-based model for the power system.
That is, a given node in the system functions (provides power) if (1) there is a path from that node to the
generator for which there are no failed nodes and (2) that node itself has not failed. Thus, the power
system failure state is generated by setting all power nodes downstream of the initially broken nodes to
non-functional.

Next, the state of the water system is computed based on the power system failure state. The power and
water distribution systems are coupled through the water wells” dependency on the power system. This
dependency is modeled by linking each water well to the power node closest to it, which means that if
a power node linked to a well is set to be non-functional, then the well also becomes non-functional.
The well states are updated based on the state of the power system, and then the water system is modeled
through EPANET for a chosen simulation period (length of time simulated). The simulation period
represents the duration of the power outage. This duration can be chosen either based on actual reported
power outage durations or estimated based on a best guess of the time it will take the repair crews to
arrive at the location, replace damaged equipment, and restore the power. During the simulation,
EPANET records the minimum pressures obtained for every node in the water system. This process is
repeated for a chosen number of iterations, N, which in this case study is set to 6,000 based on a
convergence analysis focused on convergence of the mean. A graphic illustration of the entire simulation
process is presented in Figure 6.
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Figure 6: Graphic illustration of the simulation process.

A limitation of this modeling approach is that the functionality states of the nodes in the power and
water systems are constant during the simulations in EPANET. This means that if a power outage is
simulated to last for 24 hours, the model does not allow for any of the power nodes to be repaired and
added back as a functional node during the simulations. In other words, all non-functional power and
water nodes remain non-functional throughout the simulation. This could be changed if information
were available on pole-level restoration times. However, this was not available for past storms for St.
Kitts.



4 Analysis and results

We demonstrate the usefulness of a model such as this by performing two different analyses. The first
analysis is a vulnerability assessment that aims to identify critical components in the power system. The
second analysis focuses on the linkages between the power and water systems, focusing particularly on
how to identify critical wells that would be good candidates for the installation of back-up power.

4.1 Identifying critical components in the power system

To identify the most critical components of the power system in terms of the cascading effects to the
water system, simulations of individual power pole failures are performed. In the simulations, one power
node at a time is set to fail, causing all down-stream power nodes to stop functioning. The resulting
disruption on the water system is estimated for power outage durations of both 12 and 24 hours.
Although failures to the power system can be repaired relatively quickly during normal conditions, the
restoration time during hurricanes can be much longer due to weather conditions and difficulties for the
repair crew of getting to the damage locations. By analyzing two different outage durations (12 hours
vs. 24 hours), we can study the effect on the water system of different power restoration times. The
simulated disruptions are measured in the form of the average number of water nodes generating
negative (< 0 psi), low (0-20 psi) and high (> 20 psi) pressures during the simulation over all 6,000
iterations.

The result of the 24-hour simulations is presented in Figure 7, where the color of each of the power
nodes represents the percentage of water nodes experiencing negative pressure when the given power
node is the one node that initially failed. Recall that when one power node fails, all downstream nodes
along the given power line also stops functioning. The percentage of water nodes experiencing negative
pressures is given by a color scale ranging from white to red, where white means that no water nodes
obtained negative pressure and red means that 3.2% of the water nodes obtained negative pressures. The
greatest disruption to the water system of 3.2% is obtained when any of the first four nodes along the
Southern power line initially failed. When one of these nodes breaks and all downstream nodes fail,
several of the water wells in the capital of Basseterre become non-functional. Basseterre and the
surrounding area have the highest water demand on the island. Thus, when the wells in this area stop
pumping water into the distribution system over a time period of 24 hours, the water system is unable
to maintain a sufficiently high pressure throughout this period.
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Figure 7: The percentage of all water nodes having negative pressure during a 24-hour
simulation for each single-pole failure simulation. That is, the color of each power node gives
the average percentage of water nodes with negative pressures if that power node fails by
itself.

Negative pressures also appeared when failing any of the nodes along the Northern line. Even failing
the very last node along that line causes disruptions to the water system. The reason for this is that this
node provides electricity to the well with the highest water production capacity in the water system. This
well has a capacity that is almost three times as high as the average capacity across all the wells. As this
well is connected to the last power node along the Northern line, the well is affected by power outage
when any of the power nodes along the line breaks. In addition to this well, the Northern line also
supplies 15 other wells, which correspond to half of the wells in the water system. Thus, failures to this
power line cause a reduction in the inflow of water to the distribution system that the water system is
unable to cope with over a period of 24 hours. In comparison, no disruptions to the water system are
seen by disrupting any of the nodes along the Western line, not even the first node that causes the entire
line to fail. These results indicate that the power nodes along the Northern line as well as some of the
central nodes in Basseterre are the most vulnerable components of the system.

Figure 8 presents the results when the simulation duration is reduced to 12 hours. In this figure, we
observe that single-node failures have the same effect on the water system as during the 24-hour
simulations for most of the power nodes. The only exception is for the four power nodes in Basseterre
that induced the greatest disruption to the water system during the 24-hour simulations. Failing any of
these nodes do not cause any disruption to the water system during a 12-hour simulation. These results
indicate that the water system is able to cope without the contribution from most of the wells supplied
by the Southern line for a short period of time due to within-system storage, but not for a longer time.
Breaking any of the nodes along the Northern power line, on the other hand, caused negative pressures
to occur in the water system also for this shorter simulation duration.
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Figure 8: The percentage of water nodes obtaining negative pressure during a 12-hour simulation.

4.2 Analyzing linkages between the power and water systems

To identify the critical linkages between the power and water systems, simulations are performed where
the wells’ dependencies to the power system are removed one well at the time. In real life, this can be
done by, for instance, installing a back-up power generator at the site of a well, which will allow the
well to function even though there is a power outage in the area. The hurricane used in this analysis is a
hurricane that is constructed to make landfall on the island. The hurricane is constructed to move
according to typical Caribbean hurricanes that move westwards before bending toward the north. Figure
9a presents a map of the hurricane track. Different wind speeds ranging from 20 to 120 knots are
simulated and the resulting power outage is set to last for 72 hours. Under normal conditions, this is a
relatively long restoration time for the power system. However, in the scenario of a hurricane making
landfall on the island, it is not unreasonable to assume that it would take at least 72 hours to get the
power system back to normal operation. In Figure 9b, the resulting average number of negative water
node pressures obtained over the 6,000 iterations are plotted against the simulated wind speeds. At wind
speeds of 100 knots or higher, the hurricane caused the entire power system to fail, which means that
none of the wells are functioning. This situation is referred to as the worst-case scenario for the
remainder of this paper. In Figure 9b, we observe that the average number of negative pressures reaches
a plateau at 39 (out of a total of 123 nodes in the system) when the hurricane causes this worst-case
scenario.
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Figure 9: A map of the constructed hurricane track (a) and the resulting average number of water nodes that obtained negative
pressure during 72-hour power outage simulations caused the hurricane for winds speeds ranging from 20 to 120 knots (b).

Figure 10 presents the minimum pressures obtained at each water node when simulating the worst-case
scenario in EPANET over a time period of 72 hours, where dark red points represent nodes experiencing
negative pressure, light red points represent low pressure (0-20 psi), and white points represent pressures
above 20 psi. We can see that negative pressures are appearing throughout the entire distribution system.
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Figure 10: Minimum water node pressures simulated when no wells are functioning over a period of 72 hours.

The results of the simulations where one well at a time has its dependency on the power system removed
are compared to the result of the worst-case scenario. By doing this, we can study how much each of the
wells is able to improve the worst-case results. The resulting percentage reductions in the number of
negative water node pressures obtained for each of the wells are presented in Figure 11. The results are
given by a color scale ranging from white to green, where white means that there is no reduction in the
average number of negative pressures appearing in the water system compared to the worst-case
simulation and green means that a reduction of 31% in negative pressures is obtained.
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Figure 11: The percentage reduction in the number of negative water node pressures

compared to the worst case where no wells are functioning.
The maximum reduction of negative pressures of 31% is observed when any of the wells along the
southwestern coastline has its dependency on the power system removed. In comparison, no wells on
the opposite side of the island, except one at the northernmost point of the island, gave any improvements
compared to the worst-case simulation. The reason for that northern well showing some improvements
is that this well is the second highest water producing well in the system, with a capacity that is 2.5 times
as high as the average capacity across all wells. Recall that the well with the highest capacity is one of
the three dark green wells located at the westernmost point. Thus, the water production capacity of the
wells has some effect on the results. But we can clearly see that the location of the wells seems to have
a higher effect, as the wells on the southwestern side of the island show such a high potential of reduced
disruptions to the water system while most of the wells on the other side does not show any potential to
reduce the disruptions.

An explanation for these results is that the northeastern side of the island has a higher number of
reservoirs and storage tanks, i.e., water sources that are unaffected by power outages, than in the
southwestern side. In Figure 11, the reservoirs and storage tanks are illustrated by black squares and
dots, respectively. The area in and around Basseterre has the highest water demand. Due to the pressure
drop that will be created as a result of the high demand, we believe that the water from both the western
and eastern side of the island is flowing towards Basseterre. Since the western side of the island has a
fewer number of reservoirs and storage tanks, this part of the distribution system will struggle more to
maintain a positive pressure without any contribution from the wells. Thus, the contribution from
allowing only one well to function on backup power is higher when this one well is located along the
western side of the island compared to on the northeastern side.

5 Model validation

In order to validate the developed model for the power and water system at St. Kitts, a real hurricane is
simulated in the model with the aim of comparing the simulated disruptions to the infrastructure systems
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with the actual disruptions caused by the hurricane. The hurricane used in this validation process is
Hurricane Maria, which moved over the Eastern Caribbean Sea in September 2017. When passing St.
Kitts on the 19" of September, Hurricane Maria was a category 5 hurricane with its center located
approximately 90 miles southwest of the island (Burke, 2017). Data about the hurricane track and wind
speeds are obtained from the National Oceanic and Atmospheric Administration National Centers for
Environmental Prediction FTP site (NOAA, 2017).

The track and wind speed data obtained for Hurricane Maria is first used as input to Stage 1 of the
simulation process (as shown in Figure 6) to estimate the on-island wind speeds. The on-island wind
speed estimates are then used as input to Stage 2 of the simulation process and the probability of power
pole damage for each parish is obtained. 6,000 iterations of the simulation are then run to simulate the
effects of the hurricane on St. Kitts’ power and water systems. For each iteration, a power outage
duration of 60 hours is simulated. A press release from SKELEC (SKELEC, 2017) states that repair
crews began assessing the damage of Hurricane Maria on the 20th of September, 2 days after the power
system was first affected by the storm. For power restoration after a hurricane, there is typically another
1-2 days to fully mobilize repair resources, especially on an isolated island. Therefore, we estimate that
repair work began 60 hours after the power outage began.

The results first focus on the simulated effect of the hurricane on the power system. Figure 12 shows the
frequency over the 6,000 simulations with which each pole is broken due to the hurricane wind. The
nodes along the south-western side of the island have the greatest probability of breaking due to
Hurricane Maria. This is the side of the island that the hurricane passed closest to and, therefore,
experienced stronger wind speeds during the hurricane. It is worth noting that the greatest frequency of
pole damage due to the winds within the model is low, at just above 2% at 2.15%.
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Figure 12: Frequency of power node breaks during the simulation of Hurricane Maria.

For each iteration, the cascading effects of the pole damage on downstream power nodes are recorded,
allowing analysis of the frequency of each power node not functioning. Figure 13 shows the frequency
that each power pole is non-functional during the simulation of Hurricane Maria. The nodes towards the
end of each power line have the greatest frequency of being non-functional. This is as expected, as when
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a node in a power line breaks, all downstream nodes are set to be non-functioning, and so the nodes
towards the end of each power line have a greater probability of being non-functional than those towards
the beginning of the line. The greatest frequency of a node being non-functional is 54% of the iterations.
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Figure 13: Frequency of power nodes being in a non-functional state during the simulation of Hurricane Maria.

The effects the simulated power outages have on the water distribution is also investigated. First, the
frequency with which each well is without power can be shown. Figure 14 shows that the wells with the
greatest frequency of power disruptions follow the same pattern as the frequency of non-functioning
power nodes. The frequency is low for those towards the southeast of the island and increases over
towards the north-western area of the island, where the ends of both the Western and Northern power
lines are located.
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Figure 14: The frequency of which water wells lost power during the simulation of Hurricane Maria.

The effects of the loss of power at the wells on the water system can be seen in Figure 15, which shows
the water nodes that experienced negative pressures during the simulation. All water nodes that
experience negative pressures during the simulation are located in the northern part of the island, situated
towards the end of the Northern and Western power lines. These areas are more likely to experience
power outages to the wells, increasing the likelihood that the closer water nodes will experience negative
pressures. However, the water nodes in the middle and south of the island are not affected in the
simulation.

This analysis can suggest to the water system operator which areas of the system require attention. This
could be in the form of introducing redundancy, such as back-up generators for the wells that experience
the greatest frequency of power outages during the simulation or in the form of adding storage reservoirs
in that portion of the system to increase the ability of the system to withstand short power outages.
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Figure 15: The frequency of which water nodes experience negative pressures during the simulation of Hurricane Maria.

The aim of using our model to simulate the effects of Hurricane Maria on the power and water systems
is to compare the results to the actual outages that occurred on St. Kitts. Unfortunately, the publicly
available information about the actual disruptions to the power and water systems is very limited. This
is typical, even in the U.S. The best information about disruptions to the power system is found in a
press release at the SKELEC webpage (SKELEC, 2017), which stated that “Most of our feeders
remained intact and online during the passage of the storm. Some like the Canada feeder which services
Conaree, Halfmoon and Canada Estates came offline, also Basseterre North Buckley’s to Trinity also is
fully offline”. For the water system, on the other hand, we are unable to find any information about the
disruptions caused by Hurricane Maria.

From the limited information found on the effects of Hurricane Maria to the power system of St. Kitts,
a crude comparison can be made to the results of our simulations. Figure 16 shows the areas that
SKELEC stated in the press release were offline due to Hurricane Maria and the results of our
simulations. As the press release from SKELEC only named areas that were without power, the outline
of these areas encompasses the entire residential areas mentioned in the press release and, thus, do not
represent the actual outages due to Hurricane Maria.
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Figure 16: Comparison of the simulated frequency of power node breaks to the areas of St. Kitts
that were reported to lose power due to Hurricane Maria.

The areas that were said to be affected in the SKELEC press release are all located close to the start of
either the Northern or Western lines, while areas further downstream of all truck lines were not reported
to lose power. This suggests that the outages that occurred due to Hurricane Maria were due to
disruptions in the smaller distribution lines that are not included in the power model. Comparing the
areas affected due to the hurricane with the initial outages seen in the model, the affected area of
Basseterre North Buckley’s to Trinity (on the south-western side of the island), somewhat matches with
power nodes that have a high frequency of breaking during the simulation.

The Canada area of St. Kitts is the smallest area outlined in Figure 16 (the northernmost outline shown).
The press release states that all outages on the eastern side of the island were due to the feeder at Canada
being offline. Therefore, the power outages on the eastern side of the island are not due to disruptions
to the main trunk lines and thus cannot be compared to the results of our simulations.

No data of the disruption caused to the water system was made publicly available. The only reference
to damage within the water system was in the Prime Minister’s post Hurricane Maria address stating
“Some critical infrastructure such as our electricity and water services... sustained serious damage”
(Organisation of Eastern Caribbean States, 2017). Unfortunately, the lack of information publicly
available to the effects of Hurricane Maria on both the power and water systems make validation of the
model difficult. However, this is not unusual and points to a research need. We as a research community
need to do a better job of collecting and archiving spatially detailed data about the performance of
infrastructure systems after natural hazards.

6 Discussion
A model for the dependent power and water systems at St. Kitts has been developed and the area of

application for this model has been exemplified by performing two analyses: one that aimed at
identifying critical components in the power system and another that analyzed the linkages between the
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power and water systems. In this section, we will first discuss how results obtained with our model can
be used by providing examples of how the results can support decisions regarding system upgrades and
emergency preparedness plans. Afterward, we will discuss the challenges faced when modeling real-
world dependent infrastructure systems in relatively data-poor environments, as well as the differences
between modeling these systems and fictional systems.

6.1 Decision support

Many emerging and developing countries do not have access to the resources needed to quickly repair
infrastructure failures, which make them significantly more vulnerable to infrastructure damage and
water shortages. The power and water systems on St. Kitts fall into this category. The power and water
systems are spread across the entire island, but the operators may not have the resources to immediately
fix large-scale blackouts or blackouts located away from the population centers. Therefore, the result of
analyses like the ones performed in this paper can be used to support decisions about system upgrades
that can help the operators avoid disruptions. The results can also help the operators and society in
general to support decisions about emergency preparedness plans. For instance, information about the
most critical components of the power system can be used to support decisions about which parts of the
power system should be strengthened to better withstand strong winds. Repair crews and spare
equipment are scarce resources. Thus, when a hurricane is forecasted and severe disruptions are
predicted, the utility operators can benefit from knowing which parts of the system are most critical and
therefore which parts of the system should be prioritized to be repaired and where to store back-up
equipment required to perform repairs.

The results of comparing the simulated disruptions to the water system during different power outage
durations illustrate the importance of getting water wells back in normal operation as fast as possible
during downtimes. The results indicate that the water system can cope with power outages in the area
of Basseterre for 12 hours, but not for 24 hours. Thus, if the power utility operators are not able to restore
the power supply to the water system quickly, the water utility operators should consider other
alternatives to avoid loss of service. One possibility is to manually shut down some parts of the system
to reduce the pressure drop in the critical areas. Another solution is to supply the critical wells with
electricity from a different source such as a back-up power generator. The result of the analysis where
the linkages between the power and water systems, i.e., the wells, were analyzed can help support
decisions about whether or not to invest in back-up power generators, and if so, where these generators
should be installed. The analysis in this paper only simulated the situation where one well at a time had
access to a back-up generator. The results indicate that a power generator should be installed to supply
any of the wells along the southwestern side of the island. We would like to emphasize that this is not a
final recommendation. This analysis is only studying the effect of removing a well's dependency on the
power system during a worst-case scenario where the entire island is affected by a power outage. For
less severe hurricanes, only parts of the power system will fail, which will cause only a portion of the
wells to stop functioning. Such scenarios are not analyzed in this paper. In addition, in this analysis we
are only looking at the possibility of removing the dependency between the wells and the power system
one well at a time. What if the back-up power generator can supply more than one well at a time? What
if two or more back-up power generators can be installed at different locations of the island? These
questions cannot be answered from the analysis performed here, and further analysis is required before
any conclusions can be made. However, this analysis provides a good example of an area of application
for the model.

6.2 Challenges when modeling real infrastructure systems in data-poor areas

From an academic perspective, there are many potential challenges that can arise when modeling real
infrastructure systems, especially when dependencies between the systems have to be accounted for. We
discuss some of these challenges in this section, focusing specifically on doing this type of modeling in
relatively data-poor areas.
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The largest challenge is to get access to the requisite data to develop a model. The available data is often
limited, which makes the task of developing models that accurately represent the infrastructure systems
challenging. The required data includes data about infrastructure topology, i.e., data about how the
systems are structured and how they are connected to each other, data about the infrastructure states
both during normal operation and during emergencies, and other relevant data that influence operations,
like government and corporate policies (Rinaldi, 2004). The private sector is often the owners of the
infrastructures, and thus, the owner of the data. Therefore, regardless of the system being in a data-poor
or data-rich area, the data is usually considered sensitive and is therefore kept confidential. Getting
access to the data requires approval from stakeholders, which can be hard to achieve (Johansson and
Hassel, 2010). Limited availability of relevant data was a significant challenge for the case study in this
paper. As previously mentioned, the only relevant data found about the power system is the publicly
available data obtained through the SKELEC webpage. The available data about the water system, on
the other hand, is much better as relevant information was provided from the St. Kitts Water Department.

Another problem related to getting access to requisite data is that the available data is not detailed enough
or the data might not even exist, which can be the case for operational data. Advances in technology in
recent decades have resulted in increased use of sensors and real-time monitoring of infrastructures,
which provides large amounts of operational data during both normal operations and crises. However,
not all infrastructures utilize these new technologies, particularly in resource-constrained systems. For
these infrastructures, the quality of the available operational data is dependent on the routines of
documenting abnormalities and accidents during operations. However, even if infrastructure do have
up-to-date technology and are capable of recording data related to operations, the issue of the sensitivity
of the data again comes into play. Many companies do not want to advertise how much their operations
have been impacted when hazards occur. Another worry for companies is how the release of outage data
may affect their customers” perception of their ability to operate and their public reputation.

Even if an infrastructure company agrees to share information about their system to be used to develop
a model, the data needs to be reviewed regularly to assess how relevant it is compared to the
infrastructure. Infrastructures are not static, but instead are constantly being updated either to be better
prepared for disruptions or sometimes re-built after a disruption occurs. To ensure that the model is
representative of the current system, the model developers need information about such updates from
the infrastructure management. When modeling dependencies between infrastructures, the dependencies
can also change over time and must be considered when assessing if the model is representative of the
current systems and their dependencies.

Once the relevant data is available to develop a model, there are always assumptions made in order to
2o from a complex real-world system to a simpler representation that can be modeled. The more detail
included in the model, the more computational power is needed to produce a viable simulation. There is
a trade-off process of including enough information within the model that it relates to the real-world
system, and not including too much information that the model is slow to run simulations. For dependent
infrastructure models, this again extends to the dependencies modelled between the systems. They must
represent accurately the interactions between the systems, but not be so complex that the model is
difficult to construct.

For the model presented, due to the size and population of St. Kitts, the water and power systems are
relatively small compared to systems seen in other parts of the world. Despite being relatively small
systems, assumptions were made in order to be able to develop the models. The Water Department of
St. Kitts agreed to share the data they had available to them, which included information on 24 of the
30 wells and the demand at the parish level, rather than household level. This affected the water model
developed in EPANET which struggled to handle the magnitude of demand and inflow of each parish
effectively. In order to combat this issue, the magnitude of the demand and inflow of water was reduced
but kept at the same ratio to allow the model to be an accurate representation of the water distribution
within the system.
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Unfortunately, very limited information on the power system is publicly available, and thus more
assumptions were made when developing the power model than the water model. Only three of the main
truck lines were included in the model. The information used to develop the model came from
information found on the company website, and observations made by members of the Guikema
Research Group on the spacing of the power poles of the 3 trunk lines. The smaller distribution lines
could not be included in the model due to lack of available information.

The hurricane model used is a model developed previously (Han et al. 2009). A limitation of the wind
field model is that it currently does not take the elevation of St. Kitts into account. The mountainous
area in the center of the island will have some effect on the on-island wind speeds which is not accounted
for in the model. The simulation also only accounts for damage to the power and water systems due to
the strong winds experienced during hurricanes and no other events that can also occur such as flooding
due to storm surge.

After developing a model, there can be great challenges involved in validating the model, as was
experienced in this case study. When collecting data about a disruptive event and its consequences to
the infrastructure systems, the same problems as the one faced when collecting system specific and
operational data prior to the model development appears. In our case study, we were unable to find
public information that in detail described the damages to the systems caused by Hurricane Maria and
the duration of the resulting disruptions. An attempt was made to collect data about damages and
disruptions caused by other hurricanes too, but even less data was found then. Without access to more
data it is impossible to perform a complete validation of the model.

6.3 Why study real systems rather than just fictitious systems?

There have been many studies of infrastructure that have used fictitious systems to study
interdependencies. However, relatively few studies have been conducted with real-world examples (e.g.,
Johansson and Hassel, 2010). The available studies have all been done in wealthy countries with
considerably higher capacity for collecting and maintaining data on infrastructure systems than our case
study.

Real-world studies are undeniably more challenging to perform for academic researchers. The needed
data must be gathered if it is even available, and real-world systems are much more complicated than
fictitious systems. Why study real systems? One of the main reasons is to better understand if the
findings from studies of fictitious systems still hold if more of the complexities of real-world systems
are accounted for. Does leaving out the messy, real-world details fundamentally change the insights? In
our study, we see that accounting for the actual engineering performance of the water system reveals
key insights into where to strengthen it that likely would not be revealed by a more typical network
theoretic based approach that does not account for the distribution of demand and the physics of pipe
flow. A second key reason for studying real systems is to demonstrate #ow existing methods can be
adapted and used given real-world data and, in many cases, the lack of full data about the systems. This
is critical for moving these types of analysis tools from academic studies to real-world use.

7 Conclusions

The dependent power and water systems of St. Kitts have been modeled, providing a real-world example
of a dependent infrastructure model. Although the data available to develop the model was suboptimal,
a simple representation of the island’s power and water systems was created. We have seen that
dependencies between infrastructures can cause substantial performance degradations, even in relatively
simple systems with limited interactions between them. Thus, dependencies, even in simple systems,
need to be taken into consideration. We have also shown how improvements within the water system
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could be made to reduce the impacts of disruptions within the power system. Even with the challenges
associated with developing real-world case studies, we have shown that it is possible in a low-data
setting to produce a simple model of a real-world case study in a way that could support risk management
decision making.
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Abstract:

Probabilistic Risk Analysis (PRA) has been commonly used by NASA and the nuclear power
industry to assess risk since the 1970s. However, PRA is not commonly used to assess risk in
networked infrastructure systems such as water, sewer and power systems. Other methods such
as network-based, statistical and agent-based models are used to analyse the performance of
infrastructure when a disruption occurs. Within the electric power industry N-1 analysis is used
to demonstrate system operability when any one component within the system is not functional.
Such methods have the advantage of being simpler to implement than PRA. Performing a PRA
of an infrastructure system would require full knowledge of the system including component
failure probabilities, which combinations of component failures results in a disruption, what the
magnitude of the disruption would be as well as the probabilities of the different initiating
events. This quickly becomes complex, even for small infrastructure systems. This paper
explores the feasibility of using PRA for infrastructure systems, before demonstrating the
formulation by performing a PRA of a virtual water system. A comparison of methods currently
used to assess infrastructure to that of PRA is given before discussing the feasibility of PRA for
modern infrastructure systems.

Key words: Probabilistic Risk Analysis; critical infrastructure; feasibility study; network
models; statistical learning theory; N-1 analysis

1 Introduction

The use of Probabilistic Risk Analysis (PRA) as a tool for risk assessment was popularised in
the 1970s with the assessment of the risk associated with nuclear power plants. The WASH
1400 report [1] which assessed accident risk of commercial nuclear power plants in the USA is
referred to as the first modern PRA [2, 3]. Various terms such as Quantitative Risk Analysis
(QRA) [4] and Probabilistic Safety Analysis (PSA) are also used to refer to the process of PRA,
and in all three terms the word analysis is sometimes substituted with assessment.

There are two main elements of PRA: first, the severity of the consequences of a scenario and
second, the likelihood of the failure scenario that results in the consequences occurring [5, 6].
The important factor is to provide the likelihood of occurrence and not just the consequences,
which is often lacking in assessments where methods of analysis other than PRA are used. In
an engineering setting, PRA should fully assess the risks associated with a technological
system. PRA then includes scenario identification of what can go wrong, what is the associated
likelihood of each scenario occurring as well as the associated consequences [7].

For infrastructure systems such as power, communication and water systems PRA is not a tool
commonly used to assess the associated risks. Modern infrastructure systems are vast and
complex, resulting in, if applied, an equally complex PRA. By formulating a PRA for
infrastructure systems and demonstrating how this could be applied to the water system of a
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virtual city the complexity of the process will be presented. Elements of PRA contained within
more popular methods of analysing modern infrastructure systems will also be explored,
indicating how well these methods approximate PRA results.

Tools developed for PRA are also used for stand-alone analysis of infrastructure systems,
especially when investigating the possibility of a specific scenario occurring that affects the
system. One example is fault trees, which are used to estimate a ‘top event’ probability by
modelling the occurrence of that event based on if other events have occurred in the system or
not. Both Lindhe et al. [8] and ten Veldhuis et al. [9] analyse water systems using fault trees.
Lindhe et al. [8] assess the risk of the system in terms of the quantity and quality of the water
reaching the consumers while ten Veldhuis et al. [9] focus on quantifying the probability of
flooding, highlighting areas of the water system that can be improved. The use of fault trees
allowed both to investigate the probability of failure within the respective water systems,
however, both methods could be extended to provide a PRA of the respective systems. Lindhe
et al. [8] could be extended to a PRA by including the likelihood of scenarios which resulted in
the basic events present in the fault trees. ten Veldhuis et al. [9] did not include the severity of
the consequences associated with a flood, which, if included, would extend the analysis to
present a PRA of the water system.

Other methods of assessing the performance of infrastructure systems have also been
developed. Such methods include network or graph theory or statistical learning theory [10,
11]. Developments of these methods focus on including the interdependencies between modern
infrastructure systems and how the cascading effects due to these interdependencies affect
infrastructure risk.

When the infrastructure can be represented as a network, one method of identifying critical
components of the system is cut set analysis. In terms of graph theory, a cut set is a set of nodes
(or edges) that if removed, will disconnect a specified pair of nodes within the network [12].
Cut set analysis is widely used within transportation networks, where the removal of a link leads
to the redistribution of the traffic using diversions. This increases both the distance travelled,
as well as the volume of traffic on alternative routes. In this scenario, the cut set analysis can
be used to see which link removals are critical in terms of these factors.

Erath et al. [13] presents a method that reduces the network to subnetworks, easing the
computational expense of cut set analysis, indicating which link removals cause the greatest
increase in cost, viewed as either additional time taken or distance travelled, to the users of the
system. Sullivan et al. [14] investigated the partial disruption to links in a transportation
network, using cut set analysis as a basis. However, rather than removing a link, they decreased
the capacity of the link. Using the increased travel time after the link disruption as a measure
of the system’s robustness, they conclude that the critical links within the system depend on the
magnitude of the disruption.

Matisziw and Murray [15] investigated the cut sets of links that caused the most disruption to
an internet network between several universities. Using the Abilene Internet2 backbone system,
the removal of only 1 up to all 14 links was investigated. For each level of link removal, the cut
set that caused the most disruption of connectivity between the universities was presented.
Matisziw et al. [16] suggested an optimisation method to identify minimal cut sets of link
removals in an infrastructure system containing source and sink nodes to highlight the
vulnerable areas. The focus of the research is developing measures to determine which nodes
or links are the most critical in infrastructure network systems when commodity flow is
included in the analysis.

In the US electricity power industry a popular method to assess the system’s functionality is N-
1 analysis. Bulk power systems (meaning a power system containing both the generation and
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transmission parts of the system) are regulated in the US to ensure that they are able to maintain
service if one of the main N components (generators, transformers, transmission lines) are
offline [17]. An extension of N-1 analysis is N-k analysis, where the functionality of the system
is analysed when k components are offline simultaneously. This is a more extensive assessment
ofthe system than an N-1 analysis, but the increase in failure combinations to consider increases
greatly as the number of components simultaneously offline increases.

Chen and McCalley [18] demonstrated a method to simplify the network structure when
components are known to be offline for reasons such as maintenance and thus the topology of
the system has changed. The aim is to reduce the number of combinations needed to be assessed
for an N-k analysis by grouping components to form subnetworks that are functional or non-
functional based on the system’s topology. Arroyo and Fernandez [19] proposed a genetic
algorithm that finds the worst combination of failures for each level of the N-k analysis. This
allows the worst possible outcome of each level of the analysis to be considered rather than all
possible combinations, however this can still be computationally expensive for large systems.
Mori and Goto [20] present a similar idea by proposing the use of a Tabu search to identify the
worst combinations of failures for N-k analysis as an alternative to an extensive search of all
possible failure combinations or the use of a genetic algorithm.

Although N-1 and N-k analysis investigates if the system can function with the loss of k
components, no probabilities are assigned to the failure of each component. The events which
lead to the failure of k components simultaneously are also not included in the analysis.
Therefore, a combination of k failures that results in a larger disruption than another may be
given more attention, but the combination resulting in a smaller disruption may be more likely
to occur and thus should also be given attention. The addition of these elements into the analysis
extend the method towards that of PRA.

In the present paper we explore a formulation of a full PRA for infrastructure systems before
applying it to a water system of a virtual city. The formal formulation of a full PRA, along with
the example, demonstrates how complex it can be to perform a PRA for modern critical
infrastructure. A discussion on the extent that the current methods of assessing infrastructure
risk are estimations of a PRA of infrastructure risk, or which elements of a PRA they encompass
will also be addressed. Methods considered will included topology-based and flow-based
networks [21, 22] and statistical learning theory [10].

Section 2 gives an overview of PRA as a method. This is followed by the formulation of a full
PRA for an infrastructure system in Section 3. In Section 4, this formulation is applied to a
virtual water system. Section 5 provides a comparison of other methods used in infrastructure
risk analysis to PRA. A discussion of the difficulties associated with performing a full PRA for
infrastructure systems is given in Section 6 before the conclusions of the paper are presented in
Section 7.

2 Probabilistic risk analysis

Kaplan and Garrick [7] outlined a quantitative definition of risk which is now frequently used
as a conceptual basis for PRA. They proposed that by answering three questions the risk
associated with a system or event can be presented quantitatively. These questions are:

1) What can happen/go wrong?
2) What is the likelihood that is will happen?
3) Given it does happen, what are the consequences?

The quantitative definition of risk, R, that results from answering these three questions is
expressed as



R= {(si'li!xi)}r i = 1r 2: ;N (1)

which defines risk as the set of triplets where each triplet contains a scenario of what can go
wrong, Si, the likelihood that the scenario will occur, li, and the consequence associated with
the scenario, X; [23]. The set contains N triplets which is the number of possible scenarios that
are identified by the assessor.

The risk is often presented as a risk curve. To generate the risk curve, the scenarios are arranged
in increasing order of severity of damage, before calculating the cumulative likelihood of the
scenarios. The consequences are then plotted against the cumulative likelihood, resulting in a
staircase function. Considering the staircase function as a discrete approximation of a
continuous risk curve, a continuous risk curve can be approximated as the smoothed curve fitted
to the staircase function. An example plot can be seen in Figure 1. This method was used to
compare the risks associated with nuclear power plants with other man-made disasters by US
Nuclear Regulatory Commission [1], where the risk curves were plotted on log-log scale [7].

************ Staircase function

Smoothed risk curve

Cumulative Probability

Consequences

Figure 1: Risk curve resulting from plotting the consequences against the cumulative likelihood.

For completeness, Kaplan and Garrick [7] then introduce a final Sn+1 scenario that acts as an
“other” category, containing all possible scenarios that are not explicitly stated in the N
scenarios that answer Question 1. This guides the assessor to consider the limitations of the
assessment and give thought to events not listed as one of the N possible scenarios. Kaplan and
Garrick [7] consider the “other” category of Sn+1 as containing events that have not yet occurred.
The fact that these events have not yet occurred in the assessed system, or any similar systems



is a piece of knowledge that can be treated as evidence when applying Bayes’ theorem to assign
a likelihood.

Once the list of possible scenarios is completed, the associated likelihood of each is then
calculated. The likelihood of a scenario can be expressed in one of three ways [23]. The first is
as a frequency. This applies to events that are recurrent and the rate of occurrence is known.
The second method for expressing the likelihood is as a probability. This is used when the event
is not recurrent and thus there is no frequency of occurrence. The probability instead expresses
the degree of belief that the event will occur given the knowledge and information available at
the time of the assessment. This interpretation of probability is often referred to as subjective
or Bayesian probability [24-26]. The final way in which the likelihood can be expressed is as a
probability of a frequency. When the event is recurrent and the frequency of occurrence is
unknown but there is some information and knowledge available to assess the frequency, then
the likelihood is stated as a probability of the frequency.

When the likelihood is considered as a probability of a frequency, which Garrick [23] suggests
as the preferred representation, the triplet expressing the quantitative definition of risk instead
can be expressed as

R = {{s;, pi(¢:), x:)} 2

where p;(¢;) is the probability density function that expresses the assessor’s state of
knowledge of the frequency, ¢;. There is also uncertainty in the consequences associated with
each scenario. The risk is being assessed for some time in the future and so the outcome
cannot be known, which also results in uncertainty in the consequence of each scenario [7]. A
joint distribution of the uncertainty in both the frequency and consequence can be used giving
the quantitative definition of risk as

R= {(Si’ pi((pi'xi))}! i = 1! 2! rN (3)

The risk is now communicated as a series of risk curves. This allows the uncertainty in both the
frequency and magnitude of the consequences to be explicitly displayed within the results. Each
curve represents a chosen fractile of the probability distribution of the of the consequence or
loss level shown on the horizontal axis [27].

In practise, tools such as event tress and fault trees are used to quantify the risk. As discussed
in Section 1, fault trees begin with a top event representing system failure which is then broken
down into the preceding intermediate events that need to occur within the system so that the
end state is reached [6]. They typically include “AND” and “OR” gates, with other, less
common, gates also used when needed. From a fault tree, the minimum cut sets related to the
end state can be found. A minimal cut set in the context of fault tree analysis provides the
combination of the minimum number of events that need to occur such that the associated top
event will be reached.

An event tree begins with an initiating event, such as a hurricane, and follows a path through
the intermediate stages of the system to reach the end state, resulting in the associated
consequence. Each branch in the event tree has an associated probability that the intermediate
event will occur [6]. A simple example of an event tree is shown in Figure 2 where each
intermediate event either occurs or does not.



The likelihood of an end state can be found by multiplying the frequency of the initiating event
with the string of conditional probabilities of all intermediate events that result in that end state.
For example, the likelihood of reaching the end state with consequence Cs is

#(ESc,) = ¢UE) ¢p(A|IE) ¢p(B|AIE) $(C|B AIE) 4)

where ¢(IE) is the frequency of the initiating event, ¢(X|Y) is the frequency of the
intermediate state X conditional on Y, and ESc, is the end state with consequence Cs. The
expected consequence of the initiating event can be found by summing over the products of the
likelihood and associated consequences of each end state. Once the expected consequence for
each initiating event is calculated and ranked in order severity, the risk curve can be produced.

Intermediate stages
Initiating
event

[] L] T
T

A B End states Consequence

ABC C

e

ABC Cs

Figure 2: Example of an event tree.

When the frequency of the initiating event and the intermediate states are unknown, the
likelihood is interpreted as probability of frequency. The severity of the consequences are also
unknown and also are given as a probability. This instead results in a family of risk curves as
previously discussed.

State enumeration and Monte Carlo simulation are common methods to analyse combinations
of component failures during a risk assessment. Both methods enable the user to select the
number of component states to be analysed. For simple assessments, the components are
considered as only functional or failed. For more complex analysis, the component states can
specify the level of functionality for components that can be partially functional. Some refer to
the two methods separately [5, 28] while others use state enumeration as a blanket term which
encompasses system state selection methods, which are referred to as Monte Carlo simulation
and contingency enumeration [29].

State enumeration (or contingency enumeration) is used in practise when either the system
being analysed, or the set of system states to be assessed are relatively small in size. A
predetermined list of system states are used to analyse the system [30]. The probability of the



system being in these specified states is calculated before assessing the consequences and risk
associated with each state. A similar process is followed when using Monte Carlo simulation,
but rather than a predetermined list of system states, system states are sampled based on the
joint probability distribution of the component states [29], after which the consequences and
risk associated with each state is calculated. When analysing a large system or evaluating a high
order of contingencies, Monte Carlo simulation is the preferred method [29].

3 Infrastructure PRA formulation

In the most basic understanding, an infrastructure is a system of components that are, in the
simplest realisation, either functioning or not. Once an initiating event has occurred within an
infrastructure, the intermediate stages can then be thought of as the state change of components
from the functional state to the non-functional state. Each component changes state depending
on the initiating event and previous intermediate stages of the infrastructure. The end state will
then be the combination of all components that have changed from the functioning to the non-
functioning state, and the associated consequence of the component failure combination can be
assessed.

To put this in context of the risk triplet, start with the consequence of a scenario Sj. The
consequence is dependent upon the end state of the system, which can be expressed as x;(c;)
where ¢; = (cl-l, ciz, ., ciN ) is a vector of the component states for the n components within the

system. Each Cij is binary expressing the state of the component j as functional (0) or non-
functional (1), though this could be extended to multiple state components. The scenario, S,
that results in consequence Ci is the occurrence of the initiating event, intermediate states and
the end state of the system that results in consequence Ci. That is, the number of scenarios, N,
would be equal to the number of possible end states. The event tree example shown in Figure 2
shows eight possible scenarios. The likelihood of scenario Si is the joint likelihood of the
initiating event occurring and the end state reached by the system. This can be expressed as
li = l(IEl)l(Cl)

The main difficultly in performing PRA for infrastructure systems is the sheer size of the
system. The number of components that are potentially affected when an initiating event occurs
is vast in a large system such as an electrical power system. For example, the Pacific Gas and
Electricity (PG&E) company in California provides electric power to 5.4 million customers
over with over 120,000 circuit miles of power lines over an area of 70,000 square miles [31].
The number of components in such a system is likely in the millions, although a full
enumeration has not been carried out for a system such as this.

For cases when the system being assessed is small, there may exist a workable number of
minimal cut sets that can be used, reducing the complexity of the analysis. However, finding
these minimal cut sets can also be challenging depending on the number and/or functionality of
the components included within the system model. For larger systems, there may also exist a
workable number of minimal cut sets, but even finding the minimal cut sets can have a large
computational burden.

Now that a formulation of PRA for infrastructure systems has been developed, this can be
applied to an infrastructure system to investigate the feasibility of performing PRA for
infrastructure systems.



4 Infrastructure PRA example

To aid in the discussion of the feasibility of PRA for infrastructure, an example of applying the
formulation expressed in the previous section to an infrastructure system is first completed. The
PRA formulation will be applied to the virtual water system of Micropolis [32].

4.1 Micropolis water system

Micropolis is a virtual city developed by Brumbelow et al. [32] to aid infrastructure research.
The aim of developing Micropolis is to provide open access data for infrastructure systems of
a city without the need of data from real infrastructure systems. For our purposes, the water
system of Micropolis will be used to illustrate how the PRA formulation from the previous
section can be applied to an infrastructure system.

The water system of Micropolis has been modelled as if it has developed and expanded over a
number of years. The “oldest” parts of the system are constructed as if it was built in 1910, with
expansions and rehabilitations completed in 1950 and 1980. This results in an array of pipe
materials and diameters. The primary input to the water system is from a surface reservoir, with
the older source well now used as a back-up water supply. A water tank is also present in the
system and is located in the centre of the city. The end users of the system are both residential
and commercial buildings which have different demand patterns throughout a 24-hour period.
The water system available from Brumbelow et al. [32] is modelled using EPANet [33]. The
water distribution network of Micropolis can be seen in Figure 3.
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Figure 3: Distribution network of Micropolis water system.

4.2 PRA of Micropolis water system

To illustrate the PRA formulation provided in Section 3, an earthquake scenario was chosen to
show the process involved in analysing one scenario within the PRA.

4.2.1 Simulation of earthquake scenario

To demonstrate the application of PRA, we used a single earthquake intensity scenario. To
simulate an earthquake affecting the water distribution network of Micropolis the mean and
standard deviation values for Peak Ground Velocity (PGV) were chosen to represent the PGV
of an earthquake of magnitude 6 on the Modified Morcalli Intensity (MMI) scale [34].
Therefore, a normal distribution with mean of 5 and standard deviation of 1 was used to sample
the PGV. The same PGV was then applied to all pipes in Micropolis given the small size of the
city.

The probability of each pipe breaking given the PGV was then calculated. We used a model
from ASCE [35] in which the probability of a pipe breaking depends on the length and the

material of each pipe. First the failure rate per 10001t is estimated for each pipe material, using
the equation:



RRyg00 = 0.0187 K * PGV, 5)

where K is adjustment factor depending on pipe material [35]. We are assessing the disruption
to only the main pipes within the network, for which there are only three different types of
materials in Micropolis. Table 1 shows the possible materials and the adjustment factor for
each.

Table 1: Pipe material adjustment factor, K, used to calculate failure rate of water pipes.

Material Adjustment factor (K)
Ductile iron 0.5
Cast iron 1.0
Asbestos cement 1.0

The failure rate per 10001t is then adjusted for the length of each pipe, resulting in the failure
rate for each pipe, RR. Given a Poisson distribution of the failure rate, the probability of at least
one break in each pipe is

P(failure) = 1 — e RE, (6)

Monte Carlo simulation was then used to find the state, failed or not, of each of the 651 main
pipes within the network for 100,000 iterations. It is worth noting that the number of iterations
to run was chosen arbitrarily for this example. For the purpose of presenting the example
100,000 iterations is relatively high number but is computationally inexpensive. When carrying
out an actual PRA the number of iterations should be chosen based on convergence.

For each iteration, any failed pipes were assumed to be leaking 200 gallons per minute (gpm)
and the simulation of the water system was run for 72 hours. In order to simulate a pipe leaking
a demand of 200gpm was assigned to the end junction of the pipe. In the case where the pipe
ended at a valve rather than a junction, the demand was assigned to the junction at the start of
the pipe as a demand cannot be assigned to valves within EPANet. Although this is a somewhat
simple method of simulating pipe leakage within EPANet, there exists no easily replicable
method of simulating pipe leaks within a demand-driven hydraulic model like EPANet within
the literature at this time [36-38]. For each simulated set of failed pipes, we then ran EPANet
for a 72-hour run.

The consequences to the water system were measured as the number of terminal nodes that
experienced insufficient pressure. Terminal nodes here refers to the system’s end users, both
residential and commercial buildings, as well as fire hydrants. There are 737 terminal nodes in
the Micropolis water system network. For fire hydrant nodes, a failure was recorded when the
pressure was below 20 psi as this is used as the standard in several U.S. states for baseline
pressure needed for adequate fire-fighting [39]. For residential and commercial a failure was
recorded when the pressure fell below 30 psi. Ghorbanian et al. [40] summarises current
pressure standards for several countries, which range from 14 psi to 50 psi. 30 psi was chosen
as a benchmark for buildings as this was roughly the median of the different countries pressure
standards. It is worth noting that when the EPANet simulation of Micropolis is ran under normal
conditions, only one pipe has a pressure below 20psi at 17 psi. The results of this Monte Carlo
simulation can be seen in Figure 4.
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Figure 4: Results of the Monte Carlo simulation of 100,000 iterations showing the frequency of the number of terminal nodes
had insufficient pressure on a log scale. The fill represents the number of pipes which failed due to the earthquake.

Figure 4 shows the frequency of terminal nodes which experienced insufficient pressure during
the 72-hour EPANet simulation. It is worth noting that the frequencies are plotted on a log scale.
For roughly two thirds of the 100,000 iterations (64,027) no pipes were affected by the
earthquake and so there were no terminal nodes which experienced insufficient pressure. When
pipe failures did occur due to the simulated earthquake, the majority of the simulations (24,004
of 35,973) resulted in 4 terminal nodes experiencing insufficient pressure. It is worth noting
that there is a jump in the number of terminal nodes that experience insufficient pressure from
21 to 693, where no iterations resulted between 23 and 692 terminal nodes inclusively with
significant loss of pressure during the simulation. This suggests there is a subset of pipe failures
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that have a relatively low effect on the water system and a subset of pipe failures that have a
high impact on the water system.

4.2.2 PRA of earthquake scenario

The results of the Monte Carlo simulation of the effects of a magnitude 6 earthquake can also
be presented as an FN curve, as shown in Figure 5. To complete the PRA of a scenario where
an earthquake of magnitude 6 effects the Micropolis water system, the likelihood of this
scenario occurring also needs to be calculated. However, as this is an illustration of how one
would carry out PRA of infrastructure systems, and Micropolis is a virtual city, determining the
likelihood of an earthquake of the given magnitude effecting the system is not particularly
meaningful.
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Frequency
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10-

0 200 400 600
Terminal nodes with insufficient pressure

Figure 5: Cumulative frequency of terminal nodes with insufficient pressure due to an
earthquake of magnitude 6 on the MMI scale, with a log scale on the y-axis.

To provide a full PRA of the water system of Micropolis, other scenarios must also be
evaluated. These could include events such as a water tower leak, failure of components, such
as pumps, improper treatment of water and so on. Earthquakes of different magnitudes could
also be included. The likelihood and consequences of all scenarios would need to be assessed,
as well as thinking about scenarios which have not yet occurred.

4.2.3 Complexity of infrastructure PRA

Even for a relatively small water system such as Micropolis the number of components within
the systems is large. For the analysis of the magnitude 6 earthquake presented in Section 4.2.1

12



assumptions have been made which simplify the scenario to one which can be assessed, and the
run times of the simulations are reasonable. For all scenario assessments within PRA,
assumptions are made and these can often, although not intentionally, lead to results that can
be misleading. There is a trade-off between the comprehensiveness of the analysis and the time
available to perform the analysis as well as the level of information currently available.

Scenarios also need to be included which look at combinations of single scenarios which have
the potential to occur at the same time. For example, if an earthquake does occur it could not
only results in pipe breaks (as analysed above) but could also result in damage within the water
treatment centre which results in a fire. There is also the possibility of the earthquake causing
disruption to another infrastructure which the water system is dependent upon, for example the
electricity power system. This could result in other components such as the pumps not
functioning correctly and increasing the severity of the consequences.

PRA of an infrastructure is time consuming and requires large quantities of data. This can
become expensive for infrastructure owners and managers. Depending on the procedures, many
utilities do not keep the relevant data or do have the information available but it would need to
be processed before being useful to the assessor. This again needs resources to be allocated that
may not be available within the company’s budget. Instead expert knowledge would be relied
upon.

5 Comparison of infrastructure risk analysis methods

Although PRA is used within the nuclear power industry, other methods have developed which
are more prevalent in other infrastructure sectors. This section aims to give a brief review of
some of these methods and discuss which elements of PRA are covered and what would need
to be included to better approximate PRA results. The methods chosen to compare with PRA
are those which contain elements that can be related to PRA. There are other methods such as
inoperability input-output methods which are also used to assess infrastructure but are not
directly relatable to PRA.

The first method considered is N-1 analysis, and the extension to N-k analysis. N-1 analysis is
common in the electricity sector of the USA due to regulations enforcing that generation and
transmission systems should be able to function with the loss of one element, such as
transformers or generators [17]. This has been extended to cases of N-k analysis where k
components become non-functional simultaneously, or in a close time frame. This analysis
allows the assessor to see which components, or combination of components are the most
critical if non-functional and can provide direction on how to harden the system to ensure if
these critical components are not functional that the system still performs as needed/expected.

In terms of PRA analysis, N-k analysis allows the consequences of system states to be assessed
and easily compared. It contains elements of state (or contingency) enumeration, where the
predetermined list of system states to assess is all possible combinations where Kk of the main
components are non-functional. However, the likelihood of each component failure in the N-1
analysis, or combination of component failures in N-K analysis is not considered. Components
or combination of components which have large consequences when non-functional may be
given focus when ideally, if the likelihood of failure was included, other components or
combination of components which are more likely to fail should be given more attention.
Hardening such components may lead to a better decrease in the overall risk of system.

Network models allow investigation of how initial failures or events within a system can
internally cascade. The network is constructed such that the nodes represent components, or the
important components, of the systems and the edges the connections between these components
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[41]. 1t is usual for the edges to represent physical connections, such as pipelines as seen in
Figure 3 where the nodes represent the end users and pipe junctions. However, the edges can
also represent non-physical connections such as the sharing of information between two
components.

Network models can be used to see the effect of a subset of the nodes and/or edges being non-
functional, which is modelled by removing such nodes/edges from the network. These initial
node or edge removals are commonly chosen either randomly or due to some characteristic,
such as type of node, nodal degree (number of connections a node has) or spatial position [22,
42-44]. These two methods respectively represent either random failures, often attributed to the
random failing of a component due to age etc., or targeted attacks, where the intention is to
cause the greatest disruption possible when targeting a low percentage of nodes/edges within
the system.

Some uses of network models include only the topology or structure of the network, whereas
others also incorporate the flow of the infrastructure commodity within the network [41]. This
could be the flow of water through a distribution system or electricity within a power system.
This allows a more realistic assessment of how the consequences related to the system states
assessed. Including the flow of water within a distribution system allows not only the nodes are
not able to receive water to be identified, but also which nodes cannot receive water due to
insufficient pressure within the system.

As with N-1 and N-k analysis, network models allow different system states to be investigated
but again the probability of these states occurring due to initiating events is not considered.
When node/edge removals are randomly chosen, this is comparable with Monte Carlo
simulation to find system states to investigate, however the probability of each node/edge
failing is equal within the system. When the nodes/edges are chosen due to a characteristic, this
is more in line with state enumeration, where the system states to be assessed are pre-
determined.

Network models have also been used as a way to assess the cascading effects associated with
interdependencies between infrastructures. As technology and society has developed, critical
infrastructure systems have become more reliant on each other. Many systems require the input
of electrical power to perform efficiently. For example, water distribution systems need
electricity to run pumps and treatment plants and transportation systems need electricity to
enable signals to function. The use of Supervisory Control and Data Acquisition (SCADA)
systems within other infrastructures such as electricity plants to automate the rerouting of power
transmission to prevent overheating of power lines is another example of these dependencies.

Johansson and Hassel [45] provide an example of an electric railway network and four systems
it is dependent on to function. They describe two models used: a network model and a functional
model. The functional model referred to is one that incorporates the flow of commodity and
checks that it is sufficient for the nodes/edges to function within the system. The two models
are used to find the vulnerability of the railway system to failures that occur within the systems
it depends upon. Including interdependent systems allows the reason for initial failures, or first
intermediate state, in one system to be seen, but as with independent network analysis, the
probability of these failures occurring is still not considered.

Statistical learning theory is a method of assessing critical infrastructure with a focus on natural
hazard disruptions. It involves using present knowledge to develop statistical models to estimate
the impacts that natural events, such as hurricanes, have on critical infrastructure. The
explanatory variables cover both aspects of the critical infrastructure system, the surrounding
environment and characteristics of the natural hazard [10]. For example, Han et al. [46]
developed a model to estimate the number of customers without power after a hurricane event
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in the Gulf Coast region. The model did not use a network of the power system, but instead a
grid was superimposed over the assessed space and the number of customers, transformers,
poles switches and miles of overhead lines for each grid was known. The model also used
variables that characterised the hurricane and the area of each grid including land use, soil type
and precipitation. The model was developed and trained on past hurricane events and the
corresponding data.

Statistical learning theory methods of assessing infrastructure express the consequences of a
given scenario. Therefore, they could be used to assess natural hazard scenarios within PRA,
given that sufficient relevant data is available. The probability of the intermediate and end states
are used within the model to arrive at the resulting consequences; however, the model does not
explicitly state these. The method has been developed to be used when there is an indication
that an event is occurring and thus does not explore the probability of the initiating event (such
as a hurricane).

Winkler et al. [47] and Ouyang and Duenas-Osorio [48] have both used a hurricane model,
developed using statistical learning theory, and a network model to assess electric power
systems. The hurricane model is used to assign failure likelihood to components of the power
network, which are used to choose which nodes, and edges fail. The performance of the electric
power system is assessed after the disruptions have affected the network flow model. This
combination of the two methods provides the likelihood of the first intermediate state of the
system to be found. However, the likelihood of all proceeding intermediate and end states are
assumed to be one, given the event occurs. In reality, this may not be the case. The probability
of the scenario occurring, in these examples the hurricane, is also still not assessed.

6 Discussion

Although PRA gained popularity with the development of nuclear power system for assessing
the risks associated with the systems in the 1970s, it is not commonly used to assess networked
infrastructure such as water, power, and sewer systems. The two main reasons are resource and
data availability. It takes considerable time and input from many people, both internal and
external, to develop a full PRA for a given infrastructure system. This imposes high cost on an
infrastructure management organisation. The complexity and size of the system means
identifying those who have the knowledge needed to assess a certain area or subsystem of the
infrastructure can be difficult. Collection of relevant data for the assessment can also be
difficult. It can be expensive and time consuming to collate, although this is becoming easier
with technological advancements. Knowing which information is needed is also challenging
and may be a process of trial and error. Such impediments can deter organisations from
investing in data collection. Therefore, many organisations do not have the data and experts
needed to identify all states, assign probabilities to them and estimate their consequences.

Infrastructure systems are also becoming more complex as technology advances, particularly
through more widespread adaption of automation and SCADA systems. These make the system
more difficult to understand and model, which can also lead to an increase in the events that
have not yet occurred, which are more complex to assess. As new technologies are developed
and used, the more limited the assessors’ knowledge of the system becomes and thus more
uncertainty that is present in the analysis.

PRA also becomes even more complex when incorporating interdependencies within the
analysis. The interdependencies between the different systems are especially noticeable when
large natural hazards such as earthquakes and hurricanes occur. These large-scale scenarios
have the potential to affect several systems at once, leading to larger consequences than when
only one system is affected. Many infrastructure systems are privately owned and for safety
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and security reasons it is not common to willing share information with other systems. This
makes assigning a likelihood of failure difficult when an event in a different infrastructure
system that we have limited knowledge of is the initiating event of a scenario.

7 Conclusion

The use of PRA to assess the risk associated with an infrastructure system provides, in theory,
a comprehensive assessment. The results show not only the consequences related to each
possible scenario but also the associated likelihood. However, in practise performing a PRA for
a full infrastructure system is very complex and expensive. This makes it unlikely to be fully
implemented in practise.

The example using the Micropolis water distribution system demonstrates that even the analysis
of a single scenario for a small, synthetic system is complex. Micropolis is a virtual city, where
there is complete information available about the water distribution system. However, for real
infrastructure systems such detailed information may not be available or easily accessible by
the assessor. Even with access to the complete water distribution system data of Micropolis the
assessment is complex. To reduce the complexity and allow for timely scenario assessments,
assumptions have to be made and the level of detail at which to model the system is decided,
both of which can influence the results. For the example presented in Section 4, only damage
to main pipes was included in the model. This could be extended by also including damage to
other component types such as the water tower and pumps but would add to the computational
burden of the analysis. Such trade-offs and assumptions are common not just for PRA, but for
all methods of risk analysis. However, due to the number of different scenarios assessed during
PRA, this can be more time consuming than for other analysis methods.

Due to the intricacy of performing PRA for infrastructure systems, other methods such as
network models or N-k analysis are more common when assessing such systems. These methods
are less complex than PRA which is why they are preferred in practice. However, they tend to
encompass an assessment of the system for only a handful of given events or scenarios and not
all possible scenarios. They also often do not consider the probabilities of different damage
scenarios. Different methods are favoured for different types of scenarios, which does not allow
for an easy comparison of the results. However, the results for PRA are presented in such a way
that allows for comparison of all possible scenarios.

Although practically implementing PRA within an infrastructure setting is not feasible, some
elements of PRA that are not yet covered by other methods should be included into the analysis
of infrastructure systems. The likelihoods associated with both the occurrence of a scenario and
the resulting consequences need to be present within infrastructure assessments. Methods more
common in infrastructure analysis tend not to include this aspect.
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