
Title page for master’s thesis 
Faculty of Science and Technology 

 

 

 
 

FACULTY OF SCIENCE AND TECHNOLOGY 
 

MASTER’S THESIS 
 

Study programme/specialisation: 

Master of Science, Biological Chemistry, 
Specialization in Molecularbiology

 

 
Spring/ Autumn semester, 2020  

 
 

      Open  
 

Author:  Gorana Drobac
 
Programme coordinator: 
 
Supervisor(s): Peter Ruoff  
 
 
Title of master’s thesis: 
 
Homeostasis by depression kinetics with multisite inhibition and positive feedback 
 
 
 
Credits:  60 ECTS
 
Keywords: 
 Biological chemistry, Computational biology, 
Homeostasis, Kinetics, Controller motifs  

 
 
 

 
         Number of pages: 55
     
     + supplemental material/other: 9

 
 

         Stavanger, 30/08/2020  
      date/year 
 

 

 





UNIVERSITY OF STAVANGER

Homeostasis by depression kinetics with

multisite inhibition and positive

feedback

by

Gorana Drobac

Master Thesis in Biological Chemistry

submitted to the

Faculty of Science and Technology

Department of Biology, Chemistry and Environmental Engineering

August 2020

University Web Site URL Here (include http://)
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)




“Enthusiasm is common. Endurance is rare.”

Angela Duckworth





UNIVERSITY OF STAVANGER

Abstract
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Master Thesis in Biological Chemistry

by Gorana Drobac

In order to survive all living organisms must, to some extent, be able to adapt to the

changes in environment.In recent years there have been proposed different controller

motifs that are used to explain how does the organisms achieve robust homeostasis. The

most of the proposed controller motifs reach the limit when the perturbations become

time dependent. Motifs based on depression kinetics have shown ability to keep up with

the even exponential and hyperbolic change in perturbation. The only unfavorable with

these controllers is that they tend to break down when the concentration of the regulatory

inhibitor becomes too low and the compensatory flux has reached its maximum.

So, in order to circumvent this disadvantage we have included a multisite inhibition and

positive feedback mechanism.

We have as well taken the time to test other abilities of the newly composed controller

and showed that it can become oscillatory and still preserve the homeostasis by keeping

the average concentration of controlled variable at the defined level.
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Chapter 1

Introduction

All single cell and mulitcellular organisms have an internal environment that is separated

from outside environment with a membrane and the composition of this environment

is controlled. They are as well able to receive and send information to other cells.

Mechanisms by which the cells receive information and respond to changes in their

environment is something that is part of the field called cybernetics. Cybernetics is

introduced by Norbert Wiener [1] and it combines the biological and physiological term

homeostasis with the mechanical theory. It connects the machines and living organisms.

1.1 Homeostasis

The homeostasis history goes all the way to the 18-th century when Claude Bernard

introduced the term “milieu intérieur” or “internal environment” [2]. Bernard looked

first into the blood composition and temperature and noticed that internal temperature

of endothermic organisms varies only slightly although the outside temperature changes

a lot. So he said that internal environment of an organism is controlled by organism

itself and is independent from the outer environment. He then generalized this idea and

said that: ”All of the vital mechanisms, however varied they may be, have always one

goal, to main uniformity of the conditions of the life in the internal environment” [3].

The term homeostasis is then first defined by Cannon [4] in 1929 as the organisms ability

to maintain the internal variables of an organism at constant or near constant values

[5]. In other words the homeostasis is organisms ability to adapt to changes in the en-

vironment.

1
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There are different systems in the organism that are homeostatically regulated and some

of those are [6]:

1. Concentration of nutrients, waste products and O2 and CO2.

2. Changes in pH.

3. Concentration of salts, electrolytes and nutrients.

4. Blood pressure and volume.

5. Body temperature.

Some of these problems were addressed by Cannon itself in 1929. Since then there has

been a lot of research projects that have identified different compounds to be homeostatic

regulated, and some of them include levels of hormones [7] and levels of transcription

factors and related compounds [8]. There have been as well identified a lot of controller

motifs in the nature and those are addressed in the Supplementary Material of the Ref.

[9]

One way of studying homeostasis, which was used in this research, is using control

engineering and mathematical modeling.

1.2 Regulation of Homeostasis

In general, if we have some kind of system (for example pool of water) and we want to

keep the variable (water temperature) in the system at the given value. Then we are

going to have a sensor (thermometer) that is going to measure the value of the variable

(temperature) and if the variable value drops under or gets higher the sensor is going

to send the information to effector or controller to work (to heat or heat less) to get the

variable at the desired value. This kind of sequence followed to achieve homeostasis is

called a feedback loop.

The ways organism achieve homeostasis can be explained mathematically by construct-

ing the systems called controller motifs. The simplest control motif is constructed by

two substances A and E and these two-component motifs serve as building blocks. A

is called controlled variable and E is the controller species. There are different ways A

and E can influence each other in order to achieve homeostasis. A and E can affect

each others synthesis or degradation by activation or inhibition but only one of these,

this gives together 16 different controller motifs as shown on the Figure 1.1. The half
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of these controller motifs have an overall negative feedback and half have a positive

feedback. Disturbances in the concentration of A are compensated by E which adjusts

the compensatory flow.

Figure 1.1: Controller motifs based on the with positive and negative feedback loops.
A is a controlled variable and E is a the controller species. The dashed lines show how

and which process does the A or E control or influence.

Most of known mechanisms are based on the negative feedback. In negative feedback

the regulatory mechanism is activated only when the homeostasis is disturbed.

In the previous studies, as shown on Figure 1.2 there have been identified eight basic

negative feedback loops also called controller motifs between controlled variable A and

the controller variable E [9]. The controller motifs are divided in two groups inflow

controllers and outflow controllers. In inflow controllers perturbation is causing the

removal of controlled variable A from a system and controller work by adding more A to

the system. In outflow controller controlled variable A is added to a system and outflow

controller works by removing excess A from the system.
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Figure 1.3: Integral control in the negative feedback scheme. The difference between
set point of variable A and an actual value of A is integrated over time and then fed
back in the process that generates variable A. This ensures that the variable is at the

given set point

Figure 1.2: The eight basic controller motifs divided in the two classes: inflow con-
trollers and outflow controllers.

In order to understand homeostasis scientists have tried to look into it from the engineer

point of view and introduced control-engineering concept called integral control. Integral

control is used in control engineering in order to keep variable at the desired, predeter-

mined value, called set-point. This is done by the system that calculates the error (how

much the value of a variable deviates from the set-point), integrates it and includes it

back into the process of generation of the controlled variable as shown on Figure 1.3.

This correction allows to bring the value of a variable precisely to the predetermined

set-point.

It has been shown in previous studies that in order to achieve integral control certain ki-

netic conditions within negative feedback loop must be met. These include a zero-order

degradation of controller E [9–12], autocatalytic formation of E [13–15] or second-order

reaction [16, 17].
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1.3 Controller motif 2

Eight controller motifs given in the Figure 1.2 have been tested with time-dependent

perturbations [18] and the motif 2, inflow controller, based on the depression kinetics was

able to work against the exponentially increasing perturbations as well as it can balance

hyperbolic increase in perturbation with doubling times which decrease exponentially.

A

E
k3k4

k1

+

k2

KI

−

, KM

Figure 1.4: General structure of motif 2 inflow controller based on depression kinetics.

The scheme of the motif 2 is illustrated on the Figure 1.4 with the same color code as

in the Figure 1.3. In the Figure 1.4, k1 is the time dependent perturbation (removal of

controlled variable from the system), k2 is the compensatory flux which is inhibited by

E, KI is the inhibition constant, k4 is the rate constant of zero order and A-induced

synthesis of E. E is degraded by zero-order enzymatic reaction by the rate parameters

k3(Vmax) and KM .

The rate equations of the motif 2 controller are:

Ȧ =
k2

1+ E
KI

− k1·A (1.1)

Ė = k4·A− k3·E
KM+E

(1.2)

where k1 is the perturbation and k2/(1+(E/KI)) is the compensatory flux. To determine

the set point we set the Ė=0 and we solve for Ass which gives us:

Ass = Aset =
k3
k4

(1.3)

This controller can be metaphorically compared to the plane which stands at start of

the runway with engines in full thrust but it has the brakes on. Then when the brakes

are released it starts moving and accelerating. What happens with the controller is that

when the perturbation is increased the concentration of controller will decrease giving

smaller inhibition constant KI and this will lead to the increase in compensatory flux

k2.
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The maximum compensatory flux is reached when E≤KI and all further increase in

perturbation k1 will lead to breakdown of the controller. Breakdown point happens

when E is no longer be able to compensate for the increased removal of A from the

system. The point of breakdown, the value of kbd1 when E can no longer compensate for

the increased outflow, can be mathematically estimated by setting E=KI and solving

for k1 from the 1.1 with Ȧ=0. This gives us:

Ȧ =
k2KI

2KI
− kbd1 Aset = 0 (1.4)

Solving for kbd1 gives us:

kbd1 ≈ k2
2Aset

(1.5)

The example of the controller breakdown is illustrated on the Figure 1.5 where controller

E breaks down and is barley able to get the controlled variable A to a set point when

the system collapses. In this case the perturbation increases exponentially in the phase

2.

Figure 1.5: Example of the controller breakdown. Controller is not able to keep the
controlled variable A at a set point and it breaks down as the pertrubation increases.

The point of breakdown is shown with arrow.
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1.4 Effect of multisite inhibition

We can think of the controller motif 2 as a process of inhibition of an enzymatic process.

The controller E in the controller motif 2 particularly, acts is an inhibitor that binds to

the enzyme or transporter. It binds to the enzyme reversibly. The reversible inhibition

means that the substrate and inhibitor can bind to an enzyme independently but the

reaction can only proceed if inhibitor is not bound. The binding strength of an inhibitor

is affected by the perturbation. The process is illustrated on the Figure 1.6.

Active site

E

I

S

E

Inhibitor binding site

Substrate Inhibitor

S
E

S

I

E

S

I

E

I

E

S

I

S

Figure 1.6: Reversible noncompetitve inhibition. Both inhibitor and the substrate
can bind to the enzyme on different binding sites. Although the substrate binds to the

enzyme the enzymatic reaction does not proceed while inhibitor is bound.

Inhibitors can have more than one binding site on the enzyme an this is called multisite

inhibition and enzymes that have more binding sites are called allosteric. Multisite

inhibition is illustrated on the Figure 1.7.
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E
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Figure 1.7: Reversible noncompetitve multisite inhibition. Substrate can bind to
more binding sites on the enzyme independent of the binding of inhibitor.

In mulitiste inhibition the controller can bind to different binding sites with different

binding constants. In theory the more binding sites a controller has, the controller will

be more aggressive meaning that it will give faster response to the perturbation and get

the controlled variable faster back at the steady state.
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1.5 Oscillatory homeostasis

While the term oscillatory homeostasis can be seen as contradictory to the homeostasis

as defined by Canon it is not necessarily like that. Oscillatory homeostasis is something

that is not fully accepted by the control engineering because it is thought that systems

are out of order when they oscillate and and oscillations are thought to present the

”breakdown of homeostasis” [19].

Many processes in biological systems are oscillatory [20–24] and even Cannon itself

recognized that the normal level of glucose ranges between 70mg/dL and 130mg/dL and

the values can oscillate [4] in the that range without compromising the system while

any change that leads the concentration outside this range can lead to dysfunction and

development of disease. This raises a question if oscillatory systems are in any case

connected to the homeostatic systems.

It has previously been shown that the controller motif 2 shown on the Figure 1.4, can

be modified to become oscillatory when degradation of A and E becomes zero-order

with respect to A and E [25], in the case of step wise disturbances. This happens when

KM�E and also KM�A. The equations for A and E are then as follows:

Ȧ =
k2

1+ E
KI

− k1 (1.6)

Ė = k2A− k3 (1.7)

The controller is shown to be able to maintain the robust homeostasis in an average

concentration <A> with

<A> =
1

τ

∫ τ

0
A(t) dt = Aset (1.8)

This is shown on the Figure 1.8 taken from the previous research done on this subject

[25].
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Figure 1.8: The oscillatory behaviour of the controller motif 2. It illustrates the
ability of the controller to maintain homeostasis by having the oscillatory behaviour.
As the perturbation k2 is increased from 1.0 to 2.0 the average <A> of is maintained
at the set point of 2. Frequency of the controller is increased. Still average value of
<E> is decreasing and the controller reaches breakdown upon any further increase in

k2.

This oscillatory controller however has the same challenge, it still breaks down when the

increase in perturbation becomes too big and maximum compensatory flux is reached.

This is shown on the Figure 1.9 where the perturbation increases step-wise and in the

third phase the k1 becomes too high and controller is no longer able to keep the A at

the Aset.
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time (au)

controller
breakdown
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E

k1= 5.0

k1= 10.0

k1= 200.0

Figure 1.9: The breakdown of the controller motif 2 with oscillatory behaviour. Con-
troller is able to keep the A at Aset when the increase in perturbation is low but when
it gets high (k1 = 200.0) the controller is not able to keep the homeostasis and it breaks

down.



Chapter 2

Aim of thesis

The controller motif 2 is one controller motif based on depression that has been shown to

be able to keep the variable at the set point even for rapidly increasing time-dependent

perturbations placing this controller on the top of the list. However, this controller comes

to the point of breakdown when E≤KI and it can not keep the controlled variable A at

a set point and all system collapses, homeostasis is not reached. This is illustrated on

the Figure 1.5.

In this thesis we try to stop controller breakdown by implementing the multiisite inhi-

bition and adding additional autocatalytic (positive feedback) loop while still keeping

controllers main property - being based on the depression.

In addition, the controller is modified to become oscillatory as we inspect the homeostatic

properties of such system.

11



Chapter 3

Methods

All calculations are done by using the Fortran subroutine LSODE. Part of the pro-

gram and the important parameters that were varied to get the results including equa-

tions used can be seen in the Appendix. The plots were generated using Gnuplot

(www.gnuplot.info) and annotated using Adobe Illustrator (www.adobe.com). Selected

results were checked using MATLAB (mathworks.com). All concentrations of com-

pounds are denoted by compounds names without square brackets and all are given in

arbitrary units (a.u.). Time derivatives are written using ”dot” notation.

12



Chapter 4

Results and Discussion

4.1 Influence of KI on the controller performance

First point in testing the controller was to test the influence of the KI - the inhibition

constant of the controller on the controller lifetime. The controller tested is the one

shown on the Figure 1.4 and the KI is the constant by which E inhibits the synthesis of

A. We wondered what happens if the strength of the inhibition is reduced. The values of

KI tested are KI=10, KI=1, KI=0.1 and KI=1x10−3. The k1 is constant in the phase

1 when in the phase 2 at time tp1=10.0 starts to increase exponentially as illustrated

on the Figure 4.2 in the right panel. The results are shown on the Figure 4.1 where we

observe that the changes in KI at time does not prolong lifetime of the controller as

breaks down at the same point.

13
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Figure 4.1: The effect of different inhibition constants on the controller motif 2 when
the k1 increases exponentially as shown on the Figure 4.2 right panel. In the phase 1
the controller is at a steady state. In the phase 2 the k1 starts to increase exponentially
and the different behaviour of the controller E is observed. The E1 and A1 are values
when KI=10, E2 and A2 when KI=1, E3 and A3 when KI=0.1, and E4 and A4

when KI=1x10−3. The other rate constants are: k2(max compensatory rate)=1×105,
k3=5×103, k4=1×103, KM= 1×10−6. Initial concentrations: A=5.0 (for all K1 values),

E1=1x105, E2=1x104, E3=1x103, E4=10.

But, it is observed that controllers ability to keep A at Aset is increased with decreasing

KI value (compare for example A1 when the KI=10 with A4 when KI=1x10−3). It

is obvious that the controller is more aggressive when the binding to the enzyme or

transporter is not so strong. When we say ”more aggressive” we think that controller is

faster (it reacts faster to the perturbation) and more precise. This observation is easy

to comprehend as we can think that the lower value of KI gives weaker inhibition and

in cases when perturbation happens and A is removed from the system, the weaker the

inhibition the faster the response. Still in order to increase the lifetime of controller

other approach must be made.

4.2 Implementation of multisite inhibition

We wondered what effect does the multiple binding sites of E to enzyme or transporter

have on the controller efficiency. The controller motif 2 shown on Figure 4.3 is tested

with the kind of inhibition shown on the Figure 1.7. The controller could bind to the

different sites with different binding constants KI but for the sake of simplicity we

assume that all KI values are the same, we have tested with the KI = 0.1 We have

tested behavior of the controller with one, two and four binding sites. The k1 value, the

perturbation has an exponential increase as shown on the right panel of Figure 4.2. The

equation for calculating concentration of A for multisite inhibition used is Equation 4.2
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Ȧ =
k2

1+( E
KI

)n
− k1·A (4.1)

where n is number of E molecules that bind to the enzyme or transporter (tested for

n=1,2 and 4). The equation for Ė is the Equation 4.3. The result can be seen on the

Figure 4.2.
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k1 = k1,p1 + 0.2 e0.2(t−tp1) − 1
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n=4

n=2,4
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Figure 4.2: The effect of multisite inhibition on the controller motif 2 when the k1
increases exponentially. In the phase 1 the controller is at a steady state. In the phase
2 the k1 starts to increase exponentially and the different responses are observed for
different numbers of binding sites n. Rate constants are:KI=0.1, k2(max compensatory
rate)=1×105, k3=5×103, k4=1×103, KM= 1×10−6. Initial concentrations: A=5.0 (for

all n), E (n=2) =9.9, E (n=4)=0.9.

The controller gets more aggressive and rapid with more binding sites. With 2 and more

binding sites it is able to keep the controlled variable A at a set point Aset=5 even when

k1 starts to increase exponentially in the phase 2. The controllers lifetime is however

not affected by the multisite inhibition, as the controller still breaks down at the same

point.

We have tested the controller with n=4 binding sites with the KI=1x10−3 which was

shown to increase the aggressiveness in the first results (Figure 4.1). These results can

be seen on the Figure A.1. We have chosen to continue with the KI = 0.1 because this

value with n=4 binding sites gives the longest lifetime of the controller.

4.3 Increasing controller lifetime by increasing the maxi-

mum compensatory flux

As mentioned in the introduction the controller motif 2 has an issue because it breaks

down when E≤KI then maximum compensatory flux is reached and all further increase

in perturbation k1 will lead to breakdown of the controller. The Equation 4.5 indicates

that the increasing maximum compensatory flux k2 will lead to higher value of kbd1 and

with this increase in the controller lifetime. In order to increase the compensatory flux
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Figure 4.3: Controller motif 2 with additional variable C which is dependant on the
concentration of E.

we have decided to add a new variable C. This variable is activated by the decrease

in concentration of E and then it in turn works by increasing k2. This constructed

controller motif is shown in Figure 4.3.

We assume that the E has only one binding site for the inhibition of generation of C. We

also assume that the inhibition constant KI is the same both for inhibition of generation

of C and A. The equations for calculations are

Ȧ =
k2·C

1+( E
KI

)n
− k1·A (4.2)

Ė = k4·A− k3·E
KM+E

(4.3)

Ċ =
k5

1− E
KI

− k6∗C (4.4)

Since we have shown that the controller is most aggressive and rapid when it has n=4

binding sites for the inhibition of generation of A as shown on the Figure 4.2 we use

this further in our calculations. The controller is tested for exponential increase in k1

as shown on the right panel of Figure 4.2. We have as well here varied ratios of rate

constants for generation k5 and decomposition k6 of C to see the effect of this on the

lifetime of the controller.

The results are presented on the Figure 4.4 and we observe that controller lifetime

increase with the presence of C when the ratio of k5/k6 is high l.e. the rate of generation



17

4.8
4.85

4.9
4.95

5
5.05

5.1
5.15

5.2

0 20 40 60 80 100

10-8

10-6

10-4

10-2

100

A
(a

u)

E
(a

u)

time (au)

phase 1

phase 2
E4

E1

n = 4

E2E3

A3A4

A1

A2 0.1

1

10

100

1000

0 20 40 60 80 100

C
(a

u)

time (au)

C1

C2

C4
phase 2phase 1

Figure 4.4: Controller motif 2 with variable C which is dependant on the concentra-
tion of E ilustrated on the Figure 4.4. Left panel: Concentrations of A and E as a
function of time with different k5/k6 rate constants. Blue curves A3 and E3 correspond
to the calculations without C (Figure 4.2 with n=4). Right panel: Concentrations of
C with different k5/k6 rate constants as a function of time. Phase 1: the controller
is at steady state at its set-point Aset=5.0 at constant k1=2.0. Phase 2: k1 increases
exponentially according to the inset in the left panel of Figure 4.2. k5 and k6 values
and initial concentrations for the different Ai, Ei, Ci curves: i=1, k5=10.0, k6=0.01,
A0=5.0, E0=2.412, C0=39.81; i=2, k5=1.0, k6=0.1, A0=5.0, E0=0.9, C0=1.0; i=3, no
C (Figure 4.2) with n=4); i=4, k5=k6=0.1, A0=5.0, E0=0.531, C0=0.158. Other rate

constant values: k2=1×105, k3=5×103, k4=1×103, KM= 1×10−6, KI=0.1.

is higher than the rate of decomposition of C. We have tested with the ratios of 1, 10

and 1000. For the sake of comparing we have plotted the result from the Figure 4.2 when

n=4 and there is no variable C (blue lines in the Figure 4.4). The longest lifetime of

the controller is achieved when rate constant for generation k5 is much higher than the

rate of decomposition for A1/E1 and A2/E2 while it is slightly lower than the controller

without C when the ratio is between k5/k6 = 1. On the right panel of the Figure 4.4

we have shown the difference in C concentrations for different ratios and we observe

the concentration of C is highest when ration of k5/k6 = 1000 and is increasing with

increase in k1.

The lifetime of the controller is increased by this implementation but it still breaks down

when value of E reaches the value of KI . The point of breakdown can be estimated by

solving the Equation 4.2 for k1, if we set E=KI and Ȧ=0 we get

kbd1 ≈ k2C

2Aset
(4.5)

Since this controller still breaks down no further testing was preformed but we decide

to introduce autocatalysis in C.
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4.4 Implementing the positive feedback activation of C in

order to stop the controller breakdown

In order to oppose the degradation of the E we decided to try to implement the positive

feedback autocatalytic generation of C. Autocatalysis means that C is reactant in its

own production, meaning it catalyzes its own generation. This however does not change

the properties of the controller motif 2. Scheme of this motif can be seen on the Figure

4.5.
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KI
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, KM

Ck5 k6

+

KI

+

Figure 4.5: Controller motif 2 with autocatalytic generation of C.

The generation of C can be first and second order autocatalysis. The equation for the

calculation of Ċ in first order autocatalysis is given by

Ċ =
k5C

1− E
KI

− k6∗C (4.6)

and for the second order autocatalysis

Ċ =
k5C

2

1− E
KI

− k6∗C2 (4.7)

Other equations used are Equation 4.2 and Equation 4.3.

We have tested this controller motif by using the following assumptions that we found

were increasing aggressiveness and lifetime of controller in the previous sections. We as-

sume that E has n=4 binding sites on the enzyme or transporter involved in inhibition
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of generation of A while it can bind to only one binding site for the inhibition of gener-

ation of C. The inhibition constants KI have all the same values. Since this controller

can have both first and second order autocatalysis in C we have tested both situations.

To take the things one step further we have tested the controller for different types of

pertrubations. Until now we have tested different controller motifs only for exponential

increase in perturbation but now we test the controller for exponential, hyperbolic, lin-

ear and step-wise increase in k1. The following equations are used for different increase

in perturbations:

For linear increase in k1

k1 = k1,p1 + 1000(t− tp1) (4.8)

For exponential increase in k1

k1 = k1,p1 + 0.2(e0.2(t−tp1) − 1) (4.9)

For hyperbolic increase

k1 =
40.5

40.5
k1,p1

− (t− tp1)
(4.10)

4.4.1 First order autocatalysis in C

Implementation of first order autocatalysis in C using Equation 4.6 and testing it for

different types of growth in perturbations. In the case of linear growth, the controller

does not break down, it actually increases in concentration while A is kept at set point.

This is shown on the Figure 4.6. In the right panel of this figure we see that the

concentration of C increases as well as the perturbation increases.
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Figure 4.6: Controller motif 2 with first order autocatalytic generation of C and
linear increase in k1. Left panel: Concentrations of A and E as a function of time while
perturbation increases linearly. Phase one is 100(au) and k1=2 the controller is able to
keep the A at the steady state. In the phase 2 at the time 100(au) the perturbation
starts to increase linearly by the Equation 4.8. The controller is able to keep the A at the
Aset, E decreases in the concentration and it eventually reached the steady state. Other
rate constants are:KI=10, k2(max compensatory rate)=1×105, k3=5×103, k4=1×103,

KM= 1×10−6. Initial concentrations: A=5.0, E=8.2×103, C=2.3×1013

We then test the controller with the step wise increase in k1 with three phases. The

result is shown in the Figure 4.7. We can see on on the left panel of the Figure 4.7 that

the controller will in the third phase be at the set point of Aset=5.0 from the start while

it will need more time to reach the set point in the first two phases when k1 is lower.

So it is interesting to see that the controller takes actually more time to get to the set

point when the perturbation is small while it is much faster when the perturbation is

higher.
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Figure 4.7: Controller motif 2 with first order autocatalytic generation of C and
step wise increase in k1. Left panel: Concentrations of A and E as a function of
time while pertrubation increases step wise. Phase one is 10(au) and k1=2. The
phase 2 is 100 (au) and k1=10. The phase 3 is 100 (au) k1=20. Other rate constants
are:KI=10, k2(max compensatory rate)=1×105, k3=5×103, k4=1×103, KM= 1×10−6.

Initial concentrations: A=5.0, E=2.5×103, C=4.4×101

When we have exponential increase in the k1 by the Equation 4.9 the A is kept at its set

point Aset=k3/k4=5.0 and E does not break down but reaches a steady state as shown

on the Figure 4.8. We observe also that value of C follows value of k1 closely. The same

situation is run using MATLAB, giving same results as shown in on Figure B.3 in B.3.
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exponential increase in k1. Left panel: Concentrations of A and E as a function of time
while perturbation increases exponentially in the phase 2. In the phase which is 10(au)
long and k1=2 the controller is able to keep the A at the steady state. In the phase 2 at
the time 10(au) the perturbation starts to increase exponentially by the Equation 4.9.
The controller keeps the A at the Aset while the E increases in concentration.Other
rate constants are:KI=10, k2=1 × 105, k3=5 × 102, k4=1 × 102, k5=10.0, and k6=1.0.

KM=1 × 10−6, KI=0.1, n = 4 (Equation 4.2).

The most demanding task for the controller motif 2 with first order autocatalytic gen-

eration was to give the hyperbolic increase in perturbation. This type of perturbation

is rapid and reaches infinity limit at certain time point. The k1 increases hyperbolic by

the Equation 4.10 where the k1 is constant during the phase 1. Infinity limit is reached

when time is t = 20.25. Although this is rapid increase in perturbation controller is still

able to maintain the homeostasis all until the infinity limit when it breaks down as seen

on the left panel on the Figure 4.9.
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Figure 4.9: Controller motif 2 with first order autocatalytic generation of C and
hyperbolic increase in k1. Left panel: Concentrations of A and E as a function of time
while perturbation increases hyperbolic in the phase 2. In the phase 1 which lasts one
time unit (not shown) the controller is at its set point Aset = 5.0 and the k1=2.0. In
the phase 2 k1 increases hyperbolic by the Equation 4.10, where KI=0.1, k2=1 × 105,
k3=5 × 102, k4=1 × 102, k5=10.0, and k6=1.0. KM=1 × 10−6, n = 4 (Equation 4.2).
The right panel shows the concentrations of k1 and C as function of time in the short

moment before they reach infinity limit.
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4.4.2 Second order autocatalysis in C

We test the controller shown on Figure 4.5 with the second order autocatalysis in C by

Equation 4.7. First we test the linear increase in k1 by the Eq 4.8. The result is shown

on the Figure 4.10. The controller is now able to keep the A at the set point of 5 and it

itself is in the steady state (left panel of the Figure 4.10). We observe also that the C

follows the increase in the k1 completely in the contrary of the linear increase with the

first order autocatalysis shown on Figure 4.6 (right panel).
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Figure 4.10: Controller motif 2 with second order autocatalytic generation of C and
linear increase in k1. Left panel: Concentrations of A and E as a function of time
while perturbation increases linearly in the phase 2. In the phase 1 which lasts one
time unit the controller is at its set point Aset = 5.0 and the constant k1=2.0. In
the phase 2 k1 increases linearly by the Equation 4.9, where KI=0.1, k2=1 × 105,
k3=5 × 102, k4=1 × 102, k5=10.0, and k6=1.0. KM=1 × 10−6, n = 4 (Equation 4.2).
Initial concentrations are: A0 = 5.0,E0 = 0.9 and C0 = 1.0 The right panel shows the

concentrations of k1 and C as function of time.

When tested for the step wise increase in the k1 the controller is able to keep the A at

the set point in each phase. The result is shown on the Figure 4.11.
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Figure 4.11: Controller motif 2 with second order autocatalytic generation of C and
step wise increase in k1. Left panel: Concentrations of A and E as a function of time
while perturbation increases step wise in the phase 2 and phase 3. All phases are 10 time
units long and at the end of each phase the A is at Aset = 5.0. Other concentrations
are KI=0.1, k2=1×105, k3=5×102, k4=1×102, k5=10.0, and k6=1.0. KM=1×10−6,
n = 4 (Equation 4.2). Initial concentrations are: A0 = 5.0,E0 = 0.9 and C0 = 1.0 The

right panel shows the concentrations of k1 and C as function of time.
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In contrary to the first order autocatalysis shown on the Figure 4.7 where the controller

needs more time to reach the set point the controller is at the set point in each phase.

E itself is under homeostatic control and the set point can be calculated by setting

Equation 4.7 to zero which leads to

Eset = KI

(
k5
k6

− 1

)
(4.11)

When we set in all values from the Figure 4.11 into the Equation 4.11 we get the value

Eset = 0.9 which corresponds to the numerical value of Ess and illustrated on the Figure

4.11 (left panel).

In the case of exponential increase and second order autocatalytic generation of C as

shown on Figure 4.12 we do not observe to much difference when comparing to the

Figure 4.8. Only thing that is observed is that E reaches Eset = 0.9 while E in 4.8

reaches steady state which is lower that the calculated Eset. The same situation is run

using MATLAB, giving same results as shown in on Figure B.4 in B.4.
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Figure 4.12: Controller motif 2 with second order autocatalytic generation of C and
exponential increase in k1. Left panel: Concentrations of A and E as a function of
time while perturbation increases exponentially in the phase 2. In the phase 1 which
lasts one time unit the controller is at its set point Aset = 5.0 and the constant k1=2.0.
In the phase 2 k1 increases exponentially by the Eq 4.9, where KI=0.1, k2=1 × 105,
k3=5 × 102, k4=1 × 102, k5=10.0, and k6=1.0. KM=1 × 10−6, n = 4 (Equation 4.2).
Initial concentrations are: A0 = 5.0,E0 = 0.9 and C0 = 1.0 The right panel shows the

concentrations of k1 and C as function of time.

Further we test the same controller with the hyperbolic increase in perturbation. The

result is shown on the Figure 4.13 where we can see that the controller is able to keep

the A at a set point but the numerical value of Ess is lower than calculated value of

Eset which is 0.9. It is still able to keep Ess before reaching the infinity limit which

the controller with first order autocatalysis was not able to, recall the Figure 4.9. C is

following the increase in the perturbation more closely (right panel of Figure 4.13) than

in the case of first order autocatalysis (left panel of Figure 4.9).
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Figure 4.13: Controller performance with second-order autocatalysis in C (Equation
4.7) and hyperbolic increase of k1 (Equation 4.10). Phase 1 (not shown): the controller
is at steady state at its set-point Aset=5.0 with constant k1=2.0. Phase 1 lasts 1
time unit. Initial concentrations: A0=5.0, E0=0.9, C0=1.0. Phase 2: k1 increases
hyperbolic. Rate constant values: k2=1 × 105, k3=5 × 102, k4=1 × 102, k5=10.0, and
k6=1.0. KM=1 × 10−6, KI=0.1, n = 4 (Equation 4.2). Right panel: k1 and C as a
function of time just before k1 reaches the infinity limit. At time 21.249997 k1=1.4×107,
C=5.4× 106. Left panel: corresponding A and E concentrations as a function of time.
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4.5 Oscillatory homeostasis

As shown on the Figure 1.4 becomes oscillatory when degradation of A and E becomes

zero-order with respect to A and E. It is observed that controller breaks down when k1

is high and KM�E and KM�A. The controller stops oscillating and can not keep the

A=Aset as shown on the panel a Figure 4.14 [25]. The equations are then Equation 1.6

for A and Equation 1.7 for E.

The breakdown problem could be solved by increasing the compensatory flux, the value

of k2. The point of breakdown can be calculated from the Equation 1.6 if we set E=KI

and Ȧ=0 which gives us

kbd1 ≈ k2
2

(4.12)

So we first try by adjusting the k2 when the k1 (perturbation) increases stepwise in the

manner shown in the Figure 4.14 (panel c). We first observe that the controller breaks

down when the k1=10.0 (the panel a). But when we increase value of k2 in just one order

of magnitude the controller keeps oscillating and is able to keep the <A> at the Aset

(panel b 4.14). In order to keep up with the increase in perturbation the concentration

of E increases (see the third phase of the the panel b, Figure 4.14).
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Figure 4.14: Breakdown of the controller motif 2 when perturbation increases stepwise
(panel a). In panel b the controller does not break down. The breakdown is stopped
by increasing the k2 value from k2=6 in the first two phases to the to the k2=1×106 in
the third phase (panel b). Initial concentrations used are: A0=5.2, E0=6.9 and other
rate constants are the same in all three phases and as follows:k3=5 × 102, k4=1 × 102,
k5=50.0, and k6=1.0. KM=1 × 10−6, KI=0.1. The k1 increases from k1=1.0 in phase

1 to the k1=3.0 in phase 2 and further to the k1=10.0 in the phase 3 (panel c).

4.5.1 Time dependent perturbations for controller motif 2

Further we have decided to test the controller motif 2, Figure 1.4 for multisite inhibition,

choosing four binding sites for E. In this case the Equations for calculating the Ė is

Equation 1.7 and for Ȧ when there is n=4 binding sites is

Ȧ =
k2

1+( E
KI

)n
− k1 (4.13)

The controller is first tested for the stepwise perturbations. We observe that the A

oscillates around the set point Aset. In the case of E it oscillates and concentration

decreases in phase 2 compared to phase 1 while it increases in the third phase when

k1=10. The controller is able to keep the <A> at the Aset. The result is presented in

the Figure 4.15.
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Figure 4.15: Controller motif 2 with step wise increase in k1 an multisite inhibition
n=4. Left panel: Concentrations of A and E as a function of time while perturbation
increases step wise and average concentrations of<A> and <E>. All phases are 50
time units long and the k1 in three phases are: In phase 1:k1=1; In phase 2: k1=3;
In phase 3: k1 = 10 Other concentrations are KI=0.1, k2=6, k3=5 × 101, k4=1 × 101,
KM=1 × 10−6, n = 4. Initial concentrations are: A0 = 5.5,E0 = 3.1. The right panel

shows the concentration of k1 as function of time.

The controller motif 2 is further tested for the linear, exponential and hyperbolic increase

in k1 when the cooperativity is n=4.

In case of linear increase the k1 is increasing by the Equation 4.8. The k1 is constant

in the phase 1 and then it increases in the phase 2. The controlled variable A oscillates

around the set point Aset = 5.0. <E> reaches steady state in phase 2 when it decreases

in the phase 2. The result is shown on the Figure 4.16.
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Figure 4.16: Controller motif 2 with linear increase in k1 by Equation 4.8 and multisite
inhibition n=4. Left panel: Concentrations of A and E as a function of time while
perturbation increases linear and average concentrations of <A> and <E>. In the
first phase which is 20 time units long the k1=5 and after that is increases linearly in
the phase 2 which is 50 time units long. Other concentrations are KI=1, k2=1 × 105,
k3=5×101, k4=1×101, KM=1×10−6, n = 4. Initial concentrations are: A0 = 1.5,E0 =

2.1. The right panel shows the concentration of k1 as function of time.

We have further tested the controller for the exponential increase in perturbation. The

perturbation is increasing exponentially by Equation 4.9. The average value of the



28

controlled variable (<A>) is again kept at the Aset. The result is shown on Figure 4.17.

This result was compared using MATLAB and can be seen on the Figure B.5 in B.5.
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Figure 4.17: Controller motif 2 with exponential increase in k1 by Equation 4.9 and
multisite inhibition n=4. Left panel: Concentrations of A and E as a function of
time while perturbation increases linear and average concentrations of <A> and <E>.
In the first phase which is 20 time units long the k1=5 and after that is increases
linearly in the phase 2 which is 50 time units long. Other concentrations are KI=1,
k2=1 × 105, k3=5 × 101, k4=1 × 101, KM=1 × 10−6, n = 4. Initial concentrations are:
A0 = 1.5,E0 = 2.1. The right panel shows the concentration of k1 as function of time.

For the hyperbolic increase the k1 is increasing hyperbolic in the phase 2 by the equation

4.10. The controller is able to keep the average value of A at the Aset until the infinity

limit is reached and controller breaks down. This is shown on the Figure 4.18.
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Figure 4.18: Controller motif 2 with hyperbolic increase in k1 by Equation 4.10 and
multisite inhibition n=4. Left panel: Concentrations of A and E as a function of
time while perturbation increases linear and average concentrations of <A> and <E>.
In the first phase which is 10 time units long the k1=5 and after that is increases
hyperbolic until the infinity limit is reached in phase 2 at total time : 18.01. Other
concentrations are KI=1, k2=1 × 105, k3=5 × 101, k4=1 × 101, KM=1 × 10−6, n = 4.
Initial concentrations are: A0 = 1.5,E0 = 2.1. The right panel shows the concentration

of k1 as function of time.
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4.5.2 Time dependent perturbation of controller motif 2 with C

We wanted to see how the increase in compensatory flux k2 is affecting the behaviour of

the controller. As we have seen in the Figure 4.14 (panel b) when we have the controller

motif 2 (Figure 1.4) we can avoid the breakdown by increasing the compensatory flux.

So the same effect is to be expected when adding the variable C which activates the

synthesis of A by positively affecting the compensatory flux k2. The controller motif 2

with variable C is shown on the Figure 4.4. The Equations for oscillatory behaviour are

Equation 1.1 for calculating the concentration of A and Equation 1.7 for calculating the

concentration of E. As for C it is calculated using the Equation 4.4.

Now we have tested this controller in cases when perturbation (value of k1) is increasing

linearly, stepwise, exponentially and hyperbolic. We as well assume that E can bind to

4 binding sites on transporter or enzyme.

When we test the controller against the linear increase in the k1 the controller is able to

keep the average value of A at the Aset. The controller is oscillating around the average

value. The frequency of oscillations are increasing with linear increase. This is shown

on the Figure 4.19. In comparison to the controller motif without C with linear increase

(Figure 4.16) we observe that both controllers are able to keep the <A> at the Aset.

We also observe that the in the case of controller with C the <E> is also kept at the

steady state and has a higher concentration while it is decreasing in concentration for

the controller without C (Figure 4.16).
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Figure 4.19: Controller motif 2 with C, linear increase in k1 by Equation 4.8 and
multisite inhibition n=4. Left panel: Concentrations of A and E as a function of time
while perturbation increases linearly and average concentrations of <A> and <E>. In
the first phase which is 20 time units long the k1 is constant k1=2 = 0 and then it
starts to increase linearly by Equation 4.8 in the phase 2 whiich is 30 time units long.
Other concentrations are KI=0.1, k2=1× 105, k3=5× 102, k4=1× 102, KM=1× 10−6,
n = 4. Initial concentrations are: A0 = 5.2,E0 = 6.9, C0 = 1.8× 10−3. The right panel

shows the concentration of k1 and C as function of time.
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For the stepwise increase in k1 we observe that the frequency in oscillations in all phases

is smaller when we are having the C in the system. It is as well observed that the

concentration of the E is higher than in the controller without C. When we look at

the right panel of the Figure 4.20 we observe that C is decreasing with the increase in

perturbation. The frequency of oscillations is increasing and the amplitude is decreasing.

So in the phase 3, when the k1 increases mostly the C reached steady state and oscillates.
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Figure 4.20: Controller motif 2 with C, stepwise increase in k1 and multisite inhibition
n=4. All phases are 10 time units long and the k1 in three phases are: In phase 1:k1 = 5;
In phase 2: k1 = 10; In phase 3: k1 = 200. Left panel: Concentrations of A and E as
a function of time while perturbation increases stepwise and average concentrations of
<A> and <E>. Other concentrations are KI=0.1, k2=1×105, k3=5×102, k4=1×102,
KM=1 × 10−6, n = 4. Initial concentrations are: A0 = 5.2,E0 = 6.9, C0 = 1.8 × 10−3.

The right panel shows the concentration of k1 and C as function of time.

For the exponential increase the controller with exponential increase the controller is

as well able to keep the <A> at Aset point. When comparing to the controller motif

without C (Figure 4.17) we observe that the <E> is higher in both phases when we have

the C and is not decreasing as much as in the first situation (without C). When looking

at the right panel of the Figure 4.21 we see that the C oscillates and is decreasing in

the first phase while it starts to exponentially increasing when k1 start to increase. This

result was compared using MATLAB and can be seen on the Figure B.6 in B.6.
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Figure 4.21: Controller motif 2 with C, exponential increase in k1 by Equation 4.9
and multisite inhibition n=4. Left panel: Concentrations of A and E as a function of
time while perturbation increases linear and average concentrations of <A> and <A>.
In the first phase which is 20 time units long the k1 = 2 and after that is increases
exponentially in the phase 2 which is 30 time units long. Other concentrations are
KI=0.1, k2=1×105, k3=5×102, k4=1×102, KM=1×10−6, n = 4. Initial concentrations
are: A0 = 5.2,E0 = 6.9 and C0 = 1.8× 10−3. The right panel shows the concentrations

of k1 and C as function of time.

Further we have tested the controller with C against the hyperbolic increase in k1.

We observe that the controller is as expected able to keep the <A> at Aset until the

infinity limit is reached. When compared to the controller without C with the hyperbolic

increase (Figure 4.18 we observe the same trend only that concentration of <E> is much

higher then without C.

0
2
4
6
8

10
12
14
16

0 5 10 15 20 25 30 35 40
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102
103

A
(a

u)

E
(a

u)

time (au)

E

A

<E>

<A>phase 1 phase 2

100

101

102

103

104

105

0 5 10 15 20 25 30 35 40
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6

k 1
(a

u)

time (au)

phase 1 phase 2

C

k1

Figure 4.22: Controller motif 2 with C, hyperbolic increase in k1 by Equation 4.10
and multisite inhibition n=4. Left panel: Concentrations of A and E as a function of
time while perturbation increases hyperbolic and average concentrations of <A> and
<E>. In the first phase which is 20 time units long the k1 = 2 and after that is increases
hypwerbolic in the phase 2 until the infinity limit is reached at time=40.24939. Other
concentrations are KI=0.1, k2=1× 105, k3=5× 102, k4=1× 102, KM=1× 10−6, n = 4.
Initial concentrations are: A0 = 5.2,E0 = 6.9 and C0 = 1.8 × 10−3. The right panel

shows the concentrations of k1 and C as function of time.



Chapter 5

Conclusion and Outlook

Controller motifs like the one presented here can be used in order to remodel some

existing biological systems as well as it can be used to explain and shed a light to the

newly discovered ones. Beside this application in direct biology, this research can help

in future work on the controller motifs by for example directing the researcher while

they investigate new controller motifs.

The aim of this thesis was to stop the breakdown of the m2-controller while still keeping

the same properties of controller, and this was achieved by incorporating the variable C

with second order autocatalysis as illustrated on the Figure 4.5. This controller is able to

withstand all types of time dependent perturbations (linear, stepwise, exponential and

even hyperbolic). E itself gets homeostatic regulated as well and reaches steady state

which corresponds to the calculated Eset values. We have as well followed the effect

the increase in k1 has on the concentration of C and we observe that when we have the

second order autocatalysis in C, concentration of C follows the increase in k1 closely.

We have taken the research one step further and looked into the oscillatory behavior

of the m2-controller 1.4. By modifying controller as explained in the section 1.5 the

controller oscillated around the setpoint. Implementing the C in the system lead to the

decrease in frequency of oscillations and the controller was less stressed.

Computational biology, is underestimated. Most of the research around biological sys-

tems is focused on the question: What is it, and what is it made of? But, I think that

it is likewise important to look into how the different species behave and interact.

Although the m2-feedback loop including C has so far not been found as an biological

example, it appears interesting to search for it. One may wonder whether nature as

found this solution during the course of evolution.
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Appendix A

Multisite inhibition with different

KI values

In the first part of the Results sections we have tested effect of different values of KI on

the controller motif 2. We observed that the KI=1x10−3 lead to the best results, the

controller lifetime was not affected but the aggressiveness of controller was increased as

well as its ability to hold A at Aset. This can be seen on the Figure 4.1. We have further

tested the controller for the multisite inhibition but we choose to use KI=0.1. We have

tested the controller with the KI=1x10−3 and the result is presented on the Figure

A.1. Here we tested the mulitisite inhibition effect on the controller and compared it to

the result for the controller for n=4 binding sites and when Ki=0.1 (Blue dashed line

presents the E and blue line presents the A.) We see that the controller with KI=0.1

(blue) holds the A at the Aset longest. Controller is maybe less agressive than the E4

but the difference is not to big for us to change to lower KI value which is why we are

continuing with KI=0.1.
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Figure A.1: Testing the multisite inhibition with KI=1x10−3, n is the number of
inhibition sites tested. E1 and A1 are for n=1, E2 and A2 are for n=2, E4 and A4 are

for n=4. k1 increases exponentially in the phase 2, k2=1x105, k3=5x103, k4=1x103

, KI=1x10−3 and KM=5x103. Initial concentrations are: A0=5.0, E0=9.9 and

C0=1.0. The blue lines are the result for n=4 from the Figure 4.1.



Appendix B

Checking the results using

MATLAB

In this section we have compared some of the results run in Fortran, in the MATLAB.

These files will be available as the Supplementary files as well.

B.1 Controller motif 2 without C and with exponential

increase
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Figure B.1: Comparing the results presented on the Figure 4.2 using MATLAB. The
n=4 and all concentrations are as described under the Figure.
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B.2 Controller motif 2 with C and exponential increase
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Figure B.2: Comparing the results presented on the Figure 4.4 using MATLAB. Given
result is comparing the result when k5=1.0 and k5=0.1. Other rate constants are the
same as on the Figure we are comparing it to. Here on the right panel we have the C

value for the controller as well as we show that the k1 is increasing exponentailly.

B.3 Controller motif 2 with C and first order autocatalysis

and exponential increase
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Figure B.3: Comparing the results presented on the Figure 4.8 using MATLAB. All
initial values and the rate constants are the same as in the Figure 4.8 .
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B.4 Controller motif 2 with C and second order autocatal-

ysis
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Figure B.4: Comparing the results presented on the Figure 4.12 using MATLAB. All
initial values and the rate constants are the same as in the Figure 4.12 .

B.5 Oscillatory Controller motif 2 with exponential in-

crease
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Figure B.5: Comparing the results presented on the Figure 4.17 using MATLAB. All
initial values and the rate constants are the same as in the Figure 4.17.
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B.6 Oscillatory Controller motif 2 with C and exponential

increase
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Figure B.6: Comparing the results presented on the Figure 4.21 using MATLAB. All
initial values and the rate constants are the same as in the Figure 4.21.



Appendix C

Fortran and MATLAB program

parts

In this section I present important parts of the Fortran and MATLAB program that are

varied in order to get the results. For illustration I am using the part of the Fortran

program used to obtain the results presented on the Figure 4.12 and part of the MATLAB

program used to get the result presented on the Figure B.4.

The Fortran file is presented on the Figure C.1. This files are available as supplementary

files as well.
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a

b

Figure C.1: The selected part of the Fortran program used to obtain the result
presented on the Figure 4.12. In the panel a of the Figure we can see the LSODE loop
of the program which here defines the perturbation. The highlighted is the Equation
4.9 used to calculate k1 in the case of exponential increase. In the panel b of the Figure

we can see all the rate equations used in this case.
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a

b

Figure C.2: The selected part of the MATLAB program used to obtain the result
presented on the Figure B.4. In the panel a of the Figure we can see the assignments
given for the program together with the Equations for calculations of concentrations
of A,E and C. In the panel b of the Figure we can see all the rate constants, and

numerical integration’s used in this case.
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