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Abstract: We present an improved analytic parametrisation of the complex in-medium heavy
quark potential derived rigorously from the generalised Gauss law. To this end we combine in
a self-consistent manner a non-perturbative vacuum potential with a weak-coupling description of
the QCD medium. The resulting Gauss-law parametrisation is able to reproduce full lattice QCD
data by using only a single temperature dependent parameter, the Debye mass mD. Using this
parametrisation we model the in-medium potential at finite baryo-chemical potential, which allows
us to estimate the Ψ′/J/Ψ ratio in heavy-ion collisions at different beam energies.
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1. Introduction

The study of heavy-quarkonium—the bound states of a heavy quark anti-quark pair—has become
a central tenet in our understanding of strongly interacting matter under extreme conditions in the
context of heavy-ion collisions. Experimentally, the decay of heavy quarkonia into di-leptons leaves a
clean signal that allows the probing of different stages of the quark gluon plasma (QGP) and ensures
the continued importance of heavy quarkonium measurements at future accelerators [1]. On the
theory side, the heavy masses of the constituent quarks permits the use of effective field theories
(EFTs) to simplify the description of heavy quarkonium behaviour [2]. This powerful framework has
led to considerable progress both in direct lattice QCD studies of equilibrated quarkonium as well
as in real-time descriptions of their non-equilibrium evolution. The formulation of EFTs relies on a
separation of scales inherent to the heavy-quark system, mQ � mQv� mQv2 with mQ the heavy-quark
mass and v its typical velocity, denoted respectively as hard, soft, and ultra-soft. Two additional scales
are present, namely the characteristic scale of quantum fluctuations ΛQCD and of thermal fluctuations
T. Integrating out the hard scale ∼ mQ from the full Quantum ChromoDynamics (QCD) Lagrangian
leaves Non-Relativistic QCD (NRQCD) given in terms of non-relativistic Pauli spinor fields; this can
be achieved non-perturbatively. Further integrating out the soft scale ∼ mQv results in Potential
Non-Relativistic QCD (pNRQCD), where the potential governing the quarkonium dynamics enters as
a matching coefficient. While the perturbative derivation of pNRQCD has been successfully completed,
its non-perturbative definition is still an active field of research.

In the static limit, the EFT-based definition of such a potential has been suggested based on the
real-time evolution on the QCD Wilson loop [3]:

V(r) = lim
t→∞

i∂tW�(r, t)
W�(r, t)

. (1)
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The evaluation of Equation (1) in hard thermal loop (HTL) resummed perturbation theory has
demonstrated that this potential is a complex quantity [4]. In addition to the well-known Debye
screening in the real part, an imaginary part arises owing to Landau damping or gluo-dissociation,
depending on the hierarchy of scales present [5]. At high temperatures the former dominates and the
potential reads:

VHTL(r) = −α̃s

[
mD + e−mDr

r + iTφ(mDr)
]
+O

(
g4) , φ(x) = 2

∫ ∞
0 dz z

(z2+1)2

(
1− sin(xz)

xz

)
. (2)

Here α̃s = CF g2/4π is the rescaled strong coupling constant. It should be emphasised that
this potential does not govern the evolution of the bound state wavefunction; instead it evolves the
correlator of unequal time wavefunctions. The question of how this potential can be related to the
evolution of the wavefunction itself is an active field of research—an open-quantum-systems approach
appears to be promising in this regard (see, e.g., [6]).

Significant progress has been made in understanding the equilibrated properties of heavy
quarkonium by extracting the heavy quark potential directly from lattice QCD simulations.
These works have confirmed that at low temperatures the potential closely resembles the Cornell
form [7],

Vvac(r) = − α̃s

r
+ σr + c, (3)

where σ denotes the string-tension and c an additive constant. Equation (3) already captures the
two most prominent features of QCD, namely asymptotic freedom via the running coupling at small
distances and confinement via the non-perturbative linear rise. At finite temperature, the same
extraction procedure reveals a weakening of the real part as one moves into the deconfined phase, as
well as an imaginary part persisting beyond the QCD pseudo-critical temperature. In order to employ
these numerical results in computations of quarkonium spectral functions, which inform us of the
in-medium properties, we require an accurate analytic parametrisation of the in-medium heavy quark
potential—in particular that holds at the lower and more phenomenologically relevant temperatures
below the strict validity range of HTL perturbation theory.

To this end, in this contribution we improve upon the work of [8] and utilise the generalised
Gauss law to reproduce the in-medium heavy quark potential. The non-perturbative vacuum bound
state is described by the Cornell potential in Equation (3) and will be inserted into a weakly coupled
deconfined medium characterised by the HTL in-medium permittivity. Taking into account string
breaking, we are able to derive expressions for ReV and ImV with a closed and simple functional
form. This parametrisation captures the in-medium behaviour of the real and imaginary parts of the
lattice-QCD-calculated potential very well, based on a single temperature dependent parameter—the
Debye mass mD. Our new derivation overcomes the main technical limitation of the previous work,
namely an ad-hoc assumption about the functional form of the real-space in-medium permittivity.

2. The Gauss Law Potential Model

2.1. A Novel Formulation

The central idea of this approach is to calculate the in-medium modification to the Coulombic
and string-like parts of the Cornell potential given in Equation (3). In linear response theory, the
electric potential at finite temperature is obtained from its vacuum counterpart via a division in
momentum-space by the static dielectric constant [9]:

V(p) =
Vvac(p)
ε(p, mD)

. (4)

The permittivity, defined as an appropriate limit of the real-time in-medium gluon propagator,
will encode the medium effects. Equation (4) does not rely on a weak-coupling approximation and



Universe 2019, 5, 119 3 of 9

remains valid so long as the vacuum field is weak enough to justify the linear response ansatz. The real
space equivalent via the convolution theorem is

V(r) =
(

Vvac ∗ ε−1
)
(r) , (5)

where ‘∗’ represents the convolution. We now consider the other main building block of our approach,
the generalised Gauss law,

∇ ·
(

Evac

ra+1

)
= 4πqδ(r) , (6)

which holds for electric fields of the form Evac (r) = −∇Vvac(r) = qra−1r̂. This reduces to the
well-known Coulombic potential for a = −1, q = α̃s while the linearly rising string case corresponds
to a = 1, q = σ. For a general a,

− 1
ra+1∇

2Vvac(r) +
1 + a
ra+2 ∇Vvac(r) = 4πqδ(r) . (7)

Denoting the differential operator on the left-hand-side above as Ga and applying it to Equation (5),
the general integral expressions for each term in the in-medium heavy-quark potential are deduced:

Ga [V(r)] = Ga

∫
d3y

(
Vvac(r− y)ε−1(y)

)
= 4πq

(
δ ∗ ε−1

)
(r) = 4πq ε−1(r, mD) . (8)

Here we have used Equation (7) and that the convolution commutes with Ga. For the Coulombic
and string cases respectively, this gives

−∇2VC(r) = 4πα̃s ε−1(r, mD) , − 1
r2

d2VS(r)
dr2 = 4πσ ε−1(r, mD) . (9)

From the perturbative HTL expression in momentum-space [10],

ε−1(p, mD) =
p2

p2 + m2
D
− iπT

pm2
D(

p2 + m2
D
)2 , (10)

the expression for the coordinate space in-medium permittivity is obtained by inverse Fourier
transform. Now, using Equation (10) to solve for the in-medium modified Coulombic part of the
potential, we find that our ansatz reproduces the HTL result

ReVC(r) = −α̃s

[
mD +

e−mDr

r

]
, ImVC(r) = −α̃s [iTφ(mDr)] , (11)

with φ as defined in Equation (2). The next step is to turn to the string part, for which the formal
solution can be immediately written down as

VS(r) = c0 + c1r− 4πσ
∫ r

0
dr′

∫ r′

0
dr′′r′′2ε−1(r′′, mD

)
. (12)

The constants c0 and c1 will be chosen to ensure the physically motivated boundary conditions
ReVS(r)|r=0 = 0, ImVS(r)|r=0 = 0 and ∂rImVS(r)|r=0 = 0. This leads to the following analytical form:

ReVS(r) =
2σ

mD
− e−mDr (2 + mDr) σ

mD
, ImVS(r) =

√
π

4
mDTσ r3 G 2,2

2,4

(
− 1

2 ,− 1
2

1
2 , 1

2 ,− 3
2 ,−1

∣∣∣∣∣ 1
4

m2
Dr2

)
, (13)

where G denotes the Meijer-G function. In the real parts the short distance limit r → 0 recovers the
Cornell potential as does the zero temperature limit mD → 0. At large distances ReVC(r) displays an
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exponential decay ∼ e−mDr (i.e., Debye screening) while ImVC(r) asymptotes to a constant which is
expected for Landau damping. Only the imaginary string part in Equation (13), at first sight appears
problematic as it diverges logarithmically at large r. We argue that this is a manifestation of the absence
of an explicit string breaking in the original vacuum Cornell potential.

In the preceding computation the explicit expression for ImVS can be written, after substituting
the imaginary part of Equation (10) into Equation (12) and performing the angular integration of the
inverse Fourier transform, as follows:

ImVS(r) = c0 + c1r + 2Tσm2
D

∫ r

0
dr′

∫ r′

0
dr′′ r′′2

∫ ∞

0
dp p2 sin(pr′′)

pr′′
p2 1

p
(

p2 + m2
D
)2 . (14)

We have arranged the momentum factors as above to make clear their different origins: the first
term (p2) arises from integrating in spherical coordinates and the second (sinc(pr′′)) after completing
the polar integration. The last two terms are contributions from the in-medium permittivity. It is the
1/p factor here that we identify as causing the weak infrared divergence. In order to regularise, we
modify this term as

1

p
(

p2 + m2
D
)2 →

1√
p2 + ∆2

(
p2 + m2

D
)2 , (15)

where ∆ will be a suitably chosen regularisation scale. In Equation (14) the spatial integrals can be
carried out analytically, which combined with the regularisation above gives our new definition of the
string imaginary part:

ImVS(r) = 2Tσm2
D

∫ ∞

0
dp

2− 2 cos(pr)− pr sin(pr)√
p2 + ∆2

(
p2 + m2

D
)2 , (16)

after imposing the boundary conditions stated above Equation (13). The only remaining step is to
determine the regularisation scale ∆. To do so, note that if we rescale momentum p → p/mD and
slightly rearrange, Equation (16) takes on a suggestive form:

ImVS(r) =
σT
m2

D
χ(mDr) , χ(x) = 2

∫ ∞

0
dp

2− 2 cos(px)− px sin(px)√
p2 + ∆2

D (p2 + 1)2
, (17)

with ∆D = ∆/mD. That is, we can express ImVS(r) using a temperature dependent prefactor with
dimensions of energy, multiplied by a dimensionless momentum integral. This is very similar to the
Coulombic expression, where the integral asymptotes to unity in the limit r → ∞. We thus impose the
same condition for the string part. This procedure also recovers the correct behaviour at large T (large
mD), i.e., the string contribution to the imaginary part diminishes until the HTL result is recovered.
The value of the regularisation parameter ∆D can be computed numerically. Furthermore, since it is
expressed in terms of the Debye mass it remains constant and the computation need only be performed
once. It is found that ∆D = ∆/mD ' 3.0369 gives χ(∞) ' 1 and thus Equation (17) represents the
final closed form of a physically consistent in-medium string imaginary part.

2.2. Vetting with Lattice QCD Data

The most important benchmark for any description of the in-medium heavy quark potential is its
ability to reproduce the non-perturbative lattice QCD results. This vetting process is carried out here
against potential values [11] calculated on finite temperature ensembles generated by the HotQCD
collaboration on 483 × 12 lattices with N f = 2 + 1 flavours of dynamical light quarks discretised with
the asqtad action [12]. The pion mass on these lattices is mπ ≈ 300 MeV and the QCD transition
temperature is TC ≈ 175 MeV.

Following the steps in [13], we first calibrate the vacuum parameters by fitting the Cornell
potential to the two low-temperature ensembles included in the lattice dataset. As in that study, the
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Cornell ansatz gives an excellent fit. The entire temperature dependence in our parametrisation then
enters only via the Debye mass mD, which will be fit using only the real part. The imaginary data
points can be used as a cross-check. Note that since the heavy quark potential is a generic quantity that
is unspecific to either of the heavy quark families, this fit need only be performed once.

The results are shown in Figure 1. From the left panel we see that the Gauss law parametrisation
provides an excellent fit, capturing the behaviour of the non-perturbative data points from the
Coulombic region at small r through the intermediate region and up to the screening regime at high
temperature and large distances. Furthermore, the central panel shows a good agreement between
the Gauss law predictions and corresponding tentative values of the imaginary part extracted from
the lattice. The predicted values lie within the considerable errors of the lattice ImVS(r) for all but
the lowest temperature. We observe that the imaginary part from the Gauss law rises more steeply
with increasing temperature but the asymptotic value at large distances behaves non-monotonously,
reflecting the competing Coulombic and string parts. The best fit values of mD are shown in the right
panel. We conclude that our novel parametrisation captures the relevant physics encoded within the
non-perturbative in-medium potential.
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Figure 1. Gauss-law parametrisation and the lattice QCD potential. (left) Real part (symbols) and best
fit results (solid lines). (centre) Tentative imaginary part (symbols) and the Gauss-law prediction (solid
lines). Errorbands from uncertainty in both the T > 0 fit and the vacuum parameters. (right) Best fit
values of the Debye mass and interpolation.

3. Phenomenology

3.1. Spectral Functions at Finite Temperature

The next natural step is to employ our validated Gauss law potential model in a realistic
investigation of heavy quarkonium in-medium behaviour. As we have calibrated the Debye mass
temperature dependence against lattice data with an unphysical pion mass, we first must carry out
a continuum extrapolation. Since this has not been rigorously achieved so far we resort to using
continuum corrections as outlined in detail in [13]. The outcome is a set of phenomenological vacuum
parameters for the Cornell potential, which in our case read

α̃s = 0.513± 0.0024 GeV,
√

σ = 0.412± 0.0041 GeV, c = −0.161± 0.0025 GeV, (18)

to be used in conjunction with a “fit” of the charm mass mfit
c = 1.4692 GeV. The continuum corrected

values for the Debye mass parameter are interpolated via the HTL inspired ansatz

mD(T) = Tg(Λ)

√
Nc

3
+

N f

6
+

NcTg(Λ)2

4π
log

(
1

g(Λ)

√
Nc

3
+

N f

6

)
+ κ1Tg(Λ)2 + κ2Tg(Λ)3 . (19)

Here, the first and second term respectively are the leading order perturbative result plus
logarithmic correction in SU(Nc) with N f fermions, mu,d = 0, and at zero baryon chemical potential.
κ1 and κ2 absorb the non-perturbative corrections, which in our case take the values κ1 = 0.686± 0.221
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and κ2 = −0.317± 0.052. The resulting interpolation for mD is shown as the purple band in the right
panel of Figure 1.

With these corrections in place, we may now calculate realistic quarkonium spectral functions at
finite temperature by solving the appropriate Schrödinger equation using the Fourier space method as
described in [14].

In Figure 2 we show the results for S-wave charmonium states, which exhibit the characteristic
broadening of in-medium peaks and their shifts to lower frequencies. This corresponds to the
in-medium state being lighter than the vacuum state, while at the same time being less strongly
bound. The in-medium modification is shown quantitatively in Figure 3. In the following section we
look at phenomenological extensions and will focus on charmonium where it is expected that our
model will be most applicable.
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Figure 2. Illustrative spectral functions for S-wave Charmonium.
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Figure 3. Thermal mass (left) and spectral width (right) of charmonium as a function of temperature.
The error bands denote the Debye mass uncertainty arising from the fitting procedure. The continuum
threshold energy on the left figure is defined as ReV(r → ∞).

3.2. Applications to Heavy Ion Collisions

An observable of current interest at RHIC and LHC is the production ratio of Ψ′ to J/Ψ particles.
The reason is that it is expected to be highly discriminatory among different phenomenological
models. Using thermal in-medium quarkonium spectral functions this ratio has already been estimated
at vanishing baryo-chemical potential in [13], showing good agreement with predicitons from the
statistical model of hadronisation. Here we wish to extend the computation of the ratio to different
(lower) beam energies, relevant for future collider facilities such as FAIR and NICA.

We require a prescription to evaluate our Gauss law potential model at a given centre-of-mass
energy. The strategy here is two-fold. Firstly, we note that the statistical hadronisation model already
provides a well-established scheme with which to estimate the thermal parameters (temperature and
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baryo-chemical potential µB) of the produced bulk medium at chemical freeze-out with a given
√

sNN .
The most recent results [15] are:

T(
√

sNN) =
158 MeV

1 + exp(2.60− ln(
√

sNN)/0.45)
, µB(

√
sNN) =

1307.5 MeV
1 + 0.288

√
sNN

, (20)

where
√

sNN is the dimensionless numerical value of the centre-of-mass energy measured in GeV.
Secondly, since the physical information within our potential model is captured entirely by

the dependence on the Debye mass mD, we need only modify mD to include the effects on finite
baryo-chemical potential. At leading order, the Debye mass can be calculated perturbatively at finite
baryo-chemical potential [16]. As a first step, we propose to add this µB-term to the temperature
dependence of the Debye mass in Equation (19). The result is:

mD(T, µB) =

√
mD(T, 0)2 + T2g(Λ)2 N f

18π2
µ2

B
T2 . (21)

Here, the renormalisation scale is now Λ = 2π
√

T2 + µ2
B/π2. At high µB the chemical potential

itself becomes the only relevant scale and a similar (linear) dependence of mD is expected. This leads
us to adopt Equation (21) over the entire finite baryo-chemical potential regime. In the absence of
reliable lattice data at finite chemical potential, we hold the non-perturbative constants κ1 and κ2 in
Equation (19) the same.

With all ingredients now in place, we may now compute the compute the Ψ′/J/Ψ ratio over
a range of centre-of-mass energies. Through Equations (21) and (20) we scan the

√
sNN range and

update the Debye mass that encodes the physics of our potential model. The in-medium spectral
functions are calculated in the same manner as Section 3.1 and finally, the number ratio is estimated
via the procedure in [13]—assuming an instantaneous freeze-out scenario where all in-medium bound
states are projected onto the corresponding vacuum state. The final ratio is expressed as

NΨ′

NJ/Ψ

∣∣∣∣∣√
sNN

=
RΨ′
` ¯̀

RJ/Ψ
` ¯̀

∣∣∣∣∣√
sNN

× M2
Ψ′ |ψJ/Ψ(0)|2

M2
J/Ψ|ψΨ′(0)|2

, RΨn
` ¯̀ ∝ An

∫
d3p nB

(√
M2

n + p2
)

Mn√
Mn + p2

. (22)

Here, Mn is the thermal mass of the state, i.e., the frequency at which the corresponding spectral
peak occurs and An is the area underneath the peak. The second factor on the right-hand-side of
Equation (22) is the square of the T = 0 wavefunction at r = 0 divided by the square of the mass of each
state and is required to obtain the total number density from RΨn

` ¯̀ , which only includes electromagnetic
decays [17].

The final results from this entire procedure are plotted in Figure 4, together with the prediction
by the statistical hadronisation model. Our analysis shows very good agreement with both the
statistical model and the latest experimental results, strengthening the interpretation that charm quarks
thermalise before reaching the freeze-out boundary.
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Figure 4. The prediction of this work (green) for the relative production yield of Ψ′ to J/Ψ. We also
include the statistical hadronisation model prediction [15] (purple) and experimental data measured by
the NA50 [18], ALICE [19], and CMS [20,21] collaborations (red) for Pb–Pb collisions, as well as the pp
baseline [15,22] (orange).

4. Conclusions

We have presented an improved parametrisation of the in-medium heavy quark potential by
employing a generalised Gauss law ansatz in linear response theory. The resulting analytic expressions
depended only on a single temperature dependent parameter and were able to quantitatively reproduce
the lattice results for the real part of the potential. The resulting imaginary part showed an unphysical
logarithmic divergence which we attributed to the equally unphysical unending linear rise of the
vacuum Cornell potential. By regularising this artefact, we were able to give physically sound
predictions for the imaginary part that in turn qualitatively matched the lattice data. Furthermore,
our prescription can be easily extended to model a finite baryo-chemical potential, a region currently
inaccessible to lattice QCD simulations. Using the values for µB obtained in the statistical model of
hadronisation we computed Ψ′ to J/Ψ production yield ratio for different beam energies. The extension
of the Gauss-law parametrisation to finite velocity remains work in progress.
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