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a b s t r a c t

We investigate the tunneling of quasiparticles through a rect-
angular potential barrier of finite height and width, in 2d and
3d semimetals with band structures consisting of a quadratic
band crossing point. We compute the transmission coefficient
at various incident angles, and also the conductivity and the
Fano factor. We discuss the distinguishing signatures of these
transport properties in comparison with other semimetals, as
well as electrons in normal metals.
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access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Multiband fermionic systems may exhibit a band crossing point in the Brillouin zone where
two or more bands cross. If the chemical potential is adjusted to lie exactly at that point, the
Fermi surface shrinks to a Fermi node. The most famous example of such a Fermi node is the
case of a linear band crossing, whose low energy properties are described by Dirac fermions, and
are conspicuous in systems like nodal superconductors and graphene. In this paper, we consider
systems with a quadratic band crossing point (QBCP) somewhere in their two-dimensional (2d)
[1–3] or three-dimensional (3d) [4–6] Brillouin zones. 2d QBCPs can be realized in checkerboard [1]
(at 1/2 filling), Kagome [1] (at 1/3 filling), and Lieb [2] lattices. On the other hand, pyrochlore
iridates A2Ir2O7 (A is a lanthanide element [7,8]) have been shown to host a 3d QBCP. Such
bandstructures have also been realized that in 3d gapless semiconductors in the presence of a
sufficiently strong spin–orbit coupling [9], such that the resulting model of a semimetal is indeed
relevant for materials like gray tin (α-Sn) and mercury telluride (HgTe). These systems are also
known as ‘‘Luttinger semimetals’’ [10] due to the fact that the low-energy fermionic degrees of
freedom are captured by the Luttinger Hamiltonian of inverted band-gap semiconductors [11,12].
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Fig. 1. Tunneling through a potential barrier in a QBCP material. The upper panel shows the schematic diagrams of the
spectrum of quasiparticles about a QBCP, with respect to a potential barrier in the x-direction. The lower panel represents
the schematic diagram of the transport across the potential barrier. The Fermi level (indicated by dotted lines) lies in
the conduction band outside the barrier, and in the valence band inside it. The blue fillings indicate occupied states. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Our aim is to compute the tunneling coefficients and other transport characteristics when
the quasiparticles of the QBCP semimetals are subjected to a potential barrier of finite strength
and width along one direction, which is chosen to be the x-axis. This scenario is represented in
the cartoon in Fig. 1. Our results will show how these transport characteristics are significantly
different from those in normal metals, due to the presence of multiple bands. We will also compare
their features with those of other semimetals like graphene, bilayer graphene and three-band
pseudospin-1 systems.

The paper is organized as follows. In Section 2, we study the 2d QBCPs, while Section 3 deals with
the 3d QBCP case. We compare our findings with the results for some other known bandstructures
in Section 4. Finally, we end with a summary and outlook in Section 5.

2. 2D model

For a 2d system, the particle–hole symmetric QBCP with C6 rotational symmetry is described by
the Hamiltonian [1]:

Hkin
2d (kx, ky) =

h̄2

2m

[
2 kx ky σx +

(
k2y − k2x

)
σz

]
(1)

in the momentum space, with eigenvalues

ε±

2d(kx, ky) = ±
h̄2 (

k2x + k2y
)

2m
, (2)
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where the ‘‘+’’ and ‘‘−’’ signs, as usual, refer to the conduction and valence bands respectively. The
corresponding eigenvectors are given by:

Ψ+ =
1√

k2x + k2y
{ky, kx} , and Ψ− =

1√
k2x + k2y

{−kx, ky}, (3)

respectively.
The 2d system is modulated by a square electric potential barrier of height V0 and width L, giving

rise to an x-dependent potential energy function:

V (x) =

{
V0 for 0 < x < L
0 otherwise .

(4)

Hence, we need to consider the total Hamiltonian:

Htot
2d = Hkin

2d (−i ∂x, −i ∂y) + V (x) (5)

in position space. We choose the x-axis along the transport direction, and place the chemical
potential at an energy E > 0 in the region outside the potential barrier. The Fermi energy E can in
general be tuned by chemical doping or a gate voltage.

2.1. Formalism

For a material of a sufficiently large transverse dimension W , the boundary conditions should
be irrelevant for the bulk response, and we use this freedom to simplify the calculation. Here, on a
physical wavefunciton Ψ tot we impose periodic boundary conditions:

Ψ tot(x,W ) = Ψ tot(x, 0) . (6)

The transverse momentum ky is conserved, and it is quantized due to the periodicity in the
transverse width W , and hence takes the form:

ky =
2π n
W

≡ qn , (7)

where n ∈ Z. For the longitudinal direction, we seek plane wave solutions of the form ei kxx. Then
the full wavefunction is given by:

Ψ tot(x, y, n) = const. × Ψn(x) ei qny , (8)

For any mode of given transverse momentum component ky, we can determine the x-component
of the wavevectors of the incoming, reflected, and transmitted waves (denoted by kℓ), by solving

ε±

2d(kx, n) = ±
h̄2

(
k2
ℓ
+q2n

)
2m . In the regions x < 0 and x > L, we have only propagating modes (kℓ is real),

while the x-components in the scattering region (denoted by k̃), are given by k̃2 =
2m |E−V0|

h̄2
− q2n,

and may be propagating (imaginary part of k̃ is zero) or evanescent (imaginary part of k̃ is nonzero).
We will follow the procedure outlined in Refs. [13] and [14] to compute the transport coef-

ficients. We consider the transport of positive energy states (Ψ+) corresponding to electron-like
particles. The transport of hole-like excitations (Ψ−) will be similar. Hence, the Fermi level outside
the potential barrier is adjusted to a value E = ε+

2d(kx, ky). Such a scattering state Ψn,+, in the mode
labeled by n, is constructed from the states:

Ψn(x) =

⎧⎨⎩
φL for x < 0 ,

φM for 0 < x < L ,

φR for x > L ,

φL =
Ψ+(kℓ, qn) ei kℓx + rn Ψ+(−kℓ, qn) e−i kℓx

√
V(kℓ, n)

,

φM =

[
αn Ψ+(k̃, qn) ei k̃ x + βn Ψ+(−k̃, qn) e−i k̃ x

]
Θ (E − V0)



4 I. Mandal / Annals of Physics 419 (2020) 168235

+

[
αn Ψ−(k̃, qn) ei k̃ x + βn Ψ−(−k̃, qn) e−i k̃ x

]
Θ (V0 − E) ,

φR = tn Ψ+(kℓ, qn)
ei kℓ(x−L)

√
V(kℓ, n)

,

V(kℓ, n) ≡ |∂kℓε+(kℓ, n)| =
h̄2kℓ

m
, kℓ =

√
2mE
h̄2 − q2n , k̃ =

√
2m |E − V0|

h̄2 − q2n , (9)

where we have used the velocity V(kℓ, n) to normalize the incident, reflected and transmitted plane
waves. Note that for V0 > E, the Fermi level within the potential barrier lies within the valence band,
and we must use the valence band wavefunctions in that region.

The boundary conditions can be obtained by integrating the equation Htot
2d Ψ tot

= E Ψ tot over a
small interval in the x-direction around the points x = 0 and x = L. The results are that the two
components of the wavefunction be continuous at the boundaries. These conditions are sufficient
to guarantee the continuity of the current flux along the x-direction.1 In particular, the reflection
and transmission amplitudes rn, tn, and the two coefficients (αn, βn), are determined from these
boundary conditions. This mode-matching procedure gives us:

rn(E, V0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
k̃2k2

ℓ
−q4n

)
sin(k̃L)(

k̃2k2
ℓ
+q4n

)
sin(k̃L)−2 i k̃ kℓ q2n cos(k̃L)

for E < V0(
k2
ℓ
−k̃2

)
sin

(
k̃L

)
(
k̃2+ k2

ℓ

)
sin

(
k̃L

)
+2 i k̃ kℓ cos

(
k̃L

) for E > V0 .

(10)

and

tn(E, V0) =

⎧⎪⎪⎨⎪⎪⎩
−

2 i k̃ kℓ q2n(
k̃2 k2

ℓ
+q4n

)
sin

(
k̃L

)
−2 i k̃ kℓ q2n cos

(
k̃L

) for E < V0

2 i k̃ kℓ(
k̃2+ k2

ℓ

)
sin

(
k̃L

)
+2 i k̃ kℓ cos

(
k̃L

) for E > V0 .
(11)

The reflection and transmission coefficients at an energy E are given by

R(E, V0, φ) = |rn(E, V0)|2 and T (E, V0, φ) = |tn(E, V0)|2 , (12)

respectively, where φ = tan−1
(

qn
kℓ

)
is the incident angle of the incoming wave.

2.2. Transmission coefficient, conductivity and Fano factor

Let us assume W to be very large such that qn can effectively be treated as a continuous variable.
We then numerically compute T (E, φ).

Using kℓ =

√
2mE
h̄2

cosφ , n =
W

√
2mE
h sinφ , dn =

2W
√
2mE

h cosφ dφ, in the zero-temperature
limit and for a small applied voltage, the conductance is given by [15]:

G(E, V0) =
e2

h

∑
n

|tn|2 →
e2

h

∫
|tn(E)|2 dn =

e2 W
√
2mE

h2

∫ π
2

−
π
2

T (E, V0, φ) cosφ dφ . (13)

Therefore, the conductivity is given by:

σ (E, V0) =
L
W

G(E, V0)
e2/h

= 2π

√
E

h̄2/
(
2mL2

) ∫ π
2

−
π
2

T (E, V0, φ) cosφ dφ . (14)

1 From wavefunction matching, we have two equations from the two boundaries. For 2d QPCB, each of these equations
has two components as each wavevector has two components. Therefore we have four equations for four undetermined
coefficients. We do not need to match the first derivatives of the wavefunction as those will be redundant equations.
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Fig. 2. 2d QBCP: The polar plots show the reflection coefficient R(E, V0, φ)
⏐⏐
E≤V0

and the transmission coefficient

T (E, V0, φ)
⏐⏐
E≤V0

as functions of the incident angle φ for the parameters E = 0.3 V0 (red), E = 0.5 V0 (green), E = 0.8 V0

(magenta) and E = 1.0 V0 (blue). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Shot noise is the measure of the fluctuations of the current away from their average value. The
zero-temperature shot noise is given by [15]:

S(E, V0) =
2 e2 Φ

h

∑
n

|tn|2 |rn|2 →

e3 Φ W
√

E
h̄2/(2mL2)

π h L

∫ π
2

−
π
2

T (E, V0, φ) [1 − T (E, V0, φ)] dφ ,

(15)

where Φ is the applied voltage, and is characterized by the Fano factor:

F (E, V0) =

∫ π
2

−
π
2
T (E, V0, φ) dφ∫ π

2
−

π
2
T (E, V0, φ) [1 − T (E, V0, φ)] dφ

. (16)

We express E and V0 in units of h̄2

2mL2
, and study the behavior of T (E, V0, φ), σ (E, V0) and

F (E, V0). Figs. 2 and 3 show the polar plots of R(E, V0, φ) and T (E, V0, φ) as functions of the incident
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Fig. 3. 2d QBCP: The polar plots show the reflection coefficient R(E, V0, φ)
⏐⏐
E>V0

and the transmission coefficient

T (E, V0, φ)
⏐⏐
E>V0

as functions of the incident angle φ for the parameters E = 1.1 V0 (red), E = 1.5 V0 (green), E = 1.8 V0

(magenta) and E = 2.5 V0 (blue). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

angle φ, for the cases E ≤ V0 and E > V0 respectively. They also serve to demonstrate that
R(E, V0, φ) + T (E, V0, φ) = 1. From the expression of transmission coefficient in Eq. (34), it is clear
that the transmission is zero at normal incidence (φ = 0), as long as E < V0. Hence, we do not have
a Klein tunneling analogue in the 2d QBCP, unlike graphene [16] or three-band pseudospin-1 Dirac–
Weyl systems [17,18]. However, we still have the resonance conditions k̃ L = πN, N ∈ Z, under
which the barrier becomes transparent (T = 1). In Fig. 4, we illustrate the conductivity σ (E, V0) and
the Fano factor F (E, V0), as functions of E/V0, for some values of V0.

3. 3D model

We consider a model for 3d QBCP semimetals, where the low energy bands form a four-
dimensional representation of the lattice symmetry group [6]. Then the standard (k · p) Hamiltonian
for the particle–hole symmetric system can be written by using the five 4 × 4 Euclidean Dirac
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Fig. 4. 2d QBCP: Plots of the (a) conductivity (σ in units of 2π ), and (b) Fano factor (F ), as functions of E/V0 , for various
values of V0 .

matrices Γa as [12,19]:

Hkin
3d (kx, ky, kz) =

h̄2

2m

5∑
a=1

da(k) Γa . (17)

The Γa’s form one of the (two possible) irreducible, four-dimensional Hermitian representations
of the five-component Clifford algebra defined by the anticommutator { Γa, Γb} = 2 δab. The five
anticommuting gamma-matrices can always be chosen such that three are real and two are imagi-
nary [12,20]. In the representation used here, (Γ1, Γ2, Γ3) are real and (Γ1, Γ3) are imaginary [12]:

Γ1 = σ3 ⊗ σ2 , Γ2 = σ3 ⊗ σ1 , Γ3 = σ2 ⊗ σ0 , Γ4 = σ1 ⊗ σ0 , Γ5 = σ3 ⊗ σ3 . (18)

The five functions da(k) are the real ℓ = 2 spherical harmonics, with the following structure:

d1(k) = −
√
3 ky kz , d2(k) = −

√
3 kx kz , d3(k) = −

√
3 kx ky,

d4(k) =
−

√
3

2
(k2x − k2y) , d5(k) =

−1
2

(
2 k2z − k2x − k2y

)
. (19)

The energy eigenvalues are

ε±

3d(kx, ky, kz) = ±
h̄2 (

k2x + k2y + k2z
)

2m
, (20)

where the ‘‘+’’ and ‘‘−’’ signs, as usual, refer to the conduction and valence bands. Each of these
bands is doubly degenerate.

A set of orthogonal eigenvectors are given by:

Ψ T
+,1 =

1
N+,1

{
−

(kx + i ky) (k + kz)
(kx − i ky)2

,
i (k + 3 kz)

√
3 (kx − i ky)

, −
i
(
−2 kz (k + kz) + k2x + k2y

)
√
3 (kx − i ky)2

, 1

}
,

Ψ T
+,2 =

1
N+,2

{
(kx + i ky) (k − kz)

(kx − i ky)2
, −

i (k − 3 kz)
√
3 (kx − i ky)

, −
i
(
2 kz (k − kz) + k2x + k2y

)
√
3 (kx − i ky)2

, 1

}
,

Ψ T
−,1 =

1
N−,1

{
−

i (k + kz)
√
3 (kx − i ky)

,
k − kz
kx + i ky

, 1, −
i
(
2 kz (kz − k) + k2x + k2y

)
√
3 (kx + i ky)2

}
,

Ψ T
−,2 =

1
N−,2

{
i (k − kz)

√
3 (kx − i ky)

, −
k + kz
kx + i ky

, 1, −
i
(
2 kz (k + kz) + k2x + k2y

)
√
3 (kx + i ky)2

}
, (21)
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where k =

√
k2x + k2y + k2z , and the ‘‘+’’ (‘‘−’’) indicates an eigenvector corresponding to the positive

(negative) eigenvalue. The symbols 1
N±,1

and 1
N±,2

denote the corresponding normalization factors.
The 3d system is modulated by a square electric potential barrier of height V0 and width L, as

described in Eq. (4). Here, we need to consider the total Hamiltonian:

Htot
3d = Hkin

3d (−i ∂x, −i ∂y, −i ∂z) + V (x) (22)

in position space. As before, we choose the x-axis along the transport direction, and place the
chemical potential at an energy E > 0 in the region outside the potential barrier.

3.1. Formalism

We consider the tunneling in a slab of height and width W . Again, we assume that the material
has a sufficiently large width W along each of the two transverse directions, such that the boundary
conditions are irrelevant for the bulk response, and impose the periodic boundary conditions:

Ψ̃ tot(x, 0, z) = Ψ̃ tot(x,W , z) , Ψ̃ tot(x, y, 0) = Ψ̃ tot(x, y,W ) . (23)

The transverse momentum k⊥ = (ky, kz) is conserved, and its components are quantized. Due to
periodicity, we conclude that:

ky =
2π ny

W
≡ qny , kz =

2π nz

W
≡ qnz , (24)

where (nx, ny) ∈ Z. For the longitudinal direction (along the x-axis), we seek plane wave solutions
of the form ei kxx. Then the full wavefunction is given by:

Ψ̃ tot(x, y, z,n) = const. × Ψ̃n(x) e
i
(
qny y+qnz z

)
with n = (ny, nz) . (25)

For any mode of given transverse momentum component k⊥, we can determine the x-component
of the wavevectors of the incoming, reflected, and transmitted waves (denoted by kℓ), by solving

ε±

3d(kx,n) = ±
h̄2

(
k2
ℓ
+k⊥

2
)

2m . In the regions x < 0 and x > L, we have only propagating modes
(kℓ is real), while the x-components in the scattering region (denoted by k̃), are given by k̃2 =
2m |E−V0|

h̄2
− k⊥

2, and may be propagating (k̃ is real) or evanescent (k̃ is imaginary).
We will follow the same procedure as described for the 2d QBCP. Again, without any loss

of generality, we consider the transport of one of the degenerate positive energy states (Ψ+,1)
corresponding to electron-like particles, with the Fermi level outside the potential barrier being
adjusted to a value E = ε+

3d(kx, ky, kz). In this case, a scattering state Ψ̃n, in the mode labeled by n,
is constructed from the states:

Ψ̃n(x) =

⎧⎪⎨⎪⎩
φ̃L for x < 0 ,

φ̃M for 0 < x < L ,

φ̃R for x > L ,

φ̃L =
Ψ+,1(kℓ, qny , qnz ) e

i kℓx +
∑

s=1,2 rn,s Ψ+,s(−kℓ, qny , qnz ) e
−i kℓx√

Ṽ(kℓ,n)
,

φ̃M =

[∑
s=1,2

αn,s Ψ+,s(k̃, qny , qnz ) e
i k̃ x

+

∑
s=1,2

βn,s Ψ+,s(−k̃, qny , qnz ) e
−i k̃ x

]
Θ (E − V0)

+

[∑
s=1,2

αn,s Ψ−,s(k̃, qny , qnz ) e
i k̃ x

+

∑
s=1,2

βn,s Ψ−,s(−k̃, qny , qnz ) e
−i k̃ x

]
Θ (V0 − E) ,

φ̃R =

∑
s=1,2 tn,s Ψ+,s(kℓ, qny , qnz )√

Ṽ(kℓ,n)
ei kℓ(x−L),

Ṽ(kℓ,n) ≡ |∂kℓ
ε+

3d(kℓ,n)| =
h̄2kℓ

m
, kℓ =

√
2mE
h̄2 − q2ny − q2nz , k̃ =

√
2m |E − V0|

h̄2 − q2ny − q2nz ,

(26)
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where we have used the velocity Ṽ(kℓ,n) to normalize the incident, reflected and transmitted plane
waves. Note that for V0 > E, the Fermi level within the potential barrier lies within the valence band,
and we must use the valence band wavefunctions in that region.

The usual mode-matching procedure at x = 0 and x = L gives us2:

rn,1(E, V0) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

sin
(
k̃L

)
(i ky+kℓ)

[
kℓ kz+i ky

√
k2
ℓ
+k2y+k2z

)(
k̃2

(
8k2

ℓ
−k2y−k2z

)
+

(
k2y+k2z

)(
5k2

ℓ
−4

(
k2y+k2z

))]
2(kℓ−i ky)

2
√
k2
ℓ
+k2y+k2z

[
sin

(
k̃L

){
k̃2

(
4k2

ℓ
+k2y+k2z

)
+

(
k2y+k2z

)(
k2
ℓ
+4

(
k2y+k2z

))}
−6 i k̃kℓ cos

(
k̃L

)(
k2y+k2z

)] for E < V0

(
k2
ℓ
−k̃2

)
sin

(
k̃L

)
(kℓ+i ky )

(
kℓkz+i ky

√
k2
ℓ
+k2y+k2z

)
(kℓ−i ky )2

√
k2
ℓ
+k2y+k2z

[(
k̃2+k2

ℓ

)
sin

(
k̃L

)
+2 i k̃kℓ cos

(
k̃L

)] for E > V0

,

rn,2(E, V0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
k̃2

[
4k2

ℓ
−5

(
k2y+k2z

)]
+

(
k2y+k2z

)[
k2
ℓ
−8

(
k2y+k2z

)]
sin

(
k̃L

)
sin

(
k̃L

)[
k̃2

(
4k2

ℓ
+k2y+k2z

)
+

(
k2y+k2z

){
k2
ℓ
+4

(
k2y+k2z

)}]
−6 i k̃kℓ cos

(
k̃L

)(
k2y+k2z

)

×

kℓ(kℓ+i ky)
(√

k2
ℓ
+k2y+k2z +kz

)√(
kz

(
kz−

√
k2
ℓ
+k2y+k2z

)
+k2

ℓ
+k2y

)

(kℓ−i ky)
2
√
k2
ℓ
+k2y+k2z

√
kz

(√
k2
ℓ
+k2y+k2z +kz

)
+k2

ℓ
+k2y

for E < V0

kℓ
(
k̃2−k2

ℓ

)
sin

(
k̃L

)
(kℓ+i ky )

(√
k2
ℓ
+k2y+k2z +kz

)√
kz

(
kz−

√
k2
ℓ
+k2y+k2z

)
+k2

ℓ
+k2y

(kℓ−i ky )2
√
k2
ℓ
+k2y+k2z

√
kz

(√
k2
ℓ
+k2y+k2z +kz

)
+k2

ℓ
+k2y

[(
k̃2+k2

ℓ

)
sin

(
k̃L

)
+2i k̃kℓ cos

(
k̃L

)] for E > V0

, (27)

and

tn,1(E, V0) =

⎧⎪⎪⎨⎪⎪⎩
−

6 i k̃ kℓ
(
k2y+k2z

)
sin

(
k̃L

)[
k̃2

(
4 k2

ℓ
+k2y+k2z

)
+

(
k2y+k2z

){
k2
ℓ
+4

(
k2y+k2z

)}]
−6 i k̃ kℓ cos

(
k̃L

)(
k2y+k2z

) for E < V0

−2 i k̃ kℓ(
k̃2+k2

ℓ

)
sin

(
k̃L

)
+2 i k̃ kℓ cos

(
k̃L

) for E > V0

,

tn,2(E, V0) = 0 . (28)

The reflection and transmission coefficients at an energy E are given by

R(E, V0, θ, φ) = |rn,1(E, V0)|2 + |rn,2(E, V0)|2 and T (E, V0, θ, φ) = |tn,1(E, V0)|2 (29)

respectively, where θ = cos−1
(

h̄ qnz√
2mE

)
and φ = tan−1

(
qny
kℓ

)
define the incident angle (solid) of the

incoming wave in 3d.

3.2. Transmission coefficient, conductivity and Fano factor

Again, we assume W to be very large such that
(
qny , qnz

)
can effectively be treated as continuous

variables. Using kℓ =

√
2mE
h̄2

sin θ cosφ , ny =
W

√
2mE
h sin θ sinφ , nz =

W
√
2mE
h cos θ , dny dnz =

W2
×2mE
h2

cosφ sin2 θ dφ, in the zero-temperature limit and for a small applied voltage, the conduc-
tance is given by [15]:

G(E, V0) =
2 e2

h

∑
n

|tn,1|
2

→
2 e2

h

∫
|tn,1|

2 dnx dny

=
4π e2 W 2

h̄

(
2mE
h̄2

)∫ π

θ=0

∫ π
2

φ=−
π
2

T (E, V0, θ, φ) cosφ sin2 θ dφ , (30)

2 From wavefunction matching, we have two equations from the two boundaries. For 3d QPCB, each of these equations
has four components as each wavevector has four components. Therefore we have eight equations for eight undetermined
coefficients. We do not need to match the first derivatives of the wavefunction as those will be redundant equations.
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Fig. 5. Contourplots of the reflection coefficient (R) and transmission coefficient (T ) for 3d QBCP as functions of (θ, φ),
for various values of V0 and E.

leading to the conductivity expression:

σ (E, V0) =

(
L
W

)2 G(E, V0)
e2/h

= 8π2

[
E

h̄2/
(
2mL2

)] ∫ π

θ=0

∫ π
2

φ=−
π
2

T (E, V0, θ, φ) cosφ sin2 θ dφ .

(31)
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Fig. 6. 3d QBCP: The polar plots show the reflection coefficient R(E, V0, θ, π
2 )

⏐⏐
E≤V0

and the transmission coefficient

T (E, V0, θ, π
2 )

⏐⏐
E≤V0

as functions of the incident angle φ (in the xy−plane with no kz− component) for the parameters
E = 0.3 V0 (red), E = 0.5 V0 (green), E = 0.8 V0 (magenta) and E = 1.0 V0 (blue). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Note that there is a twofold degeneracy because we have two independent conduction band states,
and hence an extra factor of two has been included in the expressions for G and σ .

The shot noise and Fano factor can be expressed as:

S(E, V0) =
4 e2 Φ

h

∑
n

|tn,1|
2 (

1 − |tn,1|
2)

→
8π e3 W 2 Φ

h̄

(
2mE
h̄2

)∫ π
2

0
T (E, V0, φ)

× [1 − T (E, V0, φ)] dφ , (32)

and

F (E, V0) =

∫ π

θ=0

∫ π
2

φ=−
π
2
T (E, V0, θ, φ) cosφ sin2 θ dφ∫ π

θ=0

∫ π
2

φ=−
π
2
T (E, V0, θ, φ) [1 − T (E, V0, θ, φ)] cosφ sin2 θ dφ

, (33)

respectively. Here, Φ is the applied voltage.
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Fig. 7. 3d QBCP: Plots of the (a) conductivity (σ in units of 8π2), and (b) Fano factor (F ), as functions of E/V0 , for various
values of V0 .

Fig. 8. Normal metal: The polar plots show the transmission coefficient T (E, V0, φ)
⏐⏐
E<V0

as functions of the incident angle
φ for the parameters E = 0.3 V0 (red), E = 0.5 V0 (green), E = 0.8 V0 (magenta) and E = 1.0 V0 (blue). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

As before, we express E and V0 in units of h̄2

2mL2
, and study the behavior of T (E, V0, θ, φ),

σ (E, V0) and F (E, V0). From the expression of transmission coefficient in Eq. (28), it is clear that
the transmission is zero at normal incidence (θ = π/2, φ = 0), as long as E < V0. This is analogous
to the 2d case. In Fig. 5, we show the angular dependence of R(E, V0, θ, φ) and T (E, V0, θ, φ) via
contourplots. Fig. 6 shows the polar plots of R(E, V0, π/2, φ) and T (E, V0, π/2, φ) as functions of the
incident angle φ for E ≤ V0, which corresponds to kz = 0. Since the transmission coefficient for E >

V0 has the same expression both for the 2d and 3d QBCPs, the polar plots of T (E, V0, π/2, φ)
⏐⏐
E>V0

will be identical to Fig. 3. In Fig. 7, we illustrate the conductivity σ (E, V0) and the Fano factor
F (E, V0), as functions of E/V0, for some values of V0.

4. Comparison with the results for electrons in normal metals

We compare the results obtained for QBCP semimetals with those in normal metals. For
normal metals, we have only one electron band to consider where the Fermi energy will intersect
(irrespective of the height of the barrier). Using the continuity of the wavefunctions and their
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Fig. 9. 2d normal metal: Plots of the (a) conductivity (σ in units of 2π ), and (b) Fano factor (F ), as functions of E/V0 ,
for various values of V0 .

Fig. 10. 3d normal metal: Plots of the (a) conductivity (σ in units of 2π2), and (b) Fano factor (F ), as functions of E/V0 ,
for various values of V0 .

x-derivatives at the two ends of the barrier, we can easily find the transmission coefficient to be
always given by:

t(E, V0) =
2 i k̃ kℓ(

k̃2 + k2ℓ
)
sin

(
k̃L

)
+ 2 i k̃ kℓ cos

(
k̃L

) , (34)

independent of whether E < V0 or E > V0. As expected, this expression varies from the QBCP case
only in the E < V0 regime, as whenever E > V0, a quasiparticle excitation moves across the barrier
in the same way as a normal metal electron does.

In Fig. 8, we show the plots of the transmission amplitude T (E, V0, φ) = |t(E, V0)|2 as function of
the angle φ, for the normal metal (in the 2d case, or 3d case with kz = 0). We also show the behavior
of conductivity and Fano factor for 2d and 3d normal electrons in Figs. 9 and 10 respectively. As
expected, Fig. 9 differs from Fig. 4, or Fig. 10 differs from Fig. 7, only in the regions where E < V0.

5. Summary and discussions

From our computations of the tunneling coefficients for the 2d and 3d QBCP semimetals, we
have shown that they exhibit different characteristics than those expected for normal metals.
The answers also differ from those expected for graphene [16] and three-band pseudospin-1
semimetals [17,18]. In particular, QBCPs do not exhibit either Klein or super-Klein tunneling [18].
We also note that the transport characteristics for the 2d and 3d QBCP cases show significant
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differences among themselves. All these observations can be used in experiments to identify the
QBCP semimetals.

In future, it will be useful to look at these transport properties in the presence of disorder [21–
23] (as has been done in the case of Weyl [24] and double-Weyl [25] nodes) and/or magnetic
fields [26,27]. Another direction is to examine the effects of anisotropy as well as particle–hole
symmetry-breaking terms. This exercise also needs to be carried out in presence of interactions,
which can destroy the quantization of various physical quantities in the topological phases [28,29].
Yet another direction is to explore the time-dependent transport properties when subjected to a
time-dependent potential [30], using the Floquet scattering theory, and find out if Fano resonance
can occur via quasibound states.
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