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A B S T R A C T   

In recent years, there were multiple papers published related to rate of penetration prediction using machine 
learning vastly outperforming analytical methods. There are models proposed reportedly achieving R2 values as 
high as 0.996. Unfortunately, it is most often impossible to independently verify these claims as the input data is 
rarely accessible to others. To solve this problem, this paper presents a database derived from Equinor’s public 
Volve dataset that will serve as a benchmark for rate of penetration prediction methods. By providing a partially 
processed dataset with unambiguous testing scenarios, scientists can perform machine learning research on a 
level playing field. This in turn will both discourage publication of methods tested in a substandard manner as 
well as promote exploration of truly superior solutions. A set of seven wells with nearly 200–000 samples and 
twelve common attributes is proposed together with reference results from common machine learning algo
rithms. Data and relevant source code are published on the pages of University of Stavanger and GitHub.   

1. Introduction 

Research review related to machine learning (ML) models within 
petroleum is problematic. To fully evaluate a proposed method both 
data and exact description of the method are necessary, which is 
regrettably rare in the field. Data is often withheld on the grounds of 
confidentiality and there is little pressure to release source code behind 
presented methods. It leaves the scientific discourse susceptible to errors 
or cheating (Davey Smith and Ebrahim, 2002), where results might be 
artificially inflated. Most researchers consider that there is currently a 
reproducibility crisis in science (Baker and Penny, 2016), with 70% of 
polled scientists admit to trying and failing to reproduce experiments. 

Introduction of a standardized real-time well log dataset has a ca
pacity to transform research in data-driven methods related to drilling. It 
has high potential to spark a healthy competition between researchers 
striving for better performance. Well known datasets such as MNIST 
promoted competition, and facilitated research and knowledge sharing 
in the field of handwriting recognition. Additionally, having source data 
available makes paper authors accountable, as any dishonest practices 
will be easily discoverable when others attempt to reproduce the results. 

Building upon Volve dataset (Equinor, 2018), made public by 

Equinor in 2018 on a very permissive license,1 and previous data 
preparation work (Tunkiel et al., 2020), this paper proposes a stan
dardized dataset of seven wells containing twelve commonly logged 
attributes for ROP prediction purposes. In addition to data itself, three 
benchmarking scenarios are proposed, with specific metrics attached to 
them, ensuring that future results are comparable with each other. To 
establish a point of reference results from a number of basic algorithms 
are presented, together with complete source code2 needed for result 
replication as well as a starting point for other researchers. We hope that 
it will enable reproducibility, competition, and cooperation between the 
researchers elevating the quality of papers published in the field. It also 
has potential of lowering the entry point for data-driven methods in 
drilling as well as attracting talent from outside of petroleum field. 

2. Existing problems and potential pitfalls 

2.1. Rationale behind rate of penetration prediction and methodology 

2.1.1. Purpose and goal 
Drilling of oil wells is very expensive. IHS reports day rates of 

semisubmersible, and jack-up rigs, as well as drillships (IHS Markit, 
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0000) from mid 2017 up to present day. At the time of this writing3 

average rates vary between 40,000 and 300,000 USD per day of drilling, 
therefore increasing the ROP translates directly to savings for the 
operator. 

Additional area of potential savings is optimization of the mechani
cal specific energy (MSE) to ROP ratio required to drill. While the energy 
itself is not a significant portion of the drilling cost, its excess has to be 
released as effects other than cutting of the rock, as vibrations and heat, 
leading to higher tool wear and increased likelyhood of failure. This in 
turn can extend the drilling time due to additional tripping operations to 
exchange equipment, or fishing operations to retrieve equipment lost in 
hole. 

2.1.2. Assumptions 
ROP prediction model is necessary for ROP optimization. This his

torically is done both though analytical as well as data-driven models. 
Both approaches require reference data, to either find model constants 
(Rahimzadeh et al., 2011) or to train the machine learning model. The 
closer the reference drilling is to future drilling, the smaller expected 
error between reality and the model should become. This also means, 
that reported accuracy of a model is only applicable to drilling at the 
same level of similarity, in terms of equipment, lithology, procedures, 
depth, etc. Reference, or training, data, can be taken from neighbouring 
wells, or from the currently drilled well in continuous learning scenario 
(Liu, 2017), where a model is created on the go. 

2.1.3. ROP optimization process 
ROP optimization can be performed in multiple ways. Fig. 1 presents 

a basic outline of two general approaches to such an optimization pro
cess. ROP model is used to determine optimal drilling parameters, 
related to a chosen optimization problem, be it minimizing drilling time, 
minimizing MSE used to drill or others. This in turn is to set typical 
drilling inputs, such as drill bit RPM or weight on bit. The difference 
between a reference well and continuous learning method is indicated in 
subfigures a) and b). A reference well can be used, which is similar to the 
well drilled, a). This allows for model development to happen offline and 
is done once, and is in general simpler to deploy; a reference well is 
however required, which may or may not be available. Alternatively, the 
model can be created on the go in a continuous learning fashion, as 
shown in the subfigure b). This requires model development to happen 

while drilling, which is more difficult to implement due to computing 
equipment and skills necessary. Additional drawback is that the initial 
dataset is very small, and empty at the very start, which is detrimental to 
machine learning training process. Temporary model can be used, or a 
warm-up period exists where there is no model present. This is countered 
by the fact that the data is much more closely related to drilling at hand, 
improving the performance. In both approaches the ROP model is used 
to calculate the optimized drilling parameters that are then applied to 
the drilling controls related to parameters such as weight on bit, drill 
string RPM, mud flow etc. Method choice would depend on data avail
ability, and other local constraints. Hybrid methods are also possible, 
and best practices are yet to be established. 

2.2. Data availability 

Initiating this research was a review of a number of recent papers 
(Ahmed et al., 2019a, 2019b; Hegde and Gray, 2017, 2018; Hegde et al., 
2015, 2017; Soares and Gray, 2019; Sabah et al., 2019; Han et al., 2019; 
Shi et al., 2016; Mantha and Samuel, 2016; Eren and Ozbayoglu, 2010, 
2011; Soares et al., 2016; Amar and Ibrahim, 2012; Bourgoyne and 
Young, 1999; Yi et al., 2014; Jiang and Samuel, 2016) that aimed at rate 
of penetration (ROP) prediction. Nearly none provided the data; we 
were able to identify few exceptions - two papers (Amar and Ibrahim, 
2012; Eren and Ozbayoglu, 2011) used data originally published in 
1974, of which 30 samples (Bourgoyne and Young, 1999) were directly 
quoted in the reference paper. Another identified paper provided 25 
samples (Yi et al., 2014) that were subsequently re-used by others (Jiang 
and Samuel, 2016). This means that the existing publications are either 
not reproducible or use a very small size dataset that does not meet the 
standards of modern machine learning research. For comparison, a 
popular open MNIST (Deng, 2012) dataset, a Modified National Institute 
of Standards and Technology database of handwritten digits contains 
70,000 samples, which was later extended (Cohen et al., 2017) to 300, 
000 samples. These datasets contributed to over 20,000 publications 
over 20 years since its inception. 

2.3. Source code availability 

Source code availability among reviewed papers was even poorer - 
none of the reviewed papers shared it. While mathematical description 
of the basic underlying method was common, it is rarely sufficient to 
reproduce results. Simple Multi-Layer Perceptron (MLP) in a popular 
Keras implementation has to be described at least by number of layers 

Fig. 1. ROP optimization method.  

3 August 2020. 
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with number of neurons, activation of each layer, bias, kernel initializer, 
kernel regularizer, bias regularizes, activity regularizer, kernel 
constraint, bias constraint, training loss function, batch size, epoch 
count, an optimizer selection together with specific internal parameters 
such as learning rate, beta 1, beta 2, epsilon, and amsgrad status in case 
of the default adam optimizer. While most of those parameters have 
defaults, they differ between libraries and even version of the libraries 
themselves, making reproduction or result verification impossible if 
configuration information is incomplete. This problem can, and often is, 
solved via source code publication, often with a random seed fixed to 
achieve exactly the same results as published. A popular website 
paperswithcode.com tracks publications with source code available, as 
well as keeps leaderboards tracking performance improvement on 
selected datasets. This website has no drilling related papers listed. It is 
difficult to improve the state-of-the-art if it is not possible to reproduce 
it, making the goalposts invisible. 

2.4. Incorrect data split 

Sequential nature of real-time drilling data makes it susceptible to 
mistakes, for example related to train/test data split. One of the 
commonly logged attributes is measured depth, which with wrong data 
split, can inadvertently provide the model with information it should not 
have. Consider data where the only input attribute consists of evenly 
spaced values from 0 to 1. The target value is a random walk with step 
distance taken from normal distribution. There is absolutely no corre
lation between the input and the output. Yet if a random test/train split 
is applied, a common practice in ML, together with an off the shelf 
regression algorithm the resulting prediction R2 score is 0.9948. This is 
because machine learning algorithm will learn that for input 0.40 target 
is 55 and for input 0.42 target is 57, then, when asked for prediction for 
input 0.41 accurate answer is very easy (most likely about 56). Full 
implementation showing the problem in the Appendix as Listing 1. 

Even without the depth attribute there may be enough information 
for the model to correctly recognize that a certain sample is from the 
same area as the samples used for training and infer a correct output. 
Consider an absurd notion - Measured Depth prediction based on Sur
face Torque and Rotary Speed. While one can argue, that there would be 
some correlation, at least with the Surface Torque, these attributes are 
surely insufficient for an accurate prediction. Performing exactly this 
exercise, applying a random train/test split, it is possible to achieve 
impressive R2 score of 0.946 for measured depth prediction using an off 
the shelf Gradient Boosting Regressor with default parameters - source 
code in Listing 2. With automated best model selection, testing portion 
reduced to 10%, and a malicious random seed selection, R2 of 0.998 was 
achieved, or 1.00 if rounded to two decimals. 

Using random train/test split may be used if the goal of the model is 
to interpolate existing data or explore the relationships existing in spe
cific well. This however has to be done with caution and with under
standing that spurious correlations will be utilized by the model and it 
should not be used to predict values for other wells. For example, if 
drilling was unusually slow at Measured Depth of 1,040m and 1,050m, 
such model will correctly predict that it was also slow at MD of 1,045m. 
This however is not an indication that in a different well ROP will also be 
low at this specific depth, even though the model is likely to indicate 
that. 

In Scikit-Learn (Pedregosa et al., 2011) library an appropriate 
function exists for splitting sequence-type data; it is sklearn.mod
el_selection.TimeSeriesSplit. While the name suggests that it is meant 
specifically for time series, it is also the correct tool to use for depth 
series type of data, or any sequential data where there is dependence 
between consecutive measurement points. This function divides the data 
into even, continuous splits. In the kth split, it returns first k folds as train 
set and the (k+1)th fold as test set. This creates multiple train/test sets in 
a structure suitable for continuous learning methods. 

2.5. Easy target problem 

Different problems can arise due to specific data selection and 
scoring. Consider data where the only input is a random number with 
average of 20 and standard deviation of 2. The target attribute is a 
random number with average of 50 and standard deviation of 3, so it 
ranges approximately between 40 and 60. No correlation exists between 
these two attributes, yet again, average error between the prediction and 
ground truth is only 4.8%. This is result of a very easy target, where 
simply guessing at the average, here 50, and ignoring the input will yield 
such an impressive result. The example code is shown in Listing 3. 

While all these described shortcomings do not necessarily mean that 
any of the published papers have flawed methodology or doctored re
sults. It is nevertheless a fact that the bulk of published papers on data- 
driven ROP prediction is done on undisclosed data, using methods that 
are not described sufficiently for reproduction, and therefore present 
results that are impossible to verify. One cannot improve on the existing 
research without reproduction or at minimum - a presence of a unified 
benchmark. 

3. University of Stavanger Rate of Penetration (USROP) dataset 

3.1. Data source - Volve dataset 

In 2018 Equinor published data related to the Volve field located off 
the coast of Norway. It was in operation in years 2008–2016 and in total 
produced 63,000,000 bbl of oil. The dataset contains data related to 
geoscience, production, seismic, reservoir modelling and drilling. What 
made the adoption of the data for research relatively slow, is that the 
data is provided without any preprocessing that would make it more 
accessible. To facilitate research related to drilling, independent work 
was done to convert the real-time drilling logs from segmented WITSML 
files into compact CSV files (Tunkiel et al., 2020). This makes the data 
much easier to handle for the purpose of data science. The files are made 
available for download from the pages of University of Stavanger.4 The 
Volve dataset is published on Creative Commons BY-NC-SA 4.0 licence, 
which allows anyone to modify and re-publish the data as long as the 
original source is attributed, it is done in a non-commercial fashion, and 
that the license is retained. 

3.2. The data 

The real-time drilling data from the Volve dataset is vast and allows 
for research in different sub-fields of drilling. At the same time the logs 
are of varying quality, containing missing data and different attributes. 
Significant clean up pre-work is required before feeding the data into ML 
algorithms, which can be to a high extent arbitrary. To solve this issue a 
curated subset of Volve is necessary. Based of analysis of the logged 
attributes total of seven wells were selected. The selection criteria was 
the completeness of the data and common attributes logged. Addition
ally only the depth-based real-time WITSML logs were used as opposed 
to time-based logs. Rationale behind this selection was that the time- 
based data would require additional processing which is currently 
outside of the scope of this study. The following wells were selected:  

• Norway-NA-15_$47$_9-F-9 A depth  
• Norway-Statoil-15_$47$_9-F-7 depth  
• Norway-StatoilHydro-15_$47$_9-F-14 depth  
• Norway-StatoilHydro-15_$47$_9-F-15 depth  
• Norway-StatoilHydro-15_$47$_9-F-15S depth  
• Norway-StatoilHydro-15_$47$_9-F-5 depth  
• Norway-StatoilHydro-15_$47$_9-F-9 depth 

4 http://www.ux.uis.no/~atunkiel/. 
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In terms of available attributes, the focus was on commonly logged 
data to promote models for wide application. Following attributes were 
selected: Measured Depth [m], Weight on Bit [kkgf], Average Standpipe 
Pressure [kPa], Average Surface Torque [kN.m], Rate of Penetration 
[m/h], Average Rotary Speed [rpm], Mud Flow In [L/min], Mud Density 
In [g/cm3], Diameter [mm], Average Hookload [kg], Hole Depth (TVD) 
[m], USROP Gamma [gAPI]. 

It is necessary to understand, that data in Volve, as well as generally 
in drilling rigs, is not collected in a standardized manner. Different 
equipment is used and operated using different procedures. This is often 
the reality of the oilfield operations and a method that is meant for 
future field deployment should be robust enough to overcome those 
challenges. Alternatively, all equipment could be properly and identi
cally calibrated, as highlighted by (Hegde et al., 2019). This is an 
important distinction to note when comparing methods and results. 

Minimal processing was done to the attributes to preserve original 
data. This is necessary as the drilling logs often contain erroneous, non- 
physical values. There may be sentinel values to indicate no reading 
(typically − 999), corrupted values coming through the mud-pulsing 
system, and others. Samples containing Weight on Bit values below 
0 and above 35 were truncated. The same way rows with Mud Density In, 
Mud Flow In, and Average Surface Torque values below zero were 
removed, as well as with Rate of Penetration values above 100 and 
Average Standpipe Pressure above 25,000. Diameter refers to the nominal 
wellbore diameter. Forward and backward filling was used to fill in the 
small gaps in the data resulting from uneven logging frequency of 
different equipment. 

There was no unified gamma reading between all the wells, hence a 
new attribute, USROP Gamma, was introduced. It contains data logged 
under different names and different equipment, sometimes even within 
the same well. Source code is provided for exact explanation of which 
gamma related attribute was used in each case. The dataset was 
balanced in terms of samples per measured depth available. The goal 
was to remove the variability in the polling rate, so that a given length of 
a well has the same weight in terms of error, when it is calculated as a 
total of multiple wells. Well with fewest samples per available depth was 
identified and sample count of other wells was reduced through random 
sampling to match the identified value. Additionally, it is typically 
beneficial for ML approaches to balance the dataset anyway. It prevents 
error minimization algorithms from being overwhelmed by an over- 
represented value. In simple terms, an algorithm differentiating be
tween cats and dogs will be best trained when the dataset is split evenly 
between these two classes. If cats were to be over-represented in a ratio 

of 9:1, algorithm may settle on a local minimum where everything is a 
cat with 90% accuracy. Complete source code used for data preparation 
is made available on GitHub.5 

The described pre-processing results in data from seven wells with 
total available measure depth ranging from 332m to 2,759m. This 
translates to 6389 and 53,041 data samples respectively with total of 
198,928 samples and 10,346 m of measured depth among all the wells. 
Table 1 provides the exact breakdown of those values. The names of the 
well were changed so that they are easily identifiable, such as USROP_A 
2 N-SH_F-14d.csv. USROP stands for University of Stavanger Rate of 
Penetration. A refers to the revision of the dataset. 2 is a short well 
identifier, and N-SH_F-14d refers to original CSV file titled Norway- 
StatoilHydro-15_$47$_9-F-14 depth.csv. For brevity, this paper hence
forth will refer to the wells simply by their consecutive number, such as 
well 2. 

To provide a general insight in how the quality of the data well 2 is 
reproduced in Appendix as Fig. 10. This chart is for reference only to 
provide a general feel for the dataset for potential researchers. Some 
outliers are present, changes in equipment are visible both in terms of 
well diameter, as well as gamma reading, which abruptly changes. 

Among the attributes available in the presented dataset one can 
notice that lithology information is not present. This was done because 
such data is not always immediately available while drilling, and it is 
actually missing from the Volve dataset for a number of wells. The lack 
of lithology information will therefore promote creation of more uni
versal models. There is still a possibility of an ROP prediction model that 
identifies lithology through unsupervised methods, such as clustering 
first, and then applies this knowledge to the testing dataset. Such 
approach potentially makes the model more robust and applicable to 
more operations. Nevertheless, further work is planned on creating 
additional curated dataset that would contain lithology information, bit 
wear, time, and other parameters. 

It is also possible to develop models that work on additional pre- 
defined internal splits, for example dividing data further by the well
bore diameter, so that data for a given well section is evaluated by a 
model created only on training data from wellbores with an identical or 
a similar diameter. 

3.3. Additional information 

Volve dataset contains a plethora of information about the field and 
all the relevant operations, ranging from daily reports and production 
logs to reservoir models and seismic data. Due to volume of that addi
tional information it was not pre-processed as a part of this paper. Some 
of that information still may be used indirectly as a hint or idea driving 
model creation, or directly, where additional data is used to potentially 
significantly reduce prediction error. Also in this case the USROP dataset 
will be useful as a reference point. When proposing an improvement, for 
example inclusion of seismic data to improve ROP prediction, the results 
may be directly benchmarked against the state-of-the-art models of 
other researchers. Today, if such improvement is proposed a before-and- 
after comparison is often questionable, as the before state is provided by 
the same researcher due to lack of comparable results available. This, 
consciously or not, may not be the best effort as one focuses on the new 
and improved model. 

3.4. Score metrics 

Not only data needs to be standardized in order to evaluate differ
ences in models’ performance, but unification of the way the results are 
calculated is also needed. Mean Absolute Error (MAE) is suggested as the 
key metric in case of the ROP prediction. 

Table 1 
USROP dataset well depth reference.  

Filename Starting 
Measured 
Depth[m] 

Final 
Measured 
Depth[m] 

Available 
length[m] 

Sample 
count 

USROP_A 0 N- 
NA_F-9_Ad. 
csv 

491 1206 715 13,746 

USROP_A 1 
N–S_F-7d.csv 

301 634 332 6389 

USROP_A 2 N- 
SH_F-14d.csv 

988 3466 2478 47,645 

USROP_A 3 N- 
SH-F-15d.csv 

1306 4065 2759 53,041 

USROP_A 4 N- 
SH_F-15Sd. 
csv 

1401 4090 2689 51,708 

USROP_A 5 N- 
SH-F-5d.csv 

2828 3792 964 18,548 

USROP_A 6 N- 
SH_F-9d.csv 

225 634 408 7851  

5 https://github.com/AndrzejTunkiel/USROP. 
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MAE=
1
n

∑n

t=1
|At − Ft| (1)  

Where n is the sample count, t is the consecutive sample number, At is 
actual value at sample t, and Ft is the forecast value for sample t. 
Rationale behind this choice is that ROP modelling is mainly done for 
drilling time optimization, where the interest is in the cost per meter 
drilled. A given value of error, for example 10 m/h, will be of roughly 
the same significance for an operator whether the true value is 30 m/h or 
80 m/h. 

Commonly used alternative to MAE is Mean Absolute Percentage 
Error (MAPE) 

MAPE=
1
n

∑n

t=1

⃒
⃒
⃒
⃒
At − Ft

At

⃒
⃒
⃒
⃒ (2) 

This heavily penalizes errors for low ROP values. In case of an error 
of 10 m/h in a very slow section of a well, like 0.1 m/h, becomes a 
10,000% of error. In practice ROP can be very close to zero, or zero, on 
some datapoints, making the problem even more extreme generating 
error values at infinity. Manual removal of such datapoints is possible, 
but would make the results significantly influenced by arbitrary de
cisions. This was the deciding factor behind selecting MAE as the key 
metric. Supplemental metric is proposed to indicate the error value 
related to the absolute value of ROP without the infinite error problem - 
Weighted Mean Absolute Percentage Error (WMAPE) 

WMAPE=

∑n
t=1|At − Ft|
∑n

t=1|At|
(3) 

This way of calculating error gives an indication of the scale of the 
error related to the complete well without the infinite error problem, as 
it avoids dividing by values close to zero. WMAPE is used as a supple
mental metric in this paper. 

Note that this is related only to model evaluation, and other metrics 
may be better for the purpose of training the model. Care must be taken 
when evaluating total MAE as it cannot be simply averaged between 
different wells, as the sample count is not identical. The best approach is 
to store absolute error values per sample from evaluating all the itera
tions and calculate mean at the end. To better understand distribution of 
ROP values histograms are provided in Fig. 2. Note that the sample 
counts are displayed in logarithmic scale. 

3.5. Defined scenarios 

Three scenarios are proposed to evaluate ROP prediction models 
that reflect both reference well as well as continuous learning 
methods discussed earlier. First, Continuous Learning scenario is 
suggested as a particularly attractive approach for real-time prediction. 
Each well is evaluated separately; initially first 30 m are available for 
training and validation to evaluate next 30 m. Next iteration considers 
first 60 m as available and subsequent 30 m for testing. After that 90 m 
are taken and so on. Note that the last testing section will necessarily be 
smaller than 30 m, as the total length of wells is not a multiple of 30. 

Fig. 2. ROP distribution of USROP wells.  

Fig. 3. Proposed scenarios for model validation.  
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After processing the mean absolute error is reported for complete well 
taking into account testing scores from all iterations. Distance of 30m 
(100 ft) was selected as a typical length of a stand in a common triple 
drilling rig. To practically implement the train/test split in a unambig
uous way, the split should done be every5776 depth-sorted samples, 
which is equivalent to approximately 30 m of Measured Depth in USROP 
dataset. This implementation works around the problem of minor gaps 
in the data that can potentially cause different results in different 
implementations. 

Second proposed scenario is All for One,7 when all but one well is 
available for training and validation and one complete well is used for 
testing. This allows for seven different iterations with different well left 
for testing as cross-validation, and calls for one final MAE score from all 
the wells combined. Lastly, a One for All8 scenario is proposed, where 
only one well is available, and all other wells are evaluate based on this 
model. As with the second scenario, this results with 7 train/test itera
tions acting as cross-validation. All three scenarios are shown symboli
cally in Fig. 3. 

Note that only the split into available and testing data is fixed for 
each scenario. When methods like early stopping or dynamic model 
selection are used, the available data has to be split into training and 
validation data. All these samples have to be taken from the dataset 
designated available in the current iteration. It is also highly recom
mended that all publications related to ROP prediction based on this 
dataset share the relevant source code for research reproducibility and 
verification. 

Note that all iterations in All for One and One for All scenarios are 
independent, hence developed algorithms should work on data only 
from a given iteration. In case of Continuous Learning scenario, each well 
is considered independent, but the sequence of expanding the dataset 
through drilling has to be maintained. 

Referring to the data-split discussion in the Incorrect data split in the 
Existing problems and potential pitfalls section, it is worth highlighting 
that the proposed scenarios are de facto predefined, custom data-splits. 
Continuous Learning scenario is a variant of TimeSeriesSplit imple
mentation, with fixed depth step instead of fixed split count. All for One 
and One for All explicitly splits the dataset into training and testing by 
well. Validation dataset is not specified, and it can be taken from the 
training data if so desired. 

4. Reference results 

Reference results are provided as a starting point for the basic 

algorithms’ performance, as well as to gauge the available room for 
improvement. Source code to replicate the results is provided on 
GitHub.9 Tested algorithms were mostly sourced from the Scikit-Learn 
library (Pedregosa et al., 2011): Gradient Boosting Regressor, Random 
Forest Regressor, AdaBoost Regressor and K-Nearest Neighbors Re
gressor. Additionally XGBRegressor was used from the popular XGBoost 
library (Chen and Guestrin, 2016). Additionally, results for classical 
approach - Bingham model (Bingham, 1964) developed in 1964 - are 
provided as well. 

4.1. Bingham model 

This is a popular model developed through laboratory testing. This is 
a common model acting as a reference point when suggesting improved 
ROP prediction methods in published research. 

ROP=K
[

WOB
Db

]a

N (4)  

where K is constant accounting for formation strength, WOB is weight on 
bit, Db is bit diameter, a is bit weight exponent and N is the rotary speed. 
The constants K and a were established based on minimizing the mean 
square error between the predicted and true value in the testing dataset, 
using the same training/testing data splits as done for the data-driven 
methods. A least squares optimization algorithm was used from SciPy 
library (Virtanen et al., 2020), where parameters K and a were selected 
such, that mean squared error (MSE), between real ROP values and 
calculated ROP values is smallest. This stands in apparent conflict where 
results are evaluated based on different metric. Our results however 
showed that MSE based optimization algorithms worked best producing 
lowest MAE and WMAPE results. 

More advanced methods such as neural networks, 1D convolutions, 
recurrent models, automatic model selection such as TPOT library 
(Olson et al., 2016), ensemble results, additional pre-processing, and 
other approaches are possible. They are likely to yield superior results, 
however multiple separate publications will be needed to fully explore 
the ever-evolving landscape of machine learning methods that can be 
applied to the USROP dataset. 

4.2. Continuous learning 

Continuous learning is an attractive practical approach that can yield 
good results. It does not require information from reference wells 
making it possible to implement it without prior knowledge or data from 
a given field. It also does not suffer from typical problems such as 
changes in logged attributes or differences in equipment used between 

Fig. 4. Continuous learning scenario results for individual wells and methods, heatmap.  

6 Total samples divided by total meters times 30.198928/10346⋅30 =

576.8 ≈ 577  
7 Training on All, testing for One.  
8 Training on One, testing for All. 9 https://github.com/AndrzejTunkiel/USROP. 
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the wells and varying equipment calibration. Reference results for this 
scenario are presented in Fig. 4. The main proposed metric, MAE, is 
shown as subfigure 4a. It is presented as a heatmap, where cells corre
spond to various well and method combinations, and the color repre
sents the error value. There is a clear difference in performance between 
the wells, with wells 1 and 6 typically being the most poorly modelled 
across all applied methods, and with best results for wells 3 and 4. There 
are two key factors that explain this finding: wells are different lengths, 
with longer ones allowing for nominally bigger training datasets, and 
different average ROP values (ref. Table 1 for well’s size, and Fig. 2 for 
average ROP values). To compensate for differences in ROP, alternative 
heatmap is reproduced, as a subigure 4b, where results are normalized 
in terms of average ROP of a well and shown as WMAPE. Note that this is 
an error shown as a percentage of average ROP of a well, not ROP of a 
given sample, as in MAPE. This means that error of x m/h has the same 
value across a specific well, but it will change between wells. 

For both MAE and WMAPE metrics the best overall score was ach
ieved for Gradient Boosting Regressor of Scikit-Learn library. Bingham 
model, the classical approach, scored worst in all but one well, where it 
was placed next to last beating the AdaBoost Regressor, albeit only for 
MAE score. What is worth noting is that depending on the metric used a 
well can be easy or difficult. This is the case with well 1 and 6, where the 
error is high when calculating MAE, compared to other wells, but is low 
when using WMAPE. Refering back to Fig. 2, these are wells that have 
highest mean ROP. In practice both those metrics carry valuable infor
mation about the performance, and while there are differences between 
the wells, the overall rating of the methods remains mostly unchanged. 

4.3. All for one 

Reference results for All for One benchmark are shown in Fig. 5 as a 
violin plot. This type of chart is a merger of a histogram and a box plot, 
providing high resolution results at a glance in a compact format. The 
width of the light grey portion referencing the sample count for a given 
value on the y-axis, and is smoothed out via kernel density estimation. 

Note that the dot in the center of each figure represents median absolute 
error, while the key metric is mean absolute error. The dark grey bar 
spand 15th and 75th percentile. Best value in terms of MAE was ach
ieved by Gradient Boosting Regressor of Scikit-Learn library. All defaults 
were kept for this algorithm, hence the outcomes are not fully repre
sentative of its potential. The results in terms of the well-by-well split are 
presented in as a heatmap in Fig. 6a. It is possible to see how the tested 
algorithms behaved on individual wells. Note that different algorithms 
may perform better for different wells. While Gradient Boosting Re
gressor has the lowest overall error, alternative approaches worked 
better when testing wells 0, 1, 3, 4, and 6. This suggests that using 
multiple models, such as an ensemble approach, is likely to yield im
provements. What is particularly noteworthy is that the classical Bing
ham model scored best for wells 2 and 3. Additional heatmap with 
WMAPE metric is shown in Fig. 6b. As it was the case in Continuous 
Learning scenario, this metric changes for which well ROP prediction 
was done well or poorly, but the overall rating of tested algorithms stays 
the same. What becomes highlighted however, is the fact that Bingham 
model’s error is over 100% for well 4, which is significantly higher than 
other methods. 

Investigating results in more detail one can notice that Continuous 
Learning approach typically yielded better results than All for One. 
While this is true for all models, it is not true for all wells. Random Forest 
Regressor in All for One scenario achieved better results than any model 
in Continuous Learning approach. While this is only a preliminary result, 
it suggests that different modelling approaches may be optimal for 
different wells. 

4.4. One for All 

The One for All benchmark is significantly more difficult, as it is 
trained on one well only in contrast to six wells in All for One variant. 
This is visible clearly in inferior results seen in Fig. 7. In this benchmark, 
again, it is the Gradient Boosting Regressor that shows the lowest MAE; 

Fig. 5. All for One results per method, violin plots.  

Fig. 6. All for One results for individual wells and methods, heatmap.  

Fig. 7. One for All results per method, violin plots.  
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albeit the value is 49% higher than in All for One scenario. The heatmap 
in Fig. 8a shows that, surprisingly, the best algorithm showed worst 
results for well 0 out of all tested algorithms. Note that the average MAE 
is calculated per sample basis, hence good results in biggest wells, here 3 
and 4, have the highest weight. The traditional Bingham model again 
showed mixed performance scoring well for some wells (5) and poorly 
for others (6). In calculations done for WMAPE, Fig. 8b, results are 
similar with Bingham model performing worst, but uncovering that 
relatively it was the well 4 where it was most off-target, as that well was 
drilled more slowly, increasing the percentage error. 

5. Discussion 

5.1. Comparison against a flawed methodology 

The reference results for all three proposed scenarios significantly 
differ from numbers presented in previous research related to ROP 
prediction using machine learning. The absolute error is much higher, 
and improvements over the Bingham model are only modest. First basic 
reason for this situation is that presented results are not indicative of the 
state of the art, but act as an indication of performance of the off-the- 
shelf algorithms applied without any tuning. This paper does not aim 
at developing an ROP prediction model, but to facilitate comparative 
research in this domain. 

The second reason for relatively poor results is that all three pro
posed scenarios were developed to be realistic and representative of the 
overall performance of different models. Proposed dataset consists of 
drilling operation through various lithologies with no explicit attribute 
identifying them, and using different eqiupment. This is representative 
of real-life drilling, where such information is not always readily 
available. It was found to be very common in related publications that 
they are often limited the ROP prediction models in specific lithology. 

To underline the perceived performance differences potentially 
stemming from different data split an exercise was performed, where 
USROP dataset as a whole, all wells joined together, was split into train/ 
test portions in 9:1 ratio, with data rows randomly assigned to those 
subsets. Such methodology is flawed and does not represent real-life 
performance, a problem indicated in the second section of this paper. 
This approach was found to be in use in at least one of the reviewed 
papers, unsurprisingly reporting very good results. Using an untuned 
Gradient Boosting Regressor we achieved MAE value of 4.75, and R2 =

0.82, better than all benchmarked algorithms in all the USROP proposed 
scenarios, and approximately half the error of the best global result. To 
further improve the score, TPOT library (Olson et al., 2016) was used to 
automatically search for best performing off-the-shelf algorithm to 
replicate assumed reasonable best effort in making an ROP model. This 
resulted in an algorithm with MAE under 0.3 m/h. Further stretching the 
apparent performance by applying the train/test split with different 
random seeds it was possible to identify a specific random sampling 

pushing the MAE down to 0.265 m/h and a near-perfect R2 value of 
0.999. While those numbers may look impressive, they are just a result 
of a flawed methodology and do not translate to practical application. 

5.2. Bingham reference results 

Among the tested algorithms in this paper the Bingham model is both 
most widely used by other researchers, and the one implemented most 
unambiguously. This allows one to compare the USROP dataset to other 
datasets via proxy of this model. Previous work on undisclosed dataset 
provided by Marathon (de Salles Soares, 2015) evaluated the Bingham 
model both on individual lithologies as well as on entire dataset. The 
overall MAPE ranged between 23% and 43% depending on the method 
used to identify the coefficients. This is in line with results from the 
Continuous Learning scenario, where in USROP dataset the WMAPE was 
between 20% and 103% when inspecting individual wells in different 
scenatios. Another research (Soares et al., 2016) showed Bingham model 
achieving MAPE between 33% and 40%, again in line with results from 
USROP dataset. It is worth noting that these metrics are similar, yet not 
identical, since WMAPE in our paper refers to percentage of average 
ROP to avoid results being overwhelmed by moderate nominal error at 
very low ROPs. Methods in calculating the coefficients of the Bingham 
model also vary, with the quoted papers using a 3rd party software, 
making comparisons difficult. For the sake of comparison MAPE was 
also calculated per sample for All for One scenario and shown in Fig. 9. 
The mean error is 102%, however as expected, the histogram clearly 
shows that the bulk of actually expected error is between 0% and 60% 
with outliers inflating the average. Truncating these would significantly 
reduce the overall MAPE. Those results are in-line with the other quoted 
papers, suggesting that USROP dataset does not significantly differ in 
terms of ROP prediction difficulty. 

Fig. 8. One for All results for individual wells and methods, heatmap.  

Fig. 9. Mean Absolute Percentage Error, calculated as per sample percent
age (MAPE). 
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5.3. Future work 

Volve dataset, which is the source for the USROP dataset presented 
here, contains significant amount of additional data that was not 
included. This includes, but is not limited to, time-based data, pit vol
ume, trip tank volume, block position, bit depth, mud type, mud name, 
mud properties, daily drilling reports, seismic data, lithology data, 
production data, and more. Significant effort is necessary to make these 
data seamlessly available for the purpose of machine learning or more 
general data science. Operations in the Volve field were not recorded 
using unified parameter set, and therefore making a curated dataset is 
necessarily a balance between the amount of parameters included and 
the amount of wells that contain all the selected parameters. 

Immediate work that is planned by authors is to either expand, or 
create additional dataset meant for ROP prediction that includes li
thology data, as well as parameters currently missing that are necessary 
for implementation of Bourgoyne and Young ROP model (Bourgoyne 
et al., 1986); these include jet impact force, pore pressure gradient, 
fractional bit tooth wear and threshold bit weight per inch of bit 
diameter at which the bit begins to drill. Other researchers are encour
aged to create curated (sub)datasets for the specific problems they are 
working on, what will facilitate and accelerate research in the respective 
domain. 

6. Conclusion 

The key novel aspect of presented work is the creation of a reference, 
pre-processed, and simple to use ROP prediction dataset with specific 
challenges to solve has high potential to become a catalyst for higher 

quality research. It is a necessary step to evaluate what is the current 
state-of-the art in ML applied to drilling. The proposed three scenarios 
are related to real-life situations and aim to be representative of field 
deployment. As the reference dataset is based on Volve data, it is 
possible to extract further information about the wells used, allowing for 
more informed modelling decisions, background information, as well as 
further expansion towards more reference datasets. It allows researchers 
to propose inclusion of specific new information and to have a universal 
benchmark to show the achieved improvement. 

Additionally, we found that when the data-split is performed in a 
realistic manner, suitable for field deployment, the standard ML algo
rithms perform worse than in previously published studies. Presented 
reference results shed a light on the performance of data-driven 
methods, where, depending on the methodology and specific well, 
they may be both vastly superior and sometimes inferior to the classical 
approach of physics-based models. This further confirms the need for 
bigger reference datasets, which enable robust evaluation of the accu
racy of developed models. 
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A Appendix 

Nomenclature 

At actual value at sample t 
Ft forecasted value at sample t 
n sample count 
t consecutive sample number 
bbl barrel (unit) 
CSV comma separated values 
MAE mean absolute error 
MAPE mean absolute percentage error 
MD measured depth 
ML machine learning 
MLP multi-layer perceptron 
MSE mechanical specific energy 
ROP rate of penetration 
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RPM revolutions per minute (unit) 
USROP University of Stavanger Rate of Penetration (dataset) 
WITSML wellsite information transfer standard markup language 
WMAME weighted mean absolute percentage error 
XGB extreme gradient boosting 
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Fig. 10. All parameters of well 2, for reference only.  
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Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.petrol.2020.108069. 
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