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Abstract: In this paper, we present an approach and an algorithm aimed at minimising the energy
consumption of enterprise Wireless Local Area Networks (WLANs) during periods of low user
activity. We act on two network management aspects: powering off some Access Points (APs), and
choosing the level of transmission power of each AP. An efficient technique to allocate the user
terminals to the various APs is the key to achieving this goal. The approach has been formulated
as an integer programming problem with nonlinear constraints, which comes from a general but
accurate characterisation of the WLAN. This general problem formulation has two implications: the
formulation is widely applicable, but the nonlinearity makes it NP-hard. To solve this problem to
optimality, we devised an exact algorithm based on a customised version of Benders’ decomposition
method. The computational results proved the ability to obtain remarkable power savings. In
addition, the good performance of our algorithm in terms of solving times paves the way for its
future deployment in real WLANs.

Keywords: wireless LAN; energy efficiency; resource allocation; optimisation; mixed integer non-
linear programming; green networking; network management

1. Introduction

The energy saving issue in wireless networks is currently the focus of many research
activities. For example, there is a plethora of works dealing with analysing and reducing
the power consumption in cellular networks [1,2], in wireless sensor networks [3,4], in
wireless mesh networks [5,6], and in Wireless Local Area Networks (WLANs). With specific
focus on IEEE 802.11-based networks, numerous researchers have dealt with improving
the energy efficiency acting on the various medium access control and physical layer
mechanisms [7,8] or on network-wide algorithms, such as dynamic channel selection [9]
and coordination functions [10]. Recent works have focused on resource allocation in
Terahertz communications [11,12].

However, very few works can be found on the design of efficient reconfiguration
algorithms to reduce the power consumption of the WLAN infrastructure-side when the
load is scarce. In fact, most (or even all) of the currently deployed enterprise WLANs are
continuously operated at full power; i.e., all Access Points (APs) are always turned on
with the transmission power set to the maximum. This full-power operation produces a
considerable energy wastage, because the same power is employed at the peak hours (e.g.,
11 a.m. of weekdays) and during the off peak periods (e.g., nights and weekends).
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In this work, we address the problem of saving energy during off-peak hours in
enterprise WLANs, while preserving the same coverage and quality of service levels
provided when the network is run at full power. To meet these goals, we operate at the
network management level, where the available options are: (i) turn off some APs, and (ii)
tune the level of the radiated—and hence consumed—power via the active APs. In order
to determine the set of APs to switch off and the power levels to use on each AP, we act
on the association between the APs and the user devices. By assigning the devices to the
“proper” APs (the exact meaning of “proper” will be made explicit later on), we can create a
subset of APs with no associated users, which can thus turned off. Further energy savings
can be achieve by the powered-on APs by not transmitting at the maximum power, but
still meeting the traffic demand of each associated user.

To this aim, we first define a general model of the WLAN, we then build a mathemati-
cal problem formulation, and we finally solve the problem to optimality by means of an
efficient algorithm we developed for this purpose. Specifically, the model is used to take
two kinds of decisions: (1) associate each user ( the term “user” should be taken in its most
general sense; a more precise definition of what is going to be associated with the APs is
given in Section 3) with one of the available APs, and (2) set the transmission power level
of each AP.

In the first step of our work, our main goal was to model the WLAN in the most
general form, i.e., without performing approximations or simplifications. Indeed, while
such approximations and/or simplifications might, on the one hand, lead to a simpler
mathematical programming problem (e.g., linear), on the other hand they might lead to
solutions that are not applicable or unsatisfactory for the original problem.

The resulting WLAN model is then taken as the basis to formulate a mathematical
programming problem. As it will emerge from Section 4, the formulated problem is a
particular case of a broader class of location-design problems, where both location and
capacity dimensioning decisions must be taken. It is therefore a NP-hard combinatorial
program, but with the added difficulty of nonlinear constraints (in short, an integer nonlin-
ear problem, INLP). Specifically, the nonlinearity is due to the nonlinear relation between
the user assignment variables and the power level assignment variables.

Due to the problem complexity, its resolution to optimality by means of general
purpose solvers is practically feasible for small scenarios only. Alternatively, iterative
approximation algorithms (that converge to a solution that is close to optimal) or heuristics
(that find a feasible solution in short times, but give no guarantees in terms of optimality,
completeness, accuracy, or precision) can be employed. Indeed, the two latter approaches
have been extensively adopted in the literature, both in the context of WLANs [13,14] and
more in general, for cellular networks [15,16] and wireless sensor networks [17]. However,
they provide just an arbitrarily “best” feasible solution to the addressed problem.

On our side, we devised a method and implemented an algorithm, named Benders’
decomposition-based algorithm (BDA), that yields the optimal solution to the original
problem in a reasonably small computational time. To achieve this goal, we selected
Benders’ decomposition (BD) technique [18], a rather popular approach to solve large
mathematical programs with mixed (i.e., continuous and integer) variables. In particular,
we adapted and customised BD to match the specific features of our integer nonlinear
problem. Again, since we did not enforce any simplifications, the found solution is not
only optimal for the mathematical programming problem, but also applicable to the real
WLAN without performance degradation.

With regard to the user-AP association, it is worth recalling that, in IEEE 802.11-
based systems, the user devices autonomously select the AP to associate with, generally
by picking the AP from which they measure the highest received signal strength. As a
consequence, it emerges the problem of how to put into practice the allocation computed
by our approach. This practical problem, which has so far received scarce attention, is
analysed in Section 7.
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In summary, the main contributions of the paper can be condensed as follows. (1) We
give a general characterisation of the WLAN and formulate a mathematical programming
problem that keeps all these features without approximations. In particular, the formula
that binds the AP transmission power to the available data rate at the user devices is left
“open”, with the sole restriction of being non-decreasing. In this way, the mathematical
problem formulation is disjointed from the specific data rate model, and hence can be
widely applicable and re-usable. (2) Then, even though this leads to a NP-hard nonlinear
combinatorial programming problem, we present an algorithm (named BDA) that is able
to solve it to optimality in very short times. (3) By applying BDA to a series of realistic
scenarios, we provide an insight on the impact of various parameters on the resulting
allocation. Specifically, we quantify the possible energy savings and we show that the
allocation strategy strongly depends on the problem geometry, that bigger scenarios (large
number of APs) can lead to proportionally higher savings (hence the importance of having
an algorithm that scales well), and that having many power levels at the APs can lead
to further energy savings if properly allocated. (4) Finally, we discuss the deployment
issues of BDA, providing reasons for the feasibility of the BDA approach even for currently
deployed WLANs.

The rest of the paper is structured as follows. The next Section sketches the current
state of the art in energy-efficient resource allocation in WLANs. Subsequently, Section 3
illustrates the analytical model of the WLAN. Then, Section 4 describes the mathematical
programming formulation, and Section 5 shows the method we designed to solve it. The
computational results are presented in Section 6. Some comments about the deployment of
the optimal allocation are exposed in Section 7. Finally, the concluding remarks are drawn
in Section 8.

2. Related Work

The default WiFi operation lets clients select the access point (AP) to connect to based
on the received signal strength. This approach, known as client-driven user-AP association,
has many shortcomings and does not allow the optimisation.

Software-Defined Networking (SDN) has changed the classical architecture of WLANs
towards a more flexible approach in which a global view of the network is made available
at a software-defined controller [19]. In this scenario, exploiting the Virtual Access Point
(VAP) concept active user steering and seamless handover can be exploited to implement
more sophisticated user association solutions [20,21].

The schemes for implementing user association can be centralised or distributed
depending on the entity responsible for the association decision. The adoption of Software-
Defined WLANs [19] gives more popularity to centralised schemes than distributed ones.
The centralised schemes are based on the idea that a network controller collects network
state information and optimises association considering different goals, such as aggregated
throughput, user fairness [22], AP load balancing [23]. Furthermore, the centralised scheme
can jointly perform different management functions, such as user association and channel
assignment [24], and allows one to consider different aspects, such as the solution proposed
in [25], which exploits link-layer multicasting to decide user-AP associations for providing
simultaneous content distribution in a sustainable mode. In this paper, multicasting is not
considered because multicasting refers to specific kinds of service.

These works consider architectural aspects and optimisation aimed to improve user
experience and to increase resources utilisation. However, they do not study the energy
savings in WLANs as this paper.

As already mentioned in the Introduction, despite the abundant literature on energy
efficiency in wireless LANs [7–10,26], very few works exist that deal with a problem similar
to the one faced here.

For example, Jardosh et al. [27] proposed a strategy to dynamically power on/off
APs to follow the resource demand of the users. This approach has been translated into a
working testbed, proving the feasibility of the idea and the related energy gains. However,
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the strategy is based on empirical considerations, has no guarantees of optimality, and is
tested on a very small network.

On the other hand, Lorincz et al. [28] followed an optimisation approach based
on an integer linear program (ILP). They employed an approximation of the date rate
formula (based on few quantised coverage rings), and the ILP is tested on a single medium-
sized scenario. The same authors confirmed the potential scalability issues of the ILP
method solved through a general purpose solver, and consequently developed heuristic
algorithms [13]. In addition, their problem is also different from ours as it targets a one
month timespan with various traffic scenarios (thus adding further empirical constraints),
whereas we focus on a single off-peak period (giving an exact solution).

Couto da Silva et al. [29] focused on a portion of a dense WLAN in which groups
of identical APs are co-located in the same position. To decide the assignment of the
users covered by more than one group, they exploited a queuing model, which, however,
becomes impractical even when the coverage areas of more than two groups overlap.

Zhang et al. [30] investigated the power allocation and the placement of an energy-
harvesting AP in a single cell WLAN with cooperative users. The goal of throughput
maximisation, subject to energy constraints, is reached by means of an optimisation problem
that is decomposed into two subproblems, which are solved to optimality. The problem
definition, however, is quite distant from ours.

Wu et al. [31] studied the user association problem in green WLANs, to minimise
the network’s energy consumption while satisfying time-varying traffic demands. They
formulated an integer linear programming able to take into account both AP congestion
avoidance and user migration constraints.

At last, we mention the work of Garcia-Saavedra et al. [14], who studied the trade-
off between energy and throughput optimisation in case of heterogeneous user devices.
Though presenting an exact analytical model, the authors simplified it due to its com-
plexity. Anyhow, the addressed problem is different from ours, since it targets the energy
consumption of the user devices in a single WLAN, rather than the WLAN infrastructure.

In fact, the client-side energy minimisation has been an active research topic, as shown
for example in [32]. As already stated, we focus on the infrastructure-side, for which the
problem is significantly different. This work is the extension of our previous paper [33].

In summary, none of these works combines optimality and fast solving times, while
also considering the WLAN in its generality. Therefore, our approach can indeed be placed
one step ahead of the current literature.

3. WLAN Model

Our focus is on already deployed WLANs, i.e., we do not solve the problem of
choosing in which candidate sites the APs shall be deployed. We assume this has been
done in a previous phase, for example on the basis on the peak traffic demand pattern. Due
to the already widespread adoption of enterprise WLANs, this hypothesis matches quite
well with reality. Additionally, it allows one to apply our method to existing networks, not
just to the future ones. Accordingly, we use the terms “AP” and “site” interchangeably.
Note, however, that the extension to the joint design and allocation problem (i.e., choosing
also the locations of the APs), is, from the modelling perspective, trivial. As it will be clear
later, it is sufficient to expand the set of APs by including also the potential deployment
sites. Obviously, this inclusion would have an impact on the solving times of the algorithm
(which, however, are rarely an issue for the planning phase), but it does not add any
contribution to the problem formulation.

Let S be the set of deployed AP and U be the set of traffic nodes (TNs) to be assigned to
the APs. Note that we refer to “traffic nodes” rather than to “users” or “user terminals”, and
that the two concepts are slightly different. In particular, each TN represents the barycenter
of an area that contains a quantum of demand. For example, a node may aggregate the
traffic of all the user terminals present in a given office or room. This abstraction, named
the demand node concept, is rather common in network design and resource allocation. It
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is worth remarking that the demand node concept allows one to build a stationary traffic
model of a mobile population [34]. For this reason, we can assume that the TNs are static,
and their positions are known. We also assume that all APs have the same characteristics,
such as the power consumption and data rate behaviour.

This assumption is useful to keep the model description simple, but does not reduce
its validity, since the extension to the heterogeneous case is straightforward. Figure 1 shows
an example of WLAN topology with APs and TNs.

Figure 1. Sample instance topology of a wireless local area network.

3.1. The Model of AP Power Consumption

The energy consumed by every AP can be divided into fixed and variable parts. The
fixed part (say P0) is bound to the mere fact that the device is powered on, and therefore
encompasses AC/DC conversion, basic circuitry powering, dispersion, etc. The variable
part essentially depends on the radiated power pj. Hence, the power Pj consumed by AP j
can be expressed as:

Pj = P0 + η · pj, (1)

where η is an efficiency factor (e.g., to account for the electrical model of the device).

3.2. Propagation and the Data Rate Model

The power received by node i from site j is determined through the radio propagation
model. In the most general form, pR

ij = αij · pj, where αij ∈ [0, 1] is the path loss between
node i and site j. Once the physical properties of the problem (e.g., the position of nodes
and sites, the frequency, and the attenuation factor) have been established, all αij can be
computed and are a constant of the problem. Since we characterise the WLAN during
a long-term period, we can safely assume that the channel is static. Short-scale channel
fluctuations, which might be of interest for packet-level modelling, can be smoothed over
the much longer reference time of our approach (hours), thereby allowing for the use
of average αij values. Mid-scale fluctuations can be accounted for by means of an over-
provisioning factor ρ (see Equation (10) later on), or with tools such as stochastic or robust
optimisation (which can be an aspect for future investigation).

The received power pR
ij is used to compute the Signal-to-Noise Ratio (SNR) at node i:

σij = pR
ij /Ni, where Ni is the (thermal) noise at node i. We exclude the interference from our

model because, by means of an accurate planning, it is possible to exploit the availability
of the several non-overlapping channels ( for example, there are four non-overlapping
channels in the 2.4 GHz band and up to 18 in the 5 GHz band in Europe for IEEE 802.11a/g)
to achieve spatial reuse of the frequency. In this way, APs working on the same channel
are sufficiently apart to not interfere with each other—or anyhow to make the interference
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very low. We also recall that the CSMA (carrier sense multiple access) scheme employed
by IEEE 802.11 WLANs can greatly mitigate the impact of interference (possibly at the
cost of reduced average capacity per AP—the ρ factor defined above may also be used for
this purpose).

The SNR σij is used to derive the data rate rij that is established between node i and
site j (i.e., the capacity of link (i, j)). In general, this relationship can be arbitrarily complex,
because it depends on various factors (e.g., current modulation and coding scheme, rate
adaptation algorithms) in a nonlinear way. The only feature we make explicit is that rij is a
non-decreasing function of the radiated power pj, which derives form both theoretical and
practical evidences. To ease the discussion, we just write:

rij = ψij(pj), (2)

where ψij(·) is a generic non-decreasing function.

3.3. The Traffic Model

Finally, we assume that every node i has a traffic demand wi, which comprises both
the uplink and the downlink traffic. Since we assumed a symmetric channel, there is no
need to differentiate between the two directions because data transmissions occupy the
channel in the same manner for both uplink and downlink.

From this description it is apparent that the WLAN model is very general, and the
assumptions are limited to the absolutely essential. Consequently, our mathematical
programming formulation is very general as well, and can thus be configured and applied
to diverse scenarios and case studies.

4. Mathematical Problem Formulation

The objective of our problem is to minimise the total consumed power by both selecting
the appropriate power level (PL) for each AP and assigning each TN to a site. To state the
objective function, we define two families of binary decision variables:

• xij, if xij = 1 then TN i is associated with AP j, otherwise TN i is not associated with
AP j;

• yjk, if yjk = 1 then AP j is using PL k, otherwise AP j is not using PL k.

Note that yjk is used to express pj, the power radiated by site j:

pj = ∑
k∈P

yjkPT
k , (3)

where we have assumed that pj can be represented by a discrete variable taking values
in the set {PT

k }, k ∈ P = {1 . . . K}. Indeed, the majority of off-the-shelf APs have a set of
preset power values to choose among (see, e.g., [35]).

The minimisation of the objective function can thus be stated as:

z = min ∑
j∈S

Pj = min ∑
j∈S

∑
k∈P

(P0 + ηPT
k )yjk, (4)

where we have grouped P0 and ηPT
k because, given that at most one PL is selected at each

site j, there is no point in introducing further variables for the powering-on decisions (in
other terms, if no PT

k is chosen, i.e., yjk = 0 ∀k, the AP is automatically turned off). The
constraints of the problem are the following:

xij ∈ {0, 1}, ∀i ∈ U , ∀j ∈ S (5)

yjk ∈ {0, 1}, ∀j ∈ S , ∀k ∈ P (6)

∑
j∈S

xij = 1, ∀i ∈ U (7)
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∑
k∈P

yjk ≤ 1, ∀j ∈ S (8)

xij ≤ ∑
k∈P

yjk, ∀i ∈ U , ∀j ∈ S (9)

∑
i∈U|rij>0

xijwi

rij
≤ ρ, ∀j ∈ S (10)

xij = 0, ∀(i, j) ∈ U × S | rij = 0, (11)

where ρ ∈ (0, 1] is a constant parameter. In detail, Equations (5) and (6) state the integrabil-
ity of the decision variables, Equation (7) mandate that each TN must be assigned to exactly
one AP, Equation (8) say that at most one PL can be selected for every AP, Equation (9)
prescribe that TNs cannot be associated with powered-off APs, and Equation (10) are the
capacity constraints, i.e., TNs must be assigned to APs so that each demand is met and the
“usable” capacity of each AP is not exceeded. Finally, Equation (11) just state that a TN i
cannot be assigned to an AP j if the rate on link (i, j) is zero.

Comments on the Formulation

The formulation built by Equations (4)–(11) is nonlinear. Specifically, the nonlin-
earity originates from the dependence of rij from the yjk variables, which comes from
Equations (2) and (3). Therefore, Equation (10) are function of xij/yjk, and thus we have a
set of nonlinear constraints. Note, anyway, that the nonlinearity is not bound to the specific
form of ψij(·), but it simply derives from rij being a function of yjk. Even though rij were a
linear function of yjk, Equation (10) would still be nonlinear. Obviously, if rij were constant,
the problem would become linear.

Some further comments about the constraints follow. By means of Equations (7) and (10),
we aim at associating all TNs and accommodating the whole traffic demand. Thanks to the
demand node abstraction, the association of all TNs might be equivalent, from a practical
point of view, to covering the entire service area [34]. Obviously, to actually fulfil this goal,
the position of the TNs must be accurately planned, and test nodes (i.e., TNs with zero, or
almost-zero traffic) might also be accounted for. Such a planning is out of the scope of this
work, but we nevertheless remark that our formulation and method are ready and can be
used to achieve full area coverage.

Still about Equation (10), we inserted the term ρ to account for a guard interval on the
APs airtime usage. Setting ρ < 1 prevents the formulation from saturating the capacity of
the APs, which might be desirable from a practical point of view (e.g., to avoid large packet
losses and delays, and thus provide some form of QoS guarantees), but has no impact on
the formulation (being just a parameter). Conversely, ρ = 1 turns Equation (10) into their
classical form.

5. Benders’ Decomposition-Based Algorithm (BDA)

As a consequence of the nonlinearity, the resolution of problem formulated in Equa-
tions (4)–(11) is hard both in theory and in practice. To tackle this problem, we used a
Benders’ decomposition (BD) framework [18], which has been tailored to deal with the non-
linearities in our mathematical program. The Benders decomposition technique allows one
to efficiently solve some mixed-integer non-linear problems, such as in [36], reducing a lot
the computation time with respect to brute-force and greedy-like optimisation algorithms.

In general, BD proceeds by iteratively solving a master problem, M(y), and a sub-
problem, S(x, ȳ). The purpose of M(y), which has the y variables only and is solved to
optimality, is to fix y to values ȳ; then, S(x, ȳ), which has the x variables only, is used to
verify the feasibility of the ȳ assignment. The advantage of BD is that the resolution of both
M(y) and S(x, ȳ) is much simpler than the original problem.
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In our case, we defined M(y) as Equations (4), (6), (8), and:

∑
j∈S

∑
k∈P

rk
ij yjk ≥ wi, ∀i ∈ U , (12)

where rk
ij = rij(PT

k ). In addition, a set of inequalities, called Benders’ feasibility cuts, is
dynamically generated and added at each iteration.

Inequalities in Equation (12) just state that, for the problem to be feasible, there must
be enough capacity in the WLAN to satisfy each demand. The rk

ij are still computed by

means of ψ(pj), but they are constant values because pj is fixed to the PT
k values, and

consequently, rk
ij are no longer a function of yjk, so that M(y) is linear.

Equation (12) are thus a weaker but linear form of capacity constraints. This linear
constraints allowed us to retain the nonlinear relation between rij and pj, and at the same
time build a linear problem which can be efficiently solved. The actual enforcement of
Equation (10) is verified later by means of S(x, ȳ).

To formulate S(x, ȳ), let S̄ ⊆ S be the set of APs that are powered on as per the
solution of M(y), and r̄ij be the capacity of link (i, j) as it results from Equations (2) and (3)
once yjk = ȳjk. Then, S(x, ȳ) has the following form:

xij ∈ {0, 1}, ∀i ∈ U , ∀j ∈ S̄ , (13)

∑
j∈S̄|r̄ij>0

xij = 1, ∀i ∈ U , (14)

∑
i∈U|r̄ij>0

xijwi

r̄ij
≤ ρ, ∀j ∈ S̄ (15)

xij = 0, ∀(i, j) ∈ U × S̄ | r̄ij = 0. (16)

Note that Equation (15) are linear constraints, because, being r̄ij fixed, they depend
solely on the xij.

We then check for the feasibility of S(x, ȳ), and if S(x, ȳ) is feasible, ȳ is an optimal
solution and we can stop the algorithm. Otherwise, if S(x, ȳ) is unfeasible, we must add a
feasibility cut to remove the unfeasible solution ȳ from M(y), and solve M(y) again.

A simple version of Benders’ feasibility cut can be written as:

∑
j∈S| p̄j=0

∑
k∈P

yjk + ∑
j∈S| p̄j>0

∑
k∈P|PT

k > p̄j

yjk ≥ 1, (17)

where p̄j = ∑k∈P ȳjkPT
k . This cut can be identified by remarking that an unfeasible S(x, ȳ)

implies that ȳ does not provide enough capacity to satisfy the demands. Therefore, we
must either use more APs (as determined by the first term in Equation (17)) or raise the PL
of at least one AP (second term). Note that the latter implies having greater rij’s, and thus
more capacity, because of ψij(·) being non-decreasing.

The following theorem proves the convergence of BDA to the optimal solution of
problem Equations (4)–(11).

Theorem 1. If the problem in Equations (4)–(11) is feasible, then BDA determines an optimal
solution to it.

Proof. At each iteration of BDA, the master problem M(y) defines a (progressively tighter)
relaxation of formulation in Equations (4)–(11). Therefore, any optimal solution ȳ of M(y)
yields a lower bound zl to the optimal objective function value z. On the other hand, if
S(x, ȳ) is feasible, then ȳ is a feasible solution, and the corresponding consumed power
provides an upper bound zu to z (because any feasible solution provides an upper bound
to the optimal objective function value). However, the value of Equation (4) when y = ȳ
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is exactly zl , as determined by the solution of M(y). Therefore, since the lower bound
coincides with the upper bound, the optimality of the ȳ assignment is certified.

Otherwise, i.e., if S(x, ȳ) is unfeasible, then no feasible x solution exists for the current
assignment ȳ. In such a case, BDA adds the feasibility cut (17) to M(y), and iterates by
solving the enhanced relaxation. Observe that adding cut (17) avoids the future generation
of the unfeasible assignment ȳ, and it is correct since ȳ, being unfeasible, can not be part
of any optimal solution to problem in Equations (4)–(11). Since the number of possible ȳ
assignments is finite, it follows that after a finite number of additions of cuts (17), BDA
must end with an optimal solution to the problem in Equations (4)–(11).

As a final remark, note that the form of the function ψij(·) has no (or very little) impact
on the algorithm, because the rates rij are used either as rk

ij or as r̄ij. In both cases they are
samples of ψij(·) in some given points, and therefore it is not relevant, from the BDA point
of view, whether ψij(·) is linear or arbitrarily complex (provided that, as already stated in
Section 3, it is non-decreasing). Note that if we have a system able to estimate the date rate,
these estimation can be profitably used.

Additionally, note that neither BDA, nor the mathematical programming formulation,
make assumptions on the amount of traffic they deal with. In other terms, both the formula-
tion and the algorithm can be applied to any traffic scenario. Of course, the application to
the off-peak hours, which is the topic of this work, is of particular interest because, as it will
be shown in the following, it allows one to achieve considerable energy savings.

BDA has been implemented in C++. Figure 2 illustrates the flow chart of BDA. In
our implementation, the blocks “Solve M(y)” and “Solve S(x, ȳ)” has been handled, for
convenience, by means of the IBM ILOG CPLEX solver version 12.5. However, any other
ILP solver can be employed for this purpose.

Figure 2. Flow chart of Benders’ decomposition-based algorithm.

6. Performance Evaluation
6.1. Test Scenarios

We assessed the performance of BDA for a series of nine scenarios, whose features have
been extracted from real life measurement campaigns in corporate environments [27,37].
The number of APs, TNs, and PLs, the average off-peak traffic demand of each node
(w̄), and the mean distance among the APs (D; a larger D implies a sparser network) are
reported in Table 1. In table, the parameters that are variated with respect to the reference
scenario R are highlighted in bold.
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The off-peak traffic has been set to roughly one tenth of the peak one. This latter has
been computed by solving a simple ILP in which all APs are active and operate at the
maximum power (yjk = 1 if k = kmax, 0 otherwise, with kmax being the index of PT

max), and
then by maximising the network load (∑i∈U wi). The actual demand wi assigned to each TN
is a random value extracted from a uniform distribution whose extremes are [0.9 w̄, 1.1 w̄]
(see the computed w̄ in Table 1).

The first scenario is used as the reference one: starting from it, we have changed the other
parameters (in bold in Table 1) in order to estimate their impact on the algorithm performance.
All variations have been analysed at both 21 and 42 m (to disambiguate, a “@ 21m” or “@
42m” will be appended to the scenario name to identify the value of D where necessary).

For all scenarios ρ was set to 0.9. This value serves just as a case study, being the choice
of ρ dependent on the degree of saturation at which the administrator wants the network
to operate. In other terms, ρ can be used to tune the working point of the network, but we
recall that it is has no impact on the behaviour of the allocation algorithm.

Table 1. Parameter values for the test scenarios.

Scenario |S| |U| |U|/|S| |P| w̄ [kbps] D [m]

R 50 300 6 4 450 21/42
A1 20 120 6 4 450 21/42
A2 100 600 6 4 450 21/42
B1 50 150 3 4 450 21/42
B2 50 450 9 4 450 21/42
C1 50 300 6 3 450 21/42
C2 50 300 6 5 450 21/42
D1 50 300 6 4 300 21/42
D2 50 300 6 4 600 21/42

For each scenario, we generated and solved twenty instances. The positions of the
APs and TNs in the test area of each instance have been randomly determined. However,
to guarantee a minimum amount of rationality, we have divided the test field into a
regular grid of |S| squares. The APs are placed one per square, with the coordinates
chosen randomly within the square. The set of nodes is also split into |S| subsets, and
the nodes of each subset are randomly spread over each square. This strategy ensures
enough uniformity in the placement of TNs and APs to mimic a corporate scenario and to
avoid heavily unbalanced instances. An example of the topology produced by our instance
generator war reported in Figure 1. Figure 3 is the solution found by BDA. The figure
shows active and inactive APs, but for the sake of simplicity the power level of the active
APs is not reported.

For the signal propagation we employed a simplified version the COST-231 multi-wall
path loss model for indoor, non-LOS environments [38]. The path loss α (in dB) at distance
d is computed according to:

α = L0 + Lc + 10n log10
d
d0

+ NW LW + NCLC, (18)

where L0 is the reference path loss, measured at the reference distance d0, Lc is a constant
loss (arising from multi-wall curve fitting), n is the path loss exponent, NW and NC are
the number of penetrated walls and columns, and LW and LC are the losses of walls
and columns.

To set the values of the above parameters, we referred to the several measurement
works on this model [39,40]. However, since the reported numbers differ substantially, we
opted for using a series of middle values, which are shown in Table 2. To compute NW and
NC we measured the distance between two walls/columns in our Department, resulting in
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an average separation of 8 and 20 i.e., respectively. A 3 dBi omnidirectional antenna has
been assumed to be mounted at the APs.

Figure 3. Sample assignment of traffic nodes to access points.

Table 2. Values for the employed path loss model.

Parameter Value

path loss exponent (n) 2.34
reference distance (d0) 1 m
reference path loss (L0) 40.1 dB
constant loss (Lc) 14.2 dB
wall loss (LW) 3.5 dB
column loss (LC) 6.0 dB
antenna gain 3 dBi

Then, we had to define the ψ(·) function that determines the rates rij. As reported in
several experimental studies, such as [41], it is often possible to bind the SNR expressed in
dB (σ[dB]

ij = p[dB]
j + α

[dB]
ij − Ni

[dB]) to the data rate by means of a linear function. In detail,

rij will be a function of β · σ[dB]
ij + δ, where β and δ are two suitable “linearisation” factors.

A further aspect to be considered is that, when the received power pR
ij falls below a given

sensitivity threshold γ, we must assume rij = 0. Similarly, we must also cap rij to the
maximum rate achievable by the physical link, say rmax. Just to mention an example, the
IEEE 802.11g standard cannot deliver more than 54 Mbps, no matter how high the SNR is.
Thus, we can summarise the relationship between rij and pj with this unique nonlinear
(and non-decreasing) expression:

rij =

min{β · σ[dB]
ij + δ, rmax}, if pR

ij > γP,

0, otherwise.
(19)

The thermal noise at the nodes, Ni, was set to −125 dB, the sensitivity threshold γ
was assumed to be −121 dB [35], and the rate linearisation factors were fixed according to
the work of Zhang et al. [41], resulting in β = 1.76 and δ = −7.48.
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To complete the parameter list, we set the consumption figures of the APs according
to [35]: P0 = 12 W, η = 30, and PT

k taking values in the range from PT
max = 0.1 W to

PT
min = ( 1

2 )
|P|−1 PT

max, with

PT
k+1 = 1

2 PT
k , k = 1, . . . , K− 1, (20)

where, clearly, PT
1 = PT

max and PT
K = PT

min. Hence, according to Equation (1), the maximum
AP power consumption is Pj = P0 + η PT

max = 12 W + 3 W = 15 W.

6.2. Computational Results

For each scenario we collected various statistics about the performance (output) of
our method. Tables 3 and 4 report the average number of powered-on APs, the average
power consumption, the gain with respect to the peak-hour case, the average number of
TNs assigned to each powered-on AP (TN/AP), and the average load (airtime) per AP for
the two sets of scenarios.

Table 3. Results for the scenarios with D = 21 m.

Scen. Active Power Gain TN/AP Airtime
APs [W] [%] [%]

R 5.7 78.9 89.5 47.6 76.8
A1 3.1 40.8 86.4 35.3 62.1
A2 10.2 144.5 90.4 52.9 81.3
B1 5.2 72.5 90.3 26.1 47.9
B2 6.2 85.5 88.6 65.7 87.9
C1 5.7 78.8 89.5 47.6 74.8
C2 5.7 78.7 89.5 47.6 76.0
D1 5.6 78.0 89.6 48.0 57.0
D2 5.8 81.2 89.2 46.5 86.2

Table 4. Results for the scenarios with D = 42 m.

Scen. Active Power Gain TN/AP Airtime
APs [W] [%] [%]

R 21.1 287.6 61.7 12.8 30.2
A1 9.5 127.6 57.5 11.3 29.5
A2 39.4 541.9 63.9 13.7 32.7
B1 19.0 258.8 65.5 7.1 21.0
B2 22.3 305.3 59.3 18.1 39.8
C1 21.1 289.2 61.4 12.8 27.1
C2 21.1 287.0 61.7 12.8 29.3
D1 21.1 287.4 61.7 12.8 22.0
D2 21.2 288.9 61.5 12.8 36.8

From a comparison with Table 1, it emerges that, for all scenarios at D = 21 m, a very
small fraction of the APs is powered on. Having few powered-on APs leads to considerable
energy savings, which span between 86.4 and 90.4 percent. Such gains are allowed by the
relatively dense distribution of the nodes and APs, and obviously, by the relatively low
traffic demand. In fact, however, the former factor is the dominating one.

The average power gain in the scenarios at D = 42 m is sensibly lower (61.6% on
average), the number of TNs per AP and the airtime are much smaller, and the number
of active APs is drastically increased. The main cause is the expanded inter-AP distance,
which requires more APs to be powered on to cover all TNs and thus determines higher
consumptions, smaller TN/AP ratios and lower airtimes.
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More in-depth considerations can be extrapolated by analysing how the problem
behaves in relation to the parameter changes.

6.2.1. The Effect of the Number of Access Points

Starting with the size of the scenario (i.e., the number of APs, |S|), the output data are
almost linearly dependent on the input data. Reducing |S| by 2.5 (scenario A1, |S| = 20),
roughly halves the network power consumption and the number of powered-on APs. The
power gain is also slightly reduced (in fact, it is the lowest among all scenarios), as are
TN/AP and the average airtime. On the other hand, when |S| is doubled (scenario A2,
|S| = 100), the power consumption and the number of active APs are slightly less than
doubled, while the other figures have smaller variations. Therefore, the bigger the scenario
size |S|, the better the improvement that the optimal allocation can bring, because the
necessary network resources grow less than linearly with the number of APs.

The same considerations can be applied almost unchanged to the case D = 42 m. The
only difference is that for the scenarios A*@42m there are smaller changes in the TN/AP
ratio and average airtime than A*@21m. Conversely, the variation in the number of active
APs and power consumption follows more closely the variation of |S|. These data indicate
that the sparser scenarios leave less opportunity to exploit the “economies of scale”.

6.2.2. The Effect of the TN/AP Ratio

Changes in the input TN/AP ratio also determine changes in the allocation pattern.
In detail, when the TN/AP ratio is low (scenarios B1), there is a small decrease in the
amount of allocated resources with respect to the reference scenario, and thus a further
energy gain improvement. Similarly, when the TN/AP ratio is high (scenarios B2), there
is a small increase in the amount of allocated resources, and a marginal reduction in the
energy efficiency. Thesefore, in this case too, the output data moves more slowly than the
input one, and also that a decrease in the number of TNs permits a sensible energy saving.
The only figures that have a conspicuous jump are those about TN/AP and airtime, which
directly reflect the modification of the input data.

6.2.3. The Effect of the Number of Power Levels

The impact of the number of PLs available at the APs is quite limited. Indeed, the
values of scenarios C1 and C2 are almost the same as those of R, for both D = 21 m and
D = 42 m. Figure 4 shows the occurrence of the various PLs chosen by the optimisation
algorithm for scenarios R, C1, and C2 at 21 m. Smaller k means greater PT

k (as per Equa-
tion (20)). It can be seen that the first PL is largely the most used. The changes among
the scenarios are limited and related to the higher k values. In scenario C1, the third PT

k is
selected more often than in scenarios R and C2 as the consequence of having only three
levels available at the APs. However, this different allocation has a very small impact on
the power consumption, which is almost the same as R. The fifth PL, introduced in scenario
C2, is selected just four times. Such a low utilisation of the additional power level indicates
that there is no point in having many PLs at the APs, since the lowest ones are scarcely
useful (at least in this context).

Figure 4. Occurrences of the power levels as a function of the test scenario for the case D = 21 m.



Sensors 2021, 21, 2076 14 of 20

The same analysis has been performed also at double AP distance, i.e., D = 42 m. In
this case the differences among the scenarios emerge more sharply, as illustrated in Figure 5.
The reduction in the number of available PLs (scenario C1) implies a sensible shift in the
allocation pattern. The lowest level is chosen more often, and to compensate, the highest
PL is used a bit less. All in all, however, scenario C1 leads to a slightly higher network
energy consumption (see Table 4). Conversely, a larger number of choices (scenario C2)
allows a marginal gain improvement thanks to the use of the last PL.

The different behaviour between the scenarios at D = 21 m and at D = 42 m can be
ascribed to the fact that in the latter case the APs are less loaded and serve less TNs.
Thus, they can diminish the power emissions without compromising their performance.
Additionally, note that both scenarios C1 and C2 obtain a reduction in the average airtime
with respect to R. However, the former (C1) cannot be regarded as an improvement, because
it is tied, in scenario C1@42m, to an increased power usage. On the contrary the latter is
a real optimisation, because both the overall power and the airtime have been reduced.
Therefore, when the network is “sparse”, the availability of a bigger set of PLs is indeed
beneficial to the network optimisation problem.

Figure 5. Occurrences of the power levels as a function of the test scenario for the case D = 42 m.

6.2.4. The Effect of the Traffic Load

The sensitivity of the problem to a variation in the demand is studied by means of sce-
narios D1 and D2. Again, there are very subtle differences with scenario R. In scenario D1,
even though the traffic is notably reduced, it is just possible to file the power consumption
a little, because the network is already working close to the “minimal configuration state”.
In other terms, any other solution with a smaller energy footprint (either less powered-on
APs or smaller power levels) would result in the disconnection of one or more TNs from
the WLAN.

In scenario D2, since the network is in a sufficiently unloaded state, there are free
resources to accommodate the added traffic without substantially changing the allocation.
However, note that in D2@21m the WLAN is working almost at its saturation point (being
the average airtime close to the 0.9 limit set for ρ). Therefore, even small increases in the
offered load would force the solution to employ more resources. Indeed, we have verified
that even setting w̄ = 675 kbps yielded 6 active APs, with a power consumption of 83.8 W,
and an average airtime of 88.2%.

6.2.5. Solving Time

The last aspect to evaluate is the computational effort required by BDA. Table 5 reports
the average CPU time, in seconds, for executing BDA on a PC equipped with a 2.27 GHz
64-bit processor. We remark that the CPU time is not dependent on the number of CPU
cores. Thus, if you have a n-core processor, the real elapsed time is roughly n times smaller
than the CPU time. It appears that in many cases BDA takes just a bunch of seconds
to calculate the optimal allocation. Even in the most complex A2 scenario, BDA yields
the solution in less than 5 min. The solving times for D = 42 m are generally smaller
than D = 21 m because the sparser scenario implies that less TN-AP connections must be
assessed (i.e., more rij = 0 cases), and thus the complexity of the problem is lower.
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These numbers clearly makes BDA suitable for the off-line allocation of the resources
that can be performed on a weekly, daily, or hourly basis (depending on the assumptions
on the peak/off-peak periods). For some (usually small) scenarios, given the very low
running times, it is not to be excluded a possible application of BDA for quasi-real-time
re-allocation of the resources in case of unexpected but stationary traffic changes.

Table 5. Solving CPU times (in seconds).

Scenario D = 21 m D = 42 m

R 4.9 1.8
A1 0.1 0.2
A2 269 42.9
B1 0.9 0.8
B2 129 18.7
C1 3.6 1.6
C2 5.2 1.9
D1 3.4 4.3
D2 23.6 138

6.3. A Comparison with a Similar Method

As outlined in the Introduction, the approach proposed by Lorincz et al. [28] is proba-
bly the most similar to ours that can be currently found in the literature. We have therefore
performed a comparison between the problem formulation, named ME (model energy as
in [28]) and our algorithm (BDA), in terms of solving time and overall power consumption.

Note however, that ME has a slightly different target than BDA. In fact, the goal of ME
is to minimise the energy consumption over a given time period, whereas BDA optimises
the instantaneous power consumption. Additionally, ME uses a different data rate model.
Therefore, to enable a comparison we had to partially amend and simplify ME. Obviously,
this operation led to a problem formulation, say RME (reduced ME), that was not built for
our scenario, and thus the comparison we provide can serve as a further information, but
is not to be meant as an absolute claim of superiority of BDA over the original ME.

In brief, Lorincz’s ILP formulation (ME) derives from a WLAN model which is very
similar to the one in Section 3. However, when stating the relationship between the data
rate rij and the transmitted power pj, Lorincz et al. discretised the coverage areas of the
APs and the data rates between the APs and the TNs. In detail, every AP coverage area is
split into a number of concentric rings of radius dr, with r ∈ {1, 2, 3} being the ring index.
All TNs in the same ring have the same rate, i.e., rij ∈ {R̄kr}, where R̄kr is the average data
rate for ring r when the AP operates at the k-th power level.

Taking advantage of this approximation, ME is then described by Equations (6)–(17)
in [28]. As already outlined, however, we had to exclude some features that extends beyond
the scope of our work. Specifically, we have removed the dependence on the time index t, the
best-power selection constraints (10), and the excessive number constraints (13). The resulting
RME formulation has then been implemented in AMPL and fed to the CPLEX solver.

As a final step before starting the computational analysis, we assigned the values to
dr and R̄kr so as to make RME input data coherent with BDA. To this aim, we employed
the propagation model described in Section 3, which has been used for BDA too. Given
that the maximum distance at which rij > 0 is 40 m, we set d1 = 14 m, d2 = 27 m, and
d3 = 40 m. Then, the average data rates have been determined by considering a TN placed
roughly in the middle of each ring (i.e., at 7.5, 20.5, and 33.5 m from the AP). The values of
the various R̄kr are reported in Table 6. Note that in the third ring the available data rate
is zero when the lowest power levels are used, because the received signal is below the
sensitivity threshold.
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Table 6. Quantised rates (in Mbps) for the reduced model energy (RME) model.

Ring Power Level
k = 1 k = 2 k = 3 k = 4 k = 5

r = 1 54 54 54 54 52.8
r = 2 33.1 27.8 22.5 17.3 12
r = 3 12 6.7 1.4 0 0

All instances have been solved on a PC equipped with a processor operating at
2.27 GHz with 24 GB of RAM. Table 7 reports the outcome of the comparison on the set
of scenarios at D = 21 m (first nine lines), plus the reference scenario at D = 42 m. The
first column reports the average solving time (in seconds) for BDA, while the successive
columns refers to RME. In detail, they show the average solving time of RME, the power
consumption of the RME solution, the amount of missed power saving of RME with respect
to the optimal solution found by BDA (loss [%]), and the percentage of RME solutions
that are actually unfeasible (U.I. [%]). As for the U.I. parameter, it has been computed by
verifying the compliance of the RME solution to constraints (10). In other terms, we verified
that the allocation yielded by RME is feasible when the actual data rates are employed. The
figures in the block of columns marked “RME, d3 = 40 m” refer to the computation of dr
and R̄kr as illustrated before. The purpose of the second block of columns, labelled “RME,
d3 = 24 m”, will be explained later. A further note about this table is that, since we noticed
that RME took very long times in solving the various instances, we set a CPU time limit
that is the greatest between 3600 s and twice the solving time of BDA. When the limit is
exceeded, we recorded the best solution found so far.

Table 7. Comparison between BDA and RME.

Scenario BDA RME, d3 = 40 m RME, d3 = 24 m
Time Time Power Loss [%] U.I. [%] Time Power Loss [%]

R@21m 4.9 2320 88.0 11.6 70 63.1 182.8 133.5
A1@21m 0.1 2.5 40.8 0.2 25 1.8 83.9 105.6
A2@21m 269 3240 172 18.7 45 2839 342.4 139.5
B1@21m 0.9 5.4 72.3 −0.3 85 1.2 166.0 123.9
B2@21m 129 3240 106 23.4 15 916 187.9 122.7
C1@21m 3.6 2156 88.2 11.8 65 1.0 186.8 138.1
C2@21m 5.2 2663 88.1 11.9 85 71.9 182.7 133.4
D1@21m 3.4 46.5 77.8 −0.2 85 7.0 181.5 132.7
D2@21m 23.6 3241 99.9 23.0 80 199 184.5 132.1

R@42m 1.8 0.7 284.1 −1.2 90 – – –

The numbers in Table 7 are impressively in favour of BDA. Starting with the scenarios
@21m with d3 = 40 m, we can see that the solving times of RME are in some cases even three
orders of magnitude greater than BDA. In addition, RME causes, on average, a 12.6% more
consumption than BDA. These facts already give a remarkable indication of the usefulness
of Benders’ decomposition approach.

A closer look at the table allows one to discover that in two scenarios RME appears
to be marginally better than BDA (i.e., B1@21m and D1@21m). However, these gains
cannot be deemed real, because, as the U.I. column shows, there is a high percentage of
unfeasible solutions. Indeed, more than half the solutions yielded by RME can not be put
into practice. The reason is that TNs that are close to the outer ring borders are assigned
to the AP assuming they can use the average data rate of that ring. In practice, however,
their real data rate might be far smaller than that, especially if the power level of the AP
is not set to the maximum. For example, we have observed that in the second instance of
scenario R@21m, RME assigns TN 110 to AP 28, setting the power level of AP 28 to k = 2.
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Since the distance between TN 110 and AP 28 is 36 m, according to Table 6 it should be
r110,28 = R̄2,3 = 6.7 Mbps. However, according to the actual rate formula in Equation (19),
it is r110,28 = 0.024 Mbps, which is even less than the demand of TN 110 (159 kbps). It is
therefore impossible to put the solution provided by RME into practice. Unfortunately, this
circumstance occurs quite often, which leads to a high percentage of U.I. for RME.

A possible countermeasure could be to make a more conservative assumption in
the definition of the ring boundaries and the associated data rates. Hence, we have run
a second set of experiments assuming that the ring diameter is defined by employing
the lowest power level at the APs, and that the data rates are computed on the external
ring boundaries, rather than in the middle. This assumption leads to smaller rings, with
d3 = 24 m, and ensures that the actual rate of all TNs is no smaller than R̄kr, thereby
guaranteeing the feasibility of the RME solutions. A side effect of these assumptions is that
the performance of RME in terms of power saving is definitely worse.

Indeed, the “RME, d3 = 24 m” columns of Table 7 prove our arguments. The solving
times of RME are better than in the previous case – but still very high, whereas the power
consumption of the RME solution has more than doubled.

The last row Table 7 shows the performance of both BDA and RME when applied
to the sparser scenarios. We have reported just the reference one because the results for
the others are very similar to it, and have the same general behaviour observed in Table 4
and in the first nine lines of Table 7. The computational times of BDA and RME are now
comparable, with a small advantage for RME. However, the vast majority of the RME
solutions are unfeasible (U.I. = 0.9). Furthermore, when applying the conservative estimate
of dr and R̄kr, RME is never able to find a solution, because shrinking the coverage rings
while having more distant APs leaves several TNs out of the coverage of the APs.

In summary, RME is often order of magnitude slower, and its solutions are either
unfeasible or far less energy efficient than BDA. Therefore, even the use of heuristics to
solve RME in faster times cannot be regarded as advantageous, because BDA already
provides an optimal solution in acceptable times (less than 5 min in the most unfavourable
case, just a few seconds in most scenarios).

As a final remark, it is worth noting that, besides the just analysed quantitative and
qualitative differences, our work differs from Lorincz’s also in the way the optimal resource
allocation problem is dealt with. In general, the first step in solving an optimisation
problem is to characterise and transform it into a mathematical problem formulation.
Then, the problem is solved by means of suitable tools and methods. In our context, the
energy efficient WLAN resource allocation problem translates to the problem formulation
described in Section 4. This problem formulation is quite general, and includes the data
rate model defined in Section 3. In this phase, however, Lorincz et al. performed some
approximations (the use of discretised coverage rings and average data rates) that allowed
them to define an integer linear program. Such ILP has the advantage to be linear, and hence
directly manageable by a solver such as CPLEX–mind, though that linearity alone does
not give any guarantees in terms of tractability: problem formulation in Equations (6)–(17)
in [28] is, in fact, NP-hard. As a consequence, while the found solutions are optimal for
the problem itself, they might not be feasible for the original problem, as we have just
shown. On our side, we did not enforce any simplifications, but developed an algorithm
that efficiently solves to optimality the general problem. Therefore, all our solutions are
always feasible (and optimal) for the original problem.

7. Implementation Considerations

As briefly outlined in the Introduction, the target of our work is the typical infrastruc-
tured enterprise WLAN. A series of APs is deployed in one or more buildings, or even
in open areas (e.g., campuses), and every AP is connected to a central controller. Modern
commercial controllers usually allocate the radio resources, configure the security settings
on the APs, handle user authentication, manage the quality of the service, etc.
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From our perspective, however, the controller should also be in charge of an extra
task: computing the energy-saving allocation (i.e., executing BDA) and then putting it into
effect. To this purpose, three aspects should be analysed: (i) how the controller gathers the
necessary information from the network, (ii) whether the controller has sufficient resources
to run the algorithm, and (iii) how the controller can enforce the allocation yielded by the
optimisation algorithm.

As for the first point, the information we need is essentially the set of available rates
rk

ij, and the traffic demand of the nodes (wi). Both sets of data can be obtained in a relatively
easy way. The link quality can be assessed either by the various APs the users associate with
or by means of the radio resource measurement facility introduced with the IEEE 802.11k
standard. The traffic demand can be derived from a historical analysis or by exploiting the
available traffic pattern models.

Regarding (7), consider that substantial changes in the traffic pattern are quite in-
frequent, usually just the peak/off-peak scenarios are accounted for, and at most a few
scenarios per day might be meaningful (see, e.g., [28]). Consequently, the controller would
have some hours to compute the allocation. We have seen in the previous Section that
the running times of BDA are relatively short (tens of seconds). Therefore, even consid-
ering a moderately powerful hardware, there seems to be adequate room to run BDA
to completion.

Finally, putting into practice the optimal allocation is definitely more difficult. While
turning the APs on/off and setting their PLs is a rather straightforward task, forcing the
users to associate with a given AP is not trivial, because in IEEE 802.11-based WLAN the
association procedure is client-based, and the infrastructure has hardly any control with
which AP each terminal chooses to associate.

To date, however, some methods have been developed to make this operation feasible.
At first, the recently ratified IEEE 802.11v standard allows the APs to request the users
to transition to a specific AP, or to indicate a set of preferred APs. In the absence of that,
it is still possible to use blacklists at the APs, as performed by Jardosh et al. [27]. Lastly,
programmable network frameworks such as Odin [42] can create a series of user-specific
virtual APs, by means of which it is possible to force the client stations to associate with
a given AP. Recently, the SDN architecture considerably reduced the implementation
difficulties and the experimental analysis of centralised optimisation schemes. Indeed,
in [25] the authors show the experimental implementation of the user association solution of
an optimisation problem, using the open-source SDN-based platform 5G-EmPOWER [20].

8. Conclusions

In this paper, we have presented a general mathematical programming problem and
an exact and fast solving algorithm (BDA) for the optimisation of the energy consumption
of enterprise WLANs during off-peak hours. The advantages of the approach are twofold.
First, having disjointed the data rate model from the optimisation formulation, the latter
can be used with arbitrarily complex data rate functions. Secondly, BDA efficiently solves
the nonlinear problem formulation to optimality, for whatever non-decreasing data rate
function. The computational analysis, in a series of realistic scenarios, proved the quality
of BDA in terms of both achievable power savings and solving time.

Furthermore, the analysis shed light on some interesting aspects of the energy-efficient
planning. In particular, on the basis of the power model of currently deployed APs, the
solution of the green WLAN problem tends to apply the “consolidation” approach to the
AP resource; i.e., the optimal strategy is to turn off as many APs as possible. The remaining
APs are operated at the lowest power level, guaranteeing connectivity (and service) to
all nodes. The availability of many power levels can thus be a further beneficial aspect,
especially in circumstances such as sparse and lightly loaded networks.
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