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Abstract

Digitalization and decentralization of energy supply have introduced
several challenges to emerging power grids known as smart grids. One
of the significant challenges, on the demand side, is preserving the
stability of the power systems due to locally distributed energy sources
such as micro-power generation and storage units among energy
prosumers at the household and community levels. In this context,
energy prosumers are defined as energy consumers who also generate,
store and trade energy. Accurate predictions of energy supply and
electric demand of prosuemrs can address the stability issues at local
levels. This study aims to develop appropriate forecasting frameworks
for such environments to preserve power stability.

Building on existing work on energy forecasting at low-aggregated
levels, it asks: What factors influence most on consumption and
generation patterns of residential customers as energy prosumers.
It also investigates how the accuracy of forecasting models at the
household and community levels can be improved.

Based on a review of the literature on energy forecasting and per-
forming empirical study on real datasets, the forecasting frameworks
were developed focusing on short-term prediction horizons. These
frameworks are built upon predictive analytics including data col-
lection, data analysis, data preprocessing, and predictive machine
learning algorithms based on statistical learning, artificial neural
networks and deep learning.

Analysis of experimental results demonstrated that load observa-
tions from previous hours (lagged loads) along with air temperature
and time variables highly affects the households’ consumption and
generation behaviour. The results also indicate that the prediction
accuracy of adopted machine learning techniques can be improved by
feeding them with highly influential variables and appliance-level data
as well as by combining multiple learning algorithms ranging from
conventional to deep neural networks. Further research is needed to
investigate online approaches that could strengthen the effectiveness
of forecasting in time-sensitive energy environments.
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Chapter 1

Introduction

This chapter provides an introduction to the research work and it
is structured as follows. The first section shortly define the main
concepts of the research. Section 2 describes the research problem
and the motivation behind the research work. The third section
presents the main objective and research questions. Section 4 lists
the research articles followed by Section 5 that provides the outline
of the thesis.

1.1 Definitions

1.1.1 Predictive Analytics

Predictive analytics is a branch of advanced analytics to make predic-
tions about future or unknown events based on current and historical
facts. The process of predictive analytics includes six steps: (1)
project definition which identifies the project outcomes, business
objectives and required data sources. (2) Data collection and data
mining that provide data from various sources for analysis. (3) Data
analysis aimed at cleaning and transforming data into useful infor-
mation. (4) Statistical analysis allows assumptions and conclusions
to be tested and evaluated using a standard statistical model. (5)
Predictive modelling that enables the development of predictive mod-
els using regression, machine learning and artificial intelligence. (6)
Deployment which allows the deployment of forecasts into the ev-
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Chapter 1. Introduction

eryday decision-making process. During deployment, the models are
validated, scored or integrated with reporting or business applications.
The deployed models are continuously monitored for maintaining and
improving performance [1]. There are different industrial applica-
tions of predictive analytics such as insurance, banking, healthcare,
marketing and energy industries such as oil and gas, electricity, etc.

1.1.2 Conventional Power Grid

In a traditional power grid, there is a one-way flow of electricity from
power generators to consumers. The electricity generation occurs
at centralized facilities such as steam stations and fossil-fuel-fired
power plants and is further distributed through the long-distance
high-voltage transmission lines to multiple end-users.

The conventional electricity grid has been constantly upgraded
with new technologies, including higher voltage equipment, advanced
power electronics, digitalization of control mechanisms and demand
response programs [2]. Nevertheless, there are still major issues
with the existent electricity infrastructure. One is the efficiency of
transmission lines. The different countries experience various amounts
of electricity loss in the transmission and distribution networks. The
studies show that in 2016 [3], the total amount of electricity loss
among developing countries ranged between 16% and 50% where
power is mostly transmitted over long distances to several dispersed
rural areas. However, losses are recorded lower in more developed
countries with more effective transmitting networks, e.g., the United
States and Germany suffered only 6% and 5% losses, respectively.

The next concerns are about the reliability and security of the
network. Any failure or disruption in the power supply due to ageing
infrastructure, natural disasters or cyber-attacks can quickly spread
and significantly disrupt the power grid. For example, in December
2015, a massive cyberattack occurred in Ukraine’s power system
leading to a long-term power outage across houses and facilities. In
2021, the Texas power grid experienced its worst blackouts for the
decades caused by the winter storm.

Furthermore, there are always environmental impacts associated
with electricity system specifically with centralized power generation.

2



1.1. Definitions

Air pollution from burning fuels such as coal and natural gas, water
usage for steam production, solid and often toxic waste as the effects of
power generation, as well as land use for major power plant operations
are among the environmental issues which drive a transition to a
greener grid [4].

1.1.3 Smart Grid and Micro Grid

To address the issues mentioned above, the power system is shifting
towards the modern two-way power flow system known as a smart
grid. In this new environment, the interactions between different
components of the grid are facilitated through information and com-
munication technologies (ICTs). The smart grid incorporates a wide
range of operating and energy measures such as smart meters, dis-
tributed and renewable energy infrastructure as well as intelligent
energy management mechanisms in order to optimize the use of in-
stalled infrastructure, improve security, enhance power quality, and
mitigate costly environmental effects.

To meet power demand in local regions, microgrids have been
evolved. A microgrid as a part of the smart grid is a local electricity
infrastructure that covers a particular local area such as a hospital,
a university campus or neighbourhood. To satisfy its power supply
needs, it combines a range of distributed energy technologies such as
renewable energy, integrated heating and power, and energy storage
systems. The goal of such a system is achieving a green, reliable
and cost-effective local network by providing stable energy from
distributed resources that are increasingly renewable and affordable
[5].

1.1.4 Smart Energy Communities

Technical developments along with reduced costs in micro-generators
and energy storage devices; enable end-users of electricity to become
prosumers. The word ‘prosumers’ coined by Alvin Toffler in 1970
[6] refers to the consumers who would become producers. In the
electric power industry, prosumers are the electricity customers who
can contribute to the energy supply by locally generating, storing and

3



Chapter 1. Introduction

selling electricity in their domestic environments. As compared to
the traditional grid, where end-users merely purchase electricity from
retailers, the prosumers can produce their electricity from micro-scale
renewable energy generation units such as photovoltaic solar panels
and small wind turbines. The surplus generation furthermore can be
either stored in batteries or sold to the grid via various tariff schemes.

A smart energy community is formed when a group of prosumers
produce green energy, trade micro-production or sell it to the main
grid. A community of prosumers such as residential customers can bet-
ter manage their electrical needs through generation from renewable
energy sources, battery storage systems and microgrids. Microgrids
through advanced software and control systems facilitate local supply
and trade of energy for the community members. This would reduce
the dependency of the smart community from the centralized power
grid thus leading to the reduction in electricity transfer capacity to
and from the main grid as well as the increase in reliability of supply
and self-sufficiency [7]. The community’s members can also cooperate
and interact with each other through an intelligent component called
a community gateway. The gateway is responsible for connecting the
main grid to smart controlling devices within the prosumer commu-
nity. It mainly facilitates local supply and trade of energy for the
community members [8].

1.2 Problem Description and Motivation

The sustainable integration of smart energy communities with the
main grid introduces multiple challenges to the management of mi-
crogrids. The widespread use of volatile renewable energy and the
integration of highly complex loads within energy communities can
disrupt the balance between supply and demand [9]. Technical prob-
lems such as power fluctuations, harmonics, as well as voltage and
frequency fluctuations can occur during contact with the main grid.
Each can affect the power supply’s long-term and short-term stability
[10].

Given the above circumstances, forecasting the energy generation
and load demand of prosumers is essential in reducing the uncer-
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tainties caused by the integration to the grid as well as interactions
between community members. Accurate load forecasting can provide
the regional microgrid with the opportunity to balance supply and
demand in both the short and long terms. Predicting peak consump-
tion and microgeneration would enable transmission and distribution
system operators to create an intelligent battery management system
to determine when to use batteries instead of the grid when to share
power with the grid and emergency backups [11].

In recent decades, a broad variety of research has discussed the
issue of load forecasting at low aggregation levels such as substations,
communities and buildings. However, it remains a complex problem
for multiple reasons specifically for residential loads. First, load
consumption in nature is a time-series data whose value at a present
time has a very complex correlation with its value in previous times
[12]. Specifically, at an individual building level such as a household,
it exhibits several levels of seasonality, e.g. load at a given hour is
not only dependent on the previous hour but also the load at the
same hour on the previous day [13]. Second, many fluctuating factors
affect the energy consumption of a residential building with different
degrees such as weather conditions, the parameters relating to the
house construction and consumption behaviour of the households [14].
Third, multiple variables in a smart household community, such as
realistic demand dynamics, real-time data and decentralized energy
sources, impact the precision of load forecasting thus requiring more
sophisticated and nuanced forecasting models[11].

Accurate forecasting of renewable energy generation at a micro-
scale, similar to load forecasting in the residential network, will be
difficult for two reasons. First, in general, the energy data such as
wind and solar energies are intermittent and chaotic due to their de-
pendency on uncertain meteorological factors, such as solar irradiance,
atmospheric temperature, module temperature, wind pressure and
wind direction. Second, this volatility and unpredictability would be-
come more complicated in the community microgrid where a variety of
loads; Electric Vehicles and energy storage systems are incorporated
in a more complex context.

There have been many research works related to the forecasting
of renewable energy resources [15], [16], [17], [18] and [19]. However,
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the majority of research on solar energy is more focused on the
estimation of solar radiation rather than the generation of solar
power. Furthermore, a few studies have investigated the potential of
predictive modelling for small-scale energy generation at local levels.

Up to our knowledge, also a few previous studies have considered
the volatility of demand-side power and renewable energy output
simultaneously in a community-based environment. Therefore, to
enhance the reliability and promote the supply-demand balance in
a prosumer community, it becomes necessary to devise forecasting
methods with high effectiveness and efficiency for both energy loads.

1.3 Research Objective and Research Ques-

tions

The main objective of this thesis is to develop frameworks to provide
energy forecasts at household and community levels with high accu-
racy and scalability through predictive analytics. The forecasting
methods should have multiple characteristics to meet the requirements
of the described environment.

First, they are required to be adaptive such that they can learn
from data with limited human intervention since, explicit information
about building construction or micro-generation units may not always
be available. The models should also leverage modern techniques
such as machine learning and Artificial Intelligence (AI) to address
the complexity and temporal dependencies of energy data such as
electricity, solar and wind. Besides, they must be scalable so that a
large set of input data that would be collected from a vast number of
sources can be processed efficiently. Finally, to extend the generaliza-
tion ability, they need to be evaluated over different time horizons
and consumption profiles.

The adoption of these frameworks would be useful to address
the challenges in load balancing, power micro-generation and energy
storage at smart energy communities. The deployment of final results,
therefore, would meet the necessities of many actors in the energy
market specifically transmission system operators, distributors and
electricity companies. The research questions (RQs) proposed in the
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study are stated as follows:

(1) RQ 1. Which factors influence the most on consumption and
generation behaviour of prosumers?

(2) RQ 2. What techniques are appropriate and highly accurate
for prediction of energy consumption and small-scale energy
generation of households?

(3) RQ 3. How can we improve the performance of successful
predictive models at the building/local levels?

1.4 Research Publications

To answer the research questions, four experimental research are per-
formed; three are published and one has been accepted for publication
in a journal. All four research papers are included in the thesis. Fig.1
presents the relationship between appended papers and the research
questions. Paper I [20] discusses different factors which influence
most on various load consumption profiles at the household level,
Paper II [21] studies and evaluates the performance of the most com-
mon algorithms in short-term load forecasting at the building level.
Paper III [22] and Paper IV consider different approaches to improve
short-term load forecasting at household and small community levels
respectively. Paper IV also investigates the most influential factors
on the micro-power generation of households.

An introduction to the research publications is provided below:

• Paper I [20]: “Evaluating Feature Selection Methods for Short-
Term Load Forecasting”, was published in Proceedings of IEEE
International Conference on Big Data and Smart Computing
(BigComp), 2019.

In this paper, we have analyzed a set of candidate factors
(features) which influence on energy consumption of different
households with varying degrees of daily load volatility. We
have also discussed and evaluated the importance of feature
selection methods in improving the performance of forecasting
models.
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Figure 1.1: Relation between appended papers and research questions

• Paper II [21]: “Short-Term Load Forecasting Using Smart Meter
Data: A Generalization Analysis”, was published in Processes
open access journal, belonging to special issue Clean Energy
Conversion Processes, 2020, 8, 484.

In this paper, we have developed and compared four predictive
models based on machine learning algorithms to forecast daily
peak and hourly energy consumption of residential buildings.
We have considered a scenario where we only have access to
buildings’ historical load data (smart meter measurements) to
build the forecasting models. We have also investigated the
generalization ability of the models when they are evaluated on
unseen house profiles during training.

• Paper III [22]: “Improving Load Forecast Accuracy of House-
holds Using Load Disaggregation Techniques” was published
in Proceedings of 2020 International Conferences on Internet
of Things (iThings) and IEEE Green Computing and Commu-
nications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData) and
IEEE Congress on Cybermatics (Cybermatics).

In this paper, we have proposed a hybrid approach to improve
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household load forecasting based on appliance-level data. The
proposed approach enables the use of high-resolution smart
meter data for hourly load forecasting by incorporating Non-
Intrusive Load Monitoring (NILM) technique as a pre-processing
step.

• Paper IV: “An ensemble approach for multi-step ahead energy
forecasting of household communities” accepted for publication
in IEEE Access journal, 2021.

In this paper, we have analyzed various factors which influence
on consumption and generation patterns of prosumers at an
aggregated level. To improve short-term energy forecasting
at this level, we have proposed a framework which utilizes
an ensemble of deep recurrent neural networks and the most
informative factors as advanced input to the models.

1.5 Thesis Outline

The remaining contents of this thesis are organized as follows. Chapter
2 provides an introduction to load consumption and renewable energy
forecasting. It briefly explains their importance in the power grid and
provides overviews of the existing forecasting techniques. Chapter
3 presents the background of technologies and machine learning
techniques which are included in the research papers. A summary
of four research publications is provided in Chapter 4; followed by
Chapter 5 that concludes the thesis and discusses future work.
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Chapter 2

Load and Renewable Energy
Forecasting

This chapter describes the importance and applications of electrical
load forecasting alongside renewable energy forecasting in the current
and future power grid. It also briefly reviews the existing forecasting
methods concerning energy consumption and generation of electricity
customers.

2.1 Electric Load Forecasting

2.1.1 Definition

Electrical energy must be produced in response to consumer demand.
It is thus important for energy providers to provide reliable forecasts
of potential demand. Forecasting this load ahead of time is called
load forecasting. Load demand forecasts are necessary for planning
and setting generation capacity, transmission, and distribution needs.

2.1.2 Applications

For more than a century, electricity load predictions have played a
critical role in the electricity industry [23]. Electric utilities need
load forecasts for several business purposes based on different forecast
horizons or time scales. Very short-term forecasts (from minutes to
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one hour ahead) are mostly applied to flow control, real-time grid
operations and regulatory actions. Short-term forecasts (from one
hour to several hours ahead) are typically used in economic load
dispatch planning, load reasonable decisions and operational security
in the electricity market. Medium-term (from several hours to several
weeks or months ahead) predictions provide information to make
decisions on unit commitment and reserve requirements. Finally,
long-term forecasting (from several months to several years ahead)
is normally used for maintenance planning, operation management,
and feasibility study for the design of power infrastructures [24].

2.1.3 Growing Trend in Research Publications

Researchers have been studying load forecasting for decades, but due
to the major shifts in the power grid, more researchers are drawn
to the topic than ever before. For instance, as depicted in Fig.2.1
the growing trend in the number of research contributions on electric
load forecasting, illustrates the importance of its application domain
during the past two decades. We can also see that among published
research papers, the contributions to short-term and very-short-term
load forecasting have always had a significant share.

Figure 2.1: Global research trends in electricity load forecasting over two decades

Usually, one of the key factors behind the rising research develop-
ments in load demand forecasting could be the implementation of
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new power grid technologies and eventually the growth of microgrids,
intelligent buildings. Smart meters, electric vehicles, solar batteries,
solar panels are the most common samples of these technologies.
The incorporation of all these in smart energy communities intro-
duces new challenges to the power grid for preserving power stability.
Therefore, the need for developing forecasting models to maintain
equilibrium between demand and supply at lower aggregation levels
such as buildings and communities has increased significantly.

2.1.4 Forecasting Methods

Since the 1970s, various load forecasting methods have been developed
and proposed. The applied forecasting methods are mainly different
depending on several criteria. The most important criteria are listed
as follows.

2.1.4.1 Short-term vs Long-term

As described in the previous section, based on the duration of the
forecast horizon, load forecasting approaches can be divided into
four groups. Common methods known as ’trend analysis’, ’end-use’
and ’econometric’ [25] are broadly used for medium and long-term
forecasts. For short-term load forecasting, however, a number of
methods such as similar day approach, regression and time series
models, neural networks, fuzzy logic, and expert systems have been
developed. As the emphasis of this study is on this category, the
rest of this section will include a brief overview of strategies mainly
applicable to short-term horizons.

2.1.4.2 High vs Low Aggregation Load Level

Forecasting methods have been applied in the areas with different
geographical scales e.g. country, region, city, district and building.
The forecasting at larger regions or units requires high aggregation of
loads while forecasting at smaller areas needs lower load aggregation.
The studies in [26] and [27] conclude that prediction task at smaller
scales such as an individual building level can be more challenging
than aggregate load forecasting. Since, for example, a country’s load
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curve has a much smoother and more predictable profile than that of
disaggregated environments like a residential building or a community.
In this study, we focus on low-aggregation levels such as households
or a group of households.

2.1.4.3 Uni-variate vs Multivariate

Regarding the input parameters to the predictive models, there have
been several studies such as [28], [29] and [21] which investigated
only one variable relating to load parameters (load profile, peak
load, aggregate load, etc.) as the main contributing factors to the
prediction; while, many researchers added other variables to the
input vector such as weather conditions [30], calendar information
[31] and customer behaviour [32]. An overall survey of different
forecasting techniques [11] reveals that in scenarios where the horizon
of forecast increases or when the aggregation level decreases, more
parameters are usually added to the model, to capture the volatility
of consumption patterns more precisely. This thesis investigates both
input modelling: Uni-variate mainly in Paper II and Multivariate in
Paper I [20], Paper III [22] and Paper IV.

2.1.4.4 One-step vs Multi-step Forecasting

One step forecasting estimates the target variable(s) one step ahead
in time while multi-step forecasting predicts multiple time steps
into the future. It is typically a simple task to predict chaotic time
series one or a few time steps ahead, as shown by the high accuracy
achieved in many systems, in both discrete and continuous time
scales [33], [34]. When it comes to longer forecast horizons, the
prediction task becomes more complicated due to the gradual growth
of small forecasting errors resulting from the chaotic nature of real
observations [35].

There are four main strategies for multi-step forecasting of time
series data such as energy data: (1) training one model for each
future time step. This strategy adds computational burden specifi-
cally with increasing the number of future time steps. Moreover, the
in-dependency of trained models does not allow capturing the poten-
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tial dependencies between the predictions. (2) Performing one-step
forecasting multiple times in a recursive manner such that the forecast
at the current time step is used as input for forecasting the next time
step. This method would lead to accumulation of prediction errors as
the forecast horizon increases. (3) Training separate models for each
future time step such that each model is fed by the predictions made
by models at previous time steps. This would typically overcome
the limitations of the first and second strategies. (4) Training one
model which can produce all the future time steps at once. Applying
such an approach will require a complex and powerful learning model
that, apart from between input and output variables, can capture
the dependencies between output variables [36].

One step forecasting, here, is broadly addressed in the first three
articles for load demand prediction. Besides, multi-step forecasting
with different strategies is discussed in Paper IV for both demand
and supply forecasting.

2.1.4.5 Point vs Probabilistic Forecasting

Single-point forecasting results in point outputs; one point at each
step. In the other hand, probabilistic forecasting assigns a probability
to any of several distinct outputs. The likelihood of predicting is
represented by the complete range of probabilities. There are typically
three types of probabilistic forecasting known as quantiles, intervals,
or density functions. The intervals are usually expressed in two forms:
a prediction interval which is related to a prediction, and a confidence
interval which is expressed by a parameter. Power utilities used
to rely mainly on point load forecasting for their decision-making
process. However in recent decades, the application of probabilistic
load Forecasting in energy planning and operation is on the increase
due to the growth in market competitions and integration of renewable
energy sources to the power grid [37].

The focus of this thesis is on point forecasting. Probabilistic
forecasting as a wide research topic is recommended as a future
research direction.
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2.1.4.6 Short-term Load Forecasting Techniques

The forecasting techniques that are employed in different studies for
short-term load forecasting of buildings are generally divided into two
broad categories: engineering (physical) and data-driven. Engineering
models present the thermal performance of the systems and compo-
nents of the buildings using mathematical equations. EnergyPlus
and eQuest simulation software are typical samples of this category.
Besides being highly accurate and reliable, they require a high level
of details about different parameters of the buildings that are not
always available. They also need a high degree of expertise to carry
out computations that are costly and elaborate [38]. On the other
hand, data-driven approaches do not require such specific knowledge
about about the building under study. Instead, they benefit from
historical or streaming data. These approaches are further classified
into three groups: Statistical, AI-based and ensemble techniques.

Statistical techniques depend on historical data to find a correlation
between energy consumption as output and most influential factors
as inputs. These methods compared to engineering methods, need
a lower level of physical understanding and a smaller number of
variables to build the models. Regression techniques, exponential
smoothing and time series methods such as Auto Regressive Moving
Average (ARMA) and Auto-Regressive Integrated Moving Average
(ARIMA) fall in the category of statistical models.

The major drawback of statistical modelling is that its prediction
accuracy is dependent on the existence of adequate data samples, and
a variety of statistical data assumptions. The sudden changes in load
patterns considerably degrade the performance of such techniques.
They are also very slow in the scenarios where long-term forecasts with
multiple input variables are needed to build the predictive models.
Several machine learning techniques have been adopted to address
these limitations. The models based on Support Vector Machines
(SVM), as well as Classification and Regression Trees (CART), have
been successfully applied in energy forecasting applications.

In recent decades, AI-based approaches have been extensively used
in load forecasting problems. They rely on both historical and real-
time data to build forecasting models. Their main advantage is that
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they do not need mathematical formulations to manually extract
statistical components of load curves. The AI-based models instead,
utilize artificial intelligence to capture trends, seasonality and non-
linear relationships existent in real load profiles [39]. They, indeed,
are created quicker and simpler than physical and statistics models
and will offer accurate results if they are trained appropriately [40].

The accuracy of AI models however is limited by the size of training
samples. These methods include artificial neural networks, fuzzy logic,
expert systems, and optimization-based algorithms such as genetic
algorithm and particle swarm optimization.

Artificial neural networks with various specific algorithms, among
AI-based techniques, have been extensively applied to load forecasting.
The key explanation is their ability to map non-linear relationships
that can be found in actual load profiles. Reviews of short- term
forecasting using neural network models can be found in [41] and
[39]. However, some potential drawbacks of traditional ANNs such as
overfitting, sensitivity to random weight initialization and tendency
to convergence to local optima [42] led the researchers to investi-
gate on developing more efficient learning algorithms and parameter
initialization techniques for the neural networks.

Recently, artificial neural networks with deep architecture have
shown improved predictive performance. The deeper networks benefit
from additional hidden layers, significantly fewer neurons, improved
activation mechanisms, and more efficient learning algorithms [28].
Different versions of deep neural networks such as Conditional Re-
stricted Boltzmann Machine (CRBM) [26], Convolutional Neural
Network (CNN) [43] and Long short-term memory network (LSTM)
[44] are recently being employed in energy prediction context . A
review of deep learning approaches applied to load forecasting is
presented in [45].

Moreover, there have been several studies towards the development
of hybrid techniques for load forecasting problem. Hybrid approaches
aim to overcome the limitations of their incorporating algorithms.
Their potential use would be in circumstances where model instability
is high and predictive models require sufficient input. There is a
variety of hybrid approaches. Some of them combine signal processing
and machine learning techniques such as [46] and [47] whereas some
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create an ensemble of multiple machine learning and/or optimization
algorithms such as [38] and [48]. There are also recent applications
of ensemble techniques based on deep-learning which are discussed in
[49] and [29] for energy prediction problems.

2.2 Renewable Energy Forecasting

2.2.1 Importance of Renewable Energy

Renewable energy refers to clean and useful energy that are collected
from renewable resources such as sunlight, wind, waves and geother-
mal heat. There are several environmental and economic advantages
relating to the usage of renewable energy over fossil fuels. First, their
supplies are abundant, virtually inexhaustible and recyclable; second,
they emit little or low carbon greenhouse gases, thus reducing the
risk of global warming, water and air pollution.

In recent years, the adoption of renewable energy applications has
increased significantly. There are plenty of cities in the world which
are already using renewable resources for transport and industry
besides heating and cooling the buildings. According to REN21’s
2017 report, over the last ten years the installation and maintenance
costs of renewable technologies especially solar PV and onshore wind
turbines are falling rapidly (%82 and %39 respectively). It also reports
that a growing number of countries across the world are generating
more than %20 of their electricity from solar and wind resources. Fig
2.2 shows the share of electricity generation from various types of
renewable energy from 2000 to 2018 across the world [50]. The rising
trend relating to shares of photovoltaics (PV) and wind turbines
indicates the growing popularity and importance of these resources
more than before for many countries.

2.2.2 Applications

During the last decades, substantial changes have been made to
the conventional electric power grid. Specifically, increasing climate
change issues and global warming from fossil fuel power plants have
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Figure 2.2: The total shares of renewable energy technologies from electricity
generation in the world

encouraged the use of renewable energy [51]. Due to numerous advan-
tages of renewable energies, the integration of renewable energy to
the power grid is highly expect-able among different power operators.
The power generation units from renewable sources have the potential
to be distributed among local communities in the power grid. The
distributed power generation reduces the dependence of local energy
infrastructures from remote sources and a centralized power grid.
This would consequently improve the safety and quality of power
supply by avoiding weather-related disruptions occurring frequently
in the central grid.

At the customer side, the reduced costs in small-scale power gener-
ation technologies such as micro solar panels and micro wind turbines
besides cost-effective energy trading programs, encourage different
customers to use renewable resources to meet their energy needs in
more efficient and cost-effective ways.

Although the substitution of renewable energy with fossil fuels has
many benefits, the large-scale integration of renewable energy sources
raises problems in terms of ensuring the efficiency and sustainability
of power systems. Firstly, the load curves of renewable power such
as solar and wind energies are highly nonlinear and unpredictable
due to their dependencies to volatile weather conditions and local
topography. This uncertainty would inevitably increase the reserve
capacity of electricity systems, thus making electricity production
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more expensive. Secondly, the integration of generation units will
lower the stability margin of the power system by incorporating more
power electronics and accordingly reduction in the rotational inertia
of the power systems [52].

Therefore, the forecasting of renewable energy plays an essential
role in reducing uncertainties in such situations.

2.2.3 Forecasting Methods

There are several studies in the literature that have examined predic-
tions of solar irradiation, solar power generation, wind speed and wind
power. Although the research for solar energy and wind power are
evolved separately, they share many forecasting methods at different
forecast horizons. The adopted forecasting techniques, similar to
the ones in load forecasting problem are generally classified into four
categories: physical, statistical, AI-based and hybrid.

At the short-term horizon; from few minutes to few days ahead,
physical methods are typically applied for both wind speed [53] and
solar irradiation [54] predictions. The physical approaches rely on
numerical weather prediction (NWP) models. Their main advantage
is that they do not require historical data to provide forecasts. If the
technical specifications of the generation unit and NWP are available,
the future outputs of the generation unit can be estimated before
construction.

The major downside of physical models, however, is the high re-
liance on NWP, that needs additional information on spatial and
temporal resolution. They also suffer from inaccuracy when incorrect
data is used as input, requiring them to perform heavy pre-processing
tasks. The NWP-based models are further improved through statisti-
cal and machine learning-based techniques [55].

Statistical techniques aim to determine statistical relationships
between measured observations of renewable energy data within a
specific period [56]. Autoregressive Moving Average (ARMA) [57],
Autoregressive Integrated Moving Average (ARIMA) [58], [59] and
sparse Bayesian [60] are widely investigated in the literature.

The ability of statistical methods, however, is mainly limited to
the production of linear models that are not suitable for solving more
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complicated energy forecasting problems e.g. with longer forecast
horizons. AI-based techniques have also been frequently adapted for
renewable energy forecasting to overcome the limitations of physical
and statistical techniques. Support vector machines [61] and different
variants of artificial neural networks [62], [63] have shown successful
results in this research area. Recently, deep learning approaches
which have achieved high performance in different time-series fore-
casting tasks, are developed for solar power [64], [65] and wind energy
forecasting [66], [67].

The hybrid techniques from the fourth category have also demon-
strated promising results by combining the individual methods from
the first three categories. In [68] an ensemble model was proposed
consisting of data preprocessing and ML algorithms for multistep
wind power forecasting. They include Wavelet Packet Decomposition
(WPD), Elman Neural Networks (ENN), boosting algorithms and
Wavelet Packet Filter (WPF). According to their results, the proposed
method outperforms the individual incorporating algorithms. In [69]
different forecasting techniques from the CART, linear regression and
KNN categories are combined to generate probabilistic solar power
forecasts from three solar farms. [70] includes a complete overview of
hybrid approaches to solar and wind technology.

This study in Paper IV explores a method for estimating solar PV
output of rooftop solar systems. The potential ability to predict other
forms of energy data, such as wind power, is also discussed.
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Chapter 3

Background

This chapter provides the background of the fundamental concepts
used in this thesis. It firstly introduces smart meters which produce
a large amount of energy data for performing predictive analytics.
Second, it defines machine learning, along with the techniques em-
ployed in the thesis for feature selection, load clustering and load
forecasting. Third, the concept of load disaggregation and the applied
methods to enhance the accuracy of load forecasting are explained.
The final section introduces the research technologies which are used
to perform our experiments.

3.1 Smart Meters

Smart meters are advanced metering tools which automatically collect
electric energy consumption of buildings at frequent intervals e.g.
every 10 minutes, 30 minutes, one hour, etc. They provide two-way
communications between electric utilities and customers at their
premises. The smart meters ’measurements contribute to effective
and accurate settlement besides increasing customer knowledge on
their energy usage. They create bases of critical information for
better monitoring and operation of the power grid. Additionally,
some smart meters can report specific events in the grid (e.g. power
outages, earth faults) or record certain parameters such as voltage
levels, current and power factors).
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In the context of load forecasting, the information from smart
meters specifically with high resolution (low frequency) will improve
insights into granular consumption behaviour of future loads. The de-
tailed analysis of load profiles would lead to more accurate predictions
[71].

In all four research papers, we used real smart meter data to develop
and train forecasting models. The data sources belong to different
households and have been various in terms of observation period and
location. For privacy-preserving, the address and ID of electricity
customers are anonymized.

3.2 Machine Learning and Deep Learning

Artificial Intelligence (AI) is a sub-discipline of computer science
which is combined with engineering to enable a machine to imitate
intelligent behaviour of a human being. Artificial intelligence has been
broadly applied in developing systems where they mimic goal-oriented
human functions like learning, reasoning, understating patterns, etc.

Machine Learning (ML) is a branch of AI which can continuously
be modified by learning from data. According to Tom M. Mitchell,
as a machine learning pioneer [72], ML is the study of computer
algorithms that allow computer programs to build upon themselves
through multiple experiences. More precisely, ML algorithms can
adapt to new data without human intervention or human assistance.

Furthermore, Deep Learning (DL) refers to a subset of ML which
provides more powerful models with larger data sets and more com-
putational tasks. The term ’Deep’ in the context of artificial neural
networks (ANNs) means the larger number of hidden layers in the
structure of the network. The performance of deep models can con-
tinuously improve by having access to more data. The deep neural
networks unlike shallow networks and traditional ML techniques
do not need extensive feature engineering to learn the relationships
between inputs and outputs, instead, they automatically learn the
features from raw data sequentially or hierarchically. As mentioned
in Chapter II, deep-learning-based approaches for energy load pre-
dictions are extensively adopted in the literature. The predictive
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algorithms based on deep neural networks are mainly employed in
Paper II [21] and Paper IV.

3.3 Feature Selection Techniques

In machine learning, ’Feature Selection (FS)’ refers to a process where
a subset of relevant features which contribute most to the prediction,
is identified from a set of input data. A feature selection algorithm
can be seen as a mechanism involving the search of new feature
subsets, and an assessment measure that ranks them.

There are three categories of FS techniques based on the assessment
measure. (1) Filter methods that scores a subset of useful features
based on a proxy measure such as the Pearson Correlation Coefficient
and Mutual Information. Filters are computationally trivial and
fast, however, their developed feature set is not customized for any
predictive algorithm. (2) Wrapper methods that train a predictive
model to rank feature subsets. The subsets producing lower error
rates will be given higher scores.

Compared to filters, wrapper methods are more complicated and
computationally more intensive, but usually, create an optimal set of
features for a particular model or problem. (3) Embedded methods
that combine the qualities of filters and wrapper techniques, perform
feature selection as part of the predictive model construction. In
general, different types of feature selection techniques aim to develop
models with higher prediction accuracy, shorter training times, lower
variance and a higher level of interpretability [73].

The Feature selection techniques which are investigated in Paper
I [20] and Paper IV, are mainly used to define the most influential
variables on energy use and generation of households. Furthermore,
they were employed to enhance the forecasting performance.

3.4 K-means Clustering

Clustering is a type of unsupervised machine learning algorithm. In
an unsupervised approach, the assumptions are derived from samples
that do not contain a labelled output variable. Clustering has different
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kinds of applications including pattern recognition and clustering-
based estimation. There are two main categories of clustering analysis:
hierarchical and partitional. The former assigns given data samples
to the required number of clusters. Hierarchical clustering results
in a hierarchically organized series of clusters, which contributes to
the final cluster. The latter, in contrast, represents each cluster by a
centre which is a descriptive overview of all data points existent within
the cluster. Partitional methods split data points into a predefined
number of clusters by optimising an objective function. The objective
function minimises the distance between the data points and the
cluster centre.

K-means clustering [74] is considered as a classic partitional analysis
which can manage big data. It is also a simple, flexible and reliable
approach for clustering purposes [75]. K-means has investigated in
significant research applications related to segmenting customers in
the power network. For example, the household profiles are clustered
by K-means based on their hourly and daily electricity consummation
patterns in [76] and [77] respectively.

In this study, Paper I [20] explains K-means in more details and
applies this algorithm to distinguish house profiles based on their
daily load variation and daily peak consumption.

3.5 Predictive Techniques

In this part, the forecasting techniques enclosed in the research
publications are briefly presented.

3.5.1 Auto-Regressive Moving Average

Auto-Regressive Moving Average (ARIMA) [78] as a time series analy-
sis technique is fitted to a univariate time series data and widely used
for predicting future points in the series. ARIMA proposed by Box
and Jenkins in 1970, produces a stationary time series by removing
trend and seasonality from the original input. In a stationary time
series, the statistical properties such as mean, variance and covariance
remain constant over time. The forecasts produced by ARIMA are
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considered as a linear function of the most recent observations and
past random errors.

ARIMA compared to regression techniques does not require a set
of predictor variables, however, it needs heavy fine-tuning of param-
eters and usually loses its precision by increasing forecast horizon.
To overcome the limitations of ARIMA, the various extensions of
ARIMA combined with other forecasting methods have been widely
investigated in the context of energy forecasting. Sample applications
of the hybrid models with ARIMA adapted to load demand and solar
energy prediction are discussed in [79] and [80] respectively. ARIMA
was investigated as a baseline time series forecasting technique in
Paper IV.

3.5.2 Ridge Regression

Ridge regression [81] belongs to a class of regression techniques which
models a linear relationship between multiple predictive variables as
input and prediction target as the output. Ridge regression, adds
L2 penalty to reduce the complexity of the model when the data is
high dimensional or when the correlation between input variables is
high. The L2 parameter has the effect of decreasing the coefficient
values of certain variables that incorporate least to forecasting. It is
calculated using linear least squares to minimize the error [82]. In
this study (Paper IV), the predictive ability of Ridge regression as a
regularized linear model is compared against the ones of non-linear
algorithms in the context of energy forecasting.

3.5.3 Support Vector Regression

The Support Vector Regression (SVR), as a version of Support Vector
Machine (SVM) for regression, is widely used for data modelling and
time series prediction. This method approximates a function based
on observed data to train the model. This linear function can describe
the nonlinear relationship between variables in high dimensional fea-
ture space. Unlike most traditional forecasting methodologies, there
is no model in the strict sense instead, the data drive the predic-
tion. Additionally, SVR minimizes the empirical risk, guarantees the
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global minimum solution and offers high generalization ability. A
mathematical explanation of SVR is provided in [83].

As mentioned in Chapter II, SVR-based models have been success-
fully applied to both load demand and renewable energy forecasting
tasks. The advantages of this technique along with its promising
results shown in recent energy-related studies encouraged us to imple-
ment this method and compare its performance with those of other
proposed techniques in Paper II [21] and Paper IV.

3.5.4 Ensemble Methods

Ensemble methods create meta algorithms by integrating several
machine learning algorithms into one powerful forecasting model.

For ensemble methods to be more accurate than any of its members,
the base learners have to be as accurate as possible and as diverse as
possible.

The technique that integrates predictors is called ensemble learning.
Ensemble learning can be performed in different ways:

(1) Bagging (bootstrap aggregation): in this method, several ML
algorithms (e.g. Decision Trees) are trained on different ran-
dom subsets of the data and create the ensemble. To create
sub-samples from data, it uses bootstrap sampling that per-
forms sampling with replacement. Therefore, each predictor
may be trained on the same training subsets several times. The
final estimates of individual learners will be aggregated through
’averaging’ for regression and by ’voting’ for classification. The
resulted meta learner will have less variance compared to the
individual predictors. In the context of load forecasting, the
bagging method with bootstrap sampling may not be optimal
due to inter-dependencies within the historical energy measure-
ments.

(2) Boosting: this method aimed at building a strong learner based
on multiple weak learners. The individual models (weak learn-
ers) are sequentially trained and fitted on a weighted version of
training data. It means the samples which were misclassified or
estimated with large errors receive higher weights in the next
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iterations. The final output depending on the type of problem
would be either weighted majority vote or weighted sum of
predictions. The final strong learner will produce lower bias by
exploiting the dependencies between the individual learners.

(3) Stacking: Via this technique, at the first level, multiple predic-
tors (either classifiers or regressors) are trained on a subset of
training data, then they make predictions on another subset.
The produced forecasts, in the next level are further used as
the features to train a meta learner. To create a heterogeneous
ensemble, the base learners often include various learning algo-
rithms. The meta learner can belong to any category of ML
algorithms such as Ridge regression, ANN, Random Forest,
etc. The stacked ensemble that learns the optimal weights for
combining the first-level preditors would be able to improve
accuracy and generalization performance.

In general, the ensembles that produce more accurate results than
their members are formed based on the learners with high diversity
and accuracy [84]. In our research, Paper IV employs ensemble
techniques from all three categories to investigate their limitations
and advantages for both load consumption and micro-generation
forecasting.

The following lists the applied ensemble algorithms which were
evaluated during our research either individually (Paper I [20], Paper
II [21], Paper III [22]) or in a combination with other algorithms
(Paper IV).

3.5.4.1 Random Forset Regressor (RF)

Random Forest [85] is a commonly used ensemble algorithm belonging
to the bagging category. It employs Decision Trees (DTs) [86] as base
learners. Each tree is fitted to a sample chosen with replacement
from the training set. The trees are further randomized with training
on a subset of features rather than all features. The bagging trees
will lead to a forest with slightly higher bias but lower variance since
the less correlated trees are combined in the forest, thus making the
final model more powerful in general.
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3.5.4.2 Ada Boost Regressor

The widely used form of boosting approach based on decision trees is
called AdaBoost. Ada Boost Regressor, used for regression problems,
sequentially train and add multiple one-level decision trees. The
process of adding and fitting will continue until either the required
number of trees is created or no considerable improvement occurs in
terms of training errors. In the end, the output of all estimators in
the ensemble are combined by computing ’weighted median’. Ada
boost has the potential ability to filter out the features having high
predictive capacity. It, therefore, contributes to the reduction of
input dimension and improving training efficiency. A comparative
study on AdaBoost algorithms applied for times series forecasting is
presented in [87].

3.5.4.3 Gradient Boosting Regression Tree

Gradient Boosting Regression Tree (GBRT) [88] is a variant of Tree-
based boosting algorithms applied for regression problems. Similar
to AdaBoost regressor, GBRT constructs the trees in a stage-wise
manner. However, at each step, the decision tree which optimizes
a loss function is introduced to the ensemble. The loss function is
computed by a gradient descent technique. The output of each new
learner is further added to the output of all previously selected trees.
Learning from previous mistakes will help the ensemble to produce
forecasts with higher accuracy.

3.5.5 Feed Forward Neural Networks

An artificial neural network is a biologically inspired system which
consists of a possibly large number of highly interconnected processing
elements called artificial neurons. The most common and traditional
architecture of the neural networks is the Multilayer Perceptron (MLP)
type in whcih neurons are arranged in layers. This architecture is
composed of one input layer where the data are introduced to the
network, one or more hidden layers where data are processed and
one output layer where the results of given input are produced.
The neurons in each layer are connected with all the neurons in
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the previous layer with different weights representing the network
knowledge.

In a feed-forward architecture known as FFNN, the outputs of one
layer are used as the inputs to the following layer; the information
flow is from input to output direction and not vice versa. All neurons
except the input neurons use non-linear activation functions to pro-
duce the output. A training algorithm is further employed to learn
the optimal parameters (weights and bias) of the network.

ANNs typically with the feed-forward structure is reported as
successful learning algorithms in forecasting applications for several
reasons. First, ANNs are data-driven and self-adaptive methods;
they can identify hidden trends within historical observations via a
training phase, even though the underlying relation between input
and output variables is unclear or hard to describe. Second, after
learning the data presented to them, they can correctly generalize it
to unseen data, even if the training data contain noisy information.
Third, they can numerically approximate any continuous function to
the desired accuracy, thus leading them to learn non-linear modelling
much better than traditional linear models [12].

All these characteristics suggest ANNs should prove to be par-
ticularly useful when dealing with a large amount of volatile load
consumption and energy generation data, specifically when we have
little prior knowledge about the rules of producing data. [41] and [89]
discuss detailed analyses of the use of traditional ANNs in building
load forecasting along with the prediction of solar PV and wind power
generation. The conventional ANNs with feed-forward and shallow
structures (one to two hidden layers) are extensively discussed and
evaluated in Paper II [21], Paper III [22] and Paper IV.

3.5.6 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a subset of deep learning
algorithms, primarily applied to image processing problems such
as image recognition [90], image classification [91], etc. They have
also been useful in predicting energy time-series data [92] and load
demand data [93]. CNNs are considered as regularized versions of fully
connected networks in a way that they capture high-level patterns in
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data by identifying and collecting low-level patterns. As compared
to other classification algorithms, they need less feature engineering
as they can automatically learn the features or main characteristics
from the input data.

Similar to a feed-forward neural network, a convolutional neural
network for time series data includes an input layer, hidden layers
and an output layer. The hidden layers perform one-dimensional
convolutions. Through the convolution process, the features are
extracted from the input layer through filters, a non-linear transfer
function and feature maps. This transformation is typically followed
by a pooling operation where the dimension of feature maps is reduced
to obtain the important convolution features. Next, a fully connected
output layer creates final non-linear combinations of selected features
for making estimations by the network.

CNNs are examined and used in Paper III [22] as part of load
disaggregation algorithms. Moreover, they are modified as predictive
algorithms in Paper IV to provide multi-step energy forecasts. More
details on structures of applied CNNs can be found in the given
studies.

3.5.7 Recurrent Neural Networks

Following are the list of investigated methods in the category of
recurrent neural networks.

3.5.7.1 Long-Short Term Memory Networks

Recurrent Neural Networks (RNNs) are neural networks which use
feedback connections among the nodes to remember the values from
previous time steps. Thus, this will allow them to learn the temporal
aspects of time series data. Each recurrent neuron in a traditional
RNN, receives input as well as its output from the previous time
step. On long sequences of input, however, as the backpropagation
algorithm is used to train these networks; the gradients tend to be
exploded or vanished over many time steps. For capturing long-term
patterns or independencies in the sequential data, the standard Long-
Short Term Memory Network (LSTM) was introduced by Hochreiter
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and Schmiduber [94] in 1997 and was gradually improved over the
years.

LSTM unlike conventional RNN algorithms by using internal mem-
ory cells, addresses vanishing or exploding gradient problem by faster
convergence and provides a model to store information for long and
short periods [95]. LSTM networks have been popular deep algo-
rithms with high precision in the area of sequence learning like natural
language translation [96], and speech recognition [97].

Concerning power data displaying apparent features of time series
data with cycles, LSTM cell information (long-term data dependen-
cies) can be beneficial for load forecasting. As discussed in Chapter
II, LSTM and its variants recently have been successfully adapted
for short-term forecasting of residential and commercial loads.

Therefore to address our research problem, we extensively investi-
gate different types of LSTM networks that have demonstrated high
precision in time series prediction problems. They include (1) the
standard LSTM, investigated in Paper II [21] for one-hour ahead load
consumption and daily peak load estimation as well as in Paper IV for
the multi-hour ahead load consummation and generation forecasting.
The structure of a standard LSTM network is completely explained
in the referred papers. (2) Gated Rectified Unit (GRU) and (3)
Sequence To Sequence LSTM discussed in Paper IV for multi-hour
ahead energy forecasting. The remaining of this section briefly de-
scribes the two variants of standard LSTM. More details are provided
in the mentioned research study (Paper IV).

3.5.7.2 Gated Recurrent Unit

Gated Recurrent Unit (GRU) is a compact version of LSTM which
was proposed by Cho et.al [98] in 2014. It follows the same principles
of processing long-term sequences in LSTM, but with fewer gates
and parameters. GRU, therefore, compared to LSTM, due to its
simplified architecture, can be more efficient in terms of training
time. The accuracy of GRU was found to be comparable to that
of LSTM on some tasks of speech recognition and natural language
processing [99]. GRU-based networks have even exhibited better
performance in some smaller data sets [100]. Apart from those listed,
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they have also recently been used in residential load forecasting [101],
and photovoltaic forecasting [102].

3.5.7.3 Sequence To Sequence LSTM

A Sequence-to-Sequence network is a subset of artificial neural net-
works developed for converting sequences to sequences. These net-
works which are also known as encoder-decoder networks have been
primarily suggested to incorporate machine translation schemes. In
such networks, the source language sentences are fed into the encoder
while the decoder interprets the destination language sentences. The
sequence to sequence network that uses layered recurrent networks
was first introduced by I.Sutskever et.al in [96]. This architecture
was further adapted for time series forecasting practices, particularly
types of forecasting that require multiple steps ahead [103] and [104].

3.6 Load Disaggregation

3.6.1 Applications

Smart energy management systems at residential buildings provide
households and grid operators with real-time information about home
appliances. The information on operational states and energy con-
sumption of appliances can be beneficial for both sides. Regarding the
residential customers, the information would help them diagnose the
health of appliances, save energy, reduce their bills and improve their
consumption behaviour. The smart grid operators also utilize this in-
formation to forecast peak load, develop intelligent control strategies,
evaluate appliance energy efficiency and detect faulty devices more
effectively [105],[106].

Current household monitoring solutions available in the market, typ-
ically follow an intrusive strategy to provide appliance consumption
data. They mainly require entering the house to provide monitoring
interfaces and install sub-meters for each appliance. In contrast,
smart meters, which measure the total consumption of a building,
enable non-intrusive load monitoring with minimal maintenance and
installation costs. Privacy-preserving of end-users is also another
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advantage of this method over intrusive solutions.
Nevertheless, smart meters do not provide appliance-level data due

to practical constraints. Using energy disaggregation algorithms in
conjunction with smart meters data can efficiently provide energy
management systems with appliance-level information [107].

Energy disaggregation, also known as Non-Intrusive Load Monitor-
ing (NILM) was originally developed by George G.W.Hart et.al at
MIT in the early 1980s. NILM for appliances refers to the process
where the power consumption and the operation state of each electric
device in a building are estimated from an aggregated power signal.
This aggregated signal is often measured with one power meter which
monitors all devices.

There have been several studies on NILM approaches to provide
appliance-level feedback. Complete surveys on non-intrusive load
monitoring techniques for energy disaggregation and energy manage-
ment are presented in [108] and [109].

Paper III [22] of this thesis, has studied three load disaggregation
algorithms to evaluate their capability in improving the household
load forecasting. Following are the list of applied techniques. The
choice of algorithms was based on their availability in the NILMTK
toolkit1 besides the diversity in their architectures and disaggregation
methods.

3.6.2 Applied Techniques

3.6.2.1 Factorial Hidden Markov Model

Hidden Markov Models (HMMs) are a class of probabilistic graphical
model that allows us to predict a sequence of unknown (hidden)
variables from a set of observed variables. In the realm of load disag-
gregation, HMMs find the contribution of power of each appliance
corresponding to the (hidden) state of the appliance. The states
and corresponding appliance power are accessible from sub-meters’
measurements. The Hidden Markov model is trained using historical
data to estimate the model parameters [110].

1NILMTK is a Python-based open-source framework which enables the training
and comparison of NILM algorithms across various data sets
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Factorial Hidden Markov Model (FHMM) introduced by Michael.
J in 1996 is as an extension of HMMs. FHMM models multiple inde-
pendent hidden state sequences by a probability distribution function.
Each appliance in FHMM is described by a Hidden Markov Model
containing states and the transitions between them. The average
power consumption is determined for each state, and the probabil-
ity of transitions are calculated. The aggregate power observations
are then allocated to devices whose models follow the shape of the
appliance signature. The mathematical details are provided in [111].

FHMM’s output typically deteriorates with the rise in the number
of devices and, subsequently, with the increase in the number of
combinations and the amount of computation time.

3.6.2.2 Denoising Auto Encoder

An autoencoder is a specific type of neural network with an unsuper-
vised learning technique. By this technique, typically for dimension
reduction, the network discovers efficient data properties (encoding)
through ignoring signal ’noise’ in the input. The results from encod-
ing phase (code) are further uncompressed into the format which
matches best with the original input. The Denoising Autoencoder
(DAE) learns how to recover the original input from the partially
distorted version.

In the context of load disaggregation, the overall consumption signal
is assumed as a noisy representation of the target appliance signal
and the DAE excludes the share of the other appliances from the
aggregate load signal. More precisely, the DAE receives a window of
the mains readings of fixed length and outputs the inferred appliance
consumption for the same time window.

The DAE solution to address the energy disaggregation problem
is discussed in [112]. Accordingly, the structure of applied DAE in
our study was adapted from this reference. The DAE network there
consists of one- dimensional CNNs for both encoder and decoder with
three dense layers in between.
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3.6.2.3 Sequence To Sequence Optimization

A sequence to sequence (seq2seq) architecture, adapted for NILM,
converts aggregate energy measurements as input sequence to the
target appliance power as the output sequence. The sequences of
input and output are framed as sliding windows in such a manner that
only a subset of windows can be used for training, thus minimizing
the cost of computing. The mapping would enable the network to
align the observed trends in the main signal with the appliance signal
characteristics while training.

A seq2seq network can employ different types of deep networks
including RNN, LSTM and CNNs with various configurations. The
architecture of sequence to sequence technique which was used in our
evaluation was adapted from a study in [113]. This network employs
five one-dimensional CNNs and two fully connected networks with
different sizes to extract the target sequence from the input signal.
The details are provided in the mentioned study [113].

3.7 Research Technologies

In this section, the programming language and the modern Machine
Learning (ML) libraries which are used to implement our solutions
are introduced.

3.7.1 Programming Language

‘Python’, is used in this dissertation as a preferred programming
language to perform predictive analytic. Python, developed in 1991,
is a popular programming language in the field of machine learning
and data science. It is known as a high-level interpreted language
which emphasizes readability and less complexity in writing compared
to languages such as C++ and Java. Like other modern languages,
it benefits from object-orientation, memory management, functional
and imperative programming, and strong typing. Its key strengths in-
clude open-source implementation, support of multiple programming
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paradigms and is highly portable across operating systems 2.

3.7.2 ML Libraries

We have used multiple Python libraries for data preprocessing and
data analysis. ’Numpy’ and ’Scipy’ for creating and manipulating
arrays and matrices at any size; ‘Pandas’ as a data analysis library
and ‘Matplotlib’ to plot quality figures in a variety of formats and in-
teractive environments. Moreover, ‘scikit-learn’ 3 has been employed
to perform many of the standard machine learning tasks such as data
scaling, clustering, regression and building time-series and conven-
tional ML models such as Regression Trees and SVR algorithms.

To implement different types of artificial neural networks with
deep structures, we employed ’Keras’ 4 software library. Keras is one
of the most powerful and easy-to-use open-source Python libraries
which is designed for developing and evaluating deep learning models.
Keras was introduced by François Chollet; a Google engineer during a
research project known as ONEIROS (Open-ended Neuro-Electronic
Intelligent Robot Operating System). Keras mainly acts as an API
interface for one of the most prominent and convenient machine
learning platforms called TensorFlow 5. TensorFlow’s main features
are its multi-layered system of nodes that allows artificial neural
networks to be trained flexibly and rapidly on large datasets. It
also provides several advanced optimization nodes to search for the
parameters that reduce a cost function.

Aside from other aspects, Keras is simple to use and flexible as an
extendable Python API, which has motivated us to use it extensively
in our experiments.

3.7.3 NILM Library

We have used NILMTK to run the experiments regarding load dis-
aggregation practices (NILM-related techniques). NILMTK as an

2https://www.python.org/about/
3https://scikit-learn.org/stable/
4https://keras.io/about/
5https://www.tensorflow.org
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open-source platform allows convenient comparisons of the NILM
algorithms across different data sets. It comprises of multiple dataset
parsers, data set analysis information, algorithms for preprocessing
and disaggregation, as well as several assessment indicators. The
implementation and configuration of the applied algorithms are thus
adapted from NILMTK-contrib repository 6.

6https://github.com/nilmtk/nilmtk-contrib
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Contributions

This chapter includes a review of four separate research papers with
their respective contributions to the thesis. The description of each
paper includes the motivation, methods and results for the task.

4.1 Overview

In this dissertation, we addressed the need for the new frameworks to
preserve load balance in smart energy communities. The motivations
discussed in each paper present contributions to the dissertation.

Paper I [20] conducts a comparative study on multiple feature
selection methods. They support with distinguishing highly relevant
factors influencing the consumption behaviour of different households.
It uses smart meter data of several houses in Norway to perform
the experiments. Paper II [21] uses the most widely used machine
learning algorithms in the context of short-term load forecasting to
evaluate their prediction and generalization abilities at the household
level. A public energy consumption dataset of residential customers
in the UK from different eco-social classes was used to train and
evaluate the models.

Paper III [22] investigates the applicability of advanced load moni-
toring techniques (NILM) for improving the accuracy of hourly load
forecasting. It performs experiments on two public data sets cus-
tomized for NILM. Paper IV addresses forecasting of electricity and
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micro solar power generation at the community level. It describes
a framework for the identification of relevant predictive factors for
both energy supply and demand. It also studies the development of
hybrid forecasting approaches based on the most accurate individual
models.

In terms of descriptive and predictive analysis, all papers focus
on machine learning techniques for data mining, data analysis and
predictive modelling specifically for time-series data. As mentioned
in Chapter III, section 3.7, all the experiments have been conducted
using Python programming language and advanced Python libraries
such as ’Pandas’, ’scikit-learn’ and ’Keras’. The NILMTK library
was also employed to run load disaggregation algorithms on the
experimental data sets.

In the remaining of this chapter, we present a summary for each
research paper.

4.2 Paper I

Evaluating Feature Selection Methods for Short-term Load Fore-
casting

This paper was published in Proceedings of 6th IEEE International
Conference on Big Data and Smart Computing (BigComp), 2019.

Motivation:

Electricity suppliers need short-term forecasts for their critical decision-
making activities such as load flow control, planning supply and
scheduling generation. Timely implementation of such decisions
ensures the stability of the power network and thus decreases the
occurrence of system faults and blackouts. Over the decades, the
advancements in mathematical tools and computational power have
contributed to the development of forecasting techniques with higher
accuracy.

However accurate load forecasting specifically at building level
remains a challenging task. Concerning the residential load, the accu-
racy of forecasting is not only dependent on the forecasting method
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but also to the several fluctuating factors such as time variables,
weather data and consumption habits. In this study, we explore
these factors and investigate their diversity among the house profiles
with various levels of load volatility. We also study how the relevant
features influence on accuracy and performance of a predictive model
among different groups of households.

Methodology:

In this study, we followed a two-step approach. In the first step, we
collected smart meter data of 23 Norwegian households as a sample
dataset and created a set of candidate features based on the literature
study. In the second step, we performed load clustering (using K-
means algorithm) to distinguish consumption patterns based on daily
load volatility. Next, four feature selection techniques were applied to
choose a subset of features from the candidate set per house profile.
They include ’F-regression’, ’Mutual Information (MI)’ from filters,’
Recursive Feature Elimination(RFE)’ from wrappers and ’Elastic Net’
from embedded category. To test the effectiveness of FS techniques
on improving load forecasting, we evaluated the prediction accuracy
of one forecasting algorithm (GBRT) with and without FS results
across each house and cluster.

Results:

The identified subset for each house profile consists of both common
and non-common factors among the same and different clusters’
members. The common factors across the three recognized clusters
mostly include load-related features such as ’past load consumption
values during previous one and two hours’ and ’average usage of past
24 hours’ besides some non-load variables such as ’day of the year’
and ’outside temperature’. The uncommon features do not belong to
a particular category and are found in different categories, e.g., load,
time and temperature.

The average of prediction results across clusters’ members shows
that all FS-techniques improve forecasting performance in terms of
accuracy and training time. These results also reveal that no unique
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FS technique can contribute to the lowest prediction error for all
types of house profiles. However, it outlines the load forecasting
of houses with higher load volatility would need more advanced FS
techniques such as a combination of MI and RFE.

4.3 Paper II

Short-Term Load Forecasting Using Smart Meter Data: A Gener-
alization Analysis

This paper was published in Processes open access journal, belong-
ing to special issue Clean Energy Conversion Processes, 2020.

Motivation:

There exist different methods addressing the problem of energy pre-
diction in buildings. They are mainly divided into two categories:
Engineering and Data-driven (statistical and machine learning). The
engineering approaches which represent mathematical models of build-
ings are highly reliable and accurate but difficult to generalize. The
customized model for one building can not apply to another building
with different dynamic behaviour. The data-driven techniques (i.e.
ML), on the other hand, use consumption data and fit a model from
given inputs to desired outputs. The learned rules can be further
used to produce predictions for new inputs (e.g. the measurements
from the unseen building during training).

In this study, we use smart meter recordings as a source of historical
data and evaluate the generalization ability of multiple states of the
art ML algorithms in forecasting hourly load and daily peak demand
of buildings. They are constructed only on the basis of historical load
variables to test the predictive power of these models in the absence
of external variables.

Methodology:

To address the problem, four predictive algorithms from various ML
categories were chosen. (1) Support Vector Regression and (2) MLP
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with shallow feed-forward structure (FFNN) from traditional ML. (3)
Gradient Boosted Regression Tree (GBRT) from ensemble/CART
category and (4) standard LSTM with time steps from the most
recent field (deep recurrent artificial neural networks). To train
and evaluate the models, we obtained smart meter data of 75 UK
houses with hourly resolution over one year period. We also evaluated
the sensitivity of the models to various input sizes and the number
of lag variables. As the energy data is a type of time series data,
we employed a k-split time-series cross-validation technique rather
than the standard k-fold method. A comparative study was further
performed to assess the predictive and generalization ability of the
models across different seasons and within various socio-economic
house profiles.

Results:

All the models specifically LSTM and FFNN generalized well; on
average they produced low errors in one-hour ahead predictions for
unseen houses during training. In terms of estimating daily peak
load consumption, the GBRT and LSTM outperformed the others.
Regarding the training and tuning times, the GBRT was found as the
fastest among the four algorithms. The sensitivity analysis indicates
that increasing the number of training houses will boost forecasts as
long as the added profiles improve the model’s awareness of the test
houses. The results also suggest that consumers with lower average
annual usage and lower variance in hourly loads produce more stable
profiles. An analysis of seasonal forecasts showed that seasons with
lower temperature typically come with more load violations, making
forecasting for almost all models more challenging.

4.4 Paper III

Improving Load Forecast Accuracy of Households Using Load Dis-
aggregation Techniques

This paper was published in Proceedings of 11.th International
Conferences on IEEE Smart Data (SmartData), 2020.
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Motivation:

The availability of data with high sampling rates through smart
meters has made it possible to produce a comprehensive study of
usage patterns and the development of data-driven models with high
prediction accuracy. Also, the growing use of smart meter data has
allowed non-intrusive load monitoring (NILM) with low installation
and maintenance costs. NILM refers to the process where individual
load consumption of appliances is determined by measuring the
aggregate energy consumption of the house without sub-metering of
individual devices. There has been extensive research regarding the
development of NILM algorithms however a few have investigated the
applicability of NILM in the energy forecasting context. The purpose
of this paper is to incorporate NILM outputs (i.e. appliance feed-
backs) to construct more reliable and accurate forecasting models.

Methodology:

To reach this goal, we have proposed a hybrid approach consisting of
ML and NILM algorithms. In this approach, not only the aggregated
energy consumption but also the appliance-level data provided by
energy disaggregation algorithms are part of the input to the forecast
model. The combinations of two forecasting models (MLP and
GBRT) with three states of the art NILM algorithms (Factorial
Hidden Markov Model (FHMM), Denoising Auto Encoder (DAE)
and Sequence to Sequence optimization) are evaluated in the proposed
framework. We chose three houses from two public NILM datasets
(UK-DALE and REFIT) to validate the results. The models were
trained on one house and tested on both seen and unseen houses
during training. There was also a comparative analysis of forecasts
with and without disaggregation inputs.

Results:

The combinations of NILM and ML forecasting algorithms have shown
promising results in improving forecasting performance. Among the
disaggregation methods, the Sequence to Sequence algorithm was
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more accurate in following the appliance signals for unseen and seen
houses. In terms of forecasting techniques, the hybrid models with
disaggregation phases; FHMM+MLP and Seq2Seq+MLP, yielded
better accuracy in comparison to the models without the disaggrega-
tion phase (showing a decrease of at least 80 % and 42 % in MAE,
respectively). The findings suggest further study for a wider variety
of appliances and recent NILM algorithms based on deep learning.

4.5 Paper IV

An ensemble approach for multi-step ahead energy forecasting of
household communities

This paper was accepted for publication in IEEE Access, 2021.

Motivation:

Due to the many advantages of green energy, the use of renewable
energy is growing on power networks. On the consumer side, the
reduced costs of small-scale power generation units (e.g. solar PV
and wind turbine) besides advancements in ICT, would provide
opportunities for consumers to meet their energy demands through
locally distributed energy sources. However, in such an environment,
forecasting energy demand and supply becomes essential to reduce
the instability induced by the integration of micro-generation sources.
The forecasting task especially with an extended forecast horizon will
become challenging due to several factors leading to non-linearity
and instability of load demand and supply. In this study, we focus on
residential customers and extend the application of ML algorithms
to solar PV output forecasting and multi-step ahead prediction.

Methodology:

In this paper, we have proposed a framework to accurately forecast
electricity consumption and solar PV generation of household com-
munities at 24 hours ahead. The proposed framework provides a
process for designing an effective ensemble of forecast models based
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on comprehensive analyses of baseline forecasting algorithms. We
have used the sequence to sequence LSTM networks as base learners
of the ensemble besides the GBRT algorithm as a meta learner. To
effectively deal with non-linearities in load consumption and solar
energy data, the weather and calendar variables were incorporated
into the forecasting process. As a case study, the presented framework
was evaluated on energy prediction of residential neighbourhoods in
Sydney and Newcastle.

Results:

Through feature selection analysis, the factors like ’Global Horizontal
Irradiance (GHI)’ and ’air temperature’ were found to be highly
influential on the estimation of micro-solar power production and
load consumption accordingly. Based on the prediction results, the
proposed ensemble outperform traditional ensembles and individual
best learners for the majority of test communities in terms of both
predictive targets. Moreover, with increasing the forecast steps, the
ensemble model illustrates more robust predictions. Furthermore,
the performance evaluation in different weather conditions and day
types show the superiority of the ensemble approaches over single
deep neural network models.

4.6 RQ-Findings

This section explains how the research papers have addressed and
answered the research questions.

RQ 1: Which factors influence the most on consumption and
generation behaviour of prosumers?

To investigate this, we explored the literature study and performed
data exploration tasks on real data sets. They include plotting charts
and applying feature engineering and feature selection techniques in
combination with various predictive models. They are extensively
discussed in Section II and Section IV of Paper I and Section III of
Paper IV.

RQ 2: What techniques are appropriate and highly accurate
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for prediction of energy consumption and small-scale generation of
households?

The related techniques along with benefits and drawbacks are
mainly discussed in papers II and IV. Paper II analyses and compares
the prediction performance of different ML techniques for household
short-term load forecasting. Paper IV tests various baselines to
discover the most useful and most reliable algorithms for prediction
at low aggregation levels.

RQ 3: How can we improve the performance of successful pre-
dictive models at building/local levels?

To explore this, we have proposed new frameworks in Paper II and
Paper IV, Section II, Part C. Paper II discusses a hybrid approach
to improve hourly load forecasting at the building level. It solves the
issue by incorporating load disaggregation results to load forecasting
process. Paper IV presents an advanced ensemble approach based
on recurrent deep neural networks to boost the forecasting of the
community load.
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Chapter 5

Conclusion and Future Work

This chapter outlines the conclusion of the research study as well as
future research directions.

5.1 Conclusion

This thesis proposes an extension to research work to analyse energy
profiles and improve the predictive models at smart energy communi-
ties through predictive analytic. Two parts of the thesis are addressed
with three research questions in four articles.

It studies the importance of load and renewable energy forecasting
in current and future power grids to establish the research objectives in
real-world scenarios. It has made it possible to perform practical and
diverse predictive analytics using real data sets obtained from smart
meters of residential buildings in different countries. A variety of
data analysis tasks such as data cleaning, feature engineering, feature
selection and clustering is performed to build predictive models with
high accuracy and generalization ability.

In Paper I [20], we have analyzed residential demand profiles in the
clusters with various load volatility levels. Besides, the highly relevant
factors for electricity usage across the established clusters have been
identified. The results suggest that the types of influential factors
may slightly vary based on the consumption behaviour of residents.
However, there are shared variables such as recent load observations
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and air temperature that are recognized as highly informative inputs
for most of ML algorithms. In Paper IV, the impact of lagged load
and weather variables has been also shown to be effective in solar
power forecasting.

Paper II [21] adapts the most influential features from previous
work (Paper I) and uses them as the inputs to various ML algo-
rithms customized for time series forecasting. We also evaluated the
generalization capability of ML techniques in real scenarios where
one or a group of trained models can be used for load forecasting of
houses whose profiles are not seen by the models during training. The
low prediction errors in daily peak consumption yielded by LSTM
network and the GBRT along with their high generalization ability
would suggest deployment of such techniques for energy management
systems at local levels. Being uni-variate also make these models
appropriate for the situations where access to external information
is limited or when the model development is costly e.g. for online
learning.

Paper III [22] investigates a hybrid solution to improve short-term
load forecasting of households. It focuses on using load disaggregation
techniques to provide conventional forecasting models with appliance-
level feed-backs. The potential application of the proposed technique
could be in scenarios where employing deep forecasting models is not
efficient or cost-effective. It may occur due to lack of access to long-
term historical data or the necessity of fast training in time-sensitive
environments.

Paper IV extends the application of LSTM networks and its vari-
ants for multi-step ahead and multi-target forecasting. It creates an
ensemble-based model to benefit from the capabilities of both deep
neural networks and regression tree algorithms. The experimental
results show the advantages of the proposed approach for accurate
prediction of both electricity consumption and micro-energy genera-
tion of aggregate loads at the community level. Forecast information
can be essential for load balancing and solar energy trading in smart
microgrids.
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5.2 Future Work

A possible extension of this work can be transferring centralized data
analytics structure to a decentralized one. This transformation will
offer many benefits, including online learning for energy forecasting.
Online learning can be applicable in time-sensitive environments such
as the network edge at IoT devices where the computation resources
i.e. time, memory and processing power are limited. The forecasting
methods based on streaming data will be more adaptive to sudden
changes in the consumption and generation patterns of prosumers
thus, being more efficient in preserving stability in smart energy
communities.

Other research direction in future would be investigating proba-
bilistic forecasting methods for energy load forecasting. Probabilistic
load forecasting by assigning probabilities to future load values raises
knowledge on volatility and unpredictability of potential loads. There-
fore, it can be significantly advantageous at low aggregation levels
where power demand and supply fluctuate more and exhibit high
degrees of uncertainty. This can be direct extensions to the work
presented in Paper I [20], Paper II [21] and Paper IV.

Further development on load disaggregation techniques is suggested
as the future study in Paper III [22]. It would be useful to adopt NILM
techniques based on advanced deep learning to improve prediction
accuracy. Besides, applying transfer learning for existing NILM
methods allows them to be effectively used for new domains such
as a new appliance or a new test house from another country. The
NILM techniques with high generalization ability could thus add
more flexibility and efficiency into a forecasting framework.
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[73] Isabelle Guyon and André Elisseeff. “An introduction to vari-
able and feature selection.” In: Journal of machine learning
research 3.Mar (2003), pp. 1157–1182.

[74] Sanghamitra Bandyopadhyay and Sriparna Saha. Unsupervised
classification: similarity measures, classical and metaheuristic
approaches, and applications. Springer Science & Business
Media, 2012.

[75] Ali Al-Wakeel, Jianzhong Wu, and Nick Jenkins. “K-means
based load estimation of domestic smart meter measurements.”
In: Applied energy 194 (2017), pp. 333–342.

[76] Fintan McLoughlin, Aidan Duffy, and Michael Conlon. “A
clustering approach to domestic electricity load profile charac-
terisation using smart metering data.” In: Applied energy 141
(2015), pp. 190–199.

[77] Joshua D Rhodes, Wesley J Cole, Charles R Upshaw, Thomas
F Edgar, and Michael E Webber. “Clustering analysis of res-
idential electricity demand profiles.” In: Applied Energy 135
(2014), pp. 461–471.

[78] James Durbin and Siem Jan Koopman. Time series analysis
by state space methods. Oxford university press, 2012.

[79] Hongzhan Nie, Guohui Liu, Xiaoman Liu, and Yong Wang.
“Hybrid of ARIMA and SVMs for short-term load forecasting.”
In: Energy Procedia 16 (2012), pp. 1455–1460.

63



Chapter 5. Conclusion and Future Work

[80] Sharif Atique, Subrina Noureen, Vishwajit Roy, Vinitha Sub-
buraj, Stephen Bayne, and Joshua Macfie.“Forecasting of total
daily solar energy generation using ARIMA: A case study.” In:
2019 IEEE 9th annual computing and communication work-
shop and conference (CCWC). IEEE. 2019, pp. 0114–0119.

[81] Arthur E Hoerl and Robert W Kennard. “Ridge regression:
Biased estimation for nonorthogonal problems.” In: Techno-
metrics 12.1 (1970), pp. 55–67.

[82] AK Md Ehsanes Saleh, Mohammad Arashi, and BM Golam
Kibria. Theory of ridge regression estimation with applications.
Vol. 285. John Wiley & Sons, 2019.

[83] Nello Cristianini, John Shawe-Taylor, et al. An introduction
to support vector machines and other kernel-based learning
methods. Cambridge university press, 2000.

[84] Zhi-Hua Zhou. Ensemble methods: foundations and algorithms.
CRC press, 2012.

[85] Leo Breiman. “Random forests.” In: Machine learning 45.1
(2001), pp. 5–32.

[86] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard
A Olshen. Classification and regression trees. CRC press, 1984.

[87] Devon K Barrow and Sven F Crone. “A comparison of Ad-
aBoost algorithms for time series forecast combination.” In:
International Journal of Forecasting 32.4 (2016), pp. 1103–
1119.

[88] Jerome H Friedman. “Greedy function approximation: a gradi-
ent boosting machine.”In: Annals of statistics (2001), pp. 1189–
1232.
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Abstract:
Short-term load forecasting ensures the efficient operation of
power systems besides affording continuous power supply for
energy consumers. Smart meters that are capable of providing
detailed information on buildings energy consumption, open
several doors of opportunity to short-term load forecasting at
the individual building level. In the current paper, four machine
learning methods have been employed to forecast the daily peak
and hourly energy consumption of domestic buildings. The
utilized models depend merely on buildings historical energy
consumption and are evaluated on the profiles that were not
previously trained on. It is evident that developing data-driven
models lacking external information such as weather and build-
ing data are of great importance under the situations that the
access to such information is limited or the computational
procedures are costly. Moreover, the performance evaluation of
the models on separated house profiles determines their general-
ization ability for unseen consumption profiles. The conducted
experiments on the smart meter data of several UK houses
demonstrated that if the models are fed with sufficient historical
data, they can be generalized to a satisfactory level and produce
quite accurate results even if they only use past consumption
values as the predictor variables. Furthermore, among the four
applied models, the ones based on deep learning and ensemble
techniques, display better performance in predicting daily peak
load consumption than those of others.
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1 Introduction

Over the last decade, smart meters have been rapidly deployed around
the world. Around 86 million and 11 million smart meters have been
installed by large and small suppliers in the US and UK respectively by
the end of 2018 [1], [2]. Almost 90% of these meters were installed for
residential customers. One of the main objectives of smart metering
in residential sectors is to encourage users to consume less energy
by raising awareness about their consumption levels. Smart meters
provide information on cost and amount of energy consumption in
near real-time for both suppliers and consumers.

Regarding the households, huge amounts of fine-grained data on
the use of energy not only provide them with more accurate bills but
also with valuable information on their electricity consumption habits
and time-based pricing rates. This information through demand
response and incentivization programs would help them to reduce
their energy usage during peak hours and schedule their appliances
according to electricity prices. High-resolution data generated by
smart meters, on the other hand, provide suppliers with several
controlling functions such as power quality monitoring and power
loss identification. Moreover, it opens many doors of opportunities in
electricity load analysis such as load forecasting with high accuracy
at lower aggregation levels [3], [4].

Electrical load forecasting is the prediction of the load demand that
an electricity consumer will have in the future. Load forecasts help
suppliers to balance supply and demand and to ensure the reliability
of power grids at the time of power deficiency. Load forecasts are also
important for electricity traders to balance their electricity purchase
and sales [5].

Load forecasting is performed in a wide range of time horizons
aiming at different targets: short-term load forecast (a few minutes to
1 day ahead) to adjust supply and demand; medium-term load forecast
(1 day to 1 year ahead) to plan outage and maintenance and long-term
load forecast (more than 1 year ahead) to plan the development of
power infrastructures. Load forecasting is also performed in various
aggregation levels when it is applied to the areas with different
geographical scales such as a country, city, small communities or
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a building. The forecasting task becomes more challenging when
it comes to lower aggregation levels such as a building level since,
many fluctuating factors affect a building’s energy consumption with
varying degrees such as weather parameters, building properties,
Heating, Ventilating and Air-Conditioning (HAVC) facilities and the
consumption behavior of occupants [6], [7].

A large number of studies on accurate short-term load forecasting
has been reported in recent years due to its impact on the efficient
operation of power systems and the economy. Furthermore, many
studies have benefited from smart metering data to develop more
advanced models for load forecasting at individual building levels.
The methods for predicting building energy consumption generally
are classified into two categories: engineering (physical) and data-
driven techniques. Engineering methods use mathematical equations
to present the physical components and thermal performance of
buildings. However, they need high details about different parameters
of the buildings that are not always available. Moreover, a high
level of expertise is required to perform expensive and elaborate
computations.

On the other hand, data-driven approaches do not need such de-
tailed data about the simulated building and instead learns from
real-time or historical data. These approaches are further classified
into two groups: statistical and AI-based techniques [8], [9]. Statis-
tical methods use historical data as an aim for correlating energy
consumption with the most important variables as inputs. There-
fore, a larger amount of historical data with high quality plays an
important role in the effectiveness of statistical models. Traditional
linear statistical models such as Gaussian mixture models (GMM),
Conditional demand analysis (CDA), Regression models and auto
autoregressive moving average (ARMA) and ARIMA, have remained
the baseline for time series prediction with widespread use in many
applications [10].

Although it is easy to use statistical techniques, the basic assump-
tion of such models is based on the fact that time series are considered
linear and therefore follow a specifically known distribution of statis-
tics. Numerous machine learning models have been developed to
overcome these limitations. The models based on Support Vector Ma-
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chines (SVM), as well as Classification and Regression Trees (CART),
are among the successful machine learning techniques used in time
series forecasting and energy applications.

Over the past decades, many researchers have investigated the
application of AI-based techniques in forecasting problems. Among
AI-based techniques, Artificial Neural Networks (ANNs) with different
structures have been widely applied in the load forecasting domain
[11]. ANNs similar to statistical methods use historical data to
build a model. However, with hidden layer structures and learning
ability offer several advantages over statistical and classical machine
learning techniques for time series forecasting. They are considered
data-driven and self- adaptive methods which can capture subtle and
functional patterns through a training process on historical records
of data, even if the underlying relationship between input and output
variables is complex or unknown. Nevertheless, the neural networks
with shallow structures have the disadvantage of assuming that all
inputs and outputs are independent of each other, even when dealing
with sequential data [12].

Recent studies in time series forecasting have shown the better
performance of prediction models using neural networks with deep
architecture. Long Short-Term Memory (LSTM) network which
was first proposed by [13], is a variation of deep learning concept
which was designed specifically to learn the short-term and long-term
dependencies present in sequential data. LSTM has been popular
with excellent accuracy in the realm of sequence learning like natural
language translation and speech recognition [14]. In recent years
there has been an increase in the number of studies on the application
of LSTM networks and their variants in short-term load forecasting.

According to the literature, most classical and AI-based methods
specifically deep techniques developed for load forecasting, require
sufficient historical load data for training. At the building level, they
mainly have access to the historical energy consumption of the build-
ing under study and utilize it for training the model. Subsequently,
for performance evaluation, they use the future profile of the same
house or building.

Similarly, in higher aggregation levels such as a community or a
substation level, the models are trained on aggregated historical con-

104



Paper II 1. Introduction

sumption of buildings and are tested on the future profile of the same
buildings. Typically, the low testing error of the models guarantees
the precise prediction and the small difference between train and test
error ensures the models’ generalization ability. Moreover, many of
the studies use additional information and build multivariate models
based on consumer behavior [15], weather and calendar parameters
[16] appliance measurements [17], etc. to improve the forecasting
accuracy.

However, there are still some issues about the forecasting accuracy
and generalization ability of such models which have not been largely
addressed. For example, to what extent the generalization ability can
be expanded or trusted and what happens to the model forecasting
accuracy if we only provide them with consumption data.

The first question focuses on the scalability of the models; how
successful the forecasting models are when tested on a different profile
that they are not previously trained on. The test profiles could be
quite different from the trained ones in terms of consumption patterns
or average daily and yearly consumption. This may happen in scenar-
ios when historical information on a building’s energy consumption
is not accessible and we can still rely on predictive models trained
on available historical profiles. For instance, if a new house profile
is added to a community, or a new smart meter has been installed.
The model developed in these situations can also be less expensive
in terms of complexity and computation time. The second question
focuses on how powerful a model can be if we only have access to
anonymized data on historical energy consumption due to privacy
issues or lack of other data sources.

This paper investigates the mentioned scenarios with a focus on
short-term load forecasting at an individual building level. For this
purpose, we develop four baseline models to predict hourly residential
load demand and evaluates their predictive accuracy and generaliza-
tion ability in the given scenarios. The models are chosen from the
category of most-widely used machine learning methods for energy
prediction known as ANNs, Support vector Machines, regression trees
(CART) and LSTM with standard architecture. They are trained
on consumption data of various load profiles and tested on unseen
houses with different levels of hourly load volatility.
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Furthermore, the sensitivity of the models on the size of train-
ing data and the number of input variables will be tested and a
comprehensive analysis of forecasting results will be provided. The
developed models are expected to learn various load profiles relying
on the built-in information in time series data and are aimed at im-
proving generalization ability and increasing model robustness. The
models that produce low-prediction errors on multiple houses can
further be used as representative predictive models for a group of
houses in a community. In demand response applications, this can
potentially remove the need to build separate forecasting models per
house profile within the community of houses.

The paper is structured as follows. Section 2 provides an overview
of the literature. Sections 3 and 4 briefly presents the architecture
and design considerations of the implemented forecasting techniques.
Then, Section 5 introduces the performance metrics for model eval-
uations. The dataset used in our analysis is described in Section 6.
The experimental results and discussion are provided in Section 7.
The paper ends with a conclusion in Section 8.

2 Related Work

There are many forecasting models that have been investigated and
proposed since the 1970’s for energy predation. Among them, sta-
tistical techniques have been extensively applied in load demand
forecasting problems. For example, in [18] the authors developed one-
day-ahead forecasts on hourly and daily electricity loads of a house
using both simple and multiple regression analyses. They utilized
weather parameters as the predictor variables and concluded that
models trained on the daily dataset provide more accurate forecasting
results. S.Sp. Pappas et al. in [19], proposed a method for electricity
consumption and price forecasting using AutoRegressive Moving Av-
erage (ARMA) models based on adaptive multi-model partitioning
theory. Their results show that the proposed method could apply to
online modeling and noisy input data.

There have been some hybrid load forecasting approaches that are
based on statistical techniques. For instance, XiaoshuLu et al. [20]
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presented a hybrid model based on a physical–statistical approach
to improve forecast accuracy in energy and building applications.
The physical model was developed to define the physical concepts
of energy streams while the statistical technique was designed to
consider model inconsistencies and specific diversity of buildings.

Support Vector Regression has also been applied in time series
prediction as well as power load demand forecasting. In [21] three
Support Regression Models and an improved SVR variant utilizing
optimization algorithms were used to predict the day-ahead electricity
load. The models’ effectiveness centered on the small size of training
data and their online learning functionality. In [22] we can find a
comprehensive overview of SVR applications in time series prediction
as well as power load demand forecasting.

Many researchers have also attempted to apply the Classification
and Regression Trees (CART) techniques to improve the load forecast
accuracy. For instance, Lahouar.A. et al. [23] proposed a model
based on random forests for short term load forecast with special
attention to load profile, holidays and customer behavior. Similarly,
researchers in [7], [24] utilized environmental and calendar features
to develop a method for electric load forecasting based on Decision
Tree and algorithms.

Recent studies have shown the better performance of prediction
models using AI-based techniques due to their ability to learn non-
linearities between inputs and outputs. Among AI-based techniques,
artificial neural networks have been successfully applied in the fore-
casting domain. Nasreen K. Ahmed et al. [25] performed an empirical
comparison of machine learning models for time series forecasting. In
addition to the classical techniques, they analyzed several variations
of artificial neural networks. The experiments demonstrated that
multilayer perceptron and the gaussian process regression outperform
other state-of-the-art models.

There are also some studies that discuss the hybridization of differ-
ent ANN approaches and are successfully applied to short-term load
forecasting. In [26] Hamid R. Khosravani et al. developed hybrid
models based on different neural network architectures and genetic
algorithms with several optimization parameters to predict electric
power demand at the Solar Energy Research Center. The comparison
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results with an autoregressive baseline model reveal that the models
based on the multi-objective genetic algorithm outperformed the
model based on computational and empirical methods with lower
complicity. Kuihe Yang et al. [27] proposed an ANN-based method
with fuzzy logic to develop models with fewer complexities and to
improve the accuracy of forecasts.

There have been numerous studies that utilized optimization algo-
rithms to optimize the structural and training parameters of ANNs
in forecasting problems. For example, Chaturvedi et al. [28] have
demonstrated the effectiveness of training neural networks with a
Genetic algorithm as an optimization strategy. A review study on
different variants of artificial neural networks in the field of short-term
load forecasting emphasizes that a combination of neural networks
with evolutionary algorithms could outperform the singles models in
terms of forecasting accuracy [29].

Over the last decade, neural networks with deep structure have
increasingly attracted the attention of researches in prediction prob-
lems. Compared to shallow networks, they benefit from many hidden
layers, exponentially fewer neurons, better activation functions, and
parameter initialization techniques as well as effective learning algo-
rithms. Different versions of deep neural networks are recently being
employed in energy prediction context, especially LSTM networks
and their variance due to their capability to capture the temporal
behavior of time series data. Daniel. M et al. [30] investigated the
effectiveness of LSTM-based architectures for building level energy
load forecasting. They applied two standard and Sequence to Se-
quence (S2S) architectures for the hourly forecast of a residential
load dataset with one-minute and one-hour resolutions. Experimental
results showed that the standard LSTM performing better in one-hour
resolution data while S2S performed well on both datasets.

In another study by Kong et al. [31] on short-term residential
load forecasting an LSTM-based framework has been assessed for
both individual and aggregated prediction levels. The comparison
results with several state-of-the-work approaches demonstrated the
superiority of LSTM for individual residential load forecasting. In
terms of aggregated (substation) level, the aggregation of all individual
forecasts yielded better results than the direct forecast of aggregated
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loads. Agrawal et al. [32] Introduced a deep-structure RNN-LSTM
network at a higher aggregation level; ISO New England energy
market using daily, monthly and weekly features to produce hourly
predictions over a one-year period.

Similar to the approaches using shallow ANNs, some studies ex-
plored the combination of LSTM with other models or optimization
algorithms. For instance, in [33] a CNN-LSTM neural network was
proposed to predict the energy consumption of residential buildings
with higher accuracy. The CNN layer was used to extract complex
features influencing energy consumption and the LSTM layer was fed
with the features to model the temporal information in time series
components. Mamun et al. [34] and Bouktif et al. [35] investigated
the effectiveness of hybrid deep neural networks based on LSTM
and genetic algorithms for load forecasting on the energy market
and metropolitan’s electricity consumption data sets. Application of
feature selection in [35] proved that using only optimal lagged features
as the input to the LSTM model produces the lowest forecasting error
for both medium-term and long-term horizons.

3 Modelling Techniques

In this paper, four modeling techniques are used for energy load
forecasting: Support Vector Regression (SVR) with Radial Basis
Function kernel, Gradient Boosting Regression Trees (GBRT) driven
from Classification and Regression Tree (CART) analysis, feedforward
neural networks (FFNNs) and LSTM networks. The first two methods
belong to the category of classical machine learning techniques and
the other two belong to AI-based machine learning techniques with
shallow and deep structures respectively. In the following, the detailed
information about each model is provided.

3.1 Support Vector Regression (SVR)

SVR is an extension of the support vector machine (SVM) algorithm
for numeric prediction or regression tasks. SVM is one of the popular
machine learning algorithms used for classification tasks. The SVR
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identifies and optimizes the generalization bounds given for regression
[36]. The formulation of SVR for time series prediction is expressed
as follows. Given training data (x1, y1), (x2, y2), . . . , (xn, yn) where xi
are input vectors and yi are the associated output value of xi, then
the SVR is an optimization problem as follows:

min
1

2
ωTω + C

l∑
i=1

(εi + ε?i ),

Subject to yi − (ωTΦ(xi) + b) ≤ ε+ ζi,

(ωTΦ(xi) + b)− yi ≤ ε+ ε?i ,

ζi, ε
?
i ≥ 0, i = 1, . . . , l

Where xi maps to a higher dimensional space and ζi is the up-
per training error (ε?i is the lower) subject to the ε-insensitive tube
|ωTΦ(xi) + b| ≤ ε. The parameters that control the output of the
regression are the error cost C, the width of tube ε, and the mapping
function, Φ [37]. The constraints imply that most data xi are put in
the tube |yi − (ωTΦ(xi) + b)| ≤ ε. If xi is not in the tube, there is an
error ζi or ε?i which we would like to minimize the objective function.
ε is always zero in traditional least-square regression and data is not
mapped to higher dimensional spaces. The SVR formulation theory
is similar concerning SVM, and once equipped, the SVR will produce
predictions using the following formula:

f(x) =
∑
i=1

lΘiΦ(x, xi) + b

We used a Radial Basis Function (RBF) as the kernel function due
to its ability to capture non-linear relationships between inputs and
outputs. The RBF kernel on two samples x and x′, represented as
feature vectors in the input space, is defined as:

K(x, x′) = exp(
−‖x− x′‖2

2σ2
),

Where ‖x− x′‖2 is the squared Euclidean distance between the two
feature vectors and σ is a free parameter.
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3.2 Gradient Boosted Regression Tree

Gradient Boosted Regression Trees (GBRT) is a powerful data-driven
technique based on a constructive ensemble strategy and is widely
used in non-parametric prediction problems. The GBRT algorithm is
a variant of Gradient Boosting Machine (GBM) for regression trees
which was originally derived by Friedman (2002) [38].

Two main algorithms define the GBRT model: the decision tree
models as the base (weak) learners and gradient boosting algorithm
to consecutively fit new models aiming at reaching to more accurate
estimation [39].

The target of GBM algorithm is to find an approximation ˆF (x)
to a function F (x) that minimizes a loss function (y, p); where y is
the real output, and p is the target value. The loss function that
is selected in our problem, is the squared error L2 function as the
commonly used loss functions for continuous targets and expressed
as follows:

l(y, p) =
1

2
(yi, F (xi))

2

The negative gradient is simply computed as follows:

−[
∂L(yi, F (xi))

∂F (xi)
] = yi − F (xi)

The simplicity of the gradient computation will facilitate the resid-
ual refitting of the GBM algorithm. The concept behind this loss
function is to put penalties on large residuals while neglecting small
deviations from the target outputs.

In the GBM algorithm with decision trees as the base learners, the
first step is to construct a base tree h(x; a) using a training dataset
{(x1, y1), (x2, y2), . . . , (xN , yN)} with size N . Then for the iterations
from 1 to M , the negative gradients are computed and a new tree
h(x; am) is fitted. Each tree is further updated according to the best
gradient step pm and is added to the ensemble. After M iterations,
all the regression trees which added sequentially to the ensemble form
the output of the algorithm as a combination of weak learners [40].
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3.3 Feed Forward Neural Network (FFNN)

An ANN is a system of processing units (neurons) that can be
linked together in different ways and estimate various non-linear and
arbitrary patterns. In a feed-forward architecture (FFNN), there is no
feedback and intra-layer connections between neurons. The weights
and bias of the network are estimated using a training algorithm
such as the back-propagation algorithm. This algorithm measures
the error of output every time and feeds back this information to
the network to reduce the error up to an acceptable predefined value.
Further, more details on back-propagation algorithms are described
in [41].

The input values in an MLP structure are weighed through weight
matrices and the output of neurons is determined through an activa-
tion function. The structure of the Artificial Neural network that we
used in our study illustrated in Figure 1. In the Feed Forward Neural
Network illustrated above, given an input sequence x = (x1, ..., xT ) in-
dicating consumption values from previous T time steps, it computes
output y at the next time step yT+1 by the following equations:

yi = f1[
T∑
i=1

xiwi] + bi,

yT+1 = f2[
n∑
i=1

yjwj] + bj

Where wi denotes the input to hidden weight vector, wj denotes
hidden to output weight vector, f1 refers to a non-linear hidden
activation function while f2 refers to a linear function. bi and bj
denote bias vectors, and n is the number of neurons in the hidden
layer.

3.4 Long-Short Term Memory Network (LSTM)

The LSTM is a variant of Recurrent Neural Network (RNN) which is
specially designed for time series data. The RNNs are neural networks
that use feedback connections among the nodes to remember the
values from previous time steps. Therefore, they will be able to
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Figure 1: Architecture of applied Artificial Neural Network (ANN)

capture the temporal behavior of time series data. Each neuron,
in a conventional RNN, receives the input and its output from the
previous step However, on long sequences, they have the problems of
vanishing or exploding of gradients over many time steps. The LSTM
addresses this problem and empowers RNNs algorithms using internal
memory cells [17], [42]. They converge faster and utilize memory cells
to store information for long and short periods of time. Regarding
power data showing obvious characteristics of time series data with
cycles, the history information from LSTM can be advantageous to
load forecasting. The structure of the LSTM Network applied to our
problem is illustrated in Figure 2.

In an LSTM network, given an input sequence = (x1, ..., xT ), it
computes an output as follows:

yt+1 = Whyht + by

where Why denotes the hidden-output weight matrix, by denotes bias
vector and ht denotes the hidden vector and is computed from the

113



3. Modelling Techniques Paper II

Figure 2: Architecture of applied Long Short-Term Memory (LSTM)

LSTM cell (block). A common LSTM block illustrated in Figure 3.
An LSTM cell has three gates: an input gate to identify important
information and preserve it in a long-term memory called the cell state
Ct, an forget gate to decide what information needs to be forgotten
from the previous cell sate Ct−1 and an output gate to decide what
to send to the next sequence.

Once an input xt enters the LSTM cell, it is passed through a
logistic sigmoid function and input gate it [42]:

it = σ(Wi[ ct−1, ht−1, xt] + bi)

Then the output of forget gate is computed as:

ft = σ(Wf [ ct−1, ht−1, xt] + bf )

To scale the output of LSTM activation function, the output gate ot
is expressed as:

ot = σ(Wo[ ct, ht−1, xt] + bo)

The transient ‘memory’ value of the activation function, ct is given
as:

ct = it ⊗ dt + ft ⊗ dt−1)
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Figure 3: Architecture of an LSTM cell

Here dt in the input vector of input gate and computed as:

dt = σ(Wd[ ct−1, ht−1, xt] + bd)

Where ⊗ denotes the element-vise multiplication of the vectors. The
LSTM output htat time step t finally is computed as:

ht = ot ⊗ tanh ct.

During the training process, the weight matrices Wi,Wf ,Wo and
Wd and bias vectors bi, bf , bo and bd are learned by an optimization
algorithm.

4 Data Normalization and Parameter Tuning

As mentioned in Section 1, the purpose of this research is to imple-
ment the models which are independent of external factors. Therefore,
we feed all the models with the past load consumption values in the
previous time steps known as load lags. Although all lag variables
(features) have the same scale, we scaled data for the FFNN and
LSTM networks using Minmax normalization, however, for the other
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two algorithms (SVR and GBRT) we used the original data. The
main reason is that in the AI-based networks normalizing or stan-
dardizing the input data usually prevents computational problems
and improves the functionality of training algorithms. The scaling
method transforms the value of each variable between zero and one
as follows:

ŷ =
y − ymin

ymax − ymin

For ANN and LSTM as AI-based networks, this transformation is
highly recommended to prevent computational problems and improve
the functionality of training algorithms. While the choice of scaling for
the other two models depends on the problem and the scale of features.
After testing the performance of SVR and GBRT on the validation set,
with and without data normalization we found that SVR performs
better without scaling while GBRT was not significantly affected,
with and without data normalization. Therefore, we decided to use
the scaled data for all models except for the SVR. The forecasts were
rescaled to the initial scale after the prediction process.

For the SVR, with RBF kernel function we tuned the parameters
of C, epsilon, and, gamma through a grid search approach. We
considered four candidate values for each parameter; 11,050,100
for C, 0.001, 0.01, 0.1, 0.2 for gamma and 0.1, 0.2, 0.3, 0.4 for
epsilon. In total, for each given scenario in the experiments, we tested
4× 4× 4 = 64 SVR models on the validation set.

For the GBRT model, one of the important parameters that need
to be regularized is the number of weak learners (trees). The develop-
ment of a model with a large number of weak learners would lead to
lower regression error, but higher complexity and risk of overfitting.
Furthermore, the speed of learning which scales the contribution of
each learner is another influential parameter that needs to be set to
reduce complexity and computation time. The lower learning rate
would normally require fewer learners, thus making the ensemble
model simpler with higher generalization ability [40]. To determine
the optimum number of trees and the learning rate we employed a
grid search strategy to compare the generalization error under each
combination of these parameters. According to that, for each variant
of the GBRT model, the number of trees was set among the range
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of 150,200 and 300 and the learning rate was chosen among a range
between 0.04 and 0.1.

The tree depth is also another parameter that requires tuning to
avoid the overfitting problem. The maximum number of variables for
decision splits and the minimum number of records for leaf nodes are
the characterizing parameters for defining the tree depth. Generally,
the tree depth has a high impact on the overfitting problem, when
decision trees are trained on a few observations with a large number
of attributes. For our problem, the training set has a large number
of records and a few numbers of features (reduces the chance of
overfitting. Therefore, we set the maximum number of features for
the best split to the input size and set the leaf size as the default
value of ‘one’ considered in the SkLearn library. Nevertheless, to
compute the optimal value for the maximum depth of each tree we
again used a grid search algorithm and set the candidate values in a
range of 2 to 4.

Regarding the FFNN we considered a single hidden layer with n
input nodes corresponding to the number of input (lag) variables.
To reduce the computation time, we did not tune the number of
nodes in the hidden layer, instead, we considered it as twice as the
number of input nodes plus one as discussed and suggested in [43].
However, we tuned two parameters related to the training process
by grid search: the optimization algorithm and weight initialization
technique. We selected ‘Adam’, ‘NAdam’ and ‘RMSprop’ as the
candidate values of optimization algorithm along with ‘Uniform’,
‘normal’, ’Golrot Normal’ as the candidates for weight initialization
technique. The linear activation function is used in the Dense layer
and The Rectified Linear Units (ReLU) [44] function is used in the
hidden layer. A batch size of 128 training samples and a number of
70 epochs (iterations) were chosen for the learning process of each
variant. Finally, a learning ratio of 0.001 was set in each iteration for
the convergence.

For the LSTM, we did not tune various hyperparameters because
of the high computational costs. However, the number of LSTM units
as one of the most important hyperparameters related to the network
structure was tuned using the validation dataset. The optimal value
of this parameter for each LSTM variant was chosen among the
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candidate values of 5, 10, 15 and 20. The number of features was
set to one and the number of timesteps was chosen as the number
of lag variables. Adaptive Moment Estimation (ADAM) function
was used for optimization due to its computational efficiency and its
ability to optimize models with a large number of parameters [45].
The linear activation function is used in the Dense layer before the
output of all units and the ReLU activation function was used for the
recurrent step. ReLU function is monotonic and half rectified, which
assigns zero to any negative values. This has the advantage of not
generating vanishing or exploding gradients. However, it can cause
dead neurons; therefore, we used the dropout layer between LSTM
and Dense (output) layer with the rate of 0.2 to reduce the negative
effect of dead neurons which may hurt the training phase. Since
LSTM has stronger learning ability than a shallow neural network,
higher batch size of 256 and fewer number of epochs (50) was set for
training the network.

5 Error Metrics

To evaluate the performance of a forecasting technique, forecasting
error is calculated. The lower the forecasting error, the higher the
performance of the model. The forecasting error is the difference
between the actual observation and the predicted value. There are
many error metrics that are proposed for calculating the forecasting
error and comparing the performance of time-series forecasting tech-
niques. In this study, we used three such metrics—Mean Absolute
Error (MAE), Root Mean Square Error (RMSE) and Mean Average
Scaled Error (MASE).

If ŷt is the prediction value and yt is the actual value at time t and
n is the number of test observations, we can define the three metrics
as the following:

MAE(t) =
1

n

n∑
t=1

|yt − ŷt|

RMSE(t) =

√∑n
t=1(yt − ŷt)2

n
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MASE =
1

N

n∑
t=1

[
|yt − ŷt|

1
n−1

∑n
i=2 |yi − yi−1|

]
The MAE calculates the magnitude of the errors on average and

ignores whether the prediction values are higher or lower than the real
values. Thus, MAE gives equal importance (weight) to all individual
differences. The RMSE on the other hand, penalizes large errors
by calculating the squared error before averaging them. The MASE
was proposed by [46] is introduced as a more applicable error metric
and as an alternative to some metrics like Mean Absolute Percentage
Error (MAPE) when the observation or prediction values are zero.
The MAPE is commonly used as a loss function in model evaluation
because it can interpret the relative error. However, the problem
with MAPE can occur when there

are zero values in the series and there will be a division by zero.
For such sequences, MASE is appropriate as it never produces infinite
or unknown values. In this alternative, each actual value of the series
in the MAPE formula can be replaced by the average of all actual
values of that series.

In addition to these metrics, we added another error metric to
our evaluation which is particularly defined for demand forecasting
problems, applied in [47] Daily Peak Mean Average Percentage Error
(DpMAPE). The DpMAPE measures how accurate is the model in
forecasting daily peak consumption. The information about peak
time and peak consumption values is highly important for energy
management systems for saving grid costs through peak shaving
services. The DpMAPE computes the relative difference (percentage)
between the daily peak consumption and predicted daily peak value
expressed by the following equation:

DpMAPE = |ymax − ŷmax

ymax

| × 100%

Finally, since each forecasting model is tested under different sce-
narios and produces different values for the defined measures, we need
to have a combined metric to assess the best variant of each model.
This metric is also adapted from [47] and calculates a cumulative
weighted error (CWE) based on four defined metrics as follows:
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CWE =
(RMSE +MAE +MASE +DpMAPE/100)

4
The CWE is further used to compare the prediction performance of
the best variants among different predictive models.

6 Smart Metering Data and Statistical Anal-

ysis

The introduced models are evaluated on a subset of energy consump-
tion data set for short-term load forecasting. The original dataset is
collected from smart meters installed in 5567 households in London,
that took part in the UK Power Networks led Low Carbon London
project between November 2011 and February 2014 [48]. The partici-
pants in the project were chosen as a representative sample of the
greater London population.

The dataset includes recordings from 110 blocks of houses contain-
ing energy consumption (in kWh) with the frequency of half-hour,
unique household identifier, as well as date and time. The blocks
are grouped into 18 categories known as the ACORN (acorn) groups.
The social factors and population behavior of each type and category
provide precise and valuable information about the households in the
given category. A comprehensive and detailed report on the ACORN
classification can be found in [49]. For this study, we have chosen
seven blocks belonging to five acorn categories known as A, B, C, D
and E.

According to the definitions in [49], consumers in groups A, B and C
are referred to as ‘Affluent achievers’; they live in big houses located
in the wealthy and suburban region. Group C is called ‘Mature
money’ and belongs to the retired couples who live in rural towns
and villages mainly in detached or semidetached houses. On the
other hand, households in groups D and E which are called ‘Rising
prosperity’, are not that wealthy, but younger, educated and living
in major cities.

In the preprocessing step, we discarded the houses with a large
number of missing records and unusual information. To be precise,
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among the 347 house profiles existing in the seven blocks, we primarily
chose 220 buildings with missing records fewer than a week. From
the remaining, the houses with zero mean consumption, indicating
no consumption and those with zero standard deviation implying flat
consumption were filtered out. Furthermore, the house profiles with
unusual total annual consumptions, over 20,000 KWh and less than
2000 KWh as well as total daily consumption of fewer than 3 KWh
for more than a month, were discarded.

Finally, from the 180 remaining houses, we randomly selected 15
houses from 5 acorn groups, and therefore a total of 75 house profiles
were picked for further study. In the final preprocessing step, linear
interpolation was performed on the house profiles containing small
gaps from 1 to 24 h. For each building, the energy reading for the
year 2013, due to the fewer number of missing records was chosen.
Accordingly, the number of observations in each dataset turned to
356 days 24 h = 8760 and the total number of observations in all 75
houses turned to 75× 8760 = 657, 000.

Figure 4 illustrates the energy readings of fifteen sample houses in
the dataset belonging to different acorn groups over one-year. As we
can see they demonstrate different amounts of hourly consumption
(ranging between zero and five KW/h), as well as various consumption
patterns over the same year (2013).

It is obvious that the short-term load forecasting models are aimed
at predicting accurate peak load or energy consumption. However,
one of the main influential factors in short-term load forecasting
at the household level is the load volatility which simply means
deviations from the average consumption. These deviations arise
frequently in a residential house because its energy consumption is
usually influenced by various factors such as temperature, utilized
appliances and consumption habits.

In the context of load forecasting, higher load violation increases
the complexity of the load profile, thereby making an accurate load
forecasting more complicated. Load analysis of the existing profiles
in terms of load volatility will assess in advance which house profiles
are potentially more challenging to forecast.

Figures 5 and 6 provide more insight into the load volatility of the
house profiles using box-plots statistics [50]. The boxplots provide
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Figure 4: Hourly energy consumption of sample houses in different groups over
one year (2013)

information on the median value and variability of the consumption
values. Figure 5 shows how the hourly energy load of one house
changes during different days of a week. For example, this house
has experienced high variations in hourly consumption during the
weekend and on Thursday than the other weekdays. Moreover, the
median value of energy consumption has been increased over the
weekend. The bobbles in the plot indicate that a few consumption
values are out of the maximum range; Q3 + 1.5 × (Q3 - Q1) [50]
which can be considered as outliers. For instance, on Saturday, there
have been recordings higher than 1 + 1.5× (1.0 - 0.3) = 2.05KW/h
showing by bobbles.

Figure 6 similarly illustrates the hourly load volatility of houses in
each customer group over one working day. We can see that there
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Figure 5: Boxplot statistics for House 33 over one week. (4. March to 11. March
2013)

are certain houses where their hourly consumption patterns change
very little, such as houses 3, 4 and 8 in group A; potentially easier
to predict while there are some houses (such as 15 in group A or 18
in group B) experiencing major changes in their hourly load profiles
which can make them difficult to forecast.

Table 1 provides summary statistics of house profiles per customer
group for the whole test period. The buildings in group A on average,
have the highest mean electricity load over different time slots (hour,
day and week) with the highest deviations from the mean values
(standard deviation values of 0.72, 6.5 and 34). Similarly, customers
in group D consume high energy but with lower deviations. On
the other hand, the customers in groups B and C behave similarly
and on average consume less electricity over a year. However, the
lowest average values and smallest volatilities are recorded for the
households in group E.

7 Forecasting Experiments and Results

In this work, we performed two separate experiments; one for de-
veloping and fine-tuning of the models on the validation set and
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another for the performance evaluation on the test set. To do the
experiments, all the time series models were implemented using Keras
2 and Scikit-learn [51] libraries. Total computations were conducted
in Python 3 on a MacBook Pro machine @3,1 GHz, Intel Core i5 and
16 GB RAM.

The data set including 75 house profiles with hourly intervals
was split into three separate subsets: trainset with 60% of data (45
houses), validation set with 20% of data (15 houses) and test set
with the rest 20% (15 houses). The selection of validation and test
sets was not performed randomly, instead, from each acorn group
we selected 3 house profiles as the validation set and three house
profiles as the test set with various levels of yearly consumption and
average hourly load variations. This selection approach would help
us to assess the model performance on a variety of house profiles
with different statistical characteristics and consumption behaviors.
The random selection might lead us to choose biased datasets either
simple or complicated profiles which may cause overestimation or
underestimation of the models’ forecasting capabilities.

7.1 Model Development and Tuning

In this step, we implement the models based on the architecture
design explained in Section 3 and tune the parameters according to
Section 4. One of the aims of these experiments is to understand how
the model’s accuracy is affected by the size of training data and the
number of input variables. The number of predictor variables and the
size of input data can be influential on the performance of machine
learning algorithms. If we build a model with an insufficient number
of variables and training records, the model will be too simple and is
not able to learn the relation between input and output variable(s). In
contrast, the model complexity and computation time would increase
if it is fed with too many features and redundant information.

As mentioned earlier, for all models, the input variables are consid-
ered as the load lags from previous time steps. The number of lags
that were tested in our experiments varies from 1 to 9 e.g., the load

2https://keras.io
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consumption for the previous 1 to 3 h and the load consumption at
the previous 1 to 6 and 1 to 9 h. Regarding the size of the training
set, four subsets of training data were considered for the evaluation:
25%, 50%, 75% and 100% of the total train size represented by D1,
D2, D3, and D4 respectively. Figure 7 shows the evolution of the
average prediction error on the validation set versus the number of
input variables and the size of the training set for each of the four
models studied.

According to the bar plots, the average prediction errors of all
models decreased between 1% to 3% when the size of the training set
increased from D1 to D3. However, a further increase in the training
size has not affected the accuracy of all models similarly. The SVR
and FFNN have shown the highest accuracy when they are trained
on D3 dataset while GBRT and LSTM performed the best with the
largest size of input data (D4).

Furthermore, the prediction error does not follow a clear trend
regarding the number of input lags. For the GBRT and FFNN, it
is observed that with the increase of the input number from 6 to 9
the errors tend to rise. This suggests that the hourly consumption
pattern can be captured by the smaller number of input lags. Thus,
in some cases, more lag can be discarded in order to reduce the
computation cost and complexity of the model. The likely reason is
that although the input to the model (past consumption variables)
is highly correlated with the target variable (one-hour ahead con-
sumption), they are also highly correlated with each other as they
are consecutive lags. The mutual dependence between consecutive
lags indicates redundancy of information they convey to the model
which would not boost the learning ability, rather it could increase
the training time.

However, for the LSTM on average more lag variables seem more
informative to the model. For the SVR the forecasting error does not
show a clear pattern concerning the input size.

7.2 Model Evaluation

In this section, we selected the final models (best variants) based on
the minimum CWE obtained in the previous section. In the cases
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Table 2: Characteristics of the best-trained models

Best vari-
ant

Training
size

Training
time (Min-
utes)

Parameters

SVR 33 houses 45 Kernel: RBF, C:10, Gamma:
0.001, Epsilon: 0.2, input: 6
load lags

GBRT 45 houses 15 Max Depth: 2, Learning
rate: 0.06, n. estimatores:
300, n.features: 6, 6 load
lags

FFNN 33 houses 30 Hidden layer: 1, Hidden neu-
rons: 13, Optimizer: Adam,
Weight.init mode: Golrot
Normal, 6 load lags

LSTM 45 houses 40 LSTM layer: 1, LSTM
cells: 10, Activation Func-
tion: ReLu Dropout rate:
0.1, 6 load lags

where the CWE results were the same, we picked the variant with
smaller daily peak MAPE error. Table 2 provides information about
the best variants; the size of training data, the number of input
variables, the parameters and the training time.

The best variants are then tested on the test profiles. To under-
stand the generalization ability of each model to different profiles,
we computed the average error metrics over 15 houses. To estimate
how much the error values, vary from the average, the corresponding
standard deviation (SD) for each error metric and model is further
reported. The lower standard deviation values for a model indicates
a narrower range of errors and implicitly more robustness and consis-
tency of the model. Table 3 reports the average forecasting errors for
one-hour ahead predictions. The reported CWE values prove that,
on average, the GBRT, FFNN and LSTM slightly outperform SVR
in hourly load predictions.
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Table 3: Average performance of best variants on 15 test houses

Average computed over predictions

Model RMSE
±SD
(KW/h)

MAE
±SD
(kW/h)

MASE
±SD
(KW/h)

DpMAPE±
SD (%)

CWE

SVR 0.36± 0.1 0.24± 0.05 1.12± 0.16 19.56±
3.68

0.48

GBRT 0.36± 0.1 0.23± 0.06 1.06± 0.12 17.88±
3.18

0.45

FFNN 0.35± 0.1 0.22± 0.06 1.01± 0.09 18.72±
4.08

0.44

LSTM 0.35± 0.1 0.21± 0.06 0.98± 0.07 17.76±
3.64

0.43

The AI-based models compared to the CART algorithm (GBRT)
obtain better performance considering the average CWE (0.44 and
0.43 versus 0.45). However, GBRT and LSTM detect better the daily
peak with an average DpMAPE of 17.8 and 17.7 KW/h respectively.
In general, all models scale well and demonstrates robustness with
average MAE of at most 0.24 KW/h and standard deviation of at
most 0.06. Figures 8 and 9 illustrate how the models predicted the
energy consumption of each test house over one week during the
spring season.

Except for the SVR which slightly overestimates the real consump-
tion values in most houses, the other three models mainly demonstrate
a good match and steady weekly prediction for the one-hour ahead
estimation. Figure 10 provides more insights into the variability or
dispersion of error metrics which were averaged over all profiles and
compared among different ML models.

The distribution of average DpMAPE errors proves that the median
value of the peak prediction errors of GBRT and LSTM is less than
the ones in other techniques. This means that these models adapt
better to changes in daily peak consumption and achieve low perdition
errors. The small size of the boxplot for the GBRT algorithm even
shows the least variability in the peak errors, thus higher robustness.
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The ability of these models in obtaining high accuracy is also visible
through boxplot statistics of average MASE. The median values in
the plots of RMSE and MAE indicate that for all the models, half of
the errors are around or less than 0.4 and 0.25 KW/h respectively.
However, these plots are not informative enough for comparative
analysis.

Another comparison is carried out by considering the diversity of
consumer groups. Figure 11 shows the average mean absolute error
in five distinct customer groups. The prediction error for the house
profiles belonging to group A was the highest, while in the other
categories it reduced between 2% and 15%. Groups B and C show the
lowest values for different models out of all the other groups. It also
confirms the lower average prediction error as FFNN, and LSTM were
used as the prediction algorithms. The superiority of these models in
hourly prediction is also visible for the test houses in other customer
groups. Overall, we can conclude that the forecasting task in group
A and group D is more challenging due to high average consumption
over a year as well as high hourly load variations. The models in
groups B and C, on the other hand, obtained higher accuracy due
to the lower load volatility and lower average yearly consumption of
the house profiles. These customers have shown the most predictable
profiles. The interesting finding is that the consumption behavior of
the houses belonging to group E with the lowest average consumption
and the lowest daily variations were still difficult to predict. The
probable reason is that the majority of houses in the training phase,
on average, have experienced higher hourly energy consumption than
these test profiles. Therefore, the trained models could not learn
their consumption behavior properly.

The final analysis was performed to evaluate the effect of tem-
perature and seasonal events on the prediction accuracy of various
techniques. Fig.12 shows the average MAE of four techniques over all
test houses in four consecutive seasons of the Year 2013. It is evident
from the chart the SVR produced the highest error than the other
three models over the seasons, though its estimation error reached
the lowest (around 0.07 KW/h) in the summer. The other three
models also predict summer load with the highest accuracy. The
forecasting error during spring and autumn increased for the most
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Figure 11: Comparison of models based on average Mean Absolute Error (MAE)
per customer group

models by around 10%. In winter the SVR and GBRT had another
10% increase, while FFNN and LSTM seemed more adaptable to
seasonal change and their error remained unchanged.

Figure 12: Comparison of models based on average MAE per season
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8 Conclusions

This paper presents analysis and comparison of hour-ahead load
forecasting with four data-driven models known as SVR, GBRT,
FFNN and LSTM. They were trained on historical load data provided
by the UK residential smart meters. Their generalization ability was
evaluated on the house profiles which were not previously trained
on. The test houses were chosen from five customer groups with
different levels of load volatility and average yearly consumption. The
sensitivity of each algorithm was also tested to the number of training
houses and the number of input lag variables. The main findings are
summarized as follows:

(1) Although the models were merely fed with consumption values
as the predictors, in general, they could provide stable one-hour
ahead prediction over a one-year period.

(2) The AI methodologies; LSTM and FFNN compared to the other
two techniques, adapted better to changes while performing
predictions, following the trend of real consumption and on
average, achieving lower prediction errors.

(3) . With regard to daily peak load estimations of various profiles,
the GBRT in addition to LSTM outperformed other techniques.

(4) As for the computation cost, the GBRT is the fastest algorithm
to be trained and fine-tuned among the others. On the contrary,
the training times of the SVR and LSTM are significantly high,
especially when the training size for the SVR grows or the
number of variables for tuning in the LSTM network increases.

(5) Increasing the number of training houses could improve the
accuracy of forecasts as long as the additional profile(s) raise the
model knowledge about the test profile. This implies a larger
training set does not necessarily boost the model performance.

(6) Increasing the number of inputs does not have a similar effect
on the performance of different variants. Some models perform
better with recent information about past consumption and
some need more knowledge on past consumption values.
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(7) A comparative study among the five customer groups shows
that the customers with the lower average amount of yearly
consumption and smaller hourly load volatility generate more
predictable profiles.

(8) An analysis of seasonal predictions reveals that the seasons with
lower temperatures usually come with more load violations, thus
making forecasting more difficult for almost all models.

Future lines of research in short-term load forecasting at the indi-
vidual building level aim to customize forecasting techniques for the
consumer groups with large variations in their consumption patterns.
performance evaluation of the studied techniques on the dataset with
higher resolution and for longer forecasting horizons can also be
another research direction for the future work.
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Abstract:
This paper addresses the estimation of household communities’
overall energy usage and solar energy production, considering
different prediction horizons. Forecasting the electricity de-
mand and energy generation of communities can help enrich
the information available to energy grid operators to better
plan their short-term supply. Moreover, households will in-
creasingly need to know more about their usage and generation
patterns to make wiser decisions on their appliance usage and
energy-trading programs. The main issues to address here are
the volatility of load consumption induced by the consump-
tion behaviour and variability in solar output influenced by
solar cells specifications, several meteorological variables, and
contextual factors such as time and calendar information. To
address these issues, we propose a predicting approach that first
considers the highly influential factors and, second, benefits
from an ensemble learning method where one Gradient Boosted
Regression Tree algorithm is combined with several Sequence-
to-Sequence LSTM networks. We conducted experiments on a
public dataset provided by the Ausgrid Australian electricity
distributor collected over three years. The proposed model’s
prediction performance was compared to those by contributing
learners and by conventional ensembles. The obtained results
have demonstrated the potential of the proposed predictor to
improve short-term multi-step forecasting by providing more
stable forecasts and more accurate estimations under different
day types and meteorological conditions.
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1 Introduction

The shift towards low carbon and sustainable energy production is
gaining momentum to support the increasing energy demand. Due
to this transition, the installed PV generation capacity is expected
to increase by more than 21.9 TW by 2050 [1]. Photovoltaics nowa-
days enables the generation of localized electricity among residential
consumers at a lower cost than that of the power grid. Costs are
even smaller if energy storage devices are used. Therefore, self-
consumption; the consumption from self-produced electricity is ex-
pected to grow among households. Moreover, energy use nowadays in
residential buildings is on the increase by using more electric vehicles
and high demand appliances. In such an environment, forecasting
energy demand and supply from micro-generation sources become
necessary to tackle the instability induced by the integration of PV
to the power grid and reduce the uncertainty of demand [2].

For electricity suppliers, forecasting demand and micro-generation
provide useful information to achieve demand and supply equilibrium,
serve peak demands, and maintain reliable grid operation. From the
customers’ point of view, energy forecasts through a smart Energy
Management System (EMS), will enable them to make smarter de-
cisions on managing their use, increasing self-consumption, trading
energy and reducing electricity bills. Intelligent Energy management
in buildings will lead to a decrease in the electricity intake from the
power grid, which in turn lowers the total operating costs [3].

Regarding the forecast horizon, energy forecasts are made with
various time scales corresponding to a particular decision-making
activity. Very short-term (from a few minutes to a few hours ahead)
is generally used for flow control and real-time dispatch; short-term
(from a few hours to a few weeks ahead) for adjusting generation and
demand and electricity trading; medium-term and long-term (from
a few months to a few years ahead) for PV plant planning, power
maintenance, etc.[4].

Generally, forecasting energy consumption with short-term to
medium-term horizons at smaller scales such as a residential building
or community level is quite challenging due to several demographic
and economic factors which influence the load with different degrees.
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These factors normally include population, size and structure of
the building, number of residents, number of appliances under us-
age, heating, ventilation, air conditioning system, and weather data
(humidity, wind speed, temperature, precipitation, etc.). A compre-
hensive study of primary features that influence electricity energy
demand is conducted in [5].

Similarly, the PV power output is difficult to predict with short-
term horizons due to its dependency on uncertain meteorological
factors, such as solar irradiance, atmospheric temperature, module
temperature, wind pressure, wind direction, and humidity. This
causes the power output of a PV system to change dynamically. A
recent correlation study reported in [6] shows that solar irradiance
has the highest correlation with PV power output compared to other
weather parameters. The result is validated for various weather
conditions in [7] and [8].

The energy estimation can be grouped into two categories according
to forecasting steps: one step-forecasting, which estimates future
demand or supply one step ahead in time, and multi-step forecasting
that predicts multiple time steps into the future. Several architectures
are proposed in the literature for one to multi-step ahead energy
forecasting at building levels. They are broadly categorised into
three categories: physical, data-driven (statistical or computational
intelligent) and hybrid methods [9] and [10]. Physical approaches also
known as analytical methods rely on the mathematical modelling of
the building under study. Data-driven methods, in contrast, focus
on statistical analysis performed on historical time-series data with
different input variables. Hybrid approaches incorporate both physical
and data-driven methods to exploit the benefits of each approach.

There are many studies which have analysed the potential of data-
driven and hybrid methods for electric load forecasting of buildings
and cities at multistep ahead. The approaches based on Artificial Neu-
ral Network (ANN) [11], [12] and Support Vector Machines (SVMs)
are successfully applied for energy analysis of buildings [13]. Moreover,
the deep learning approaches have been utilized for energy consump-
tion prediction at multistep ahead. A deep learning method based on
2D Convolutional Neural Network (CNN) to forecast one-day ahead
load with the fifteen-minute resolution is investigated in [14]. The
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prediction accuracy of Auto-Regressive Integrated Moving Average
(ARIMA), Long-Short-Term-Memory (LSTM), and Recurrent Neural
Networks (RNN) models are compared in [15]. The results showed the
effectiveness of the LSTM in comparison with ARIMA for multi-step
electric load forecasting. A variant of LSTM based on Multi-Channel
with time location (TL-MCLSTM) is proposed for multi-step short-
term consumption forecasting in [16]. The results showed that their
proposed method outperformed the compared methods including
LSTM and CNN-LSTM.

Yang et.al in [17] investigated the potential of a hybrid model
for multi-step load forecasting based on Extreme Learning Machine
(ELM), Recurrent Neural Network (RNN), SVM and Multi-Objective
Particle Swarm Optimization algorithm (MOPSO). The experiments
on different cities showed that the optimization technique can improve
the performance of the hybrid method and the combination technique
can improve the prediction accuracy. Another ensemble approach
based on Generalized Recurrent Neural Network (GRNN) and SVM
is proposed in [18] to predict the one week ahead electricity demand
of state loads. The experimental findings indicate that the proposed
approach is highly effective in terms of prediction accuracy and model
robustness.

The studies related to multi-step ahead PV production forecasting
also reveal the strength of using Deep Learning (DL) and hybrid mod-
els. Various structures of LSTM networks in [19] and [20] have been
proposed for solar power forecasting. Lee et al. [21] and Alzahrani
et.al [22] have demonstrated the superior performance of deep models
over conventional techniques for solar irradiance estimation. The
authors in [10] have shown that the ensemble approaches in PV
output forecasting increase the precision and efficiency of models
compared with individual models by integrating linear and non-linear
techniques.

A hybrid learning algorithm incorporating Self-Organizing maps
(SO), Support Vector Regression (SVR), and Particle Swarm Op-
timization (PSO) is also presented in [23] to forecast hourly solar
irradiance at city levels. It is found that the combined technique
outperforms conventional forecasting models. Another comparative
study in [24] shows the superiority of a blended model against indi-
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vidual algorithms including SVR, Random Forests (RF), Deep Neural
Networks (DNN) and Extreme Gradient Boosting (XGB) for day-
ahead PV output forecasting. In [25] the tree-based ensemble methods
based on extra trees (ET) and random forests (RF) also demonstrate
satisfactory results compared with support vector regression (SVR)
as the widely used machine learning method.

Despite several studies proposed in the literature dedicated to short-
term and multi-step forecasting, a few have investigated the potential
of deep-learning-based hybrid techniques using various input variables.
Presumably, no study has focused on forecasting both electricity
consumption and PV production across one dataset at local level.
Furthermore, most of the existing studies related to PV production
forecasting have been conducted on a proprietary dataset. The limited
availability of these datasets does not allow a fair comparison between
the results obtained using different forecasting model architectures.
Hence configuring the forecasting models on a specific dataset is not
optimal for a similar problem or dataset. This also makes it difficult
to reproduce the result. To close the research gap this paper presents
four main contributions.

(1) An ensemble approach with two levels is proposed to develop
forecasting models for energy consumption and energy genera-
tion of household communities at multi-steps ahead. In the first
level, multiple forecasting algorithms as base learners predict
both target outputs in one-step forward. In the second level,
the predictions for each target are used to train a meta learner
aimed at generating multi-step predictions separately for each
target.

(2) To create a diverse ensemble, we choose one promising algorithm
from the category of deep neural networks and one from the
class of conventional ML algorithms. Instead of fine-tuning one
deep network , multiple deep networks with different parameter
settings were trained on the dataset and their forecasts were
combined to create a more robust estimate.

(3) Three influential factors are considered as input variables to the
forecasting models: time variables, meteorological data, and
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historical electricity consumption and PV power output. Before
model development, two feature selection techniques along with
two machine learning algorithms are used to select the optimal
subset of input variables.

(4) A publicly available dataset with actual observations from an
Australian electricity distributor is selected as a case study
with both electricity and solar PV output measurements from
300 houses. The forecasting methods are evaluated from the
perspective of accuracy and prediction stability.

The paper is organized as follows: Section 2 presents and discusses
detailed forecasting framework steps. Section 3 describes the case
study, followed by forecasting experiments and results in section 4.
Section 5 concludes the study.

2 Forecasting Framework

Fig. 1 depicts the framework for multi-step ahead energy forecasting,
consisting of three main steps. Step One; data preprocessing, Step
Two; model development and selection of the most accurate models,
and Step Three; development and evaluation of an ensemble model
based on the results of the previous step.

The first step is further classified into five main tasks: visual
exploration, data cleaning, feature extraction and transformation,
feature selection and input/output modelling. During the first step,
we aim to better understand the data, improve the data quality,
determine predictive features, select the most useful ones and convert
data into the appropriate format for forecasting models. In the second
step, several commonly used algorithms in time series forecasting
e.g. ARIMA, SVR, LSTM etc. are trained and evaluated on large
sets of training and validation data. The aim is to shortlist the most
promising models for energy forecasting problem.

In the third step, the resulted algorithms from Step Two with the
lowest prediction error on average i.e. Seq2Seq LSTM and GBRT, are
combined to create an ensemble model. The trained ensemble tech-
nique is then applied to predict several household communities’ energy
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consumption and generation as test sets. The following subsections
present the details of each step.

2.1 Step One

2.1.1 Visual Exploration

Visual exploration allows us to understand the dataset more effectively.
It is also useful to recognize patterns and trends within the data
more quickly. In this study, we provide several plots and statistics
to serve these purposes. The results of visual exploration further
promote our decisions on subsequent steps such as data cleaning,
feature extraction, and feature engineering.

2.1.2 Data Cleaning

Typically, machine learning algorithms cannot perform effectively
with missing features. The raw smart meter data may contain missing
values due to transmission error or smart meter failures, which would
degrade the data quality. Data cleaning helps in managing missed
values in the time series of electricity load and solar output. To fix
missed values, imputation, moving average (MA), and inference-based
approaches can be used.

This study fills the missing values from the surrounding measure-
ments with a variant of MA known as an exponential weighted moving
average (EWMA) [26]. This technique solves the problem by com-
puting the arithmetical mean of data surrounded at the two sides of
missing value on condition of placing a higher weight on the latest
data. As both electricity load and solar output continuously vary, two
closer measurements are more similar. Thus, applying the EMWA
technique can be useful for replacing missing values.

2.1.3 Feature Extraction

The performance of a forecasting model mainly depends on the input
variables as the predictive features. As mentioned in Section 1,
previous studies have shown several influential factors on accurate
forecasting of household energy consumption and solar cells’ output.

183



2. Forecasting Framework Paper IV

The most important and common factors between two targets include
historical load measurements, weather conditions, time variables, and
customer socio-economic factors.

In this analysis, we created a set of candidate features based on two
references: the literature study and the results of data exploration.
The majority of the candidate features are influential on both predic-
tion targets such as outdoor temperature and historical load, while
some are more effective for predicting only one target, such as ’solar
zenith angle’ for solar output estimation and ’weekends’ or ’holidays’
on electricity consumption prediction. Notably, the candidate set of
features will be discussed in detail in Section 3, Subsection 2, and
the subset of features as the final input to the forecasting models will
be introduced in Section 3, Subsection 3.

2.1.4 Feature Transformation

Most machine learning algorithms perform well with numerical fea-
tures instead of categorical features. In this work, the categorical
attributes are transformed into numerical attributes using a com-
monly used method as One-hot encoding. This technique generates a
binary feature for each subclass of categorical features. For instance,
it converts a feature with two sub-classes into two binary features.
Furthermore, some numerical features with the current scale or value
are not informative enough as input to the forecasting models. There-
fore, they are transformed into an appropriate format before using in
the model development process. The attributes and functions used
in the feature transformation process will be discussed in Section 3,
Subsection 3.

2.1.5 Feature Selection

Selecting the best combination of the variables having a high cor-
relation with energy consumption and production can improve the
performance of the forecasting algorithm. However, an input space
with redundancy and many inter-correlated features typically de-
creases the accuracy of the prediction model and contributes more to
the over-fitting problem. To avoid overfitting, two feature selection
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methods, which have been proposed in the literature, including Pear-
son Correlation Coefficient (PCC) [27], [28] and Recursive Feature
Elimination Technique (RFE) [29], [30], [31] were used to reduce the
dimension of input space.

The PCC measures the linear correlation between two variables x
and y as Equation (1):

ρ(x, y) =
Cov(x, y)

σ(x), σ(y)
(1)

Where Cov is the covariance; σ(x) and σ(y) are the standard devi-
ations of x and y. If we consider each candidate variable as x and
each prediction target as y, then the x variables whose correlation
with the y target exceed a predefined threshold can be selected as
most related features. However, The PCC method cannot capture
nonlinear relationships between the x and y variables. Therefore, the
RFE method combined with a training algorithm was used to discover
the variables with high prediction ability and even with nonlinear
relations with the targets.

The RFE 4 ranks features to evaluate their importance according
to a specific criterion. It also uses the model accuracy to determines
the features contributing most to the prediction task in a recursive
way. The determination process starts with training a prediction
algorithm on the original feature set. It then continues with measuring
the feature importance and removal of the less relevant ones. This
procedure is repeated until it reaches the desired number of features
to select . The results of the feature selection process are discussed
in Section 3, Subsection 3.

2.1.6 Input and Output Modelling

As mentioned in Section 1, the task of energy load forecasting involves
many influential factors. Each factor can be dependent on both
its precedent values and the values of other factors. For instance,
household energy usage and solar output are strongly correlated to
their historical values and to air temperature values at the same

4Available at https://scikit-learn.org/stable/modules/feature selection.html#rfe
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time. To learn the potential correlations, it is useful for the learning
algorithm to receive this information as a multivariate time series
which contains multiple variable values at each observation time step.
Therefore, in this analysis, we provide a description of multivariate
energy forecasting. The aim is to use historical time series data to
predict the future temporal values of multiple energy variables. The
model input not only contains the historical energy factors, but also
includes other predictive attributes. This problem is formulated as
Equation (2):

D
M(D)−−−→ (Y1, Y2) (2)

Where M(D) refers to the learning model which aims to predict the
next H values of energy consumption and generation of households
from time step t as two time series data Y1 = [y1,t, y1,t+1, . . . , y1,t+H ]
and Y2 = [y2,t, y2,t+1, . . . , y2,t+H ] given a history multivariate time
series dataset D = (xi,j|i = 1, 2, . . . , N ; j = t− L, . . . , t− 1, t) where
N denotes the number of input variables (features) and L represents
the window length of history data.

2.2 Step Two

In this step, many forecasting models from different categories (e.g.,
Autoregressive, linear, SVM, Bagging and Boosting ensembles based
on Decision trees, Neural networks, and deep learning) are trained and
evaluated on a subset of training data using standard and suggested
parameters in the literature. The models involved are briefly presented
in the remainder of this section. The experimental settings and
prediction results of given techniques will be discussed in Section 4.

2.2.1 Persistence

One of the easiest ways of forecasting a time series’s future behavior is
the so-called persistence model. Persistence in the context of energy
forecasting assumes that the future values of the demand or supply are
determined under the basis that the conditions stay constant between
the current time and the future time. For long prediction periods,
however, this strategy lacks the skill of forecasting. Persistence was
only assessed here for comparative analysis.
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2.2.2 Autoregressive Integrated Moving Average (ARIMA)

ARIMA belongs to the category of statistical models for forecasting
time series data. In ARIMA, the generated forecasts are treated as a
linear function of the most recent observations and past random errors.
Mathematical details are provided in [32]. This technique is usually
unable to capture non-linear relationships between components of
the time series and is often applied to univariate time series data.
Sample applications of the hybrid models with ARIMA applied to
short-term time series forecasting can be found in [33] and [34].

2.2.3 Ridge Regression

Similar to the Linear Regression algorithm, Ridge regression assumes
a linear relationship between input variables and the output. However,
it makes the model simpler by adding L2 penalty to the loss function
during training. L2 penalty has the effect of reducing coefficient
values of those inputs that have less contribution to the forecasting
task. It is calculated based on the sum of the squared coefficient
values. In our research, Ridge regression [35] was selected to evaluate
and compare the potential predictive ability of a regularized linear
model against non-linear statistical models.

2.2.4 Support Vector Regression (SVR)

SVR is an extension of a Support Vector Machine (SVM) used for
regression problems. The SVR is based on statistical learning the-
ory and structural risk minimization. In this method, instead of
minimizing the training error, the generalization error is reduced.
The generalization functionality optimization is achieved by map-
ping the initial input space through non-linear kernel functions to
a high-dimensional feature space. A mathematical explanation of
SVR is provided in [36]. The SVR models are successfully applied to
electrical load forecasting [37], [18], [38] as well as renewable energy
prediction[39], [40], [41].
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2.2.5 AdaBoost

AdaBoost is an ensemble method that combines many weak learners
into a strong learner. The most common algorithm used with Ad-
aBoost is one-level Decision Tree (DT) algorithm. In this method, the
Decision Trees are sequentially added and trained as weak learners.
This process repeats until a predefined number of learners have been
created or there is no further reduction in the training error. In an
AdaBoost used for regression tasks, final predictions are made by
calculating the weighted median prediction of the learners in the en-
semble. The detailed process is given in [42]. The benefit of AdaBoost
over SVM is the ability to identify only those features with more
predictive capacity during training. This ability would potentially
lead to enhanced execution time due to lower dimensionality of input
space.

2.2.6 Gradient Boosted Regression Tree (GBRT)

GBRT is another type of ensemble algorithm developed based on
Boosting and Decision Tree algorithms. In this approach, the model
loss is determined using a gradient descent technique when each weak
learner is introduced to the GBRT ensemble. This process adds a tree
to the model that decreases the loss. To improve the performance of
the ensemble, each new learner’s output is then added to the output
of the sequences of the generated tree. The details of the algorithm
is discussed in [43].

2.2.7 Back Propagation Neural Network (BPNN)

BPNN is a type of artificial neural network (ANN) which use a back-
propagation algorithm [44] for training the network. The architecture
of a BPNN model includes an input layer, one or more hidden layers
and an output layer. The non-linear activation function in the hidden
layer(s) can capture the complex relationship between variables in
the input and output layers. The flow of signals in a conventional
BPNN is from inputs to outputs. Thus the network architecture
is called the Feed Forward network. The ability to estimate any
continuous function, the high generalization ability, and imposing no
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restrictions on the input variables have made the ANNs considerably
useful techniques for forecasting time series, specifically where the
data volatility is high, as for example in load data. A review of
using ANNs for building electrical energy consumption forecasting
and photovoltaic power generation is provided in [45] and [46].

Figure 2: BPNN architecture for multi-step prediction

Fig. 2 depicts the architecture of BPNN, which was developed for
our problem. To satisfy a BPNN network’s input requirements, the
time series data with (N − 1) variables from previous t time steps
is first framed as sliding windows with the size of L. Reducing one
variable from the input with the size of N indicates that the BPNN
that is trained to predict only future load consumption values removes
the solar energy generation variable from its input. Accordingly,
the network which estimates solar output ignores electricity load
from the input set. Each two-dimensional input window is then
transformed to a flattened vector of Xi and is fed to the network
where Xi = (x1,t, x1,t−1, . . . , x1,t−L, ..., xN−1,t, . . . , xN−1,t−L) and i =
(1, 2, . . . , (N − 1)×L). Next, the network computes an output vector
of Y for the next time steps from t : t + 1 to t : t + H, where H
represent the forecast horizon. Each element of Y vector at time step
t is then calculated by Equation (3):
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yt = bk +

n2∑
k=1

wk f2(

n1∑
j=1

wjk f1(

p∑
i=1

wij + bi) + bj) (3)

Where yt is the output y of the BPNN at time t; f1 and f2 are the
non-linear functions of the neurons in the first and second hidden
layers; n1 and n2 are the number of neurons in the hidden layers; wij
are the weights of neuron j connecting the input with the first hidden
layer; and wjk are the weights of neuron k connecting the neuron j in
the first hidden layer with the neuron k in the second hidden layer;
wk are the weights connecting the output of the neuron k with the
output neurons and bi, bj, bk denote bias vectors in the input layer
and two hidden layers respectively. Note that, in the given problem,
one BPNN was trained per target for multi-step prediction. Both
networks accept the same multivariate input data; however, one is
trained to estimate energy consumption and one is trained to predict
energy production.

2.2.8 Long-Short Term Memory network (LSTM)

LSTM, proposed initially by Hochreiter et.al [47], is an artificial
recurrent neural network (RNN) [48] architecture that is well suited
to time series prediction. There are feedback connections in the LSTM
to update the state of neurons with previous inputs, in contrast to
conventional feed-forward neural networks.

Moreover, unlike typical RNNs, they benefit from long-term mem-
ory cells to resolve the disadvantage of unstable gradients while
learning series with long-term dependencies. There are four main
connected layers in the basic LSTM cell, as shown in Fig. 3.

The main layer known as control state computes the long-term
state ct by analyzing the current input vector xt and previous short-
term state ht−1. The other three layers are gate controller layers
known as ft for the forget gate, it for the input gate and ot for the
output gate. Gate operations, such as removal, writing and reading
are performed to change the LSTM cell’s states and its output at each
time step. The LSTM computations are shown through Equation (4)
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Figure 3: Structure of a basic LSTM cell

to Equation (9):

it = σ(W T
xi.xt +W T

hi.ht−1 + bi) (4)

ft = σ(W T
xf .xt +W T

hf .ht−1 + bf ) (5)

ot = σ(W T
xo.xt +W T

ho.ht−1 + bo) (6)

c̃t = tanh (W T
xc.xt +W T

hc.ht−1 + bc) (7)

ct = ft ⊗ ct−1 + it ⊗ c̃t (8)

ht = ot ⊗ tanh ct (9)

Where σ denotes the logistic activation function; W T
xi, W

T
xj, W

T
xo

and W T
xc are the weight matrices of each of the four layers for their

connection to the input vector xt; W
T
hi, W

T
hj, W

T
ho and W T

hc are the
weight matrices of each of the four layers for their connection to the
previous short-term state ht−1 ; bi, bf , bo, bc are the bias terms for
each of the four layers; ct is the long-term state at time t, and ht
is the output of the LSTM cell. In short, the input gate decides
which parts of input at time t, should be added to the long-term
state ct; the forget gate stores the important part in ct as long as
it is needed, and output gate decides which parts of ct should be
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read and output at a current time step. The decisions made by gate
controllers are implemented through sigmoid activation functions
whose outputs range from zero to one. Feeding output values close
to zero to element-wise multiplication operation (⊗) makes the gates
close and cell’s states unchanged, while producing values close to one,
makes them open and change the states.

The LSTM network which was developed for this study is illustrated
in Fig. 4. As shown, it includes four layers: an input layer, an LSTM
layer with a certain number of hidden cells, a dense layer and a
reshape layer. The input layer includes N × L neurons, where N
denotes the number of features and L denotes the number of temporal
lags. The LSTM layer is used to grasp the internal representation of
input data by capturing the deep temporal dependencies within the
multivariate time series. The dense layer is responsible for forecasting
the future values of the two targets based on the hidden state of the
last LSTM cell in the first layer. Since each neuron in the dense layer
is responsible for producing one output, the number of neurons in
the dense layer is set to as twice as H steps ahead, corresponding to
the forecasting requirements of the two targets. The reshape layer
is finally used to transform the output layer to separated vectors for
each target.

Figure 4: Structure of LSTM network for multivariate multi-step prediction
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2.2.9 Gated Recurrent Unit (GRU) network

GRU, proposed by Cho et.al [49], is another version of LSTM with
the same principles of processing long-term sequences but with a more
compact structure. Compared to LSTM, it controls the information
flow with fewer gates and parameters. GRU is thus trained faster and
can be considered more effective in terms of simplified architecture.
GRU has also successfully applied in both short-term residential load
[50], and photovoltaic forecasting [51]. The architecture of a GRU
cell is illustrated in Fig. 5.

Figure 5: Structure of a basic GRU cell

In the GRU architecture, both state vectors are merged into a
single vector ht and a single gate both controls the input gate and
forget gate. There is no output gate instead, the full state vector is
output at every time step. However, there is a new gate controller
which decides which part of the previous state will be available for
the main layer. The equations from number 10 to 13 summarize the
computation process of a GRU cell:

zt = σ(W T
xz.xt +W T

hz.ht−1 + bz) (10)

rt = σ(W T
xr.xt +W T

hr.ht−1 + .br) (11)

h̃t = tanh (W T
xg.xt +W T

hg.(rt ⊗ ht−1) + bh) (12)

ht = (1− zt)⊗ ht−1 + zt ⊗ h̃t (13)
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The GRU network architecture implemented for our study is similar
to the one of LSTM network, which was illustrated in Fig. 4. The
only difference is replacing LSTM cells by GRU cells in the recurrent
layer.

2.2.10 Convolutional Neural Network (CNN)

CNNs are a branch of neural networks initially designed for such areas
as speech recognition [52] and image classification [53]. They have
been further applied in predicting energy time series data [54]. CNNs,
compared to fully connected networks, are less complicated as they
use fewer parameters to learn. They also do not require extensive
feature engineering as they can automatically extract and generalize
features from the input space.

Every convolutional network has three main components: (1) Con-
volution through one or multiple layers, where the features are ex-
tracted from input through filters, a non-linear transfer function and
feature maps. Feature maps allow neurons in each convolution layer
to be connected to neurons located within a small rectangle in the
previous layer. This architecture enables the network to concentrate
on low-level features in the first hidden layer and assemble them
into higher-level features in the next hidden layers. (2) Pooling that
reduces the dimensionality of feature maps while maintaining the
relevant input information. (3) Fully connected layer that creates
final non-linear combinations of features for making predictions by
the network.

The architecture of the CNN network implemented for this study
is depicted in Fig. 6. Six components are included: (1) an input
layer that is the same as the one fed to LSTM and GRU networks.
(2) The Convolutional layers that perform convolution operations
on the multiple time series of the preceding layer with 32 and 16
filters including kernel size of two, followed by Relu layer; (3) a
maximum pooling layer (as the most common type of pooling layer)
that aggregates the inputs so that only the maximum value in each
kernel passes through the next layer and the other inputs are discarded;
(4) A flattening layer which transforms the 2-dimensional output to
1-d output; (5) a dense layer where neurons are connected to all the
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neurons in the previous layer. The neurons in the dense layer are
responsible for producing forecasts at multiple steps ahead and (6)
the reshape layer used to transform the output shape to the desired
shape.

2.2.11 Sequence-To-Sequence LSTM (Seq2Seq LSTM)

A Sequence-To-Sequence network (also called Encoder-Decoder) is a
subclass of neural networks that can be used to map sequences to se-
quences. Encoder-Decoder networks have been proposed to implement
machine translation systems in which the source language sentences
are fed to the encoder and the destination language sentences are
interpreted by the decoder.

A Seq2Seq network which utilizes LSTM cells in both encoder
and decoder layers was first proposed by I.Sutskever et.al [55] for
language translation. This network structure was further extended
to time-series forecasting activities, especially targeting multi-step
ahead forecasting.

The Seq2Seq architecture developed for our problem is adopted
from this architecture, which performs multi-step forecasting of two
targets based on multivariate input time series. As shown in Fig.
7, this network has two main components: one LSTM layer as the
encoder and one LSTM layer as the decoder.

First, the input sequence is shown to the network one window at a
time. Next, the LSTM encoder learns the relationship between time
steps in the input. The output of the encoder shown as ‘hidden states’
layer in the architecture, is a vector vt that contains the internal
representation of the input series. The decoder converts this vector
further into two target sequences as the multistep forward prediction
values. The probability of each target sequence is then computed as
Equation (14):

p(yj,t+1, yj,t+2, ..., yj,t+H|X1,X2,...,XL
) =

H∏
t=1

p(yj,t | vt, yj,1, yj,2, ..., yj,t−1)
(14)

Where yj denotes the jth target variable for j = (1, 2) and
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(X1, X2, . . . , XL) is a time series of multiple input series framed as a 2d-
window; where Xi represents the ith column of this window and refers
to the features values at ith time-step; and (yj,t+1, yj,t+2, . . . , yj,t+H)
denote the forecasting values of H steps ahead of jth target value.
Note that the number of temporal lags or window length L can be
equal or different from the lookup size in the output sequences H.

2.3 Step Three

In this stage, we adopt an ensemble learning approach to create
a strong forecasting model based on the algorithms evaluated in
the previous step. When we combine the predictions of a group of
predictors, the forecast accuracy is typically higher than that of the
best individual predictor. The technique which utilizes the group
of predictors is called ensemble learning. Ensemble learning can be
performed in different ways.

One popular approach is called bagging, where predictors with the
same training algorithms are trained on different random subsets of
the training set. The sampling is performed with replacement and
allows training instances to be sampled several times for the same
predictor. After training of all predictors, the prediction is made for a
new instance by simply aggregating the predictions of all estimators.
As a result, the ensemble will have a lower variance than individual
estimators. However, in the context of load forecasting, because of
the inherent autocorrelation within the observations, the bagging
method with a random sampling technique cannot be optimal.

Another common approach is boosting, where the predictors are
sequentially trained, and each tries to correct its predecessor. The
main idea of boosting is building a strong learner based on many
weak learners. The major downside to sequential learning is that it
can not be parallelized because each predictor’s training takes place
after training and assessment of the previous predictor.

A more advanced ensemble technique is called stacking. In this
case, several predictors are trained on a subset of training data and
make predictions on another subset of training data (called held-out
set). A blender or meta learner then is trained on the forecasts of
base predictors. In practice, the meta learner can be any learning
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algorithm such as Linear Regression or Decision Tree. A successful
meta-learner effectively learns the optimal weights to combine the
base learners and, as a result, produces more accurate predictions
compared to the individual learners. Stacking is thus aimed at both
reducing variance and improving the accuracy of forecasts. A detailed
guide to ensemble learning is provided in [56].

In this work, we employ the stacking ensemble approach using the
two most promising algorithms from Step Two. One algorithm with
multiple variations is used to create the first-layer predictors (base
learners) and one is used to merge the base learners’ forecasts. We
adopted and extended the development of base learners from [57] for
processing multivariate input and output energy data. The training
process and forecasting results of the ensemble model will be provided
in Section 3 Subsection 8.

2.4 Dataset Description and Data partitioning

The original data was obtained from a publicly available dataset
known as Ausgrid solar home electricity data [58]. It consists of
half-hourly electricity consumption and generation of 300 Australian
houses with rooftop solar systems from 2010 to 2013. Based on the
recorded postal codes, two cities were recognized as the place of data
collection: Newcastle and Sydney, each including 150 house profiles.

For this study, several aggregated profiles out of the original dataset
were created to serve the purpose of energy forecasting at low aggre-
gated levels, such as small household communities. More precisely,
150 individual profiles from each city were initially converted into
three equal-sized groups, each including 50 members. The individual
readings of energy consumption and generation from each group were
summed up to create six aggregated load profiles in total over two
cities. We considered each group as a small community and named
them as A, B, C for Sydney and D, E, F for Newcastle. To provide
smoother profiles and to be consistent with the frequency level of
external datasets such as weather data, the 30-minute series was
downsampled to hourly series using summation technique over one
hour. Fig. 8 and Fig. 9 depict hourly electricity consumption and
solar energy output of the six communities between 1 July 2010 and
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Figure 8: hourly total electricity consumption of six communities over three years

Figure 9: hourly total solar output of six communities over three years

30 June 2013 respectively.
As shown in the figures, the dataset was partitioned into different

subsets with a total ratio of 77 % for training and 23 % for testing.
The training subsets that were then concatenated together, covering
the hourly energy data of all six communities over the first two periods
(2010-11 and 2011-12) and the ones of A and D over the third period
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(2012-13). The test subsets which were used for evaluation of the
baseline models include energy consumption and generation of four
communities over the third period. More precisely, the observations
of Community B and C from Sydney, and the ones of Community
E and F from Newcastle between 2012 and 2013 (The data on the
right side of red dashed lines in Fig. 8 and Fig. 9). Each test subset
was further divided into meta train and meta test sets with a ratio of
70 % and 30 % for building and evaluation of the ensemble method.

2.5 Data Exploration

Fig. 10 and Fig. 11 show the average values of hourly energy demand
and supply in Kilowatt-hours by the six communities (A to F) over
the year.

Figure 10: Mean hourly demand of six communities over the year

Overall, the households in Sydney (A, B and C) consumed more
electricity than the consumers in Newcastle (D, E and F) in all three
periods. Above 37 KW/h energy was spent in Community A between
2010 and 2011. This amount was the highest among other groups in
different periods. Furthermore, both cities experienced a decreasing
trend in energy consumption from 2010 to 2013 (Fig. 10). In terms of
solar output, however, the people in Newcastle on average produced
more energy in different periods; 13 KW/h as opposed to 10 KW/h
(Fig. 11).
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Figure 11: Mean hourly generation of six communities over the year

Figure 12: Hourly energy consumption and solar output of Community A over
three years

Fig. 12. shows the consumption behaviour and production pattern
of Community A as an example. There are up and down patterns
in both consumption and generation profiles, as seen in the graphs,
which are mainly replicated throughout the entire three-year cycle.
We can also see that both profiles follow the time-of-year pattern
in each period but in reversed directions. More precisely, during
the cold months in Australia (May-September), with more usage of
heating systems, the peak hourly electricity demands increases and
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reaches around 100 to 120 KW/h, whereas the solar energy generation
decreases at least by 20 percent (from 50 to 40 KW/h) during the
same period with lack of sunshine. Similarly, the hourly electricity
demand over non-cold periods (October-April) is reduced by half and
reaches 50 KW/h in most intervals, whereas the energy generation
grows continuously when in January reaches its highest amount; 60
KW/h.

The effect of time variables such as the month of year and day of
the week on the load data is more visible in Fig. 13 and Fig. 14,
where the mean aggregated loads of the houses (in Community A)
vary by month and day with different degrees. According to Fig.
13, peaks in mean demand are seen around winter months (June,
July, August) and troughs around March, April and October. The
day-of-week pattern, however, is similar for all months except for July
when the consumption reduces in the weekends. On the other hand,
Fig. 14 indicates the maximum energy output levels in the summer
months, such as December and January. Similar to the consumption
plot, there is no regular pattern based on days of the week for solar
energy generation.

Figure 13: Average energy consumption by month and day

The analysis of time variables reveals the effect of outside air tem-
perature and, most likely, other meteorological factors on household

203



2. Forecasting Framework Paper IV

Figure 14: Average energy generation by month and day

consumption patterns and solar cell outputs. As stated in the intro-
duction section, the effect of weather parameters in the issue of energy
forecasting has also been demonstrated in the literature. Related
meteorological data was collected for our analysis via the website of
the Australian Government Bureau of Meteorology [59] and added to
the aggregated load dataset.

Fig. 15 and Fig. 16 provide two examples of weather data analysis
on the load profiles. Fig. 15 shows the demand during non-working
hours plotted against outside temperature on both weekdays and
weekends. The non-linear relationship indicates the importance of
current air temperature in load demand prediction. The usage of
air-conditioning systems for temperatures above 20 °C slightly lift the
demand, while for lower temperatures around 10 °C, heating systems
increase the demand considerably.

In Fig. 16, however, we can see the positive correlation between air
temperature and solar output (during daytime). It also shows how
various amounts of Global Horizontal Irradiance affect solar energy
production. During hot days where the temperature is mostly above
20◦, large concentrations of GHI are detected. Since the number of
sunny days during the observing period is smaller, the overall amount
of energy provided by solar panels is lower than that produced by
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Figure 15: Aggregated load demand against air temperature

Figure 16: Aggregated solar output against air temperature
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those days with a lower or moderate temperature.
In Fig. 17 and Fig. 18 we also looked at how demand and generation

vary with the time of day and the weekend. Here, Hour 0 corresponds
to 12 am to 1 am, Hour 1 corresponds to 1 am to 2 am, and so on.
It can be seen that there are significant differences between daytime
and night-time patterns of the two plots. As expected, the household
peak consumption occurs during afternoon and evening while the
generation peak happens around noon. Moreover, in both graphs,
the weekend effect is relatively large, specifically during the daytime
between 9.00 and 17.00.

Figure 17: The hourly consumption distribution

Figure 18: The hourly generation distribution
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Future energy values can also be strongly correlated with the
amount of energy spent or produced over previous steps in time. Fig.
19 illustrates the Partial Autocorrelation Correlation plots of the time
series of hourly energy consumption and generation. The maximum
lag step used for calculating PACs is set to 24× 7 = 168 hours (i.e.
one week) and the confidence interval is set to 85% shown by the light
blue lines. We can see that in both graphs, PACs’ absolute values
mostly exceed the significance level up to 24 lags. This implies that
the energy values at 24 previous hours are highly correlated with the
energy values at the current hour.

Figure 19: Partial auto-correlation plots

2.6 Data Cleaning and Feature Engineering

In the initial dataset, irregular profiles with a significant amount of
incomplete records had been already removed. For our use, three
additional cleaning activities were carried out on the dataset: One
was to delete one consumer data from the Sydney dataset due to
a large number of missed measurements for the three-year study
period; The second was filling in missing values for the days with
short gaps e.g. one to six hours. The third was to correct the record
values indicating zero aggregated energy consumption, implying a
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situation that would be almost impossible in real-world scenarios. As
mentioned in Section II, Part (2); we used EMA to replace the zero
or empty measurements with valid values.

As mentioned in Section 2, Part 3; we created a candidate set of
predictive features: historical energy load measurements, time and
calendar variables along with meteorological features. Historical load
variables refer to energy consumption and production of households
at previous hours. The initial number of historical values is set to
24, as described in Section 3 and demonstrated in Fig. 19. Time and
calendar variables include ‘Hour of the day’, ‘Time of the year’, ‘Is
weekend’, and ‘Is holiday’. The weather data include the following
variables: Cloud Opacity %, Diffuse Horizontal Irradiance (DHI) in
W/m2, Direct Normal Irradiance (DNI) in W/m2, Global Horizontal
Irradiance (GHI) in W/m2, Solar Zenith angle (Zenith) in degree,
Air Temperature in °C, Wind Speed in m/s, Wind Direction in °,
Relative Humidity in %, and Precipitable Water in kg/m2.

Through feature transformation process, to create more meaningful
inputs, the values of ‘Hour of the day’ and ‘Time of the year’ attributes
were converted to integer values produced by Sin and Cos functions.
This transformation represents the daily and yearly periodicity of
load profiles in a more effective way. Additionally, the two categorical
attributes representing weekends and holidays were formulated as
binary features with One-hot encoding method.

Regarding the meteorological features,’Wind Direction’ and ’Wind
speed’ were converted to more meaningful variables for the forecasting
algorithms. Generally, wind direction in units of degrees is not
considered as informative model input. For instance, 360◦ and 0◦

are close to each other and wrap around smoothly. If the wind is
not blowing, then the direction should not matter. Therefore, we
converted the ’Wind Direction’ and ’Wind Speed’ attributes to a
wind vector with X and Y coordinates according to the following
equations:

Wind (in radian) = WindDirection× pi/180 (15)

WindX = WindSpeed× cos(Wind(in radian)) (16)

WindY = WindSpeed× sin(Wind(in radian)) (17)
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Among the three features related to the sun radiation reaching the
earth’s surface, ‘GHI’ is of particular interest to photovoltaic installa-
tions and based on this formula DNI × cos θ+DHI, it includes both
‘DNI’ and ‘DHI’attributes; where θ refers to the angle of incidence
of the beam. It is conceived that GHI can convey most information
about its components to the model. Thus, to prevent the detrimental
impact of feature redundancy on the performance of the predictive
models, GHI remained in the feature set, and the other two were
skipped.

As mentioned in Section 2, Part (5); we selected a subset of ap-
propriate features from the candidate set through feature selection
methods. The original feature set consists of 17 variables: 15 non-load
variables, weather and time parameters along with two load variables,
electricity consumption, and solar generation. Since we want to filter
out non-load features from the original candidate set, we evaluate
the feature selection methods using only non-load variables. We used
one-year of training data with an hourly resolution to do the FS
experiments.

The PCC method was designed to select the best n variables
from the 15 predictors according to the correlation values higher
than a threshold of +/- 0.3. For the RFE method, the Random
Forest algorithm was utilized to identify m number of best attributes
out of 15. In practice, the value of m is not known in advance.
Therefore, in the first step, different values for the number of features
were evaluated using the training data and a K-fold cross-validation
technique for time series data with K equal to three. The temporal
order of data is complied with in this cross-validation technique so
that the model is tested on observations that have not been used as
training data.

Fig. 20 and Fig. 21 demonstrate the distribution of mean absolute
error (MAE) values for each configured number of input features
(The MAE metric is further defined in Equation (18)). We can
see that performance improves as the number of features increases.
However, the reduction in MAE values continues until reaching a
certain number in both graphs. By growing the input space, the
median values (shown by orange lines in the boxplots) fluctuate and
show no significant improvements. It implies mostly up to eight
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Figure 20: Error distribution by number of features for consumption estimation

Figure 21: Error distribution by number of features for production estimation

or nine variables for both response variables can be relevant and
influential.

In the next step, we used two conventional prediction algorithms
known as support vector regression (SVR) and Random Forest (RF)
to evaluate the prediction performance resulted by (1) the two FS
techniques, (2) the combination of both and (3) with all features
(without FS approach). Fig. 22 and Fig. 23 show the average MAE
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results over three folds regarding predicting the targets at one step
ahead.

Figure 22: Average MAE using four feature sets for energy production

Figure 23: Average MAE using four feature sets for energy consumption

As shown, all feature selection methods show better MAE perfor-
mance when using the RF model. The lowest MAE error for both
SVR and RF is obtained by the RFE method for solar output predic-
tion (Fig. 22). However, when it comes to consumption prediction,
there is no unique variable set that produces the highest accuracy for

211



3. Forecasting Experiments and Results Paper IV

both models (Fig. 23). As a result, the RFE-driven features which
resulted in low MAE errors for both targets and by both predictive
algorithms were chosen as the final feature set. Table 1 lists the final
set; 12 non-lead variables out of 15.

Table 1: List of non-load features

Feature name Value

Global Horizontal Irradiance W/m2

Solar Zenith angle Degree

Relative Humidity Percentage

Precipitable Water Kg/m2

Cloud Opacity Percentage

Air Temperature Celsius

Wind vector WindSpeed ∗ Cos(WindDirection)

WindSpeed ∗ Sin(WindDirection)

Time of day Sin(2 ∗ π)/24 ∗ hourofday
Cos(2 ∗ π)/24 ∗ hourofday

Time of year Sin(2 ∗ π)/365 ∗ 24 ∗ hour of day
Cos(2 ∗ π)/365 ∗ 24 ∗ hour of day

3 Forecasting Experiments and Results

In this section, we describe the experiments conducted in Step Two
and Step Three and analyze the forecasting results.

3.1 Implementation Environment

All models were implemented using the Scikit-learn open-source
machine learning library and the Keras framework for deep learning.
The experimental hardware environment is based on a 3.1 GHz Intel
(R) Core i5 CPU and 16 GB of memory.
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3.2 Data Scaling and Input Requirements

Since both conventional and deep neural networks are sensitive to
the input scale and are more efficiently trained with normalized data,
the data was normalized to the range [0, 1] by applying the Min-Max
function. All predictive algorithms except for Persistence and ARIMA
used the normalized input comprising the final set of variables; 12
non-load features presented in Table 1 along with one or two load
(energy) features. ARIMA and Persistence only used historical energy
data to predict future values of the two targets.

For the Ridge regression, SVR, AdaBoost, GBRT and BPNN, each
input window explained in Part (6) of Section II, was transformed into
a flattened format of L∗(N−1), where L is equal to 24 lags and N−1
is equal to 13 as the total number of variables (12 non-load variables
selected through FS process and 1 load variable). As mentioned in
Section II, Part (7), reducing one load variable from the input with
the size of N indicates that the model that predicts future values of
one target removes the values of other target from its input.

All deep models, on the other hand, are fed with 2-D input windows
containing all N = 14 variables. Since they are capable of producing
two outputs at the same time they are fed with both load varibles
in addition of other non-load features. As indicated in Fig. 19, the
length of input windows L was initialized as 24 for all the experimental
models in Step Two. At the same time, this value was tuned as the
hyperparameter of the final forecasting algorithm in Step Three. The
forecast horizon H as the length of output windows was set to 24 for
all experiments.

3.3 Multi-step and Multi-variate Forecasting Strategy

To predict the observations at multiple time steps, we applied two
strategies depending on the training model:

(1) Direct multi-step forecast strategy for the models which natu-
rally do not support multi-output regression including Ridge
regression, SVR, AdaBoost, and GBRT; For each forecast time
step, one model is developed (e.g. 24 models for 24 steps ahead).
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Furthermore, since the given models are not adopted for predict-
ing multivariate time series, a separate model was trained and
evaluated for each prediction target; one for energy consumption
estimation and another for energy generation prediction.

(2) Multiple output strategy for the models capable of performing
multi-output regression including BPNN, CNN, LSTM and
Seq2Seq LSTM. This strategy involves the development of one
model capable of predicting the entire forecast sequence at
once. Unlike BPNN that considers the inputs as independent
variables, the rest of ANN-based models, due to their learning
procedure, can learn the dependency structure between inputs
and outputs as well as between outputs. Therefore, they become
more complex and are expected to perform better with sufficient
training data. Moreover, as the deep models can produce multi-
variate outputs, individual deep models were trained to produce
two targets time series at once.

3.4 Parameter Settings

We mostly used the default values considered in the Scikit-learn
library for the conventional ML models in terms of model parame-
ter configuration. However, we modified the values of some of the
parameters specified in Table 2, according to the input and output
specifications, as well as the complexity of the prediction task.

For the recurrent deep models, the same parameters of neural
network architecture configuration (Table 2) were used; for the LSTM
and GRU 50 neural unit in one hidden layer and for the Seq2Seq
LSTM, the same number of neurons was used in both encoder and
decoder each including one LSTM layer. For BPNN, to have a fair
comparison with deep models, we increased the number of hidden
layers to two with 60 and 30 neural units besides increasing the
number of training epochs from 80 to 100. For all ANN-based models,
‘Relu’ [60] was applied as the activation function of hidden layers,
mean square error (MSE) was used as the loss function, and ‘Adam’
function [61] was set as the model optimizer. The batch size sets
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to 32, learning rate sets to 0.001 and the drop out rate sets to 0.1
(excluding BPNN and CNN which did not use dropout layer).

3.5 Evaluation Metrics

To evaluate the prediction results of the trained algorithms, two
commonly used error metrics in time series forecasting are used;
Mean Absolute Error (MAE) and Root Mean Square Error (RMSE).
Lower values of error metrics indicate a more accurate prediction.
The MAE measures the difference between predicted and real values
on average and ignores whether the prediction values are greater than
or smaller than the actual values. The RMSE, in contrast, penalizes
large errors before averaging them by computing the square error.
These two metrics are defined as follows:

MAE =

∑N
t=1 |ŷi − yi|

N
(18)

RMSE =

√∑N
i=1(ŷi − yi)2

N
(19)

Where yi and ŷi denote actual and predicted output at time step
t and N denotes the number of sample observations in the testing
period.

Since focus of this work is on multi-step forecasting, we also added
another metric and named it as SDE to evaluate the consistency of
the errors throughout the whole forecast horizon. The SDE metric
computes the standard deviation of mean error values in each time
step throughout the forecast horizon and is defined as follows:

SDE =

√∑
(Ei − µ)

N
(20)

Where Ei denotes the average error values over timestep i in the
forecast horizon, µ denotes the mean of Ei and N denotes the total
number of steps in the forecast horizon i.e 24. The lower value of
SDE indicates lower variations and consequently, more stability at
multi-step ahead forecasting.
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3.6 Experiments in Step Two

To build and evaluate all models in Step Two, a sub-sample of training
data (60%) was considered sufficient equal to nine yearly periods of
hourly observations from different communities. A cross-validation
methodology known as blocked cross-validation was applied instead
of a standard train-test split to avoid overfitting and measuring each
model’s performance more robustly.

In this technique, which is designed for time-series data, the sample
training set is split into n non-overlapping subsets. At the first
iteration, the first subset is further divided into two-folds on the
condition that the validation set is always ahead of the training set.
For the next iteration, the next subset is again divided into two folds
and the iterations continue until n times. As a result, the temporal
dependencies between observations are preserved during testing and
also no leakage from future data is introduced to the model. In each
iteration, the model will not observe and memorize patterns from
an iteration to the next. In this study, the number of iterations was
set to three and the division rates for each subset are set to 80% for
train fold and 20% for validation fold. This split method is depicted
in Fig. 24 for more clarification.

Figure 24: Blocked cross-validation with three splits

The vertical axis refers to the number of cross-validation iterations
whereas the horizontal axis represents the size of training data on
an hourly basis. The training folds are depicted in blue, and the
folds used for validation are depicted in orange. The dataset has not
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shuffled, and the chronological order is preserved along the horizontal
axis.

3.7 Results Analysis of Step Two

Table 3 and Table 4 provide multi-step a head forecasting results of
different models using the cross-validation technique for two prediction
targets. In each table, the three columns on the left report average
RMSE errors in KW/h over 24 time steps per validation fold. The
last column on the right provides the average RMSE errors over the
three folds with standard deviation values.

Table 3: Average RMSE using the blocked cross-validation technique for energy
consumption prediction

Model Fold 1 Fold 2 Fold 3 Over three folds

Persistence 24.09 30.29 34.86 29.75 +/-4.41

ARIMA 16.9 19.09 18.94 18 +/- 0.89

Ridge Regression 6.60 6.42 6.84 6.62 +/- 0.17

SVR 7.97 8.06 9.13 8.93 +/- 0.52

AdaBoost 11.02 10.43 11.13 10.86 +/ -0.30

GBRT 5.80 5.67 6.32 5.93 +/- 0.28

CNN 5.88 6.30 6.30 6.16 +/- 0.19

LSTM 5.78 5.85 6.43 6.02 +/- 0.52

GRU 5.76 6.08 6.41 6.09 +/- 0.26

Seq2Seq LSTM 5.92 5.85 6.30 5.91 +/- 0.29

The experimental results show that different learning algorithms
outperform the Persistence technique showing at least 40% to at most
80% improvement in prediction accuracy. We can see the Seq2Seq
LSTM followed by GBRT outperform the other techniques in terms
of energy consumption estimation. Regarding energy production
forecasting, the lowest prediction error is achieved by the GBRT and
GRU. Further analysis reveals that RMSE of deep neural network
models (e.g. Seq2Seq LSTM, LSTM, CNN) are similar and lower than
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Table 4: Average RMSE using the blocked cross-validation technique for energy
production prediction

Model Fold 1 Fold 2 Fold 3 Over three folds

Persistence 34.99 30.56 34.58 33.8 +/- 1.99

ARIMA 12.03 11.55 12.4 12+/-0.34

Ridge Regression 6.43 5.66 6.72 6.27+/-0.44

SVR 7.68 4.44 7.15 6.42 +/- 1.42

AdaBoost 9.41 7.72 10.75 9.29 +/ -1.23

GBRT 5.77 4.88 5.97 5.41 +/- 0.65

CNN 6.24 5.01 5.99 5.74 +/ -0.52

LSTM 6.71 4.20 5.87 5.59 +/- 0.93

GRU 6.46 4.12 5.76 5.45 +/- 0.98

Seq2Seq LSTM 6.86 3.90 5.85 5.54 +/ -0.29

that of shallow neural network (BPNN) as well as most conventional
learning models (e.g. ARIMA, Ridge Regression, and SVR). Among
the deep models, the Seq2Seq LSTM yields low average RMSE errors
(less than 5 KW/h) with a low standard deviation (0.29) for both
demand and PV output forecasting indicating more accurate and
robust performance against other deep models.

To further investigate each method’s effectiveness in terms of com-
putational cost, we have computed the average training time over
three folds. Each training fold covers around two years and three
months of hourly data and occupies about 2.6 Mega byte of the
system memory. Note that for the models that do not support multi-
variate regression, the training time is multiplied by two to represent
the required training time to forecast the two energy targets. The
persistence model is ignored in this evaluation since it does not pass
any training phase. Table 5 presents the results.

ARIMA and Adaboost not only produce inaccurate hourly forecasts
but also require long training times. Ridge regression followed by
BPNN is substantially faster among all methods. SVR compared to
deep models needs higher training time. While GBRT algorithms
appear to have good precision (according to Table 4), relative to
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Table 5: Total training time for 24-steps ahead prediction of two targets

Model Total training time (Seconds)

ARIMA 1100 *2 = 2200

Ridge Regression 3*2 = 6

SVR 171 *2 = 342

AdaBoost 1480 *2 = 2960

GBRT 670 *2 = 1340

BPNN 38 *2 = 76

CNN 90

LSTM 420

GRU 400

Seq2Seq LSTM 830

other methods, they are slower. Among deep neural networks, CNNs
are the fastest, followed by GRU and LSTM networks.

In conclusion, among the candidate techniques, Seq2Seq LSTM
and GBRT were chosen as the most promising models for building
the ensemble model in the next step. Despite being slower than other
algorithms, these models have shown higher forecasting accuracy
for both predictive targets. To accelerate the training procedure,
GPU-based computing can be adopted in real-world scenarios.

3.8 Experiments of Step Three

3.8.1 Ensemble Setting

Having access to a large training set (14 years of hourly data from 6
communities) inspired us to use the deep Seq2Seq LSTM models as
the first-layer predictors or base learners and the GBRT algorithm
as the meta learner to capture non-linear relations between base pre-
dictions. To build an ensemble model with large diversity, multiple
Seq2Seq-LSTM networks were developed and parameterized differ-
ently. The parameters that contributed to the ensemble’s diversity
include learning rate, number of hidden layers in Encoder, number of
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hidden neurons in Encoder and Decoder, type of layer in Encoder,
and the length of the input sequence (windows) W .

For evaluation, we chose W = [24, 24 ∗ 2, 24 ∗ 3] as the length of
input windows, and for each of the other parameters, a set of values
were considered from a candidate set V . As a result, we ended up
with W ∗V Seq2Seq LSTM models for each given parameter. For our
experiments, the V vector for each given parameter is set to values
as the following: learning rate : {0.01,0.001}, the number of hidden
layers in Encoder : {1,2}, the number of hidden neurons in Encoder
and Decoder : {60,90} and the type of Encoder layer : {LSTM,
BILSTM}. As default values, we chose ADAM as an optimizer, mean
squared error as the loss function, batch size of 64 and 20 iterations
as the number of training epochs per network.

For the stacking purpose, the forecasts from the first-layer predic-
tors are treated as input features for the GBRT. As we want to predict
future values of two variables (energy consumption and generation),
and the GBRT does not support multivariate output regression, one
GBRT model was trained per target based on the corresponding
predictions from the first layer. The performance of meta learners
was then evaluated against real observations available to us within
the test set.

All four test sets (mentioned in Section III, Subsection A) were
used to evaluate and demonstrate the prediction capabilities of the
ensemble approach. Each test set representing a community load
for one year was divided into two subsets with 70% and 30% ratios
known as a meta train set and a meta test set. The meta train set
was used to build a training set for the meta learner (GBRT) so that
all trained LSTM base learners in the first step were tested on this
set.

The meta train set was used to build a training set for the meta
learner (GBRT) so that all trained LSTM base learners in the first
step were tested on this set. The Meta test set was then used to
evaluate the performance of the meta learner against three other
techniques:

• The Seq2Seq LSTM network that yields the lowest prediction
error among the individual learners (called the best learner).
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• The ensemble that computes the average of the base learners’
predictions for each step in the forecasting horizon.

• Another stacked ensemble of Seq2Seq LSTM networks which
applies Ridge regression as the meta learner to capture linear
relations between the first layer’s forecasts.

It is worth mention that none of the meta test sets has been seen by
any learning algorithm during training.

3.8.2 Result analysis of Step Three

Fig. 25 and Fig. 26 provide example comparisons between the
actual (Ground-truth) and predicted energy load curves using various
approaches in four test communities. We can see that in all graphs,
on some test steps, the forecast precision decreases due to irregular
fluctuations in hourly load, especially for load demand prediction.
Nevertheless, in most cases, all models, specifically the two ensemble
approaches, could effectively follow the usage and generation patterns
for both forecasting targets.

Table 6 and Table 7 summarise the forecasting results of differ-
ent methods. For each test set, the average MAE and RMSE are
calculated for three horizons: short-term; from 1 to 8 hours ahead,
medium-term; from 8 to 16 hours ahead, and long-term; from 16 to
24 hours ahead.

It is observed that the stacked ensemble with GBRT and Ridge
algorithms have the lowest average MAE and RMSE overall forecast
horizons and across all test sets for both energy targets. The predic-
tion accuracy of electricity consumption and PV power output can be
effectively improved by using ensembles of Seq2Seq LSTM networks.

After using a conventional ML algorithm on top of them, the
forecast accuracy can be further improved since more diverse first-
layers’ forecasts can provide more relevant information for model
training. This implies that the ensembles with GBRT and Ridge
regression can model regular and irregular patterns of future energy
values more effectively.

In contrast, the performance of the averaged ensemble compared
to the other three algorithms is not highly accurate and stable across
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different test sets. For instance, on Test set 3, the predictive errors for
solar output prediction are far greater than those obtained by other
algorithms. The explanation is that unlike stacked ensembles, the
forecasting performance of the Averaged model is equally determined
by all contributors’ forecasts. With even one poor base estimator,
performance will degrade significantly.

Fig. 27 and Fig. 28 illustrate the prediction performance of each
algorithm on average from 1 to 24 steps ahead per test set for the
two targets. They confirm the results of previous experiments.

Regarding energy consummation prediction, the Averaged ensem-
ble produces higher MAE (4.27, 3.86, 4.19, and 3.88) compared to
the best base learner (4,14, 3.84, 3.25, and 3.77). In terms of RMSE,
the forecast error of the Averaged model (5.93, 5.41, 5.32, and 5.05)
is also higher in comparison with the best LSTM network in the en-
semble (5.68, 5.25, 4.23, and 4.91). The proposed forecast framework
(Seq2Seq LSTM + GBRT) produces an average MAE of 3.39 and
RMSE of 4.55 over four test sets, which are lower than those of all
other models.

Similar forecast accuracy is recorded for the PV power output
of the communities. The best LSTM network gives more accurate
results than the Averaged ensemble forecast, but lower compared
to the stacked models. The stacked ensemble with GBRT slightly
outperforms the Ridge-based stacked ensemble with 2.4% reduction
in MAE score on average across the test sets. However, it significantly
produces more accurate forecasts than the best learner and averaged
ensemble, showing on average 17% and 47% reduction in MAE as
well as 10% and 37% reduction in RMSE.

To evaluate the consistency of errors throughout 24 time steps, we
calculated the average MAE values of the prediction results at each
time step for different models. Fig. 29 and Fig. 30 illustrate the
results. We can see that the forecasting errors of all models fluctuate
smoothly along the forecast horizon up to 10 steps and then increase
with varying degrees for different models.
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Figure 27: Average error metrics for energy consumption prediction from 1 to 24
steps ahead
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Figure 28: Average error metrics for energy generation prediction from 1 to 24
steps ahead
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Table 8: Comparison of SDE scores over 24 steps ahead for consumption estima-
tion

Model Test Test Test Test

name set 1 set 2 set 3 set 4

Best base Learner 0.14 0.08 0.08 0.08

(Seq2Seq LSTM)

Averaged ensemble 0.21 0.16 0.07 0.07

Stacked Ensemble 0.09 0.13 007 0.07

(Seq2Seq LSTM + Ridge)

Stacked Ensemble 0.08 0.11 0.049 0.03

(Seq2Seq LSTM + GBRT)

Table 9: Comparison of SDE scores over 24 steps ahead for production estimation

Model Test Test Test Test

name set 1 set 2 set 3 set 4

Best base Learner 0.2 0.14 0.14 0.14

(Seq2Seq LSTM)

Averaged ensemble 0.3 0.25 0.15 0.3

Stacked Ensemble 0.18 0.14 0.16 0.14

(Seq2Seq LSTM + Ridge)

Stacked Ensemble 0.20 0.16 0.15 0.15

(Seq2Seq LSTM + GBRT)

The degree of the overall variation in terms of MAE was computed
by SDE metric. Results are presented in Table 8 and Table 9. It
can be seen that the proposed ensemble show higher consistency in
multi-step ahead forecasting of energy consumption across all test
sets with on average 0.06 variation rate.
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Regarding solar output estimations, higher variation values are
recorded for all models. On average, the best base learners followed
by the two ensembles reach satisfactory SDE scores of 0.15, 0.16.
and 0.17, respectively. However, as expected, the Averaged Ensemble
with high SDE values shows poor forecasting stability against the
other techniques in most cases.

To further verify the superiority of the stacked models, the day-
ahead (24 hours ahead) prediction results are analyzed under different
situations. For load demand estimation, weekdays and weekends are
considered whereas, for solar power output prediction, two typical
weather conditions are evaluated: Cloudy and non-cloudy days. To
identify cloudy days, we used the cloud visual opacity index, which
describes how much sunlight the clouds let some sunlight through.
The days with cloud opacity values less than 42 are considered as
clear or partially cloudy days, while the days with higher index values
are categorized as cloudy days.

Fig. 31 depicts the distribution of residual error of the proposed
framework along with other comparative models regarding electricity
consumption prediction of one community in Sydney. The residual
error represents the difference between predicted and real values.
As expected, the median error values of all models mostly increase
during peak hours between 7.00 to 10.00 in the morning and from
17.00 to 21.00 in the afternoon. Moreover, for all frameworks, smaller
boxes of weekdays compared to weekends indicate fewer variations
in forecasting results and, therefore, more predictability of usage
patterns in weekdays.

Forecast residual error comparison indicates that the stacked pre-
dictors generate less error in comparison with the best individual
predictor and Averaged ensemble, demonstrating the potential benefit
of the stacking ensemble technique in the day-ahead load demand
forecast application.

Table 10 summarizes the prediction errors of different models in
different communities. The proposed framework is more accurate
than the comparative forecast models by producing at most 3.50
KW/h error for weekdays and 4.75 KW/h for weekends.
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Figure 31: Error distribution of day-ahead load demand forecasting over weekdays
and weekends
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Fig. 32 highlights the box forecast error plot of all models for
day-ahead estimation of PV power output in cloudy and non-cloudy
days in the same test community.

Figure 32: Error distribution of day-ahead solar output forecasting over cloudy
and and non-cloudy days

It can be observed that the PV output prediction of each model is
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relatively less accurate on cloudy days, and this is primarily because
the PV power curve on cloudy weather is less steady and more volatile.
Compared to stacked models, the averaged ensemble predictor fol-
lowed by the best learner gives higher forecast errors during cloudy
days. Among all, the proposed ensemble with GBRT has produced
the most accurate results with fewer outliers.

In Table 11, the results are summarized for all models and test
sets. As shown, the proposed method can mostly capture the regular
and non-regular patterns of PV power output at a satisfactory level
on cloudy and non-cloudy days across different communities.
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4 Conclusion

In this paper, we proposed a framework for multi-hour ahead load
forecasting and solar energy generation estimation of household com-
munities. The framework introduces a process in which an ensemble
model is developed based on extensive evaluations of baseline forecast-
ing algorithms. The ensemble model applies deep recurrent neural
networks as base learners and a tree-based ensemble algorithm as
meta learner. It also incorporates multivariate time series data, in-
cluding energy, time, and weather variables as predictive features to
address the volatility of load series.

The proposed method offers several advantages over existing tech-
niques. Firstly applying an ensemble learning strategy enables the
model to provide more robust and accurate results than individual
predictive methods. Secondly, deep recurrent neural networks as
strong predictive algorithms for time series prediction tasks, provide
the model with highly accurate base estimations. Next, since the
ensemble model is not reliant on the structure of one particular deep
network, it can generalize better to new data sets than individual
neural networks that are heavily tuned for a given dataset. Finally,
unlike the boosting approach that involves sequential learning, the
applied stacking strategy offers the ability to separately train base
learners, thereby reducing training time in distributed computational
environments. However, the main limitation of the proposed approach
can be the lack of appropriate historical data for proper training of
deep base models.

In future work, the performance of the ensemble technique and all
contributing algorithms can be evaluated through sensitivity analysis
where we examine the impacts of different input features or input
size on the prediction task. The presented forecast framework could
also be applied for other types of time series data such as wind and
electricity price as long as a sufficient amount of data (typically one
to a few years of hourly observations) for training the deep networks
are available.
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