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Abstract 9 

Steady state relative permeability experiments are performed by co-injection of two fluids 10 

through core plug samples. Effective relative permeabilities can be calculated from the 11 

stabilized pressure drop using Darcy’s law and linked to the corresponding average saturation 12 

of the core. These estimated relative permeability points will be accurate only if capillary end 13 

effects and transient effects are negligible. This work presents general analytical solutions for 14 

calculation of spatial saturation and pressure gradient profiles, average saturation, pressure drop 15 

and relative permeabilities for a core at steady state when capillary end effects are significant.  16 

We derive an intuitive and general ‘intercept’ method for correcting steady state relative 17 

permeability measurements for capillary end effects: plotting average saturation and inverse 18 

effective relative permeability (of each phase) against inverse total rate will give linear trends 19 

at high total rates and result in corrected relative permeability points when extrapolated to zero 20 

inverse total rate (infinite rate). We derive a formal proof and generalization of the method 21 

proposed by Gupta and Maloney (2016), also extending the information obtained from the 22 

analysis, especially allowing to calculate capillary pressure.  23 

It is shown how the slopes of the lines are related to the saturation functions allowing to 24 

scale all test data for all conditions to the same straight lines. Two dimensionless numbers are 25 

obtained that directly express how much the average saturation is changed and the effective 26 

relative permeabilities are reduced compared to values unaffected by end effects. The numbers 27 

thus quantitatively and intuitively express the influence of end effects. A third dimensionless 28 

number is derived providing a universal criterion for when the intercept method is valid, directly 29 

stating that the end effect profile has reached the inlet. All the dimensionless numbers contain 30 

a part depending only on saturation functions, injected flow fraction and viscosity ratio and a 31 

second part containing constant known fluid, rock and system parameters such as core length, 32 

porosity, interfacial tension, total rate etc. The former parameters determine the saturation range 33 
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and shape of the saturation profile, while the latter number determines how much the profile is 34 

compressed towards the outlet. End effects cause the saturation profile and average saturation 35 

to shift towards the saturation where capillary pressure is zero and the effective relative 36 

permeabilities to be reduced compared to the true relative permeabilities. This shift is greater 37 

at low total rate and gives a false impression of rate-dependent relative permeabilities. The 38 

method is demonstrated with multiple examples. Methodologies for deriving relative 39 

permeability and capillary pressure systematically and consistently, even based on combining 40 

data from tests with different fluid and core properties, are presented and demonstrated on two 41 

datasets from the literature.  42 

 43 

Keywords: Capillary end effects; Special Core Analysis (SCAL); Steady state relative 44 

permeability; Capillary number; Intercept method; Interpretation of Experimental Data 45 

 46 

1. Introduction 47 

Relative permeabilities are an essential input to simulation when modeling multiphase flow 48 

processes, including petroleum recovery, carbon storage and liquid invasion in hydraulic 49 

fracturing (Juanes et al. 2006; Jeong et al. 2021). Relative permeabilities describe the reduction 50 

of mobility for a flowing phase in presence of other phases and are modeled as function of 51 

saturation, although the saturation path, wettability, hysteresis, stress and temperature and 52 

viscous coupling can affect them (Anderson 1987; Bourbiaux & Kalaydjian 1990; Andersen et 53 

al. 2020a). Their measurement should hence be performed under conditions close to the 54 

expected process taking place in the reservoir (Sidiq et al. 2017). 55 

Relative permeabilities are commonly measured experimentally using the steady state 56 

technique, unsteady state technique or centrifuge. The steady state technique will be the focus 57 

of this work: It consists of injecting two fluids in different flow fractions (which can include 58 

fractions corresponding to single phase injection) and measuring the average saturation and the 59 

pressure drop over the core at steady state, when production rates and pressure readings have 60 

stabilized. If sufficient time has passed to reach steady state and the saturations are uniform, 61 

Darcy’s law can be applied to calculate relative permeabilities directly (Richardson et al. 1952). 62 

The unsteady state method considers injection of one phase to displace another where use is 63 

made of the transient production and pressure data before steady state is reached to calculate 64 

relative permeability (Johnson et al. 1959). With centrifuge, rotation at high speed allows 65 

calculating relative permeability for the less mobile phase from transient production data 66 

(Hagoort 1980). All these methods are complicated by the presence of capillary pressure. This 67 
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will be discussed only for the steady state method. Relative permeability can also be predicted 68 

from theoretical bundle of tubes models or digital rock models describing flow in representative 69 

porous structures (Nguyen et al. 2006; Valavanides 2018).  70 

 In an open space there is no confinement or curvature of the fluid-fluid interface, setting 71 

capillary pressure equal zero at the producing end face of a core or an open fracture in a reservoir 72 

(Leverett 1949). Pressure continuity forces capillary pressure profiles to converge to zero at the 73 

core outlet. Since there is a unique relation between capillary pressure and saturation (when 74 

saturation is changed monotonously) the steady state saturation profile will converge to the 75 

saturation giving zero capillary pressure. This results in nonuniform saturation profiles with 76 

most deviation at the outlet (Richardson et al. 1952). The capillary end effects can impact the 77 

calculation of relative permeabilities (Osaba et al. 1951). End effects cause steady state average 78 

saturation and pressure drop across the core to differ from what their values would be without 79 

end effects. Increasing the ratio of advective to capillary forces suppresses the end effect and 80 

makes the saturations more uniform and in accordance with the injected flow fraction. End 81 

effects can result in and explain apparently rate-dependent relative permeabilities and flooding 82 

behavior, as observed experimentally (Osaba et al. 1951; Rapoport and Leas 1953; Odeh et al. 83 

1985; Henderson et al. 1998; Alizadeh et al. 2007; Jeong et al. 2021). Chen and Wood (2001) 84 

found rate-insensitive relative permeabilities when their in-situ measurements indicated 85 

negligible fluid accumulation at the outlet. Zou et al. (2020) used in-situ imaging of a core plug 86 

steady state saturation profile to calculate relative permeability, but required an independent 87 

measurement of the capillary pressure function. This was achieved both via experimental and 88 

pore scale imaging based techniques. Rapoport and Leas (1953) showed that by increasing the 89 

core length, injected fluid viscosity and injection rate the end effects were less significant. 90 

However, reaching sufficiently high rates that end effects are negligible is not always practical 91 

due to limitations on core integrity, flow rate capacity, pressure reading, flow regime and 92 

unrepresentative mobilization of residual droplets.  93 

By varying the flow rate at a given flow fraction it is possible to assess the importance 94 

of the end effects and correct the measurements to representative saturations and pressure drops. 95 

Gupta and Maloney (2016) found that plotting pressure drop against rate was linear and gave a 96 

constant pressure drop at zero rate associated with end effects. Removing this extra pressure 97 

drop at each rate gave corrected consistent relative permeabilities. Further, they linked the 98 

extent of the end effect profile (how much of the core it covered) to how large the added 99 

pressure drop was relative to the corrected pressure drop. Plotting average saturation against 100 

this ratio could be extrapolated linearly to when the end effect had zero extent. The saturation 101 
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and relative permeabilities obtained from these linear extrapolations are corrected for end 102 

effects and based on where the lines intercept. They hence called this the intercept method. 103 

Their main assumption was that the end effect saturation profile was limited to within the core. 104 

No relation was made to physical system properties, flow conditions or saturation functions. 105 

Their assumptions were mainly justified by numerical and experimental examples, rather than 106 

theory. A review of the intercept method was given by Reed and Maas (2018).  107 

Andersen et al. (2017a) derived explicit analytical solutions for water flooding with end 108 

effects assuming specific saturation function correlations. They derived the intercept method 109 

theoretically, expressed using that average saturation and pressure drop divided by rate behaved 110 

linearly with inverse rate. They found how the saturation and pressure line slopes were related 111 

to input parameters of saturation functions. A capillary number was found determining the 112 

linear behavior with a critical value of 1 determining when the linear behavior was valid. They 113 

also could predict behavior when the end effects were outside the core. The model was validated 114 

experimentally by Andersen et al. (2020b) to determine both water relative permeability and 115 

capillary pressure. Huang and Honarpour (1998) also considered the waterflooding case, but 116 

under different saturation function assumptions. Their solutions were implicit, but could be 117 

used to correct end point relative permeability. Andersen and Zhou (2020) considered co-118 

injection tests under the constraint of linear saturation functions and derived a capillary number 119 

incorporating all system parameters including the saturation functions. Virnovsky et al. (1995) 120 

demonstrated how sensitivity in average saturation and phase pressure drops to injection rate 121 

were analytically related to saturation functions. Andersen et al. (2020b) and Santos et al. 122 

(2021) history matched relative permeability and capillary pressure from multi-rate tests. It has 123 

also been demonstrated that saturation functions can be determined from co-current 124 

spontaneous imbibition experiments by varying the viscosity ratio systematically (Andersen et 125 

al. 2019; Andersen 2021).  126 

In this work we present mathematical relations describing end effects during steady state 127 

tests from fundamental assumptions and derive general conclusions regarding saturation 128 

profiles, parameters that affect saturation profile shape or just compress the profile, the intercept 129 

method, scaling and dimensionless numbers. 130 

Calculating effective relative permeabilities with Darcy’s law from data with end effects 131 

will be inaccurate, but combining such data from different total rates can allow accurate 132 

prediction. We derive a more intuitive and more general intercept method compared to the work 133 

of Gupta and Maloney (2016) based on established assumptions in core scale multiphase flow 134 

simulation. We show, for given fluids and injected flow fraction but varied total rate, that 135 
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plotting steady state average saturation and inverse effective relative permeability against 136 

inverse total rate yields straight lines (at high total rates). The lines result in correct relative 137 

permeability and saturation points for that flow fraction when extrapolated to zero inverse total 138 

rate (infinite total rate). It is shown how the slopes of these lines are related to the saturation 139 

functions, allowing us to scale all data universally to the same straight lines. Two dimensionless 140 

numbers are obtained that directly express when end effects become important and how much 141 

in terms of how much (a) the average saturation is changed and (b) the effective relative 142 

permeabilities are reduced compared to values unaffected by end effects. A third dimensionless 143 

number is derived with a critical value of ~1 as a universal criterion for when the linear trends 144 

with inverse total rate (the intercept method) begin. The critical value is directly reflecting that 145 

the end effect profile has reached the inlet end of the core. When the profile extends beyond the 146 

inlet, the trends become nonlinear. All the dimensionless numbers are divided into a part 147 

depending on saturation functions, injected flow fraction and viscosity ratio and a second part 148 

containing constant known fluid and rock parameters such as core length, porosity, interfacial 149 

tension, etc. Methodologies for deriving relative permeability and capillary pressure 150 

consistently, even based on combining data from tests with different fluid and core properties 151 

are presented and demonstrated on two datasets from the literature.  152 

 153 

2. Theory 154 

2.1. Transport equations 155 

The mathematical description of 1D incompressible and immiscible flow of oil (𝑜) and water 156 

(𝑤) in a porous homogeneous medium under negligible influence of gravity is given by mass 157 

balance and Darcy’s law, respectively: 158 

(1)  𝜙
𝜕𝑠𝑖

∂𝑡
= −

∂𝑢𝑖

𝜕𝑥
, (𝑖 = 𝑜, 𝑤) 

(2)  𝑢𝑖 = −𝐾𝜆𝑖

∂𝑝𝑖

𝜕𝑥
, 𝜆𝑖 =

𝑘𝑟𝑖

𝜇𝑖
, (𝑖 = 𝑜,𝑤) 

𝜙 is porosity, 𝑠𝑖 saturation of phase 𝑖 = 𝑜,𝑤, 𝑢𝑖 Darcy velocity, 𝐾 absolute permeability, 𝜆𝑖 159 

mobility, 𝑘𝑟𝑖 relative permeability, 𝜇𝑖 viscosity and 𝑝𝑖 pressure. The saturations are dependent 160 

due to volume conservation, and the pressures are related by the capillary pressure function: 161 

(3)  𝑠𝑤 + 𝑠𝑜 = 1, 𝑝𝑜 − 𝑝𝑤 = 𝑃𝑐(𝑠𝑤) 

The total Darcy velocity 𝑢𝑇 is defined as: 162 

(4)  
𝑢𝑇 = 𝑢𝑜 + 𝑢𝑤 = −𝐾𝜆𝑇

∂𝑝𝑤

𝜕𝑥
− 𝐾𝜆𝑜

∂𝑃𝑐

𝜕𝑥
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Also, 𝜆𝑇 is the total mobility, given by: 163 

(5)  𝜆𝑇 = 𝜆𝑜 + 𝜆𝑤 

It follows from adding the transport equations in (1) that: 164 

(6)  
∂𝑢𝑇

𝜕𝑥
= 0 

The water phase equation can then be expressed with variables 𝑢𝑇, 𝑠𝑤 as: 165 

(7)  𝜙
𝜕𝑠𝑤

∂𝑡
= −

∂𝑢𝑤

𝜕𝑥
 

(8)  𝑢𝑤 = 𝑢𝑇𝑓𝑤 + 𝐾𝜆𝑜𝑓𝑤
∂𝑃𝑐

𝜕𝑥
 

where 𝑓𝑤 is the fractional flow function defined by: 166 

(9)  𝑓𝑤 =
𝜆𝑤

𝜆𝑤 + 𝜆𝑜
 

 167 

2.2. Boundary and initial conditions 168 

Water and oil are injected simultaneously at the inlet 𝑥 = 0 with a water flow fraction 𝐹 (the 169 

water fraction of the total injected flux) and a total Darcy flux 𝑢𝑇 (Figure 1): 170 

(10)  
𝐹 =

𝑢𝑤(𝑥 = 0)

𝑢𝑤(𝑥 = 0) + 𝑢𝑜(𝑥 = 0)
=

𝑢𝑤(𝑥 = 0)

𝑢𝑇
 

The injected water flux given 𝑢𝑇 and 𝐹 is then: 171 

(11)  𝑢𝑤(𝑥 = 0) = 𝑢𝑇𝐹 

The water flux (and that of oil) is composed of both an advective and capillary component, see 172 

(8). Hence, 𝐹 does not correspond to 𝑓𝑤 unless the capillary pressure gradient can be ignored. 173 

From (8) we write this boundary condition as: 174 

(12)  
𝑢𝑤(𝑥 = 0) = [𝑢𝑇𝑓𝑤 + 𝐾𝜆𝑜𝑓𝑤

∂𝑃𝑐

𝜕𝑥
]
𝑥=0

= 𝑢𝑇𝐹 

The outlet boundary condition is described by a zero capillary pressure (Leverett 1949), which 175 

corresponds to a fixed outlet water saturation: 176 

(13)  𝑃𝑐(𝑥 = 𝐿) = 0, 𝑠𝑤(𝑥 = 𝐿) = 𝑠𝑤
𝑒𝑞

 

where by definition 𝑃𝑐(𝑠𝑤
𝑒𝑞

) = 0. 177 

 178 
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 179 

Figure 1 Illustration of the system including flow and boundary conditions, a typical end effect region and 180 

the relevant saturation interval at steady state. 𝒔𝒘
𝒆𝒒

 denotes the saturation where capillary pressure is zero, 181 

while 𝒔𝒘
𝒓  denotes the saturation where the flow function 𝒇𝒘vequals the injection flow fraction 𝑭.  182 

 183 

2.3. Steady State 184 

At steady state we have no changes with time in the system, i.e.: 185 

(14)  𝜕𝑠𝑖

∂𝑡
= 0,

𝜕𝑝𝑖

∂𝑡
= 0, (𝑖 = 𝑜,𝑤) 

The phases are non-uniformly distributed due to the balance between advective and capillary 186 

forces. Given that time is not influential at steady state; in the following, water saturation and 187 

water pressure will be taken as functions of spatial coordinate alone: 𝑠𝑤 = 𝑠𝑤(𝑥) and 𝑝𝑤 =188 

𝑝𝑤(𝑥). (7) can then be written as: 189 

(15)  
𝑑𝑢𝑤

𝑑𝑥
= 0 =

𝑑

𝑑𝑥
[𝑢𝑇𝑓𝑤 + 𝐾 (𝜆𝑜𝑓𝑤

𝑑𝑃𝑐

𝑑𝑥
)] 

At steady state the fluxes are uniform, i.e. the same amount of water and oil passes through 190 

every cross section, however the saturations and velocities can differ. Setting the water flux 191 

uniformly equal to that at the inlet, see (12), gives: 192 

(16)  𝑢𝑤 = 𝑢𝑇𝐹 = 𝑢𝑇𝑓𝑤 + 𝐾 (𝜆𝑜𝑓𝑤
𝑑𝑃𝑐

𝑑𝑥
) 

Using that 
𝑑𝑃𝑐

𝑑𝑥
=

𝑑𝑃𝑐

𝑑𝑠𝑤

𝑑𝑠𝑤

𝑑𝑥
, we can solve (16) with respect to the saturation gradient: 193 

(17)  

𝑑𝑠𝑤

𝑑𝑥
=

𝑢𝑇(𝐹 − 𝑓𝑤)

𝐾𝜆𝑜𝑓𝑤
𝑑𝑃𝑐

𝑑𝑠𝑤

 

The water saturation gradient is thus dependent on the two phase mobilities, the capillary 194 

pressure curve, the injected water flow fraction 𝐹 and the injection flux 𝑢𝑇. We can further 195 

introduce the interstitial total velocity, 𝑣𝑇, and dimensionless Leverett 𝐽-function (Dullien 196 

2012): 197 
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(18)  𝑢𝑇 = 𝜙𝑣𝑇, 𝑃𝑐 = 𝜎𝑜𝑤√
𝜙

𝐾
𝐽(𝑠𝑤), 

which results in: 198 

(19)  
𝑑𝑠𝑤

𝑑𝑥
=

𝑣𝑇√
𝜙
𝐾

𝜎𝑜𝑤

(𝐹 − 𝑓𝑤)

𝑓𝑤𝜆𝑜  
𝑑𝐽
𝑑𝑠𝑤

 

The above equation can be integrated to find the saturation distribution starting from 199 

𝑠𝑤(𝑥 = 𝐿) = 𝑠𝑤
𝑒𝑞

. The saturation gradient will be nonzero until a saturation 𝑠𝑤
𝑟  is reached such 200 

that: 201 

(20)  𝑓𝑤(𝑠𝑤
𝑟 ) = 𝐹 

after which the saturation remains stable at 𝑠𝑤
𝑟 . This is the state corresponding to negligible end 202 

effects. 𝑠𝑤
𝑟  is found by solving (20). The pressure gradients of oil and water at steady state 203 

follow from (2) combined with (16):  204 

(21)  
𝑑𝑝𝑤

𝑑𝑥
= −

𝑢𝑇𝐹

𝐾𝜆𝑤
,

𝑑𝑝𝑜

𝑑𝑥
= −

𝑢𝑇(1 − 𝐹)

𝐾𝜆𝑜
,   

The above corresponds to Darcy’s law, where the water and oil fluxes are constant equal to 𝑢𝑇𝐹 205 

and 𝑢𝑇(1 − 𝐹) and the mobilities vary along the core according to the steady state saturation 206 

distribution found from (19). 207 

 208 

2.4. Scaled saturation profile 209 

2.4.1. Derivation 210 

Assume a domain where every saturation has a unique position. Equation (19) can then be 211 

solved by separation into a space coordinate integral and a saturation integral: 212 

(22)  
𝑣𝑇√𝜙

𝐾

𝜎𝑜𝑤
∫ 𝑑𝑥′

𝑥

𝑥′=𝐿

= ∫
[𝑓𝑤𝜆𝑜

𝑑𝐽
𝑑𝑠𝑤

] (𝑠𝑤
′ )

𝐹 − 𝑓𝑤(𝑠𝑤
′ )

𝑠𝑤

𝑠𝑤
𝑒𝑞

𝑑𝑠𝑤
′ = ∫

[𝑓𝑤𝜆𝑜
𝑑𝐽
𝑑𝑆

] (S′)

𝐹 − 𝑓𝑤(S′)

𝑆

𝑆𝑒𝑞

𝑑𝑆′ 

Although the former integral is trivial, the latter in most cases requires numerical methods. Note 213 

that the latter saturation integral above has been expressed using normalized saturation 𝑆 which 214 

provides the following relations:  215 

(23)  𝑆 =
𝑠𝑤 − 𝑠𝑤𝑟

Δ𝑠𝑤
, Δ𝑠𝑤 = 1 − 𝑠𝑜𝑟 − 𝑠𝑤𝑟 

(24)  𝑑𝑠𝑤 =
𝑑𝑠𝑤

𝑑𝑆
𝑑𝑆 = Δ𝑠𝑤𝑑𝑆, 𝑆𝑒𝑞 =

𝑠𝑤
𝑒𝑞

− 𝑠𝑤𝑟

Δ𝑠𝑤
, 
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(25)  
𝑑𝐽

𝑑𝑠𝑤
=

𝑑𝐽

𝑑𝑆

𝑑𝑆

𝑑𝑠𝑤
. 

The parameters 𝑠𝑤𝑟 , 𝑠𝑜𝑟 denote the critical saturations of water and oil, respectively, where their 216 

respective relative permeability is zero. Δ𝑠𝑤 denotes the magnitude of the mobile saturation 217 

interval. 𝑆𝑒𝑞 is the normalized saturation where capillary pressure is zero.  218 

Note that the terms 𝑓𝑤 and 𝑓𝑤𝜆𝑜 can both be written as functions of viscosity ratio, and 219 

that the latter term is inversely proportional to the geometric mean of viscosities:  220 

(26)  𝑓𝑤 =
𝑘𝑟𝑤

𝑘𝑟𝑤 + (
𝜇𝑤

𝜇𝑜
) 𝑘𝑟𝑜

, 𝑓𝑤𝜆𝑜 =
1

(𝜇𝑜𝜇𝑤)0.5

𝑘𝑟𝑤𝑘𝑟𝑜 (
𝜇𝑤

𝜇𝑜
)
0.5

𝑘𝑟𝑤 + (
𝜇𝑤

𝜇𝑜
) 𝑘𝑟𝑜

 

From this it is convenient to introduce the notations: 221 

(27)  
𝑌 =

𝑦

𝐿
=

𝐿 − 𝑥

𝐿
, 𝑁0 =

𝑣𝑇𝐿√𝜙
𝐾

𝜇𝑚

𝜎𝑜𝑤
, 𝜇𝑚 = (𝜇𝑜𝜇𝑤)0.5 

𝑁0 is a dimensionless capillary number (ratio of viscous to capillary forces) containing static or 222 

single phase flow parameters. This number is fixed if the same fluids, core and total rate are 223 

considered. 𝑁0 > 0 since 𝑣𝑇 > 0 (flow in 𝑥-direction towards outlet). This leads to the solution 224 

form of interest: 225 

(28)  𝑌(𝑆) = −
1

𝑁0
∫

𝜇𝑚 [𝑓𝑤𝜆𝑜
𝑑𝐽
𝑑𝑆

] (S′)

𝐹 − 𝑓𝑤(S′)

𝑆

𝑆𝑒𝑞

𝑑𝑆′, 

which is valid for all 𝑆 between 𝑆𝑒𝑞 and 𝑆𝑟. 𝑆𝑟 is the normalized saturation obtained at the flow 226 

fraction 𝐹 without end effects: 227 

(29)  𝑆𝑟 =
𝑠𝑤

r − 𝑠𝑤𝑟

Δ𝑠𝑤
 

 228 

2.4.2. Shape characteristics 229 

Consider two saturations 𝑆1, 𝑆2 with positions given by (28). Their relative position is given by: 230 

(30)  
𝑌(𝑆2)

𝑌(𝑆1)
=

∫
[𝑓𝑤𝜆𝑜

𝑑𝐽
𝑑𝑆

] (S′)

𝐹 − 𝑓𝑤(S′)
𝑆2

𝑆𝑒𝑞
𝑑𝑆′

∫
[𝑓𝑤𝜆𝑜

𝑑𝐽
𝑑𝑆

] (S′)

𝐹 − 𝑓𝑤(S′)
𝑆1

𝑆𝑒𝑞
𝑑𝑆′

, 

This indicates that only the saturation functions, viscosity ratio and injected fraction determine 231 

the shape. The parameters in 𝑁0 will affect how compressed the profile is, but not its shape.  232 

 233 
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2.4.3. Length and range of end effect region 234 

Based on the previous notation (27) the saturation gradient can be written from (19) as: 235 

(31)  

𝑑𝑆

𝑑𝑌
= −𝑁0

𝐹 − 𝑓𝑤

𝜇𝑚𝑓𝑤𝜆𝑜
𝑑𝐽
𝑑𝑆

= α(S)(𝐹 − 𝑓𝑤) 

Assume first that two phases are injected simultaneously (0 < 𝐹 < 1) which means 𝑆𝑟 ∉ {0,1}. 236 

Further, consider saturations far from the outlet 𝑌 ≫ 0. The coefficient 𝛼(𝑆) = −
𝑁0

𝜇𝑚𝑓𝑤𝜆𝑜
𝑑𝐽

𝑑𝑆

>237 

0 will then obey 0 < 𝛼0 < 𝛼(𝑆) < 𝛼1 for some finite limits 𝛼0, 𝛼1. As distance from outlet 238 

increases the saturation will approach 𝑆𝑟 according to the following Taylor approximation: 239 

(32)  𝑑𝑌 =
1

𝛼(𝑆𝑟)

𝑑𝑆

(𝐹 − 𝑓𝑤)
≈

1

𝛼(𝑆𝑟)
𝑑𝑓𝑤
𝑑𝑆

|𝑆𝑟

𝑑S

(𝑆𝑟 − 𝑆)
 

𝑌 will increase when 𝑆 → 𝑆𝑟. We have considered a saturation region sufficiently close to 𝑆𝑟 240 

that 𝛼 and 
𝑑𝑓𝑤

𝑑𝑆
 can be considered constant as if evaluated at 𝑆𝑟. Assume a saturation 𝑆∗ in that 241 

region with a finite difference from 𝑆𝑟. We integrate (32) and find that the spatial distance 242 

between the two saturations is infinite: 243 

(33)  𝑌(𝑆𝑟) − 𝑌(𝑆∗) = −
1

𝛼(𝑆𝑟)
𝑑𝑓𝑤
𝑑𝑆

|𝑆𝑟

lim
S→𝑆𝑟

ln (
𝑆𝑟 − 𝑆

𝑆𝑟 − 𝑆∗
) = ∞ 

𝑆𝑟 is only reached at infinite distance, in other words, it takes an infinite distance for end effects 244 

to vanish. This was exemplified by Andersen and Zhou (2020) for the special case of linear 245 

saturation functions, but is now proved in general. 246 

 On the other hand, assume single phase injection as given by 𝐹 ∈ {0,1}, which also 247 

implies 𝑆𝑟 ∈ {0,1}. The term 𝑓𝑤𝜆𝑜
𝑑𝐽

𝑑𝑆
 is the saturation dependent part of what is referred to as 248 

the capillary diffusion coefficient. It has parabolic shape and equals zero (only) at the points 249 

𝑆 = {0,1}. Assume scaled saturations 𝑆 approaching 𝑆𝑟 and evaluate the saturation gradient: 250 

(34)  
𝑑𝑆

𝑑𝑌
|𝑆𝑟

= −𝑁0𝜇𝑚
−1 lim

S→𝑆𝑟

(𝐹 − 𝑓𝑤)

𝑓𝑤𝜆𝑜
𝑑𝐽
𝑑𝑆

= 𝑁0 𝜇𝑚
−1 lim

𝑆→𝑆𝑟

𝑑𝑓𝑤
𝑑𝑆

𝑑
𝑑𝑆

(𝑓𝑤𝜆𝑜
𝑑𝐽
𝑑𝑆

)
 . 

As both nominator and denominator in the first limit approach zero, we have applied 251 

L’Hopital’s rule. There exist parameter choices where 
𝑑𝑓𝑤

𝑑𝑆
 could be zero or nonzero at the end 252 

points; using Corey relative permeabilities with exponents greater than 1 or equal to 1, 253 

respectively, will give such behavior. Andersen et al. (2017a; 2020b) showed that the use of 254 

Corey-type functions for both relative permeability and capillary pressure resulted in a finite 255 
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length end effect. Huang and Honarpour (1998) on the other hand used Corey-Burdine 256 

equations and obtained an infinite length. 257 

The above derivations and examples show that the end effect will always have infinite 258 

length when two fluids are injected simultaneously. During single phase injection, the end effect 259 

will have either infinite or finite length depending on the saturation function correlations. We 260 

will however show that regardless of injection conditions and saturation function correlations 261 

we can define a practical length which produces the same results as if there was a finite length, 262 

and thus the intercept method can be derived. The intercept method was originally derived 263 

based entirely on the assumption that the end effect did not exceed the length of the core (Gupta 264 

and Maloney 2016). It was found from several numerical examples that although the position 265 

of the saturation 𝑆𝑟 extends to infinity, key saturation integrals converged as the integral limit 266 

approached 𝑆𝑟. 267 

We have demonstrated the validity of the continuous saturation profile (28) from 𝑆𝑒𝑞 to 268 

𝑆𝑟 where a unique relation exists between 𝑌 and 𝑆. However, if 𝑆𝑟 is finally reached at a specific 269 

𝑌(𝑆𝑟), as can happen for the single phase injection case, all 𝑌 > 𝑌(𝑆𝑟) will have a constant 270 

saturation 𝑆𝑟 which is necessary to account for as it impacts calculations of average saturation 271 

and pressure drop.  272 

 273 

2.5. Dimensionless numbers based on cumulative end effect profile 274 

Consider for simplicity that the porous medium extends infinitely beyond the core length 𝑌 =275 

1 such that saturations between 𝑆𝑒𝑞 and 𝑆𝑟 have specified positions 𝑌(𝑆). The area between the 276 

straight line 𝑆 = 𝑆𝑟 and the graph 𝑌(𝑆) represents the cumulative amount of phase trapped by 277 

end effects as measured in displaceable pore volumes, 𝑛𝑑𝑝𝑣.  278 

(35)  𝑛𝑑𝑝𝑣 = ∫ 𝑌|𝑑𝑆|
𝑆𝑟

𝑆=𝑆𝑒𝑞

= −
1

𝑁0
∫ ∫

𝜇𝑚 [𝑓𝑤𝜆𝑜
𝑑𝐽
𝑑𝑆

] (S′)

𝐹 − 𝑓𝑤(S′)

𝑆

𝑆𝑒𝑞

𝑑𝑆′|𝑑𝑆|
𝑆𝑟

𝑆=𝑆𝑒𝑞

. 

The absolute sign on 𝑑𝑆 in the outer integral is used to produce a positive value regardless of 279 

whether 𝑆𝑒𝑞 is larger or less than 𝑆𝑟. As an example, if 𝑆𝑟 = 0, 𝑆𝑒𝑞 = 1 and 𝑌(𝑆) = 1 (all the 280 

saturations 0 < 𝑆 < 1 are positioned at the inlet end of the core), the area is 1 meaning 𝑛𝑑𝑝𝑣 =281 

1. Whether the end effects have impact on the system will depend on how far the saturation 282 

profile is deviated from 𝑆𝑟 throughout the core. 𝑛𝑑𝑝𝑣 unfortunately cannot distinguish whether 283 

the accumulated phase is located within the core or not, but is a strong indicator of impact if the 284 
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end effects are known to be within the core. The average length 𝑌𝑎𝑣 of the end effect profile (in 285 

core lengths) is: 286 

(36)  𝑌𝑎𝑣 =
1

𝑆𝑟 − 𝑆𝑒𝑞
∫ 𝑌𝑑𝑆

𝑆𝑟

𝑆=𝑆𝑒𝑞

= −
1

𝑆𝑟 − 𝑆𝑒𝑞

1

𝑁0
∫ ∫

𝜇𝑚 [𝑓𝑤𝜆𝑜
𝑑𝐽
𝑑𝑆

] (S′)

𝐹 − 𝑓𝑤(S′)

𝑆

𝑆𝑒𝑞

𝑑𝑆′𝑑𝑆
𝑆𝑟

𝑆=𝑆𝑒𝑞

. 

If 𝑌𝑎𝑣 = 0 there are no end effects while if 𝑌𝑎𝑣 = 1 the end effects are sufficiently strong to 287 

have a profile with average distance equal the length of the core. The saturation profile is 288 

nonuniform. Especially, the profile is locked at 𝑌 = 0 at 𝑆𝑒𝑞 so the saturations closer to 𝑆𝑟 have 289 

distances greater than 𝑌𝑎𝑣. Assume the profile 𝑌(𝑆) is approximated by an 𝑛’th order 290 

polynomial 𝑌̃ of 𝑆, such that 𝑌𝑎𝑣 is preserved and 𝑌̃(𝑆𝑒𝑞) = 0: 291 

(37)  𝑌̃(𝑆) = 𝑌𝑎𝑣(𝑛 + 1) (
𝑆 − 𝑆𝑒𝑞

𝑆𝑟 − 𝑆𝑒𝑞
)

𝑛

 

For 𝑛 = 1 the profile is linear while larger 𝑛 give the profile more curvature and results in the 292 

end effect region to terminate at position 𝑌𝑎𝑣(𝑛 + 1): 293 

(38)  𝑌𝑐𝑒𝑒 = 𝑌̃(𝑆𝑟) = 𝑌𝑎𝑣(𝑛 + 1) 

The parameter 𝑛 can be selected to fit typical profiles or given an assumed value, but will be 294 

assumed fixed. 295 

𝑛𝑑𝑝𝑣 and 𝑌𝑐𝑒𝑒 are dimensionless capillary numbers expressing in different forms the 296 

ratio of capillary to viscous forces. They are derived from physical considerations and uniquely 297 

combine any set of system parameters, including the saturation functions. Large values ≫ 1 298 

indicate strong end effects, low values ≪ 1 indicate negligible end effects and values of 299 

magnitude ≈ 1 are expected to give a transition in behavior. Especially, when 𝑌𝑐𝑒𝑒 ≈ 1 the end 300 

effect profile should exactly reach the inlet. The two numbers are related by: 301 

(39)  𝑌𝑐𝑒𝑒 =
𝑛 + 1

|𝑆𝑒𝑞 − 𝑆𝑟|
𝑛𝑑𝑝𝑣 ≫ 𝑛𝑑𝑝𝑣 

Whether the end effects are limited to within the core or not is essential to the derivation of the 302 

intercept method (Gupta and Maloney 2016; Andersen et al. 2017a, 2020b; Andersen and Zhou 303 

2020), suggesting 𝑌𝑐𝑒𝑒 = 1 to be a criterion for when the method is valid. 304 

 305 

2.6. Average saturation 306 

2.6.1. General definition 307 

In the following it will be assumed that the saturation profile extends to infinity, i.e. either co-308 

injection is considered or we have single phase injection with a proper combination of saturation 309 
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functions. The following spatial integrals are independent of this assumption, but their 310 

conversion to saturation integrals are not. 311 

The core average saturation follows from integrating the saturation along the core. The 312 

integral can be converted into a saturation integral evaluated from the scaled outlet saturation 313 

𝑆𝑒𝑞 to the scaled saturation 𝑆1 at the inlet 𝑌 = 1.  314 

(40)  𝑆̅ = ∫ 𝑆(𝑌)𝑑𝑌
1

𝑌=0

= ∫ 𝑆
𝑑𝑌

𝑑𝑆
𝑑𝑆

𝑆1

𝑆=𝑆𝑒𝑞

= −
1

𝑁0
∫ 𝑆

𝜇𝑚𝑓𝑤𝜆𝑜
𝑑𝐽
𝑑𝑆

𝐹 − 𝑓𝑤
𝑑𝑆

𝑆1

𝑆=𝑆𝑒𝑞

 

In the above we have applied: 315 

(41)  𝑑𝑌

𝑑𝑆
= −

1

𝑁0

𝜇𝑚𝑓𝑤𝜆𝑜
𝑑𝐽
𝑑𝑆

𝐹 − 𝑓𝑤
 

which follows from (31). The inlet saturation 𝑆1 is unknown and depends on the extent of the 316 

saturation profile. It is found by solving the equation 𝑌(𝑆1) = 1, equivalently:  317 

(42)  1 = −
1

𝑁0
∫

𝜇𝑚 [𝑓𝑤𝜆𝑜
𝑑𝐽
𝑑𝑆

] (𝑆′)

𝐹 − 𝑓𝑤

𝑆1

𝑆𝑒𝑞

𝑑𝑆′ 

As seen, 𝑆1 depends on 𝑁0, 𝑆𝑒𝑞 and the saturation functions. Especially, the saturation at this or 318 

any other specific location will depend on both the general profile shape and how compressed 319 

it is (the magnitude of 𝑁0). 320 

 321 

2.6.2. Intercept method 322 

Assume now the saturation profile is approximated by introducing a saturation 𝑆∗ such that:  323 

(43)  𝑆∗ = 𝑆𝑟(1 − 𝜀) + 𝑆𝑒𝑞𝜀, 0 < 𝜀 < 1 

for some small 𝜀 where:  324 

(44)  𝑌(𝑆) = −
1

𝑁0
∫

𝜇𝑚 [𝑓𝑤𝜆𝑜
𝑑𝐽
𝑑𝑆

] (S′)

𝐹 − 𝑓𝑤(S′)

𝑆

𝑆𝑒𝑞

𝑑𝑆′, (𝑌 < 𝑌(𝑆∗)) 

(45)  𝑆 = 𝑆𝑟 , (𝑌 > 𝑌(𝑆∗)) 

In other words, at a given fraction (1 − 𝜀) of the saturation interval between 𝑆𝑒𝑞 and 𝑆𝑟, at a 325 

saturation 𝑆∗ sufficiently close to 𝑆𝑟: the (infinite) end effect saturation profile is approximated 326 

to a finite end effect saturation profile stopping at 𝑌(𝑆∗). At greater distances there are assumed 327 

no end effects, 𝑆 = 𝑆𝑟. The closer 𝑆∗ is to 𝑆𝑟 the better is the approximation. Further, assume 328 

that the length of the end effect is within the core: 𝑌(𝑆∗) < 1. This distance will be called 𝑌∗. 329 
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There is then a corresponding distance 1 − 𝑌∗ at the inlet without end effects. The average 330 

saturation in the core under such circumstances can be described by: 331 

(46)  𝑆̅ = 𝑆̅∗𝑌∗ + 𝑆𝑟(1 − 𝑌∗),   

(47)  𝑌∗ = −
1

𝑁0
∫

𝜇𝑚 [𝑓𝑤𝜆𝑜
𝑑𝐽
𝑑𝑆

] (S′)

𝐹 − 𝑓𝑤(S′)

𝑆∗

𝑆𝑒𝑞

𝑑𝑆′ 

𝑆̅∗ is the average saturation in the end effect region (0 < 𝑌 < 𝑌∗) and the position 𝑌∗ is known. 332 

By considering the saturation profile between 𝑆𝑒𝑞 and 𝑆∗ we find the average saturation in that 333 

interval 𝑆̅∗: 334 

(48)  𝑆̅∗ =
1

𝑌∗
∫ 𝑆(𝑌)𝑑𝑌

𝑌∗

𝑌=0

=
1

𝑌∗
∫ 𝑆

𝑑𝑌

𝑑𝑆
𝑑𝑆

𝑆∗

𝑆=𝑆𝑒𝑞

=
∫ 𝑆

𝜇𝑚 [𝑓𝑤𝜆𝑜
𝑑𝐽
𝑑𝑆

] (𝑆)

𝐹 − 𝑓𝑤
𝑑𝑆

𝑆∗

𝑆𝑒𝑞

∫
𝜇𝑚 [𝑓𝑤𝜆𝑜

𝑑𝐽
𝑑𝑆

] (S′)

𝐹 − 𝑓𝑤(S′)
𝑆∗

𝑆𝑒𝑞
𝑑𝑆′

 

As seen the average saturation 𝑆̅∗ in the end effect region is only a function of the saturation 335 

functions, flow fraction and viscosity ratio and not the parameters in 𝑁0. The average saturation 336 

𝑆̅ in the core however varies linearly with 𝑌∗, the fraction of the core covered by end effects. 337 

Gupta and Maloney (2016) assumed this and verified it by running numerical simulations, but 338 

did not make a formal proof.  339 

From the definition of 𝑌∗ and 𝑆̅∗ in (47) and (48) we can write (46) as: 340 

(49)  𝑆̅ = 𝑆𝑟 +
1

𝑁0
∫ (𝑆𝑟 − 𝑆)

𝜇𝑚𝑓𝑤𝜆𝑜
𝑑𝐽
𝑑𝑆

𝐹 − 𝑓𝑤
𝑑𝑆

𝑆∗

𝑆=𝑆𝑒𝑞

 

showing that the average saturation is linear with the inverse capillary number where the slope 341 

is a saturation integral and the intercept is the saturation without end effects.  342 

The combination of the saturation integrals in (47) and (48) to one makes the final 343 

integral in (49) less sensitive to the choice of 𝑆∗ and we can in fact let 𝑆∗ → 𝑆𝑟. We then get a 344 

more correct (and less subjective) slope since at higher capillary numbers more of the profile 345 

will be within the core and should be accounted for.  346 

The average (absolute) saturation can then be expressed as linear with the inverse 347 

capillary number 1/𝑁0 with a saturation term slope 𝐶𝑠 and, by expanding the capillary number 348 

expression, proportional with inverse velocity: 349 

(50)  
𝑠̅𝑤 = 𝑠𝑤

𝑟 +
𝐶𝑠

𝑁0
= 𝑠𝑤

𝑟 + 𝐶𝑠

𝜎𝑜𝑤

𝐿√𝜙
𝐾

𝜇𝑚

1

𝑣𝑇
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(51)  𝐶𝑠 = Δ𝑠𝑤 ∫ (𝑆𝑟 − 𝑆)
𝜇𝑚𝑓𝑤𝜆𝑜

𝑑𝐽
𝑑𝑆

𝐹 − 𝑓𝑤
𝑑𝑆

𝑆𝑟

𝑆=𝑆𝑒𝑞

= ∫ (𝑠𝑤
𝑟 − 𝑠𝑤)

𝜇𝑚𝑓𝑤𝜆𝑜
𝑑𝐽
𝑑𝑠𝑤

 

𝐹 − 𝑓𝑤
𝑑𝑠𝑤

𝑠𝑤
𝑟

𝑠𝑤=𝑠𝑤
𝑒𝑞

 

The intercept is the corrected saturation without end effects 𝑠𝑤
𝑟 . 350 

 351 

2.7. Pressure analyses 352 

2.7.1. Gradients 353 

The pressure gradients of oil and water can be expressed in terms of the scaled distance from 354 

the outlet: 355 

(52)  
𝑑𝑝𝑤

𝑑𝑌
=

𝐿𝜙𝑣𝑇𝜇𝑤𝐹

𝐾𝑘𝑟𝑤(𝑆(𝑌))
> 0, 

(53)  
𝑑𝑝𝑜

𝑑𝑌
=

𝐿𝜙𝑣𝑇𝜇𝑜(1 − 𝐹)

𝐾𝑘𝑟𝑜(𝑆(𝑌))
> 0. 

 356 

2.7.2. Pressure drop 357 

We define the pressure drop of a phase as the pressure at the inlet minus that at the outlet. We 358 

obtain these parameters by integration of the pressure gradients, expressed either as integrals 359 

over the positions of the core or saturation integrals, where we make use of knowing the 360 

saturation profiles: 361 

(54)  Δ𝑝𝑤 = −
1

𝑁0

𝐿𝜙𝑣𝑇𝜇𝑚

𝐾
𝐹 ∫

1 − 𝑓𝑤
𝐹 − 𝑓𝑤

𝑑𝐽

𝑑𝑆
𝑑𝑆

𝑆1

𝑆𝑒𝑞
 

(55)  Δ𝑝𝑜 = −
1

𝑁0

𝐿𝜙𝑣𝑇𝜇𝑚

𝐾
(1 − 𝐹)∫

𝑓𝑤
𝐹 − 𝑓𝑤

𝑑𝐽

𝑑𝑆
𝑑𝑆

𝑆1

𝑆𝑒𝑞
 

Assume for comparison that there were no end effects such that the pressure gradients (52) and 362 

(53) are constant and evaluated at 𝑆𝑟: 363 

(56)  (
𝑑𝑝𝑤

𝑑𝑌
)
𝑟𝑒𝑓

=
𝐿𝜙𝑣𝑇𝜇𝑤𝐹

𝐾𝑘𝑟𝑤(𝑆r)
> 0, 

(57)  (
𝑑𝑝𝑜

𝑑𝑌
)
𝑟𝑒𝑓

=
𝐿𝜙𝑣𝑇𝜇𝑜(1 − 𝐹)

𝐾𝑘𝑟𝑜(𝑆𝑟)
> 0. 

Integrating from 𝑌 = 0 to 1, the corresponding pressure drops are: 364 

(58)  Δ𝑝𝑤,𝑟𝑒𝑓 =
𝐿𝜙𝑣𝑇𝜇𝑤𝐹

𝐾𝑘𝑟𝑤(𝑆r)
> 0, 

(59)  Δ𝑝𝑜,𝑟𝑒𝑓 =
𝐿𝜙𝑣𝑇𝜇𝑜(1 − 𝐹)

𝐾𝑘𝑟𝑜(𝑆𝑟)
> 0. 

From the definition of 𝑆𝑟 we have that 𝑓𝑤(𝑆𝑟) = 𝐹 which can be expanded to 365 
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(60)  
𝑘𝑟𝑤(𝑆𝑟)

𝜇𝑤𝜆𝑇(𝑆𝑟)
= 𝐹 

and equivalently expressed for the oil phase using 1 − 𝑓𝑤(𝑆𝑟) = 1 − 𝐹, we have: 366 

(61)  
𝑘𝑟𝑜(𝑆𝑟)

𝜇𝑜𝜆𝑇(𝑆𝑟)
= 1 − 𝐹 

The two equations are both related to the total mobility and can therefore be combined: 367 

(62)  
𝜇𝑤𝐹

𝑘𝑟𝑤(𝑆r)
=

𝜇𝑜(1 − 𝐹)

𝑘𝑟𝑜(𝑆r)
=

1

𝜆𝑇(𝑆r)
 

We thus see that the phase dependent terms in (56) to (59) are equal which implies that the 368 

phases have identical pressure gradients and pressure drop over the core in absence of end 369 

effects: 370 

(63)  (
𝑑𝑝𝑖

𝑑𝑌
)
𝑟𝑒𝑓

= (
𝑑𝑝

𝑑𝑌
)
𝑟𝑒𝑓

=
𝐿𝜙𝑣𝑇

𝐾𝜆𝑇(𝑆r)
 

(64)  Δ𝑝𝑖,𝑟𝑒𝑓 = Δ𝑝𝑟𝑒𝑓 =
𝐿𝜙𝑣𝑇

𝐾𝜆𝑇(𝑆r)
 

We then also obtain identical phase pressure gradients once considering positions adequately 371 

far from the end effect zone. The ratios of pressure drop with end effects to pressure drop 372 

without end effects are: 373 

(65)  
Δ𝑝𝑤

Δ𝑝𝑟𝑒𝑓
= −

1

𝑁0

𝑘𝑟𝑤(𝑆𝑟)𝜇𝑚

𝜇𝑤
∫

1 − 𝑓𝑤
𝐹 − 𝑓𝑤

𝑑𝐽

𝑑𝑆
𝑑𝑆

𝑆1

𝑆𝑒𝑞

> 0 

(66)  
Δ𝑝𝑜

Δ𝑝𝑟𝑒𝑓
= −

1

𝑁0

𝑘𝑟𝑜(𝑆𝑟)𝜇𝑚

𝜇𝑜
∫

𝑓𝑤
𝐹 − 𝑓𝑤

𝑑𝐽

𝑑𝑆
𝑑𝑆

𝑆1

𝑆𝑒𝑞

> 0 

It is seen that 𝑁0 controls the impact of end effects on pressure drop for each phase, with the 374 

exception that the geometric viscosity in 𝑁0 is replaced by the phase viscosity (since 𝑁0 ∝ 𝜇𝑚). 375 

Of most interest from the pressure measurements are the data corresponding to the 376 

relative permeabilities without end effects 𝑘𝑟𝑖(𝑆𝑟). Assume that an ‘effective relative 377 

permeability’ 𝑘̃𝑟𝑖 is calculated based on the measured pressure drop and injection conditions by 378 

direct application of Darcy’s law. On the other hand, the ‘true’ relative permeability without 379 

end effects 𝑘𝑟𝑖(𝑆r) would be obtained if the pressure drop was Δ𝑝𝑟𝑒𝑓. This is related as follows: 380 

(67)  𝑘𝑟𝑖(𝑆r) =
𝐿𝜙𝑣𝑇𝜇𝑖𝐹𝑖

𝐾Δ𝑝𝑟𝑒𝑓
, 𝑘̃𝑟𝑖 =

𝐿𝜙𝑣𝑇𝜇𝑖𝐹𝑖

𝐾Δ𝑝𝑖
 

The ratio of pressure drops is then directly related to the ratio of relative permeability estimates: 381 

(68)  
Δ𝑝𝑖

Δ𝑝𝑟𝑒𝑓
=

𝑘𝑟𝑖(𝑆r)

𝑘̃𝑟𝑖
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This implies the effective relative permeability approaches the true relative permeability when 382 

Δ𝑝𝑖 approaches Δ𝑝𝑟𝑒𝑓 at high rates (small end effects): 383 

(69)  𝑘̃𝑟𝑖 = 𝑘𝑟𝑖(𝑆r)
Δ𝑝𝑟𝑒𝑓

Δ𝑝𝑖
 

If the pressure drop is higher with end effects (
Δ𝑝𝑟𝑒𝑓

Δ𝑝𝑖
< 1) this leads to underestimation of the 384 

relative permeability (𝑘̃𝑟𝑖 < 𝑘𝑟𝑖(𝑆r)), and vice versa. 385 

 386 

2.7.3. The challenge of missing phase pressure data and its solution 387 

Under normal circumstances we do not have access to the pressure drop of both phases, but 388 

measure only one phase pressure drop across the core. Virnovsky et al. (1995) state that during 389 

imbibition injection the pressures at the outlet are continuous, however only the nonwetting 390 

phase is continuous with the surroundings at the inlet. The experimentally measured pressure 391 

drop is therefore that of the nonwetting phase. Special inlet designs allowed pressure continuity 392 

and measurement of both fluid pressures (Virnovsky et al. 1998), but they are not common. An 393 

important question is then whether the available pressure drop still gives meaningful data to 394 

calculate the other phase’s relative permeability. Assume therefore that for a given phase the 395 

effective relative permeability is calculated using the pressure drop of the other phase. (67) is 396 

then modified to: 397 

(70)  𝑘𝑟𝑖(𝑆r) =
𝐿𝜙𝑣𝑇𝜇𝑖𝐹𝑖

𝐾Δ𝑝𝑟𝑒𝑓
, 𝑘̃𝑟𝑖 =

𝐿𝜙𝑣𝑇𝜇𝑖𝐹𝑖

𝐾Δ𝑝𝑗
, (𝑗 ≠ 𝑖 ∈ 𝑜,𝑤) 

such that: 398 

(71)  
𝑘𝑟𝑖(𝑆r)

𝑘̃𝑟𝑖

=
Δ𝑝𝑗

Δ𝑝𝑟𝑒𝑓
, (𝑗 ≠ 𝑖 ∈ 𝑜,𝑤) 

Since Δ𝑝𝑗 approaches Δ𝑝𝑟𝑒𝑓 when end effects are negligible the correct relative permeability is 399 

still obtained, although the effective estimates with end effects are different when using the 400 

pressure drop of the other phase. 401 

 402 

2.7.4. Intercept method 403 

Again, assume the saturation profile is divided into a region 0 < 𝑌 < 𝑌∗ with end effects and a 404 

region 𝑌∗ < 𝑌 < 1 without end effects where 𝑆 = 𝑆𝑟, as described before, where 𝑆(𝑌∗) ≈ 𝑆𝑟. 405 

Particularly, the end effect region is within the core and there exists a region without end effects. 406 

By integrating the pressure gradients over each interval, the pressure drops of each phase are: 407 
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(72)  Δ𝑝𝑤 =
𝐿𝜙𝑣𝑇𝜇𝑤𝐹

𝐾
[−

𝜇𝑚

𝑁0𝜇𝑤
∫

1 − 𝑓𝑤
𝐹 − 𝑓𝑤

𝑑𝐽

𝑑𝑆
𝑑𝑆

𝑆∗

𝑆=𝑆𝑒𝑞

+
1 − 𝑌∗

𝑘𝑟𝑤(𝑆𝑟)
] 

(73)  Δ𝑝𝑜 =
𝐿𝜙𝑣𝑇𝜇𝑜(1 − 𝐹)

𝐾
[−

𝜇𝑚

𝑁0𝜇𝑜
∫

𝑓𝑤
𝐹 − 𝑓𝑤

𝑑𝐽

𝑑𝑆
𝑑𝑆

𝑆∗

𝑆=𝑆𝑒𝑞

+
1 − 𝑌∗

𝑘𝑟𝑜(𝑆𝑟)
] 

Dividing the pressure drops Δ𝑝𝑖,𝑟𝑒𝑓 with the reference pressure drops Δ𝑝𝑖 (obtained with no end 408 

effects) and using the definition of 𝑌∗ from (47) we can express the result in the following form: 409 

(74)  
Δ𝑝𝑤

Δ𝑝𝑤,𝑟𝑒𝑓
=  1 +

1

𝑁0

𝜇𝑚

𝜇𝑤
∫ [𝑘𝑟𝑤 − 𝑘𝑟𝑤(𝑆r)]

(1 − 𝑓𝑤)
𝑑𝐽
𝑑𝑆

𝐹 − 𝑓𝑤
 𝑑𝑆

𝑆∗

𝑆=𝑆𝑒𝑞

 

(75)  Δ𝑝𝑜

Δ𝑝𝑜,𝑟𝑒𝑓
=  1 +

1

𝑁0

𝜇𝑚

𝜇𝑜
∫ [𝑘𝑟𝑜 − 𝑘𝑟𝑜(𝑆𝑟)]

𝑓𝑤
𝐹 − 𝑓𝑤

𝑑𝐽

𝑑𝑆
𝑑𝑆

𝑆∗

𝑆𝑒𝑞

 

Again we note that the updated combined saturation integrals are less sensitive to 𝑆∗ and we 410 

can let 𝑆∗ → 𝑆𝑟. For both phase pressure drops scaled by the reference pressure drop, the result 411 

is linear trends with the inverse capillary number corrected for the phase viscosity times a 412 

saturation integral slope termed 𝐶𝑤 and 𝐶𝑜 for the respective phases. Expanding the capillary 413 

number shows that the relation is linear with inverse total velocity. 414 

(76)  

Δ𝑝𝑤

Δ𝑝𝑤,𝑟𝑒𝑓
=  1 +

1

𝑁0 (
𝜇𝑤

𝜇𝑚
)
𝐶𝑤 = 1 + 𝐶𝑤

𝜎𝑜𝑤

𝜇𝑤𝐿√𝜙
𝐾

1

𝑣𝑇
 

(77)  Δ𝑝𝑜

Δ𝑝𝑜,𝑟𝑒𝑓
=  1 +

1

𝑁0 (
𝜇𝑜

𝜇𝑚
)
𝐶𝑜 = 1 + 𝐶𝑜

𝜎𝑜𝑤

𝐿√𝜙
𝐾

𝜇𝑜

1

𝑣𝑇
 

The saturation term slopes are defined as: 415 

(78)  

𝐶𝑤 = ∫ [𝑘𝑟𝑤 − 𝑘𝑟𝑤(𝑆r)]
(1 − 𝑓𝑤)

𝑑𝐽
𝑑𝑆

𝐹 − 𝑓𝑤
𝑑𝑆

𝑆𝑟

𝑆=𝑆𝑒𝑞

= ∫ [𝑘𝑟𝑤 − 𝑘𝑟𝑤(𝑠𝑤
𝑟 )]

(1 − 𝑓𝑤)
𝑑𝐽
𝑑𝑠𝑤

𝐹 − 𝑓𝑤
𝑑𝑠𝑤

𝑠𝑤
𝑟

𝑠𝑤=𝑠𝑤
𝑒𝑞

 

(79)  

𝐶𝑜 = ∫ [𝑘𝑟𝑜 − 𝑘𝑟𝑜(𝑆𝑟)]
𝑓𝑤

𝑑𝐽
𝑑𝑆

𝐹 − 𝑓𝑤
𝑑𝑆

𝑆𝑟

𝑆𝑒𝑞

= ∫ [𝑘𝑟𝑜 − 𝑘𝑟𝑜(𝑆𝑟)]
𝑓𝑤

𝑑𝐽
𝑑𝑠𝑤

𝐹 − 𝑓𝑤
𝑑𝑠𝑤

𝑠𝑤
𝑟

𝑠𝑤=𝑠𝑤
𝑒𝑞

 

Equivalent to (68) we can use (76) and (77) to express the relations between effective and 416 

corrected relative permeabilities: 417 
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(80)  
1

𝑘̃𝑟𝑤

=
1

𝑘𝑟𝑤(𝑆r)
[ 1 +

1

𝑁0 (
𝜇𝑤

𝜇𝑚
)
𝐶𝑤] =

1

𝑘𝑟𝑤(𝑆r)

[
 
 
 

1 + 𝐶𝑤

𝜎𝑜𝑤

𝐿√𝜙
𝐾

𝜇𝑤

1

𝑣𝑇

]
 
 
 

 

(81)  
1

𝑘̃𝑟𝑜

=
1

𝑘𝑟𝑜(𝑆r)
[ 1 +

1

𝑁0 (
𝜇𝑜

𝜇𝑚
)
𝐶𝑜] =

1

𝑘𝑟𝑜(𝑆r)

[
 
 
 

1 + 𝐶𝑜

𝜎𝑜𝑤

𝐿√𝜙
𝐾

𝜇𝑜

1

𝑣𝑇

]
 
 
 

 

which shows that if we plot the inverse of effective relative permeability against inverse 418 

capillary number or inverse velocity, we get a straight line trend with intercept at the ‘true’ 419 

relative permeability of each phase. 420 

When calculating effective relative permeabilities for a given phase based on its own 421 

pressure drop data, we have shown that the intercept method follows where the inverse effective 422 

relative permeabilities plotted against inverse rate converge linearly to the correct inverse 423 

relative permeability without end effects. Assume now therefore that for a given phase the 424 

effective relative permeability is calculated using the pressure drop of the opposite phase. As 425 

shown in (71) this is directly related to that phase’s normalized pressure drop and combined 426 

with (76) and (77) we obtain: 427 

(82)  
1

𝑘̃𝑟𝑤

=
1

𝑘𝑟𝑤(𝑆r)
[ 

Δ𝑝𝑜

Δ𝑝𝑟𝑒𝑓
] =

1

𝑘𝑟𝑤(𝑆r)
[ 1 +

1

𝑁0 (
𝜇𝑜

𝜇𝑚
)
𝐶𝑜] 

(83)  
1

𝑘̃𝑟𝑜

=
1

𝑘𝑟𝑜(𝑆r)
 [

Δ𝑝𝑤

Δ𝑝𝑟𝑒𝑓
] =

1

𝑘𝑟𝑜(𝑆r)
[ 1 +

1

𝑁0 (
𝜇𝑤

𝜇𝑚
)
𝐶𝑤] 

We have thus demonstrated that the intercept method still holds: the inverse relative 428 

permeability is linear with the inverse capillary number and converges to the correct inverse 429 

relative permeability. However, the slope of the linear data will correspond to the phase with 430 

continuous pressure.  431 

 432 

2.8. Single phase injection 433 

An important special case is single phase injection (fractions 𝐹 equal 0 or 1) which is used to 434 

determine critical saturations and relative permeability end points. As before, average saturation 435 

is determined by (50). The relative permeability of the phase not flowing cannot be determined 436 

directly, but will by definition be zero at steady state for the corrected saturation 𝑠𝑤
𝑟 . We now 437 

measure the pressure of the injected phase and its relative permeability is estimated using (80) 438 

if water is injected and (81) if oil is injected. 439 
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 440 

3. Results and discussion 441 

Average (normalized) saturations can be calculated for any flow conditions based on (40) where 442 

the inlet saturation 𝑆1 is determined from (42). Absolute average saturation then follows using 443 

(23). Pressure drops are calculated from (54), (55) and reference pressure drop from (64).  444 

For mixed or unknown wettability, at a given flow fraction, the less-wetting phase can 445 

be identified as the phase whose saturation increases upon increased injection total rate. The 446 

measured pressure drop at that fraction is then associated with the less wetting phase. From our 447 

model we therefore choose to only report the non-wetting phase pressure drop.  448 

Effective relative permeabilities are calculated based on the nonwetting phase pressure 449 

drop. These data are valid under any flow conditions and can be compared directly with steady 450 

state solutions from any commercial simulator. In our case the nonwetting phase is oil and we 451 

use (67) for effective oil relative permeability 𝑘̃𝑟𝑜 and (70) for effective water relative 452 

permeability 𝑘̃𝑟𝑤. An important exception is water flooding where the capillary pressure 453 

becomes zero or negative along the core and water will have higher pressure drop than the oil.  454 

In addition, the analytical solutions corresponding to the intercept method are presented. 455 

They are valid only at high rates and will expectedly differ from the general solution at low 456 

rates. Selected effective relative permeability points are also calculated based on Sendra 457 

v2018.2.5 for validation. 458 

 459 

3.1. Input data 460 

Reference case input parameters are displayed in Table 1. As indicated, the oil-water flow 461 

parameters were based on measurements from Kleppe and Morse (1974) from a Berea 462 

sandstone core.  Correlations with sufficient parameters to match the data were selected, such 463 

as the Andersen et al. (2017) 𝐽-correlation for scaled capillary pressure and an extended Corey 464 

correlation (Brooks and Corey 1964) for relative permeability with Corey exponents linearly 465 

dependent on saturation.  466 

(84)  𝐽(𝑆) =
𝐽1

(1 + 𝑘1𝑆)𝑛1
−

𝐽2

(1 + 𝑘2(1 − 𝑆))
𝑛2

+ 𝐽3 

(85)  𝑘𝑟𝑤 = 𝑘𝑟𝑤
∗ (𝑆)𝑛𝑤 , 𝑘𝑟𝑤 = 𝑘𝑟𝑜

∗ (1 − 𝑆)𝑛𝑜 

(86)  𝑛𝑤 = 𝑛𝑤1𝑆 + 𝑛𝑤2(1 − 𝑆), 𝑛𝑜 = 𝑛𝑜1𝑆 + 𝑛𝑜2(1 − 𝑆), 

All the functions were expressed using the normalized saturation 𝑆 from (23). The 𝐽-function 467 

derivative, which is central in the solution is easily evaluated explicitly as: 468 
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(87)  
𝑑𝐽

𝑑𝑆
 = −

𝐽1𝑛1𝑘1

(1 + 𝑘1𝑆)𝑛1+1
−

𝐽2𝑛2𝑘2

(1 + 𝑘2(1 − 𝑆))
𝑛2+1 

The relative permeabilities and scaled and unscaled capillary pressure can be seen in Figure 2 469 

comparing correlations with the experimental data. Fractional flow functions with three choices 470 

of oil viscosity are shown in Figure 3. 471 

 472 

Table 1 Reference input parameters in the simulations. The parameters are based on Kleppe and Morse 473 

(1974). To scale the capillary pressure, interfacial tension was assumed to be 21 mN/m. The core length 474 

was assumed to be 10 cm. 475 

Constant 

parameters 
 

Saturation 

function 

parameters 

   

  

𝐾 290 mD 𝐽1 1.1490 𝑘𝑟𝑤
∗  0.07 𝑠𝑤𝑟 0.30 

𝜙 0.225 𝐽2 0.1549 𝑘𝑟𝑜
∗  0.75 𝑠𝑜𝑟 0.39 

𝐿 10 cm 𝐽3 0 𝑛𝑤1 6 𝑠𝑤
𝑒𝑞

 0.61 

𝜎𝑜𝑤 0.021 N/m 𝑘1 0.994 𝑛𝑤2 2.5   

𝜇𝑤 1.0 cP 𝑘2 65.0 𝑛𝑜1 2   

𝜇𝑜 2.3 cP 𝑛1 = 𝑛2 3 𝑛𝑜2 0.5   

 476 

 477 

Figure 2 Input saturation functions based on Kleppe and Morse (1974): oil and water relative permeability 478 

(left) and scaled and absolute capillary pressure (right). The experimental points are shown together with 479 

the correlations based on (84) to (86). 480 

 481 
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 482 

Figure 3 Fractional flow functions 𝒇𝒘 for different oil viscosities (the base value of 2.3 cP and increased 483 

values 5 and 25 times higher) against water saturation in lin-lin plot (left) and semilog plot (right). 484 

 485 

3.2. Validation 486 

The analytical solution was validated by comparison of results with full transient numerical 487 

simulations from the commercial software Sendra v2018.2.5. This program solves the flow 488 

equations fully implicit. The core was discretized using 500 grid cells to capture steep saturation 489 

gradients. At each injection condition the program was run until a visibly flat production profile 490 

was observed, indicating steady state. 491 

Using the base case parameters, two flow fractions are considered: 𝐹 = 0.50 and 𝐹 =492 

0.05 and injection rate is varied for both cases using 0.1, 1, 10 and 100 pore volumes per day 493 

(PV/d). The resulting steady state saturation profiles are shown in Figure 4 comparing the 494 

analytical and numerical solutions. For comparison, the saturation integrals in the derived 495 

methods were calculated using 10 000 saturations in the interval between 𝑆𝑟 and 𝑆𝑒𝑞, sufficient 496 

for the integrals to converge. 497 

For all rates and flow fractions the saturation distribution solutions from the analytical 498 

solution (28) and the commercial software (Sendra) overlap, verifying our procedure. All the 499 

saturation distributions approach the saturation 𝑠𝑤
𝑒𝑞

= 0.61 at 𝑌 = 0. For a given flow fraction 500 

the saturation distributions approach the saturation 𝑠𝑤
𝑟  such that 𝑓𝑤(𝑠𝑤

𝑟 ) = 𝐹. Considering 501 

Figure 3 we see that when 𝐹 = 0.5 and 𝐹 = 0.05, then 𝑠𝑤
𝑟 ≈ 0.545 and 𝑠𝑤

𝑟 ≈ 0.475, 502 

respectively, which is consistent with the profiles in Figure 4. For high rates the distributions 503 

stabilize at 𝑠𝑤
𝑟  within the core a certain distance from the outlet. For low rates (such as 0.1 PV/d 504 
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in these examples), however, the capillary forces dominate and shift the saturations towards 𝑠𝑤
𝑒𝑞

 505 

and no saturations in the core are close to 𝑠𝑤
𝑟 . Direct application of Darcy’s law to calculate 506 

relative permeability at steady state assumes 𝑠𝑤(𝑌) = 𝑠𝑤
𝑟  which we see is only reasonable at 507 

very high rates. 508 

 509 

 510 

Figure 4 Validation of the analytical model by comparing results from the analytical solution and a 511 

commercial software (Sendra) at high (a) and low (b) injected fraction (𝑭 = 𝟎. 𝟓 and 𝟎. 𝟎𝟓, respectively) at 512 

different total injection rates, as indicated in the legend, measured in pore volumes per day. 513 

 514 

3.3. Profile shapes 515 

The analytical solution predicts that variation of 𝑁0 only compresses or expands the saturation 516 

profile as long as the saturation functions, viscosity ratio and flow fraction are not changed, see 517 
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(44). This is demonstrated by varying the core length 𝐿, mean viscosity 𝜇𝑚, total velocity 𝑣𝑇 518 

and permeability 𝐾 (which all are directly involved in 𝑁0, see (27)) around the base case with 519 

𝐹 = 0.05 and rate 1 PV/d to give same change in 𝑁0 (an increase of 𝑁0 by a factor 5). The 520 

corresponding saturation profiles are shown in Figure 5a together with the reference case. As 521 

expected, all the parameter variations increasing 𝑁0 by the factor 5 result in the same scaled 522 

profile which is only a compression of the base profile. For example, the saturation 𝑠𝑤 = 0.5 523 

has position 𝑌 ≈ 0.9 in the base case and 𝑌 ≈
0.9

5
= 0.18 in the new cases.  524 

In comparison, in Figure 5b we see that variations in individual viscosities (thus 525 

changing the viscosity ratio) and flow fraction affect both magnitude and shape of the profiles 526 

as they do not overlap upon scaling. In particular, different values of the end point 𝑠𝑤
𝑟  are 527 

obtained in each case. 528 

 529 
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 530 

Figure 5 Saturation profiles 𝒀(𝒔𝒘) calculated using (24) which consists of a dimensionless number 𝑵𝟎 and 531 

a saturation integral. Variation of parameters in 𝑵𝟎 (a) that increase 𝑵𝟎 by the same factor from the base 532 

case, but do not change the saturation integral, result in an identical new case corresponding to a 533 

compression of the base case profile. Changing viscosity (ratio) or flow fraction (b) affect the saturation 534 

integral and can change the saturation range and profile shape in general. Compressing these profiles 535 

would not cause them to overlap. 536 

 537 

3.4. Determining the n-parameter for approximate profiles 538 

The 𝑛 parameter appears in the scaling number 𝑌𝑐𝑒𝑒. To find a good choice for 𝑛 we want to 539 

see that the actual numerical profiles are well approximated by the polynomial function. This 540 

was considered by varying the injected fraction 𝐹 (with values 0.01, 0.05 and 0.5) and the oil 541 

viscosity 𝜇𝑜 (with values 1, 5 and 25 times the reference value of 2.3 cP) to get distinct profile 542 

shapes. The normalized saturation profiles 𝑆(𝑌) (blue curves) were plotted together with the 543 

corresponding approximated profiles (orange curves) in Figure 6 for 𝑛 = 5 which was found 544 

to be a good choice. The profiles are plotted over the range 𝑌 = 0 to 10𝑌𝑎𝑣. The positions 𝑌𝑎𝑣 545 
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and 𝑌𝑐𝑒𝑒 = (𝑛 + 1)𝑌𝑎𝑣 are marked with vertical dashed lines (left and right, respectively). Also 546 

a dashed/dotted line indicating the normalized saturation 𝑆𝑟 (obtained at infinite distance) is 547 

shown. The main observations are:  548 

- The major part of the saturation profile is located behind 𝑌𝑐𝑒𝑒 including 90-95% of the 549 

saturations closest to 𝑆𝑒𝑞.  550 

- Saturations located at 𝑌 > 𝑌𝑐𝑒𝑒 are very close to 𝑆𝑟.  551 

- We can state end effects to be severe when 𝑌𝑐𝑒𝑒 > 1 since then all saturations deviate 552 

from 𝑆𝑟 more than 5% the magnitude of the end effect saturation interval |𝑆𝑟 − 𝑆𝑒𝑞|. 553 

In terms of the impact the fraction and viscosities have, we see that when the fraction 𝐹 is 554 

lowered, 𝑆𝑟 decreases farther from 𝑆𝑒𝑞. This expands the saturation range and the extent of end 555 

effects. We also see that increasing the oil viscosity alters the mobility ratio to reduce 𝑆𝑟 and 556 

expands the saturation range. Although this mechanism increases the end effect, the increased 557 

viscous forces work to compress the profile. At low 𝐹 the increase in oil viscosity has more 558 

impact on compressing the end effect profile. 559 

 560 
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 561 

Figure 6 Normalized saturation profiles from the analytical solution (in blue) for different injected flow 562 

fractions and oil viscosities and their corresponding approximated saturation profiles assuming 563 

polynomial shape for 𝒏 = 𝟓. The profiles are plotted against 𝒀 over the range 0 to 𝟏𝟎𝒀𝒂𝒗 where 𝒀𝒂𝒗 and 564 

𝒀𝒄𝒆𝒆 = (𝒏 + 𝟏)𝒀𝒂𝒗 are marked with dashed vertical lines left and right, respectively.  565 

 566 

3.5. Intercept method 567 

3.5.1. Demonstration of analytical solution / intercept method 568 

Consider the reference case for the four combinations of flow fractions 𝐹 = 0.05 and 0.01 and 569 

oil viscosities 2.3 cP and 5 ⋅ 2.3 cP. Average saturation and inverse effective oil and water 570 

relative permeabilities, 
1

𝑘̃𝑟𝑤
 and 

1

𝑘̃𝑟𝑜
, are plotted against inverse velocity 

1

𝑣𝑇
. Flow rates are used 571 

in the range 5 PV/d to 1000 PV/d. The following is seen: 572 
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- For all cases, once the rates are sufficiently high, the results overlap completely with 573 

the linear analytical solution. As 
1

𝑣𝑇
→ 0, the solutions reach the correct saturation 𝑠𝑤

𝑟  574 

and relative permeability points 
1

𝑘𝑟𝑖(𝑠𝑤
𝑟 )

 without end effects, as marked on the y-axis with 575 

large symbols. 576 

- At low rates the two solutions do not overlap. The analytical solution is only valid when 577 

the end effect profile has not reached the outlet significantly which is less likely at low 578 

rates.  579 

- When plotting the relative permeability data on two scales such that two points overlap, 580 

all the points overlap, i.e. the profile shapes are identical. 581 

- Since the trends are linear, and the linear trends appear valid over a wide range of rates, 582 

only a few rates are necessary to determine the corrected values.  583 

- The above statements were validated for average saturation and relative permeability by 584 

simulations with the software Sendra for the case 𝐹 = 0.01, 𝜇𝑜 = 2.3 cP. 585 

  586 
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 587 

Figure 7 Plots of average saturation vs inverse total rate 
𝟏

𝒗𝑻
 (left) and plots of inverse relative permeabilities 588 

of oil and water 
𝟏

𝒌𝒓𝒊
 vs inverse total rate 

𝟏

𝒗𝑻
 (right) under different flow fractions and oil viscosities. The results 589 

are calculated both using the general solutions (50), (54) and (55) which are valid under all conditions, and 590 

using the analytical solution (AnSol) in (50) and (80) to (83). For the case 𝑭 = 𝟎. 𝟎𝟏, 𝝁𝒐 = 𝟐. 𝟑 𝒄𝑷 simulation 591 

results from the commercial (COM) software Sendra are added for comparison. 592 

 593 

3.5.2. Scaling of end effects with dimensionless numbers 594 
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We have seen that expressing average saturation and inverse relative permeabilities as function 595 

of inverse velocity results in linear relations. The velocity dependent terms directly express the 596 

impact of end effects on those properties and are reasonable to apply as dimensionless numbers 597 

for scaling the behavior.  598 

 In Figure 8a we plot 𝑠̅𝑤 − 𝑠𝑤
𝑟  against the number 

𝐶𝑠

𝑁0
 based on different flow fractions 599 

(𝐹 = 0.9 to 0.005) and injection rates and in Figure 8c we do the same varying oil viscosities 600 

(from 50 to 54 times the reference value) and injection rates. For a given flow fraction, 𝐶𝑠 is 601 

constant while 𝑁0 varies with rate. Oil viscosity changes both terms.  602 

At high rates 𝑠̅𝑤 − 𝑠𝑤
𝑟  is identical to 

𝐶𝑠

𝑁0
, which follows directly from the analytical 603 

solution, see (50), and all cases fall on this straight line. The dimensionless number 
𝐶𝑠

𝑁0
 thus 604 

scales saturation end effects and accounts for all relevant input parameters. For low rates the 605 

cases deviate from the straight line with different trends. The number 
𝐶𝑠

𝑁0
 directly expresses the 606 

change in average saturation due to end effects. As end effects also can reduce the average 607 

saturation, the straight line can continue to negative values. Values of 
𝐶𝑠

𝑁0
 can be considered 608 

‘large’ if it changes the average saturation by 0.01 or more (for comparison the mobile 609 

saturation range in our data is 0.31) and negligible for 
𝐶𝑠

𝑁0
< 0.001.  610 

 611 



31 

 

 612 

Figure 8 Comparison of the general solutions (full or dash/dotted lines) to the analytical solution (straight 613 

dashed line) in terms of 𝒔̅𝒘 − 𝒔𝒘
𝒓  in (a) and (c) and 

𝒌𝒓𝒊(𝒔𝒘
𝒓 )

𝒌𝒓𝒊
− 𝟏 in (b) and (d) for changes in flow fraction 𝑭 in 614 

(a) and (b) and changes in oil viscosity in (c) and (d). All solutions fall on the same straight line at low 615 

dimensionless number (high rates) which scale the data. 616 

 617 

We also plot 
𝑘𝑟𝑖(𝑠𝑤

𝑟 )

𝑘̃𝑟𝑖
− 1 against 

𝐶𝑜

𝑁0(
𝜇𝑜
𝜇𝑚

)
 in Figure 8b for different flow fractions and 618 

Figure 8d for different oil viscosities. From (80) to (83) we see that the two expressions are 619 

identical and form a straight line from zero at high rates (low 
𝐶𝑜

𝑁0(
𝜇𝑜
𝜇𝑚

)
). At low rates the data 620 

deviate from the straight line.  621 

On the straight line, the term 
𝐶𝑜

𝑁0(
𝜇𝑜
𝜇𝑚

)
 expresses how much the effective relative 622 

permeability is reduced compared to the corrected relative permeability as given by 𝑘̃𝑟𝑖 =623 

1

1+[
𝐶𝑜

𝑁0(
𝜇𝑜
𝜇𝑚

)
]

𝑘𝑟𝑖(𝑠𝑤
𝑟 ). If 

𝐶𝑜

𝑁0(
𝜇𝑜
𝜇𝑚

)
= 0, they are identical, while if nonzero they differ. A value of 624 

𝐶𝑜

𝑁0(
𝜇𝑜
𝜇𝑚

)
 greater than 1 can be considered large since then 𝑘̃𝑟𝑖 <

1

2
𝑘𝑟𝑖(𝑠𝑤

𝑟 ). Since the measured 625 
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pressure drop is in the less wetting phase which has the highest pressure drop, 
𝐶𝑜

𝑁0(
𝜇𝑜
𝜇𝑚

)
 will be 626 

positive and the effective relative permeabilities will be lower than the corrected relative 627 

permeabilities, i.e. 𝑘̃𝑟𝑖 < 𝑘𝑟𝑖(𝑠𝑤
𝑟 ). This is seen in the graph as 

𝑘𝑟𝑖(𝑠𝑤
𝑟 )

𝑘̃𝑟𝑖
− 1 > 0. 628 

If conditions were such that water was non-wetting at a given fraction (in a mixed-wet 629 

or oil-wet system) then we should modify the plot to show 
𝑘𝑟𝑖(𝑠𝑤

𝑟 )

𝑘̃𝑟𝑖
− 1 against 

𝐶𝑤

𝑁0(
𝜇𝑤
𝜇𝑚

)
. 630 

An interesting observation is that when the curves deviate from the straight line, they 631 

all fall below it, indicating that the impact is less than if the entire end effect profile was within 632 

the core. That is reasonable since the profile that is not within the core does not contribute to 633 

change the observations, and since at lower rates more of the profile is outside the core, the 634 

added impact on the saturation and relative permeability becomes less. 635 

Note also that the dimensionless number that scales saturation, 
𝐶𝑠

𝑁0
, is different from the 636 

one scaling relative permeability, 
𝐶𝑤

𝑁0(
𝜇𝑤
𝜇𝑚

)
 or 

𝐶𝑜

𝑁0(
𝜇𝑜
𝜇𝑚

)
. As mentioned, the dimensionless number 637 

which is used for scaling relative permeability is also determined by which phase is more 638 

wetting at the given fraction (i.e. whether 𝑠𝑤
𝑟  is above or below 𝑠𝑤

𝑒𝑞
 which further depends on 639 

wettability, flow fraction and viscosity ratio). 640 

 641 
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 642 

Figure 9 The difference between general solutions and the analytical solution in terms of (𝒔̅𝒘)𝑨𝒏𝑺𝒐𝒍 − 𝒔̅𝒘 643 

plotted against 𝑪𝒔/𝑵𝟎 in (a) and (c) and 
𝒌𝒓𝒊

(𝒌𝒓𝒊)
𝑨𝒏𝑺𝒐𝒍

 plotted against 𝑪𝒐/ [𝑵𝟎 (
𝝁𝒐

𝝁𝒎
)] in (b) and (d) for changes in flow 644 

fraction 𝑭 in (a) and (b) and changes in oil viscosity in (c) and (d). The general solution begins to deviate 645 

from the analytical solution at a range of dimensionless numbers. 646 

 647 

To see more systematically when the solutions deviate from the analytical solution (the linear 648 

model) we plot 𝑠̅𝑤
𝐴𝑛𝑆𝑜𝑙 − 𝑠̅𝑤 and 

(
𝑘𝑟𝑖(𝑠𝑤

𝑟 )

𝑘̃𝑟𝑖
)
𝐴𝑛𝑆𝑜𝑙

(
𝑘𝑟𝑖(𝑠𝑤

𝑟 )

𝑘̃𝑟𝑖
)

=
𝑘̃𝑟𝑖

𝑘̃𝑟𝑖
𝐴𝑛𝑆𝑜𝑙 for the aforementioned cases in Figure 649 

9, using the same dimensionless numbers 
𝐶𝑠

𝑁0
 and 

𝐶𝑜

𝑁0(
𝜇𝑜
𝜇𝑚

)
, respectively. When the analytical 650 

solution is valid, these terms are 0 and 1, respectively. This is the case at low values of the 651 

respective dimensionless numbers. The onset of deviation in saturation becomes visible for 652 

0.005 <
𝐶𝑠

𝑁0
< 0.02 for the cases with variation in 𝐹 and 0.008 <

𝐶𝑠

𝑁0
< 0.03 for the cases with 653 

variation in oil viscosity. The onset of deviation in relative permeability trends 
𝑘̃𝑟𝑖

𝑘̃𝑟𝑖
𝐴𝑛𝑆𝑜𝑙 from 1 is 654 
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visible for 0.8 <
𝐶𝑜

𝑁0(
𝜇𝑜
𝜇𝑚

)
< 5 in the cases with variation in 𝐹 and 0.8 <

𝐶𝑜

𝑁0(
𝜇𝑜
𝜇𝑚

)
< 3 for the cases 655 

with variation in oil viscosity. The onset thus occurs at values of the dimensionless numbers 656 

varying by an order of magnitude. Further, both dimensionless numbers appear directly linearly 657 

in their separate relations (for saturation or relative permeability). However, their magnitudes 658 

at which we observe deviation from the linear relations are very different, spanning three orders 659 

of magnitude. Hence, although the dimensionless numbers are excellent at scaling the end 660 

effects, they do not accurately determine when the linear analytical solutions cease to be valid. 661 

 However, we found that 𝑌𝑐𝑒𝑒 is a good measure of when significant changes in 662 

saturation have occurred along the entire core and previously found an appropriate value of 𝑛 =663 

5 to apply in this number from matching saturation profiles, see Figure 6. We now present the 664 

above results of 𝑠̅𝑤
𝐴𝑛𝑆𝑜𝑙 − 𝑠̅𝑤 and 

𝑘̃𝑟𝑖

𝑘̃𝑟𝑖
𝐴𝑛𝑆𝑜𝑙 plotted against 𝑌𝑐𝑒𝑒 in Figure 10. For all cases and both 665 

the saturation and relative permeability data we see that the onset of deviation starts at 𝑌𝑐𝑒𝑒 ≈ 1 666 

with very little variation (a factor 1.2, i.e. 0.08 orders of magnitude). As we have reduced the 667 

span from 1 order of magnitude for individual terms and from 3 orders of magnitude 668 

considering both terms 𝑠̅𝑤
𝐴𝑛𝑆𝑜𝑙 − 𝑠̅𝑤 and 

𝑘̃𝑟𝑖

𝑘̃𝑟𝑖
𝐴𝑛𝑆𝑜𝑙 to 0.08 orders we can claim that 𝑌𝑐𝑒𝑒 < 1 is a 669 

reliable criterion for when the intercept method is valid.  670 

 671 
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 672 

Figure 10 The difference between general solutions and the analytical solution in terms of (𝒔̅𝒘)𝑨𝒏𝑺𝒐𝒍 − 𝒔̅𝒘 in 673 

(a) and (c) and 
𝒌𝒓𝒊

(𝒌𝒓𝒊)
𝑨𝒏𝑺𝒐𝒍

 in (b) and (d) for changes in flow fraction 𝑭 in (a) and (b) and changes in oil viscosity 674 

in (c) and (d). All results are plotted against 𝒀𝒄𝒆𝒆 and demonstrate that the analytical solution is valid for 675 

𝒀𝒄𝒆𝒆 < 𝟏. 676 

 677 

3.6. Appearance of rate-dependent relative permeabilities 678 

End effects can affect both the steady state average saturation and effective relative 679 

permeability points, which deviate from the true relative permeability functions. Effectively 680 

this can result in an appearance of rate-dependent relative permeability functions meaning that 681 

if they are measured at a fixed rate, the rate will affect which curves are obtained and not offer 682 

information about their correctness.  683 

Based on the reference case relative permeability functions and capillary pressure as 684 

input, effective relative permeabilities were calculated and plotted against average saturation. 685 

For a given injection total rate, 40 evenly spaced fractions were used between 𝐹 = 0.005 and 686 
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0.995, each producing a relative permeability point. This was performed for nine injection total 687 

rates ranging from 0.1 to 1000 PV/d varied by the same factor 100.5. Since not only rate, but 688 

the dimensionless number 𝑁0 determines the impact of end effects, the effective relative 689 

permeability curves were labeled by the corresponding value of 𝑁0 and are shown in Figure 690 

11. High rate corresponds to high 𝑁0 and opposite. The input relative permeabilities, which are 691 

the true curves of the system, are included for comparison with the effective curves. 692 

 Notably, at low 𝑁0 (low total rates) the average saturations are shifted towards 𝑠𝑤
𝑒𝑞

=693 

0.61, leading to narrower saturation ranges. Each calculated relative permeability point is 694 

reduced by the high pressure drop in the nonwetting phase. At high 𝑁0 (high total rates) the 695 

relative permeability curves converge and become independent of injection total rate (and 𝑁0). 696 

They then also agree with the input curves (‘true rel perms’) used to generate the data. 697 

 We do not argue that relative permeabilities physically cannot exhibit rate-dependence. 698 

For example, micromodel observations indicate the possible existence of a flow regime 699 

dependent of the micro-scale capillary number (Valavanides 2018).  700 

 701 

 702 

Figure 11 Effective relative permeabilities and saturations calculated for fractions 𝑭 between 0.005 and 703 

0.995 for injection total rates varying from 0.1 to 1000 PV/d. The calculated number 𝑵𝟎 is shown, where high 704 

𝑵𝟎 correspond to high injection rate. Each curve is based on a fixed 𝑵𝟎, and each saturation on a given 705 

curve is obtained from one value of flow fraction. The reference (‘true’) input relative permeabilities and 706 

capillary pressure curves were used and were only approximated by the effective curves at sufficiently high 707 
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𝑵𝟎. End effects are important at low 𝑵𝟎 and shift the saturations towards 𝒔𝒘
𝒆𝒒

= 𝟎. 𝟔𝟏 and reduce the effective 708 

relative permeabilities. 709 

 710 

3.7. Calculation of relative permeability and capillary pressure from experiments 711 

We consider steady state experiment data where two phases are injected at different flow 712 

fractions 𝐹𝑗 and at each fraction different total velocities 𝑣𝑇
𝑘 are applied. Potentially such tests 713 

can be applied using different cores and even fluids, under the assumption that the saturation 714 

functions remain the same. For example, different core tests can be implemented at constant 715 

total velocity using the same schedule of injected fractions (Virnovsky et al. 1998; Henderson 716 

et al. 1998). The cores used can have different length 𝐿, porosity 𝜙, permeability 𝐾. Use of 717 

different fluids (or just measuring a different value for the same fluids in a different test) can 718 

change viscosities 𝜇𝑖 and interfacial tension 𝜎𝑜𝑤. Average saturation 𝑠̅𝑤
𝑗,𝑘

 and pressure drop 719 

Δ𝑝𝑗,𝑘 are measured at each fraction and velocity. 720 

 721 

3.7.1. Simple procedure: Calculation of only relative permeability with constant fluid 722 

and rock properties 723 

1. Convert the pressure drop data to effective relative permeability measurements 𝑘̃𝑟𝑖
𝑗,𝑘

.  724 

(88)  𝑘̃𝑟𝑖
𝑗,𝑘

=
𝐿𝜙𝜇𝑖

𝐾

𝐹𝑖
𝑗
𝑣𝑇

𝑗,𝑘

Δ𝑝𝑗,𝑘
 

2. For each fraction 𝐹𝑗 plot average saturation 𝑠̅𝑤
𝑗

 against inverse total rate 
1

𝑣𝑇
 and inverse 725 

effective relative permeabilities 
1

𝑘̃𝑟𝑖
𝑗,𝑘 against inverse total rate 

1

𝑣𝑇
. Determine the lines 726 

through the data:  727 

(89)  𝑠̅𝑤
𝑗

= 𝑠𝑤
𝑟,𝑗

+ 𝑚𝑠
𝑗 1

𝑣𝑇
 

(90)  1

𝑘̃𝑟𝑖
𝑗

=
1

𝑘𝑟𝑖(𝑠𝑤
𝑟,𝑗

)
+ 𝑚𝑖

𝑗 1

𝑣𝑇
 

Report the intercepts 𝑠𝑤
𝑟,𝑗

,
1

𝑘𝑟𝑖(𝑠𝑤
𝑟,𝑗

)
. The slopes 𝑚𝑠

𝑗
, 𝑚𝑖

𝑗
 are not used. 728 

3. The pairs (𝑠𝑤
𝑟,𝑗

, 𝑘𝑟𝑖(𝑠𝑤
𝑟,𝑗

)) for 𝑖 = 𝑜, 𝑤 are accurate relative permeability points. Match 729 

suitable relative permeability correlations (and critical saturations) to fit them.  730 

 731 

3.7.2. Advanced procedure: Calculation of both relative permeability and capillary 732 

pressure from tests with distinct properties 733 
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1. For each fraction 𝐹𝑗 and total velocity 𝑣𝑇
𝑘, calculate the number 𝑁0

𝑗,𝑘
= [

𝑣𝑇𝐿√
𝜙

𝐾
𝜇𝑚

𝜎𝑜𝑤
]

𝑗,𝑘

 734 

and the viscosity ratios (
𝜇𝑖

𝜇𝑚
)

𝑗,𝑘
. The involved parameters are standard. 735 

2. For each fraction 𝐹𝑗 plot average saturation points 𝑠̅𝑤
𝑗,𝑘

 against 
1

𝑁0
. Determine the line 736 

through the data (all or those at lowest 
1

𝑁0
) by regression and report the slope 𝐶𝑠

𝑗
 and 737 

intercept 𝑠𝑤
𝑟,𝑗

 as: 738 

(91)  𝑠̅𝑤
𝑗

= 𝑠𝑤
𝑟,𝑗

+ 𝐶𝑠
𝑗 1

𝑁0
 

3. For each fraction 𝐹𝑗 determine which phase is more wetting. If average water saturation 739 

decreases at lower 
1

𝑁0
, water is wetting at that fraction. If opposite, oil is wetting. The 740 

measured pressure drop corresponds to the less wetting phase.  741 

4. Convert the pressure drop data to effective relative permeability measurements 𝑘̃𝑟𝑖
𝑗,𝑘

:  742 

(92)  𝑘̃𝑟𝑖
𝑗,𝑘

= [
𝐿𝜙𝑣𝑇𝜇𝑖𝐹𝑖

𝐾Δ𝑝
]
𝑗,𝑘

 

5. Assume first the fluids have constant viscosities. For each fraction 𝐹𝑗 and rate 𝑣𝑇
𝑘 plot 743 

inverse effective relative permeabilities 
1

𝑘̃𝑟𝑖
𝑗,𝑘 against 

1

𝑁0
. Determine the line through the 744 

points (all or those at lowest 
1

𝑁0
) and report the slope 𝑚𝑖

𝑗
 and intercept 

1

𝑘𝑟𝑖(𝑠𝑤
𝑟,𝑗

)
 as: 745 

(93)  
1

𝑘̃𝑟𝑖
𝑗

=
1

𝑘𝑟𝑖(𝑠𝑤
𝑟,𝑗

)
[1 + 𝑚𝑖

𝑗 1

𝑁0
] 

Both relative permeability lines will have the same slope 𝑚𝑜
𝑗

= 𝑚𝑤
𝑗

= 𝑚𝑗. Depending 746 

on which phase is wetting at the given fraction we determine either 𝐶𝑜
𝑗
 or 𝐶𝑤

𝑗
: 747 

(94)  𝐶𝑜
𝑗
= 𝑚𝑗 (

𝜇𝑜

𝜇𝑚
)

𝑗

, (if oil less wetting) 

(95)  𝐶𝑤
𝑗

= 𝑚𝑗 (
𝜇𝑤

𝜇𝑚
)

𝑗

, (if water less wetting) 

If the viscosities vary between tests, the data must be plotted against 
1

𝑁0(
𝜇𝑤
𝜇𝑚

)
 for the 748 

fractions where water is less wetting and against 
1

𝑁0(
𝜇𝑜
𝜇𝑚

)
 where oil is less wetting. 749 
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6. The pairs (𝑠𝑤
𝑟,𝑗

, 𝑘𝑟𝑖(𝑠𝑤
𝑟,𝑗

)) for 𝑖 = 𝑜, 𝑤 are accurately determined relative permeability 750 

points. 751 

7. Match suitable relative permeability correlations (and critical saturations) to the relative 752 

permeability points.  753 

8. The slopes 𝐶𝑠
𝑗
, 𝐶𝑜

𝑗
, 𝐶𝑤

𝑗
 indicate how strongly capillary forces affect saturation and 754 

pressure drop at the relevant saturation ranges 𝑠𝑤
𝑒𝑞

 to 𝑠𝑤
𝑟,𝑗

 and constrain the choice of 755 

capillary pressure functions. Their values only depend on the saturation functions and 756 

are independent of fluid and core properties. 757 

9. Assume a capillary pressure correlation with tuning parameters. Based on the calculated 758 

relative permeability correlations, select tuning parameters and calculate slope constants 759 

𝐶𝑠
𝑗
, 𝐶𝑜

𝑗
, 𝐶𝑤

𝑗
. The tuning parameters giving least relative error between predicted and 760 

measured values result in the capillary pressure 𝐽-function best explaining the data.  761 

 762 

3.7.3. Interpretation of experimental data I 763 

Virnovsky et al. (1998) conducted three oil-water steady state tests on a Berea sandstone core. 764 

The core was initially fully water saturated and oil fractions were increased. A fixed total rate 765 

was used in each test of 0.2, 0.5 or 5 cc/min. The absolute permeability changed between the 766 

three tests, hence we used 𝑁0 to account for the differences. From the three velocities at each 767 

fraction we follow the ‘advanced’ procedure. Average saturations and inverse effective relative 768 

permeabilities were plotted against 
1

𝑁0
 in Figure 12a and b-d, respectively to find the intercepts 769 

(𝑠𝑤
𝑟,𝑗

, 𝑘𝑟𝑖(𝑠𝑤
𝑟,𝑗

)) and the slope constants 𝐶𝑠, 𝐶𝑜, 𝐶𝑤 which are listed in Table 2. Linear trends in 770 

the points were clearly visible for most cases. 771 

 For the 5 highest fractions 𝐹 water saturation increased with rate, indicating capillary 772 

forces trapped oil then, while for the lowest 3 fractions water saturation decreased with 773 

increased rate, indicated capillary forces then trapped water. Equivalently 𝐶𝑠, the slope of 774 

average saturation vs 
1

𝑁0
, was negative for the highest fractions and positive for the lowest 775 

fractions. Although there was some uncertainty in the sign for some central fractions it seems 776 

clear that 𝑠𝑤
𝑒𝑞

 was located in the intermediate saturation range. 777 

 As described in the theory, we can scale end effects by plotting 𝑠̅𝑤 − 𝑠𝑤
𝑟  against 

𝐶𝑠

𝑁0
 and 778 

𝑘𝑟𝑖(𝑠𝑤
𝑟 )

𝑘̃𝑟𝑖
− 1 against 

𝐶𝑜

𝑁0(
𝜇𝑜
𝜇𝑚

)
 (when oil is less wetting) and against 

𝐶𝑤

𝑁0(
𝜇𝑤
𝜇𝑚

)
 (when water is less 779 



40 

 

wetting). This was done for all the data points and is shown in Figure 13. Average saturation, 780 

water relative permeability and oil relative permeability fall on a straight line in their respective 781 

plot. 782 

 783 

Figure 12 Interpretation of experimental data (crosses) from Virnovsky et al. (1998) where average 784 

saturation (a) and inverse effective relative permeabilities 
𝟏

𝒌𝒓𝒘
 in (b) and (c) and 

𝟏

𝒌𝒓𝒐
 in (d) and (e) are plotted 785 

against 
𝟏

𝑵𝟎
. Straight lines are drawn through the data for each flow fraction 𝑭 to find the intercept (marked 786 

with circle points) corresponding to saturations and relative permeability points corrected for end effects. 787 

The slopes of the lines provide values of 𝑪𝒔. 𝑪𝒐, 𝑪𝒘 at each fraction. 788 

 789 

Table 2 Line analysis of data from Virnovsky et al. (1998) giving corrected saturations and relative 790 

permeability points from the intercepts, and slope values 𝑪𝒔, 𝑪𝒐, 𝑪𝒘 to be used for derivation of capillary 791 

pressure for each fraction 𝑭. 792 

𝐹 𝑠𝑤
𝑟  𝐶𝑠 Less wetting phase 𝑘𝑟𝑤(𝑠𝑤

𝑟 ) 𝑘𝑟𝑜(𝑠𝑤
𝑟 ) 𝐶𝑜 𝐶𝑤 

0.992 0.9667 -0.003803 w 0.8820 0.006160  0.2925 
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0.940 0.9065 -0.003932 w 0.6275 0.03469  0.2557 

0.780 0.8115 -0.001760 w 0.3312 0.08090  0.1601 

0.500 0.7381 -0.002775 w 0.1858 0.1609  0.1663 

0.220 0.6531 -0.001553 w 0.08424 0.2587  0.1808 

0.060 0.5599 0.002508 o 0.02758 0.3741 0.1995  

0.008 0.4714 0.007855 o 0.005172 0.5555 0.3124  

0 0.3262 0.02763 o 0 0.8577 0.5134  

 793 

 794 

Figure 13 Scaling of the data from Virnovsky et al. (1998) by plotting 𝒔̅𝒘 − 𝒔𝒘
𝒓  against 

𝑪𝒔

𝑵𝟎
, 

𝒌𝒓𝒘(𝒔𝒘
𝒓 )

𝒌̃𝒓𝒘
− 𝟏 (b) and 795 

𝒌𝒓𝒐(𝒔𝒘
𝒓 )

𝒌̃𝒓𝒐
− 𝟏 against 

𝑪𝒐

𝑵𝟎(
𝝁𝒐
𝝁𝒎

)
 (when oil is less wetting) and against 

𝑪𝒘

𝑵𝟎(
𝝁𝒘
𝝁𝒎

)
 (when water is less wetting). 796 

 797 

The relative permeability points were fitted with the correlation (85) and (86), see Figure 14a. 798 

Next, the 𝐽-function was determined, see Figure 14b, using the correlation (84) by optimizing 799 

the match of slope parameters: The 𝐶𝑠 values were well matched, see Figure 15a, while it was 800 

more difficult to match the 𝐶𝑜, 𝐶𝑤 parameters which at optimum were roughly 2-10 times lower 801 



42 

 

than those derived from the measurements, see Figure 15b. This means that the model with the 802 

tuned curves would capture well what the average saturation and effective relative permeability 803 

values would approach at each fraction, and that the slope of average saturation with inverse 804 

total rate would vary as observed experimentally. However, the effective relative permeabilities 805 

would change less in the model than observed experimentally. 806 

Near identical 𝐽-functions resulted from different optimizations, indicating that the data 807 

and approach gives consistent results. The optimal curve parameters and the system parameters 808 

are found in Table 3. Comparison with a measured drainage capillary pressure curve indicated 809 

similar magnitude and shape, however negative capillary pressures at high saturations resulted 810 

from the model, required to explain the trends in saturation with rate. Also, a higher residual 811 

water saturation was found which seems more consistent with the flooding data. 812 

The model can under any conditions only be sensitive to saturations on the interval 813 

between 𝑠𝑤
𝑒𝑞

 and 𝑠𝑤
𝑟 . As 𝑠𝑤

𝑒𝑞
 was located centrally, the extreme 𝑠𝑤

𝑟  values corresponding to the 814 

lowest and highest fractions gave the total saturation range where we have accurate information. 815 

As seen in Table 2 and Figure 14, this is between saturations 0.326 and 0.967 which is 816 

practically the entire mobile saturation range. 817 

 818 

Table 3 System parameters from Virnovsky et al. (1998); Relative permeability correlation parameters to fit 819 

the corrected relative permeability data; 𝑱-function correlation parameters to fit the slope parameters from 820 

the same dataset. Experiments marked A, B, C with different velocities reported different permeability. 821 

System 

parameters 
       

𝐿 0.2485 m 𝜇𝑤 0.851 cP 𝐾𝐴 165 mD 𝑣𝑇,𝐴 128.3 PV/d 

𝜙 0.2013 𝜇𝑜 0.737 cP 𝐾𝐵 216 mD 𝑣𝑇,𝐵 12.83 PV/d 

𝜎𝑜𝑤 0.021 N/m   𝐾𝐶 208 mD 𝑣𝑇,𝐶 5.13 PV/d 

Relative 

permeability 

parameters 

   
𝐽-function 

parameters 
   

𝑠𝑤𝑟 0.3262 𝑛𝑤1 3.4 𝐽1 1.35 𝑛1 4.42 

𝑠𝑜𝑟 0.020 𝑛𝑤2 3.4 𝐽2 0.0439 𝑛2 2.57 

𝑘𝑟𝑤
∗  0.95 𝑛𝑜1 1.4 𝑘1 1.35 𝑠𝑤

𝑒𝑞
 0.577 

𝑘𝑟𝑜
∗  0.8577 𝑛𝑜2 2.0 𝑘2 0.0439   

 822 



43 

 

 823 

Figure 14 Relative permeabilities in (a) with points based on intercepts from the steady state measurements 824 

from Virnovsky et al. (1998) and the correlations (full lines) using (85) and (86) that best fit the points. The 825 

best fitting capillary pressure correlation is shown in (b) as scaled 𝑱-function and in mbar based on 826 

matching the slope parameters from the steady state measurements. The curve is compared to a primary 827 

drainage curve measured with centrifuge on the core used in Virnovsky et al. (1998). Our derived 𝑱-function 828 

is more consistent with the experimental data as reflected in a higher residual water saturation and the 829 

presence of negative capillary pressures. 830 

 831 

 832 
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Figure 15 Optimal match of the slope coefficients 𝑪𝒔, 𝑪𝒘, 𝑪𝒐 after tuning the 𝑱-function. 833 

 834 

3.7.4. Interpretation of experimental data II 835 

Henderson et al. (1998) measured relative permeability to gas and condensate at 7 flow fractions 836 

between 0.048 and 0.29 (corresponding to condensate-gas-ratio 0.05 to 0.4) and 4 total 837 

velocities on Berea sandstone with presence of connate water saturation. Condensate 𝑐 and gas 838 

𝑔 were treated as ‘oil’ and ‘water’ in the above theory. Plotting average condensate saturations 839 

𝑠̅𝑐 and inverse effective relative permeabilities 
1

𝑘̃𝑟𝑐
 and 

1

𝑘̃𝑟𝑔
 against 

1

𝑁0
 in Figure 16 indicates that 840 

the points at the three highest rates (lowest 
1

𝑁0
) aligned well on straight lines. This was used to 841 

obtain the intercepts and resulting points (𝑠𝑐
𝑟 , 𝑘𝑟𝑖(𝑠𝑐

𝑟)) for 𝑖 = 𝑐, 𝑔, as well as the slope 842 

parameters 𝐶𝑠, 𝐶𝑐 , 𝐶𝑔. All these values are listed in Table 4 for their respective flow fractions.  843 

 844 

 845 

Figure 16 Interpretation of experimental data (crosses) from Henderson et al. (1998) where average 846 

condensate saturation (a) and inverse effective relative permeabilities 
𝟏

𝒌𝒓𝒈
 in (b) and 

𝟏

𝒌𝒓𝒄
 in (c) are plotted 847 

against 
𝟏

𝑵𝟎
. Straight lines are drawn through the high rate data for each flow fraction 𝑭 to find the intercept 848 

(marked with circle points) corresponding to saturations and relative permeability points corrected for end 849 

effects. The slopes of the lines provide values of 𝑪𝒔. 𝑪𝒐, 𝑪𝒘 at each fraction. 850 

 851 
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For all the data, the points at the lowest rate (highest 
1

𝑁0
) that did not fall on the line, had less 852 

impact on the saturation or relative permeability than if they had been on the line (the trends 853 

flattened). This is consistent with what was shown in Figure 8 where the end effects’ added 854 

impact lessens as more of the profile is outside the core. 855 

Also, at each fraction, increased velocity at a fixed fraction increased the condensate 856 

saturation, or equivalently condensate saturation decreased with higher 
1

𝑁0
, quantified by 857 

negative 𝐶𝑠. This indicated that capillary forces trapped gas under all conditions and gas wetted 858 

the rock more than condensate for the considered fractions.  859 

Scaling the saturation and relative permeability points is shown in Figure 17 where we 860 

again see that all the high rate points fall well on the same straight line when plotted against the 861 

relevant dimensionless numbers. The low rate results fall between the line and the horizontal 862 

axis indicating that the impact is less than if they had continued on the line. 863 

 864 

Table 4 Line analysis of data from Henderson et al. (1998) giving corrected saturations and relative 865 

permeability points from the intercepts, and slope values 𝑪𝒔, 𝑪𝒄, 𝑪𝒈 to be used for derivation of capillary 866 

pressure for each fraction 𝑭. Condensate was less wetting than gas for all fractions, hence 𝑪𝒈 was not 867 

reported for any fractions. 868 

𝐹𝑐 𝑠𝑐
𝑟 𝐶𝑠 

Less wetting 

phase 
𝑘𝑟𝑤(𝑠𝑤

𝑟 ) 𝑘𝑟𝑜(𝑠𝑤
𝑟 ) 𝐶𝑔 𝐶𝑐 

0.0476 0.3965 -0.5764 c 0.02427 0.1483  42.60 

0.0977 0.4225 -0.8345 c 0.03551 0.1238  101.8 

0.143 0.4475 -0.8689 c 0.04438 0.1024  109.3 

0.184 0.468 -0.9979 c 0.05180 0.08842  102.5 

0.221 0.4815 -0.9893 c 0.05893 0.07615  86.57 

0.255 0.4905 -0.9549 c 0.06489 0.06830  94.71 

0.286 0.5065 -0.9721 c 0.07844 0.06071  122.8 

 869 
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 870 

Figure 17 Scaling of the data from Henderson et al. (1998) by plotting 𝒔̅𝒄 − 𝒔𝒄
𝒓 against 

𝑪𝒔

𝑵𝟎
, 

𝒌𝒓𝒄(𝒔𝒄
𝒓)

𝒌̃𝒓𝒄
− 𝟏 (b) and 871 

𝒌𝒓𝒈(𝒔𝒄
𝒓)

𝒌̃𝒓𝒈
− 𝟏 against 

𝑪𝒈

𝑵𝟎(
𝝁𝒈

𝝁𝒎
)
 (when gas is less wetting) and against 

𝑪𝒄

𝑵𝟎(
𝝁𝒄
𝝁𝒎

)
 (when condensate is less wetting). 872 

 873 

The intercept saturation and relative permeability points were collected and matched with 874 

correlations, as shown in Figure 18a. The slope parameters were then matched by tuning the 𝐽-875 

function, seen in Figure 18b. Only the saturation range where the curves are reliable is shown. 876 

That includes the range between the lowest and highest 𝑠𝑐
𝑟 (0.397 to 0.507), but also down to 877 

𝑠𝑐
𝑒𝑞

= 0.344 since all saturation profiles end at that saturation. The optimal match between the 878 

slope parameters from the tuned model and the values from the observations is shown in Figure 879 

19. Both saturation and relative permeability slope parameters are well matched, with almost 880 

all values from the tuned model being less than 30% different from the values from the 881 

measurements. System parameters and correlation parameters from matching the data are listed 882 

in Table 5. 883 

 Henderson et al. (1998) interpreted their data as capillary number dependent relative 884 

permeabilities rather than being affected by capillary end effects. They suggested that the 885 

pressure drop across the core was orders of magnitude higher than the capillary pressure that 886 

could cause end effects. Although we cannot conclude that end effects were present or not, they 887 
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explain the observations very consistently in that the data fall on the predicted straight lines at 888 

high rates, fall on the expected side of the line at low rates and we can obtain saturation 889 

functions that consistently explain all the data. Gupta and Maloney (2016) interpreted the same 890 

dataset to find corrected relative permeabilities. 891 

 892 

 893 

Figure 18 Relative permeabilities in (a) with points based on intercepts from the steady state measurements 894 

from Henderson et al. (1998) and the correlations (full lines) using (85) and (86) that best fit the points. The 895 

best fitting capillary pressure correlation is shown in (b) as scaled 𝑱-function and in mbar based on 896 

matching the slope parameters from the steady state measurements.  897 

 898 
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 899 

Figure 19 Optimal match of the slope coefficients 𝑪𝒔 (a) and 𝑪𝒄 (b) after tuning the 𝑱-function. 𝑪𝒈 was not 900 

relevant. 901 

 902 

Table 5 System parameters from Henderson et al. (1998); Relative permeability correlation parameters to 903 

fit the corrected relative permeability data; 𝑱-function correlation parameters to fit the slope parameters 904 

from the same dataset.  905 

System 

parameters 
       

𝐿 0.61 m 𝜇𝑐 1 cP 𝑠𝑤𝑖 0.264   

𝜙 0.198 𝜇𝑔 0.02 cP 𝐾(𝑠𝑤𝑖) 92 mD   

𝜎𝑜𝑤 0.9 mN/m       

Relative 

permeability 

parameters 

   
𝐽-function 

parameters 
   

𝑠𝑐𝑟 0 𝑛𝑐1 4.5 𝐽1 21530 𝑛1 2.29 

𝑠𝑔𝑟 0.02 𝑛𝑐2 4.5 𝐽2 58180 𝑛2 0.580 

𝑘𝑟𝑐
∗  0.37 𝑛𝑔1 2.2 𝑘1 21530 𝑠𝑐

𝑒𝑞
 0.344 

𝑘𝑟𝑔
∗  1 𝑛𝑔2 2.5 𝑘2 58180   

 906 

4. Conclusions 907 

A theory is derived from fundamental assumptions describing how capillary end effects affect 908 

average saturation and relative permeability calculation in steady state experiments. The 909 

method is valid for all saturations functions and wetting states. 910 
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We derive an intuitive and general ‘intercept’ method for correcting steady state relative 911 

permeability measurements for capillary end effects: plotting average saturation and inverse 912 

relative permeability against inverse rate will give linear trends at high rates and result in 913 

corrected relative permeability points when extrapolated to zero inverse rate (infinite rate). This 914 

is a formal proof and generalization of the method proposed by Gupta and Maloney (2016). 915 

It is shown how the slopes of the lines are related to the saturation functions allowing to 916 

scale all data for all conditions to the same straight lines. Two dimensionless numbers are 917 

obtained that directly express when end effects become important in terms of (a) how much the 918 

average saturation is changed: 𝐶𝑠/𝑁0 and (b) how much effective relative permeabilities are 919 

reduced 
𝐶𝑖

𝑁0
.  920 

A third dimensionless number 𝑌𝑐𝑒𝑒 (expressing the scaled front position of the end effect 921 

region) is derived directly stating that the end effect profile has reached the inlet of the core 922 

significantly when 𝑌𝑐𝑒𝑒 = 1. This number acts as a universal criterion for when the linear 923 

(intercept method) behavior begins. The intercept method is valid when 𝑌𝑐𝑒𝑒 < 1. 924 

All the dimensionless numbers contain a part depending only on saturation functions, 925 

injected flow fraction and viscosity ratio and a second part 𝑁0 containing constant known fluid 926 

and rock parameters such as core length, porosity, interfacial tension, etc. The former 927 

parameters determine the saturation range and shape of the saturation profile, while the number 928 

𝑁0 determines how much the profile is compressed towards the outlet. 929 

End effects cause the average saturations to be shifted towards 𝑠𝑤
𝑒𝑞

 (the saturation at 930 

which capillary pressure is zero) and the calculated relative permeabilities from pressure drop 931 

and Darcy’s law to be reduced in magnitude compared to the true relative permeabilities. Since 932 

the shift of the effective curves depends on the viscous vs capillary forces, using different rates 933 

will result in different effective curves when capillary end effects are significant. This gives a 934 

false impression of rate-dependent relative permeabilities. 935 

Methodologies for deriving relative permeability and capillary pressure systematically 936 

and consistently, even based on combining data from tests with different fluid and core 937 

properties, is presented and demonstrated on two datasets from the literature.  938 

Even with access to only one phase pressure drop of two injected phases it is shown that 939 

the intercept method holds for both phase relative permeabilities. This is the standard regarding 940 

what pressure data is measured. 941 

 942 
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 1039 

Nomenclature 1040 

Roman 1041 

𝐶𝑠, 𝐶𝑖 = Saturation and relative permeability slopes in the intercept method, - 

𝐹𝑖 = Injected phase fraction, - 

𝑓𝑤 = Water fractional flow function, - 

𝐽 = Scaled capillary pressure, - 

𝐽1, 𝐽2, 𝐽3 = 𝐽-function coefficients, - 

𝑘𝑟𝑖 = Phase relative permeability, - 

𝐾 = Absolute permeability, m2 

𝑘1, 𝑘2 = 𝐽-function parameters, - 

𝐿 = Core length, m 

𝑛 = Exponent for approximating end effect saturation profile, - 

𝑛1, 𝑛2 = 𝐽-function exponents, - 

𝑛𝑖 = Phase Corey exponent, - 

𝑛𝑖1, 𝑛𝑖2 = Phase Corey exponent end values, - 

𝑁0 = capillary number (viscous to capillary forces), - 

𝑝𝑖 = Phase pressure, Pa 

𝑃𝑐 = Capillary pressure, Pa 
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𝑠𝑖 = Phase saturation, - 

𝑠𝑤
𝑒𝑞

 = Water saturation at which capillary pressure is zero, - 

𝑠𝑤
𝑟  = Water saturation at a given fraction corrected for end effects, - 

𝑆𝑖 = Normalized phase saturation, - 

𝑆1 = Normalized water saturation at inlet (𝑌 = 1), - 

𝑆𝑒𝑞 = Normalized water saturation at which capillary pressure is zero, - 

𝑆𝑟 = Reference scaled saturation (obtained if no end effects present), - 

𝑆̅ = Normalized water saturation averaged over the core, - 

𝑢𝑖 = Darcy phase velocity, m / s 

𝑣𝑖 = Interstitial velocity, m / s 

𝑌 = Scaled distance from outlet, - 

 1042 

Greek 1043 

𝜙 = Porosity, - 

𝜇𝑖 = Phase viscosity, Pa s 

𝜎𝑜𝑤 = Interfacial tension, N / m 

𝜆𝑖 = Phase mobility, 1 / (Pa s) 

Δ𝑝𝑖 = Phase pressure drop, Pa 

Δ𝑝𝑖,𝑟𝑒𝑓 = Pressure drop without end effects, Pa 

 1044 

Indices 1045 

𝑐 = Condensate 

𝑒𝑞 = Zero capillary pressure condition 

𝑔 = Gas 

𝑖 = Phase index 

𝑜 = Oil 

𝑟 = Reference (no end effects) 

𝑇 = Total 

𝑤 = Water 

 1046 


