
59

“Beware of false knowledge, it is more dangerous than ignorance”

— George Bernard Shaw

Abstract

In recent years, we have seen a significant increase in the spread of misinformation,
also known as fake news, especially on social media. Any user could share a claim or a
misrepresentation of something, and in a few hours, it would have gained a lot of traction
over the whole world. This does not mean that every piece of misinformation will be
spread across the world, but with the current technology, everyone has the opportunity.
The growing problem with fake news is not going away anytime soon, but with this thesis
we want to create a web application representing the spread of fake news across di�erent
social media.

Acknowledgements

We would like to thank our supervisor Vinay Jayarama Setty at the Department of
Electrical Engineering and Computer Science at University of Stavanger. Selecting a
thesis seemed scary at the first glance, but we knew this thesis was something we all
had an interest for. With Vinay’s expertice within programming and fake news we have
learned a lot throughout the project.

v

Contents

Abstract iv

Acknowledgements v

Abbreviations xi

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Description . 2
1.3 Goal . 2
1.4 Use cases for the application . 3
1.5 Related Work . 3
1.6 Deployment . 4
1.7 Contributions . 4
1.8 Outline . 5

2 Background 7
2.1 Fake News . 7
2.2 Programming Languages . 8

2.2.1 Python . 8
2.2.2 HTML . 8
2.2.3 CSS . 8
2.2.4 Bootstrap . 9
2.2.5 JavaScript . 9
2.2.6 Flask . 9

2.3 Vue . 9
2.3.1 Vue.js . 9
2.3.2 Vuex . 10
2.3.3 Chartkick.js . 10
2.3.4 D3.js . 10

2.4 JSON . 11
2.5 Twitter . 11
2.6 Reddit . 11

vii

viii CONTENTS

3 System Architecture 13
3.1 Introduction . 13
3.2 Design Pattern . 14
3.3 Using the API’s for retrieval of data . 14

3.3.1 Twitter API . 14
3.3.2 Reddit API . 16

3.4 Back-end . 18
3.4.1 Flask Back-end . 18
3.4.2 Pagination . 19
3.4.3 Error Catching . 21

3.5 Formatting the data . 21
3.5.1 Formatting Twitter data . 22
3.5.2 Formatting Reddit data . 23

3.6 Communication between back-end and front-end 23
3.7 Sequence Diagram . 26

4 Front-End Design 27
4.1 Introduction . 27
4.2 Pages and design . 27

4.2.1 Landing Page . 28
4.2.2 Your trackers . 29
4.2.3 Dashboard . 29

4.3 Components . 31
4.3.1 Tooltip for Components . 32
4.3.2 Search list . 32
4.3.3 Engagement . 33
4.3.4 Line chart . 34
4.3.5 Bar chart . 35
4.3.6 Geo chart . 35
4.3.7 Node network . 36
4.3.8 Top Posts and Most Influential Users 37
4.3.9 Reddit Word Cloud . 38
4.3.10 Twitter Sentiment Component . 38
4.3.11 Accessing the data in the components 40

5 Discussion 43
5.1 Problems and challenges . 43
5.2 Experimental Evaluation . 44

5.2.1 Sentiment Analysis . 44
5.2.2 Performance Evaluation . 47
5.2.3 Feedback Survey . 49

5.3 Further Development . 50
5.3.1 Premium Twitter API . 50

5.4 Conclusion . 51

List of Figures 51

CONTENTS ix

List of Tables 55

Bibliography 59

Abbreviations

Acronym What (it) Stands For

UiS University of Stavanger

API Application Programming Interface

JSON JavaScript Object Notation

JS Java Script

CSS Cascading Style Sheets

HTTP Hypertext Transfer Protocol

NLTK Natural Language Toolkit

UI User Interface

xi

Chapter 1

Introduction

1.1 Motivation

In this day and age of social media and constant information flooding, it is not always
easy to detect fake news. The primary source of news for many people today, especially
the young, is social media. Social media does not only work as a tool for interacting
with people worldwide but also as a tool to see what is going on in the rest of the world.
The fact that young people are the most exposed to social media today, combined with
the fact that many may not be as critical of what they read on the internet as the older
generations, is problematic.

Domestically in Norway, one of the most known stories of fake news and its e�ects would
be the school election at the local high school in Lillestrøm. A TV show on the state
channel NRK, called «Folkeopplysningen» used a stream of fake news on social media to
convince the students to vote for the party that had been the smallest one in the previous
elections. The experiment was, of course, revealed to the students five days before the
actual election, and thus, the smallest party did not win; nevertheless. When interviewed
by the state channel, the students did say that the manipulation of the election gave
them a more positive sight of the smallest party.

1

2 Chapter 1 Introduction

Globally there have been speculations about fake news being used in several big elections;
the 2016 election in the US where Trump won, Brexit, etc. Although there have been
several fake news stories regarding Trump in the 2016 election where some may speculate
that this was part of him winning, we cannot say for sure. Nevertheless, several articles
explain how Russia went to a great extent to interfere with the 2016 Russian election. In
2016, Russia used Facebook and Twitter to interfere with the US election. Using what is
known as «Troll farms», professional Russian trolls would take both sides and heat the
argument concerning significant issues such as abortion, gun control, and immigration.
The tactic was to divide the US, which would be beneficial for Russia. The fact that
social media can be «weaponized» by spreading fake news is a concerning problem. If
this is something that evolves further into world politics, it is safe to say that we won’t
have a functioning society.

1.2 Problem Description

The task at hand was: "Given a claim or some fake news the application should track
its coverage in various social media platforms." Input to the system would be a textual
claim such as "Earth is flat", the expected output would be a visualization of analytics of
the coverage in social networks such as Twitter and Reddit. Visualize how many users
are sharing, liking, retweeting, how deep the message spreads etc. How does it compare
to non-fake news about a similar topic? The main goal of this thesis is to visualize the
data, the spread of the query, and compare two di�erent queries. The project group was
given the option to choose which languages and programs to achieve the given problem
description.

1.3 Goal

As fake news spreads in large numbers worldwide, there is also an increase in non-profit
fact-checking organizations. Sites such as Politifact.com display viral posts and articles
and, in turn, label them as false or true; however, Politifact does not show any spread or
other analytics. Unlike many other fact checking websites our goal is not to tell the user
whether or not a claim is true or false. When it comes to fake fact checking websites
we want to contribute by developing a website that allows for users to type in a claim,
visualize its spread, check the analytics of it, and compare two di�erent claims.

Chapter 1 Introduction 3

1.4 Use cases for the application

The ideal finished product for this project would be to perform tasks that include tracking
the spread of some news on social media and visualizing them. For an average person, the
website would be interesting to check di�erent queries and play around with the di�erent
features. However, the website would also be useful for a researcher studying the spread
of fake news in our society. The researcher would be able to see the top users and posts
spread and use the information to draw red lines and find commonalities that contribute
to the news being spread. The comparison feature would be helpful for someone who
wants to check how some legitimate news is being spread versus how the fake news is
being spread. The application would also work for users who want to check the spread of
other things not involving fake news, for example, if a brand wants to check the spread
of their new promotion or check if the brand is being discussed.

1.5 Related Work

The application has taken some inspiration from the website https://hoaxy.osome.iu.
edu/ also known as Hoaxy. Hoaxy is a project from Indiana University where the user
can type in a query and choose to search by Twitter or by articles on Twitter.[1] After
the user has searched for a query, the website returns a timeline graph that shows the
tweets over time. There is also a network graph representing the tweets as nodes; the
nodes represent the spread of a tweet where one can see additional retweets of the tweet
and replies. The fundamentals of the Hoaxy website are great, but there is a lot of
relevant data that could be displayed for the user. Therefore, this application will use
the same fundamentals as Hoaxy but it will contain more components to better visualize
the spread of a claim. The website will also expand further than Twitter to other social
media platforms such as Reddit.

With the growing popularity and impact of social media, a new sub industry called
social listening is growing simultaneously. Social listening is the process of monitoring
conversations and interactions on social media platforms. [2] Companies like Brandwatch
in this industry track di�erent brands and campaigns for other companies. This process
can tell the company a lot about how well the company performs on social media, which
is extremely important in this day and age. The underlying technology of the application
is similar to the social listening platforms. However, instead of collecting data to analyze
how well a brand is performing on social media, it aims to use the data to visualize the
spread of misinformation.

4 Chapter 1 Introduction

1.6 Deployment

As per now the website is deployed on: https://ramtinhaf.github.io/. The front-end
and back-end had to be deployed separately because of the Vue and Flask combination.
The front-end is deployed via Github and the back-end is deployed with Heroku. Link to
the Github repository is provided [3] [4] and the application can be ran locally.

1.7 Contributions

Name Contribution

Awalle Developing the front-end part of the project(Layout and styling of the website)

Jone Delveloping the back-end part of the project and creating the side by side comparison

Ramtin Developing both the back-end and front-end part

Table 1.1: Contributions

Chapter 1 Introduction 5

1.8 Outline

The thesis is outlined as follows:
Chapter 2 introduces the background theory of the current thesis. Revolving around
the fake news, related work, di�erent programming languages and libraries.

Chapter 3 presents how the architecture of the back-end is built up including the
formatting of data, models and data visualization.

Chapter 4 describes how the front-end is designed, the di�erent pages and the compo-
nents used in the website.

Chapter 5 is the discussion part where the di�erent problems, challenges and the
possibility of further development are discussed. There is also a section for experimental
evaluation and a conclusion.

Chapter 2

Background

This chapter intends to present the di�erent programming languages and frameworks
that were used in this thesis. The first section will be about the spread of fake news on
social media, the main programming languages used and their purpose for the thesis.
Furthermore, the extension frameworks used will be explained. The end of the chapter
describes the Twitter and Reddit platforms and explains what type of analytics the
platforms uses.

2.1 Fake News

One can define fake news as false or misleading information that are presented as actual
news. It often aims to damage the reputation of a person, entity or to make money
through advertising revenue. However, the term does not have a fixed definition. The
term fake news has been widely used to include false information, including unintentional
and unconscious mechanisms, and also by high-profile individuals to apply to any news
unfavorable to his/her perspectives.

According to a Buzzfeed analysis the most popular fake news stories from the 2016 U.S
presidential election received much more engagement on Facebook than the top stories
from the major media outlets. [5] This is a testament to fake news having the ability to
reduce the impact of real news.

According to a 2019 study published in Science by MIT Sloan professor Sinan Aral,
Deb Roy and Soroush Vosoughi of the MIT Media Lab, false rumors spread faster and
wider than true information. [6] In the study the scientists found that fake news were 70
percent more likely to be retweeted on Twitter than truthful news. Also, the fake news

7

8 Chapter 2 Background

would reach its first 1500 people six times faster than the truthful news. The e�ect is
even more pronounced with political news than other categories.

2.2 Programming Languages

A combination of Vue.js, JavaScript, and Python is used to create ow. This combination
is a common practice for web development. JavaScript is used to handle the data that is
being passed from the back-end, while Vue.js is the front-end JavaScript framework used
to build and design the user interface.

2.2.1 Python

Python is the chosen language used for creating the back-end part of the application.
The back-end uses Python for its framework named Flask. Python is known for its
simple syntax and short code length. To make the back-end perform the required tasks,
multiple external libraries had to be implemented; examples of these are "TextBlob" and
"Geocoder." Python was chosen for the back-end part to handle tasks such as API calls,
high-speed data sorting, and parsing the data.

2.2.2 HTML

HyperText Markup Language is also known as HTML. HTML is the language used for
communication with the web and for creating web pages. Over the last few decades, web
programming has evolved and gone through many changes, but the HTML part has been
there since the start. HTML is seen as one of the building blocks of web development. [7]

2.2.3 CSS

CSS stands for Cascading Style Sheets, which is the language used to style and format
web pages. Without any CSS, all websites would be the elements in the HTML displayed
downwards. When tags like , and color attributes were added to the HTML 3.2
specification, it created much trouble when creating large web applications. To solve this
issue, the World Wide Web Consortium (W3C) created CSS. A good analogy is looking
at web development as building a house, the HTML is the foundation, and the CSS is
the style/layout of the house. Every house needs a foundation, and it is up to the owner
to style the house as he likes. [8]

Chapter 2 Background 9

2.2.4 Bootstrap

Bootstrap is an open-source toolkit. It is made for the purpose of designing and developing
HTML, CSS and JS. Both CSS and Javascript frameworks are supported. The bootstrap
framework makes the styling and placements of components easier.

2.2.5 JavaScript

Continuing the analogy about looking at web development as building a house. With
HTML and CSS, we have the foundation, the layout, and the style of the house. However,
we do not have any functionality in the house like electricity or running water; adding
this to the house would be the same as adding JavaScript to a web application. In the
application, JavaScript is used to communicate with the back-end to send the query and
receive the data that is going to be displayed in the front-end.

2.2.6 Flask

Flask is a third-party Python framework for server-side web application development.
Using Flask in a web application will provide the user with the tools, technology, and
libraries necessary for web development. We have used Flask as our back-end, which
handles all of the API calls and the data formatting.

2.3 Vue

2.3.1 Vue.js

Vue.js also knows as Vue, is an open-source front-end JavaScript framework for building
user interfaces and single-page applications. In the earlier days of web development,
most of the coding was done on the server-side of the web page, but now more of the
code is in on the browser side. This is thanks to the addition of JavaScript, but projects
involving a lot of JavaScript code could be very messy and complicated to work with.
Here is where the JavaScript frameworks are remarkable; They help make the code more
organized and easier to use. There are many JavaScript frameworks to choose between,
for example, React and Angular. All of the frameworks would work fine with the thesis,
but the group decided to use Vue because of experience with the framework. Vue is
used to make the website reactive, meaning if any data in the JavaScript file changes, it
instantly changes the browser. The Vue framework is used for many di�erent purposes.

10 Chapter 2 Background

Vue is used to create components, route on di�erent pages, and handle each search’s
di�erent states in the project. The use of components makes the application much more
e�ective; They help extend essential HTML elements to encapsulate reusable code. This
means that everything is connected; when routing on a page, the same navigation bar is
used everywhere, and Vue knows its exact state using Vuex.

2.3.2 Vuex

In the Vue application there is many di�erent components that uses the data from the
back-end. When the application grows and more components is added it can become
di�cult to keep track of all the states. Vuex is Vue’s state management pattern which
is designed after the Flux pattern designed by Facebook. The Vuex pattern uses a
store that stores the state and it is possible to access the store from all of the di�erent
components. Vuex is used to store all of the data and fetch the data from the back-end.

2.3.3 Chartkick.js

Chartkick is a framework for displaying di�erent charts and graphs. Chartkick is
compatible with many di�erent programming languages and especially with Vue. To
display a chart in a Vue application it only requires one line of code.

1 <line - chart :data ="[{ � name �: listdata .query , �data �: listdata . linechart }]" > </ line -chart >

2

Listing 2.1: Using the Chartkick.js libary

With other frameworks, one would need a couple of hundred lines to display the same
chart. Using Chartkick, one can choose between the Chart.js library or the Highcharts.js
library to display the charts and graphs. The group decided to use Highcharts because
the charts looked better than the Chart.js charts, and the charts were reactive. In short,
Chartkick is a simplified way of using the Highcart.js library in Vue.

2.3.4 D3.js

D3.js is a JavaScript library for manipulating documents based on data. D3 helps bring
data to life using HTML, SVG, and CSS. D3’s emphasis on web standards gives the
full capabilities of modern browsers without tying yourself to a proprietary framework,
combining powerful visualization components and a data-driven approach to DOM
manipulation. [9] In this application D3.js was used to create a node network.

Chapter 2 Background 11

2.4 JSON

JSON short for JavaScript Object Notation which is a lightweight data-interchange
format. The JSON text format is language independent, originated from JavaScript, but
is now completely independent from JavaScript. It is easy to read a JSON response both
for a human and easy to parse and generate for a computer; therefore, it is one of the
most used text formats in coding. JSON is mainly used to send data between a server
and a web application. In the application, JSON is used to respond to the API calls and
send the data from the back-end to the front-end. There are other alternatives to JSON,
such as XML or CSV, but JSON seems to be the better alternative for this project.
JSON is easier to learn and understand, faster, and since the API’s returns the responses
in a JSON format, it would make sense to use JSON for the rest of the application.

2.5 Twitter

Twitter is a social media platform that works as a microblogging service that allows users
to send and read other users’ posts are called tweets. Twitter was released on 21. March
2006, and has grown in popularity ever since.[10] In 2020, 500 million tweets were posted
every day that converts to 6000 tweets per second. [11] As a user on Twitter, you have
a couple of di�erent ways to interact with a tweet. The first and obvious one is to like
the post if you find the most likable. If you want to want to share the tweet, you can
use the retweet function, which re-posts the tweet, so your followers also see the original
tweet. The retweet function is what makes tweets go viral, and when fake news is posted
on Twitter, the tweet often gets many retweets quickly, allowing it to spread fast before
people realize that it is not a legitimate tweet. There is also the option to reply to the
tweet which works as a comment function. Twitter also has a quote function witch is
similar to the retweet, but with a quote, the user can also add a quote above the retweet.

2.6 Reddit

Reddit is a social news platform that allows users to discuss and vote on content that
other users have submitted. The Reddit platform launched 23. June 2005 by Steve
Hu�man. [12] Reddit has become so popular that there is a subreddit for almost every
topic, and therefore, everyone will find something within their interest field. To counter
spam and spread of fake news, Reddit implemented a karma score for every user. Suppose
the user post only made up posts and spreads misinformation. In that case, other users
can downvote the posts, and the user would get a low karma score witch other users can

12 Chapter 2 Background

use to determine the user’s credibility. Vice versa, if the user posts well-liked and jovial
things, the karma of the user would become positive. If a user has high karma, it is a
good indication that the user is not posting fake news.

Chapter 3

System Architecture

3.1 Introduction

In this chapter, the system architecture is explained by how the data is retrieved from
the API to how the data is sent to the front-end. The first sections of this chapter will
explain how the Twitter and Reddit API works and how the API’s are used to retrieve
the data needed for this application. We will also go into detail on how the data is
formatted before displaying the data. After the data is retrieved and formatted, it needs
to be sent to the front end; therefore, the data flow in the application will be discussed.

A block diagram of how the data flow in the application works can be seen in figure 3.1
below:

Figure 3.1: Block Diagram

13

14 Chapter 3 System Architecture

3.2 Design Pattern

In order to write flexible, scalable, and reusable code, a design pattern is needed. In
object-oriented programming, the SOLID principle is crucial. Relevant principles were
used thoroughly when developing the back-end.

The first principle is the single responsibility principle which states that every class
should only have one responsibility. In this case of developing the back-end, each function
should only have one responsibility. Therefore, there is one function for extracting the
data for each component. For example, there is a function for extracting the top users
and another for extracting the top posts, this could be done in the same function, but
then it would interfere with the principle.

The following principle is the open-closed principle; the principle states any software
entity should be open for extension but closed for modification. This means any function
in the back-end should not be open for changing the code but open for adding more
functionality. If any of the already existing code inside the functions in the back-end is
changed it would create problems therefore the code is closed for modification. However,
if Twitter were to add a measurement like an amount of how many times a tweet was
sent as a message. It would be easy to scale the function to extract the data for this
without creating any problems. Having this principle in mind makes the code scalable
for later use.

The last principle that was used is the interface segregation principle. This principle
states that clients should not be forced to depend upon interfaces that they do not use.
In this application, the focus for this principle was to split the di�erent parts up as much
as possible, especially for the Twitter and Reddit parts. Instead of combining the two
parts as one, the data for each social media is fetched one by one instead of combining
them. If the application were to be extended to another social media platform, the
interface segregation principle must be kept in mind.

3.3 Using the API’s for retrieval of data

3.3.1 Twitter API

The Twitter API provides the tools needed to retrieve data and analyse the conversations
happening on Twitter. In order to use the Twitter API, you need to apply for a developer
account. The reason for this being that Twitter wants to know what the API is going
to be used for and how you are going to use it. There are two available versions of the

Chapter 3 System Architecture 15

Twitter API, v1 and v2. The application uses the Twitter API v2 because the second
version is an improved version of the first. The second version returns a data array in
JSON format and the first version returns objects in a statuses array. There is also an
improved authentication process improving the security of the API.

In the starting phase after getting the developer account approved, it was conducted exper-
iments with the API using Postman to check what the API returns from Twitter with di�er-
ent parameters. To send a request to the Twitter server the url: "https://api.twitter.com/2/"
is used. In order to call the API with a user selected query, the /recent endpoint is called
which accesses the public tweets posted over the last 7 days. A call to the API with the
query "CNN is propaganda" will be returned in this format:

1 {�data �: [{�id �: �1383002367868727297 � , �text �: �RT @Liz_Wheeler :

2 Twitter suspends James O Keefe the week he released BOMBSHELL undercover videos

3 exposing C N N s propaganda & lies. This i s �}]}

Listing 3.1: Default Twitter API response

From this default API call, only the ID of the tweet and the text is returned. In order to
get more information about the tweet the parameter tweet.fields is added to the URL
where the parameters public_metrics, created _at, referenced _tweets, author _id, in
_reply _to _user _id is added to the tweet.fields value.

After adding the tweet.fields parameter the API returns the output:

1 {�data �: [{�text �: �RT @Liz_Wheeler : Twitter suspends James O Keefe

2 the week he released BOMBSHELL

3 undercover videos exposing C N N s propaganda & lies.

4 This is..�, �public_metrics �: {� retweet_count �: 1792 ,

5 �reply_count �: 0, �like_count �: 0, �quote_count �: 0},

6 �id �: �1383007692025905153 � , �referenced_tweets �:

7 [{�type �: �retweeted �, �id �: �1382786815992733697 �}] ,

8 �author_id �: �19830815 � , �created_at �: �2021 -04 -16 T10 :41:43.000Z �}]}

Listing 3.2: Twitter API response with parameters

From the output we can see the ’referenced _tweets’ operator is included, inside ’referenced
_tweets’ we can check what type of tweet it is. Here the tweet is a retweet of another
tweet, other options are replies, quote or an original tweet but the ’referenced _tweets’
operator would not appear for an original tweet. The API also returns data for the date
the tweet was posted, the id of the author and the metrics which include the retweets,
likes, replies and quotes. From this example output there is 1792 retweets but zero for all
of the other metrics. The reason for this is because the Twitter API returns the retweets
of the original tweet that was retweeted. In the formatting section it will be explained
how the data from the output is extracted to make sure the data displayed is correct.

16 Chapter 3 System Architecture

So far all of the data about the tweets has been returned by the API, but the /recent
endpoint does not give any data about the user tweeting except for the author _id. To
extract the data about the users all of the author ids need to be extracted and by using
the /users endpoint the API will return the username, location, public metrics for the
user and the profile picture. Below is a snippet of how the data is returned:

{�data �: [{�id �: �19830815 � , �username �: �gasmith2 �, �name �:

�Freedom # ShallNotBeInfringed �, �location �: �USA First �,

�public_metrics �: {� followers_count �: 347 , �following_count �: 1996 ,

�tweet_count �: 10924 , �listed_count �: 0}, �profile_image_url �:

�https :// pbs. twimg .com/ profile_images /131873376542755848/ tHUBEqbc_normal .jpg �}]}

Listing 3.3: Data returned for a user

Combining the /recent/ and /users API calls, there is enough data to display all of the
data at the front-end.

In order to call the Twitter API without getting any errors the query needs to be URL
encoded also known as percent-encoding. URL encoding a query is parsing the query only
using the US-ASCII characters, for example when the user is searching for "#bitcoin"
the API would be called with the query " %23bitcoin". Using the URL encoded query
eliminates the errors that occurs when the API is called with a unencoded symbol. To
URL encode the query the python library urllib is used. The query is URL encoded with
a single line of code:

1 query = urllib . parse . quote (unencoded_query)

Listing 3.4: URL encoding

3.3.2 Reddit API

In order to use the Reddit API there is not as much formalities as the Twitter API to
get access. Reddit only requires a user and the user has to create an application which
generates two secret tokens that is required to access the API. To send a call to the API
the request package in python is used. A call would look like this:

1 import requests

2 res = requests .get (" https :// oauth . reddit .com/r/ python /hot",

3 headers = headers)

Listing 3.5: Directly accessing the Reddit API

Chapter 3 System Architecture 17

Accessing the API directly works fine, but the process is a bit confusing especially when
trying to extract as much data as possible. In response to developers thinking the Reddit
API was confusing the wrapper PRAW was created. PRAW which stands for Python
Reddit API Wrapper aims to make the API more accessible and easier to understand.
PRAW started as a Github project called reddit_api created by Timothy Mellor in
2010.[13]

In order to use the PRAW extention, praw need to be pip installed. After praw is
installed and imported, a Reddit instance needs to be created to access the API. In the
Reddit instance the secret tokens are used to authenticate the user.

1 reddit = praw. Reddit (

2 client_id = config . client_id ,

3 client_secret = config . client_secret ,

4 user_agent =" my user agent ")

Listing 3.6: Example of a Reddit instance:

After the Reddit instance is created the API is called with a single line of code:

1 reddit . subreddit (" all "). search (query , limit =100)

Listing 3.7: Calling the Reddit API

With the line above the Reddit API is called and returns a maximum of a hundred posts.
The parameter within the subreddit decides which subreddit to search within. Using the
parameter "all" calls the Reddit API for every subreddit and returns the top hundred
posts for the selected query. The query does not need to be URL encoded for the Reddit
API since the PRAW extension handles the URL encoding internally. Any additional
API calls with the same query would return the same posts, so pagination does not work
for Reddit. Each of the posts is returned a a submission object where all of the data
about the post and the user is stored.

reddit_data = []

for submission in reddit . subreddit (" all "). search (query , limit =100):

try:

reddit_data . append ({" author ": str(submission . author .name),

" title ": str(submission . title),

" upvote_ratio ": submission . upvote_ratio ,

" upvotes ": submission .ups ," url ": str(submission . permalink),

" created_at ": str(submission . created_utc),

" subreddit ": str(submission . subreddit),

" number_of_comments ": str(submission . num_comments),

" post_karma ": submission . author . link_karma ,

" comment_karma ": submission . author . comment_karma ,

" icon_img ": submission . author . icon_img })

18 Chapter 3 System Architecture

except :

print (" User suspended ")

Listing 3.8: Calling the Reddit API

Above is a code snippet of how the data is extracted from the API call. For each
submission there is a "Redditor" instance which stores all of the data for the author
of each post, within this instance the username, karma of the user and profile picture
is extracted. The title, subreddit, upvotes, ratio of upvotes and the date the post was
created is also extracted and forwarded to be formatted before being sent to the front-end.

3.4 Back-end

The back-end part of the application is deployed separately in works in a similar manner
as an API. From the UI the user writes a query or selects a predefined fake claim. The
query is then sent to the back-end, and in turn the back-end returns all of the data in
the predefined format for the front-end to display.

3.4.1 Flask Back-end

The Flask framework was used for the back-end part because of previous experience
with using Flask as the back-end. The back-end architecture is designed in such a way
that it fetches, formats and sends the data to the front-end in an orderly manner. The
main parts of the back-end that handles most of the logic is the twitter_search and the
reddit_search methods:

@app. route (�/ twitter /search �, methods =[�GET �, �POST �])

def twitter_search ():

d = request .json

...

return json. dumps (twitter_data)

Listing 3.9: Method for fetching Twitter data

@app. route (�/ reddit /search �, methods =[�GET �, �POST �])

def reddit_search ():

d = request .json

Chapter 3 System Architecture 19

...

return json. dumps (reddit_data)

Listing 3.10: Method for fetching Reddit data

Within these functions the query from the UI is fetched, both of the API’s are called,
the data returned from the API’s are formatted and the formatted data is sent to the
front-end using the /search route.

From the Twitter API section, the code snippet included a returned tweet from the API;
the entry was a retweet of another tweet. The entry returned the number of retweets
from the original tweet, but not the other information about the original tweet, such as
the likes and replies. Sometimes the API will return some of the retweets of a popular
tweet, but not the original tweet.

To counter this issue, the function extract_retweet_ids is used where all of the returned
tweets of the type "retweet" are extracted. The ID of the original tweet is used to call
the API an additional time. The data returned from the additional API call is added to
the response from the original API call. Implementing this API call, more tweets are
added to the response, and the data is more accurate because the analytics from the
original tweet that was retweeted is added.

The reason for this implementation of the back-end, is to make the application easy to
scale. When all the data is processed and formatted correctly in the back-end, there is
minimal implementation that needs to be done to display the data in the front-end.

3.4.2 Pagination

Since the Twitter API can only retrieve one hundred tweets per call, pagination was
implemented to retrieve more data from the API. The first method used to get the most
amount of tweets was to use a timer and call to the endpoint multiple times with a two
second delay between each call. This method would return many duplicates, and the
performance was slow because it has to wait a specific amount of time for each call. To
improve this, by using the start_time and next_token, actual pagination is achieved.
This is because the next_token will give us the page of the tweets that were not retrieved.
[14]

The implementation of the pagination is listed in the code snippet below:

20 Chapter 3 System Architecture

def get_tweets (query , headers):

Rewind one week

start_time = datetime . utcnow () - timedelta (weeks =1)

Header must be in iso format

start_time = start_time . replace (microsecond =0). isoformat () + "Z"

tweets = {}

search_url = create_recent_search_url (query , start_time , None)

response = twitter_recent_search (search_url , headers)

for i in response .get (" data", []):

tweets [i[" id "]] = i

max result of tweets retrieved can be set here(now 500):

while response .get (" meta", {}). get (" next_token ") != None and len(tweets) < 500:

search_url = create_recent_search_url (query , None ,

response [" meta "][" next_token "])

response = twitter_recent_search (search_url , headers)

for i in response .get (" data", []):

tweets [i[" id "]] = i

return tweets

Listing 3.11: Pagination implementation

Each time a request is sent to the endpoint called the Twitter API recent search endpoint
[14], it will return a meta including "next_token" telling if there are other pages that
have not been returned in the last API call. Next_token is a hash that is sent with the
following API call. Therefore we are looping through the responses until there are no
more pages. There is a set limit for the maximum amount of tweets set to 500 tweets per
search. Setting a limit allows the application to have a minimum of 1000 searches per
month since the monthly tweet cap usage for our Twitter developer account is 500.000
tweets per month. Setting a limit to a maximum of 500 tweets per search was the best
option for performance and visualizing the spread. More tweets would make the user
experience worse because of the long waiting time, and with 500 tweets, the spread is
nicely visualized.

Chapter 3 System Architecture 21

3.4.3 Error Catching

In the Reddit section, the code snippet for extracting the data needed has a try/except
statement. The try statement states that for each submission the data is extracted from
the submission and added to a dictionary which is stored in a list for all of the Reddit
data. If there is an error occurring while extracting the data from the submission, the
script excludes this submission. The only error message that appears is when a user is
suspended from Reddit. This means that the user does not have a karma score.

The main issue that resulted in many errors was that the query used to call the API
would not return any data. The reason the API does not return any data could be that
the search is to specific or it could be that it is not relevant. To fix this problem a check
had to be implemented to check if any data has been returned before any functions are
called. If the query does not any return any data the JSON response that is being sent
to the back-end is changed to:

1 json_response = {" data ": "No data "}

Listing 3.12: JSON response for no data

When the data is sent to the Vuex store there is a check if the data is set to "No data".
If there is no data the property data is set to false. Implementing this eliminates the
errors that occurs in the front-end when components are trying to access properties that
does not exist when the API returns nothing.

Both of the API calls has a try/except statement to catch any unknown errors in the
back-end to prevent any unwanted errors in the front-end.

3.5 Formatting the data

When the data is returned from the API’s the data is returned as a list containing
multiple dictionaries. These dictionaries contain the results. In order to display the data
returned, it needs to be formatted. For each component shown in the front-end there is a
function to extract the exact data that is needed for the component. An example would
be; the bar chart for Twitter, the function create _barchart is called with the JSON
response which is the unformatted data. The function extracts the likes, retweets, replies
and quotes, returns the combined analytics as a list which is sent to the front-end to be
displayed. This approach is used for every component and if there is another component
that is going to be added to the website it is easy to extend the back-end to format the
data for another component.

22 Chapter 3 System Architecture

3.5.1 Formatting Twitter data

The data returned from the Twitter API is in the format of a list with a dictionary for
each entry/tweet. The procedure for extracting and formatting the data is very similar
for each Twitter component. The main di�erence between the procedures is the type of
data being extracted. Continuing with the example where the data for the bar chart is
being extracted and formatted can be seen in the snippet below:

def create_barchart (tweets):

total_retweets = 0

total_likes = 0

total_replies = 0

total_quotes = 0

for id_ , data in tweets . items ():

if " referenced_tweets " in data:

if data[� referenced_tweets �][0][" type "] != " retweeted ":

total_retweets += data[� public_metrics �][" retweet_count "]

total_likes += data[� public_metrics �][" like_count "]

total_replies += data[� public_metrics �][" reply_count "]

total_quotes += data[� public_metrics �][" quote_count "]

else:

total_retweets += data[� public_metrics �][" retweet_count "]

total_likes += data[� public_metrics �][" like_count "]

total_quotes += data[� public_metrics �][" quote_count "]

total_replies += data[� public_metrics �][" reply_count "]

barchartlist = [[�Likes �, total_likes], [� Retweeets �, total_retweets],

[�Replies �, total_replies],[� Quotes �, total_quotes]]

return barchartlist

Listing 3.13: Formatting the data for the bar chart

The methods use a for loop to access every entry and extract the likes, retweets, replies
and quotes. Referring to the 3.2.1 chapter, the returned data gave the retweet count of
the original tweet. To make sure that this retweet number does not get counted multiple
times, we check to see if the tweet type is retweeted. If the tweet type is in fact retweeted,
it is not counted. The same procedure is used for the line chart where the dates of the
tweets are extracted and formatted in a dictionary for the line chart component or for
any other component for the Twitter part of the application.

Chapter 3 System Architecture 23

3.5.2 Formatting Reddit data

The process of formatting the Reddit data for the components in the Reddit view is
very similar to the Twitter process because the data returned from the APIs are in the
same format. Both procedures involve a for loop to extract the data from each entry; the
most significant di�erence is the type of data extracted. The two platforms use di�erent
types of analytics. Below is an example of the data for the engagement component being
extracted:

def reddit_engagement (reddit_data):

engagement = {}

user_ids = []

upvotes = 0

for i in range (len(reddit_data)):

upvotes += reddit_data [i][" upvotes "]

if reddit_data [i][" author "] not in user_ids :

user_ids . append (reddit_data [i][" author "])

engagement [" posts "] = len(reddit_data)

engagement [" users "] = len(user_ids)

engagement [" engagement "] = upvotes

return engagement

Listing 3.14: Formatting the data for the engagement component

The method adds each unique user to a list and counts the total users, posts and
upvotes and returns the totals in a dictionary. This procedure is repeated for the Reddit
components with slight modifications that rely on what format the data is needed to be
displayed in the front-end.

3.6 Communication between back-end and front-end

To create a full stack application the back-end and the front-end needs to be able to
communicate. The front-end needs to be able to send the query the user chooses and
send it to the back-end so the back-end can call the API’s with the chosen query. After
the data is formatted the data needs to be sent back to the front-end where it is received
in the Vuex store. To achieve these task the request library is used in the back-end and
in the front-end the promise based HTTP client Axios is used.

24 Chapter 3 System Architecture

The process begins by calilng the getResults function, when the user clicks the "Add search"
button in the front-end, inside the getResults function an instance of the "BackendApi"
class is made. Inside the class the function getMessages is called which make a post
request using Axios, the route /showinfo is then used to send the query to the back-end.
In the showinfo method in Python the POST request from the front-end is retrieved, the
API’s are called and the data is formatted. When the data is ready to be sent back the
back-end uses a POST request to the front-end where the data is retrieved in the store
and is ready to be displayed.

Figure 3.2: Flowchart on how the di�erent scripts communicate with eachother.

How a query is retrieved and furthermore how the Twitter data is sent to the front-end
is displayed in the code below, this is done in the same manner for Reddit.

@app. route (�/ twitter /search �, methods =[�GET �, �POST �])

def twitter_search ():

d = request .json

...

return json. dumps (twitter_data)

Listing 3.15: How the query is fetched and the data is sent to the front-end

Sending the query and get the data in the Vue store:

async getResult (state , searchValue) {

try{

let api = new Backendapi ();

let twitter_response = await api. getMessages_twitter (searchValue);

console .log(twitter_response)

}

Listing 3.16: How the data is retrived in the front-end

Chapter 3 System Architecture 25

import axios from �axios �;

export default class Backendapi {

getMessages_twitter (query){

// create connection with the results via Heroku

const path = �https :// fnt - backend . herokuapp .com/ twitter /search �;

return axios .post(path , { query }). then ((res) => {

return res.data

})

Listing 3.17: How the front-end communicates with the back-end

26 Chapter 3 System Architecture

3.7 Sequence Diagram

Figure 3.3: Sequence Diagram

A sequence diagram shows how the operations are carried out in the application. It
shows the interactions between object instances. In our application the sequence is like
this:

• The user uses their own twitter Token to do the searches. So they will sign in using
Twitter.

• Redirect to /yourtrackers page. Here the user can search on whatever the application
should visualize. When clicking the "Add Search" button, an API call will be made.

• From the Back-end it will request posts from both Twitter API v2 and Reddit API.

• The response from the APIs will be in JSON format. The data will be extracted and
sorted so that when it is sent to the front-end everything is ready to be displayed.

• On the /yourtrackes page, a check icon will be represented beside the search which
indicates that the search is ready to be displayed on /Dashboard.

Chapter 4

Front-End Design

4.1 Introduction

A good web page is user-friendly, easy to navigate, and intuitive. To achieve these things,
the developers must keep this in mind throughout the whole development. A good design
plan starts with a good skeleton and requires a focus on scalability from the beginning.
This chapter contains an explanation and review of the website’s layout, design choices,
and front-end components.

4.2 Pages and design

The website consists of five pages. There is the Home/Landing page, "Your Trackers",
"Dashboard", and three info pages with "About us" and "FAQ". The reason for choosing
the layout/website design that we have is because it is supposed to serve as an easy
website to navigate in, and thus we have very few pages as well as we want it to serve as
very intuitive and easy to understand.

The website has a simple design with a focus on ease of use, and it serves as a website
where one can easily retrieve information on the selected search. It has few pages, tabs,
and links to each section, making it easy for the user to navigate the website. There was
also a focus on designing the website, so it was good-looking and had a professional look
to it.

The design phase began initially with a sketch to decide the page count, what components
to add, where to locate the di�erent components of the front-end, and an initial color
palette. The constant parts such as the header and footer were initially designed, then
the individual pages of the site was made.

27

28 Chapter 4 Front-End Design

4.2.1 Landing Page

In the landing page there is a picture of our logo along with two buttons which gives the
user the opportunity to redirect to the trackers page or sign in with Twitter.

When designing the landing page, there were two things in focus—having the logo visible
and redirecting directly to the page called "Your Trackers". The Sign-in with the Twitter
button was implemented to have the users authenticate themselves. When signing in, the
user will be redirected to the Twitter OAuth page to sign in with their account. Then
a PIN is displayed on the page, so the user must copy this PIN and paste it into our
application. If the PIN code is as expected, the user-tokens will be returned. With these
tokens, the application can become more personalized for the user, such as welcoming
them with their username and profile picture etc.; furthermore, it could be possible to
store searches for each user.

Their token can also be used to make the di�erent searches on the Twitter API endpoint,
but it was decided to use the bearer token from the application. The applications bearer
token has a greater rate-limit per 15 min and per month versus the users token[15] and
is, therefore, a better option. There is the option to use the Twitter login but as per now
the version uses the implementation of the applications bearer token.

Figure 4.1: Landing page

Chapter 4 Front-End Design 29

Figure 4.2: Authentication page

4.2.2 Your trackers

In the trackers page you’re first met with a greeting message and a short info-text which
tells you what to do. You have the opportunity to select already made search queries
or add your own queries. When these are added and loaded you get the opportunity to
check either one or two of the added queries by selecting them. After this you can press
the button that says "See Twitter Results" and "See Reddit Results". This button will
redirect you to the dashboard.

The intent of the website is that one wants to search a query and then search for the
coverage of this query on various social medias. The your trackers page is the page that
makes it possible to specify the query. When designing this page, three things came
into consideration: the amount of components, layout of the page and placement of the
di�erent components in order to make it as user-friendly as possible.

4.2.3 Dashboard

In the dashboard pages the queries you have chosen in the trackers page are displayed.
If you choose only one query, it will show results only for this query. If you choose two
queries on the other hand, the page layout changes and you have a dual-view of the two
queries, where you have the same type of visualizations that are set beside each other to
compare these. The dashboard page shows the social media engagement of the di�erent
queries in a timeline as a line chart, di�erent types of engagement in a bar chart, the
spread of a claim between users in a node network as well as tables of the top posts and
most influential users writing about the selected search or searches.

30 Chapter 4 Front-End Design

Figure 4.3: Your Trackers

When designing the dashboard page three things had to be taken into consideration:
the sizing of the components, how we wanted to display the data and in which order
we wanted to display it. In the dashboard page the di�erent components are displayed
so that the user can scroll down and see the di�erent components. The components
containing the data are designed and added so that they display information to the user
when hovering over. Tool tips with information about the data being displayed are also
added on above each of the components displaying data, all of this is done to make the
page informative and easy to interact with. The selected queries are put at the top
of the page and the page allows for users to toggle between the searches or show two
searches simultaneously. The design of the dashboard page is altered when two searches
are selected. When there is a dual view every data-component has the same size and are
placed aside each other, this is done so that the user easily can compare the two views.

Figure 4.4: Dashboard page

Chapter 4 Front-End Design 31

4.3 Components

Components are a really important feature in Vue.Js which make it a lot easier to create
scalable and reactive web applications. Components lets the developer focus on one
thing at a time as well as it divides the user interface into smaller reusable pieces which
one also can encapsulate into each other. This is a feature which makes it a lot easier
to create scalable and reactive web applications and is also the reason as to why this
approach was chosen.

The website is made up of a lot of di�erent components. the website itself is one big
component, the di�erent pages are each their own component and also the di�erent pages
have components within themselves. Considering the fact that most of the pages does not
have a lot of di�erent elements and information, most of the pages are one-component
pages which doesn’t encapsulate other components. The dashboard page (which is a
component in itself) on the other hand consists of a range of other components. The page
consists of a search list, tracker header, engagement bar, line and bar chart, node-network
and geo chart etc. All of these are separate components which have been made on their
own, and then placed in the dashboard component.

<template >

<div class =" container ">

<SearchList />

<Trackerheader class =" dashboard -comp"

: listdata =� Display1 .query �

: listdata2 =� Display2 .query �/>

<Engagement class =" dashboard -comp"

: listdata1 =�Display1 �

: listdata2 =�Display2 � />

<div class =" container_for_linechart ">

<LineChart class =" dashboard -comp" id =" linechart "

: listdata1 =�Display1 �

: listdata2 =�Display2 �

v-show =" Display1 . query && Display2 . query !== {}"/ >

</div >

....

export default createStore ({

<script >

// here we import other components

import BarChart from �../ components /BarChart �

import BarChartBig from �../ components / BarChartBig �

import LineChart from �../ components / LineChartComponent �

import SearchList from �../ components / SearchList .vue �;

import topPosts from �../ components /Topposts �;

...

32 Chapter 4 Front-End Design

export default {

name: �Dashboard �,

components : {

BarChart ,

BarChartBig ,

LineChart ,

SearchList ,

topPosts ,

...

}... ,

Listing 4.1: Importing the di�erent components into the dashboard component

4.3.1 Tooltip for Components

Each component that visualizes data has a tooltip that explains how it works when
hovering over the question mark as shown in the figure below. This is used if the user
does not understand the chart or just wants an explanation of data data is displayed.

Figure 4.5: Tooltip component

4.3.2 Search list

The search list is the component where the queries are stored when the user has added
the search. The queries are displayed in a table where the user can click an entry; when
the user clicks, the query is activated and displayed. If a query is activated, the selecting
row turns blue.

Chapter 4 Front-End Design 33

To keep track of which of the queries are displayed, the "searches" list in the store contains
objects with the keys: query, active, loaded, and index. When clicking a row in the
search list, adding the query to the display list is called. Here it is checked if the query
matches the query in the "allTweets" list; if it is the same, the query is displayed and
the index in the displayed list is set. When the user deselects a query, we use the index
property in the "searchlist" and remove the item displayed at the particular index. The
search list is used both on the tracker page and on the dashboard page.

[language = JavaScript , caption = Setting tweet to the displayed list]

DisplayTweet (state , idx){

for (let i in state . allTweets){

if (state . searches [idx][" title "] == state . allTweets [i][" query "]){

state . tweets .push(state . allTweets [i]);

}

}

state . searches [idx]. active = true

state . searches [idx]. index = state . tweets . length -1

}

Figure 4.6: Searchlist component

4.3.3 Engagement

The engagement component is the yellow bar displayed in the top section of the page.
This component displays the social media engagement in the form of amount of posts,
users writing about the specific query or queries and engagement which in this context is
referred to as total retweets and likes of posts containing the specific query or queries.

34 Chapter 4 Front-End Design

Figure 4.7: Engagement component

4.3.4 Line chart

The line chart is a time line that shows total cumulative tweets including retweets for
the query over the span of a certain time period, which is ideally supposed to be seven
days, but if the query is very popular it can be as short as one day. This is because
it is retrieved the last one hundred tweets from the twitter API and thus, if it is a
very popular query the last one hundred tweets won’t necessary be from the last seven
days. By displaying this timeline in the form of a line chart we are able to display total
engagement in the form of tweets, retweets, quote tweets and replies as cumulative tweets.

Figure 4.8: Linechart component

Chapter 4 Front-End Design 35

4.3.5 Bar chart

The bar chart is a visualization of the di�erent types of social media engagement. It
shows total amount of likes, retweets, replies and quotes on the di�erent tweets containing
the query. When you are comparing a truthful claim versus a fake clam this is a good
indicator to see how much a fake claim is spread compared to a truthful one.

Figure 4.9: Barchart component

4.3.6 Geo chart

The geo chart component shows the country from which the twitter users are tweeting
from. Essentially this is supposed to give an indication on in which locations certain
queries are tweeted the most about, which can be useful in many di�erent ways in relation
to the spread of fake news. When calling the API there is a parameter for the tweet fields
called geo which returns the location of where the tweet was tweeted from, but to get
access to this functionality you must have the premium API. To create a geo chart the
locations is set by using the user provided location from their Twitter bio. This could be
anywhere the users wants and thus this graph is not necessarily as accurate and helpful,
but in a further developed website this would be very insightful.

Accurate geocoding results are an essential part of many geospatial processes. Whether
you want to show your retail locations on a map, calculate an optimized route for a
delivery, or search within the radius of an origin point, the geocoding API enables you
to associate latitude and longitude with an associated address. [16]

Another issue with this is that a lot of the users often write cities instead of country in
their bio, and the chart library from Google Maps used for the geo charts only accepts
country codes. To solve this problem an API called MapQuest was used[17]. Using the
Geocoder library it is possible to access the MapQuest API easily with a single line of code:

36 Chapter 4 Front-End Design

1 g = geocoder . mapquest (all_locations , method =�batch �,key ="X")

Listing 4.2: Calling the Mapquest API with Geocoder

With this API call the website is able to retrieve a list with all of the locations and then
passes the data to the chart library. The format of country code and an integer for how
many entries there was from the specific country.

Figure 4.10: Geochart component

4.3.7 Node network

To show the interaction between users and the spread among di�erent users the node
network was created. In the node network component, every user that has tweeted or
retweeted any tweet about the query are shown as nodes. These are further connected to
other users that has retweeted their tweets or retweets including the specific query. To
create the node network the d3.js chart library was used. To create the nodes and the
links between, we had to first extract them in the correct format from the Twitter API.
The links between nodes were extracted as a list of objects in the form of "[{source:a,
target:b}, {source:c, target:d},{source:e, target:f},...]", the nodes were extracted as a list
of objects in the form of "[{id:x1}, {id:x2}, {id:x3},...]"

Chapter 4 Front-End Design 37

Figure 4.11: Node network component

4.3.8 Top Posts and Most Influential Users

There are two components that displays the top posts that the most retweets and the
most influential users. The component is in a container that consists of three rows with
a Twitter post along with username, profile picture and the amount of retweets and likes
on the post. Each of the posts are clickable links which redirects you to the actual tweet
on Twitter.

The component with the most influential users shows the users with the biggest following
that are tweeting about the query or interacts with a tweet. The component is also a
container that contains three rows, on each row there are three smaller containers that
contain the Twitter username along with the users following count. Also, each of the
containers are clickable links that redirect you to the Twitter page of the actual user.

Figure 4.12: Top posts and most influential users components

38 Chapter 4 Front-End Design

4.3.9 Reddit Word Cloud

The word cloud is a component that displays di�erent words with distinct size in a
cloud. The word symbolizes the subreddit and the size symbolizes how many of the posts
from the subreddit. The user can click any of the words to be redirected to the selected
subreddit on reddit.com. Unfortunately there was not a library for creating a word cloud
that was compatible with Vue 3. Therefore the word cloud is created using only HTML
and CSS, the word cloud is an unordered list with all of the decoration removed and by
using the flex display and flex-wrap properties in CSS the cloud is created. The size of
the word is predetermined in the back-end by counting the sum of each entry from the
subreddit.

Figure 4.13: Wordcloud component

4.3.10 Twitter Sentiment Component

The Twitter sentiment component is responsible for measuring the posts sentiment. It is
a way to evaluate spoken or written language to determine if the expression is favorable
(positive), unfavorable (negative), or neutral, and to what degree. The Twitter sentiment
are presented in a pie chart, showing the user how many posts were positive, negative or
natural.

When creating the Twitter sentiment the data retrieved from the Twitter API call is
first removed of all characters that are not plain text, i.e emojis, symbols etc. To do the
sentiment analysis of the tweets we used a python library called TextBlob, TextBlob

Chapter 4 Front-End Design 39

uses an NLTK pattern library to analyze each word in a sentence individually. The
library allows for sentiment analysis by using built in functions to calculate polarity and
subjectivity. Polarity has a score range of [-1.0 to 1.0]. The polarity score denotes the
amount of positive or negative information which is presented in the text. A score of
-1 is the most negative and the score of +1 is most positive. Subjectivity has a score
range of [0.0 to 1.1]. The subjective score helps in understanding the objectivity of the
text. A score of 0 is a fact and a score of +1 is very much an opinion. After the polarity
and subjectivity scores are found, they are then passed to a function in the back-end
that decides the sentiment based on the polarity and subjectivity scores that the built in
TextBlob functions returns for each tweet. If the polarity score is > 0 the analysis will
be positive. If = 0, the analysis will be neutral. If < 0, it will show negative. Lastly, the
sentiment of each of the tweets are then sent as a dictionary in the form of "positive": x,
"negative": x, "neutral":x along with the rest of the data to the front-end.

Figure 4.14: Twitter sentiment component

40 Chapter 4 Front-End Design

4.3.11 Accessing the data in the components

In the initial implementation there was used a unique state in the vuex store for each
component. T This became lousy coding practice because it became redundant, and it
was not easy to scale, nor was it dynamic. Another thing that made this a bad choice of
coding is that as the component count grows, the list count would also grow where each
of the lists would have to be updated every time the user changes the selected search.

export default createStore ({

state : {

searches : [],

tweets : [],

BarChartList : [],

LineChartList : [],

TopPosts : [],

TopUsers : [],

activity : {}

},

Listing 4.3: First version of the Vuex store

The main di�erence between the previous design choice and the new implementation
passes the object to the displayed list which is the tweets list. Instead of extracting each
attribute in the store and setting the attribute as a variable, the entire object is added to
tweets list displayed. Inside the dashboard, the attributes are fetched for each respectable
component. The implementation listed below makes the code cleaner, and displays the
components faster.

export default createStore ({

state : {

// List with objects that contain the title and if the title is active or not

searches : [],

// The tweets that is displayed MAX 2 queries

tweets : [],

// List that contains all of the data the user has added to the search list

allTweets : []

}

Listing 4.4: Final version of the Vuex store

In the dashboard component, the list of data that has been defined in the "store"(the file
where the application state is held) is called on with the help of the getters defined in the

Chapter 4 Front-End Design 41

"store. The data is retrieved in two di�erent computed functions. We have two computed
functions to call on the data from the store because of the opportunity to display two
di�erent queries at the same time. Essentially the first computed function contains the
first API-request and the second computed function contains the second API-request.

With the two computed functions in the dashboard component, it is now possible to put
these as props in the di�erent sub components that the dashboard component consists
of. The computed functions are passed as props in the sub components.

Props allows us to pass data from a parent component down to a child component, in this
case, the parent component would be the dashboard component and the child component
would be all the components that the dashboard component contains.

Once the computed function is passed as a prop to the child components, it is possible
to access the data from the child component and thus use this data for visualization.
An example would be the line chart component, one of the many child components of
the dashboard component. Once the computed function is passed in the dashboard
component as a prop in the line chart component, it is possible to use the prop locally in
the line chart component and access the prop’s data.

Chapter 5

Discussion

5.1 Problems and challenges

The first and the most obvious problem is the amount of data returned from the Twitter
API. Because the Twitter API only returns one hundred tweets from the last seven days,
many queries containing fake news circulating on Twitter from earlier than this would
not return any data.

Because of these restrictions from the API, the application did not work as a tool for
checking fake news that has been circulating on Twitter previously. The application
worked fine as a tool if the searched query is recently posted on Twitter, meaning if
we had access to the entire archive of tweets, the application would work as intended.
The implementation of pagination made the application closer to what the full archive
version would have been, but there are still queries that does not return any data. In the
"Premium Twitter API" section, we will explain how it is possible to pay to access the
entire archive of tweets.

In the very beginning the web site was developed as a Flask application using HTML,
CSS and vanilla JavaScript. This application worked fine for extracting data from the
Twitter API and displaying a single chart. We quickly found out however, that this
application was not very scalable and not reactive at all. Therefore we decided to scrap
the first version and make a new version using Vue.Js. We all had some experience using
Vue.Js and knew that the website would be a lot better in regards to user friendliness,
scalability and reactivity.

43

44 Chapter 5 Discussion

After switching to Vue.js, we had to decide which version of Vue that should be used.
We decided to use Vue 3 because it is faster and easier to use than the previous versions.
The problems with Vue 3 started to occur when trying to use external Vue extensions
because most of the user-made extensions were made for the earlier versions. Vue 3 was
released on 18 September 2020 [18], and any extension made before this date would not
be compatible with our application. This caused many small tasks like adding tooltips,
using D3 Vue, and Bootstrap Vue extensions to be more complex because we had to
implement our own versions instead of using the already made extension. For example,
the word cloud could be made by using an extension, but we had to use a combination
between HTML and CSS to make a word cloud from scratch.

We also wanted to extend the application to other social media platforms like Facebook,
but the API is not available for everyone to use as the Twitter and Reddit API. The
Facebook API websites headlines this message: "Access to the Public Feed API is
restricted to a limited set of media publishers and usage requires prior approval by
Facebook. You cannot apply to use the API at this time.". Therefore the application
is restricted to two social medias. Facebook would have been a good addition to the
application due to the large amount of misinformation being spread there.

5.2 Experimental Evaluation

5.2.1 Sentiment Analysis

Using TextBlob, a sentiment analysis was done on the searches shown in the table below.
In addition to this, we also did our own analysis of the searches to examine the accuracy
of TextBlob. The table shows the amount of tweets that TextBlob deem positive, neutral
or negative as well as the amount of tweets in a search that we have deemed either
positive, negative or neutral.

Testing the accuracy of TextBlob
Search TextBlob Results Our Results
Bill Gates Positive:21, Neutral:29, Negative:17 Positive:5, Neutral:30, Negative:22
Racism Positive:40, Neutral:30, Negative:25, Positive:28, Neutral:25, Negative:42

Only comparing the amount of positive, negative and neutral tweets that TextBlob
predicted with our own was a bit thin when controlling the accuracy and "trustworthiness"
of the TextBlob sentiments. Therefore we decided to create confusion matrices to further

Chapter 5 Discussion 45

look at the accuracy of the classifications done by TextBlob. A confusion matrix is a table
that is often used to describe the performance of a classification model (or "classifier")
on a set of test data for which the true values are known, in this case the true values
being our own interpretation of a tweets sentiment..

Figure 5.1: Confusion Matrix for search "Bill Gates"

For the search Bill Gates we got 67 unique tweets. The confusion matrix shows that
TextBlob predicted 17 negative, 29 neutral and 21 positive tweets whilst we deemed 32
negative, 30 neutral and 5 positive tweets.

Of the 17 tweets that TextBlob predicted to be negative tweets, we deemed 12 to be
negative as well. Additionally TextBlob predicted 5 other tweets as negative which we
deemed to be neutral.

TextBlob also predicted 29 tweets as neutral, of these 29 tweets we deemed 18 as neutral
as well. The additional tweets predicted as neutral from TextBlob was actually deemed
negative by us.

As for the positive tweets, TextBlob predicted 21 tweets to be positive where as only 5
of these tweets were also deemed positive by us. This tells us that for the positive tweets
there was worse correlation between our own interpretation and TextBlobs predictions
compared to the negative and neutral tweets.

46 Chapter 5 Discussion

Figure 5.2: Confusion Matrix for search "Racism"

For the search racism there was 95 unique tweets. By looking at the confusion matrix one
can see that TextBlob predicted 40 tweets as positve, 30 as neutral and 25 as negative.
We on the other hand interpreted 28 tweets as positive, 25 as neutral and 42 as negative.

Of the 25 tweets that TextBlob predicted as negative, we predicted 21 tweets to also be
negative. TextBlob also predicted 4 additional tweets as negative where we predicted
3 of these as positive and 1 of them as neutral. Thus we can see that the correlation
between our own predictions and TextBlobs predictions is high when it comes to the
negative tweets for the search ’Racism’.

With the neutral tweets, TextBlob predicted 25 tweets as neutral, 16 of which we also
deemed to be neutral. In addition to this TextBlob also predicted 14 additional tweets
as neutral and of these 14 tweets we deemed 6 as positive and 8 as neutral. This tells us
that the accuracy of the neutral tweets are somewhat high for this search.

As for the positive tweets, TextBlob predicted 40 of these, of which we predicted 19 of
these as positive. TextBlob also predicted 21 additional tweets as positive, and of these 21
we deemed 8 as neutral and 13 as negative. Although there are a lot of same predictions
of the positive tweets there are also a lot of tweets that are di�erently predicted when it

Chapter 5 Discussion 47

comes to the positive, therefore one can say that the accuracy is somewhat low for the
positive tweets in this search.

The analysis that we have done above goes to show that TextBlob is far from one hundred
percent accurate even though it is a good pinpointer of the sentiment of a tweet. When
examining the tweets ourselves we observed that there were obviously positive tweets
that were predicted as negative by TextBlob or vice versa. More often than not, this
happens when TextBlob reads a clearly negative word in a positive tweet, for instance a
curse word. In other words TextBlob doesn’t always understand the context of the words
in the tweet and thus gets an incorrect prediction. On the other side, the "controlling"
organ in this analysis has been ourselves and even though we tried to be as unbiased as
possible we do understand that this is impossible to fully do and thus our interpretation
of a tweet is relative to us. A negative tweet in our eyes does not necessarily have to be
deemed negative by the next man and so we have had this in mind when analysing the
TextBlob sentiments.

5.2.2 Performance Evaluation

In order to test the scalability of the application, there must be conducted an experiment
to test how long the application uses to process the di�erent amounts of data. The
experiment was conducted by timing how long the back-end uses fetch and format the
tweets from the raw Twitter data to when the data is ready to be displayed in the
front-end. This was done by formatting one hundred to two thousand tweets to check if
the application could handle large amounts of data and check if any amounts are causing
a spike in run time. Below is a plot of how the run time of the function that is fetching
and formatting the tweets:

48 Chapter 5 Discussion

Figure 5.3: Loading time for tweets

By reading the plot, one can see that there is a very minimal di�erence from a hundred
to two hundred. However, there is a sudden spike in the time at three hundred tweets;
one can also notice a spike at around a thousand. There is also a steady increase from
300 to 800 and 1000 to 2000 tweets.

Evaluating the results shows the application can handle more significant amounts of data
but at the cost of a higher loading time. There is also a conclusion to use a maximum of
500 tweets because this amount is a combination of enough data to display the spread
and a reasonable waiting time for the user.

Chapter 5 Discussion 49

5.2.3 Feedback Survey

To get a glimpse of the website from the outside, the website was sent out to a group of
ten people to test. In order to get realistic feedback the test group consisted of tutors,
computer science students, and people with zero coding experience. After the users had
tried out the website, a form was submitted answering questions about the functionality,
design, and an open field where the positive and negative feedback could be submitted.
Using a feedback survey allows the developers to understand what is done correctly and
what could have been improved. Test users may also encounter bugs and errors that
have been overlooked.

The test users were asked to rate the website on a scale of 1-5 in five di�erent categories
ranging from the overall rating to how functional the website is. The overall rating
from the test users averaged a bit higher than four showing the overall impression of the
website was positive. The same goes for the design of the website. The question about
how functional the website was, the replies were slightly worse. We were familiar with
this since some of the searches did not return any data, but the response was better than
expected.

The responses for the question: "How well do you think the website displays the spread
of a claim?" clearly got the best rating of the questions. Getting positive feedback on
this part of the application was great because much focus was used to create as many
relevant components for displaying the spread of a claim. Getting positive feedback is
great after working hard on a project, but with good news, there is also some bad news.
The question where the website scored the worse was about the loading time from adding
a search to the data is ready to be displayed. Most test users thought the loading time
was a bit too long, and some said it was as expected. After the feedback we did some
slight improvements in enhancing the performance, but the waiting time for the API will
always be the same therefore the loading time did not improve as much as we wanted it
to.

We received feedback from the users that the comparison view was a good addition, a
clean look, and they liked the charts. There were some complaints about the loading
time for a query, some design issues, and some unknown bugs were discovered. The
negative feedback from the test users was constructive and helped us fix some unknown
issues; for example, test users using windows would get a scroll bar that should not be
there that mac users would not get.

50 Chapter 5 Discussion

5.3 Further Development

An idea for a further developed version of the website is a website where the user can
choose di�erent queries to track constantly. For example, the user chooses a query, and
from the moment it is added, the API is called with the query every hour, and the
returned data would be stored in a database. This implementation would make the
application a more useful tool and more comprehensive analysis of the queries in relation
to the current application. A database would need to be implemented instead of the
locally stored data in the Vuex store, and the back-end would need to be redesigned to
call the API every hour. A service like this could be monetized by requiring a monthly
fee for the subscription. There is also an opportunity to use machine learning to the
sentiment component. The current sentiment analysis uses an external API, but in a
further developed version, storing the data and using machine learning to improve the
sentiment analysis is possible.

5.3.1 Premium Twitter API

When developing this application, we quickly found out that we do not get as much data
from the API as we were hoping for, we tried doing multiple API calls, but the API would
return more duplicates for each call. So the data shown on the website is nowhere close
to the actual data; the particular reason for this is because the free Twitter API only
returns one hundred tweets from the last seven days (with some irregularity). However,
it is possible to fetch the actual data from the API to create a tool that displays all of
the data. To access the actual data, it is required to buy the enterprise version of the
API. The enterprise API has two di�erent enterprise search API’s: 1. 30-Day Search API
provides data from the previous 30 days. 2. Full-Archive Search API provides complete
and instant access to the entire corpus of Twitter data dating back to the first Tweet in
March 2006.

Having access to the enterprise API, we could create a website that displayed all of the
data from the last 30 days or for the whole duration Twitter existed. Accessing all of
this data would also create more problems concerning data storage. If this website were
to be scaled to display all of the data, we would need to implement a database to store
the data.

Chapter 5 Discussion 51

5.4 Conclusion

In this project we created a website for examining the spread of fake news on the two
social media platforms Twitter and Reddit. The first goal was to visualize the data
returned from the APIs; this was achieved by creating components that displays the
total engagement, the top posts and most influential users. The second goal was to
visualize the spread of the fake news. This was achieved by creating components such as
the node network which shows who has posted a tweet and who has interacted with it.
The last goal was to allow the users to compare two queries that have been searched for.
We managed to solve this by creating a dual view option in the dashboard. Although
we managed to achieve all of the goals that were set for the application, there are still
some minor complications revolving fetching data from the APIs. If the query is not
somewhat relevant the application does not return any data. As per now the application
is deployed and available for anyone to use.

List of Figures

3.1 Block Diagram . 13
3.2 Flowchart on how the di�erent scripts communicate with eachother. . . . 24
3.3 Sequence Diagram . 26

4.1 Landing page . 28
4.2 Authentication page . 29
4.3 Your Trackers . 30
4.4 Dashboard page . 30
4.5 Tooltip component . 32
4.6 Searchlist component . 33
4.7 Engagement component . 34
4.8 Linechart component . 34
4.9 Barchart component . 35
4.10 Geochart component . 36
4.11 Node network component . 37
4.12 Top posts and most influential users components 37
4.13 Wordcloud component . 38
4.14 Twitter sentiment component . 39

5.1 Confusion Matrix for search "Bill Gates" 45
5.2 Confusion Matrix for search "Racism" . 46
5.3 Loading time for tweets . 48

53

List of Listings

2.1 Using the Chartkick.js libary . 10
3.1 Default Twitter API response . 15
3.2 Twitter API response with parameters . 15
3.3 Data returned for a user . 16
3.4 URL encoding . 16
3.5 Directly accessing the Reddit API . 16
3.6 Example of a Reddit instance: . 17
3.7 Calling the Reddit API . 17
3.8 Calling the Reddit API . 17
3.9 Method for fetching Twitter data . 18
3.10 Method for fetching Reddit data . 18
3.11 Pagination implementation . 20
3.12 JSON response for no data . 21
3.13 Formatting the data for the bar chart . 22
3.14 Formatting the data for the engagement component 23
3.15 How the query is fetched and the data is sent to the front-end 24
3.16 How the data is retrived in the front-end 24
3.17 How the front-end communicates with the back-end 25
4.1 Importing the di�erent components into the dashboard component 31
4.2 Calling the Mapquest API with Geocoder 36
4.3 First version of the Vuex store . 40
4.4 Final version of the Vuex store . 40

55

List of Tables

1.1 Contributions . 4

57

Bibliography

[1] Hoaxy. https://hoaxy.osome.iu.edu/, Retrieved March 2021.

[2] Social listening definition. https://www.mycustomer.com/hr-glossary/social-
listening, Retrieved April 2021.

[3] Github front-end. https://github.com/RamtinHaf/FNT-FRONTEND, Retrieved
May 2021.

[4] Github back-end. https://github.com/RamtinHaf/FNT-BACKEND-b, Retrieved
May 2021.

[5] Buzzfeed. https://abcnews.go.com/Technology/fake-news-stories-make-real-news-
headlines/story?id=43845383, Retrieved April 2021.

[6] Mit. https://science.sciencemag.org/content/359/6380/1146, Retrieved April 2021.

[7] Html: Hypertext markup language. https://developer.mozilla.org/en-
US/docs/Web/HTML, Retrieved March 2021.

[8] Css. https://en.wikipedia.org/wiki/CSS, Retrieved March 2021.

[9] D3. https://d3js.org/, Retrieved April 2021.

[10] Twitter: Twitter wikipedia. https://en.wikipedia.org/wiki/Twitter, Retrieved April
2021.

[11] Twitterstats. https://www.dsayce.com/social-media/tweets-day/, Retrieved April
2021.

[12] Reddit: Wikipedia. https://no.wikipedia.org/wiki/Reddit, Retrieved April 2021.

[13] Praw: Python reddit api wrapper. https://github.com/praw-dev/praw, Retrieved
April 2021.

[14] Twitter. https://developer.twitter.com/en/docs/twitter-api/tweets/search/api-
reference/get-tweets-search-recent, Retrieved May 2021.

59

Bibliography BIBLIOGRAPHY

[15] Twitter. https://developer.twitter.com/en/docs/twitter-api/rate-limits, Retrieved
May 2021.

[16] Geocoder. https://geocoder.readthedocs.io/, Retrieved May 2021.

[17] Mapquest. https://developer.mapquest.com/documentation/geocoding-api/, Re-
trieved May 2021.

[18] Vue3: Release date. https://madewithvuejs.com/blog/vue-3-roundup, Retrieved
April 2021.

