
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FACULTY OF SCIENCE AND TECHNOLOGY 

MASTER’S THESIS 

Study Programme/Specialization: 

                Risk Analysis and Governance 

 

Spring 2021 

                         Confidential 

 

Author: Abdollah Kiani 

Programme Coordinator: 

Faculty Supervisor: Professor Riana Steen 

External Supervisor: Carl-Johan Almestad 

Title of master’s thesis: 

              Application of Bayesian Network in the EX-Risk-Based Inspection 

 

Credits: 30 

Keywords: 

Bayesian Network, Risk based inspection, 

Fault tree Analysis, Event tree Analysis, Ex 

electrical equipment, Ignition risk, Risk 

Analysis, Risk Assessment 

Number of pages:62 

+ Supplemental material: 17 

                  Stavanger, July 2021 



Application of Bayesian Risk Assessment in the EX-Risk-Based Inspection 
 
 

ii 
 

 

 

 

Application of Bayesian Network in the EX-Risk-Based Inspection 

Writer: Abdollah Kiani 

Study Program: Risk Analysis and Governance 

Supervisors: Professor Riana Steen 

Spring, 2021



Application of Bayesian Risk Assessment in the EX-Risk-Based Inspection 
 

iii 
 

Abstract: 

In the oil and gas industry, many operating expenses assigns to the cost of inspection and 

maintenance. Therefore, an optimized inspection strategy can reduce the cost of inspection and 

maintenance when the system's integrity does not change. One of the inspection's main issues is 

providing the right balance between the benefits of inspection and the inspection cost. It has led to 

the emerging of a new concept of inspection called risk-based inspection (RBI). This is based on 

the logical view that most high-risk equipment is concentrated within a small portion of the plant. 

Therefore, this equipment has priority for inspection, and the extra cost could be decreased with 

reduced inspection for other equipment with lower risk. Different risk-based inspection approaches 

have been accepted and developed in the petroleum industry in the past few years. However, there 

is not any integrated approach for RBI. In this research, to minimize the inspection cost, a new 

risk-based methodology has been developed by employing the Bayesian Network. Therefore, this 

study started with the most common risk analysis techniques such as fault tree and event tree and 

then tried to present a Bayesian network that can deal better with uncertainty. The critical point is 

that the BN model has met the RBI principle, which required increasing inspection for high-risk 

equipment to ensure safety level. On the other hand, it makes balance in the cost by reducing the 

inspection for low-risk equipment. 
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Chapter 1. Introduction 

Industrial accidents are not a new issue for humankind, and they are as old as the emerged of 

industry. Therefore, many standards and procedures have been developed to reduce the impacts of 

these hazards. Explosion and fire are two historical and well-known types of these mishaps. They 

can create major accidents or minor incidents base on their source and the environment. Fire is a 

rapid oxidation-reduction reaction that results in the production of heat and generally visible light. 

An explosion is an extreme and sudden expansion of gas combustion. An explosion can create a 

loud, sharp noise and a supersonic shock wave with a powerful and destructive force (Bottrill et al. 

2005). A spark in a hazardous environment can create fire or explosion. This can happen in any 

place where flammable and radioactive materials are processed or stored because there is potential 

for leakage or the ability to create an explosive atmosphere in conjunction with oxygen from air or 

some oxidizing agent. Therefore, three main elements for the explosion are Fuel (any flammable 

material), Oxygen, and an ignition source (Bottrill et al. 2005). 

Indubitably, nowadays, the wheel of the production process in any industry is electricity. Electricity 

creates a spark that generates energy, and this nature can lead to ignition or explosion where there 

is an explosive atmosphere. By the advent of the Industrial Revolution and subsequent industrial 

development in the twentieth century, the chemistry of electricity has been known as one of the 

critical ignition sources in different industries (Bottrill et al. 2005). 

The first safeguard approach against fire and explosion in the production process has been used in 

discovering and extracting mines to reduce the risk of burning methane gas. Methane is lighter than 

air; therefore, it moves up and amasses near the roof in mines. In this initial method, some expert 

miners covered with wet sacking were entering the working area with lanterns in front of other 

miners. Changing the lanterns' fire color was a sign of the existence of methane (Bottrill et al. 

2005).  

Other risks were identified by emerging electricity and using it in the mining industry, and the need 

for control equipment appeared. Safety equipment introduced by the mining industry was 

developed in other sectors to control the risk of flaming or explosion. In the early 1900s, the first 
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codes and standards for using electric equipment have introduced in the USA. Finally, the 

International Electrical Commission (IEC) was founded in Switzerland (Bottrill et al. 2005). 

1.1 Research question 

The international electrical Commission (IEC) is a worldwide organization for the standardization 

and coding of all electrical/electronic equipment and related technologies. IEC 60079 describes 

general requirements for Explosion-proof Electrical Equipment (Ex) on selection, installation, 

maintenance, and inspection in hazardous areas such as drilling rigs. Following this standard, IEC 

60079-17 covers factors directly related to the inspection and maintenance of electrical installations 

within hazardous areas only, where flammable gases may cause the hazard, vapors, mists, dust, 

fibers, or flying (IEC Webstore, 2021). 

Inspection is known as a critical tool to detect potential failures. So, Inspection of Ex electrical 

equipment is essential to ensure the continuing integrity of the types of protection that enable its 

use in potentially explosive atmospheres. Yet, such inspections are sometimes not carried out 

adequately regarding the frequency of inspection, grade of inspection, and completeness of the 

portfolio of Ex electrical equipment installed. Today, many inspections of Ex electrical equipment 

are carried out at the same level without adjustment for the different ignition risks that might apply. 

Still, Ex electrical equipment is typically located in various hazardous areas (where the probability 

of a flammable atmosphere being present differs). Also, different EX equipment presents different 

ignition risks based on the concept of EX protection type. In addition, the equipment may have 

different ages or be located where the environmental conditions differ (EI guideline, 2008).  

One of the inspection's main issues is providing the right balance between the benefits of inspection 

and the inspection cost. It has led to the emerging of a new concept of inspection called risk-based 

inspection (RBI). This is based on the logical view that most high-risk equipment is concentrated 

within a small portion of the plant. Therefore, this equipment has priority for inspection, and the 

extra cost could be decreased with reduced inspection for other equipment with lower risk (Bhatia 

et al. 2019). 

RBI has been defined as "an integrated methodology that uses risk as a basis for prioritizing and 

managing an in-service equipment inspection program by combining both the likelihood of failure 
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and the consequence of failure." (EI guideline, 2008). As is apparent in the RBI definition, two 

critical factors in this approach are the probability of failure (PoF) and the consequence of failure 

(CoF). Therefore, the main objective of this thesis is to develop a risk-based inspection strategy for 

Ex electrical equipment ignition risk in support of standards and regulation by applying the 

Bayesian network. To this end, this study looks closer at two following research questions: 

- RQ1: How to apply a Bayesian Network to estimate the PoF and CoF regarding the EX 

risk-based inspection (EXRBI)? 

- RQ2: How the result of the Bayesian Network can apply to develop a risk-based inspection 

strategy of Ex electrical equipment in the Rowan Viking rig? 

This research has been done in cooperation with the IKM Elektro As according to EX equipment 

installed in the Rowan Viking rig. 

1.2. IKM Elektro AS 

IKM group is one of the Norwegian international leading companies in the oil and gas industry, 

and IKM Elektro AS is a subsidiary company of the IKM group (ikm.com, 2021). Figure 1.1 shows 

the IKM Elektro information such as revenue, employees, office area, etc.   

Figure 1.1: General information for IKM Elektro AS 

Source: IKM website 
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IKM Elektro AS provides services in different fields as follow (ikm.com, 2021): 

- Ex-elektro service includes temporary installations, Ex inspection, Demolition and 

removal, operation service, and maintenance. 

- Motor service includes condition check of motor, motor overhaul/repair, motor inspection, 

and sale of motors. 

- High Voltage Services includes installation, maintenance, and operation of electrical high 

voltage installations. 

- Offshore/Onshore Service Personnel. IKM Elektro uses skilled experts to handle and 

supervise planned resources, personnel, competence matrixes, and course certificates for 

baseline, skilled staff, commissioning, and decommissioning projects. 

Figure 1.2 illustrates EX inspection process in IKM Elektro. 

 

 

 

 

 

 

Figure 1.2: IKM Elektro's inspection process. 

Source: Documents from IKM Elektro As. 

For each customer, IKM Elektro registers data of equipment to find more information for PoF and 

CoF. After register data, the data will be "washed" and sorted to present the correct data; this 

information plays a central role in the assessment. Then, they do analysis and propound the 

checklists and intervals which will be used for inspection. 



Application of Bayesian Risk Assessment in the EX-Risk-Based Inspection 
 
 

5 
 

This company uses digital tools for inspection (i.e., "Inspectio" or equivalent software solution) to 

ensure high-quality reports in the RBI analysis. The software sends checklists to the inspection and 

receives data back after the inspection. IKM Elektro board of directors determined the Rowan 

Viking rig (figure 1.3) as the case study for this thesis and provided access to inspection data for 

this study. 

 

Figure 1.3: The Rowan Viking rig 

Source: https://www.ptil.no 

The Rowan Viking is an 11-year-old jack-up rig for drilling offshore wells, which complies with 

Norwegian law. Today this rig is located at UKC - North Sea at position 58° 50' 29.652" N, 2° 14' 

50.039" E (marinetraffic, 2021). Table 1.1 presents information for this rig. 

 

Name ROWAN VIKING CRANES 1 PTC 35

IMO  8769664 TRANSPORT 18 axle lines of SPMT

Vessel Type - Detailed Platform MARITIME EQUIPMENT 1sheerleg &1 barge

Status Active CREW 11 Mammoet professionals

MMSI 538004075 Dimension 80 x 10 m

Flag Marshall Is [MH] Year Built 2010

Table 1.1: General information for The Rowan Viking rig

Source:https://www.marinetraffic.com

https://www.ptil.no/
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1.3. Structure of the thesis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 1 starts with the introduction, then 1.1 presents the research question,1.2 

includes a brief presentation of the case study, and 1.3 contains the thesis structure. 

Chapter 2 reviews relevant theoretical concepts. Section one of this chapter takes a 

look at basic concepts of risk analysis. 2.2 presents relevant theories according to 

RBI, and 2.3 introduces the Bayesian risk assessment. 

Chapter 2 is assigned to methodology. 3.1 presents research strategy and design, 3.2 

is about data collection, section 3.3 defines the methodology for converting from fault 

tree and event tree to the Bayesian network, 3.4 presents risk matrix, and 3.5 is 

assigned to reliability and validity. 

Chapter 4 includes empirical data analysis. In 4.1, data has been analyzed to identify 

fault mechanisms for EX equipment; then, in 4.2, a primary Bayesian network has 

been developed. 

The discussion about the result of the analysis has taken place in chapter 5, where 5.1 

discusses how the primary model could be updated, 5.2 identifies acceptance criteria, 

5.3 defines the concept of lots, and finally, 5.4 shows the application of The BN for 

inspection strategy bay an example from The Rowan Viking rig. 

Chapter 6 presents the conclusion of the thesis, where some recommendations have 

been suggested. 
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Chapter 2. Related Literature and Theoretical Perspective 

This chapter introduces some key concepts and theories related to risk-based inspection based on 

current industrial practice. 

2.1 Concept of risk analysis  

It is essential to make a difference between risk definition and describing the risk. Different 

researchers have present various definitions for risk.  When we speak about the risk, something 

threatens the critical values (i.e., human life, environment). Usually, people use the word risk in a 

negative sense. But the point is that we do not know the consequences so, we do not classify the 

consequences as positive or negative. Therefore, the risk may consider an opportunity. This thesis 

generally defines risk as: “the consequences (C) of the activity (A) and associated uncertainties 

(U).” (Aven, 2020). 

Risk= (A, C, U) or briefly (C, U)  

The same as the risk definition, there are different methods to describe risk and measure its 

potential. For instance, consider initiating event A as gas leakage; As it is clear, some other 

concepts and elements are relevant to the risk of an event (A) like barriers, risk sources, safety, 

hazard, and vulnerability. Therefore, risk description needs to provide understanding about these 

concepts as well. Consequently, this thesis describes risk generally as: “The triplet (C’, Q, K), 

where C’ is some specified consequences, Q a measure of uncertainty associated with C’ (typically 

probability), and K the background knowledge that supports C’ and Q (which includes a judgment 

of the strength of this knowledge)” (Aven, 2020). 

Risk description = (C’, Q, K) 

To describe risk as above provides the possibility of developing other concepts for risk assessment. 

For instance, we can extend the definition of risk with the concepts of vulnerability and threat as: 

Risk = (A, U, C) = (A, U) + (C, U|A)  

 (A, U) present hazard and associated uncertainties, and (C, U|A) present vulnerability. That means 

vulnerability is consequences conditional on the occurrence of event A.  



Application of Bayesian Risk Assessment in the EX-Risk-Based Inspection 
 
 

8 
 

And Risk description = (C’, Q, K) = (A’, Q, K) + (C’, Q, K|A’).  

Where risk is described as the combination of the uncertainty associated with the hazard and the 

vulnerability given the occurrence of the specific event A’ (Aven, 2020). 

Regardless of how risk is defined, the standard features of risk in all definitions are consequence 

C and uncertainty (possibility) U because of event A (Aven, 2020). Therefore, the risk analysis 

first needs to identify the relevant initiating events (A) and then develop the causal and 

consequence picture to determine where critical values are at stake. Risk analysis aims to provide 

an informative risk picture by describing risk. Figure 2.1 illustrates an example of a simple bowtie 

diagram, providing the main blocks of the risk picture (Aven, 2015). 

 

Figure 2.1: An example of bowtie diagram (based on Aven, 2008). 

The left side of the bowtie describes the causal picture that may cause event A and introduces 

barriers to prevent event A. It is common to use the Fault Tree Analysis (FTA) for this part. The 

right side illustrates the possible consequences of A and mitigation measures, where The Event 

Tree Analysis (ETA) is the most common method (Aven, 2015).  

It is crucial to make a difference between the term “risk analysis process” and risk assessment. The 

risk picture, which is established by risk analysis, provides a basis for comparing different 

alternatives and solutions. Risk analysis supports decision-making to provide input for risk 

evaluation. Then combination of risk analysis and risk evaluation navigates the basis for risk 

assessment (Aven, 2015). The risk analysis process includes three main phases: planning, risk 

assessment, and risk treatment. The risk analysis process covers principles and fundamental 
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concepts for risk assessment, risk perception, risk communication, and risk management to solve 

risk issues (Aven, 2020). 

Nowadays, managing risk against health, safety, and environment (HSE) is one of the essential 

subjects in the oil and gas industry. The main object of HSE is to provide a safe workplace where 

there is minimum life cycle cost. Therefore, risk analysis has become growingly recognized as an 

effective tool for this matter (Bai & Jin, 2015). 

Risk management includes all measures and activities to manage risk. Risk management tries to 

balance development and protection. Various risk management strategies (i.e., risk-informed, 

cautionary, resilience, etc.) are used for this matter. One of the most common strategies in the 

petroleum industry is the risk-based strategy based on codes and standards (Aven, 2020).  

Figure 2.2: ISO 31000 risk management process 

Source: Iso 3100 

In most cases, the risk management process divided into several steps. Figure 2.2 illustrates ISO 

31000 risk management process. 

2.2. Risk-based inspection 

In the oil and gas industry, many operating expenses assigns to the cost of inspection and 

maintenance. Therefore, an optimized inspection strategy can reduce the cost of inspection and 

maintenance when the system's integrity does not change.  
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Risk-based inspection is a precious tool to design and optimize an inspection strategy, which uses 

risk assessment to determine priorities of inspection activities based on the historical data, 

analytical methods, and experts' judgment (Bai et al., 2014). 

RBI considers the consequences and probability of failure from specific degradation mechanisms 

then develop an inspection strategy that will effectively reduce the associated risk of loss. However, 

RBI is still a developing approach. Various RBI methodologies are available, and each of them has 

its advantages and disadvantages (Bai et al., 2014). 

As illustrated in figure 2.3, a risk-based inspection process follows four steps: system definition, 

quantitative risk assessment, risk analysis application, and development of inspection strategy (Bai 

& Jin, 2015).  

Figure 2.3. Risk-based inspection process (based on Bai & Jin, 2015). 
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The RBI's process starts with definition of the system, define a risk, and identify acceptance criteria 

(Bai & Jin, 2015). The system's detailed study includes a general description of the system’s 

structure and operation, the functional relationship between the elements of the system, and any 

other system constraints. Therefore first, the relevant failure modes should be recognized. By 

identification of the failure modes, the risk of failure could be assessed by estimating the probability 

and consequence of the failure modes based on the acceptable level. Then the inspection and 

measures could be used to ensure the level of risk would not dominate the level of acceptance 

criteria. In the RBI process, risk acceptance criteria should be established first to compare in risk 

analysis (Bai et al., 2014). 

RBI defines risk as to the product of the probability of failure (PoF) and the consequence of failure 

(CoF): Risk= PoF x CoF. Risk matrices could calculate the result for the components and provide 

the risk picture (Bai et al., 2014).  

As a result, risk assessment is a vital part of the RBI process (Bai & Jin, 2015). According to Aven 

(2020), risk assessment is the systematic process to identify risk sources, threats, hazards, and 

opportunities; understanding how these can occur, what their consequences can be; representing 

and expressing uncertainties and risk and determine the significance of the risk using relevant 

criteria. The assessments help us identify what might go wrong, why and how it might go wrong, 

the consequences, and how bad they are. Risk assessment is in many ways a conventional approach, 

with suitable methods and models for responding to such questions and issues, founded to a large 

extent on probabilistic and statistical thinking and tools. Probability theory and other frameworks 

represent, model, and treat variation and uncertainties; statistics and Bayesian analysis provide 

essential risk assessment tools. 

Analysis of the initiating events and identify the possible causes for them provide the best basis to 

recognizing measures that may prevent undesirable consequences. POF and COF can be estimated 

both qualitatively and quantitatively. The most common methods are (Bai & Jin, 2015):  

• Historical data  

• Fault tree analysis  
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• Event tree analysis  

• FMEA  

• Human reliability analysis  

However, one of the popular methods to analyze the failure causes of engineering systems and 

safety-critical systems is fault tree analysis and could be used both qualitative and quantitative. 

Figure 2.4 shows an example for the FT. 

Figure 2.4: FT graphical model example. Provided by this study. 

FTA is a top/down approach and first identifies the expected undesired event of the system as a top 

event; then, the tree diagram is refined layer by layer from leading events to causes until the primary 

cause of the system failure is reached. Events in an FTA diagram are statistically independent, and 

PoF for each event is based on the distribution of the random variable for the event, X1= {U1, U2, 

U3 … Un} (Bobbio et al, 2001). 

Relationships between events and causes represent through logical gates, and these logical gates 

could be shown by different symbols, as is shown in figure 2.5 (Casal, 2017). 
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Figure 2.5: Most common symbols used in fault trees (Casal, 2017). 

Event trees (ET) is the most common method to analyze the consequences of each accident scenario 

and estimate their likelihood. Figure 2.6 illustrates an example for ET (Casal, 2017). 

 

Figure 2.6: The structure of the event tree (Casal, 2017). 

The consequence sequence is concerning the occurrence or nonoccurrence of the intermediate 

events. Therefore, an ET starts with the initiating event and then, the sequence's progress according 

to a binary (success/failure) mode (Casal, 2017). In RBI usually, consequences are divided into 

three segmentation of safety, economic, and environmental (Bai & Jin, 2015). 
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As mentioned earlier, the risk is defined as R= f (C, U). In RBI, it is common to use probabilistic 

risk analysis (PRA) to calculate PoF and CoF. Bayesian models are often applied to reliability 

updating for probability-based inspection planning. Therefore, according to the RBI perspective, 

R=f (Pf, C), where Pf is the failure probability; C is the consequence of the failure. A more general 

expression of the risk for practical calculation is given by R=∑ (Pfi. Ci). The risk-based inspection 

can be planned by minimizing the risk: min{R} (Bai & Jin, 2015). 

The risk picture could be provided by a matrix of CoF and PoF categories. Usually, a 5 x 5 risk 

matrix are used as shown in figure 2.7 (Bai et al, 2014). 

Figure 2.7: Example of RBI risk matrix (Bai et al, 2014). 

The vertical axis presents PoF, and CoF is indicated on the horizontal axis. In the matrix table, the 

risk has three levels: low risk (usually is shown with green color), medium risk (usually is yellow), 

and high risk (red color), and the risk increases from the low level at the left-bottom corner to the 

high level at the right-top corner. Usually, low and medium risks could be acceptable based on the 

acceptance criteria. High risk is unacceptable, and action must be taken to reduce the probability, 

consequence, or both to ensure that risk lies within the acceptable region (Bai et al, 2014). 

Therefore, the risk acceptance criterion defines the overall risk level. The criteria are a reference 

for evaluating the need for risk-reducing measures, and therefore need to be defined before 
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initiating the risk analysis. Additionally, the risk acceptance criteria must reflect the safety 

objectives and the distinctive characteristics of the activity. There are different methods for 

identifying acceptance criteria (Bai et al., 2014): 

-  High-level criteria for quantitative studies  

- Risk matrices and the ALARP principle  

- Risk comparison criteria 

The ALARP (“as low as reasonably practicable”) principle is sometimes used in the oil and gas 

industry (figure 2.8). The use of the ALARP principle may be interpreted as satisfying a 

requirement to keep the risk level “as low as possible” provided that the ALARP evaluations are 

extensively documented (Aven, 2020). 

 

Figure 2.8: The AlARP triangle (Bai & Jin, 2015) 

Between “lower tolerable limit” and “tolerable upper limit,” the risk is tolerable when risk 

reduction is impracticable, or the cost for reducing the risk is grossly disproportionate to the 

improvement gained (Bai & Jin, 2015). 
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2.3 Bayesian risk assessment 

Today, the Bayesian risk assessment method is employed in various domains for many different 

stochastic modeling situations. The basis of many traditional risk analyses, especially in the 

engineering field, has been based on probabilistic risk analysis (PRA).  As mentioned earlier, 

engineering systems usually use deterministic models such as ETA and FT and logically relate 

low-level events to the higher-level event. The occurrence of initiating events and system failures 

in the fault trees and event trees is modeled probabilistically. The associated probabilistic models 

contain one or more parameters whose values are known only with uncertainty (Kelly & Smith, 

2011). Figure 2.9 shows the structure of risk assessment according to a classic risk analysis 

approach. 

 

Figure 2.9: Structure of risk assessment according to a classic risk analysis approach (provided by this study based 

on Kelly & smith, 2011). 

The classical risk analysis approach with uncertainty assessment allows uncertainty in the 

parameters to be expressed as subjective probability distributions to quantify uncertainty. 

Probability is perceived as a measure of our belief in the outcome of the experiment. It measures 

an uncertainty about future events and effects seen by an analysis group or an analyst. The Bayesian 

approach has given background information and knowledge, with probability as a subjective 

measure of uncertainty for predicting the future. Bayesian methods to estimate parameters with 

associated uncertainty use all available information, leading to informed decisions based upon the 

applicable information at hand (Kelly & Smith, 2011). 
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Figure 2.10 shows the structure of risk assessment according to a Bayesian risk analysis approach. 

 

Figure 2.10: Structure of risk assessment according to a Bayesian risk analysis approach (provided by this study 

based on Kelly & smith, 2011). 

The Bayesian risk analysis approach focuses on the system's future performance and certain 

variables that reflect system Y's performance. Based on the analyst's understanding of the world, 

one or more models are developed related to Y to X's general performance goal. The analyst then 

assesses X. Using a probability calculation, the uncertainty assessment of X, together with model 

f, will give the result of the analysis. This will be the probability distribution of Y, which can be 

deduced from a prediction of y. The critical difference and critical point of the Bayesian method 

are about uncertainty. Uncertainty is now a significant risk analysis component. But traditional risk 

analysis does not care about this vital factor. The Bayesian method could be used to estimate risk 

distribution, and it could be used as a tool to select or parameterize input distributions for a risk 

model (Kelly & Smith, 2011). 

According to Kelly & Smith (2011), some advantages of The Bayesian methods could be as follow: 

- By redefining probability as a subjective quantity rather than a measure of limiting 

frequencies, Bayesians can compute “credibility intervals” to characterize the uncertainty 

about parameter estimates. 

- It is excellent for visualization of problem domains/risk pictures (causal interactions, risk 

drivers, and barriers) 
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- It supports constructive discussions on risk. 

- It is a systematic approach for combining knowledge from different sources (Historical data 

and expert input, Knowledge from different experts) 

- It easily updates with new knowledge. 

- It is excellent for modeling dependencies. 

- It allows peeking at the data. 

- It is possible to guarantee that decisions are sensible in that they meet the axioms of 

coherent decision theory by expressing all uncertainties with probabilities and employing 

the Bayesian approach. 

Bayes’ Theorem provides the mathematical means of combining information and data to update a 

prior state of knowledge in the context of a probabilistic model. This theorem modifies a prior 

probability, yielding a posterior probability, via the expression (Kelly & Smith, 2011):  

P(H|D) = P(H) 

- P(H|D) Posterior distribution, which is conditional upon the data D that is known related 

to the hypothesis H. 

- P(H) Prior distribution, from knowledge of the hypothesis H that is independent of data 

D. 

- P(D|H) Likelihood, or aleatory model, representing the process or mechanism that 

provides data D. 

- P(D) Marginal distribution, which serves as a normalization constant. 

One of the Bayesian risk assessment approaches that have received more attention in the past few 

years is The Bayesian Network (BN).  Bayesian networks (figure 2.11) are acyclic directed graphs 

in which nodes represent random variables and arcs demonstrate the causal relationship between 

two variables (Abbasi, 2016). 

P(D|H) 

P(D) 
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Figure 2.11: The graphical example of the Bayesian network (the figure is provided by this study). 

Every node could come from some parent nodes and present some children nodes. In BN nodes are 

conditional dependent on each other. This feature is of the important advantages of BN because 

provides the possibility for cause-effect analysis. Nodes without any parents can be considered root 

nodes, and marginal prior probabilities are assigned to root nodes (Bian, 2021). 

Usually, random variables for each node in a BN, Z= {X1, X2 ... Xn}, are discrete; however, it is 

possible to formalize some form of continuous random variables as well. The arrows between the 

two nodes indicate causal probabilistic between them. So, each node has a Conditional Probability 

Table (CPT) that contain all conditional probabilities of all combination of values of the node and 

parent nodes. The number of combinations for n variables could be 2n. As a result, a BN represents 

the joint distribution of variables Z= {X1, X2 ... Xn} and P(Z) by the following formula (Bobbio, 

2001):  

 

By achieved new knowledge such as new data, new information, or expert judgment in the 

operational life cycle of a process, which is called evidence (M), the probability P(Z) could be 

update based on Bayes theorem (Bobbio, 2001): 
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Chapter 3. Methodology 

This chapter aims to introduce the research methodology for this semi-qualitative study regarding 

developing and managing an inspection program for Ex electrical equipment ignition risk in 

support of IEC 60079-17 and a risk-based inspection strategy.  

3.1. Research strategy and design 

This study used a mix- method approach, based on both quantitative and qualitative approach data 

gathering. Quantitative vs. qualitative, descriptive vs. analytical, and conceptual vs. empirical are 

only examples of different research methods, which can be used in risk analysis. Therefore, 

choosing the proper methodology is very important for the success of RBI.  Qualitative, 

quantitative, and semiquantitative methods are three different approaches that are commonly used 

in the RBI process (Bai et al. 2014). 

A qualitative method usually uses an engineering judgment-based approach for risk assessment. In 

this approach, the failure probability is based on qualitative rankings of PoF and CoF. Therefore, 

the results present a rough estimation because of the consideration of few essential data. In a 

qualitative method, analysts do not calculate a numerical value, using descriptive ranking such as 

low, medium, or high.  Quickly assessment process with a low initial cost, no many requirements 

for detailed information, and accessible presentation and understanding results can be named as 

advantages for RBI qualitative method (Bai et al. 2014).  

Since the 1970s, Quantitative Risk Assessment (QRA) has been started in the nuclear industry as 

the basis for supporting risk-related decisions. Quantitative methods are model-based approaches. 

QRA calculated the risk by probability tools and expresses metrics for PoF and Cof based on 

computing probabilities for the events, scenarios, and related outcomes (Bai et al. 2014). 

Quantitative risk assessment required more data, so a much more comprehensive database presents 

more reliability where the PoF value can be evaluated by structural reliability and well-published 

numerical consequence modeling support CoF value. For instance, PLL (Potential Loss of Lives) 

expresses the expected number of fatalities in terms of indices for an individual risk, and the 

expected number of accidents can be presented by FAR (Fatal Accident Rate) and f-n curves (Aven, 

2020). 
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As mentioned in section 2.1, this study describes risk as specified consequences with associated 

uncertainty (typically probability) and the background knowledge that supports consequences and 

uncertainty. It is essential to consider that QRA is based on some knowledge, which could be more 

or less strong and also wrong. Knowledge is not objective; it is inter-subjective among experts. The 

main aim of using different research methodologies is to provide knowledge by the most justified 

representation. How can be represented uncertainties is the crucial point and most important issue 

in risk analysis. Experiments, case studies, questionnaires, interviews, simulation, various 

statistical methods, etc., can be used as a tool for this matter, and any tool has limitations and should 

be adopted. In risk analysis, the metrics' knowledge also needs to be considered and explain what 

probability's results mean; therefore, risk cannot be characterized only by numbers (Aven, 2020).  

As a result, choosing a purely quantitative or qualitative approach brings challenges to representing 

and treating all types of risks and uncertainties. Semiquantitative methods use more information 

and calculations to solve this problem, and results can be more accurate (Bai et al. 2014). Therefore, 

this thesis used the semiquantitative approaches, which are widely used in RBI. Figure 3.1 

illustrates the main steps of this thesis. 

 

Figure 3.1. The research structure (provided by this study). 
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After the field of research is identified and research questions have been developed, relevant 

theories defined which type of research could be more appropriate. Then, all available and relevant 

data have been collected based on the research design. Data have been sorted and classified. The 

technique for transforming available data to the BN identified and appropriate software has been 

chosen. Data have been analyzed and transfer to a primary BN. Then primary BN has been updated 

based on expert knowledge and historical data. RBI strategies have been selected, then inspection 

strategy applied by BN and conclusion have been made. 

3.2 Preliminary data collection  

In addition to relevant scientific literature and articles, this study used several documents, which 

are present in the table 3.1. 

 

Data Topic Edition

IEC 60079-17
Explosive atmospheres- part 17: Electrical installation 

inspection and maintenance
IEC 60079 - 17: 2013

ATEX Directive 

guideline

The directive for equipment for potentially explosive 

atmospheres defines the essential health and safety 

requirement and conformity assessment procedures to be 

applied before products are placed on the EU market.

ATEX Directive 

2014/34/EU

NORSOK Z-013 Risk and emergency preparedness analysis NORSOK Z-013: 2010

ISO 31010 Risk management - Risk assessment techniques IEC 31010: 2019

ISO 2859-1

Sampling procedures for inspection by attributes- part 1: 

sampling schemes indexed by acceptance quality limit 

(AQL) for lot-by-lot inspection

ISO 2859-1: 1999

IP Research 

Report

Ignition Probability Review, Model Development and 

Look-up Correlations
January 1, 2006

EI Guideline
Guidelines for managing inspection of Ex electrical 

equipment ignition risk in support of IEC 60079-17.

First edition, October 

2008

GeNIe Software for modeling a Bayesian Network.
Version 3.0.R2, Built 

on 11/5/2020

Inspectio The platform for registration the inspection data

Tabel 3.1: Relevant documents
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IEC 60079-17 

The IEC 60079 series of international standards specifies the general requirements for designing 

Ex electrical equipment, and part 17 of this document includes information on its maintenance and 

inspection.  

According to IEC 60079-17:2013, Ex equipment should be maintained based on its functional 

requirements, and inspection ensures that equipment continues to comply with its original Ex 

certification requirements. This document divided inspection into four different types: initial 

inspection, periodic inspection, sample inspection, continuous supervision, and visual, close, and 

detailed can be different grads of inspection. 

ATEX Directive  

ATEX stands for ATmosphere EXplosive; this directive defines the workplace's essential health 

and safety requirements and equipment used in an explosive atmosphere. ATEX directive 

2014/34/EU, used in this thesis, replaced the previous ATEX Directive 94/9/EC, which was 

applicable between 1 July 2013 and 19 April 2016. The Guidelines are used in this thesis in 

conjunction with the directive itself (European, 2021). 

Two relevant ATEX documents for this thesis are ATEX 100a and ATEX 137. ATEX 100a 

includes “approximation of the Laws of Member States concerning Equipment and Protective 

Systems Intended for Use in Potentially Explosive Atmospheres,” which is known as The ATEX 

'Equipment Directive'; And ATEX 137 presents “Directive on the Minimum Requirements for 

Improving the Health and Safety of Workers Potentially at Risk from Explosive Atmospheres” and 

is known as The ATEX 'Workplace Directive'. 

NORSOK Z-013 

NORSOK standards are developed by Standards Norway and supported by OLF (The Norwegian 

Oil Industry Association) in the line of adequate safety, value adding and cost effectiveness for 

petroleum industry developments and operations. NORSOK Z-013 has covers the emergency 

preparedness planning in the Norwegian offshore oil & gas industry.  
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The aim of this standard is to describe how to plan for emergency response and establish 

requirements for consequence-reducing. NORSOK Z-013 presents requirements for effective 

planning and executive of risk and (or) emergency preparedness assessment in contribution with 

other international standards and industry guidelines to meet the NORSOK goals. 

ISO 31010 

Another relevant standard of The International Electrotechnical Commission (IEC) used in this 

study is IEC 31010:2019.   

International Standard IEC 31010 has been prepared by The International Organization for 

Standardization and The International Electrotechnical Commission (IEC). It presents guidance on 

selecting and applying techniques for assessing risk to help improve the way uncertainty.  

This document uses ISO 31000 risk assessment steps to identify, analyze, and evaluate risk, and it 

focuses on understanding uncertainty and its effects. The first edition was published in 2009. 

However, this study used the second edition, which cancels and replaces the first edition. 

ISO 2859-1 

ISO 2859-1 specifies sampling procedures for inspection by attributes where sampling is indexed 

by the acceptance quality limit (AQL). Although this standard has been developed for 

manufacturing applications, IEC 60079-17 guideline is provided suitable adaptations of it to the 

inspection of Ex electrical equipment. 

IP Research Report 

IP research report provides a guideline for the probability of ignition of flammable releases from 

onshore and offshore installations for quantitative risk analysis. This document reviewed current 

data in the petroleum industry (such as Cox et al., HSE OSD research, E&P forum, Ws Atkins, 

OIR12, etc.) and developed an ignition probability model for assigning ignition probabilities in 

quantitative risk analysis. In addition, it formed a superficial basis and guidance to assist 

practitioners in assigning ignition probabilities to generic scenarios. Energy Institute publishes this 

document. 
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EI Guideline 

Guidelines for managing inspection of Ex electrical equipment ignition risk in support of IEC 

60079-17 are another document from the Energy Institute used in this study. This document 

presents the methodology for EX inspection based on the sampling plan. 

GeNIe academic version 3.0 

This software was developed by BayesFusion LLC in 2015 and acquired a license from the 

University of Pittsburgh. This company has three software as GeNIe and SMILE Engine for 

quantitative BN and QGeNIe for qualitative BN. One can download the free academic version of 

GeNIe 3.0 from the company website through the link https://www.bayesfusion.com.  

GeNIe has been written for the Windows operating systems, and the complete installation of the 

software requires less than 30 MB of disk space. Still, it is possible to use it on a Mac with Boot 

Camp. A helpful user manual for software is available on the company website. By GeNIe 3.0 

academic version could create Clemen Models, Discrete Bayesian Networks, Dynamic Bayesian 

Networks, Hybrid Bayesian Networks, and Influence Diagrams.  

This software consists of different useful tools that allow the user to expand a BN quickly and 

avoid calculate complex functions manually. It could be possible to reduce the number of variables 

that are not dependent on the BN by several tools like Noisy Max, Noisy Add, etc. Therefore, the 

result of the analysis could be based on the correct value for parameters. It could be possible to 

reduce the number of variables that are not dependent on the network by several tools like Noisy 

Max, Noisy Add, etc.  

For more information about the software and its functionality, please peruse the user manual.  

Inspectio Platform 

Modeling an effective EX RBI program requires specific data such as hazardous area classification, 

protection type, environmental conditions, equipment age, etc. Therefore, the recorded data are 

essential for EX maintenance and RBI strategy. These initial data, including historical information 

on installed Ex electrical equipment on the Rowan Viking rig, are provided by the Inspectio 

https://www.bayesfusion.com/
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platform. IKM Elektor As has provided access to Inspectio platform for this study. Inspectio is a 

platform that is comfortable with web and mobile technologies as well. Figure 3.2 shows the 

Inspectio platform dashboard. 

  

Figure 3.2: Inspectio platform dashboard (Provided by Inspectio software) 

In this platform, companies can record their database for digital inspection in the hazardous area 

and offshore industry (inspection.no). EX equipment can be registered in Inspection based on 

their tag number and recorded all relevant documents and historical inspection reports. One can 

provide information about all equipment for the project in an excel sheet and individual reports 

for concerned equipment based on its tag number on a PDF file. 

Because of the enormous size of the excel sheet report, figure 3.3 shows only a part of the excel 

report. For instance, consider row 4488 the "EMERGENCY FLUORESCENT LIGHT." Column 

B shows ID and column C sequence of tag number. The date of creation can be found in column 

D and the Ex-zone in column AG. As figure 3.3 shows, one can summarize all relevant information 

by following columns of the excel sheet. 

When requires more consideration and detailed information of a particular piece of equipment, one 

can use tag numbers in the search bar and obtain recorded data. Annex A illustrates a sample of 

these types of reports. 
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Figure 3.3: Emergency fluorescent light report (provided by Inspectio platform) 

 

3.3 The Bayesian Network Methodology for risk-based inspection 

 

Nowadays, inspection and maintenance have become a strategic concern in many industries to 

protect the public, financial investment, and the environment against the consequences of failures. 

Due to the increase in the variety of physical assets, more complex design, and changes in 
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organizations' responsibilities, inspection and maintenance have considerably changed over the last 

few decades than other management disciplines. Because of the limitation on the maintenance 

resources, the available sources and funds should be spent more efficiently to reduce potential risks 

Abbasi et al. 2016).  

Inspection plays an essential role in detecting potential risks by detecting potential failures. These 

have led to the emergence of a new view to inspection and maintenance approach, known as risk-

based inspection (RBI). The main objective of RBI is to find an appropriate balance between the 

benefits of inspection and the cost of maintenance and inspection. Therefore, RBI strategies 

classify the level of risk of equipment or systems and then reduce the extra expense by reducing 

maintenance for equipment with lower risk (Abbassi et al. 2016). 

According to current inspection strategies, should inspect a nominal percentage of all EX-

equipment per annum. In some cases, it can be more than 50000 items, and in practice, it is not 

possible. Therefore, the cost of inspection increases, but the weight of the risk of ignition for critical 

equipment consider the same as others. However, such approaches do not best target inspection 

resources because different types of EX equipment present various risks based on their 

characteristics (EI, 2008). 

Mapping from Fault Tree Analysis (FTA) to Bayesian Network. 

In 1988, Pearl propounded the Bayesian network, and it has received increasing attention in 

different fields in the past few years because of its strong uncertainty reasoning ability. A BN 

combines probability theory and graph theory and represents a graph with a set of probability tables 

(Bian, 2021). Babio et al. (2001) discussed how can transcend the limitations of FTA by relying 

on the Bayesian network. This section of the thesis used a simple example of failure probability to 

clarify the algorithm for transmission from FTA to BN.  

Figure 3.4: The example figure (Created by this study). 
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Consider an electrical system consists of four components X1, X2, Y1, and Y2, such as figure 3.4. 

The system works when components X1 and X2 and either of the components Y1 or Y2 works. The 

aim is to calculate the probability of failure for the system. Figure 3.5 shows FT for the example. 

Figure 3.5: FT for example (created by this study) 

In the example, FTA defines the probability of failure for the system by: 

P[A ∩ B ∩ (C ∪ D)] = (0.1)(0.1)[1-(0.2)(0.2)]=0.0036 

Converting from FTA to BN consist of two tasks, probability transformation and graphic 

transformation. Figure 3.6 illustrated the mapping algorithm for converting.  

The primary event, intermediate event, and top event of FT convert to the root node, intermediate 

node, and child node for BN. Consider X1 in figure 3.5 X1 represents the status of a binary 

component. Therefore, it could be assigned values X1 = 0 if the component is working and X1 = 1 

if there is a failure. On the other hand, X1 will be inspected at time t, and the probability distribution 

of X1 = 1 = faulty could be considered the prior probability for each basic node. 
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Figure 3.6 algorithm for converting from FT to BN (Bobbio, 2001). 

Transforming logic gates (OR and AND) from FT by CPT into BN could be the main challenge of 

modeling. Consider Figures 3.5, basic events Y1 and Y2 are parents’ nodes for BN, and output 

events X3 is the child node (the same logical relationships are between X1, X2 and X3 with TE).  

The purpose is to use the logic relation between parents’ nodes and assign conditional probability 

tables for children’s nodes. The logic gates represent deterministic causal relationships, where 

Fault=1 and working=0; consequently, all the entries of the corresponding CPT are either 0s or 1s.  

Table 3.2 shows entries CPT assigned to nodes X3 and TE. 
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Table 3.2: Conditional Probability Table (CPT) for the example 

X3 = Y1 OR Y2 TE = X1 AND X2 AND X3 

P(X3=1 ∣ Y1=0, Y2=0) = 0 P(TE=1 ∣ X1=0, X2=0, X3=0) = 0 

P(X3=1 ∣ Y1=1, Y2=0) = 1 P(TE=1 ∣ X1=0, X2=0, X3=1) = 0 

P(X3=1 ∣ Y1=0, Y2=1) = 1 P(TE=1 ∣ X1=0, X2=1, X3=1) = 0 

P(X3=1 ∣ Y1=1, Y2=1) = 1 P(TE=1 ∣ X1=0, X2=1, X3=0) = 0 

  P(TE=1 ∣ X1=1, X2=0, X3=0) = 0 

  P(TE=1 ∣ X1=1, X2=1, X3=0) = 0 

  P(TE=1 ∣ X1=1, X2=0, X3=1) = 0 

  P(TE=1 ∣ X1=1, X2=1, X3=1) = 1 

0 = The System Work        1 = The System Failure 

In many cases, FTA presents implicit gates like figure 3.7. 

 

 

Figure 3.7: Implicit AND gate (Bobbio, 2001). 

Practically an FTA solver uses Boolean functions to tackle the problem. Therefore, BN should 

modify the corresponding CPT based on Boolean functions as follow (Bobbio, 2001): 
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P (TE=1 ∣ X1 = 0, X2 = 0, X3 = 0) = 0 

P (TE=1 ∣ X1 = 1, X2 = 0, X3 = 0) = 0 

P (TE=1 ∣ X1 = 0, X2 = 1, X3 = 0) = 0 

P (TE=1 ∣ X1 = 0, X2 = 0, X3 = 1) = 0 

P (TE=1 ∣ X1 = 1, X2 = 1, X3 = 0) = 1 

P (TE=1 ∣ X1 = 0, X2 = 1, X3 = 1) = 1 

P (TE=1 ∣ X1 = 1, X2 = 0, X3 = 1) = 1 

P (TE=1 ∣ X1 = 1, X2 = 1, X3 = 1) = 1 

In a BN, n variables can present 2n combinations. As is shown in table 3.2, node X3 with two-

parent nodes has 22=4 parameters, and node TE with three parents has 23=8 parameters. Since the 

number of parameters is exponential in the number of parents, and the number of parameters could 

grow exponentially. Please consider a node with 15 parents; then, the number of parameters could 

be 32768 and increase to 1048576 parameters by adding only five new parents. 

On the other hand, a BN represents probability distributions of each variable conditional on other 

variables. Every joint probability distribution over n random variables can be factorized in n! ways. 

Consider a simple BN with four-node A, B, D, and C then the joint probability distribution over 

these four variables can be factorized in 4! =24 ways as follow: 

P (A, B, C, D) = P (A ∣ B, C, D) P (B ∣ C, D) P (C ∣ D) P (D) 

P (A, B, C, D) = P (A ∣ B, C, D) P (B ∣ C, D) P (D ∣ C) P (C) 

P (A, B, C, D) = P (A ∣ B, C, D) P (C ∣ B, D) P (B ∣ D) P (D) 

P (A, B, C, D) = P (A ∣ B, C, D) P (C ∣ B, D) P (D ∣ B) P (B) 
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…. 

P (A, B, C, D) = P (D ∣ A, B, C) P (A ∣ B, C) P (B ∣ C) P (C) 

As a result, an expanded BN by belief updating is computationally complex. The other source that 

the complexity of probabilistic models could stem from is the connectivity of the directed graphs 

modeling the problem structure (Cooper, 1990). Anyway, several efficient software (MSBN, 

GeNIe, HUGIN, etc.) make the expansion of a BN easier and reduce the risk of a mistake on 

computationally complex. As mentioned, this study uses GeNIe 3.0 academic version. 

 

Figure 3.8: The GeNIe graph view window (Created by GeNIe academic version 3.0). 

Figure 3.8 shows the model for example graphically. By double-clicking on the node Y1, the node 

properties window could be opened; then, it is possible to assign the prior distribution values for 

each state in the definition part as follow:  

State 0 = Working = 0.8 

State 1 = Fault = 0.2 

The same task is required for nodes X1, X2, X3, and Y2. The CPT table for node X3 should be 

written as follow: 



Application of Bayesian Risk Assessment in the EX-Risk-Based Inspection 
 
 

34 
 

Table 3.3: The CPT table for X3 

States for parent nodes     States for Child Node 

        Node X3 

Y1   Y2   Working   Fault 

Working   Working   1   0 

Working   Fault   0   1 

Fault   Working   0   1 

Fault   Fault   0   1 

  

 

By assigning the CPT to the child nodes X3 and TE, the result of BN and the values for critical 

parameters are shown in figure 3.9. The result is equal to FTA, and the probability of failure for 

the system is 0.0036. 

 

Figure 3.9: The result of BN (created by GeNIe academic version 3.0) 

Working Fault Working Fault

   Working 1 0 0 0

   Fault 0 1 1 1

   Working 0.64

   Fault 0.36

Working Fault Working Fault Working Fault Working Fault

   Working 1 1 1 1 1 1 1 0

   Fault 0 0 0 0 0 0 0 1

   Working 0.9964

   Fault 0.0036

Marginal probability distribution TE

CPT X3

X2 Working Fault Working Fault

X3

Y2

Marginal probability distribution X3

CPT TE

X1 Working Fault

Y1 Working Fault
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Mapping from Event Tree Analysis (ETA) to Bayesian Network. 

Figure 3.10 shows the algorithm for transmission from ETA to BN (Bearfield & Marsh, 2005). 

 

Figure 3.10: Algorithm from ETA to BN (Bearfield & Marsh, 2005). 

Consider the previous example; the analysis aims to quantify the consequences of failure where 

there is a potential for ignition. The top event on PoF analysis could be considered as the initial 

event on CoF analysis. The initial event may create undesirable events, such as immediate ignition 

and delayed ignition, respectively. The final consequences could be fire, explosion, and no 

consequences, where CoF=C1+C2. Figure 3.11 illustrates the ET. 

 

 

 

Figure 3.11: Example for ET (Created by this study). 
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Figure 3.12 shows the graphic view window on GeNIe after updating new information. This 

software provides two possibilities for a graphic view window. The result can be shown in icon 

shape like figure 3.8 or by bar chart like figure 3.12. 

 

Figure 3.12: The GeNIe graph view window for resultof example (Created by GeNIe academic version 3.0). 

The concept of the consequence node is the same as the concept of the logic gates on FTA and 

express a deterministic causal relationship.  

As mentioned earlier, generally, in risk-based approaches, the risk is a product of the probability 

of failure and consequence of failure. Therefore, these two parameters are the main blocks of risk-

based analysis. Still, the relationship between these two is unclear in most calculations (Bai et al. 

2015). Consider node C in the example as the target node; by selecting sensitivity analysis from 

the network toolbar, the algorithm calculates a complete set of derivatives of the posterior 
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probability distributions over the target nodes over each of the numerical parameters of the 

Bayesian network efficiently. When the product is significant for a parameter p, then a slight 

change in p may lead to a considerable shift in the posteriors of the targets. Highly sensitive 

parameters affect the reasoning results more significantly. 

On the one hand, this feature provides an opportunity for analyzers to identify critical parameters 

and deal with them, and on the other hand, identifies critical events of models. Figure 3.13 

illustrates the sensitivity analysis of the model and informs nodes E1 and TE are vital to the model. 

In the word, PoF and E1 have more effect on CoF than others. 

 

Figure 3.13: Sensitivity analysis (Created by GeNIe academic version 3.0). 
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4.4. Risk Matrix 

POF and CoF results will be introduced in five-level, and then a 5x5 risk matrix will develop based 

on API-580 guideline recommendation. Figure 3.14 illustrates the risk matrix. 

 

Figure 3.14: Risk matrix (Created by this study) 

This study uses the qualitative risk matrix. BN analysis could be transferred to the risk matrix and 

present the risk of ignition in three-level low, medium, and high.  

The vertical axis assigned to the value of POF and could be frequent, probable, occasional, 

unlikely, and extremely unlikely based on the result of the analysis. The horizontal axis identifies 

the level of COF. It could be very low, low, medium, high, and very high. 

4.5 Reliability and Validity 

According to Aven (2020), “the concept of reliability is concerned with the consistency of the 

‘measuring instrument’ (analysts, methods, procedures), whereas validity is concerned with the 

success at ‘measuring’ what one set out to ‘measure’ in the analysis.” Figure 3.15 shows traditional 

illustrations of the concepts of reliability and validity. 

 

Figure 3.15: Traditional illustrations of the concepts of reliability and validity (Aven, 2020). 

Frequent >0.01 5 M5 H10 H15 H20 H25

Probable 0.01-.0.001 4 L4 M8 M12 H16 H20

Occasional 0.001-0.0001 3 L3 M6 M9 M12 H15

Unlikely 0.0001-0.00001 2 L2 L4 L6 M8 H10

Extremely unlikely <0.00001 1 L1 L2 L3 L4 M5

1 2 3 4 5

<0.00001 0.0001-0.00001 0.001-0.0001 0.01-.0.001 >0.01

Very low Low Medium High Very high

Risk-matrix

Pof

CoF
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The circle center presents the actual value and will be achieved when the analysis has repeated 

quantity measurements. The result of research could be achieved reliability when the 

measurements are close to each other and could achieve validity when measurements are close to 

the center. 

Consider P as the frequentist probability that a chosen component in a considerable population of 

ex equipment has a specific failure. By repeated sampling, reliability and validity could be 

obtained. The reputation of the same failure in many observations shows consistency (reliability) 

and accuracy (validity) relative to the actual P. 

This perspective on reliability and validity is based on the traditional statistic theory. Still, it is so 

difficult to obtain these two concepts based on the conventional view in the real world. Consider 

the situation where two different teamwork in the same area to evaluate the risk of equipment. As 

mentioned in the theoretical chapter, the probability of failure these two groups provide is 

conditional based on their knowledge background. Consequently, they could present different P, 

and when their background of knowledge is so far from each other, this value of P could 

significantly differ. 

In reality, when an analysis model provides more place for dealing with uncertainty, it has more 

chance to obtain validity and reliability. One of the advantages of the Bayesian network is this 

characteristic, where it is possible to repeat sampling and provide the traditional concept of validity 

and reliability. On the other hand, it could be updated based on the expert's judgment and provide 

good dealing with uncertainty. 
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Chapter 4. Empirical Data Analysis 

This chapter presents and analyzes data from The Rowan Viking Rig according to standards, 

regulations, and theoretical understanding to provide appropriate answers for research question 1: 

" How to apply a Bayesian Network to estimate the PoF and CoF regarding the EX risk-based 

inspection (EXRBI)?"  

The start point for data analysis is based on the ISO-31000 risk assessment principle. So, this 

chapter contains five steps as follow: 

Figure 4.1: Steps for data analysis (Provided by this study) 

 

4.1. Analysis data to identify fault mechanisms for EX equipment. 

Working with electrical equipment is generally risky and, when they are used in hazardous areas, 

requires a fully alert about designing, installing, and maintaining these systems (Bottrill et al. 

2005). IEC 60079 series provides general requirements Ex equipment (construction, testing, 

inspection, and marking) for explosive atmospheres. The main concern of IEC standards is about 

the risk of ignition, which can be created by EX equipment. IEC 60079-17 defines ignition risk for 

EX equipment as: 

(Probability of flammable atmosphere being present) x (Probability of source of the ignition being 

present) 

Therefore, first needs to identify where there is the possibility of a conducive atmosphere for 

ignition. The area classification could be considered a tool to ensure overall platform safety and 

minimize the risk of loss to life and assets (Bottrill et al. 2005). The concept of hazardous areas in 

this thesis refers to areas with a risk of explosion because possible flammable atmospheres exist, 

such as drilling rigs (offshore or onshore), petrochemical plants, or refineries. Therefore, it is 
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necessary to ensure the electrical equipment installed in a hazardous area could not form a spark 

or hot surface and igniting the flammable atmosphere. According to IEC 79, flammable material is 

"a gas, vapor, liquid, or solid that can react continuously with atmospheric oxygen and may 

therefore sustain fire or explosion when such reaction is initiated by a suitable spark, flame, or hot 

surface." Since the case study of the thesis is an offshore rig, the hazardous materials of concern 

for this study are gas and oil.  

Forasmuch as each installation will differ in some respects, finding a consistent method or standard 

for area classification will not be easy. Therefore, different industries use their accepted industry 

standard ways. Area classification in the offshore industry is based on three situations for hazardous 

areas (EI, 2008): 

• Zone 2 (low risk): secondary grade release, where an explosive atmosphere rarely occurs 

in normal operation or only for a short period. e.g., > 1 000 hours per annum 

• Zone 1 (medium risk): primary grade release, where an explosive atmosphere frequently 

occurs. e.g., 10-1 000 hours per annum. 

• Zone 0 (high risk): continuous grade release, where an explosive atmosphere is 

continuously present or present for long periods (continuous). e.g., 1-10 hours per annum 

According to IEC 60079-17 non-hazardous area is an “Area in which an explosive atmosphere is 

not expected to be present in quantities such as to require special precautions for the construction, 

installation, and use of equipment.” As it is evident, identification source of release and the grade 

of release are two essential elements to establishing the hazardous zone types are the identification 

of the. 

The second factor of ignition risk is the source of ignition. The source of ignition in this study is 

electrical equipment installed in an offshore flammable atmosphere. When electrical equipment 

installing in hazardous areas, the designers should have adequate knowledge of the sources of heat 

generation. Electrical energy could be converted to heat energy by resistance heating, dielectric 

heating, induction heating, leakage current heating, heat from arcing, static electricity heating, and 

heat generated by lighting. Therefore, the ignition sources could ignite electrical equipment in 

hazardous areas through hot surfaces, electrical arcs and sparks, and electrical discharge (Bottrill 

et al. 2005). 
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Generally, electrical equipment for an explosive atmosphere is divided into two categories. The 

group Ⅰ includes electrical equipment for underground industries, and they are not the subject of 

this study. Group Ⅱ contains electrical equipment for surface industries divided into three 

subgroups. Two important factors in this subdivision are MESG value and MIC ratio. MESG stands 

for maximum experiment safe gap, and MIC ratio refers to minimum igniting current ratio. Based 

on these two elements, different subgroups are as follow (Bottrill et al. 2005): 

• ⅡA: MESG > 0.90 mm, and MIC > 0.80  

• ⅡB: 0.90 mm ≥ MESG > 0.50 mm, and 0.80 ≥ MIC > 0.45 

• ⅡC: 0.50 mm ≥ MESG, and 0.45 ≥ MIC. 

Today, there are different approaches to make the equipment safe for use in hazardous areas. They 

are known as EX protection and are introduced by a code which depicting the type of protection. 

Some of these different types of protection based on IEC60079-17 are: 

• flameproof ('d'); 

• increased safety ('e') and  

• non incendive ('n'); 

• intrinsic safety (i,'ia', 'ib'); 

• pressurized apparatus ('p'), and 

• other type of protection (oil-filled ('o'), powder-filled ('q'), encapsulated("m") 

Data from the Inspectio platform present The Rowan Viking Rig electrical equipment according to 

different factors, as shown in figure 4.2. Some of these factors are already have been introduced. 

All equipment has been coded base on the IP rating. The Ingress Protection (IP) Codes define by 

two numbers, such as IP 66. The first number indicates the degree of protection against solids and 

could be between 0= no protection and increase until 6 = complete protection against contact and 

ingress of dust. The second numeral specified the degree of protection against harmful effects due 

to the ingress of liquid or water. It could be between 0 = no protection until 8 = Protection against 

indefinite immersion in water (Bottrill et al. 2005).  
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Figure 4.2: Columns AN, AO, AP, AQ, AR, AS, AT, and AU of report excel sheet from Inspectio platform 

(provided by Inspectio software). 

Moreover, equipment is classified based on the maximum surface temperature. The temperature 

class for equipment must be lower than the ignition temperature, which could be present by the 

release source. These codes could vary in different standards, so table 4.1 illustrates this difference 

worldwide (Bottrill et al. 2005). 

Table 4.1: different temperature classification codes 

IEC/CENELEC Australia Japan (RIIS-TR-79-1) USA (NEC 1984) 

Class 
Maximum Surface 

Temp. (° C) 
Class 

Maximum Surface 

Temp. (° C) 
Class 

Maximum Surface 

Temp. (° C) 

T1 450 G1 360 T1 450 

T2 300 G2 240 T2 300 

T2A 280 

T2B 260 

T2C 230 

T2D 215 

T3 200 G3 160 T3 200 

T3A 180 

T3B 165 

T3C 160 

T4 135 G4 110 T4 135 

T4A 120 

T5 100 G5 80 T5 100 

T6 85 G6 70 T6 85 

Source: Bottrill et al. 2005 

 

Based on historical information from the Inspectio platform, In the Rowan Viking rig, there is 5181 

active EX equipment.  Table 4.2 shows information about EX equipment according to this rig. 

Manufacturer ID-NODrawing NoPosition No:ComplianceEPL Ex Protection ClassGas Group Temperature Class IP Rating

AP14685-EXE-0018.00133 Ex 2G edm IIC T5 67

AP14685-EXE-0018.00112 Ex 2GD e II T4-T6 66

AP14685-EXE-0018.00110 Ex 2 de IIC T6 66

AP14685-EXE-0018.00140 Ex 2G edm IIC T5 67

AP14685-EXE-0018.00142 Ex 2G edm IIC T5 67
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Table 4.2: information about EX equipment on The Rowan Vi-

king Rig. 

  Fault equipment Working equipment Total 

Zone Safe 629 2540 3169 

Zone 2 481 1043 1524 

Zone 1 173 308 481 

Zone 0 4 3 7 

Total 1287 3894 5181 

Source: Inspectio software. 

As shown in table 4.2, there is 1287 fault equipment in this rig. There is a difference between fault 

equipment and failure code. For example, consider the fluorescent light with tag number 8266.15-

E14, which is installed in the safe area. Figure 4.3 illustrates the inspection data for this tag. 

 

Figure 4.3: PDF report for tag number 8266.15-E14 (presented by Inspectio platform) 

There are two faults for this tag; code Z is about EX integrity, and code T1A8 is about safety and 

increases the risk according to this tag. This study divided the failure codes into three categories: 
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• Priority 1 includes faults that require quick action, and corrective action should be taken 

during a week; these faults are more influence the safety and increasing the risk of 

equipment (For example, loose terminations or damage on cable). 

• Priority 2 includes faults where corrective action could take in the medium term. They are 

more related to EX integrity (For example equipment group is not correct). 

• Priority 3 includes some faults that are non-compliance with standards, and corrective 

action could take longer because they do not affect risk (for example, unreadable labels). 

4.2 Development of a Bayesian network for EX equipment 
 

As mentioned in the previous section, the main risk according to EX equipment is their potential 

for ignition, which is influenced by two factors, flammable atmosphere, and source of ignition.  

IEC-60079, ATEX directive, or other relevant standards and guidelines use qualitative approaches 

to identify the explosive atmosphere based on the different zones mentioned in section 4.1. The 

Rowan Viking Rig data are based on these qualitative approaches where equipment is placed in 

four zones: safe zone, zone 2, zone 1, and zone0. These qualitative approaches are not appropriate 

for a BN because it requires assigning a value for this parameter, indicating the probability of a 

flammable atmosphere. Still, data and practical models are not available to give suitable values for 

this parameter in QRA. One of the most reliable references in this regard is the IP research report. 

Therefore, this study assigned value for the release source based on the IP research report, as shown 

in Table 4.3. 

 

In modern offshore platforms, zone classification is based on other factors such as proper process 

equipment, special ventilation arrangements, etc. Still, in abnormal operations, an explosive 

atmosphere may be present in designated non-hazardous areas; For instance, offshore 

4.3:Ignition probability for source of release

Source: (IP research report,  2006).
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accommodations have emergency lighting that would be expected to operate in abnormal 

operations. The term ‘abnormal’ is not intended to mean ‘unperfect.’ It does mean ‘unactual’ or 

‘unreal’ applied to the conditions, as they exist in any given offshore platform (Geoffrey 

Bottrill,2005). The EI guideline (2008) suggests considering non-hazardous areas as Zone 2 areas 

to inspect Ex electrical equipment in offshore installations. Therefore, this study considers zone 

safe as zone2 where the release rate category follows minor (<1kg/s) in abnormal operation, Zone2 

as zone1 where the release rate category follows major (1-50 kg/s) in abnormal operation, and 

zone0 & zone 1 as zone0 where the release rate category follows massive (>50 kg/s) in abnormal 

operation. 

The sources of ignition for this study are EX equipment installed on the Rowan Viking Rig. Figures 

4.4 and 4.5 shows the failure scenarios of this thesis. 

 

Figure 4.4: Fault tree model for the Rowan Viking rig concerning the probability of ignition (created by this study). 
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Figure 4.5: Event tree model for the Rowan Viking rig concerning the probability of ignition (created by this study). 

The EX-equipment has been divided into three categories according to their operational 

atmosphere. The possible failure for each zona is based on data analysis from The Rowan Viking 

Rig (Table 4.2 and 4.4). This study considers consequences according to two intermediate events, 

immediate ignition and delayed ignition, and the final consequences could be fire, explosion, or no 

consequences. 

Table 4.4: Data based on failure priority. 

  Zone 2 Zone 1 Zone0 Total  

P1 147 59 35 241  

P2 26 7 2 35  

P3 456 415 140 1011  

Total 629 481 177 1287  

Source: Inspectio report 
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Table 4.5 introduces root nodes and components of BN and their probabilities. 

Table 4.5: components for BN. 

Sym-

bol 
Probability Description 

OZ0 0.08 Probability of oil release in Zone 0 

GZ0 0.3 Probability of gas release in Zone 0 

P1Z0 0.0272 Probability of failure equipment with priority 1 in Zone 0 

P2Z0 0.001554 Probability of failure equipment with priority 2 in Zone 0 

P3Z0 0.1088 Probability of failure equipment with priority 3 in Zone 1 

OZ1 0.03 Probability of oil release in Zone 1 

GZ1 0.07 Probability of gas release in Zone 1 

P1Z1 0.04584 Probability of failure equipment with priority 1 in Zone 1 

P2Z1 0.005439 Probability of failure equipment with priority 2 in Zone 1 

P3Z1 0.3225 Probability of failure equipment with priority 3 in Zone 2 

OZ2 0.01 Probability of oil release in Zone 2 

GZ2 0.01 Probability of gas release in Zone 2 

P1Z2 0.1142 Probability of failure equipment with priority 1 in Zone 2 

P2Z2 0.0202 Probability of failure equipment with priority 2 in Zone 2 

P3Z2 0.3543 Probability of failure equipment with priority 3 in Zone 3 

PFZ0 Logic OR gate Probability of failure equipment in Zone 0 

SRZ0 Logic OR gate Probability of source of release Zone 0 

PFZ1 Logic OR gate Probability of failure equipment in Zone 1 

SRZ1 Logic OR gate Probability of source of release Zone 1 

PFZ2 Logic OR gate Probability of failure equipment in Zone 2 

SRZ2 Logic OR gate Probability of source of release Zone 2 

PZ0 Logic AND gate Probability of ignition Zone 0 

PZ1 Logic AND gate Probability of ignition Zone 1 

PZ2 Logic AND gate Probability of ignition Zone 2 

PE Logic OR gate Probability of ignition  

E1 0.4 Immediate ignition  

E2 0.5 Delayed ignition 

C  Logic gate Consequence node 

 

By converting fault tree and event tree on GeNIe software and assigning values for parameters, the 

primary model for this thesis is shown in figure 4.6.  
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Figure 4.6: Primary model for this thesis 

Two states are identified for basic nodes: the Present, which indicates the probability value, and 

the Absence indicates 1-P. CPT for logic gates are as follow: 

 

Figure 4.7 shows the definition for event nodes. 

 

Figure 4.7: CPT for consequences nodes 

SRZ0 = OZ0 OR GZ0 PFZ0= P1Z0 OR P2Z0 OR P3Z0 PZ0 = SRZ0 OR PFZ0

P(SRZ0=1 ∣ OZ0=0, GZ0=0) = 0 P(FZ0=1 ∣ X1=0, X2=0, X3=0) = 0 P(PZ0=1 ∣ SRZ0=0, PFZ0=0) = 0

P(SRZ0=1 ∣ OZ0=1, GZ0=0) = 1 P(FZ0=1 ∣ X1=0, X2=0, X3=1) = 1 P(PZ0=1 ∣ SRZ0=0, PFZ0=1) = 0

P(SRZ0=1 ∣ OZ0=0, GZ0=1) = 1 P(FZ0=1 ∣ X1=0, X2=1, X3=1) = 1 P(PZ0=1 ∣ SRZ0=1, PFZ0=0) = 0

P(SRZ0=1 ∣ OZ0=1, GZ0=1) = 1 P(FZ0=1 ∣ X1=0, X2=1, X3=0) = 1 P(PZ0=1 ∣ SRZ0=1, PFZ0=1) = 1

P(FZ0=1 ∣ X1=1, X2=0, X3=0) = 1

P(FZ0=1 ∣ X1=1, X2=1, X3=0) = 1

P(FZ0=1 ∣ X1=1, X2=0, X3=1) = 1

P(FZ0=1 ∣ X1=1, X2=1, X3=1) = 1

Table 4.5: CPT for parents nodes

Nodes for gates AND & OR

Present Absent

YES 0.4 0

NO 0.6 1

Present Absent Present Absent

YES 0 0 0.5 0

NO 1 1 0.5 1

YES NO YES NO

Fire 1 1 0 0

Exp 0 0 1 0

NonCo 0 0 0 1

NO

E2

E1

Node E2

NOYES

Node E1

PE

PE

Node C

E1 YES
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Data on the timing of ignition and consequences are not available on the data set of the Rowan 

Viking Rig because there were no such events for this rig. Therefore, in this study is used the IP 

research report for ignition timing and fire explosion probabilities. 

The result of the primary model shows in figure 4.7. 

 

Figure 4.7: The result of primary model analysis. (GeINe academic version 3.0) 

The primary model results provide general knowledge about all EX equipment installed in The 

Rowan Viking Rig. Still, they are not sufficient for presentation on the risk matrix. Therefore, they 

need to be updated based on historical information and experts' judgment to provide appropriate 

values for the risk matrix. The next chapter will discuss how this model could be updated and apply 

in the risk-based inspection. 

  Fire 0.035666106

  EXP 0.026749579

  NonCon 0.93758432

  Present 0.03200002

  Absent 0.96799998

Marginal probability distribution Node C

Marginal probability distribution Node PE
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Chapter 5. Discussion 

The previous chapter presents a Bayesian network for Ex electrical equipment, which indicates the 

probability of ignition because of failure and consequences.  This chapter aims to update the 

primary model and present a risk-based strategy based on the BN result. Figure 5.1 illustrates the 

strategy that is suggested by this thesis. 

 

Figure 5.1: Risk-based inspection Strategy for EX electrical equipment (presented by this study). 

5.1 Updating the BN 

One of the advantages of BN is the possibility of updating the model based on evidence and 

providing a cause-effect analysis. Figure 5.2 illustrates two different results for the consequences 

node. The first figure shows consequences in general situations where the aim is to provide 

knowledge about all EX equipment installed in The Rowan Viking Rig. Consider the case where 

inspection identifies a failure in Zone 1; the objective is to understand the effect of this failure on 

the consequences and its associated risk. Therefore, the probability distributions on the BN need 

to update in light of the empirical evidence. Data will be updated based on this new information by 
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selecting state present as evidence on node PFZ1. The second figure shows the posterior probability 

distribution after updating the network. 

 

Figure 5.2: Result based on primary model and updating (GeINe academic version 3.0) 

In the first case, the probability of ignition is 0.034%, and the likelihood of undesirable 

consequences is a total of 0.064%. By updating BN based on failure on Z1, the probability of 

ignition and CoF have increased respectively to 0.1485% and 0.104%. The sensitivity analysis 

shows (figure 5.3) the probability node and consequence node are influenced by the parent's nodes. 

That means changes in these nodes have more effect on the result of the model. 

 

Figure 5.3: The sensitivity analysis result (GeNIe academic version 3.0) 
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The quantitative analysis of a Bayesian Network has two aspects, predictive and diagnostic. On the 

one hand, the probability of occurrence of any node could be calculated based on the prior 

probabilities of the root nodes and the conditional dependence of each node, which provide a 

predictive view for analysis. On the other hand, modeling of some of the variables to one of their 

permissible values by the evidence provides the computation of the posterior probability of any 

given set of variables, which gives molding a diagnostic view. These two features allow the analyst 

to consider uncertainty on analysis and update the model with new data. For instance, the risk 

scenario in this thesis is divided faults equipment into three categories based on their priority; the 

primary assumption on the model for the logic gates was based on Boolean functions from FT. 

These functions have deterministic relations with values 0 or 1. Therefore, nodes PFZ1,2 and 3 

explain that the failure will occur when P1, P2, and P3 exist. This status expresses with certainty, 

and the model presents the same weight to all of them. But in reality, when P3 exists, the equipment 

works without functionality fault. The BN allows analyses to modify the uncertain relations of the 

logic gates based on expert judgment or historical analysis data.  

This study updated the primary model in two areas. First, nodes PZ0,1, and 2 could be updated 

based on information about the probability of ignition from the IP research report. The second 

could be provided weighting for P1, P2, and P3 based on recommendations from IEC 60079-17 

guidelines. Figure 5.4 illustrates the definition of modifying nodes PFZ1, PFZ2, and PFZ3. 

 

Figure 5.4: Definition of modifying nodes PFZ1, PFZ2, and PFZ3 (GeNIe academic version 3.0). 

Updating the model based on the information could evaluate the risk of failure according to ex 

electrical equipment in the inspection. But before definition about how could use it in practice, it 

is required to identify the inspection strategy and acceptance criteria. An appropriate EX equipment 

risk-based inspection strategy needs to ensure the integrity of Ex equipment throughout its life 

cycle phases, where the inspection approach should cover the objectives of the organization with 

Present Absent Present Absent Present Absent Present Absent

Pressent 1 1 1 0.75 0.5 0.5 0.25 0

Absent 0 0 0 0.25 0.5 0.5 0.75 1

Present Absent

P1Z1 Present Absent

Node PFZ1

P2Z1 Present Absent

P3Z1
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the criteria and principles as well as legislation, regulations and standards at the same time. 

Therefore, a risk-based inspection strategy requires to identify appropriate acceptance criteria to 

support management system to ensure the safe operation, maintenance, and work on Ex electrical 

equipment (EI, 2008). However, IEC 60079-17 provide flexibility for the size of equipment and 

grade of inspection, where the frequency of inspection can reduce by good performance. Therefore, 

this study uses sampling strategy and adjust IEC 60079-17 guideline to introduce suitable risk-

based inspection methodology and provide balance between the cost of inspection and confidence 

in the Ex-integrity of the equipment by ALARP principle. The main goal of using ALARP principle 

as acceptance criteria and sampling strategy is reducing the cost of inspection by reduction on 

inspected equipment where the objectives of risk-based inspection should be meet. The next section 

defines the concept of acceptance criteria. 

5.2 Acceptance Criteria 

The sampling plan basically follows the ISO-2859-1 acceptance sampling system and then adopts 

the IEC 60079-17 and ALARP principles. Therefore, several parameters play an essential role for 

acceptance criteria as ALARP acceptance safety level (ALARP-ASL), rejection number (R), 10 

%probability of acceptance Pa(10%), and 5% probability of rejection Pr(5%).  

Generally, the hypergeometric distribution and the binomial distribution are used for the 

acceptance sampling. When the sample size (n) is small compared to the lot (N), changes in the N 

items are not significant, but the calculation of N! will be so complicated. Therefore, it is helpful 

to use the binomial distribution when n/N<0.15 (EI, 2008): 
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As mentioned earlier, R is the rejection number; therefore, a sample with R-1 faulty equipment will 

be acceptable. For example, if R=10, then the sample could be accepted until nine faulty equipment. 

So, the probability of acceptance sampling with R-1 faulty equipment can be cumulative 

distribution when x=R-1 (EI, 2008): 

 

According to ISO-2859-1, AQL is the acceptable quality level. This study uses the concept of ASL, 

which is defined as an acceptable safety level by the IEC 60079-17 guideline. Same as AQL, the 

concept of ASL indicate the worst tolerable process average and an unacceptable number of faulty 

equipment in the sampling. The IEC guideline has already calculated some standard value for ASL 

as 0,25%; 0,4%; 0,65%; 1%, 1,5%; 2,5%; 4% and 6,5%. Still, it is possible to calculate other values 

by using the formulas which are mentioned above (EI, 2008). 

EX risk-based inspection requires a reasonable balance between the cost of inspection and the 

quality of the lot. IEC 60079-17 guideline uses two parameters pa(10%) and pr(5%) as 

discrimination ratio (pa/pr) to adjust ASL with ALARP principle in EX equipment risk-based 

inspection. Using the sampling for inspection, sometimes the safety level of the lot would not be 

acceptable when the safety level of the sample is acceptable. Pa(10%) indicates 10 percent 

confidence of sampling plan according to the lot and calculates as P(X=R)=0.1. It means the 

probability to accept a lot of N equipment containing R faulty equipment is one in 10 times with 

the sampling plan of n equipment. In other words, it means one in ten times the safety level of the 

sample is acceptable when the safety level of the lot is not acceptable. This value considers the 

quality of the sampling plan (EI, 2008). 

On the other hand, an inspection plan should consider the cost of inspection as well. The parameter 

pr(5%) indicates the criteria for inspection cost. In the inverse with the previous situation, there is 

a possibility for the rejection of the safety level for the sampling plan when the safety level of the 

lot size is acceptable. This situation will charge the cost of new sampling and inspection. Pr(5%) 

defines the safety level of the lot as not acceptable with a 5% probability and calculates it as P(X=R-
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1)=0.05. That means one in twenty times is possible to reject sampling when the quality of safety 

level is acceptable (EI, 2008). 

Selecting lower ASL than the ALARP ASL disproportionately increases the inspection cost; On 

the other hand, selection of a higher ASL than the ALARP ASL reduces inspection quality. Annex 

B identifies cliff-edge effects based on pa(10%)/pr(5%) versus ASL for different lot sizes to 

determine ALARP ASL (EI, 2008).  

Annex B contains sampling tables for various ASLs and the determination of ALARP-ASLs for 

different lot sizes which are provided by EI guideline, and this study use them as acceptance 

criteria. These tables included seven columns as 

• Lot size 

• Global failure rate level 

• Normal inspection 

• Reduced inspection 

• Increased inspection 

• Pa(10%) for normal inspection (%) 

• Pr(5%) for normal inspection (%) 

The concept of global failure level refers to the observed failure rate based on the type of protection. 

According to the EI guideline: “The commonly assumed failure rate of a lot is the mean failure 

rate of a similar lot in a similar location. In the absence of any specific information, a default value 

of level II should be assumed.” 

Also, these tables are based on three categories of inspection reduce, normal and increased. The 

first sampling plan should be based on the normal category.  These categories should not be 

confused with the inspection grade visual, close, and detailed (EI, 2008). 

5.3 Define lots. 

Ex electrical equipment can be different based on protection type, hazardous area, age, and 

environmental conditions. Therefore, lots of equipment should be divided them into the similar 

group based on these factors (EI, 2008).  
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There are different ways to assigning equipment to specific lots. It will be more practical if a lot 

comprises mixed equipment like motors, junction boxes, etc. It can give the advantage to introduce 

a large number of EX equipment in different lots to taking sampling based on acceptance criteria. 

When the lot size is too small, it is likely only one faulty equipment reject sampling because of the 

small value of the rejection criteria. The rejection criterion is determined by R in the acceptance 

criteria. The sample is accepted when the number of faulty equipment is less than R. Another 

advantage can be in the inspection process; when a lot includes different types of equipment, an 

inspection can cover various types of equipment in shutdown time (EI, 2008). 

Deterioration processes and faults such as corrosion, vibration, and inadequate equipment selection 

will always be present to some degree. They may reduce the system's performance beyond what is 

acceptable. Therefore, an EXRBI methodology should identify the failure mechanism for EX 

equipment to improve the continuing management of ignition risk by assuring the continuing 

integrity of Ex electrical equipment. A risk-based inspection gives more weight to high-risk 

equipment applied in the BN model to identify equipment criticality. So, the inspection priority is 

to start inspecting high-risk equipment located in a high-risk area (EI, 2008). 

 

5.4 Applying the BN model in the inspection 
 

This section presents how to apply the BN for inspection using two exampless from the Rowan 

Viking Rig. As mentioned before, the equipment in a lot should be homogeneous in one or more 

characteristics.  

The first Lot includes 839 pieces of equipment from gas group II installed in a safe zone based on 

historical data from the Inspectio platform. According to table C.12 in annex B, the 

ALARP/ASL=1% and sample size will be 80 with three rejection numbers (table C.7 annex B). 

There are two types of sampling progressive and random. This study used random sampling.  

The result shows five faulty equipment in this sampling. The inspection reports are available in 

annex A.  

To evaluate the risk of ignition for this faulty equipment, the nodes P1Z2, P2Z2, and P3Z3 have to 

update.  This task would be done separately for each piece of defective equipment based on the 
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presented failure. Then the result from nodes PE and C could be transferred in the risk matrix to 

show the level of the risk. Figure 5.5 illustrates the outputs from the BN model when node P2Z2 is 

on present. 

 

Figure 5.5: Outputs from the BN model for node P2Z2 the state present as evidence (GeNIe academic version 3.9) 

 

It needs to pay attention When a piece of equipment has more than one failure, so each failure 

priority needs to find its present state on the node simultaneously. For example, in the case of the 

heater trace, both nodes P1Z2 and P3Z2 should be in the present state. 

The result of the analysis has been presented on the next page by table 5.1. 

At the start point, the analysis should identify the ignition risk for each failure. Therefore, findings 

from BN are transferred to the risk matrix, which is presented on section 4.4 figure 3.14. The risk 

matrix shows cell H16 for the heater trace, cell M9 for junction box tag number 8253-C11-5, and 

cell L4 for the rest. In the next step, the result of the risk matrix provides weight for every failure 

code. This weighting is based on EI (2008) recommendation: 

High risk=1 

Medium risk=0.5 

Low risk= 0.25 

Despite the faulty equipment number being five and the reject number was three, the sample is 

acceptable because of the low ignition risk. 

 

 

  Fire 0.002788645

  Present 0.006971612   EXP 0.002091484

  Absent 0.993028388   NonCon 0.995119872

Marginal probability distribution, Node P2Z2 present: Node C

Node PE
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Table5.1: Results of inspection for Lot number 1  

Lot Infor-

mation 

Equipment Fault 

code 

(Note) 

Failure 

priority 

Ignition 

risk 

Number 

of faulty 

equip-

ment 

Tag number  

Zone 2, 

Gas group 

II 

SOLENOID 

S02T1 P3 

Low 1 
NO TAG 

NORGREN 

FOAM 

 

S03T1 P3  

- -  

HEAT 

TRACE 

T1A17 P1 

High 1 8284-JB2401 

 

T1A9 P1  

T1B11 P1  

T1B6a P3  

Junction Box 
T1A11b P2 

Medium 
1 

8253-C11-5 
 

Z P1  

SOLENOID S02T1 P3 Low 1 NO TAG  

Junction Box So2T1 P3 Low 
1 

NO TAG JB2 

WINDSOCK 

 

 

Result:  

Low  0.25 3 0.75  

Medium  0.5 1 0.5  

High  1 1 1  

        Total Faulty equipment  2.25  

        2.25<3 sample is acceptable   

Note: Definition of fault   

S02T1: Equipment Tag is missing (Regular equipment tag either on equipment or cable)  

S03T1: Ex label is missing (Manufacturer label with Ex information)  

T1A9: Lead cable into the HT box is not connected, loose in the box  

T1A11b: Loose nipple, not get tightened against nut due to corrosion  

T1A17: Electrical not connected  

T1B6a: Bonding is missing, not connected to the structure  

T1B11: Cables not in use are not correctly terminated  

Z: There are additional NON-EX integrity faults  

  

 

To make the concept more precise, it could assume the same process for Zone 1. The same lot size 

with the same faulty codes. The result of the analysis could be as follow. The new evidence 

indicates cell H20 for the heater trace, cell H16 for junction box tag number 8253-C11-5, and cell 

M12 for the rest. The result is shown in table 5.2. 
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5.2: Results of inspection for Lot number 2  

Lot Infor-

mation 

Equipment Fault 

code 

(Note) 

Failure 

priority 

Ignition 

risk 

Number 

of faulty 

equip-

ment 

Tag number  

Zone 0, 

Gas group 

II 

SOLENOID 

S02T1 P3 

Medium 1 
NO TAG 

NORGREN 

FOAM 

 

S03T1 P3  

- -  

HEAT 

TRACE 

T1A17 P1 

High 1 8284-JB2401 

 

T1A9 P1  

T1B11 P1  

T1B6a P3  

Junction Box 
T1A11b P2 

High 
1 

8253-C11-5 
 

Z P1  

SOLENOID S02T1 P3 Medium 1 NO TAG  

Junction Box So2T1 P3 Medium 
1 

NO TAG JB2 

WINDSOCK 

 

 

Result :  

Low 0.25 0 0  

Medium 0.5 3 1.5  

High 1 2 2  

        Total Faulty equipment  3.5  

        3.5>3 sample is not acceptable   

Note: Definition of fault   

S02T1: Equipment Tag is missing (Regular equipment tag either on equipment or cable)  

S03T1: Ex label is missing (Manufacturer label with Ex information)  

T1A9: Lead cable into the HT box is not connected, loose in the box  

T1A11b: Loose nipple, not get tightened against nut due to corrosion  

T1A17: Electrical not connected  

T1B6a: Bonding is missing, not connected to the structure  

T1B11: Cables not in use are not correctly terminated  

Z: There are additional NON EX integrity faults  

 

As the result shows, based on the new evidence, the sample is not acceptable. This new sample 

needs remedial action. The critical point is that the BN model has met the RBI principle, which 

required increasing inspection for high-risk equipment to ensure safety level. On the other hand, it 

makes balance in the cost by reducing the inspection for low-risk equipment. 
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Chapter 6. Conclusion and recommendation 
 

Different risk-based inspection approaches have been accepted and developed in the petroleum 

industry in the past few years. These approaches have been used to determine the probability of 

failure and its consequences; then, the result optimizes the inspection intervals. However, there is 

not any integrated approach for RBI. In this research, to minimize the inspection cost, a new risk-

based methodology has been developed by employing the Bayesian Network. Therefore, this study 

started with the most common risk analysis techniques such as fault tree and event tree and then 

tried to present a Bayesian network that can deal better with uncertainty. 

The main objective of the thesis is to apply the result of BN to identification a risk-based strategy 

for ex electrical equipment in the offshore industry. Therefore, data has been collected from the 

rowan Viking rig. Then the BN has been developed based on the data from the case study and other 

relevant standards and regulations. The results of the analysis showed that applying a Bayesian 

network by sampling inspection could meet the RBI requirement. Still, there is some issues 

according to the result. 

 

Figure 6.1: The sensitivity analysis for the end model (GeNIe academic version 3.0) 
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The main challenge for the model was converting qualitative risk zones to appropriate quantitative 

parameters for use in a BN. When the sensitivity analysis has been done for the end model (figure 

6.1), still the target nodes C and PE influence significantly by a basic node of zones. 

On the other hand, the inspection data does not explain how the zones are divided. In the inspection 

data, most of the equipment is installed in the safe zone. Based on the IEC 60079-17 definition, 

there is no chance for an explosive atmosphere in the safe area. Therefore, the risk of ignition does 

not make sense for these areas. In addition, the standards explain clearly that in the offshore 

operation process, it is essential to consider all safe zone as zone 2. 

Consequently, this study suggests more precautionary approach regard to zone classification for 

the inspection data set because the probability of ignition of flammable releases is a critical factor 

in determining the risk of ignition. 

Another challenge for the model was modeling the consequences node. Unfortunately, there is not 

sufficient data for the consequences of ignition, and the current data are sparse. Many risk-based 

techniques convert COP to monetary value. In the lack of systematic data, COF evaluation could 

be more based on analyzer taste and knowledge. The existing approach could not provide an 

integrated view of the COF value.
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 Annex B: ASL and ALARP-ASL Tables 
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