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Implementing an Adaptive Genetic Algorithm in
the Atari Environment

Andreas Nesse

Abstract. This thesis attempts to implement a genetic algorithm for
training agents within the Atari game environments. The training is per-
formed on hardware of a widely available character, and so the results
give an indication of how well these models perform on relatively inexpen-
sive equipment available to many people. The Atari environment Space
Invaders was chosen to train and test the models in. As a baseline, a
Deep Q-Network (DQN) algorithm is implemented within TensorFlow’s
TF-Agents framework. The DQN is a popular model that has inspired
many new algorithms and is often used as a comparison to alternative
approaches. An adaptive genetic algorithm called ACROMUSE was im-
plemented and compared with the performance of the DQN within the
environment. This algorithm adaptively determines crossover rates, mu-
tation rates and tournament selection size. Using measures for diversity
and fitness, two subpopulations are maintained to avoid converging to-
ward a local optimum. Based on the results found here, the algorithm
did not seem to converge or produce high-performing agents, and impor-
tantly performed worse than the DQN approach. The reasons for why
this algorithm fails and why other genetic algorithms have succeeded are
discussed. The large number of weight parameters present in the network
seem to be a barrier to good performance. It is suggested that a parallel
training approach is necessary to reach the number of agents and gen-
erations where a good solution could be found. It is also shown how the
number of frames skipped in the environment had a significant impact
on the performance of the baseline DQN model.
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1 Introduction

As people want to create agents for data processing, image processing, au-
tonomous cars, robotics and the like, there is a need for different algorithms
to train agents to handle the challenges faced in the real world. How does one
go about proposing and testing new models and training regiments?

Having a standard, varied set of tools to test agents on is very useful, and in
the last years, the Atari 2600 library of games has become a popular option. In
particular, the Arcade Learning Environment (ALE)[1], and later toolkits built
on it, has made these environments easily available and usable.

Using these simple video games, which provide a variety of challenges the
agent must adapt to, can be a valuable indication of how well such an agent
could adapt to real-world challenges. The combination of short-term and long-
term goals for the agent to pursue, makes for an interesting way to refine the
already available approaches, and for building all-new algorithms as well.

The Deep Q-Network (DQN)[2][3] approach used as a baseline in this thesis
has inspired many new variations, and have often been used as a comparison for
new methods. This is the reason why the DQN approach is central to this thesis
and is used to test the performance of the genetic algorithm. The genetic algo-
rithm implemented here is called ACROMUSE[4]. It is adaptive, which means
it controls certain hyperparameters depending on how training is progressing
and the fitness of the agents. This, along with its goal of maintaining a diverse
population, is why it was chosen. Although, as always, there are trade-offs, and
new parameters that must be set appropriately beforehand.

1.1 Problem statement

The goal of this thesis can be put as follows:

“Implement and test an ACROMUSE genetic algorithm for use with an Atari
environment. Compare this model with a baseline DQN reinforcement agent
implementation. The training and testing will be performed on hardware of a
widely available nature, to provide an indication of how useful these tools are
when high-performance equipment is lacking.”
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2 Previous Work

Many papers have made use of the Atari 2600 games to test different machine
learning algorithms, due to their complexity and the varying challenges they
pose. A commonly used framework for running these Atari games is the Arcade
Learning Environment (ALE) introduced in the paper ‘The Arcade Learning
Environment: An Evaluation Platform for General Agents’[1]. This is an open-
source framework for using and interacting with Atari 2600 environments, based
on the Stella emulator. Open AI’s Gym toolkit[5][6] is built upon the ALE to
allow easier installation and interaction with the Atari environments. This plat-
form was used in [7]. M. C. Machado, M. G. Bellemare, E. Talvitie, et al. discuss
the recent widespread use of the ALE environment, how stochasticity has been
introduced in different ways, and the need for standardizing evaluation, in their
paper ‘Revisiting the Arcade Learning Environment: Evaluation Protocols and
Open Problems for General Agents’[8]. The short paper [9] presents a case study
evaluating different ways of introducing randomness into the Atari environment,
to prevent agents from simply ‘memorizing’ an action sequence.

Q-Learning is a reinforcement learning method introduced over three decades
ago[10][11] and has been applied to many problems within machine learning. Be-
cause it is impractical to run this full algorithm in more complex environments,
an estimation function is often used. To estimate the Q-function, which is used
to determine actions given a state in some environment, methods may use linear
approximation function, as e.g. [12][1], or non-linear functions, such as a neural
network, in [2][3][13], among others. Experience replay was discussed in [14] and
can speed up training by saving previous experience in a buffer and using them
repeatedly in training. Google’s TensorFlow has a specific toolkit developed for
working with reinforcement learning called TF-Agents[15][16].

Two very influential papers introduced using the Deep Q-Learning Network
(DQN) method for training agents within the Atari environment. The first is
the 2013 paper ‘Playing Atari with Deep Reinforcement Learning’[2]. The DQN
agent collects experience in the environment using an epsilon-greedy policy,
based on a continuously updated Convolutional Neural Network (CNN) called
the Q-network. An experience replay buffer of fixed size is used to continuously
save the most recent experienced transitions. When training, a batch of transi-
tions is sampled from the buffer and used to perform a gradient descent step.
For efficiency, the paper uses frame skipping as well as stacking frames together
before feeding through the network. A target network is periodically updated
with the weights from the main Q-network, and acts to evaluate the actions
taken by the main Q-network. This paper[2] uses seven of the available Atari
games to test and evaluate their model against other previous work and shows
that the proposed agent outperforms these on most games, even outperforming
a human player in some cases. Unfortunately, many of the parameters and the
code used to run the training in this paper is not widely available.

The second paper[3] was published in 2015 by many of the same authors as
[2] in addition to some new participants. The DQN approach is further opti-
mized, and a slightly larger Q-network structure is used. This paper focuses on
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comparing this model to the performance of a professional human tester and
previously proposed reinforcement learning[1] and contingency awareness meth-
ods[12]. This paper extends the experiments to include 49 Atari games. The
agent is shown to outperform both of the previous methods being compared in
most games, and is at or above human level in many of the games. The authors
have made the parameters and code available for review.

Further work has later built on this DQN method such as H. van Hasselt,
A. Guez, and D. Silver describing the Double-DQN model[13], which uses the
continuously updated Q-network in a greedy policy to pick an action for a given
state in the environment, but uses the lagging target network to estimate the
Q-value of this action. This is implemented to deal with the DQN method’s ten-
dency to overestimate the Q-value for a given action. The target network is still
used to evaluate the action taken by the epsilon-greedy policy and is periodically
updated as in DQN. In [17] T. Schaul, J. Quan, I. Antonoglou, et al. introduces
prioritizing to the experience replay. They propose using the TD error found
during a learning step to assign a probability to the transition. The TD error
acts as an estimate of how ‘surprising’ the transition is, and the experience tran-
sitions that deviate the most from the policy’s predicted action have a higher
probability of being sampled to correct this deviation. The papers [18] and [19]
suggest ways to distribute the training in a DQN model. M. Hausknecht and
P. Stone discuss how games requiring a memory larger than the typical stack of
frames, behave like a Partially-Observable Markov Decision Process and propose
adding a Long Short-Term Memory (LSTM) recurrent network in place of the
first convolutional layer in the traditional DQN[3]. They concluded that this was
viable but did not present a significant improvement for most Atari games. An
asynchronous n-step DQN, accumulating rewards and applying a combined gra-
dient after n steps, is introduced in [21] along with the well-known Asynchronous
Advantage Actor-Critic (A3C) algorithm. Many other papers have been written
proposing similar methods either building on the DQN model or other reinforce-
ment learning methods and testing them within the Atari environments[22][23].
This shows how useful the Atari games have been in developing these agents,
and how influential the initial DQN papers[2][3] have been.

Genetic Algorithms (GA) are evolutionary algorithms that roughly mimic
the genetic change seen in a population of organisms in nature. K. De Jong
describes three necessary elements of GAs[24], which include some measure of
an agent’s fitness, a way of creating offspring agents and a method of basing
an offspring’s genes on the parent’s genetic material. Several papers have been
written using evolutionary and genetic algorithms for training agents to perform
in the Atari game environments. F. P. Such, V. Madhavan, E. Conti, et al. in
their paper ‘Deep Neuroevolution: Genetic Algorithms Are a Competitive Al-
ternative for Training Deep Neural Networks for Reinforcement Learning’[25]
apply a genetic algorithm using only simple mutation, a large population size of
1000 agents, elitism and truncated selection. The specific implementation shares
many features with the second DQN paper mentioned earlier[3], such as network
structure. This method produced similar or better results on many of the Atari
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games as compared to the previous methods considered in the paper. They use
a special type of encoding to compress the size of the networks, which allows
for distributed running, but also makes applying more complex forms of genetic
algorithms less straight forward. Because their implementation makes use of
distributed running when evaluating the agents and utilizes the capabilities of
GPUs to speed up forward-passes through the network, they are able to train ca-
pable agents very quickly. The authors claim that this training can be done in ∼4
hours on a modern desktop computer, although it should be mentioned that the
desktop computer described in their paper seems to be of a purpose-built high-
performance specification. Other evolutionary algorithms are also applied, such
as in the paper ‘A Neuroevolution Approach to General Atari Game Playing’[26],
which builds on the earlier paper [27], where several evolutionary algorithms are
applied to evolve agents within the Atari environments. Only the method called
HyperNEAT is deemed appropriate for using the raw pixel input from the game
as input to its network. HyperNEAT is a method proposed in the paper [28]
and uses indirect encoding of an artificial neural network. The indirect encoding
is carried out by small Connective Compositional Pattern-Producing Networks
(CPPNs) which encode the connections in the neural network. These CPPNs
are evolved using the NeuroEvolution of Augmenting Topologies (NEAT) al-
gorithm[29]. Applying this HyperNEAT method to training agents for playing
Atari games[26], M. Hausknecht, J. Lehman, R. Miikkulainen, et al. find it works
well for many games, but that interestingly, different types of algorithms seem
best suited for different types of games. Yet another method is used in the paper
‘Evolution Strategies as a Scalable Alternative to Reinforcement Learning’[7],
where an Evolution Strategies (ES) approach is used in the Atari environments.
Due to its ability to run well in parallel, it can run in a short amount of time
given powerful and plentiful enough hardware, and it produces capable agents
in many of the games when compared to other methods.

A challenge for genetic algorithms, which they share with practically all other
machine learning methods, is choosing the right training hyperparameters. An
option is to tune the hyperparameters by analyzing the algorithm’s performance
using different parameter values and choosing the best parameters from there.
A framework for this is presented in [30]. A different option is to control the
parameters in some other way. A. E. Eiben, R. Hinterding, and Z. Michalewicz
discussed the terminology and the contemporary methods of hyperparameter
control in their 1999 paper [31]. In 2015 an updated paper, ‘Parameter Control in
Evolutionary Algorithms: Trends and Challenges’[32], gives an overview of more
recent innovations in this area. Different forms of control and ways of controlling
parameters such as population size, mutation rate and selection pressure are
discussed. In section V of [32], the authors discuss Control Ensembles, which are
methods that combine several control mechanisms for different parameters at
the same time. Mentioned here, among others, is R. Hinterding, Z. Michalewicz,
and T. C. Peachey’s[33] method for self-adaptation of mutation strength with
an adaptive population size. F. Herrera and M. Lozano[34] propose a method
using two fuzzy logic controllers to maintain a good balance between exploration
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and exploitation. Also described is the ACROMUSE ensemble, discussed in the
following paragraph.

In their paper ‘Maintaining Healthy Population Diversity Using Adaptive
Crossover, Mutation, and Selection’[4], B. McGinley, J. Maher, C. O’Riordan,
et al. introduce the adaptive genetic algorithm which they name ACROMUSE.
The goal of this algorithm is to prevent the agents from converging to a local
optimum, and instead maintain a diverse population of high-performing agents
spread throughout the search space. ACROMUSE uses two measures to achieve
this. The first measure is the Standard Population Diversity (SPD) which is
strictly a measure of the variation in the agents in the population with no regard
to the fitness of the agents. The contribution of an agent to the SPD depends
on its Euclidean distance to the average individual. It is mentioned that several
previous papers, such as [35] and [36], have used similar approaches to ensure
diversity in the population while training with a genetic algorithm. However, a
second measure is proposed to ensure that the agents are not only diverse, but
also high-performing. This is called the Healthy Population Diversity (HPD).
How much an agent contributes to the HPD depends both on its Euclidean
distance to a fitness-weighted average individual, and its own fitness. ACRO-
MUSE effectively maintains two populations, one for exploitation, containing
agents created using crossover and a low mutation rate, and one for exploration,
containing agents created by mutating a single parent. The size of these popula-
tions is determined by the crossover rate. In both cases the parent(s) are chosen
through tournament selection where the HPD contribution of the participating
agents determines which are selected for procreation. Several operators deter-
mine the crossover rate, the mutation rate, and the size of the tournament for
each generation based on the SPD and HPD values. Elitism is also employed to
carry over the best performing agent in each generation. ACROMUSE as imple-
mented in the paper uses a purposefully small population size of 40 agents to
avoid the method becoming too resource intensive. The paper[4] describes that
ACROMUSE outperforms other algorithms in the evaluations performed using
multimodal function optimization benchmarks both with respect to fitness and
diversity.

ACROMUSE was used in [37] in combination and comparison with other
adaptive methods to optimize early building designs, and this paper also suggests
using variable SPD and HPD maximum values. These are set according to the
highest observed values at any point while running the genetic algorithm.
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3 Code Availability

The code is available on GitHub, from:

https://github.com/a-nesse/acromuse_atari

Corrections or additions to the repository and aesthetic changes to the code
might occur, but there is no guarantee that the code will be maintained going
forward. See appendix C for reference to specific commit/code version used for
training.

4 Deep Q-Network Algorithm

The Deep Q-Network (DQN) algorithm is a reinforcement algorithm based on
the Q-learning method[10][11] which selects actions based on the policy formed
by equation (1).

Q∗(s, a) = max
π

E[rt + γrt+1 + γ2rt+2 + · · · |st = s, at = a, π] (1)

This function simply states the policy, π, should select the action with the great-
est potential total reward. The future rewards are discounted using γ, to reduce
the influence of potential rewards far in the future. Since it is not practically
possible to map all states and actions in the Atari environments, this function
is approximated using some sort of function, often linear. DQN uses a neural
network[3] which is a non-linear function. In [3] it is explained how non-linear
functions will generally fail at this task. However, using experience replay with
random sampling, and letting the target network only be updated at regular
intervals, DQN removes the correlation that could cause the neural network to
fail to converge. The convolutional neural network used in DQN is called the
Q-network in the model, where the target network has the same structure.

The DQN model implemented in this thesis follows the structure in [2] and
[3] as closely as is possible using TensorFlow’s TF-Agents toolkit[15][16] and
within the time frame available. With a few exceptions, the parameters used
in [3] is used, since the paper is of a later date and both the parameters and
code are available. The exceptions are the network structure, the epoch length,
target network update frequency, the amount of steps used for evaluation and
the total steps used for training, which follow [2], due to limitations in time
and hardware resources. Because of this, the final DQN implementation will be
compared to [2], to check that it produces similar results. In addition, the size
of the experience replay buffer is reduced and a slightly different loss function is
used. The Q-network structure used in the model is described in section 6 and
follows the structure used in [2].

DQN uses separate training and evaluation environments. They are described
in section 7.1. The training environment is used for collecting experience and the
evaluation environment is strictly used to evaluate the model at the set interval.
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4.1 Differences from previous papers

The DQN model in [3] clips the error term if the element-wise loss falls outside
the range [−1, 1]. The element-wise error used in the loss function takes form as
is shown in equation (2).

xi =

{
(yj −Q(φj , aj , θi))

2 if |xi| ≤ 1

|yj −Q(φj , aj , θi)| if |xi| > 1
(2)

However, the DQN model implemented in this thesis uses the Huber loss[38]
that is implemented in TensorFlow. This gives us the element-wise error used in
the loss function shown in equation (3).

xi =

{
1
2 (yj −Q(φj , aj , θi))

2 if |xi| ≤ δ
δ|yj −Q(φj , aj , θi)| − 1

2δ
2 if |xi| > δ

(3)

δ = 1 is used to line up with [3] using the range [−1, 1]. This loss function is
scaled by 1

2 to make the function differentiable.
The experience buffer had to be limited to a size of the 100 000 last frames,

as opposed to the 1 million used in [2] and [3]. This is due to how TF-Agents
handles saving the experience transitions in memory. With no way of saving each
image frame only once and assembling the stacks when sampling, every frame is
saved in four different stacks. When saving the experience replay buffer to disk,
a copy of the buffer is made, which also requires a large amount of additional
free memory space. For more information on how image frames are stacked, see
section 7.2.

An epoch length of 50 000 training steps is used, which is consistent with [2],
as opposed to [3] where 250 000 steps is used. However, the first paper counts
one training step as the combination of a single experience collecting step and
one gradient descent step. In the second paper, four experience collecting steps
are performed for every gradient descent step, but every step counts towards
the training step total regardless of whether a gradient descent update is per-
formed. This thesis will define one training step as four experience collecting
steps and one gradient descent step. This way, 50 000 gradient descent updates
are performed in each epoch, as is done in [2]. Using four collect steps for each
training step might also help with the smaller experience replay buffer size, by
renewing the experience available for sampling more often. The target update
frequency is set at every 10 000 gradient descent updates or training steps and is
consistent with [2]. The same is true for the total training period, which is set at
100 epochs, equaling 5 million total training steps. Evaluation is carried out in
the way described in [2] using the evaluation environment described in section
7.1.

It is not clearly stated which initialization is used for the Q-network weights
in [3], so here TensorFlow’s VarianceScaling initializer[39] is used with default
parameters. This is similar to the initialization derived in [40], in that it uses a
similar function for the standard deviation of the distribution, given in equation
(4).
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SD =

√
scale

n
(4)

The scale used here is 1.0 and n is the number of nodes in the input layer, as
opposed to [40] which uses 2.0 and where the n varies between layers, depend-
ing on the number of nodes in the layer. TensorFlow’s initializer also truncates
the distribution by default, by discarding and redrawing values more than two
standard deviations from the mean. No other parameters were tested for the
initializer.

A full list of the hyperparameters used for training with DQN can be found
in appendix A.1.

4.2 DQN algorithm description

In algorithm 1 the training process for the specific DQN implementation is de-
scribed. Note that the image xi here is meant to represent the 4-frame stack of
preprocessed images that is returned from the training environment. The reward
ri is the accumulated reward for all the frames the stack represents. Refer to sec-
tion 7.2 for a description on how frames are processed and stacked. Also note
that every time an episode ends the training environment resets as is described
in section 7.1. The ε update, which reduces the value of ε from 1.0 to 0.1 over the
first 1 million frames, is not updated for every collect steps, but rather updated
every training step, meaning four collect steps passes between each update. This
deviation should be negligible.

The DQN model was implemented specifically for the thesis using TF-Agents
to ensure the environment, preprocessing and frameworks are as similar as pos-
sible between the DQN model and the ACROMUSE genetic algorithm described
in section 5. For a discussion around details concerning the technical implemen-
tation, refer to appendix C.1.
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Algorithm 1: Deep Q-Network training with replay experience

Initialize experience replay buffer E
repeat

Perform random action ai in environment
Collect accumulated clipped reward ri and image stack xi+1

Save transition (xi, ai, ri, xi+1) in E

until Replay Buffer Filled To Initial Capacity B0

Initialize Q-network Q with random weights θ

Initialize target network Q̂ with weights θ̂ = θ
for epoch = 1,M do

for training step = 1,T do
for collect experience steps = 1,C do

// Collecting experience

repeat
Perform random action ac with probability εcollect
Else perform action ac = argmaxaQ(xc, a; θ)
Save transition (xc, ac, rc, xc+1) in E

until Loss of life

end
Reduce ε from 1.0 to 0.1 linearly over 1M collect steps
Sample batch of transitions from E

yj =

{
rj loss of life at step j+1

rj + γ · maxa′Q̂(xj+1, a
′; θ̂) otherwise

Perform gradient descent step using eq.(3) with respect to θ

Every NT steps update target network so that θ̂ = θ
end
for evaluation step = 1,V do

// Evaluating agent

repeat
Perform random action av with probability εeval = 0.05
Else perform action av = argmaxaQ(xv, a; θ)
Add unclipped reward Rv to the accumulated episode score

until End of full episode
Evaluation score = average score of completed episodes

end
Save log and backup agent

end
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5 ACROMUSE Genetic Algorithm

ACROMUSE was introduced in [4] by B. McGinley, J. Maher, C. O’Riordan,
et al. It is a genetic algorithm which evolves generations of individual agents.
New generations are created based on the previous generation’s agents and their
fitness, using evolutionary methods such as tournament selection, crossover, and
mutation. The main focus of this method is avoiding convergence towards a local
optimum, by maintaining a diverse population that is also high-performing. This
is done using the two measures SPD and HPD. These are used in adaptive opera-
tors which determine the tournament size, mutation rate, and implicitly the size
of the exploitation and exploration subpopulations. Although this model adap-
tively determines these hyperparameters, other fixed values are used to calculate
these, which can be seen as new hyperparameters. For these new hyperparame-
ters, the recommended values in [4] are used.

5.1 Standard Population Diversity (SPD)

SPD is a measure used to determine strictly the diversity of the population,
using the Euclidean distance between the agent gene values. The fitness of the
agents is not considered, so a high-performing population and a low-performing
population can have the same SPD. To calculate SPD, first the average agent
needs to be found.

Calculating the average agent The average agent is simply an agent where
all the individual genes (network weights or parameters) are the average of the
individual genes in the entire population. This is expressed in equation (5) where
Gi, n is a specific gene n in individual i. P is the number of agents in the total
population.

Gavg
n =

1

P

P∑
i=1

Gi,n (5)

Calculating SPD As explained in [4], to normalize the SPD measure, the gene-
wise standard deviation is used in further calculations. This standard deviation
is expressed in equation (6).

σ(Gavg
n ) =

√√√√ 1

P

P∑
i=1

(Gi,n −Gavg
n )2 (6)

The SPD measure is defined as a coefficient of variation for the average
individual, which is the reason for shifting and scaling the network weights, as
is described in section 5.4. Equation (7) shows how the SPD is the average of
the coefficients of variation for the average genes Gavg

j .
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SPD = CV (Gavg) =
1

N

N∑
j=1

(
σ(Gavg

j )

Gavg
j

)
(7)

This value is used in the operators to determine crossover rate and mutation
rates, which are described in section 5.6.

5.2 Healthy Population Diversity (HPD)

The HPD measure considers both the diversity of the population and the fit-
ness of the individuals by weighting their contribution to the measure by their
relative fitness. These weights, not to be confused with network weights Gn, are
calculated for agent i as described in equation (8), where fi denotes the fitness
of agent i.

wi =
fi∑P
k=1 fk

(8)

Again, a weighted calculated individual is found, here denoted GW,avgn , using
equation (9).

GW,avg
n =

P∑
i=1

wiGi,n (9)

Calculating HPD HPD uses the gene-wise weighted standard deviation, ex-
pressed in equation (10).

σ(GW,avg
n ) =

√√√√ P∑
i=1

wi(Gi,n −Gavg
n )2 (10)

The HPD is from here on calculated in a similar fashion to SPD. The coeffi-
cient of variation for the weighted average agent is shown in equation (11).

HPD = CV (GW,avg) =
1

N

N∑
j=1

(
σ(Gavg

j )

Gavg
j

)
(11)

Individual HPD contribution It is also necessary to calculate the individual
agent’s contribution to the HPD measure. This is done using equation (12).

HPDi = wi

√√√√ N∑
n=1

(Gi,n −GW,avgn )2 (12)

This contribution will be used to select parent agents in the tournaments,
described in section 5.6.
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Variable maximum SPD and HPD When testing the algorithm, it was ap-
parent that SPD and HPD values above the practical maximum suggested in [4]
occur, particularly early on in the first few generations. Using variable maximum
values was suggested in [37] and involves using the largest observed value of SPD
and HPD at any point in the training. These maximum values are initially set
at SPDmax = 0.4 and HPDmax = 0.3 as suggested in [4], but each time SPD
and HPD are calculated, these parameters are updated. The largest values will
occur at the very beginning of training, typically in the initial generation, since
at this point, weights are simply uniformly distributed in the search space and
not concentrated around local optima. Using variable maximum SPD and HPD
values has the effect of pushing the agents toward more exploration and less
exploitation.

5.3 Population size

In [4], a generation size of only 40 agents is used. The paper explains that
ACROMUSE was developed to function effectively using a small population.
The same population size of 40 is used here. A larger, or significantly larger,
population might be preferable, especially considering the large number of genes
or parameters in the neural network. However, this is very resource intensive
and given the modest hardware used for training, the trade-off between more
coverage with a larger population and shorter time spent on each generation is
difficult. A shorter time for each generation means the process of crossover and
mutation can occur more often, hopefully further optimizing the agents.

5.4 Network weights and shifting

For the purposes of this thesis, the network weights for the ACROMUSE method
are kept within a limited range. This is not directly prescribed in [4] but is done
to limit the search space. It might be useful for the agent to be able to take
both negative and positive values, which is why the range 〈−1, 1〉 was chosen.
There was no testing of alternative ranges. The network weights and biases are
initialized with a simple uniform distribution in this range.

In the description of SPD and HPD it is mentioned that these are coeffi-
cients of variance. This means they need an absolute number range to work on.
To achieve this the network weights are simply shifted and scaled from the range
〈−1, 1〉 to 〈0, 1〉. Once shifted, the scale of the range does not matter, since the
mean and variance would increase proportionally. This is only done to calculate
the SPD and HPD measures, which measure the diversity and fitness of the pop-
ulation. Since these are measures of distance between agents, shifting and scaling
the weights should not be an issue. Weights are shifted and scaled according to
equation (13), where minval and maxval denote the lower and upper bounds of
the network weight values.

G∗
n =

Gn + minval

maxval−minval
(13)
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Dealing with lower bound value weights While training with the ACRO-
MUSE model, an occasional issue that came up was that a gene might be set
to a value equal to the lower bound. Even though this in theory should be very
improbable, it seems that in practice this is a very real possibility within the
framework used. This might be due to some form of rounding that is happening
somewhere in the process, but the exact cause was not determined. After several
generations, a single such gene could propagate throughout the population of
agents. In this case there would be a division of zero by zero, which gives a NaN
value. To avoid this, every time network weights are assigned to an offspring, it
is checked for values equaling the lower bound. Are any such values found, they
are replaced by the lower bound plus a small buffer value set to 1 · 10−6

5.5 Fitness and evaluation

There is no prescription for how to estimate the fitness of the agents in [4], due
to how different the applications of the algorithm could be. It would take too
long to run evaluation for all agents in the generation, so to approximate the
fitness, 2 000 steps are run in the evaluation environment for each agent. The
elite agent is the highest scoring agent in the generation and goes through full
evaluation, as described in section 7.3. The elite agent is passed on unchanged
to the next generation. This implementation uses the evaluation environment
described in section 7.1 for all fitness approximation and evaluation purposes.
No separate training environment is used.

It is an option to estimate the fitness using more steps in the environment,
and to evaluate several of the highest scoring agents to determine which is the
fittest to a greater degree of certainty. However, when trying this approach, it is
apparent that this will take too much time, reducing the number of generations.
Because of this, an increased uncertainty in estimating the fitness and finding
the elite is chosen to facilitate more generations during training.

5.6 Generating offspring

The process of generating offspring in ACROMUSE, illustrated in figure 1, is
determined by several factors controlled by the SPD and HPD values of the
parent generation. Note that in this thesis, one network parameter or weight is
considered as a single gene. All agents have the same number of genes since they
all share network structure.

Once all agents in a generation have been given a fitness score and the elite
agent is determined and evaluated, the process of creating the next generation
starts. First, the SPD and HPD measures are calculated according to the process
in sections 5.1 and 5.2. The elite agent is carried over unchanged.

Using the SPD measure the crossover rate is determined according to equa-
tion (14). This rate decides whether the next offspring belongs in the exploitation
or exploration subpopulation. Agents in the exploitation population are created
with two parents and a uniform crossover. The uniform crossover simply chooses
a gene from either parent with uniform probability. Agents in the exploration
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population have a single parent, meaning no crossover is performed. The new
fixed hyperparameters are set to K1 = 0.4 and K2 = 0.8 as in [4] and define the
upper and lower bound of the crossover rate.

Pc =

[(
SPD

SPDmax
· (K2 −K1)

)
+K1

]
(14)

To select either one or two parents for a next-generation agent, tournament
selection is used. Agents are selected at random in the population and the highest
rated agent is selected to be a parent. In the case of crossover, two parents
are chosen this way. The parent agents are selected according to their HPD
contribution, as opposed to their fitness score. This means the agents are selected
according to both fitness and how much they contribute to the diversity of the
population. The size of the tournament, meaning the number of agents selected
at random, is determined by equation (15) where the maximum tournament size
is given by (16).

Tsize =

[
HPD

HPDmax
· Tsizemax

]
(15)

Tsizemax =

⌈
Population size

6

⌉
(16)

Finally, the agents are mutated. For agents going into the exploitation sub-
population, a small mutation rate of 0.01 is used, for local search. For agents
going into the exploration subpopulation, which are not products of crossover, a
higher mutation rate is used, which is adaptively determined according to equa-
tion (17). The new fixed hyperparameter is set to K = 0.5 as in [4] and defines
the upper bound of the mutation rate.

Pm =
P fitm + P divm

2
(17)

The two parts P fitm and P divm are determined according to equations (18) and
(19), where f is the parent agent’s fitness. fmax and fmin is the highest and
lowest fitness scores in the generation.

P fitm = K ·
(

fmax − f
fmax − fmin

)
(18)

P divm =
SPDmax − SPD

SPDmax
·K (19)

If a gene is selected for mutation, it is re-initialized within the range specified
in section 5.4 with uniform probability, as in [4].

Notice that the lower the SPD value, meaning there is low diversity, the larger
the exploration subpopulation and the higher the mutation rate used for these
agents. The operators also work to preserve more information in high fitness
parents than in low fitness parents.
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Fig. 1: The process of generating an offspring in a new generation. Note the
variable population sizes at the bottom, although the total population is fixed.
Based on fig. 5 in [4].

5.7 ACROMUSE algorithm description

The full process of training with ACROMUSE is described in algorithm 2. Note
that tournament selection of agents is performed not with the agent score, but
with the agent HPD contribution, described in section 5.2.

A full list of the hyperparameters used for training with ACROMUSE can be
found in appendix A.2 and some aspects of the code implementation of ACRO-
MUSE is discussed in appendix C.2.
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Algorithm 2: ACROMUSE genetic algorithm

for Number of total generations do
if the first generation then

Initialize generation of random agents
else

// Creating new generation

Preserve elite agent from previous generation
for i=2,Nagents do

Pick exploitation or exploration with probability Pcrossover

if exploitation then
// adding agents to exploitation subpopulation

Pick 2 parents using tournament selection with size Tsize

Perform uniform crossover between parents
Mutate agents with probability Pmut, exploit= 0.01

else
// adding agents to exploration subpopulation

Pick 1 parent using tournament selection with size Tsize

Mutate agents with probability Pmut, explore

end

end

end
for all agents i do

// Estimating agent fitness

repeat
repeat

Perform random action ar with probability εeval = 0.05
Else perform action selected by network

until End of full episode
Save unclipped scores for finished episodes

until Nfit steps steps has passed
Agent fitness = average score for finished episodes

end
Pick agent with highest average score as elite
repeat

// Evaluating elite agent

repeat
Perform random action av with probability εeval = 0.05
Else perform action selected by network

until End of full episode
Save unclipped scores for finished episodes

until Neval steps steps have passed
Evaluation score = average score for finished episodes
Calculate SPD and HPD for generation
Calculate HPD contribution for all agents, used in tournament selection
Calculate Pcrossover, Pmut, explore and tournament size Tsize for next
generation.

end
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6 The Neural Network

Both agents share the same neural network structure. It follows the design laid
out in the paper ‘Playing Atari with Deep Reinforcement Learning’[2]. This
network was chosen over the slightly larger network described in the following
2015 paper[3] by V. Mnih, K. Kavukcuoglu, D. Silver, et al. to save time and
reduce the complexity.

The network is a convolutional neural network and is illustrated in figure 2.
The input to the network is a stack of four frames, giving an input dimension of
84 × 84 × 4. Following the input layer, the first hidden layer is a convolutional
layer consisting of 16 filters. These have size 8 × 8 and move along the input
frames with a stride of 4. The next convolutional layer has 32 filters of size 4× 4
and uses a stride of 2. After this follows a fully connected layer with 256 nodes.
Finally, the output layer has 6 nodes, corresponding to all possible actions in the
Space Invaders environment. Different Atari environments have different number
of available actions, and the output layer always has one node for each action,
including a node for doing nothing. Following all hidden layers, a Rectifier Linear
Unit (ReLU) activation function is applied, as described in equation (20). This
network has 677 686 parameters in total. The larger network in [3] contains an
additional convolutional layer and a larger fully connected layer.

ReLU xi =

{
xi if xi ≥ 0

0 if xi < 0
(20)

There is no mention of bias or intercepts in the papers, but this network uses
a bias value for each filter in the convolutional layers, and each node in the fully
connected layers. These values are added to the incoming value of a node, and
indicate how large the incoming values are required to be to activate the nodes
in the layer. They are initialized with the same process as the weights in the
network.

Initialization The initialization functions are described in the sections on the
DQN and the ACROMUSE genetic algorithm. Shortly explained, the DQN uses
a truncated normal distribution with mean 0, where the standard deviation
depends on the number of nodes in the input layer. The ACROMUSE uses
uniform initialization in the range 〈−1, 1〉.
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Fig. 2: Network structure. A ReLU activation function is used for the hidden
layers.
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7 Experiment Set-Up

7.1 The environment

To limit the scope of this thesis, a single Atari environment was chosen. The goal
is that the algorithm implementations should generalize for other Atari games,
but only one environment is used due to time limitations. The environment
was chosen based on the results in papers developing models for playing Atari
games[2][3][25][26], with the somewhat arbitrary criteria that it should perform
fairly well for all methods described in the papers, and not outstandingly for
any single method. The preprocessing of the environment follows [3].

There are two specifications of the environment, evaluation and DQN train-
ing. The differences between these are described further below. While the eval-
uation environment is used for both methods, the DQN training environment
is only used for collecting experience trajectories that are stored in the experi-
ence replay buffer. The environment used in the code implementation is OpenAI
Gym’s Atari environment, but wrappers included in TF-Agents are used for
preprocessing. Some modifications where done to these code wrappers for the
purposes of this thesis, which are discussed in appendix C.

Description of the environment Almost all the Atari games based on the
Stella emulator, which includes ALE and OpenAI Gym’s implementations, are
deterministic[1]. As explained in the follow-up paper on the ALE, [8], this means
that given a fixed set of actions, the outcome in the environment will always be
the same, as long as the initial state is the same. This can be exploited by the
agents by outputting a fixed set of actions instead of reacting to the environment
state. To avoid this, some randomness needs to be injected, which is described
later in this section.

In the Space Invaders environment, the agent controls a player model at the
bottom of the screen. Refer to the unprocessed frame in figure 3a to see how
the environment is rendered visually. This player model only has the ability
to move horizontally within the outer boundaries and can also fire projectiles
directly upwards on the screen. These degrees of freedom gives a total of six
actions, listed in table 1 together with the input value associated with them in
the environment.

Above the player model are three destructible barricades evenly spaced on the
screen. These will absorb projectiles from both the player and the enemies and
will gradually erode as they are hit. The player can hide behind these barriers
to avoid getting hit until they eventually break but has to fire projectiles while
exposed to hit the enemy units.

In the middle of the screen is a grid formation of enemy units. These enemy
units will intermittently fire shots at the player. An enemy unit is destroyed if
hit by a single projectile from the player. There are 6 rows of 6 enemy units,
making a total of 36 enemies on the screen at the start.
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Table 1: Actions the agent can take in the environment

Action Description

0 Do nothing

1 Fire projectile

2 Move Right

3 Move Left

4 Fire Projectile + Move Right

5 Fire Projectile + Move Left

Scoring The agent can score in the environment by firing projectiles at the
enemy units. Occasionally, a highly valuable bonus enemy will move across the
top of the screen, but due to a high movement speed and the other enemies being
in the way, this is hard to hit. The points awarded for destroying the different
enemy types are given in table 2. Enemies are ranked by rows, with higher row
enemies giving more points.

Table 2: Enemy point values

Enemy Type Point Value

Row 1 5

Row 2 10

Row 3 15

Row 4 20

Row 5 25

Row 6 30

Bonus 200

Game progression The entire enemy grid formation will move from one bound-
ary to the other at even speed, and reverse direction once a boundary is reached.
Each time a boundary is reached, the grid moves a step closer to the ground and
player model. Once the grid reaches the barricades, the barricades disappear,
regardless of their state of decay. When only a few enemies are left on the grid,
they speed up, making them significantly more difficult to destroy.

If all enemy units on the board are destroyed, the entire environment resets,
except for score and remaining lives which are carried over. A new enemy grid
appears and the barricades are renewed. One iteration of this can be called a
level, a term typically used in video games.
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Interestingly, this causes the environment to get progressively more difficult,
with a large spike at the end of one level, only to become significantly easier
when a new level is started. It is difficult for an agent to overcome this final
challenge, but if it does, it can easily rack up a much larger score.

End condition of game At the start of the game, the player is given three
lives. The agent loses lives when it is hit by enemy projectiles. Once all three
lives run out, the game episode ends. Another condition that can end the game
is if any of the enemy units reach the ground where the player model sits. This
instantly ends the game regardless of remaining lives.

Evaluation environment The evaluation environment specification is used to
evaluate agents for both the DQN and ACROMUSE approach. The evaluation
environment runs until all three allotted lives are lost. There is no score clipping,
so the full score is rewarded based on the agent’s actions within the environment.

DQN training environment The DQN training environment has everything
in common with the evaluation environment, with a few specific features that
sets it apart to aid in training efficiently. An important difference is that an
episode run in the environment ends when a single life is lost, as opposed to
after a certain number of available lives are lost. This is done to help the agent
learn to avoid taking damage and losing a life in the environment. Second, the
scores from the environment are clipped, so that they all lie within the range
[−1, 1]. Any values outside of this range is clipped to the highest value. This is
done to make the model work for different environments with widely different
ways of scoring and size of scores. Since we only use a single environment to test
the models in this thesis, this is not strictly necessary. However, the implemented
code can now be more easily used for other environments, by only changing the
name in the configuration files. Also, while [3] explains that the value of the
learning rate was determined simply using an informal search on some of the
games, it is still determined using environments where the score was clipped.
Because of this, this learning rate might not be appropriate if the unclipped
score is used in training. In the end, it is useful that the model is similar to the
original papers for easy comparison, to check that the model works as expected.

While training, the DQN model varies the epsilon from ε = 1.0 to ε = 0.1
linearly the first 1 million steps of training. After this it is kept at ε = 0.1. As
a reminder, epsilon here refers to the probability of performing a random action
instead of the action determined by the policy/network.

Introducing stochasticity into evaluation Both algorithms use a value for
epsilon of ε = 0.05 during evaluation, as in [3]. In [8], this is described as perhaps
having too much of an impact on the agent policy, but that it also has the positive
of being equivalent to the ε-greedy approach used for collecting experience.
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As in [3], 30 no-operation actions are performed at the start of the environ-
ment, for both training and evaluation. This is actually inconsequential for Space
Invaders, since a frozen screen appears at the start of every game, displaying the
number of lives left, with the player model flashing. This screen lasts slightly
longer than these 30 no-op actions are performed, and so the agents start with
the same environment state every time. Since this thesis wishes to compare with
[2] and [3], this is still implemented and might have an effect in other games,
if the code is used to run these. This variation in impact for the initial no-ops
actions is listed as a negative in [8].

7.2 Preprocessing

Figure 3 shows a single unprocessed frame and a processed frame side by side.
First, the frame is simply fetched from the Atari environment in greyscale. This
reduces the dimensions of the frame, using values between 0 and 255 to represent
each pixel, instead of three separate color channels as in the RGB representation.
The original frame has size 210×160 which is downsampled to 84×84. The frames
in figure 3 are to scale.

Figure 4 shows how single preprocessed frames are stacked together. The
model in [3] uses frame-skipping, listed as skipping four frames. In practice,
however, in a sequence of four frames output by the environment, the first two
are skipped entirely, but the last two are max pooled to give a single frame. Max
pooling here simply means that for each pixel, pick the value from the two frames
that is highest. Each of these four frame sequences produces a single frame, and
four of these frames are stacked together. This means that each stack represents
a sequence of 16 frames output by the environment. The stack has dimensions
84 × 84 × 4 and is used as input to the neural network. A new stack is formed
for every frame, which means that consecutive stacks have an overlap of three
frames, and every frame belongs in four stacks. This is shown in figure 5 and
because TF-Agents saves every stack separately, there is a lot of redundancy.
This is discussed further in appendix C.1.

7.3 Evaluation

Evaluation is performed the same way for both methods. For DQN, evaluation is
performed after a set number of steps and defines an epoch. Following the epoch
length in [2], evaluation is performed every 50 000 training steps. As a reminder, a
training step consists of four experience collection steps and one gradient descent
step, as described in section 4.1. Evaluation in ACROMUSE happens at the end
of every generation and uses the generation elite agent, meaning the agent that
scored the highest.

The evaluation is run in the evaluation environment, which means a full
episode runs until the agent has no lives left, and the full score from the envi-
ronment is returned without clipping. To evaluate an agent, the environment is
run over and over until the set evaluation length of 10 000 steps have passed.
During this, the scores from every completed episode is recorded. The evaluation
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(a) Unprocessed frame. (b) Preprocessed frame.

Fig. 3: Comparison of game frames, to scale, with and without preprocessing.

Fig. 4: Illustration of how frames are skipped and stacked. A single stack is used
as input to the network.
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Fig. 5: Stacks of frames overlap, meaning every frame belongs in 4 stacks.

score is the average of the episode scores, but the maximum episode score is also
logged since this is listed in [2].

7.4 Hardware

All training and evaluating was performed on a personal computer. The hardware
specifications are described in Appendix B. The DQN model makes use of the
GPU to accelerate the gradient descent. For the genetic algorithm approach,
there is no way to make use of the GPU to speed things up with the framework
used for this report.

The reason for using a personal computer is practical, as gaining access to
high-performance equipment proved difficult and/or expensive. However, this
provides the opportunity to evaluate these approaches on the sort of equipment
that is widely available and relatively inexpensive. While training the models
will take longer, it should still provide a useful comparison as far as the relative
performance of the models.
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8 Results

The results presented in this section are the best performing model iterations
found during training. In the tables reporting the results, the epoch or generation
at which the best model occurs is listed. This may not be the model achieved
at the end of training, but for a method that converges, it will typically be a
model iteration close to the end of training. M. C. Machado, M. G. Bellemare,
E. Talvitie, et al.[8] explains the downside of this being that it does not show the
stability of training. Hopefully, the figures showing evaluation scores over time
will give an indication of this aspect.

8.1 DQN baseline results

The scores for the DQN baseline training is listed in table 3 and the progression
of evaluation scores during training is shown in figure 6. We can see that the best
agent appears late in training, at epoch 96 out of 100. Considering the scores,
the agent trained here achieves essentially the same scores as reported in [2],
which uses the same epoch length and number of total epochs. That paper does
not show any graph of the progression during training for the Space Invaders
environment. From the graph in figure 6, there is not a strong trend showing
convergence, but there is a slight trend towards better evaluation scores. It is
also clear that there is a high degree of variability in the DQN training process,
something noted in [8], and also clear in figure 2 in [2]. The peaks of the graph,
meaning the best performing agents do seem to get better over time. A longer
period of training would reveal whether these improvements continue or if a
plateau is reached.

Agent behavior When visually inspecting the agent play the game, it seems
the agent has learned a strategy of moving to and staying around the middle
barricade, while moving around to avoid enemy projectiles, and firing intermit-
tently. Later on in the game level, once the barricades are gone and the enemy
units are getting closer, the agent does not really alter its behavior. This may
indicate that the agent has not had enough experience with these later scenar-
ios. The agent only seems to react to enemies close above it, following these for
a short period of time. Staying in the middle and opening up the enemy grid
might be a more successful strategy for hitting bonus enemies, which it seems
to do in some episodes, including during a deterministic run with ε = 0. The
behavior does not appear particularly ‘intelligent’, and the patterns of behavior
seem very simple.

8.2 ACROMUSE results and comparison

The ACROMUSE genetic algorithm training was run until the time used by the
DQN algorithm was surpassed. In this way, the comparison is based on what
the algorithms can achieve within the same period of time. The scores for the
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Table 3: DQN baseline scores showing epoch with best average and best episode
score.

Training Average Best Episode

Epoch Score Score

96 553.33 1150.00

Fig. 6: Training progression for DQN. Average scores and best episode scores
against time and epochs.
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ACROMUSE approach is listed in table 4 and shown in figure 7. From the scores
and figure, there does not seem to be any trend of improvement shown. The best
agent occurs early, in generation 5 out of 40. Here, a sharp spike in maximum
episode score occurs, which could indicate an increase in performance, or simply
a coincidence, such as a lucky hit of a bonus enemy. The low average score
indicates that this is an anomaly in a small number of episodes rather than high
performance.

Table 4: ACROMUSE scores showing generation with best average and best
episode score.

Training Average Best Episode

Generation Score Score

5 411.67 935.00

Fig. 7: Training progression for ACROMUSE. Displaying average score and max-
imum episode score for each generation’s elite.
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Looking at the SPD and HPD measures shown in figure 8, they decrease
rapidly to start, and hover around 0.47 which is slightly above the maximum
SPD value in [4]. The HPD value follows SPD closely, and is not lower like
indicated in the paper. This could be because no proper local optima are found.
From the average generational fitness, shown in the same figure 8, it is apparent
that the average estimated fitness increases. This is because there are fewer
terrible agents than in the initial generations.

Fig. 8: Values for SPD and HPD during training. Also plotted is the average
fitness score for all agents in each generation.

Based on these results, the ACROMUSE genetic algorithm implemented here
and with these hyperparameters, does not seem to reach the performance of the
DQN model. While the average generation score clearly increases, the elite agent
score does not seem to improve from generation to generation.

Agent behavior The best performing elite agent stands still for the most
part, occasionally moving across the screen. It fires intermittently, supplying
some points. In the end it sticks to one side and seems to be able to hit the
bonus enemy in some runs, which explains its relatively high score. The general
behavior does not seem advanced and no clear ‘strategy’ can really be seen.

Because the best agent was found so early, the behavior of the last elite agent,
in generation 39, was also inspected to see if there were any positive changes.
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Here, the agent just stands still on the left side and fires. This will net some
points as the grid passes over and an entire column can be cleared. All in all,
there does not seem to be any interesting behavior on display from these agents.
When investigating agents from other, relatively high scoring generations, the
behavior was the same, standing still and firing on the left side.

8.3 Larger frame skip for DQN training.

An interesting mistake was made during an earlier run of training the DQN
model, causing a slight discrepancy from the baseline DQN model. Since the
result might be of interest, it is included here. TF-Agents[15] uses the OpenAI
Gym[6] Atari environments, which themselves are based on the Arcade Learn-
ing Environment (ALE)[1]. OpenAI has several versions of the environments,
and since TF-Agents implements frame skipping in its preprocessing, the right
Atari environment to use is the ‘NoFrameskip’ variant. Instead, however, the
‘Deterministic’ variant was chosen since this is described as being the same as
in [3]. This variant also implements its own frame skipping, usually four, but set
to three for Space Invaders as it is in [2]. This means frame skipping is imple-
mented twice. The environment only returns every third frame to the TF-Agents
preprocessing, where four frames are skipped, in the way described in section
7.2. This means that in effect twelve frames are skipped, where the max pooling
happens over frame number 9 and 12.

The evaluation results from the best average scoring and best episode scoring
agents during the 100 epochs and within the baseline DQN time frame, are given
in table 5. The training progression is shown in figure 9 against the number of
epochs. Note that this training took a slightly longer time. In figure 10, the
average scores for this model and the baseline DQN is compared. Here the time
is limited to what the baseline DQN model used.

This model converged faster than when skipping four frames, and scores
markedly better than the score listed for DQN in table 1 in [2].

Agent behavior These agents appear to be of a much higher caliber than the
agents trained by the other models. Here the agent moves along with the enemy
grid, stays around the barricades for cover, times projectiles well and even seems
to prioritize targets closer to the ground, especially at the start of the episode.
This is the only method where the agent seems to have a proper ‘strategy’ that
seems reminiscent of what a human player might do. This is true both for the
best agent within the baseline DQN time frame and the full 100 epochs. It is
also clear that the behavior degrades slightly as the episode progresses.

If these agents are run in an environment with a frame skip of four, like the
other results, the performance degrades drastically. This is to be expected as
the timing and spread of the frames fed to the network is completely changed.
A node which would trigger a certain behavior in the environment which it was
trained in, might trigger at a wrong time, or not trigger at all with a different
frame skip.
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Table 5: DQN with 12 frame skip.

Within baseline DQN time frame

Training Best Average Best Episode

Epoch Score Score

80 800.42 1600.00

67 782.39 2025.00

Full 100 epoch training

Training Best Average Best Episode

Epoch Score Score

89 878.96 1435.00

98 817.75 2460.00

Fig. 9: Training progression for DQN with 12 frame skip. Note the dotted line
indicating the time when the baseline DQN was finished training.
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Fig. 10: Comparison of DQN with 12 and 4 frame skips. Average scores are
plotted against time trained.

8.4 Discussion

Deep Q-Network approach The results from the DQN approach seems to
live up to [2], but it is difficult to say for certain since they only report the single
best agents score. The results from training is not particularly impressive, and
seems very unstable, with only certain peaks reaching high scores. Even then,
the agent’s behavior does not seem to follow a particularly coherent strategy.
The approach presented in the 2015 paper [3], seems to be more robust, and
clearly show that the agent is converging, the longer training proceeds. It makes
sense that [3] is the baseline in most papers, due to the higher training quality.
However, since the model was to be implemented and tested on the same hard-
ware as the ACROMUSE genetic algorithm in this thesis, the less complex and
time-consuming approach in [2] was chosen.

It is interesting that changing the number of frames skipped, as described
in section 8.3, makes such a big difference. This may suggest that such a DQN
model, at least for certain environments, could benefit from skipping more frames
than the four used in [3]. If little information is lost when doing this, it could allow
the model to, as stated in [2], play the equivalent of more games in a shorter
amount of time and converge faster. In [41], A. Braylan, M. Hollenbeck, E.
Meyerson, et al. found that the number of frames skipped impacted performance
greatly for their version of a genetic algorithm. In some cases, including Space
Invaders, a large number of skipped frames increased performance. This would
have to be tested further, and since this model is supposed to work generally for
the Atari games, on several different environments.
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The difference between the four and twelve frame skip training also highlights
how sensitive these algorithms are to different hyperparameters and environment
preprocessing. If changing the frame skipping from four to twelve makes such a
difference, one can only imagine the multitude of possibilities there are for all
algorithms that are available, and what an extensive task it is to optimize these to
unveil their true potential. Even a paper like [3], achieving good results, having
many people working on it and access to high performance hardware, simply
used an informal search to set hyperparameters, due to the computational cost.

ACROMUSE genetic algorithm approach It is natural to compare the
genetic algorithm approach here to the paper “Deep Neuroevolution: Genetic
Algorithms Are a Competitive Alternative for Training Deep Neural Networks
for Reinforcement Learning”[25], since they use a simple genetic algorithm, with
only mutation and truncated selection. In that regard, the ACROMUSE is a
more complex algorithm, using both crossover and tournament selection, not
to mention adapting the crossover rate, mutation rate and tournament size de-
pending on the population diversity and fitness. Despite [25] not training in the
Space Invaders environment, it is interesting to see what reasons there might
be why the ACROMUSE genetic algorithm implemented here fails, while the
simple genetic algorithm in [25] succeeds, at least in several environments.

One problem that is immediately obvious is that [25] maintains 1 000 agents
per population. For the implementation of ACROMUSE used here, only 1 600
agents are created throughout the entire training process. This difference in scale
is a big concern, especially when so many network parameters are involved. F. P.
Such, V. Madhavan, E. Conti, et al. states that it was assumed that genetic
algorithms, such as the one implemented here, would fail when dealing with this
number of network parameters[25]. The big innovation that was made in that
paper is the ability to distribute the testing of the agents in the generations.
Encoding the networks allows for compressing them, and so they can easily be
passed back and forth between processors for testing. Also, the training was sped
up by letting the environment take advantage of GPUs for running. Although
there is no guarantee that the ACROMUSE algorithm would work within these
environments if the training was distributed, the number of agents significantly
increased and fitness evaluation time decreased drastically, this does appear to
be a necessary condition.

Based on the improving average generation score and the visual inspection
of agent behavior, it seems that while the average score of the agents in the
generations increase as training proceeds, the agents might be trapped in a local
optimum of sorts. The reason this seems to be the case is that the exhibited
behavior of standing still and intermittently firing is the same, both in the early
best performing agent, and the elites in the later generations. Unfortunately,
the local optimum is a very poor one. A typical very low performing policy
that might be removed early is one that would cause the agent to stand still and
never fire projectiles. While simple, short-sighted strategies, such as simply firing
intermittently would quickly win out. The algorithm seems unable to progress
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beyond this and the diversity of behavior seems very low. This is slightly unex-
pected as ACROMUSE is made to adapt and maintain a diverse population. It
might be the case that the large number of genes in the network, means that
the diversity is high, despite the differences being inconsequential and leading
to similar, low-performance behavior. Also, the HPD measure is based on rel-
ative fitness, which means that poor agents receive a high HPD score despite
performing poorly compared to agents trained with other methods. In this way,
agents that perform ‘well’, relatively speaking, are preserved, when in fact, they
are very poorly performing agents.

It is not clear whether any improvements in the agents, or useful information
in the networks, is preserved since a high-performing agent never appeared. An
interesting experiment could be to introduce a high-performing agent trained
with a different method to the population and check whether the information is
preserved or quickly lost.

9 Conclusion

It seems the DQN model was implemented successfully although the perfor-
mance during training was quite unstable. This is likely the cost that is paid to
reduce training time and complexity. It was shown that using a frame skip of
twelve significantly increased the quality of training and it was achieved within
a reasonable time frame using modest equipment.

The ACROMUSE approach did not converge, and it seems that the num-
ber of agents is simply too small, the search space too large, the network too
complex, and the computational cost too high. It is hard to determine if any sim-
ple change in hyperparameter, simpler network, heavier preprocessing, or other
modifications could make the approach able to train agents for these Atari envi-
ronments. This does not seem likely, since the genetic algorithms shown to work
for this purpose has made use of distributed fitness evaluation to accelerate the
training process. The conclusion for this implementation and equipment is that
the ACROMUSE genetic algorithm performed worse than the established DQN
model in the Space Invaders environment.

9.1 Future work

For the DQN algorithm, used as a baseline in this thesis, it is interesting to
see how the frame skipping affected the training. It seems there might still be
performance to be found using DQN and its many variations, by simply optimiz-
ing hyperparameters, network structure and environment preprocessing. This is
not the most interesting field of research, but it is likely to produce results, if a
systematic approach is taken. The question would be if any optimizations would
generalize or just be applicable to the specific environment used in training and
evaluation.

For the ACROMUSE algorithm, it seems like there is somewhat of a hard
limit due to how resource intensive a larger population would be to run, unless
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a distributed approach like [25] could be implemented. Possibly, testing with a
large frame skip could be interesting. Also, there is a slim possibility that the
algorithm might perform better in other environments, but this also seems less
than likely as the problems when training in Space Invaders should carry over
to other environments.

F. P. Such, V. Madhavan, E. Conti, et al. in [25] predict that improvements
could be made to their simple genetic algorithm by making use of more ad-
vanced methods, such as crossover, indirect encoding, LSTMs, regularization,
and dropout, to name a few. It seems that the success of [25] is due to the
distributed training, and the issue would be to find a way to implement these
methods, while still compressing the network enough to transfer them between
processor units. This seems difficult and certainly outside the scope of a thesis
like this one, but large potential could be unlocked if an efficient approach to
this could be found.

General progress in the area of adaptive algorithms is also very interesting. If
adaptive algorithms that perform well in many different tasks, whether genetic
or otherwise, is developed, this could reduce the computational cost affiliated
with determining good hyperparameters massively. However, it still seems likely
that different algorithms with different hyperparameters will perform well at
different tasks, at least for the foreseeable future.
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A Hyperparameters

A.1 DQN hyperparameters

The hyperparameters used for training an agent with the DQN reinforcement
learning algorithm is presented in table A.1.

Table A.1: Parameters for DQN training

Learning Rate 0.00025 Learning rate used in RMSProp

Total Steps 5 000 000 Total number of steps to train

Discount 0.99 Discount used by the DQN agent

Target Update 10 000 Number of steps between target net-
work update

Collect Steps 4 Number of experience collecting steps

taken per training step

Replay Buffer Size 100 000 Number of frame stacks in replay buffer

Initial Collect Steps 50 000 Number of steps taken to initially pop-
ulate replay buffer

Initial Epsilon 1.0 Initial epsilon value for collecting expe-
rience

Final Epsilon 0.1 Final epsilon value for collecting expe-
rience

Epsilon Variation Steps 1 000 000 Number of steps to reduce epsilon from
1.0 to 0.1

Batch Size 32 Size of minibatch used for training

RMSProp Momentum 0.0 Momentum used by RMSProp opti-
mizer

RMSProp Decay 0.95 Decay used by RMSProp optimizer

Evaluation Epsilon 0.05 Epsilon used during evaluation

Evaluation Interval 50 000 Steps between evaluations

NEval Steps 10 000 Number of evaluation steps

A.2 ACROMUSE hyperparameters

The hyperparameters used for training agents with the ACROMUSE genetic
algorithm are presented in table A.2. The ACROMUSE training was stopped
once the DQN training time was reached.
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Table A.2: Parameters for ACROMUSE training

Agents 40 Number of agents per generation

Rank Steps 2 000 Number of steps used to estimate agent
fitness

Evaluation Steps 10 000 Number of evaluation steps

Elite Evaluated Agents 1 Number of most fit agents to evaluate
to determine elite

Evaluation Epsilon 0.05 Epsilon used during evaluation

Weight Minval -1 Lower bound of network weight value

Weight Maxval 1 Upper bound of network weight value

Buffer Value 10-6 Buffer value added in case of lower
bound weight value

Pmut,exploit 0.01 Mutation rate used for exploitation
agents

K1 0.4 Lower bound of crossover rate

K2 0.8 Upper bound of crossover rate

Kmut 0.5 Upper bound on exploration mutation
rate

SPDmax 0.4 Initial maximum SPD value

HPDmax 0.3 Initial maximum HPD value
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B Equipment Specification

All training and evaluation was performed on a personal computer. The com-
puter components were primarily bought in 2015 with expanded memory and
storage added later, using exactly the same components. It is to be expected that
a newer computer with similar types of components would have slightly more
performance, but the comparison of the models relative to each other should still
hold up. The relevant specifications are listed in table B.1.

Table B.1: Equipment specification used for training
and evaluating all models.

OS Ubuntu 18.04.5 LTS

Language Python 3.7.4

Framework TensorFlow 2.4.1

CUDA Version 10.0

cuDNN Version 7.6.5

Processor

Intel Core i5-4690K

4-Core

3.5GHz Base Clock Speed

Memory
32GB DDR3 SDRAM

1866MHz

GPU

Gigabyte Windforce G1 Gaming

NVIDIA GeForce GTX970

4096MB GDDR5 Memory

1644 Cores

5.2 NVIDIA Compute Capability

Storage

Samsung 850 EVO 500GB SSD

Model nr. MZ-75E500

540/520 MB/s sequential r/w speed

SATA 6Gb/s
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C Code Implementation

The code is available on GitHub:

https://github.com/a-nesse/acromuse_atari

The specific GitHub commit used for training can be found with the commit ID
(SHA-1 hash):

245bfb6dfb2dd47798328c43db4f07497583d199

The results in section 8.3 was achieved with commit:

b3d9a03a14c9d37b72100ec67a28a25336172182

Config files Both methods use simple configuration files, formatted as dictio-
naries, and handled in the JSON format. An abridged snippet of the config file
for the DQN model is shown here:

1 {

2 "env_name":"SpaceInvaders",

3 "learning_rate":0.00025 ,

4 "num_iterations":5000000 ,

5 ...

6 "save_name":"dqn",

7 "keep_n_models":100

8 }

Environment wrappers TF-Agents has wrappers for the OpenAI Gym Atari
environments. However, some of these files had to be changed for the purposes
of this thesis, such as the load function in suite_atari. This function loads
the correct Atari environment, with the proper wrappers. If eval_env=True is
passed to the function (line 9), an evaluation environment is loaded, by changing
the default training environment wrapper to an evaluation environment wrapper
in line 15-16. In line 13, the dtype was changed from np.uint8 to np.float32.
This was necessary for the Keras based network to use the output from the envi-
ronment. This is slightly strange, since Keras is part of TensorFlow. In line 18-21,
the environment version name is set to the correct “SpaceInvadersNoFrameskip-
v4” in the case of using the Space Invaders environment. This means no frame
skipping or repeated actions happening at the environment level, but rather in
TF-Agents’ preprocessing.

1 def load(

2 environment_name: Text ,

3 discount: types.Int = 1.0,

4 max_episode_steps: Optional[types.Int] = None ,

5 gym_env_wrappers: Sequence[

6 types.GymEnvWrapper] =

↪→ TRAIN_ATARI_GYM_WRAPPERS_WITH_STACKING ,
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7 env_wrappers: Sequence[types.PyEnvWrapper] = (),

8 spec_dtype_map: Optional[Dict[gym.Space , np.dtype ]] =

↪→ None ,

9 eval_env: bool = False

10 ) -> py_environment.PyEnvironment:

11 """ Loads the selected environment and wraps it with the

↪→ specified wrappers."""

12 if spec_dtype_map is None:

13 spec_dtype_map = {gym.spaces.Box: np.float32}

14

15 if eval_env:

16 gym_env_wrappers =

↪→ EVAL_ATARI_GYM_WRAPPERS_WITH_STACKING

17

18 environment_name = game(

19 name=environment_name ,

20 mode=’NoFrameskip ’,

21 version=’v4’)

22

23 ...

There are two versions of the atari_preprocessing script, one for DQN
training and one for evaluation. Below is the first part of the reset function,
which wraps the environment’s own reset. This function is the same for both
training and evaluation environment. It has been edited to perform a fire action
after a reset for certain environments which require this before starting. Also,
up to 30 no-operation actions are taken at the start. The exact number is chosen
at random, and in line 14, this number is multiplied by the number of frames
skipped. This is to simulate the action being taken by an agent, which only sees
one frame for every four frames in the environment, and performs one action
that will be repeated for the next four frames. For Space Invaders, this has no
influence, however, it is implemented in case the code is used for other games.
The frame returned from the environment is processed and returned from the
reset function.

1 def reset(self) -> np.ndarray:

2 """ Resets the environment.

3 Returns:

4 observation: numpy array , the initial observation

↪→ emitted by the environment.

5 """

6 self.env.reset ()

7 # executing ’fire’ step

8 if self.env.game in [’breakout ’, ’beam_rider ’]:

9 self.env.step (1)

10 # implemented a no -op start , equivalent to 30 no -op

↪→ actions

11 # this is inconsequential for SpaceInvaders , but is left

↪→ in for other games

12 noops = np.random.randint(0, 31)
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13 # multiply by frame_skip to emulate actions

14 noops = noops * self.frame_skip

15 for _ in range(noops):

16 _, _, done , _ = self.env.step (0)

17 if done:

18 self.env.reset()

19 self.lives = self.env.ale.lives ()

20 self.game_over = False

21 self._fetch_grayscale_observation(self.screen_buffer [0])

22 self.screen_buffer [1]. fill (0)

23 return self._pool_and_resize ()

The training environment also clips the rewards returned from the environ-
ment in the manner shown below. The code used for [3] seems to clip it, rather
than simply set it to -1, 0 or 1. Since all returned rewards for Space Invaders
are zero or positive integers, this does not matter for our case, as all positive
rewards are set to 1. The evaluation environment has no reward clipping.

1 # clipping rewards between -1, 1 for training env

2 reward = 1.0 if reward > 1.0 else reward

3 reward = -1.0 if reward < -1.0 else reward

C.1 The AtariDQN class

The DQN model is implemented with the TF-Agents library for reinforcement
learning, by TensorFlow. During training, the algorithm makes use of a training
and an evaluation environment, which are both initialized in the constructor.
As can be seen in line 2 and 3 below, the only difference is the input parameter
eval_env which is set to False for training environments and True for eval-
uation environments. Also notice how the python environment that is loaded
has to be wrapped by the TFPyEnvironment class to function in the TensorFlow
framework.

1 self.train_py_env = suite_atari.load(environment_name=self.

↪→ env_name , eval_env=False)

2 self.eval_py_env = suite_atari.load(environment_name=self.

↪→ env_name , eval_env=True)

3 self.train_env = tf_py_environment.TFPyEnvironment(

↪→ self.train_py_env)

4 self.eval_env = tf_py_environment.TFPyEnvironment(

↪→ self.eval_py_env)

The optimizer specified in [2] and [3] is the RMSProp and shown below is
how the TensorFlow version of this is initialized. This is then passed to the
DQN agent. Notice how many of the parameters are fetched directly from the
imported config. Any parameters that will be used in other methods in the class,
are declared as object attributes.

1 self.optimizer = tf.compat.v1.train.RMSPropOptimizer(

2 learning_rate=self.dqn_conf[’learning_rate ’],
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3 momentum=self.dqn_conf[’momentum ’],

4 decay=self.dqn_conf[’decay’],

5 epsilon=self.dqn_conf[’mom_epsilon ’])

6

7 ...

8

9 self.agent = dqn_agent.DqnAgent(

10 self.step_spec ,

11 self.action_spec ,

12 q_network=self.q_net ,

13 optimizer=self.optimizer ,

14 emit_log_probability=True ,

15 td_errors_loss_fn=common.element_wise_huber_loss ,

16 epsilon_greedy =1.0,

17 target_update_period=self.target_update ,

18 gamma=self.dqn_conf[’discount ’])

19 self.agent.initialize ()

Since the epsilon ε will be varied for the DQN model during training, a
separate evaluation policy with a fixed epsilon ε = 0.01 is defined:

1 self.eval_policy = epsilon_greedy_policy.EpsilonGreedyPolicy(

2 policy=self.agent.policy ,

3 epsilon=self.dqn_conf[’eval_epsilon ’])

TF-Agents also has functions for maintaining a replay buffer, saving check-
points for this, which can be used when restarting training after a stop, and a
dynamic driver, that can take a set number of steps in the environment and save
the experienced trajectories to the experience replay buffer. Something to point
out is that the experience replay buffer actually is quite inefficient, since it will
save all frames in stacks, and there is no functionality to save individual frames
and collect them into stacks as they are being sampled. How the stacks overlap
is shown in figure 5. This means one frame will appear in four stacks. This,
along with limited memory, is why a replay buffer size of only 100 000 was used.
TF-Agents does have the PyHashedReplayBuffer class which saves experience
in a much more efficient way, without so much redundancy, by saving frames
individually. However, it is not straightforward, if possible, to use this with the
DQN class, and there was no time to create such a solution.

1 self.replay_buffer = tf_uniform_replay_buffer.

↪→ TFUniformReplayBuffer(

2 data_spec=self.agent.collect_data_spec ,

3 batch_size=self.train_env.batch_size ,

4 max_length=self.replay_buffer_max_length)

5

6 self.replay_ckp = common.Checkpointer(

7 ckpt_dir=os.path.join(

8 os.getcwd (), ’saved_models_dqn ’, self.save_name + ’

↪→ replay ’),

9 max_to_keep =1,
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10 replay_buffer=self.replay_buffer)

11

12 # initializing dynamic step driver

13 self.driver = dynamic_step_driver.DynamicStepDriver(

14 self.train_env ,

15 self.agent.collect_policy ,

16 observers =[self.replay_buffer.add_batch],

17 num_steps=self.collect_steps_per_iteration)

Below is how the epsilon is changed from ε = 1.0 to ε = 0.1 for collecting
experience over the first 1 million experience collecting steps. Notice the frames
being calculated in line 5 is the number of training steps multiplied by the
number of experience collecting steps, this is because for every training step, four
experience collect steps are performed. Once 1 million collect steps have been
passed, the epsilon is set permanently at ε = 0.1 as exploration_finished is
set to True.

1 exploration_finished = False

2

3 ...

4

5 frames = int(step*self.collect_steps_per_iteration)

6 # changing epsilon linearly from frames 0 to 1 mill , down to

↪→ 0.1

7 if frames <= self.final_exploration:

8 scaled_epsilon = self.initial_epsilon - (0.9* frames/

↪→ self.final_exploration)

9 self.agent.collect_policy._epsilon = max(

10 self.final_epsilon , scaled_epsilon)

11 elif not exploration_finished:

12 self.agent.collect_policy._epsilon = self.final_epsilon

13 exploration_finished = True

C.2 The AtariAcromuse class

The AtariAcromuse class runs training with the ACROMUSE algorithm, and
tests the agents in the environment. Along with this, the SPD and HPD measures
are calculated here. First, the average agent and the average fitness-weighted
agents must be found. The function zero_net returns a zero-value network with
the correct dimensions. The Euclidean distance is used for this, where the fitness-
weighted agent uses the proportional fitness of each agent instead of dividing by
the number of agents.

1 def zero_net(self):

2 zero_net = []

3 for layer in self.net_shape:

4 zero_net.append(np.zeros(layer))

5 return np.array(zero_net ,dtype=object)

6
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7 def _find_avg_agent(self):

8 total_fit = np.sum(self.scores)

9 spd_sum = self.zero_net ()

10 hpd_sum = self.zero_net ()

11 weights = []

12 for i, agt in enumerate(self.agents):

13 spd_sum += agt.get_scaled_weights ()

14 w_i = self.scores[i]/ total_fit

15 weights.append(w_i)

16 hpd_sum += w_i*agt.get_scaled_weights ()

17 self.weights = weights

18 self.spd_avg = spd_sum/len(self.agents)

19 self.hpd_avg = hpd_sum

The function for calculating SPD follow the equations given in section 5.1.
Note that the spd_max value is reset at the bottom in case the SPD value exceeds
the previous max value.

1 def _calc_spd(self):

2 gene_sum = self.zero_net ()

3 for agt in self.agents:

4 gene_sum += (agt.get_scaled_weights ()-self.spd_avg)

↪→ **2

5 std_gene = self._arr_sqrt(gene_sum/self.n_agents)

6 spd = self._arr_sum(std_gene/self.spd_avg)/self.n_weights

7 self.spd = spd

8 if spd > self.spd_max and self.adaptive_measures:

9 self.spd_max = spd

It is similar for HPD, but here the individual HPD contribution is cal-
culated at the same time. The weights for the agents were calculated in the
_find_avg_agent-function listed above.

1 def _calc_hpd(self):

2 self.hpd_contrib = np.zeros(self.n_agents)

3 weighted_gene_sum = self.zero_net ()

4 for i, agt in enumerate(self.agents):

5 sq_diff = (agt.get_scaled_weights ()-self.hpd_avg)**2

6 self.hpd_contrib[i] = self.weights[i]*np.sqrt(self.

↪→ _arr_sum(sq_diff))

7 weighted_gene_sum += self.weights[i]* sq_diff

8 w_std_gene = self._arr_sqrt(weighted_gene_sum)

9 hpd = self._arr_sum(w_std_gene/self.hpd_avg)/self.

↪→ n_weights

10 self.hpd = hpd

11 if hpd > self.hpd_max and self.adaptive_measures:

12 self.hpd_max = hpd

Below are the functions that finally calculate the adaptive parameters ac-
cording to the equations in 5.6. Note that if the SPD/HPD value is above the
maximum value, it is clipped to this value. If the SPD/HPD value is set to a
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variable maximum value, updating in case of higher values, this has no effect.
This can be disabled in the config to use the default SPD/HPD maximum val-
ues from [4]. The crossover rate is calculated using SPD and the fixed values
K1 and K2. The mutation probabilities are actually calculated in the AtariGen
class described under, but the _calc_p_mut_fit-function returns a list of the
P fitm values for each agent. This is the P fitm in equation (17) and (18) in section
5.6. The P divm is strictly based on SPD. The tournament size is calculated based
on the HPD value for the generation.

1 def _calc_pc(self):

2 spd_lim = self.spd_max if self.spd >self.spd_max else

↪→ self.spd

3 return (( spd_lim/self.spd_max)*(self.k2_pc -self.k1_pc))+

↪→ self.k1_pc

4

5 def _calc_p_mut_fit(self):

6 p_muts = []

7 f_max = np.max(self.scores)

8 f_min = np.min(self.scores)

9 for score in self.scores:

10 p_muts.append(self.k_p_mut *((f_max -score)/(f_max -

↪→ f_min)))

11 return p_muts

12

13 def calc_measures(self):

14 self._find_avg_agent ()

15 self._calc_spd ()

16 self._calc_hpd ()

17 p_c = self._calc_pc ()

18 spd_lim = self.spd_max if self.spd >self.spd_max else

↪→ self.spd

19 hpd_lim = self.hpd_max if self.hpd >self.hpd_max else

↪→ self.hpd

20 p_mut_div = ((self.spd_max -spd_lim)/self.spd_max)*

↪→ self.k_p_mut

21 p_mut_fit = self._calc_p_mut_fit ()

22 tour_size = math.ceil(( hpd_lim/self.hpd_max)*

↪→ self.t_size_max)

23 return p_c , p_mut_div , p_mut_fit , tour_size

The weights for Keras networks are given as arrays arranged in a list, which
is impractical. In this script the list is converted to an array of objects, where
the objects are NumPy arrays of differing dimensions. It is possible to add,
subtract, multiply and so on, with these object arrays, regardless of the differing
dimensions. However, it is not possible to sum or take the square root of the
values in one operation. Because of this, functions were written that deal with
this.

1 def _arr_sum(self ,arr):

2 tot_sum = 0
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3 for a in arr:

4 tot_sum += np.sum(a)

5 return tot_sum

6

7 def _arr_sqrt(self ,arr):

8 nw = []

9 for a in arr:

10 nw.append(np.sqrt(a))

11 return np.array(nw,dtype=object)

The AtariGen class The AtariGen class contains the methods used for evolv-
ing a new generation. AtariAcromuse creates an AtariGen object and passes the
parent generation to it, along with the crossover rate, mutation rates, tourna-
ment size and so on. The AtariGen object returns the offspring generation.

The tournament function performs tournament selection by selecting random
agents from the population, and selecting the highest performing agent. However,
as is prescribed in ACROMUSE, the HPD contribution is used instead of the
fitness score to select the parent(s).

1 def _tournament(self ,probs ,n,size):

2 participants = np.random.choice(

3 self.n_agents ,

4 size=size ,

5 replace=False)

6 winners = np.argpartition(probs[participants], -n)[-n:]

7 return participants[winners]

Crossover is done by a simple uniform probability of choosing genes or weights
from either parent. In the code, a simple boolean array is initialized along with
an inverse array. These are used to add values from the parents together.

1 def _uniform(self , arr1 , arr2):

2 sel1 = np.random.randint (0,2,arr1.shape ,dtype=bool)

3 sel2 = ~sel1

4 return (arr1*sel1) + (arr2*sel2)

Mutation is done similarly, by selecting genes to be mutated with probability
p_mut and re-initializing values for these. Using boolean arrays again, these re-
initialized weights are added with the untouched old weights.

1 def _mutate(self ,arr ,p_mut):

2 mut = np.random.random_sample(arr.shape)<p_mut

3 no_mut = ~mut

4 mut_val = np.random.uniform(low=self.minval ,

↪→ high=self.maxval ,size=arr.shape)

5 return (no_mut*arr) + (mut*mut_val)

The AtariNet class The AtariNet class is used by the AtariAcromuse class,
along with the demonstration script, to emulate the Deep Q-Network used in
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AtariDQN. Both of these networks are built up from the same config file, and
have the same structure. The class acts as a wrapper for a Keras Sequential class,
and builds up the convolutional and fully connected layers in the constructor.
There is a method for returning the shifted and scaled weights, as described in
section 5.4.

1 def get_scaled_weights(self):

2 span = self.maxval -self.minval

3 return (self.get_weights ()-self.minval)/span

The set_weights-method is also made to check for any lower bound values
before setting the weights in the network. This should not be a problem in
theory, but this did occur during earlier testing, so this was implemented to make
sure this does not happen. The time spent between generations is minuscule as
compared to the testing of the agents either way. The cause for lower bound
values appearing is not known.

1 def set_weights(self ,weights):

2 for i,layer in enumerate(weights):

3 #checking for any values equal to minval

4 if np.any(layer ==self.minval):

5 weights[i]=np.where(weights[i]== self.minval ,

↪→ self.replace_min ,weights[i])

6 super ().set_weights(list(weights))

The action-function takes an observation as input, and predicts an action
based on a forward pass through the network weights. It can also perform a
random action with probability epsilon. The function returns the index for the
action node with the highest value.

1 def action(self , observation , epsilon =0):

2 if epsilon and epsilon >np.random.rand():

3 return np.random.randint(self.action_shape)

4 activations = super ().predict(observation.observation)

5 return np.argmax(activations)
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