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Abstract

Drilling operations for oil and gas extraction is a complex and risky process. Workers are not
able to start the drilling operations unless they carefully accomplish some pre-drilling activities
such as choosing a proper site wisely and arranging the rig equipment. But no matter how
much caution the drilling setup is done, hazards and unplanned events are likely to happen
anyway. 'kick'' is a down-hole phenomenon that occurs when an uncontrolled amount of
formation fluid flows into the wellbore when formation pressure is more than hydrostatic and
fractional pressure in the wellbore. There are several procedures when experiencing a kick to
minimize the danger. However, small kicks are probable to turn into catastrophic blowouts due

to improper handling.

Managing drilling hazards is a globally crucial task in the oil and gas industry to prevent
incurable consequences such as fatal accidents, devastating injuries, loss and huge damages
to the rig assets, and destructive influence on the environment. Due to the complexity of
downhole conditions, finding the right and perfect way to reach the desired depth fast is
extremely challenging. Drilling operations are directly accompanied by dealing with a huge
volume of data. Therefore, it has become a major concern for many oil and gas companies
to manage the datasets obtained from rigs to gain valuable operational insight. Data analysis
in this area assists in effective decision-making in different activities while balancing the

operational complexities with the associated risks.

Performance enhancement is the main wish in the oil and gas industry. However, traditional data
preparation and analysis methods are not sufficiently capable of rapid information extraction
and clear visualization of big complicated datasets. Data mining can make a big difference
in operational performance by exploring an existing massive dataset to uncover unknown
trends and identify relationships and anomalies in the dataset. Then, with machine learning,
computers are able to learn the patterns by developing fast and efficient algorithms to make

predictions about new datasets.

The main focus of this thesis is on mitigating hazardous events in drilling operations by
enabling the identification and prediction of kicks ahead of time. In this study, firstly, the raw
synthetic data is generated with the OpenLab drilling simulator created by NORCE. During
drilling a well a large number of parameters are being monitored and saved which are processed
through data cleaning, feature scaling, outlier detection, data labeling, and dataset splitting.
Feature engineering and feature selection are the next vital steps in the dataset preparation
phase to decide on which feature combinations are suitable to be applied. The data samples
are proportionally split into train set and test set to be measured by some evaluation metrics
for accuracy, precision, recall, and F1l-score estimation. Then, Machine Learning models
are created and developed to train the data. Finally, the models are going to be evaluated to
optimize the whole process of kick identification and prediction. The proposed model can

potentially be improved in terms of accuracy and efficiency.
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Chapter 1

Introduction

1.1 Overview

In this data-driven era, understanding what to do and how to use the vast amount of
data brings promising solutions to help experts in decision-making process and desired
outcomes. Big data is a field dedicated to advanced analytic techniques to deal with
complex and extensively large datasets. Big data methods and techniques with the
capability of managing data familiarize users with unknown patterns, correlations, and

deep insights.[1]

The oil and gas industry heavily relies on big data analysis. With the use of big data, oil
companies can improve productions while optimizing costs. Oil well drilling operation
is inherently associated with unstructured raw data. The better the oil companies
interpret various types of data and unearth unknown trends, the more they become
profitable and efficient. Extracting, investigating, and examining hidden patterns is
considered a boon in regard to risk management in this field. Drilling operation hazards
would be lied secretly behind these hidden patterns.[2]

During the deep-water drilling process, the subsurface challenging environment poses
a significant threat in every drilling and well activity and a lot of work has been
devoted to increase safety. Well control has become the main concern among oil and
gas companies to protect lives and also prevent loss of natural resources. One of the
most common risks is well kick which typically occurs when the formation pressure
exceeds the wellbore pressure. In this situation, an intrusion of unwanted fluids runs
into the wellbore. Being able to forecast kick incidents in advance will definitely
diminish the probability of fatal blowout occurrence like the Deepwater Horizon oil
spill which happened in the Gulf of Mexico in 2010.
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1.2 Motivation and Objective

As the world is moving toward digitalization, the oil and gas industry does not seem to
be far behind. During the drilling operation, a permanent concern is kick prediction
and well control. The ever-growing amount of data generated by oil and gas compa-
nies raise the demand for advanced real-time predictive analytics. Data mining and
machine learning are two methods integrated with drilling recently, with the objective
of preventing getting overwhelmed or lose track of data. Due to some shared char-
acteristics, the line between these two terms sometimes gets blurred. However, their
success in challenging domains -like drilling- makes them popular.

Drilling operations generate a sequence of data continuously on a time-series basis.
The abundance of sequence data has motivated interest to employ reliable techniques
and develop machine learning models for reservoir management, well control, and
people safety during drilling while data is continually being collected and stored. Kick
prediction is categorized as time-series forecasting where predicting future values is
based on previously observed values. In time-series observations, a time dimension is
added as an explicit order dependence between observations. Time series forecasting is
an important area of machine learning and the appropriate forecasting methods depend

largely on what data are available.

The main goal of this thesis is to estimate how the sequence of observations will
continue in the future in kick occurrence. Although the application of machine learning
techniques for time-series forecasting is not straightforward, a strong data analysis will
provide an effective dataset for the model. Improving the kick prediction process
relies on the data fed into the model. The occurrence of the kick is detected by locating
sensors to monitor drilling parameters. However, sensor-generated data are not directly
ready for the model unless they get cleaned and prepared beforehand. Outliers and
missing values are frequently encountered in the process of exploring and exploiting oil
and gas data collections. After data cleansing, the large volume of data still needs to be
customized by feature selection to make the access time fast and the total computation
time less expensive. Since time series data have very high dimensionality, an efficient
feature selection algorithm selects a smaller subset of raw data with relevant features

with aim of reducing computational overload.

This study shows how to develop machine learning algorithms from the data collection
phase to the real-time algorithm implementation phase. After data preparation, the
type and kind of data play a key role in deciding which algorithm to use. Evaluating

some models that might be the best fit for certain situations and then finalizing the
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model is the best approach that empirically gives you the best results. In a time-
sensitive prediction model like the kick prediction model, finding the best parameters

for the model is a comprehensive guide for model optimization techniques.

1.3 Limitations

Instead of running the OpenLab simulator only once and get as many as kicks de-
sired for this work, multiple simulations are run for accomplishing this thesis and
therefore, the data is spread across multiple tables and must be gathered into a single
dataframe. Combining multiple simulations disintegrates the time-series consistency
property of the data since multiple shorter time-series are attached together to generate
the demanded number of kicks. To detect abnormal and rare behavior in a set of
observations with acceptable accuracy, it is required to have as many data samples
to achieve a desired level of performance. However, since suppressing a kick during
drilling operations is not an effortless action, it is challenging in the OpenLab simulator
similarly. Thus, the simulations need to be stopped and start again after a kick occurs.

1.4 Methodology

The following contributions are made in this thesis:

* Get familiar with Artificial Intelligence and Data Mining and their roles in

drilling operations
* Understanding big data
* Analyzing big data
* Generate new optimal hyperparameter
* Select optimal hyperparameter combination

* Evaluate training/test dataset required to obtain predictability with the lowest
error

* Identify and build machine learning models with the best performance regarding
the issue

* Evaluated machine learning models accuracy, Precision, recall and other perfor-
mance metrics
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* Select the best-fit machine learning model to detect misbehavior with lowest

False Positive and False Negative flag
The remainder of this thesis is outlined as follows:

Chapter 2: gives a general introduction to the drilling operations and the
potential risk and hazards in offshore drilling as this process is considered as one
of the five most dangerous professions in the world. Then by taking a deeper
look at the abnormal trends in drilling operations, it would be obvious that a safe
and effective drilling operation is not possible unless by a clear visualization and

abnormal trend analysis.

Chapter 3: introduces Artificial Intelligence and its two primary applications
named Data Mining and Machine Learning. This chapter is then followed
by CRISP-DM model which is necessary for understanding the steps towards
solving this forecasting problem. The chapter finally ends with literature review

subsection.

Chapter 4: focuses on Big data and Big data analysis since drilling opera-
tion is one of the fields always dealing with a massive amount of data. So,
‘making use’ of data to provide insights that lead to improved performance is
challenging. Moreover, the "time" component adds extra complexity to this
forecasting problem since the dependencies between observations in inevitable.
Therefore, coming through all the previous chapters, chapter 4 categorized the

kick detection and kick prediction as time-series multivariate forecasting.

Chapter 5: After becoming acquainted with the main problem and its character-
istics, it is time to start working with data. The OpenLab simulator is introduced
thoroughly in this chapter. Then the data created via the simulator is analyzed
and prepared for further stages. The very important step named feature Engi-
neering and feature selection is applied by use of a useful package TSFRESH
from Python.

Chapter 6: examines the factors for choosing the best machine learning model.

This chapter also introduces the performance metrics for model assessment.

Chapter 7: contains the implementation and evaluation of the selected machine

learning models.

Chapter 8: gives a conclusion and future work.
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Background

2.1 Drilling Operation

The entire global population would experience a better life with oil and natural gas
production as a leading industry. Since energy has been a key enabler of living
standards, meeting the energy needs of a growing world population will be critical
to achieving a greener planet. Oil has become the world’s most important source of
energy since the mid-1950s, while environmental concerns and new technologies led
another energy source to shift from coal to oil. When oil emerged as the preferred
energy source, it has been a provider of some of the most essential elements of modern
life improving. Primarily, the electric light bulb and the automobile were two key
drivers that changed the world. However these days, within our daily lives oil is used
almost everywhere like generating heat, fueling vehicles and airplanes, manufacturing
almost all chemical products such as plastics, detergents, paints, and even medicines
and food.[3]

The drilling process can begin after determining a locality has enough resources to
explore. Petroleum reservoirs can be found beneath land or the ocean floor and can
be extracted by drilling operations. Drilling is a machining process, involved with the
creation of holes by using a twist drill bit. The act of cutting and removing material
to create holes is extremely complex as the unknown condition of the seabed. A
combination of complexity and a large number of unknown parameters of subsurface
layers makes deepwater drilling a challenging business. With a strong focus on areas
relating to safety, environment, and cost-effectiveness, drillers may achieve efficient

results and highly functional oil and gas benefits.

Parameters involved in drilling play an important role in indicating the quality of

the drilling process, in terms of the produced hole quality, tool life, and energy
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Drill pipe —1=

Annular
space

Cuttings—F-

Well wall —

Drill bit ——

:>b

FIGURE 2.1: Illustration of the drilling fluid circulation in the wellbore
consists of drill pipes and a heavy drill bit. Gas emission can occure
during circulation.[4]

Drilling fluid —

consumption. After the geological location for the well has been selected, the crew
sets up the rig and equipment. The drilling process of a well consists of boring a hole
by rotating a bit. Drill pipes are durable steel pipes that conduct the force to the drill
bit (Figure 2.1). This method uses a heavy bit with the hardest material and sharp
teeth that are repeatedly lifted and dropped that crushes and breaks the formation.
As the drilling bit passes through a producing formation, gas can emit from the oil
in the formation. The excavation of several kilometers deep into the earth’s crust
continues until a reservoir is reached. During this period, drilling bit needs to be
replaced frequently as they get damaged and worn after several days or weeks of using.
Drill bit replacement will help to achieve the desired penetration rate and long-term

productivity.

Drilling operations rarely leave a clean hole suitable for long-term production, and that
is the reason why drilling is performed in the presence of drilling mud. Drilling mud,
also called drilling fluid, are mixtures of natural and synthetic chemical compounds
which is pumped through the drill bit nozzles at relatively high velocity in order to
circulate the fluid. To reach a deeper depth, rock cuttings must be transported out of
the wellhole during the drilling process. Therefore, drilling mud is used throughout
the process to clean the bottom-hole and carry the rock cuttings to the surface. Another
responsibility of drilling mud is lubricating and cooling the drill bit because the bit
and drillstring rotation produce a relatively high temperature at the bottom-hole during

operations. The drilling mud, moreover, helps prevent the collapse of the openhole -the



2.1. Drilling Operation 7

™ Formation

Fines

I

Fracture

Formation #%
Fines ¥y

FIGURE 2.2: How a balance between formation pressure and hydrostatic
pressure keep the wellbore stable [5]

part of the well that is exposed to the reservoir and not protected by casing- by exerting
hydrostatic pressure. This pressure increases in proportion to the depth measured and
should balance or exceed the natural formation pressure to help prevent an influx of
gas or other formation fluids. A kick or blowout is physically caused by the pressure
in the wellbore is less than that of the formation fluids. Therefore, as the formation
pressure (pore pressure) increases with depth rapidly, the density of the drilling mud
is increased to help maintain a safe margin and prevent kicks or blowouts [6]. As itis
shown in Figure 2.2, careful fluid design based on testing and sampling can preserve
the wellbore stability and minimize the potential formation damage. Whenever the bit
reaches the depth of the targeted zone, the casing and cementing phase begins.[7]

A drill bit is inserted into the well via a drillstring after running the casing (Figure 2.3)
and before cementing of well. The drilling fluid is then sprayed out through the
nozzles and circulated for a certain amount of time to remove any remaining cuttings
from the well for a trouble-free operation[9]. Cementing and running the casing
would have unexpected difficulties in presence of cuttings or mud with undesirable
properties. When precautions were taken, a cement slurry is then pumped into the
well and allowed to harden to permanently fix the casing in place. Since the drilling
process is sectional, the well is drilled to a certain depth, cased and cemented, and
then the well is drilled to a deeper depth, cased and cemented again, and so on [10].
Displacement fluid such as drilling mud, brine, or water from the casing interior and
borehole is a fundamental task cementing is responsible for. Prior to that, placing a
cement sheath in the annulus between the casing and the formation provides a barrier

to the fluids flow from or into the formation, and bonds the casing to the formation to
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FIGURE 2.3: Runnig casing process is followed by drilling to deeper
depths and by continuously adding lesser sized casings until the desired
drilling depth is reached [8]

protect the steel casing against corrosion by formation fluids. In addition, the cement
sheath provides a hydraulic seal that establishes zonal isolation. finally, testing some
properties such as hardness, alignment, and a proper seal can be tested after letting the
cement harden. Cementing is a critical procedure in the well construction process and
failure to achieve these objectives may severely limit the well’s ability to reach its full
producing potential [11].

Conductor casing

Cement Surface casing

Intermediate
casing

Production liner

FIGURE 2.4: Typical casing and cementing program. Multiple strings
from large to small diameter conductor may be required to reach the
target producing zone. [12]

Figure 2.4 demonstrates the process of tripping, casing, and cementing where these
processes are continued and repeated for each of the planned casing points until the
well reaches the total depth (TD) of the well. Meanwhile, adding new sections (joints)
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of drill pipes and multiple strings of the intermediate casing may be required to reach
the target producing zone as the hole gets deeper. When it comes to drilling operations,
it is required to have speed and precision in the process while keeping track of well
conditions. Drilling and well operations are characterized by considerable complexity.
There are several key causes of well control incidents and vital requirements for
monitoring safety and the ability for continuous well control in all phases of a well’s
lifetime. [13]

2.2 Potential Risks in Drilling

Drilling in any environment is potentially hazardous, and oil and gas well drilling
operations are not exceptions. presents additional risk factors. Drilling continues in
several stages and servicing activities involve many different types of equipment and
materials. There are hazards associated with the preparation of camps, worksites,
and drill pads, as well as those specific to the operation of drill rigs[14]. Although
from the very early beginning of the drilling process, the operators have always been
seeking to reduce the drilling costs mainly by increasing the drilling speed, an efficient,
well-designed, and well-operated drill job must ensure maximum safety for drillers
and workers, minimum damage for the formation and environment. It is almost certain
that many problems and difficulties encounters in different types of hydrogeological
formation. Due to the nonhomogeneous formations, problems will occur while drilling
a well as the depth and diameter of the hole increases, even in very carefully planned
wells. Here, it is vital to take a few precautionary measures and apply wisdom
intelligently.[15]

These unplanned events can either lead to minor impacts to the drilling like small
amounts of fluid loss, or to catastrophic wellbore failure like the disaster that happened
in 2010 due to the explosion on the Deepwater Horizon oil rig in the Gulf of Mexico
and caused economic loss, environmental pollution, injuries, and deaths. Although the
crew encountered multiple hazards and warnings, a series of decisions that increased
risk and failure to consider all risks associated with the operation was a contributing
cause of the Macondo blowout[16]. The more the drillers are aware and prepared for
the drilling hazards, the better they can recognize and control the troubles to prevent

such tragedy. The following are some of the most prevalent problems faced in drilling
[17]:

¢ Loss of Circulation

¢ Kick and Blowout



10 Chapter 2. Background

* Borehole Instability
* Pipe Sticking and Drillpipe Failure

* Hole Deviation and Hole Cleaning

Mud Contamination

Offshore drilling is considered one of the five most dangerous professions and the
risk is unavoidable. Many drilling operations take place in remote locales with rough
seas and harsh conditions and workers are on shift for an average of 12-hours a day
dealing with combustible materials and heavy machinery. With seven to 14-days
on the rig at a time and isolated hundreds of miles off the coast, make a challenging
environment for emergency situations. There is significant value in anticipating drilling
hazards and a thorough understanding of the drilling hazard database[14]. Although
drilling operation is subjected to multiple factors that consequently cause major or
minor drilling hazards, most of these factors are linked to the drilling mud which its

characteristics are of high importance and its optimization could lead to risk mitigation.

Kick is referred to as an uncontrolled and unexpected entry of water, gas, oil, or other
reservoir fluid into the wellbore during drilling due to an under-balanced condition.
One of the objectives of the well control is to make a balance between the mud
hydrostatic pressure and the formation pressures. It means the drilling mud must
be heavy enough to hold back the formation pressure but not so heavy to cause the
formation to fracture. Figure 2.5 shows the expected balance of mud weight. If the
pressure at the bottom-hole is maintained at a value slightly greater than the formation
pressures, further influxes of formation fluids into the wellbore can be prevented. The
unwanted flow -kick- is physically caused when the pressure in the wellbore is less
than that of the formation fluids.

The worst kind of kicks are gas kicks and it is recommended to treat all the kicks as
gas kicks. The high mobility of gas makes the gas kicks riskier than fluid kicks in
the wellbore. They will be pumped up the well, expanding uncontrollably due to less
density, displacing fluid from the well and furthermore reducing pressure and allowing
more kick to enter. Water kicks may be troublesome, but they rarely constitute a
significant threat to the safety of the crew and environment. An oil kick is generally
less dramatic than gas kicks as it does not migrate upward and expand as a gas kick

does, giving personnel little or enough time to react.

As it is mentioned before, one of the main responsibility of drilling mud is preventing
well control issues. The drilling mud also should comply with established health,

safety, and environmental (HSE) requirements so that personnel is not endangered and



2.2. Potential Risks in Drilling 11

— Hydrostatic

Overburden (OB)

Principal Stress (PS)

Pore Pressure (PP}

eeeeeeoe Fracture P. (FP}

Pressure

FIGURE 2.5: The right range for drilling formation pressure (pore pres-
sure as red line) to balance the bottom-hole pressure [18]

environmentally sensitive areas are protected from contamination. Mud is also the
only component that is in constant contact with the wellbore as it is circulated down
the drill string, sprayed out the bit nozzles, and backs up the annulus to the surface
throughout the entire drilling operation. Once mud continues to flow to the surface
with some loss to the formation, partial loss circulation happens. On the other hand,
total loss circulation occurs when the mud flows into a formation with no return to
the surface. Therefore, the drilling mud is a major factor in the success of the drilling

program and deserves careful study.

Because kicks have been always one of the most challenging concerns facing the
industry, taking necessary measures in controlling and handling them is of paramount
importance. This is often attributed to the use of experts and experienced personnel
in key positions. If the unwanted flow is controlled, the kick is considered killed.
However, an uncontrolled kick that increases in severity lead to catastrophic issues
what is known as a blowout[19]. Therefore all personnel must be aware of kick
indicators and be prepared to take immediate action if any indicator or warning sign of
a kick appears. Since kick indicators in well control are of the utmost importance to
prevent a well control incident, it is crucial to have a careful observation and positive

reaction to these signs. The most common causes of kicks are:
* Insufficient mud density
* Lost circulation

* Abnormal pressure
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* Poor tripping practices

» Cementing operations

* Swabbing/surging

Any change from established trends usually indicates downhole problems. The alert-
ness in monitoring parameters and recognizing signs and warnings is of the utmost
importance to prevent a well control incident. Determining early possible kick indica-
tors in well control could be sufficient to assist companies and regulators in preventing
another Macondo type incident. If the interaction between crew and system (indica-
tors, signs, warnings) is to be focused on constantly, the part of the accident related
to the operators’ ability would decrease enormously. For instance, in the Macondo
disaster, bad management and a communications breakdown by BP and its partner
about unexpected results from a critical negative pressure test on the rig were the main
causes for the incident. The misreading of that pressure test and the decision to move
ahead with an overbalanced condition led to one of the world’s worst offshore oil rig
disasters. The first well control actions were to observe well kick indications and
to react promptly to minimize the influx and the blowout probability by closing the
BOP (blowout preventer) and then routing the fluids exiting the riser to the Deepwater
Horizon mud gas separator (MGS) system. Poor decisions by management were the
real cause that an entirely preventable disaster changed to loss of lives and waste of
0il.[20]

The various parameters that have been recorded throughout the drilling give an effective
indication of the quality of the drilling process, in terms of the produced hole quality,
tool life, and energy consumption. This process, which is sometimes referred to as
measuring while drilling (MWD) or logging while drilling (LWD) involves monitoring
the drilling process by mounting several sensors on a high-cost environment like
rotary destructive drilling rigs where wireline logging is difficult and time-consuming.
MWD/LWD offers advantages to measure drilling parameters such as fluid density,
torque, drilling speed, flow-in and flow-out differential (delta flow), stand pipe pressure
(SPP), rate of penetration (ROP), weight on bit (WOB), and so many other factors like
pressure and temperature. The outcome of the process is a set of logs that describe
the variation of the drilling parameters with depth and indicate any deviation from
standard trends and patterns in order to help analysts establish the correct orientation
of the drilling system, avoiding costly mistakes in the process. Changes in any of the
above-mentioned parameters can indicate pressure changes in the well and potentially
that the well may be kicking.[21]
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2.3 Abnormal trends in drilling

Throughout the drilling process, a huge amount of data in form of sensor measurements
is produced over time. This data contains the main source of detailed information about
drilling operations. Each of these drilling operations has a specific pattern in rig sensor
measurements. To minimize the consequences of undetected kicks, it is desirable to
analyze the existing patterns so as to identify abnormal drilling situations. Abnormal
trend detection is going to be widely used in drilling activities for detecting one or
more hazards with the aim of providing a safe and effective drilling operation as any of
the one or more hazards could be avoided. In this regard, several indicators might be
defined to accelerate the abnormal trend analysis. Moreover, one or more thresholds
could be outlined to support the safety process. When a trend analysis indicates that a
threshold has been reached or exceeded, an alarm would be triggered. Then, a drilling
operation should be altered or aborted decided by the drilling crew. This technique
could reduce drilling costs and minimize the probability of encountering problems due

to working with optimized parameters.[22]

In well control, since kick poses the highest risk to the safety of the wellbore, kick
indicators are of the utmost importance to show what indicators are positive evidence
of a kick or what are the warning signs. To monitor the down-hole conditions, while
some experts focus on analyzing the returning drilling fluid at the surface, others
rely on downhole monitoring along with surface monitoring. The exclusive surface
monitoring has several limitations, such as a delay due to lag time and thus losing
precious reaction time available to the crew to take actions to the kick. However,
the downhole monitoring itself is prone to many challenges, including the possibility
of excessive false alarms. Due to the fact that kick detection is complicated, the
possibility of blowout prevention could be high if multiple kick indicators will be
monitored simultaneously. Reading and interpreting a mixture of sensor data together

could limit the frequency of false alarms significantly.[23]

In general, the rig activities have very clear and straightforward patterns in real-time
measurement. When deteriorating trends are observed for some drilling parameters,
this could be a sign of potential unwanted drilling conditions. Sensors are placed
within the bottom-hole assembly to reveal what is happening close to the bit, while
the surface sensors indicate what is happening with the drilling fluid properties. By
distinguishing between normal and abnormal operation trends, a diagnostic procedure
is established to identify borehole changes up to several hours in advance and take
preventive action[24][25]. But, there is one question that might occupy investigators,

leaders, and safety professionals’ mind:
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“Why did the crew fail to see what was going to happen?" or "How could they have
not recognized the signs of the hazard?"

The answer appears to be found in the difference of "errors" and "failures" [26].
Detecting process deviations -known as symptoms- during the drilling procedure, will
lead to capturing a probabilistic understanding of the downhole process. Then, the
recognized symptoms are used as input parameters are translated into understandable
concepts, and then interrelated through cause-effect relationships in pathways linking
causes to related failures and which errors are causing the failure. Not all the symptoms
are signs of probable hazards or uncontrolled situations. The observations of different
experiments have suggested only a few deviations from the standard can be a sign of
a kick situation. For example, the existence of different flow patterns is sometimes
based on hole cleaning, pipe movements, tripping. Although changes in flow rate are
powerful signs of kick, it is essential to first establish a certain threshold and stop
the process when deviation from the normal trend is above the threshold [27]. It is
recommended that in experiencing symptoms, the driller should consider the potential
for the well to kick and check that if everything is as it should be before closing the

well.

Early detection of kick requires the crew to notice any subtle changes in established
patterns of rig activities. By investigating the sources, drilling engineers can come up
with improvements for the rig performance and get rid of the abnormality. However,
the various signs that have been recorded as early warning indicators may change from
well to well so they are not consistent in all situations. Generally, as it is explained
before in section 2.2, a kick is defined as an unexpected influx of formation fluids into
a borehole. The pressure window seems to be wide near the surface but as drilling
proceeds in deeper depth, the pressure window becomes narrow. The kick could occur
when the formation pressure exceeds the wellbore pressure and fluids begin to flow
from the formation into the wellbore. In other words, when the pressure exerted by
the drilling mud column is not great enough to overcome the pressure exerted by the
fluids in the formation drilled, a kick can happen. Some of the warning signs of kick
can be found from the following list:

* Changes in flow

* Increase in drilling rate of penetration
* Pit gain or loss

* Increase torque and drag

* Mud property changes
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* Changes in Shape and Size of cuttings and rocks
* Changes in background gas

* Changes in return mud temperature

* Decrease in D-exponent

* Drilling fluid density reduction

In normal drilling, there are some fluctuations that are categorized into normal trends.
However, any deviation from the normal trend of a parameter is called abnormality
and should be detected before losing well control. To evaluate downhole conditions
while drilling numerous techniques are being utilized including drilling and logging
indicators. It is vital to interpret all indicators in a group since considering them
individually regardless of their relation to other parameters would result in invalid
decision-making. The rest of this chapter is dedicated to reviewing some of the

important signs of kick.

Using a variety of equipment and laboratory techniques, mudloggers are responsible
for collecting and monitoring information from drilling operations and rock samples.

This information is then interpreted by the driller team for operational purposes.

FIGURE 2.6: Any change in drilled cuttings size and shape might indicate
well control problematic issues [28]

For example, drilled cuttings brought out of the well should be rather consistent in size
and shape. (Figure 2.6). Normally, pressured formation produces small rocks that are
flat with rounded edges. Under-balanced situations developed by abnormal high pore
pressure zones can cause the formation to break. The broken cuttings are more sharp
and big in comparison to those which are cut with a drill bit. Therefore, larger irregular
pieces of cutting could indicate a well control situation. Changes in cutting shape and

cutting load need to be monitored at the surface. However, among all parameters, the
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one which can be measured by sensors and not human are of utmost interest in this
work.[28]
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FIGURE 2.7: Pit level is constant during normal drilling and circulation
[21]

When a kick enters a wellbore, it means the mud weight has failed to meet the
requirement to be at an adequate level to overbalance pore pressure. Therefore, the
influx begins finding its way to the surface and shows up as a gain in the volume of
mud at the surface and also an increase in the flow-out rate of the well. In normal
circulation, the flow-in and flow-out of the well are in a steady state condition. As
illustrated in Figure 2.7, the pit level is constant during normal drilling. A kick breaks
this balance since the fluid system in a drilling rig is a closed system and increases in
the amount of flow-out will cause increases in pit level. A kick is an unwanted and
unexpected amount of fluids entering the wellbore that displace an equal volume of
mud resulting in pit gain (Figure 2.8). Adversely, a decrease in pit volume indicates a
primary indicator for loss circulation in drilling as it shows a leakage or fluid loss to

the formation.

In the drilling process, flow-rate change might happen with drill pipes pulled up to
do connection or placed back for further drilling. In some cases, a small number of
changes in flow-rate are not always dangerous, but they still need to be recognized based
on their peak flow-rate. Traditional alarm systems were sensitive to very small and
simple changes and consequently generated a large number of false alarms. Probability
computations and threshold set up is a way to reduce false alarm in this regard. Based
on the work has been done in [29], modern ML algorithms can reduce false alarm while

maintaining tight alarm threshold as it is shown in Figure 2.9. The ML algorithms can
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Pit

FIGURE 2.8: Pit gain (loss) is a relatively common problem in deep-
water wells due to the entrance (exit) of unwanted and uncontrolled
amount of fluids into (from) the wellbore. [21]

recognize any unusual gain or loss immediately. False alarm in a system influences the
tendency of not taking alarms very seriously even when an influx or a threat happens.
However, it is highly suggested to respond to the flow-rate changes or any other changes
to be able to take corrective action in a timely manner rather than ignoring the alarm
that indicates the danger.
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FIGURE 2.9: Abnormal behaviour in flow-rate and how ML algorithms
can reduce false alarm by maintaining tight alarm threshold [29]

Another factor that indicates kick is penetration rate which is the speed at which
the drill bit can break the rock and thus deepen the wellbore. Generally, as drilling
progress, a normal trend is the slight decrease in the penetration rate as the well is
being drilled ahead. In this state, a sudden increase in ROP might show downhole

abnormal conditions which should be taken under consideration. The change in the
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rate of penetration is known as a Drilling Break(Figure 2.10) and might happen either
when the soft formation is being penetrated or abnormal high pore pressure zones are
encountered. Although the former result can be ignored, the latter result indicates the
difference between hydrostatic and formation pore pressure goes down and the influx

could have entered the well.

BL s /]

/ - Drilling Break

FIGURE 2.10: Any change in drilling normal trends can be warning

indications of occurrence of a well control situation. For example a

change in rate of penetration is called drilling break and it is a sign of
potential problems. [21]

Generally, the density of formation increases with depth. The mud column is providing
the hydrostatic pressure in the wellbore and this is the primary means of preventing
a kick. The circulating mud controls pressure by adjusting its weight at each depth.
Entering an abnormal high-pressure zone disturbs the balance and consequently, a
decrease in the formation density occurs as illustrated in Figure 2.11. The decrease in
the rate of compaction of shale in this trend shows an abnormality in pore pressure.
This happens because an increase in pore pressure within the formation prevents

compaction.

Depth

A 4

Density

FIGURE 2.11: A deviation from a normal trend in formation pressure
indicates a high-risk incident is going to happen [30]
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In drilling parameter measurements, the downhole mud weight data such as ECD
(equivalent circulation density) or ESD(equivalent static density) monitoring could
be possible ways of kick detection, since a kick can be identified from the pressure
while drilling (PWD) measurements like an abrupt increase in downhole pressure and
temperature (Figure 2.12). Taking into account that the temperature will normally take
a sharp increase in transition zones, abnormal changes in temperature could also be
caused by many other factors including circulating rate, mud volume, hole size, and
especially drilling into transition zones. Usually, the formation fluid flowing into the
wellbore has a higher pressure than the mud pressure and a higher temperature than
the mud temperature. Therefore, considering downhole measured mud pressure and

temperature can give an early indication of kick.
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FiGure 2.12: Well influx/kick detected from pressure while drilling
showing an abrupt increase in measured downhole pressure (PWD or
ECD)and temperature. [31]
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Chapter 3

State Of the Art

3.1 Artificial Intelligence in Drilling

During the last decades, there have been major changes in well requirements and
drilling capabilities. There are many different factors involved during drilling such
as fluid formulation, property determination, its performance in the well, and its
relationship with other wellbore drilling parameters while the relationship among them
is complex yet advantageous. While new capabilities allow drillers to realize more
ambitious well objectives, they also face new challenges. Monitoring the characteristic
of each parameter especially at downhole conditions is a challenging task requiring
advanced modeling techniques as well as human intuition and experience. Traditional
data analysis methods were not sufficiently capable of rapid assessment of extensive
datasets from a rig. Today, artificial intelligence (AI) is making a difference in a
discipline looking for a significant improvement in the drilling process because the

value of Al is making better decisions than what humans alone can do.

Although humans are naturally prone to making mistakes, these mistakes can have
particularly devastating and long-lasting effects in some areas. As discussed before,
human error is one of the greatest causes of unwanted events due to false data analysis
in the oil and gas industry. Around 80 percent of accidents in the offshore oil and
gas industry are blamed on human error. Where human error originates in a lack of
knowledge or focus, Al which is considered as a remedy for human errors has replaced
human intelligence, solving complex problems with a level of consistency and speed
that’s unmatched by human intelligence and the revolution begins. Al has emerged
as an enabling technology for several purposes and addressing more complicated
problems. However, it can not replace human intelligence where it is needed actually.

Al exists to empower human intelligence to tackle high-level issues. For example,
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in offshore situations, once a problem is detected, collecting relevant rig data and
designing the right solutions are all done by humans. Afterward, the Al come up with
creating the right processes for the Al solutions to adapt, learning from feedback, and
producing results. [32]

Data
Science

FIGURE 3.1: A clear visualization of overlapping Artificial Intelligence-
related terminology. [32]

Digitalization of oil and gas technological processes based on the use of Al methods
is among the prevailing trends of the 21st century. Al is a term used to cover different
types of analytic. Although Alis adiverse field, within the oil and gas industry there are
two primary applications of this technology: machine learning and data mining. 3.1
From initial exploration activities all the way through to the end, Al applications
indicate how the technology has helped cut operational costs and enhance efficiencies
across the industry. it’s no surprise that a recent EY (Ernst and Young) survey showed
more than 92 percent of oil and gas companies are either currently investing in Al or

plan to in the next two years.[33]

3.1.1 Data Mining

In drilling operations, only the data can reveal the right and the wrong about the
procedure. The continuous and ever-growing volume of data poses a serious challenge
for companies narrowing their efforts on cleaning up large datasets to uncover valuable

new insight with the aim of improving reservoir production. The complexity and
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uncertainties of drilling data make an urgent need to summarize signal processing
and sensor-data analyzing so that practitioners in this field can understand each other
in order to enhance oil and gas drilling functions. Data mining is a process used
by companies to turn raw data into useful information in meaningful patterns and
trends. "The parameters recorded for drilling optimization are critically important to
be representative of the data they are meant to reflect" [34]. With the help of data
mining, previously unknown and possibly useful relationships in data are discovered
in order to provide the data in an easy-to-share format like graphs and tables. Since
companies are dealing with significantly larger sets of data with more varied content,
discovering useful structures such as patterns, models, and relations in data needs a
big data strategy. The major concern regarding this application is using only selected
information, which is not representative of the overall sample group to prove a certain
hypothesis. [35]

3.1.2 Machine Learning

Machine learning (ML), is a computer system that can learn to perform automated
tasks and think for itself through an algorithm that absorbs new data and experiences.
Following human-written algorithms, ML allows users to recognize patterns in vast
assortments of data to predict possible outcomes, to plan and take action for the future.
ML is the best choice to analyze large data sets with algorithms and make predictions
based on the insights gained from the data. This important branch of Al impacts
the world around you in both obvious and obscure ways. In simple words, artificial
intelligence is the study of creating computer systems that operate with human-like
intelligence to accomplish repetitive or tedious tasks, and then machine learning is a
prominent way of achieving that goal. The impact of Al and ML on the oil and gas
industry goes beyond cost savings, offering several potential advantages.

ML has changed the way the oil and gas industry runs. Not because it learns how to
replace humans, but because it reshapes the oil and gas exploration and production
landscape. It is now possible to teach machines to enhance the skills, performance,
and cognitive power of humans. Within the offshore oil and gas industry, injecting
ML-based techniques into workflows allows computer systems to learn from and
interpret data without human input, refining the process through iterations to produce
programs tailored to specific purposes. To make better use of the data, first, data
mining is applied to clean and enrich the density of well-log datasets and avoid
monitoring complex internal operations and be able to respond quickly to concerns
that human operators may not have been able to detect. Then, prepared data from

well logs can be fed into ML algorithms to produce accurate models to predict the
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probability of future events or accidents. The specialists can use Al in data science to
accelerate their interpretation of complex data and more importantly provide a robust
feature detection tool with a more exhaustive approach than manual efforts to make
exploration and production more accessible. ML can also be used to run simulations,
using predictive data models to discover patterns based on a variety of inputs and
discover new exploration opportunities based on existing infrastructures. Therefore,
ML does not necessarily replace people, but it only enables talented people to work

better, safer and smarter.

Although the chosen algorithm for solving a problem must be relevant to the problem
and the data, None of the ML algorithms works best for every problem. There are
many factors affecting the process of choosing a proper algorithm among all the present
algorithms such as the structure of the datasets and the nature of the problem. As a
result, many different algorithms should be taken into consideration to evaluate their
performance and choose the final winner. In Chapter 6, I will discuss the steps toward
choosing the best ML algorithm among the common ones.

3.1.3 Neural network

Among the common ML algorithms, the Neural Network (NN) has the advantage
of finding complex patterns and nonlinear relationships between inputs and output.
Due to the sequence dependence among the input variables in time-series prediction
problems, extra complexity is added to this kind of problem. A powerful type of
Neural Network called Recurrent Neural Network (RNN) is able to handle sequence
dependence in complex areas of deep learning.[36] Mostly, RNN designed to recognize
data sequential characteristics and use patterns to predict the next likely scenario for

problems that are not solvable with another ML modeling.

Traditional neural networks have a major shortcoming in understanding previous ob-
servations and informing the upcoming observation about what happened in the past.
RNN addresses this issue with the loops that exist in the structure that allows informa-
tion to persist. Figure 3.2a shows that once the output of the network is produced, it is
copied and returned to the network as input. RNN preserves the context of previous
inputs and thus, both current input and output are analyzed as the network trains. In
Figure 3.2b, tanh is the activation function that can be replaced by any other activation
function as well.[37] Although the main and most important characteristic of RNN is
the Hidden state in vanilla RNN, the hidden state is constantly being rewritten. The
Hidden state remembers some information about a sequence, but it is extremely difficult
for RNN to learn to preserve information over many timesteps. Therefore, the main

disadvantages of RNN are vanishing gradient and exploding gradient problems.[38]
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FIGURE 3.2: Recurrent Neural Network [39]

Long Short-Term Memory (LSTM) networks are a modified type of recurrent neural
network capable of solving the underlying problems. Since RNN suffers from Gradient
vanishing and exploding problems, LSTM resolves the problem by remembering past
data in memory. LSTM units include a memory cell that can maintain information in
memory for very long periods of time and thus LSTM is capable of learning long-term
dependencies.[40] Moreover, a set of gates is used to control the flow of information
regarding when information enters the memory when the data is output, and when the

data is forgotten as it is depicted in Figure 3.3b.

LSTMs are often referred to as fancy RNNs as they utilized various gates. Gates
intelligently distinguishes which inputs in the sequence are important and which inputs
are of lower importance. The gates are capable of storing useful information in the
memory unit to be passed to the following cells. Vanilla RNNs do not have a cell
state. Instead, they maintain memory-like arrays called hidden states and those hidden
states serve as the memory for RNNs which store information extracted from a long
input sequence. Meanwhile, LSTM has both cell states and hidden states.[41] The cell
state, which is regulated by "gates", has the ability to remove or add information to
the cell. Because of this cell state, in theory, LSTMs are able to handle the long-term
dependency which is difficult in practice.[42]

3.2 CRISP-DM

Any good project starts with a deep understanding of the problem initially and followed
by providing an efficient and effective solution to resolve the business issues. In

typical analytics projects which involve multiple steps like data cleaning, preparation,
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FIGURE 3.3: Long Short-Term Memory (LSTM) network [39]

modeling, and model evaluation, a framework for recording experience and is needed
to allow projects to be replicated. CRISP-DM stands for Cross Industry Standard
Process for Data Mining and is an open-source and widely used methodology created
to shape Data Mining projects. This comprehensive methodology provides anyone
with a complete blueprint for conducting a data mining project. The process breaks
down the lifecycle of a data mining project into six phases to encourage best practices

and help to obtain better results overall.(Figure 3.4)

CRISP-DM model s an idealized sequence of events that creates a long-term strategy by
structuring a basic and simple but still “good enough” model during the first iteration
and improved the model in further iterations. Following CRISP-DM guidelines, a

leading approach for managing data mining and predictive analytic for big data is
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FIGURE 3.4: CRISP-DM overview and how a data mining project breaks
into six phases to obtain better results [43]

available. Based on the preferences and needs, the following milestones are beneficial

to implement data-driven analytics: [44]

1. Collect: gather all input data

2. Organize: store and organize data to be ready for analytics

3. Analyze: build data science and machine learning models

4. Deploy: deploy predictive analytics and data science models

5. Validate: validate the predictive analytics and machine learning

6. Trust: trust the predictive output and result
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3.3 Literature Review

Different methods from different disciplines are being used nowadays in drilling ac-
tivities in order to obtain a safe, environmentally friendly, and cost-effective well
construction. Inevitably, offshore drilling involves high-risk accidents due to the harsh
and complex offshore environments. One of the greatest risks in deepwater is the risk
of losing well control which can lead to fatal consequences. Hazardous and dangerous
conditions are just part of the job so that "safety first" is a slogan many oil and gas
companies are striving to make a reality. Mitigating hazardous accidents put the issue

of risk in offshore drilling operations into stark focus.

Conventional gas kick-detection approach is discussed in [45] and [46] by implement-
ing a real-time distributed acoustic signal propagating through the drilling mud and
the reflected acoustic energy is displayed as a reflection of possible kick. In wellhead
sonar system [47], similar to acoustic approach, no downhole equipment is needed
and the system functions properly even in absence of the drillstring. The bottom-hole
reflection will occur if any free gas is present in the well. According to [48], because
of the large amount of attenuation of sound waves in the drilling mud and the new
directional drilling, the sound wave signals received after a long trip through the mud
might be too weak for data processing and also be affected by other factors. Since
it is difficult to apply the traditional ultrasonic technique in flow measurement, an
Ultrasonic with Doppler Effect is proposed for early kick detection in this paper, even

though acoustic principle methods are faster.

[29] exclusively focuses on situations when a rig experiencing kick or lost circulation
as they could be worst-case scenarios. Then, by introducing adaptive alarm system and
calculating alarm thresholds in real-time false alarms are dramatically reduced. Per-
haps, the most promising aspect of adopting machine learning algorithms for drilling
hazards detection is that they can significantly reduce false alarms, hence crew fatigue
in a loud and stressful work environment will not affect the performance. Although in
conventional drilling, the only widely accepted response to gas kicks is to shut the well
in BOPs, a new Managed Pressure Drilling (MDP) technology utilizes a variant named
constant bottom-hole pressure (CBHP) which circulates small and medium-sized in-
flux out of the well with no more need to shut the well. However, [49] and [50] share
their concerns regarding the definition of small or medium-sized influx that has not
been fully addressed previously. Therefore, a reliable early kick detection algorithm
is proposed by them based one simulation results and case study data. The algorithm
relies on monitoring flow in and out and also exploiting pressure sensors. [51] de-

scribes new research on the subject of drilling safety. In this work, the combination
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of downhole differential pressure, mudline(seabed), and surface fluid is utilized in the
early identification of kick detection. [52] introduces a model-based estimation which
uses surface measurements available in MDP to make estimation pore pressure and

reservoir inflow rates during gas kick events.

In every competitive market field, Al-based devices and tools have provided tremen-
dous potential for generating accurate analysis and results from large datasets, and the
oil and gas industry is no exception to it. Al techniques are developed and deployed
worldwide aiming to improve decision making as more data is fed into the system
[53]. [54] and [55] review and analyze different successful applications of Al and
ML that as related to the major aspect of the oil and gas industry namely ANNSs,
Fuzzy Logic, Genetic Algorithm, SVM, RF and etc and also reveals their advantages,
disadvantages and purposes. These techniques have made a huge impact on different
Al applications leading to saving time, minimizing risk ,and saving cost. According
to [56], traditional data analysis is not capable to extract and process big complicated
datasets. With several supervised learning techniques, the paper demonstrates how to
manage interpreting trends, to detect failure patterns ,and to execute remedial actions

to mitigate malpractice.

As a kick can pose a significant threat to safety drilling, high prediction accuracy
and repeatability are of utmost importance in drilling risk management. [57] con-
structs a prediction model based on the parameters and the time-series analysis method
(ARIMA) reveals the autocorrelation point of the parameter with a high fitting degree.
This method has been applied on characteristic parameters such as pit gain and casing
pressure as they indirectly reflect the bottom-hole condition and changes in them with
time can be used to determine the severity of the kick. [58] deployed five different ma-
chine learning models to optimize kick detection: Decision Tree, K-Nearest Neighbor
(KNN), Sequential Minimal Optimization (SMO) Algorithm, Artificial Neural Net-
work (ANN), and Bayesian Network. The models have been trained based on surface
parameters and among all five, Decision Tree and K-Nearest Neighbor outperformed
the rest. [59] has presented a methodology for using supervised learning in facilitating
early kick detection by combining a simple Artificial Neural Network (ANN), binary
classifier and downhole monitoring of drilling flow parameters to build data-driven
kick detection models. The authors were further motivated to look for simple ANN
models that would be sufficient for the kick detection problem because numerous pa-
pers report the use of complex neural networks to solve the problem without justifying
the need for such complex solutions. To differentiate among the different anomalous

drilling events a more complex neural network (NN) architecture will be required.

[60] has investigated a data-driven Bayesian Network to solve kick problems in complex
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systems where the knowledge about the system is not adequate to apply a model-based
method. Downhole parameters are used for early kick detection. [61], similarly,
experienced monitoring downhole parameters led to early kick detection. It was
observed that gas kick effect directly on dynamic parameters including downhole
pressure, mud density, mass flow rate, volume flow rate, dynamic weight on bit
,and rate of penetration. A dynamic neural network model is presented in [62] with
different normalization methods and no false alarm happened during prediction. A
major challenge in early kick detection is the increase in false alarm. An assembled
long short-term memory recurrent neural network (LSTM-RNN) with d-exponent
and stand pipe pressure data is proposed as a methodology for early kick detection
without false alarm [36]. The methodology involves obtaining the sloping trend of
the d-exponent data and the peak reduction in the standpipe pressure data for training
the LSTM-RNN model for kick detection. However, only two kick indicators were
investigated: the drilling parameter group (DPG) and the flow parameter group (FPG).
The DPG includes four (4) input features: pit gain, Rate of Penetration (ROP), Rate per
Minute (RPM) ,and Weight on Bit (WOB). The FPG includes three (3) input features:
Flow-out, Flow-in ,and Standpipe Pressure (SPP). In total, there are seven (7) input
features that are used in the LSTM model development, which does not include several
extremely important features, such as Bottom Hole Pressure (BHP), Differential Flow
Out (DFO), Weight on Hook (WOH) and etc. Furthermore, these neglected parameters
contribute to gas kick detection in a less accurate and reliable manner.

For kick detection and also influx size estimation during drilling operations, [63]
developed anew model of LSTM-RNN using OpenLab data. Detecting and quantifying
the influx of fluids between fractured formations and the wellbore with high accuracy
is the main goal of this paper. [64] modeled a total of 86 experiments in which three
groups of complications (stuck-pipe or sticking, loss circulation, kick or gas-oil-water
occurrence) and standard drilling operations were simulated to minimize the number
of false alarms. The NN models are trained more efficiently when using not only
the input values of drilling parameters but also the output results of some auxiliary
machine learning models. [65] worked on three supervised learning algorithms based
on different indicators. Then an LSTM-RNN is initialized and after evaluation and
testing the best model was selected and deployed. Lost circulation is one of the frequent
challenges encountered during the drilling. [66] 385 field datasets and new models
were developed to predict the lost circulation solution for vertical and deviated wells
using ANNs and SVM. It is concluded that some input parameters such as losses
rate and lithology type have a more significant effect on lost circulation solutions.
However, the performance efficiency demonstrates the advantage of the SVM over

ANNs. Another work in [67] has collected data from lost circulation events for 50
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drilled wells in the South China Sea where lost circulation is severe. The ANN model is
then evaluated by four metrics: accuracy, precision, f1 score ,and recall and concluded
the model performed well enough to be applied to other fields if required data are

available.
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Big Data Analytics

4.1 Big Data

Big data is a term that refers to datasets that are massive and complex and could be both
structured and unstructured. The datasets are rapidly generated and transmitted from
a wide variety of sources while it’s difficult or impossible to store or process them
efficiently using traditional methods. Examples of big data include Amazon.com’s
product list, New York Stock Exchange, and social media databases like the database
of Facebook user profiles. Big data is a big deal for industries and companies as
businesses and organizations are constantly struggling with making better decisions,
reducing their costs, and understanding the value of their products and services which
helps in adapting or redeveloping them if something goes wrong. The use of big
data allows industries and companies to have transparent and simple insight into their
challenges and new growth opportunities by uncovering market trends, hidden patterns,
customer preferences to divulge valuable information to outperform their peers.[68]
Big data is essentially characterized by four Vs to gain insights and make predictions:
[69]

1. Volume Data are collected from different sources like business transactions,
social media platforms, networks, human interactions, and application logs. The

flow of data is massive and continuous.

2. Velocity The speed of generation of data is fast and data must be dealt with in a
timely manner. To mine data for potential insights, decision-makers must have
the capabilities to harness datasets in real-time or near real-time. For example,
the ability to instantly process rig data can provide managers and crew with

potentially life-saving information in hazardous events like kicks and blowouts.
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3. Variety Data flows in with all types of formats. Working with unstructured and
inconsistent data is an unbreakable part of this area with the rise of big data. The
data comes in an array of forms including text, emails, audio, videos, photos and
it does not fit easily into a straightforward and traditional model.

4. Veracity The degree of accuracy or truthfulness of data is regarded as veracity
and mostly it is traced back to the source of data. The more sources are combined
to have diversity and variety, the data quality and accuracy would be in jeopardy

more.

Big data is not always about the amount of data that important, but it is about what
organizations do with the data. organizations may choose to use all their big data or
determine upfront which data is relevant. Either way, they are generally utilizing those
activities that involve ‘making use’ of data to provide insights that lead to improved
performance. Big Data analytics is the use of advanced analytic techniques that
discover new information, identify patterns, and unearth unknown trends by which
the overwhelming volume of disparate information becomes a simple, clear decision
point.[70]

Big data analytics assists in oil and gas operations, exploration, and production sectors.
The technology refers to a new method that can be employed to handle large datasets
consist of sensor-generated data. With the recent advent of an ever-increasing number
of small and energy-efficient sensors, the oil and gas industry is considered as an
intensive field in terms of data analytics. It is experienced that the best way to
prevent future problems is learning from the past. To support real-time decision-
making, managers and experts can perform strategies by a combination of big data and
advanced analytics to reduce the risk of drill problems by knowing and planning for
the potential hazards that lie ahead.[71]

4.1.1 Benefits

These massive volumes of data can be used to address petroleum problems that would
not have been able to be tackled before. Just like other industries, the oil and gas
industry needs to understand which data is valuable. As it is mentioned before, one
of the main goals of this thesis is being able to predict future performance based
on historical results to prevent kicks. By analyzing the previous patterns in near
real-time and early identifying anomalies that would impact drilling, undesired and
hazardous drilling events like kicks and blowouts can be prevented or controlled.[72]
There are some other related areas where analytics can improve drilling and completion

operations:[73]
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 Early identification of risk to the products/services, if there is any

* The industry can utilize external intelligence while taking decisions
* Better operational efficiency, accuracy and optimization

* Cost savings - Time reductions

* Performance forecasting

4.1.2 Challenges

The handling of big data is very complex. While big data holds a lot of promise,
each decision-maker has to know what they are dealing with exactly. Cleaning and
preparing big data is the most time-consuming and the least enjoyable data science

task among data scientists. [74]

* Principally, big data is "big". Most of the time, risk managers and other em-
ployees are overwhelmed with the amount of data that is collected. Although
new technologies have been developed for data storage, managing thousands of
interlocking datasets that takes place on a daily basis is a compelling task.

* After collecting and storing raw data, with so much data available, it is challeng-
ing to excavate data to access the most useful insights in a timely manner. In
this stage, detecting anomalies and outliers and removing or changing them will
aid in reducing challenges in this area. Anomalies detection is identifying the
unusual, unexpected, surprising patterns or events which differ from the norm.
Being able to detect abnormal and rare behavior in a set of observations not
only helps in preventing hazardous situations but also maximizes the accuracy
in big data analysis. Since meaningful data play a pivotal role in training and
ML model creation, the presence of anomalies can cause serious issues during

data mining.

* Data needs to be visually presented in graphs or charts for better interpretation,
as the relationships of data that are too numerous or complicated are illustrated
easily in less space. Pulling put information from multiple, disjointed sources

and importing them into reporting tools is frustrating and time-consuming.

* Bigdataisnot 100 percent accurate and nothing is more harmful to data analytics
than inaccurate data. Good input directly affects the final result. When datasets

are combined together with unstructured and inconsistent data from diverse
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sources, real problems would arise. Asymmetrical data, missing data, incon-
sistent data, logic conflicts, and duplicates data all lead to significant negative

consequences for data quality.

» Data analytics is getting harder as the amount of data grows at a rapid pace.
processing power is expanded to accommodates rapid changes in the growth of
data for creating reports in increasingly complex datasets. Scaling data allows

the data science team to work together more effectively.

* Tight budget, data security, confusion and anxiety, shortage of skills, and insuf-
ficient understanding are some other challenges the risk managers are dealing
with. Figure 4.1 shows how data scientists spend 50 to 80 percent of their time

on data curation and data preparation before it can actually be used.[75]

Data
loading
Data
cleansing
Data
visualization
Model
selection
Model training
and scoring

Deploying
models

n=1099

FIGURE 4.1: How data scientists spend their time [76]

4.2 Time-series Analysis and Forecasting

Time-series data is a sequence of time-based data obtained over time and often have

equal time intervals between them. Time-series analysis helps to understand how past

events influence the future. Consequently, in most of the fields including finance,

economics, science, engineering, statistics, and public policy there is a large group
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of people who need to understand some basic concepts of time-series analysis and
forecasting for managing their businesses. Time-series problems are more difficult to
handle because of this "time" component that adds complexity to datasets. A proper
time-series analysis, however, does provide an important contribution to more accurate
forecasting. The skill of a time-series forecasting aids in determining a good forecasting
model that best capture or describe an observed time-series in order to understand the
underlying causes. The main aim of time-series forecasting is ultimately to estimate
how the sequence of observations will continue into the future [77]. In the Oil industry,
forecasting plays a major role in preventing unplanned future hazards or at least being
aware of them to take precautions. Time-series forecasting is markedly leading to

make positive impacts in the productions and mitigate the non-productive time.[78]

In drilling operations, the amount of data collected from the sensors of the well and on
the rigsite has increased significantly. Rig crew and employees are constantly working
with large volumes of data. Using advanced time-series analysis on the both high
and low-frequency surface and downhole measurements provides drillers with active
surveillance. On-time forecasting broadens the workers’ vision and gives the driller
advanced warning of the downhole abnormal conditions or rig equipment in presence
of any failure. The difficulty of time-series analysis for drilling data stems from not
being able to detect and analyze all the variables that cause a hazard in a real-time
manner. The time-series model tries to extract all meaningful knowledge from input
data to spot patterns and detect abnormalities and irregularities [79]. Regarding the
aim of this thesis, in the ML model for kick prediction, multiple input variables are

required in predicting the single output variable.

Time-series analysis can be either univariate or multivariate. In univariate forecasting,
only one variable is varying over time, while in multivariate forecasting multiple
variables are varying over time. For example, data collected from a sensor measuring
the temperature of the downhole of a well every second provides a single observation
recorder sequentially. Therefore, each second, response variable is influenced by only
one factor and there is a one-dimensional value, which is the temperature. On the other
hand, temperature, pressure, and WOB are three variables changing simultaneously
over time as the drillstring goes deeper in a well. Multivariate time series data
often have very high dimensionality. Classifying such high dimensional data poses a
challenge because a vast number of features can be extracted over time and each of the

parameters and elements influences the output result individually.[81]

“Time-series forecasting goes beyond ‘just’ time-series analysis. With time-series
forecasting a model is being used to predict future values based on previously observed

values over time."[82]
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7 steps of Machine Learning

Gathering Data
Preparing that data
Choosing a model
Training
Evaluation
Hyperparameter Tuning

Prediction

FIGURE 4.2: ML model steps [80]

ML is an area of high interest among tech enthusiasts, therefore it is mandatory to learn
a programming language, preferably Python, along with the required analytical and
mathematical knowledge to enter this area. As it is illustrated in Figure 4.2, the ML
process is broken down to understand the steps and significance and function of each
step. A more detailed representation of the ML model and involved steps is explained
in the next chapters.
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Data collection and preparation

5.1 OpenLab Simulator

The drilling data for this paper was generated by the OpenLab Drilling simulator
delivered by NORCE. The Drilling Well Modeling group of NORCE Energy has
developed and managed this software in close collaboration with the University of
Stavanger. This innovative and creative software consists of several software modules
that implement specific functionalities within the system. OpenLab Drilling is the
integration of the physical and virtual drilling and well operations intending to recreate
the physical processes that take place during a drilling and well operation. The soft-
ware uniqueness and novelty are of great importance to research environments and the
business community who work with a large amount of data and seek methods to opti-
mize the drilling process. It is not only useful for safer and more cost-effective drilling
operations, but also it serves as an educational, developmental, and testing platform
for students, lecturers, and researchers. [83] This chapter will give an overview of the
simulator’s key parameters and basic functionality in regards to drilling operations and

influx simulation.

OpenLab comprises three systems, of which only the first one is finished and the rest

are under development:
1. Web-based drilling simulator
2. Drilling control room
3. Full-scale on-site operational drilling rig

The OpenLab infrastructure has been developed with a high focus on user-friendliness
and its interface offers a simple environment in which the user can either utilize

numerous pre-made and optimized configurations and templates, with no need to
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change or can create new well configurations by modifying properties, parameters,
design, and equipment. The templates can be modified later during the simulation
according to the purpose of the simulation. Many of These factors have direct or
indirect effects on the influx or loss in the well operations. After setting up the
configurations, simulations run either in the web browser of OpenLab or through
application programming interfaces (APIs) such as MATLAB or Python. The well

configuration page consists of six tabs:[84]
* Hole Section
* Wellpath
* Fluid
* Dirillstring
* Geology
* Rig

Moreover, simulations can be run in real-time, fast-forward, or sequence mode where
the visual guide is provided for the end-users. Once the simulation starts, a sequence
of inputs is supplied to a calculation module and in return, the state of the well is
illustrated for every time step. The time step is 1 second in the physical application.
"The results of the simulation are of two types: time-based or depth-based" [83]. All
the setpoints and simulation results can be downloaded by users at the end of the

simulation.

5.1.1 Openlab tabs

All the drilling parameters and elements are typed manually or imported by CSV files
in the tables provided in each tab in order to simulate the well operation and drilling
process. A quick start can be achieved by using pre-defined configurations and tem-
plates. Although the pre-made and optimized configuration is suitable for beginners,
more experienced users can use editors to customize the design and properties.[84]
[85]

5.1.1.1 Hole Section

The hole section consists of a riser, a set of casings and liners, and a definition of the
open hole part. All wells have an open hole section primarily. It is the uncased part of
a well that is exposed to instability and collapsing of formation into the wellbore. All

numbers are measured depth in this section.(Figure 5.1)
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FIGURE 5.1: Hole section tab in OpenLab simulator [85]

5.1.1.2 Wellpath

As it is demonstrated in Figure 5.2, the visualization shows the wellpath structure in
3D. The wellpath can be completely customized on a meter by meter basis. It gives
a comprehensive overview of the difference between the measured depth (MD) and
true vertical depth (TVD). In addition, the inclination of wellpath creates a nonlinear
relationship between MD and the pressure. From a simulation perspective, both
drillstring mechanism and the cuttings transport are being affected by wellpath.

East

1200m

N 400m

400m

200m West

1200m

FIGURE 5.2: The visualization of wellpath tab structure in 3D [85]
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5.1.1.3 Fluid (Mud)

Mud properties include mud type, density, oil-water ratio, gel strength, rheology and
can be changed with a high degree of freedom. The mass fraction and volume fraction
distribution are shown with pie charts, while a rheogram displays the flow behaviour
of the fluid (Figure 5.3). Since the mud has a key role in stabilizing fragile formations,
its properties must be assigned carefully. Thoroughly, the mud affects all aspects of
the simulation.

Drilling fluid type Drilling fluid density (50 @ Rheology @
C,
) Robertson-Stiff model: f(t) = a (t + ¢)®, where a = 0.1039, b = 0.8438 and c = 60.8558
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FIGURE 5.3: The mud tab contains pie charts and rheogram chart [85]

5.1.1.4 Drillstring

The drillstring tab in OpenLab consists of drill pipes, bottom-hole assembly elements,
and a drill bit (Figure 5.4). It is the OpenLab capability to variate the drill pipe
inner and outer parameters. Different elements of the drillstring and their details are
displayed by hover in the simulator.

Y T I T R\ IO\

FIGURE 5.4: The drill pipe inner and outer parameters can be varied in
drillstring tab [85]
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5.1.1.5 Geology

In the Geology tab, there are three subsections: Geopressures, Geothermal, and For-
mation (Figure 5.5). Due to the close margins between fracture gradient, mud weight,
and pore pressure, a major threat is posed to support the wellbore walls for prevent-
ing influx and wellbore collapse during drilling. High-Pressure, High-Temperature
(HPHT) wells mostly experience the simultaneous occurrence of losses and influx
which can be simulated here [86]. A heavier mud pressure than the pore pressure
results in wellbore stability in an open hole section and avoids fluid influx. Therefore,
a pressure profile provides a great variety of influxes characteristics to create different
cases. Also, as the temperature is important for several aspects of the well dynamic
including the well pressure, a full thermal profile is essential to be set.

600
1000
800
TVD: 1452

\ 444 O Temperature ('C
1000 \

E \ 1500 o
5 1200 \
Z \
1400 \\
1600 : 2000
2000 | gpenhole i 2500

3000

—— Pore pressure (s.g.)
—— Fracture pressure (s.g.)
Pressure window (s.g.)

3500
0 10 20 30 40 50 60 70 8 9 100 110 120 130
Temperature (°C)

(A) Geopressure (B) Geothermal

O ™o MD

800

1000

VD (m

1200

1400

1600

1800

2000

2200
99 9.2 99.4 99.6 99.8 100 1002 1004 1006  100.8 101
Ucs (MPa)

(¢) Formation

FIGURE 5.5: Geology tab in OpenLab simulator [85]
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51.1.6 Rig

The rig tab illustrated in Figure 5.6, displays a schematic of the rig layout. The rig
parameters serve to guide towards a realistic drilling process by which operational

limits can be implemented.

FIGURE 5.6: A schematic layout of the rig tab from OpenLab simulator
[85]

5.1.2 Strength

The recent trend toward automation is a key driver in the drilling industry. Real-time
analysis is a key driver in the drilling industry. The OpenLab software is a prime
novel solution to build, test, and verify the physical and data-driven models. The
OpenLab infrastructure came to life with the aim of facilitating education, research
and innovation, and testing of new technology. Students, lecturers, and researchers are
the main targets for OpenLab who are served with a user-friendly graphical interface

and an easy-to-use API. Some of the strong points of OpenLab are summarized as:[85]

» Usable for both beginners and experts by means of intuitive interaction design

and automated recommendations

* Enable multiple concurrent faster-than-real-time simulation runs
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* Time/depth plots combined with interactive visualization data progress offers a

simple environment for data management and data interpretation
* Cost-effective use of computational resources

* Secure handling of malicious inputs such as kick implementation

5.1.3 Weakness

Although the OpenLab application reshapes the way of how operations are done in
the oil industry and gives a better understanding of the downhole physical processes,
many challenges remain. This novel simulation technique is enabling manufacturers to
benefit from optimization in top-drive controls and more effective drilling. However,
unexpected things are always probable to happen in a rig. There are a lot of factors
contributing to the safety of drilling operations that ignorance of them can lead to
catastrophe in the real world. For example, as this work is mainly focused on kick and
influx, there is no further applied noise or other data artifacts that are expected in a

real drilling environment.[87]

Moreover, in order to have numerous simulated kicks for abnormal behaviour analysis,
numerous individual simulations were run independently and inconsistent simulations
cause inconsistent time steps in general. Since time is a vital component in time-series
forecasting and time plays the most important role in the prediction of events through
a sequence of time, the model would work better when the trends follow a consistent
shape. Fortunately, this weakness is somehow solved by an introduction of a new
Python package for time-series forecasting.

5.2 Understanding the problem

The main point to consider when trying to solve a new problem is defining the problem.
This thesis tries to solve the problem that the oil and gas industry has been coping
with for a fairly long time which is kick identification and kick prediction. With a set
of high-quality data available and the defined objectives, it would be less complex to
explore potential underlying patterns which are hidden in the data. For the process
of learning, some observations or samples are required for the systems (computer

systems) to be learned automatically without human intervention.

ML algorithms are usually categorized as supervised or unsupervised learning.[88]
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1. Supervised learning algorithms: are employed where the observations and sam-
ples are labeled. The ML algorithm analyses the input data and learns a function
to map the relationship between the input and output values. With supervised
learning, the algorithm uses the input to make a prediction and compares the
prediction against the expected output. Labeled dataset means, for each set of
observations, an answer or solution is provided as well. The training data has
output variables corresponding to the input variables in this category. Super-
vised learning can further be classified into various sub-group named Regression,
Classification, Forecasting, and Anomaly Detection.

2. Unsupervised Learning algorithms: are used when the training data does not have
a response variable. The major difference between supervised and unsupervised
learning is that there is no complete and clean labeled dataset in unsupervised
learning and no labels are given to the learning algorithm. Instead, the algorithm
will be left on its own to discover information and try to find the intrinsic pattern
and hidden structures in the data to do a grouping of data and make a comparison
to guess the output. Unsupervised learning is great when you have an intensive
amount of data and also a lot of computing power to find patterns in the data.
There are various types of unsupervised learning among which Clustering and

Dimension Reduction algorithms are of high importance.

Although each machine learning project is different because the specific data at the
core of the project is different, all of the ML problem starts with data, and to be more
clear, lots of data. The raw data must be pre-processed prior to being used to fit and
evaluate an ML model, however, prior to this step, the first phase is to decide what
you want to predict and what is the problem you are trying to solve. As it is discussed
in 1.2, the main goal of this thesis is to evaluate how some series of events can lead to
one of the most high-risk well issues named kick to be able to predict such events to
reduce kick occurrence. In simple words, there is prior knowledge of what the output
values for the samples should be. The better you know about the predictive problem,
the more accurate you can collect and prepare the data for the ML model. Equation
5.1 shows how the expected outputs are classified into two groups. Data labeling is
a key part of data preparation for ML because it specifies which parts of the data the

model will learn from.

1, kick.
label = (5.1
0, No kick.

This work aims to exploit supervised learning as the problem is considered as a
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classification issue. By taking a close look at the data and exploring the data for
which the label is already known, the classification problem belongs to the category
of supervised learning where the input data predict the likelihood that subsequent data
will fall into one of the predetermined categories. Using summary statistics and data
visualization illustrate how the data looks like and what kind of correlation is held by
the attributes of data. Input variables are columns in the dataset provided to the model
to make a prediction and output variable is a column in the dataset to be predicted by

the model.

5.3 OpenLab Data

Time-series forecasting is an important area of ML that is often neglected. When it
comes to forecasting time-series data, ML is an application of Al that strengths the
ability to learn about patterns and anomalies and improves future prediction accuracy.
Time-series forecasting is important because there are so many prediction problems
that involve a time component. The purpose of this thesis is to create synthetic field
data by the OpenLab drilling simulator, so that students, researchers, and industry
experts can monitor and analyze trends by running simulations on virtual wellbores
which are based on real well configurations. After determining the primary elements,
the simulation starts. The plots are controlled during the entire simulation and the
resulting data gathered in CSV files described later in this chapter. In this thesis,
the main goal of using OpenLab is to design and implement a closed-loop well kick

detection and circulation system to examine the kick attributes.

In this work, the synthetic data from OpenLab creates artificial datasets to analyze the
characteristic of influx. According to an industry study in drilling, it is revealed that
the accuracy and efficiency in drilling operations are commonly impaired by formation
fluid influx and fluid losses. These events not only increase the non-productive time, but
also cost the industry billions of dollars yearly. The main objective of forecasting in this
industry is to leverage analytics to optimize output performance, improve production,
make money, prevent hazards, and save lives and natural resources. High forecasting
accuracy is not achievable without reliable and proper data. In the scope of reservoir
simulation and forecasting, data quality has gained great attention. The issue of poor
quality data results in both losing money and hindering organizations from exploiting
their full potential. Data quality is a huge concern in time-series forecasting to the
extent that this chapter is thoroughly allocated to data preparation for forecasting. As

it is mentioned in section 4.1.2, although data scientists spend most of their time on
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data preparation and they view this task as the least enjoyable part of the work, the ML

model would be useless without an explicit and precise data preparation.

5.3.1 Data Collection

Before start digging into data, first, we need to know how the datasets are created. The
initial drilling parameters are set manually in this work. Originally, the mud density
is defined and once the simulation starts, the simulator gives time to -in this case-
both flow and pressure to reach their steady state before the influx appears. Then,
the occurrence of a kick would be applied by manipulating the flow rate. Alternating
the flow rate will either cause a kick or suppress a kick, meanwhile, the mud density
stays constant during the whole simulation. The same scenario is repeated for other
simulations with different mud weights to study the behavior of parameters and evaluate
the effectiveness of each indicator in identifying the influx. The resulting effects on
all measurements are easily observable via plots in both time-based and depth-based
visualization. After the simulation is done, the raw data from plots are imported
into CSV files for further analysis. Since CSV format is portable, well understood,
and ready for the predictive modeling process with no external dependencies, this is

regarded as a standard practice to extract and save the data.

RangeIndex: 842 entries, @ to 841
Data columns (total 19 columns):

# Column Non-Null Count Dtype
®  TimeStep 842 non-null inted
1 FlowRateln 842 non-null object
2 FlowRateOut 842 non-null object
3 TotalInfluxMass 842 non-null object
4 DownholePressure 842 non-null object
5 PressureBottomHole 842 non-null object
6 HookLoad 842 non-null object
7  FluidTemperatureIn 842 non-null object
8 FluidTemperatureOut 842 non-null object
9 MainPitDensity 842 non-null object
10 ReservePitDensity 842 non-null object
11 MainPitVolume 842 non-null object
12 ReservePitVolume 842 non-null inte4
13 ROP 842 non-null object
14 SPP 842 non-null object
15 RPM 842 non-null object
16 SurfaceTorque 842 non-null object
17 WoB 842 non-null object
18 kick 842 non-null float64

FIGURE 5.7: The first simulation sensor data and duration

Once the data created by OpenLab sensors, the data is primarily imported from Open-
Lab simulator into CSV files for further analysis. Each CSV file represents a different
type of sensor data in columns and TimeStep in rows. Then these CSV files are inte-
grated into one dataframe showing a single simulation. For example, Figure 5.7 and

Figure 5.8 illustrate sensors for the first and second simulations respectively. While a
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RangeIndex: 954 entries, © to 953
Data columns (total 19 columns)

# Column Non-Null Count Dtype
8  TimeStep 954 non-null inte4
1 FlowRateln 954 non-null object
2 FlowRateOut 954 non-null object
3 TotalInfluxMass 954 non-null object
4 DownholePressure 954 non-null object
5 PressureBottomHole 954 non-null object
6  HookLoad 954 non-null object
7 FluidTemperatureIn 954 non-null object
8 FluidTemperatureOut 954 non-null object
9 MainPitDensity 954 non-null object
1©® ReservePitDensity 954 non-null object
11 MainPitVolume 954 non-null object
12 ReservePitVolume 954 non-null inte4
13 ROP 954 non-null object
14 SPP 954 non-null object
15 RPM 954 non-null object
16 SurfaceTorque 954 non-null object
17 WOB 954 non-null object
18 kick 954 non-null floate4d

FIGURE 5.8: The second simulation sensor data and duration

simulation is running, alternating the flow rate could either cause a kick or suppress
a kick. The kick column is the output label I am trying to accomplish detection and
prediction about it [89]. The Snippet 5.1 converts the object data type to numeric since

the ML mathematical models need numbers to work with.

SNIPPET 5.1: change the object type to numeric type for ML model

df = df.apply(pd.to_numeric)

5.3.2 Data Preparation

Knowing what you want to predict will help to decide which data may be more
valuable to keep and which data are less useful. Data preparation also referred to as
data preprocessing, is a significant step in the CRISP-DM discussed in 3.2 prior to ML
modeling. Problems with ML modeling can stem from the way the data is prepared.
Since predictive modeling involves learning from data, the more data you provide to
the ML system, the faster that model can learn and improve. Aside from accuracy, data
integrity also ensures deeper understanding and insights to manage a large amount of
data. The likelihood of future outcomes based on historical data can be concluded
by interpreting the insights and patterns hidden in the data. The ultimate task in the
data preparation phase is the transformation of raw data exported from OpenLab into
a form that is more suitable for ML modeling. Before feeding a dataset into an ML
model, it is important to do some preprocessing to derive useful information from
data which improves the ML model to learn. Actually, the foundation for trusted ML

models could be ensured with proper data collection and preparation.
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5.3.2.1 Data Cleansing

Based on the insights from data visualization, the data cleansing process can be
applied to an entire dataset. During data exploration, there might be some incomplete
or incorrect values. Although data cleansing may not be mentioned too often, it is a
very critical step to avoid failing to yield ideal results. Data cleansing can be termed
as a process of removing superfluous and repeated data records from raw data in order
to feed the right data to machine learning algorithms. Cleaning of irrelevant and
error-prone data will enhance the speed at which ML model trains [90]. Some of the

best practices used for data cleaning in Machine Learning are:[91]

1. Filling missing values: impute zero for time-steps having missing values. (Snip-
pet5.2)

SNIPPET 5.2: Filling missing values

df.dropna(axis=0, how="all", thresh=None, subset=None,
inplace=False)

2. Dealing with outliers and anomalies: these two terms are largely used in an
interchangeable way and people occasionally argue that there is no difference
between an outlier and an anomaly. The outlier is usually referred to as a single
observation that lies far away from the mean or median in distribution, while
anomaly is usually more than one observation and referred to data points that
deviate from what is standard, normal, or expected. Regardless of the precise
definition, the fundamental question is to include or exclude outliers/anomalies

from a dataset, and the answer to it would be ““it depends”.

The primary difference between anomaly and outlier would be in the way of
identification. Anomalies would be difficult to be spotted using visualization
or detecting deviation from normal behaviour. Outliers on other hand would
be merely extreme data points within the dataset that can be identified with
basic statistical methods. Anomalous data can indicate abnormal incidents like
a change in the normal behaviour of drilling operations. However, as the main
goal of this thesis is to detect abnormal behaviour during drilling operations,
Outliers can be very informative about the well control issues. Therefore, it is
not always best to remove them from the dataset, because they might happen as

a normal part of the study area.[92]
3. Dropping duplicates.

4. Dealing with columns that have a single unique value. Snippet 5.3 returns two

columns named ReservePitDensity and ReservePitVolume which have unique
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value in all simulations. Figure 5.9 shows that irrespective of these two columns,

a kick would happen during drilling operation.

SNIPPET 5.3: Finding columns with unique value

for col in df.columns:
if len(df[col].unique()) == 1:
print (col)
df.drop(col, inplace=True, axis=1)
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FIGURE 5.9: ReservePitDensity and ReservePitVolume columns have
unique value in every simulation

5. Data reduction: this is helpful to reduce the data dimensionality as some of the
parameters in a dataset are not going to make any contribution to the final result
(Snippet 5.4). Moreover, working with extensive data causes several problems

such as complex and time-consuming modeling. [93]

SNIPPET 5.4: Data reduction in order to solve the information overload
problems

df = df[df.index % 2 == 0]

6. Dimensionality reduction by merging columns: reducing the number of input
variables in a dataset has several advantages from an ML point of view as long
as does not lead to some amount of data loss. This not only improves the
interpretation of the parameters of the model but also reduces the time and
storage space required. [93] Snippet 5.5 reduce the number of input by merging
two variables FlowRateln and FlowRateOut in one new feature named DeltaFlow
as well as FluidTemperatureln and FluidTemperatureOut in another new feature

named DeltaTemp.
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SNIPPET 5.5: Filling missing values
df[’DeltaFlow’] abs(df[’FlowRateIn’] - df[’FlowRateOut’])

df[’DeltaTemp’] abs(df[’FluidTemperatureIn’]
df[’FluidTemperatureOut’])

5.3.2.2 Data Transformation

The process of changing the format, structure, or values of raw data into meaningful
formats to be ready for analysis. Once the target column is set, the rest columns in
the dataset are all the inputs. As it is shown in Figure 5.10, having more than one
time-dependent variable as inputs, identifies this case as a Multivariate Time-series
problem. The target variable is the feature of a dataset about which I want to gain a
deeper understanding and the input variables are time-concurred series which depend
not only on its past values but also have some dependency on other input variables as

well.

Data Visualization plays an essential part in every step of ML in order to pinpoint
the right direction to take. It can be very enlightening to plot the distributions of the
numeric features or plot each column of the dataset in relation to the target column
to achieve excellent exploratory data analysis. The advancement in data visualization

empowers ML model creation.

There are two main data types from an ML perspective. All ML models are some kinds
of mathematical models that need numbers to work with. Therefore, categorical data
must be encoded to numbers before fitting and evaluating a model. The Snippet 5.6

depicts how numerical features are distinguished from categorical features.

SNIPPET 5.6: There are two data types in ML modeling: 1.Numerical
2.Categorical

categorical_features = list(set(df.columns)-set(df.
_get_numeric_data().columns))

numerical_features = list(df._get_numeric_data().columns)

Standardization and Normalization are scaling techniques that come to the picture when
input features of the dataset have varying scales. Itis normal to be encountered different
types of variables measured in different measurement units in the same dataset. Since
variables that are measured at different scales may put different weights on the final
model, feature scaling techniques modify features to lie between a given minimum and
maximum value and lead the variables to contribute equally to the analysis so as to

refuse to end up creating a bias. Transforming the data to comparable scales prevent
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FIGURE 5.10: The kick as output variable and other data as input vari-

ables show this case is a Multivariate Time-series problem. The plots

demonstrate how the sensor readings are changing over time (these plots
refer to the first simulation)

variables with a larger range to start dominating over other variables and impacting
the final results. Although there is no correct answer to when to use normalization
over standardization and vice-versa, it is recommended to use normalization when the

distribution is not Gaussian (a bell curve).[91]

SNIPPET 5.7: normalization as a scaling technique

scaler = MinMaxScaler (feature_range=(0, 1))
#kick and TimeStep are excluded

cols = df.columns.difference([’'TimeStep’,’ ’kick’])
df[cols] = scaler.fit_transform(df[cols])
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FIGURE 5.11: The input data distribution is not Gaussian(these plots
refer to the first simulation)

The Snippet 5.7 applies normalization to the dataset for each simulation as the distri-
bution is not Gaussian according to Figure 5.11.

All the above-mentioned steps regarding the data preparation must be applied for all
the simulations to have a consistent dataframe for further analysis.

5.3.3 Feature Engineering and Feature Selection

One of the significant steps in data preparation for predictive modeling is the process
of selecting a subset of the most relevant features from raw data. Feature engineering
is transforming raw data into features that are more compatible with the machine learn-
ing algorithm requirements. Relying on the domain knowledge, feature engineering
turns the excessive input data into useful features which improve performance and
accuracy.[94] While feature engineering focuses on creating new features to make the
most advantage of the previous data, feature selection keeps a subset of the original

data and removes unimportant, redundant, or outright counterproductive to learning
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features. This step can be more important than the actual modeling because training
a machine learning model for a prediction problem and forecasting results are highly
dependent on how individual input features may correlate with the output. The better
the features are prepared and chosen, the more accurate forecasting is achieved.[95]

However, the question is:
How is it possible to get the most out of data for the predictive modeling?

It can be very tough to make a reasonably good model for a time-series problem as it is
difficult to keep up with the pace of time. The "time" component presents some unique
difficulties when trying to implement a robust ML system. Since identifying unusual
and anomalous time-series is becoming increasingly common for organizations to
identify abnormal behaviors, particular emphasis is given to feature engineering for
time-series datasets in order to make stronger ML models in order to facilitate firmer
decisions and market predictions.[96] What makes time-series problems different from
the traditional ML problems is the dependency between each successive data point with

its past values.

5.3.3.1 Manual vs. Automated

In this study, a vast amount of data are generated in a fraction of a second. All
time-series data is a sequence of numbers that are ordered by a time index. After
brainstorming and testing features, it is time to decide what new features to create.
After feature creation, it is necessary to check how the new features work with the
proposed model by use of some evaluation metrics. The feature engineering process
can be an iterative process that interplays with feature creation and model evaluation
until the satisfaction of model evaluation is fulfilled (Figure 5.12). Obeying simple
statistical calculations, some standard features that one might take into account would
be:[97]

¢ Means, Maximum, Minimum
¢ Standard deviations, Variance, Median

» Skewness, Kurtosis and Higher order moments

Evaluate Finalise

Maodels & Deploy

Acquire Understand

Clean Data * the Data Build Models

Define Task

L

FIGURE 5.12: Once the model is built, it is possible to come back for fur-
ther feature engineering to see if the performance can be improved. [98]
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Due to some limitations discussed in 5.1.3, multiple simulations are run for accom-
plishing this thesis and therefore, the data is spread across multiple tables and must
be gathered into a single dataframe named df with rows containing the observations
over time and features in the columns. Therefore, Snippet 5.8 will concatenate all the
CSV files generated by multiple independent simulations. Before concatenating, all
the steps regarding the data preparation must be taken to have a consistent dataframe

for further analysis.

SNIPPET 5.8: Concatenate all individual simulations to have a unique

dataframe

import glob

import os

# use the path

path = r’C:\Users\maryam\PYTHON_CODING’

# advisable to use os.path.join as this makes concatenation O0S
independent

all_files = glob.glob(os.path.join(path, "*.csv"))

df_from_each_file = (pd.read_csv(f) for f in all_files)
df_concatenated = pd.concat(df_from_each_file, ignore_index=True)

Furthermore, the desired features for ML are not only restricted to the above-mentioned
simple statistical calculations. Instead, there are other mathematically complex and
frequency-related features like Fourier Transform or Wavelet Transform or time-series
related features like correlation coefficient and Euclidean Distance[97]. The traditional
approach to engineer these complex features is not only a tedious and time-consuming
task but also an error-prone process known as manual feature engineering. Human
creativity and patience are obvious disadvantages of this manual method which can
negatively affect the final result. Optimization the process of building and deploying an
accurate ML model is not reasonably and computationally achievable unless automated

feature engineering is applied.[99]

5.3.3.2 TSFRESH package

Since manual feature engineering is a tedious task and is limited by both human
imagination and time restrictions, the promise of automated feature engineering is to
surpass these limitations by automatically building hundreds of useful diverse new
features using code that can be applied across all problems. This step can be more
important than the actual model selection because an ML algorithm only learns from the
data given to it. After creating many candidate features automatically, the best features

can be then selected and used for training during the feature selection step. [97]
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Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Oufcome

6 148 72 35 0 336 0.827 50 1
1 85 66 29 0 266 0.351 31 0
8 183 64 0 0 233 ne72 32 1
1 89 66 23 094 281 067y 21 0
0 137 40 35 168 431 2.288 23 1
5 116 74 0 0 256 0.201 30 0
2 78 50 32 88 31.0 D248 26 1
10 115 0 0 0 353 0134 29 0
2 197 70 45 543 305 0158 53 1
8 125 96 0 0 00 D232 54 1

TABLE 5.1: Diabetic Prediction as a sample of not time-series dataframe
and it is time-independent

However, most ML algorithms are not time-aware and cannot be easily applied to
time-series and forecasting problems. When a predictive algorithm is not time-aware,
it typically looks at one row at a time when forming predictions as it is illustrated in
Table 5.1). In contrast, in a time-series forecasting algorithm, as it is shown in Table
5.2), there is a time component that expresses the dependencies between observations.
It is crucial to derive informative features based on past and present data in time.
Forecasting is one of the hardest problems in predictive analytics because it is not
always straightforward which input parameters are capable to explain the future output
value. Furthermore, it is also tricky to define the number of consecutive observations
per rolling window. The rolling window specifies how much recent history is required
in order to make new predictions. In time-series forecasting, the time dimension itself
adds an explicit order dependence among observations. All prior observations in a

specific window are almost always treated equally.[100][101]

TimeStep FlowRateln PressureBottomHole ReservePitDensity MainPitVolume SPP SurfaceRPM SurfaceTorque WOB outcome
1 0.001667 3.686487e+07 1676.20252 30.000000 2.018985e+05 0.0 0.0 0.00000 0
2 0.003333 3.669644e+07 1676.20252 29.998333 1.363166e+086 0.0 0.0 0.00000 0
3 0.005000 3.650648e+07 1676.20252 29.995000 1.864123e+06 0.0 0.0 0.00000 1
4 0.006667 3.669503e+07 1676.20252 29.990000 2.461195e+08 0.0 0.0 0.00000 0
5 0.008333 3.705826e+07 1676.20252 29.983333 3.015125e+06 0.0 0.0 0.00000 0
6 0.010000 3.750607e+07 1676.20252 29.975000 3.415563e+06 0.0 0.0 0.00000 1
7 0.011667 3.780462e+07 1676.20252 29.965000 3.675193e+06 0.0 0.0 0.00000 1
8 0.013333 3.817620e+07 1676.20252 29.953333 3.904777e+06 0.0 0.0 0.00000 0
9 0.015000 3.831506e+07 1676.20252 29.940000 4.193532e+08 0.0 0.0 0.00000 0

10 0.016667 3.843273e+07 1676.20252 29.925000 4.549027e+06 0.0 0.0 8995.49233 0

TABLE 5.2: Kick Forecasting as a time-series dataframe that includes a
time-related column
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TSFRESH package (Time-Series FeatuRe Extraction on basis of Scalable Hypothesis
tests) is an open-source Python library that automatically builds a large number of
additional features out of existing time-series data [102]. There also exist other tools
for time-independent data like featuretools package. In this work, I am attempting to
solve a classification issue that involves when a sequence of events ends up causing
a kick with regards to both identification and prediction. The lack of input data on
forecasting problems or any other type of ML problems would jeopardize producing
viable results.[103] Feature engineering is implemented by feature extraction method
that involves finding and creating features for time-series data that can help understand,
explain and predict the target variable. Moreover, TSFRESH package has a built-in
filtering procedure called feature selection that keeps powerful and important features
for the regression or classification tasks at hand. There are two functions in this package
named extract_features() and select_features() that reframe the dataframe into a proper

format for training and testing phase.[97]

It is advisable to keep this part of coding separate from the ML model coding as it
helps to make it more maintainable and reusable. TSFRESH provides 63 time-series
characterization methods, which computes a total of 794 time-series features by use of
the feature_calculators module as they are comprehensively listed in [97]. This module
which is thoroughly described in [102] takes time-series data as input and calculates the
values of the features. Correlation, deviation, coefficient, entropy, quantile, variance,
kurtosis, permutation, linear trend, and skewness properties are some of the examples
of time-series features and they facilitate to fit a time-series dataframe into a range of

time-series models. For example, the feature named:
PressureBottomHole__cwt_coef ficients__widths_(2,5,10,20)__coeff_14__w_5

denotes the value of the features form feature_calculators.cwt_coefficients() for the
time-series PressureBottomHole under parameter values of widths=(2, 5, 10, 20),
coeff=14 and w=5 [97]. Therefore, calling extract_features() function by Snippet 5.9

calculates a comprehensive set of features automatically.

SNIPPET 5.9: Extract a comprehensive set of features on df dataframe

from tsfresh import extract_features
extract_features(df, column_id="id", column_sort="time",

column_kind="kind", column_value="value")

However, what is the proper format of the dataframe before being fed into the

extract_features()?

There are four important columns which are of special interest to TSFRESH:[97]
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1. column_id: This mandatory column indicates which entities each time-series
belong to and separates your time-series from each other and also is the compli-

cated one.

2. column_sort: This mandatory column specifies the sorting of the time-series
data. It is not necessary to have equidistant time steps or the same time scale
for the different ids and/or kinds. If this column is omitted, the dataframe is

assumed to be already sorted in ascending order.

3. column_value: This mandatory column contains the actual values of the time-
series. This corresponds to the measured values of different sensors on the

simulations.

4. column_kind: This column is not mandatory and is out of the scope of this

thesis.

Since multiple simulations are utilized in this work, it is essential to separate them
by the most complicated column which is ”id”’. Each simulation is regarded as a
separate ”entity’ which contains multivariate time-series. So, before concatenating
simulations to each other to have a final dataframe, an extra column will be added
to individual dataframes with various ”id”’ numbers. For example simulation 1 will
have id 1 and simulation 2 will have id 2 and so on. Even if there was only one
simulation available for forecasting, it would also be crucial to have the ’id”’ column
but in this case, with a single unique value (1,2,3, etc or A,B,C, etc). Therefore,
having this column is mandatory in all kinds of dataframe. Then, the TimeStep”
column corresponds to the sorting aspect which indicates the data are in time order
when exported from the simulator. The ”’TimeSte p” starts from zero point for each
simulation and continues for a different amount of time in each of them. The column
kick specifies the label/target which needs to be predicted with ML modeling. Lastly,
other columns contain the value of the different sensors used for gathering both surface
data and down-hole data during drilling operations.

5.3.3.3 Rolling dataframe for time-series forecasting

Before diving into extract_features() function, there is one more vital and inevitable

step which is described as follows.

In a multivariate time-series prediction issue, there are two or more variables observed
at each time step. Multivariate time-series analysis considers simultaneously multiple
time-series and it is more complex than univariate time-series prediction. The persis-
tence forecast involves using a number of previous observations to predict the next time

step by shifting a cut-out window over the sorted time-series data. On each shift step,
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FIGURE 5.13: Rolling window in TSFRESH package [97]

the data is extracted through the cut-out window to build a new, smaller time-series
and feature extraction is only done on this one. The use of prior time steps to predict
the next time step is called the sliding window method or rolling window in which the
chosen number n is the number of prior observations required for prediction and is
called the window size.

SNIPPET 5.10: Rolling window in TSFRESH package

from tsfresh.utilities.dataframe_functions import roll_time_series
df_rolled = roll_time_series(df, column_id="id", column_sort="time"

)

TSFRESH package handles the process of shifting a cut-out window over the datafarme
to create smaller time-series cut-outs by use of roll_time_series() function as depicted
in Figure 5.13. The rolling process reshapes (and rolls) the dataframe into a form that
can be fed into the usual extract_features() function. [97]

id time X y
1 1 1 5
1 2 2 6
1 3 3 7
1 4 4 8
2 8 10 12
2 9 11 13

TABLE 5.3: Example of "id" column in a dataframe consists of two
different entities (id 1 and 2) [97]
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Snippet 5.10 shows how the rolling process is implemented in Python by use of
roll_time_series() function. This function automatically convert the dataframe to a
new one with previous columns but with new format of ’id”” columns. A very simple
dataframe(df’) with the values from two sensors x and y for two different entities (id 1
and 2) in 4 and 2 time steps (1, 2, 3, 4, 8, 9) is shown in Table 5.3.

To get consecutive sub-time-series, Snippet 5.10 is applied and the new dataframe is
exactly like the old one(df) except the ’id”’ column. In this example, the features for
the id=(1,4) are extracted using the data of id=1 up to and including t=4 (Table 5.4) and
the features for the id=(2,9) are extracted using the data of id=2 up to and including
t=9 (Table 5.5).

id time X y
(1.4) 1 1 5
(1,4) 2 2 6
(1,4) 3 3 7
(1,4) 4 4 8

TaBLE 5.4: Example of "id" after rolling [97]

id time X y
(2,9) 8 10 12
(2,9 9 11 13

TABLE 5.5: Example of "id" after rolling [97]

It is worth noting that “time” does not necessarily mean clock time here but could
refer to any timestep instead. The “sort” column of a dataframe represents a sequential
state to the property measurements. In the case of time series this could be the time

dimension while in other cases, this would be a location, a frequency and etc. [97]

The size of expanding window grows as more observations are collected during the
process for each ”id”. There are two parameters useful for tuning the size of the
window:

* max_timeshi ft defines how large the window is at maximum.(Snippet 5.11)

* min_timeshi ft defines how small the window is at minimum.(Snippet 5.12)
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When the max_timeshift is set to n, the current row plus n past rows are considered
for feature engineering simultaneously. On the other hand, when the min_timeshi ft

is set to n, shorter time-series will be omitted from the beginning of the dataframe.

SNIPPET 5.11:  Rolling window in TSFRESH package with

max_timeshi ft parameter

df_rolled = roll_time_series(df, column_id="id", column_sort="time"
, max_timeshift)

SNIPPET 5.12:  Rolling window in TSFRESH package with

min_timeshi ft parameter

df_rolled = roll_time_series(df, column_id="id", column_sort="time"
, min_timeshift)

Now the dataframe is ready for the next steps. Eventually, Snippet 5.13 generates a
comprehensive set of time-series features for each set of ”’id” in the rolled dataframe
(df _rolled). If the column_value is not set to anything, the dataframe interprets both

columns x and y as the actual values for column_value.

SNIPPET 5.13: Usual feature extraction on the rolled dataframe

from tsfresh import extract_features
df_features = extract_features(df_rolled, column_id="id",
column_sort="time")

The process of identifying critical or influential variables regarding the target variable
in the existing features set is feature selection. Snippet 5.14 evaluates the importance
of the different extracted features. "For every feature, the influence on the target/label
is evaluated by a univariate test and the p-Value calculation. Afterward, the Benjamini
Hochberg procedure which is a multiple testing procedure decides which features to
keep and which to cut off solely based on the p-values"[97]. The Benjamini and
Hochberg step-up procedure (BH) was the first method proposed to control the False
Discovery Rate (FDR).[104][105]

SNIPPET 5.14: Select the most relevent features out of all the features

engineered for ML modeling

from tsfresh import select_features
df_selected = select_features(df_features, label)

Feature selection is primarily focused on removing non-informative or redundant fea-
tures to reduce the number of input variables and dimensions. This process is mainly

believed to improve the ML model accuracy in order to predict the target variable.
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Chapter 6

Machine learning models selection

Although each ML project is unique, the steps on the path to a good or the best result are
almost the same from project to project. ML approaches try to address some questions
including what specific task should the model be automating and what information
should be exposed to the user finally. The primary types of approaches in machine

learning are supervised learning and unsupervised learning.

Supervised learning is where the presence of a supervisor as a teacher is evident. Su-
pervised learning algorithms try to model the best relationship between input variables
and output variables with the goal of finding the mapping function from input to output
based on example input-output pairs. Supervised learning is a practical technique in
which models are trained using labeled data which means data is already tagged with
the correct answers. In other words, data labeling is a process of tagging data with one
or more characteristics to provide context so that a machine learning model can learn
from it. These meaningful and informative properties help to teach or train the model,
so labeled data also called training data because they are used to generate the model.

Supervised learning classified into two categories of algorithms:[106][107]

* Classification: A classification problem is when the output variable is a category,

such as “happen” and “not happen” or “disease” and “no disease”.

* Regression: A regression problem is when the output variable is a real value,

such as “price” or “weight”.

Unsupervised learning is another approach allowing the algorithm to act on that in-
formation without guidance and it relies on no human intervention at all. The model
works on its own to discover information while it mainly deals with the unlabelled data
and therefore, it performs more complex processing tasks. Even though there are no
labels for data points, according to similarities, patterns, and differences, the algorithm

attempts to find rules for groups of data points. Unsupervised learning itself includes
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clustering, dimensionality reduction, finding association rules, and anomaly detec-
tion.[108] Since this thesis mainly focuses on supervised learning due to the presence

of labeled data, I refuse to dive deeper into the sub-categories of this approach.

6.1 Steps to choose the right ML model

As it is explained in the previous chapter, this thesis tries to exploit supervised learning
since the problem is considered as a classification issue. Since the output data is labeled
data in this work, it is categorized as a supervised learning problem. Moreover, the
output of the model is binary classes (0 and 1), therefore it is a classification problem.
In other words, by taking a close look at the data and exploring the data for which the
label is already known, the classification problem belongs to the category of supervised

learning where the model predicts the correct label for newly presented input data.

Time-series forecasting is an important area in many industries as most of the prediction
problems involve a time component. Time-series forecasting involves selecting one
or more than one model and then fit them on historical data. Afterward, it is time to
use the model to predict future observations. There are many algorithms dedicated to

time-series classification.

For picking the best algorithm among the shortlisted alternatives, testing the model on
unseen data is a useful approach. Before building any model, to evaluate how well a

classifier is performing, it is necessary to split the data into two parts:[109]

1. Training set is a subset of the samples used to build up predictive models. This

subset is used to train and evaluate the model during the development stage.

2. Test set is the dataset excluding the training set. The trained model is now ready
to make predictions on the unseen test set. This subset is used to assess the likely

future performance of a model.

A typical train/test split would be to use 70% of the data for training and 30% of
the data for testing. Depending on the amount of data available and the amount of
data required, these percentages can be changed to 80-20 or 90-10 [110]. Snippet 6.1
depicts a function in Sklearn model selection that helps to split a dataframe into two

subsets automatically.

SNIPPET 6.1: train test split

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(df, label,
test_size=size, random_state= 1, shuffle=False)
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To have reasonable results from ML models, it is not only vital to feed in large quantities
of data but also have to ensure the quality of data. With extract_features() function, the
quantities aspect is guaranteed, and also with select_features() the qualities aspect is
promised by keeping the informative and insightful data and removing the low-quality
data in respect to the label variable. In time-series ML analysis, the observations are
not independent, and thus it is not acceptable to split the data randomly and shuffle
them as we do in non-time-series analysis. The default value is True for the shuffle
object. Random_state can be O or 1 or any other integer. This object is initializing the
internal random number generator which controls randomization during splitting. The

default value is None for this object.

training set 80% test set 20%

T T

0 200 400 600 800 1000
Sample index

FIGURE 6.1: A common train/test split size [111]

A regular train/test split is shown in Figure 6.1. However, overfitting and underfitting
are two modeling errors that lead to a negative impact on the performance of the model
on new data.[112][113]

* overfitting happens when random error or noise instead of the underlying rela-
tionship. This error occurs when a model is excessively complex, such as having
too many parameters relative to the number of observations, or when a function

corresponds too closely to a particular set of data.

* underfitting happens when a model cannot capture the underlying trend of the
data. This error refers to a model that can neither model the training data nor
generalize to new data. Poor predictive performance is caused by Underfitting

and it occurs when a model is too simple or informed by too few features.

SNIPPET 6.2: Cross validation

from sklearn.model_selection import KFold
cv = KFold(n_splits=n, random_state=None, shuffle=False)
for train_index, test_index in ts_cv.split(X):
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
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Cross-validation is a useful statistical method for improving the evaluation of ML
models especially in cases where we need to mitigate the overfitting problem. By
training several ML models on subsets of the available input data, each time, ample
data is provided for training the model, and also ample data is left for testing. In k-fold
cross-validation (Snippet 6.2 [111]), the input data is split into k subsets of data (also
known as folds). Then the model is trained on all folds except one and a test is done

on the remaining fold.[114]

KFold

Testing set
B Training set

CV iteration

L8

200 400 600 BOO 1000
Sample index

o

FIGURE 6.2: In KFold cross validation the size of training and testing
remain unchanged in each split [115]

As it is illustrated in Figure 6.2, these steps will be repeated until the model is being
tested on each of the folds. Ultimately, the final performance metrics will be the
average of scores obtained in every fold to get the total effectiveness of our model.
The number of folds in k-fold cross-validation is usually determined by the number of
instances contained in the dataset [116]. However, the number of folds must be chosen
in a way that the simulations do not be divided somewhere in the middle. Using 4-fold
cross-validation means that 25% of the data is used for testing and this is usually pretty
accurate. However, if the dataset size increases dramatically, like having more than
100,000 instances, it can be concluded that 10-fold cross-validation would lead to folds
of sufficient yet proper length.

Although the most admitted technique toward building an ML model consists of
randomly picking samples out of the available data and split them into train and
test sets, in the case of time-series, the cross-validation is not trivial in its random
foundation [117]. As it is discussed 5.1.3, due to some limitations in the OpenLab
simulator, the dataset in this work is not a time-series simulation at a time but is a

multiple concatenated time-series simulation.
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"Since Shuffling reorders the observation occurrence order, the idea of shuffling the
whole dataset completely ruins the time-based analysis. Because it makes no sense
to use the values from the future to forecast values in the past. However, shuffling the
order of independent dataset preserve the time-based relations among observations

while the sequenced values inside each of the dataset remain unchanged."[115]

TimeSeriesSplit

Testing set
EEm Training set

CV iteration

w

200 400 600 800 1000
Sample index

=5

FIGURE 6.3: In timeseriesSplit, each split, the training size is getting
bigger and successive training sets [115]

"It is not possible to choose the set sizes in the KFold method, but it is merely possible
to choose the number of splits one would like to have. In this thesis, the k-fold
cross-validation can be utilized if only the number of folds is chosen in a way that it
splits the concatenated simulations but not the sequenced values inside each of the

simulations."[115]

Another method that can be used for cross-validating the time-series model is cross-
validation on a rolling basis. This cross-validation object (shown in Figure 6.3), is a
variation of the KFold method but in each split, test indices are higher than before.
This approach which is well-known in the time-series domain avoids future-looking
when training the model. Thus, time-based splitting provides a statistically robust
model evaluation and best representative of real-life scenarios. Snippet 6.3 shows a

time-based cross-validation.[111]

SNIPPET 6.3: time-series train test split

from sklearn.model_selection import TimeSeriesSplit

ts_cv = TimeSeriesSplit(n_splits=n)

for train_index, test_index in ts_cv.split(X):
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
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6.2 How to evaluate the chosen ML model

ML algorithms or models can give different results due to either they are given different
input datasets or the nature of the learning algorithm. There is no one approach or
one solution that caters to all problems. How to choose the right ML model highly
depends on the candidate model assessment. In order to choose the best model, there
are many factors like speed or training time, number of features, type and size of data,
and common metrics that narrow down the list of ML algorithm options. However,
for classification problems, some performance metrics are mostly used to evaluate

different ML algorithms like accuracy, recall, precision, and F1 score.

Supervised learning is of two types named classification and regression as it is de-
scribed at the beginning of this chapter. The pool of accuracy and error metrics to
choose from is different between classification and regression problems. In the latter,
the goal is to predict one continuous value, and with classification, the goal is to
predict discrete classes such as "kick" or "not kick". Although there is not one true
accuracy or error measurement and they all have their strength and weaknesses, some
measurements might distract us from the right path.

For example, since the labels for the two groups are arbitrary, the classification rate is
more meaningful in this case than Mean Square Error (MSE) and MSE, so these metrics
ought to be ignored. MSE or other error measurements like Root Mean Square Error
(RMSE) tells how far your classifications are from the true values. Since the values
assigned for groups are arbitrary, there is no sense of how far or close a classification
is from the true value. In contrast, it is about either the output is correctly classified or
it is not and the classification rate measures this properly.[118]

Whenever a model is built, there are several metrics that are helpful to figure out
how well the model has performed. The Best metrics to measure and evaluate the
performance of classification models are as following: [119]

1. Confusion Matrix: This is a popular way to represent the summarized useful
findings. Itis a kind of table (Table 6.1) that contains performance measurement
metrics for ML classification. The binary classification has four possible types

of results that the definition of the terms are:

TP True Positive
It is predicted positive and it is true. For example, it is predicted a kick

happens and it actually happens.
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Predicted Value
Positive Negative
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%‘3 Positive (FP) Negative (TN)

TABLE 6.1: Confusion Matrix

TN True Negative
It is predicted negative and it is true. For example, it is predicted a kick

does not happen and it actually does not happen.

FP False Positive
It is predicted positive, but it is false. For example, it is predicted a kick

happens, but it actually does not happen.

FN False Negative
It is predicted negative, but it is false. For example, it is predicted a kick

does not happen, but it actually happens.

2. Accuracy: This is the ratio of all correct predictions to total predictions that have
been made and most of the time it is presented as a percentage by multiplying
the result by 100. Accuracy could be a useful lead when dealing with a balanced
(or approximately balanced) dataset when the class distribution is similar.

TP+TN
TP+FN+FP+TN

Accuracy =

3. Recall and Precision: Recall (aka Sensitivity) attempts to answer out of all the

actual positive classes, how many are predicted correctly and it should be high
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as possible. The Sensitivity (True Positive Rate) of a test in this work refers
to how well a test identifies a kick that does happen in a drilling operation.
Precision calculates what proportion of positive identifications was actually
correct. Precision and Recall are two extremely important model evaluation
metrics that are useful measures of success of prediction when the classes are

very imbalanced.

TP
Recall = ——
TP+ FN

. . TP
Precision = ———
TP+ FP

. F1 Score: F1 score (aka F score) is a way of combining the precision and recall

of the model and calculates the weighted average of Precision and Recall. In a
binary classification task, an F1 score fluctuates between 1 and zero where its
best value at 1 and worst value at 0. The major difference between accuracy
and F1 score is F1 Score might be a better measure to use if a balance between
Precision and Recall is of importance and there is an uneven and imbalanced

class distribution (a large number of Actual Negatives).

Fl - 2% Precision = Recall 3 2+«TP
"~ Precision+ Recall ~ 2+«xTP+FP+FN

. Specificity: While the Sensitivity measure is used to determine the proportion

of actual positive cases, which got predicted correctly, the Specificity (True
Negative Rate) measure is used to determine the classifier’s ability to identify
actual negative cases, which got predicted correctly. The specificity of a test in

this work refers to how well a test identifies a kick does not happen.

TN

Speciﬁcity = m
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6. ROC Curves and AUC: The AUC-ROC curve is only restricted for binary clas-
sification problems and is a proper way to see how any predictive model can
distinguish between the true positives and negatives. ROC stands for Receiver
Operating Characteristic. This curve, as it is illustrated in Figure 6.4, does this
by plotting sensitivity against 1-specificity to not only predict a positive as a
positive correctly but also a negative as a negative. The area under the curve
(AUC) is usually in the range [0.5,1] and shows a summary of the ROC curve. "A
high AUC represents both high recall and high precision, where high precision
relates to a low False Positive rate, and high recall relates to a low False Negative
rate" [115]. The AUC score smaller than 0.5 indicates that a classifier performs
worse than a random classifier. [120] snippet 6.4 contains the main packages for

ROC-AUC measurement.
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SNIPPET 6.4: Useful packages for ROC curve and AUC score

FPR =1 - Specificity

FPR = 1 - Specificity

F1GURE 6.4: ROC vs AUC [121]

FPR =1 - Specificity

from sklearn.metrics import roc_curve
from sklearn.metrics import roc_auc_score

from sklearn.metrics import precision_recall_curve
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Chapter 7

Models implementation and
evaluation

Models are fundamentally mathematical algorithms while Modeling in ML is an
iterative phase where a data scientist continually trains and tests ML models to discover
the best one for the given task. Among all the Popular algorithms that can be used
for binary classification, in this thesis, RandomForest, DecisionTree, K-Nearest
Neighbors (KNN), and Long Short-Term Memory (LSTM) are built and compared
to check how fit they are to solve the problem of kick identification and kick prediction

during the drilling operation.

Now the data is in its usable shape through data preparation in chapter 5 and also
the models are selected according to the business objectives through chapter 6. This
chapter aims to estimate the accuracy and precision of a model on future and unseen
data. Separating data into training and testing sets is an important part of evaluating
ML models in order to prevent the model from overfitting and to accurately evaluate
the model. In a dataset, a training set is implemented to build up and fit a model,
while a test set is to validate the model built by providing an unbiased evaluation of
a final model to qualify performance. The train/test split proportion to be divided is

completely up to the task we face and is quite specific to the use case.

7.1 Tools

Having known the data as well as the complexity of the problem, a variety of tools

have been used in this work.



7.1. Tools 71

7.1.1 Hardware

The configuration of the hardware is: CPU: intel Core 15 8th gen — RAM: 8GB — Hard
disk: 256GB SSD

7.1.2 Sensors

As itis comprehensively described in 5.1, the synthetic data is created with an OpenlLab
simulator to analyze the characteristic of influx during drilling operations. Each sensor
in the simulator is responsible to capture relevant information for a particular task.
Since the amount of data collected from the sensors increases rapidly, building an ML
model primarily involves monitoring and correctly interpreting all the data collected
from the simulator. Although real-world sensor data often contains noise, the synthetic

data in this work did not experience a high noise level.

7.1.3 Programming language

In this thesis, all the algorithms and analyses were developed in Jupyter Notebook
which is a free, open-source, interactive web tool. Jupyter is an easy-to-use, inter-
active data science environment that is the best coding language for data mining and
analysis. Jupyter is a great interface to the Python programming language that contains
many powerful libraries, ranging from basic statistics to complex machine learning

algorithms. Some of the commonly used libraries in this work are as follows:

* Pandas, Numpy: These are grouped as basic libraries which are used for under-

lying data analysis.

» TSFRESH: This library is used for feature engineering (extraction) and feature

selection for time-series data.
* scikit-learn is used to build ML models.
— sklearn.metrics: used for evaluation
— sklearn.preprocessing: used for scaling

» Keras, TensorFlow: These two are referred to as deep learning libraries and help
to build models like LSTM.

* Seaborn, matplotlib: These two are known as Python’s most powerful visualiza-

tion libraries.
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7.2 Data pre-processing

To accomplish this thesis, multiple simulations are run for generating multiple kicks
to have a variety of observations. Adequate observations lead the project to stepwise
improvement. Although there is no must-follow rule toward predictive modeling,
fundamental steps are the same in all projects. Drilling operations are constantly
facing large volumes of data, so data exploration and visualization help to achieve a

clear insight and identify trends, patterns, and outliers.

Table 7.1 gives a summary of ready-to-use sensor data. The primary steps toward
ML model creation are based upon twelve input features and one output feature. The
”TimeSte p” represents the sorting aspect of data which indicates the data are in time
order. The ’id”’ column, which is described fully in 5.3.3.3, is a key component for the
feature engineering process which is used in extract_features() and select_features()
functions. The id” column consists of positive integer numbers, ranging from 1 to
7, dedicated to different simulations as a way of distinguishing each simulation as an
Yentity”.

Data columns (total 15 columns)

# Column Nen-Null Count Dtype

@ TimeStep 3112 non-null ints4

1 DownholePressure 3112 non-null  floaté64
2  PressureBottomHole 3112 non-null  floaté64
3 HockLoad 3112 non-null  floaté64
4  MainPitDensity 3112 non-null floaté64
5 MainPitVolume 3112 non-null  floate4
6 ROP 3112 non-null floaté64
7 SPP 3112 non-null floats4
8 RPM 3112 non-null floats4
9 SurfaceTorque 3112 non-null float64
1@ WOB 3112 non-null float64
11 kick 3112 non-null float64
12 id 3112 non-null inte4

13 DeltaFlow 3112 non-null float64
14 DeltaTemp 3112 non-null floatesd

TABLE 7.1: Total features overview in an analysis-ready format

Due to multiple independent simulations, the data is spread across multiple tables and
must be gathered into a single dataframe. Figure 7.1 shows the final dataframe in
which all the sensors data are concatenated in order of time sequence. Regardless of
the simulation itself, simulation number 1 has come first, then simulation number 2
has come in the following, and so on. These visualization plots help to look at how

the sensor readings are changing over time and how the kicks happen over time.

Getting the first look at Figure 7.1, it is obvious that data are suffering from unbalanced

scaling. If the range of values varies widely, the feature with a higher value range starts



7.2. Data pre-processing 75

dominating over lower scale features. Therefore, the very first step toward modeling is

data scaling.

Feature scaling is one of the most important data pre-processing steps in ML and all
scaling techniques try to achieve a similar target. Since the distribution of the data does
not follow a Gaussian distribution, it is vital to use the normalization technique for
scaling data. Normalization, also called scaling normalization, modifies features to lie
between a given minimum and maximum value and leads the variables to contribute

equally to the predictive analysis (Figure 7.2).

For further explanatory data analysis, histplot and boxplot are provided in Figure 7.3

and Figure 7.4 respectively to demonstrate the numerical data groups in a graphical

manner.
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FIGURE 7.3: histplot of features
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FIGURE 7.4: boxplot of features

7.2.1 Kick detection

Kick detection is categorized as an anomaly or outlier detection where rare events
or observations raise the possibility of a potentially catastrophic incident. Figure 7.5
shows the artificial kicks generated by the OpenLab simulator over multiple simula-
tions. Each simulation represents a series of observations over time. Therefore, each
simulation consists of a time-series sequence of numerical data points in successive
order while each of which is marked with a positive integer.

kicks in original df

1.0
v 0.5
0.0 ; - - . - - .
0 1000 2000 3000 4000 5000 6000
Time

FIGURE 7.5: Original kicks
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7.2.2 Kick prediction

Since the blowouts during drilling are very dangerous and life-threatening, the main
focus during a drilling operation is to keep the wellbore pressure stable and prevent
any type of influx of formation fluids. Early kick detection can prevent blowouts,
therefore in the drilling industry, predicting the development trend of kick risk is of
great importance than informative kick-detection notification. Focusing, the crew will
have enough time to take action to eliminate or suppress the influx amount and prevent
oil well blowouts. In this regard, Figure 7.6 shows that the label/target variable (kick)
is shifted for different amounts of TimeStep to be evaluated how early the model is
able to predict the kick happening.

original —— 30seconds shifted 60seconds shifted

kicks in original vs shifted dataframe
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FIGURE 7.6: Original kicks vs shifted kicks

7.3 Window features (lag)

A time-series dataset must be transformed to a form that is comprehensive and in-
terpretable for the ML model. Window features -aka lag features- are a summary of
values over a fixed window of prior time steps in which every row contains data about
one observation and also includes all previous occurrences of that observation. The
sliding window method is the use of prior time steps to predict the next time step and
the “window” is a fixed amount of passing time. In other words, the window features
are basically the target variable but shifted over a period of time. The more we expand

the window width, the more lagged features are included.

In section 5.3.3.3, it is described in details that how roll_time_series() function
transform the original dataframe(df’) to the rolled dataframe (df _rolled) based on the

?id” column. The roll_time_series() function gives a new format of ’id” to the
(df _rolled) dataframe.
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TimeStep id

93 (2, 103)
95 (2, 103)
97 (2, 103)
99 (2, 103)
101 (2, 103)
103 (2, 103)

TABLE 7.2: When max_timeshift is set to 5, the current observation plus
5 prior time steps are all included as window features

TimeStep id

83 (2, 103)
85 (2,103)
87 (2,103)
89 (2, 103)
91 (2,103)
93 (2, 103)
95 (2, 103)
97 (2, 103)
99 (2, 103)
101 (2, 103)
103 (2, 103)

TABLE 7.3: When max_timeshift is set to 10, the current observation
plus 10 prior time steps are all included as window features

7.4 Implementation

After rolling the dataframe, extract_features() function generates a large number of
features automatically and also select_features() function selects the most relevant
features which result in the best performing model. It is possible to control the size
of the subsets with the parameters train_size and test_size. The test dataset size is set
to 38% of the whole dataset for M. modeling and the rest is dedicated to the training
dataset. Although the train-test split with more data in the training set will most likely
give better accuracy, this number is achieved by error and trial in this thesis. The input

parameters for train_test_split() are described in the following subsections.
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7.4.1 Detection

In Snippet 7.1, df _selected is the dataframe with the relevant features chosen form
df _features and y is the final target for detection. The y used here is exactly the
orange plot in Figure 7.5. The df _selected and y are the input parameters passed to

train_test_split() function afterwards.

SNIPPET 7.1: Select the most relevent features out of all the features
engineered and kept in df _ features based on y as the target

df_selected = select_features(df_features, y, fdr_level = 0.05)

7.4.1.1 DecisionTreeClassifier

Decision tree learning is predictive modeling that uses multiple algorithms to decide
to split a node into two or more sub-nodes. Decision trees cover classification and
regression problems, however, the tree in this work is called classification tree as the
target is to classify label as "kick" or "not kick". Growing a tree involves deciding on
which features to choose and what conditions to use for splitting, as well as the end of
the branch where splitting stops and the decision/leaf is achieved.

DownholePressure__cwt_coefficients__coeff_14__w_20__widths_(2, 5, 10, 20)
PressureBottomHole__cwt_coefficients__coeff_14__w_10__widths_(2, 5, 10, 20)
DownholePressure__cwt_coefficients__coeff_14__w_10__widths_(2, 5, 10, 20)
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WOB__large_standard_deviation__r_0.45
DeltaFlow__cwt_coefficients__coeff 12__w_10__widths_(2, 5, 10, 20)
DeltaFlow__lempel_ziv_complexity__bins_5 |
MainPitVolume__fft_coefficient__attr_"angle"__coeff_151
SPP__energy_ratio_by_chunks__num_segments_10__segment_focus_9 M
DeltaTemp__fft_coefficient__attr_"abs" coeff_9 m
DeltaFlow__cid_ce__normalize_True s
MainPitDensity__energy_ratio_by_chunks__num_segments_10__segment_focus_0
DeltaFlow__agg_linear_trend__attr_"stderr"__chunk_len_10__f agg_"min" n——
SPP__quantile__q_ 0.1
0.0 0.2 0.4 0.6

FIGURE 7.7: The most 15 relevant features in DecisionTreeClassifier

Since the deep decision tree is prone to overfitting, removing the branches that make
use of features having low importance will reduce the complexity of the tree and
improve accuracy. Although the number of selected features are hundreds of different
generated variables, Figure 7.7 only shows the 15 most relevant features that are chosen

by select_features() function via data selection.

Figure 7.8 demonstrates the prediction versus actual values by using DecisionTreeClas-
sifier.
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FIGURE 7.8: Predicted values of kicks in DecisionTreeClassifier

7.4.1.2 RandomForestClassifier

Random forest is a large number of individual decision trees and is one of the most
used algorithms due to its simplicity and diversity. Multiple decision trees are built
and merged together to get a more accurate and stable prediction model. Similar to
the decision tree model, the random forest can be used for both classification and
regression tasks as well.

One amazing advantage of the random forest model over the decision tree model is its
ability to add additional randomness to the model while growing the trees. While the
decision tree searches for the most important feature while splitting a node, random
forest searches for the best feature among a random subset of features. Random forests
overcome the overfitting problem that was one of the concerns in decision trees by

creating random subsets of the features and building smaller trees using those subsets.

SPP__cwt_coefficients__coeff_12__w_10__widths_(2, 5, 10, 20) n———
SPP__cwt_coefficients__coeff 8__w_20__widths_(2, 5, 10, 20) I ———
DownholePressure__agg_linear_trend__attr_"intercept"__chunk_len_10__f_agg_"max" n
SPP__quantile__q_0.6 n—
SPP__cwt_coefficients__coeff_13__w_10__widths_(2, 5, 10, 20) n———
SPP__median nm—
MainPitVolume__time_reversal_asymmetry_statistic__lag_2 n
SPP__quantile__qg_0.1 n——
SPP__cwt_coefficients__coeff 9 w_20__ widths_(2, 5, 10, 20) H
SPP__cwt_coefficients__coeff_11__w_20__widths_(2, 5, 10, 20) e —
SPP__quantile__g_0.3 n—
DownholePressure__cwt_coefficients__coeff_7__w_5__ widths_(2, 5, 10, 20) I
MainPitVolume__time_reversal_asymmetry_statistic__lag_3 —
PressureBottomHole__agg_linear_trend__attr_"intercept"__chunk_len_10__f agg_"max" I
MainPitVolume__time_reversal_asymmetry_statistic__|ag_ 1 /s
0.000 0.005 0.010 0.015 0.020 0.025

FIGURE 7.9: The most 15 relevant features in RandomForestClassifier

Although the number of selected features are hundreds of different generated variables,
to avoid a mess in the bar plot, Figure 7.9 only shows the 15 most relevant features that
are chosen by select_features() function in the feature selection process. By looking
at the feature importance bar plot in Figure 7.9, it would be concluded which features

to possibly drop because they don’t contribute enough to the detection process.

Figure 7.10 demonstrates the prediction versus actual values by using RandomForest-
Classifier.
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FIGURE 7.10: Predicted values of kicks in RandomForestClassifier

7.4.1.3 KNeighborsClassifier

The k-nearest neighbors (KNN) algorithm is a simple and easy to implement supervised
ML algorithm and similar to the other two models, this one also can be used to solve
both classification and regression problems. KNN looks for similarities between the

new data and previous data and puts the new data into the category that is most similar

to the available categories.
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FiGURE 7.11: Find the optimal value of k in KNeighborsClassifier

One important step prior to the model creation is selecting the number k> of the
neighbors. Choosing the right ’k” for our data is done by trying several Ks and
picking the one that works best. Figure 7.11 illustrates out of 40 different ’k”’ values,
position 34 performs better for this issue. Since there is always a need to determine the
value of ’k”’, sometimes this could lead to complex calculations for some problems.
Moreover, The computation cost is high in this model because the distance between the

new data points and all the existing samples should be calculated to be able to decide
which category the new data points belongs to.
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FIGURE 7.12: Predicted values of kicks in KNeighborsClassifier

Figure 7.12 demonstrates the prediction versus actual values by using KNeighborsClas-
sifier.

7.4.1.4 Evaluation for detective models

As itis discussed in section 6.2, it is worth mentioning again that some common metrics
like MSE or RMSE are not suitable for classification problems like the problem in this
thesis. Since the labels for the two groups are chosen arbitrarily, there is no sense of
how far or close a classification is from the true value.

800 800
3 o 204 155 359 600 .5 o 119 240 359 600
2~ <~
_ 400 -400
3 184 1183 ~200 z 252 1183 - 200
0.0 1.0 All 0.0 1.0 All
Predicted Predicted
(A) DecisionTreeClassifier (B) RandomForestClassi-
fier
=
800
™
2o 341 18 359 800
g -
-400
3 1160 23 1183 -200
0.0 1.0 All
Predicted

(c) KNeighborsClassifier

FIGURE 7.13: confusion matrices for detection modeling
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For classification issues, a proper way of summarizing the performance of a classifica-
tion algorithm is the confusion matrix (Figure 7.13). A confusion matrix is an N x N
matrix that allows you to measure Recall, Precision, Accuracy, and ROC-AUC curve.
In a confusion matrix, N is the number of target classes and this matrix gives direct

comparisons of values like True Positives, False Positives, True Negatives, and False

Negatives.
model name/metrics Accuracy || precision || recall f1 ROC AUC
DecisionTreeClassifier || 0.81 0.881 0.432 0.571 0.703135
RandomForestClassifier | 0.889 0.952 0.669 0.786 0.826980
KNeighborsClassifier 0.708 0.783 0.05 0.094 0.522036

TABLE 7.4: Evaluation measurements for detection modeling

Table 7.4 summarizes the evaluation metrics for the three models for detection purpose.
In classification problems, F1 score is the harmonic mean of precision and recall, thus
it is a better measure than accuracy. For example, a model with an accuracy of 70%
like the KNN detection model, might seems high enough accurate to some extent.
However, a Fl-score with 0.094 means the number of False Negative is comparably
extensively high. The Fl-score with a low amount shows that the KNN detection

model does not perform successfully to detect the kicks in numerous cases.

There are two other useful measurements in classification problems named ROC curve
and AUC. Asitisillustrated in Figure 7.14a, the ROC curve shows the trade-off between
sensitivity (or True Positive Rate) and specificity (1 — False Positive Rate), while AUC
measures the ability of a classifier to distinguish between classes (Figure 7.14b). A
Classifier that gives curves closer to the top-left corner indicates a better performance
or in other words, a higher AUC indicates the better performance of the model at
distinguishing between the positive and negative classes. AUC score around 0.7 to 0.8
1s considered acceptable. However, the AUC score can also be equal to or smaller than

0.5, which indicates that a classifier performs equal or worse than a random classifier.

Figure 7.14 shows that, in kick detection analysis, RandomForestClassifier achieves

better results than the other models.
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FIGURE 7.14: ROC-AUC comparison for three detective mod-
els: DT(DecisionTreeClassifier), RF(RandomForestClassifier) and
KNN(KNeighborsClassifier)

7.4.2 Prediction

For predictive analysis, Snippet 7.2 is applied with slightly different from Snippet 7.1.
While Snippet 7.1 is used in detection problems, Snippet 7.2 is useful in prediction
problems. This time, the df_selected is the dataframe with the relevant features
chosen from df _features and y_shi fted is the final target for detection.

SNIPPET 7.2: Select the most relevent features out of all the features
engineered and kept in df _ features based on y_shi fted as the target

df_selected_shifted = select_features(df_features, y_shifted,
fdr_level = 0.05)

The y_shifted used in Snippet 7.2 is exactly the red plot in Figure 7.15 where the
original plot is shifted 30 seconds ahead. The df_selected_shifted and y_shifted

are the input parameters passed to train_test_split() function then.

original —— 30seconds shifted

kicks in original vs shifted dataframe
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FiGure 7.15: Original kicks vs shifted kicks for 30seconds
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While detection and forecasting may sound similar to predictive analytics, understand-
ing the difference between detection and prediction helps to analyze behaviour of
trends in both scenarios and prevent potential drawbacks. Most probably in drilling
operations, predicting a kick would be way more helpful than detecting it. Forecasting
is a process of predicting or estimating future events based on past and present data
and kick prediction is of great concern in wells. Uncontrolled incidents like sudden
blowouts are consequences of the late kick detection which increases the possibility of
injury and potential loss of life and equipment. On the other hand, early kick detection
would provide enough time for the crew and managers to take some measurements and

control the influx amount.

7.4.2.1 DecisionTreeClassifier-Prediction
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FIGURE 7.16: The most 15 relevant features for prediction by Decision-
TreeClassifier

In contrast to Figure 7.7, Figure 7.16 shows that the decision tree modeling for predic-
tion has some new features like DeltaTemp_mean and DeltaTemp_kurtosis that
are among the most influential and dominant features.
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FIGURE 7.17: Predicted values of kicks in DecisionTreeClassifier with
y_shifted target

Figure 7.17 demonstrates the prediction versus actual values by using Decision-

TreeClassifier for prediction 30 seconds ahead of time.



86 Chapter 1. Models implementation and evaluation

7.4.2.2 RandomForestClassifier-Prediction

Similar to the Figure 7.9, in random forest modeling for prediction, the Figure 7.18
shows that the model is more affected by SPP and PressureBottomHole features more
than other features.
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FIGURE 7.18: The most 15 relevant features for prediction by Random-
ForestClassifier
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FIGURE 7.19: Predicted values of kicks in RandomForestClassifier with
y_shifted target

Figure 7.19 demonstrates the prediction versus actual values by using RandomForest-
Classifier for prediction 30 seconds ahead of time.

7.4.2.3 KNeighborsClassifier-Prediction

In contrast to the Figure 7.11 related to detection, Figure 7.20 depicts that the mean
error happens at position 8 in prediction scenario. Same as the previous KNN model
for detection purposes, this model also results in high costs associated with the cost of
computation. Since both detection and prediction modeling involve big data analysis,

this model suffers from computing complexity overhead in terms of time and cost.

Figure 7.21 demonstrates the prediction versus actual values by using KNeighborsClas-
sifier for prediction 30 seconds ahead of time. This plot looks so messy and although
it has comparably high accuracy, it suffers from too many False Negative cases. Thus,

it is unable to correctly interpret the trends to predict kicks ahead of time.
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FiGure 7.20: Find the optimal value of k in KNeighborsClassifier for
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FiGURE 7.21: Predicted values of kicks in KNeighborsClassifier with
y_shifted target

7.4.2.4 Evaluation for predictive models

Table 7.5 summarizes the evaluation measurements for three predictive modeling in-
troduced earlier and the Figure 7.22 contains confusion matrices of three models.
Considering Table 7.5 and Figure 7.22, it is obvious that two of the chosen models,
DecisionTreeClassifier and RandomForestClassifier achieve almost similar outcomes.
As False Negative and False Positive rates are errors in binary classification, a model
with lower False Negative and False Positive brings better outputs. The Random-

ForestClassifier not only has a lower False Positive (47) but also has a higher True
Positive (777) than other models.

Moreover, although KNeighborsClassifier has a lower number of False Positive(42)
compared to the other models, it has a high number of False Negative cases(279).
Thus, KNeighborsClassifier performs poorly on predicting kicks 30 seconds ahead of
time. In addition, KNeighborsClassifier outperforms the other two models in True

Positive cases(782), this classifier still suffers from a low F1-score and recall. This
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case explicitly reveals that why accuracy is not solely enough for ML evaluation and
assessment.
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FIGURE 7.22: confusion matrices for prediction modeling

model name/metrics Accuracy || precision || recall f1 ROC AUC

DecisionTreeClassifier 0.771 0.693 0.440 0.538 0.677580
RandomForestClassifier || 0.788 0.767 0.432 0.553 0.687358
KNeighborsClassifier 0.729 0.656 0.223 0.333 0.585935

TABLE 7.5: Evaluation measurements for predictive modeling

Figure 7.23 shows that, in kick prediction analysis, RandomForestClassifier and De-
cisionTreeClassifier achieve better results than the other model. Among these two,

RandomForestClassifier represents better results with higher accuracy.
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Ficure 7.23: ROC-AUC comparison for three predictive mod-

els: DT(DecisionTreeClassifier), RF(RandomForestClassifier) and
KNN(KNeighborsClassifier)

7.4.3 Improve the predictive ML model

7.4.3.1 Detection

The idea behind finding an optimum detective analysis and best ML modeling is to

create the model with a variation of rolling window size and look over the functionality

of the model. There are two parameters named max_timeshi ft and min_timeshi ft

to adjust window length. The size of the window defines how many prior observations

are needed to predict the next observation in the next time step. The window length

is adaptive and is derived by the performance of the model in order to ensure certain

reliability in the model performance.

For the RandomForestClassifier, 4-fold cross-validation is applied with the detection

purpose improvement. However, in this stage, using different sizes of rolling windows

for various ML models proved that shorter rolling window sizes tend to yield better

performance than shorter sizes as is summarized in Table 7.6.

cross-validation for RandomForestClassifier
metrics fold1 fold2 fold3 fold4
accuracy 0.865 0.900 0.761 0.862
precision 0.550 0.991 0.202 1.000
recall 0.888 0.817 1.000 0.664
F1-score 0.679 0.896 0.336 0.798
ROC AUC 0.874322 0.904460 0.8727775 0.831761

TABLE 7.6: 4-fold cross-validation to improve the RandomForestClas-
sifier for detection
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Figure 7.24 shows a 4-fold cross-validation for RandomForestClassifier for kick de-

tection and it demonstrates the primary order of simulations was not the best choice.
Because with fold2, an accuracy of 90% and AUC score of 0.9 are obtained.
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FIGURE 7.24:

Improvement in RandomPForestClassifier with 4-fold
cross-validation for detection

It is worth mentioning that k-fold cross-validation is about estimating the accuracy, not

improving it. Therefore, computing an overall evaluation score by taking the mean of
the 4 folds scores would probably provide a more robust evaluation of the model.

7.4.3.2 Prediction

Choosing the right error or score metric helps the decision-maker to lead the model
creation toward optimization. In the predictive evaluation, RandomForestClassifier
and DecisionTreeClassifier have been concluded as the best fit for kick prediction
problem during the drilling operation. However, the question is:

Is there any other way for improving the model at this stage?

The answer is yes. Although the ideal split for train/test is said to be 80/20 or 70/30
percent for training and testing sets respectively, there is no rule or the fixed number
for applying this split. In this thesis, depending on the size of the dataset and parameter
complexity, it is set to 62/38 percent. This distribution is reached randomly via error
and trial. However, some approaches are introduced in 6.1 to not only pick the best

algorithm but also improve the evaluation of ML models. Cross-validation is a useful
statistical method for improving the evaluation of ML models.
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For the DecisionTreeClassifier, a 4-fold time-series cross-validation is applied which
is a variation of the k-fold method. In time-series cross-validation only the number of

folds is chosen and the cross-validating is done on a rolling basis as it is depicted in

Figure 7.25.
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FIGURE 7.25: Improvement in DecisionTreeClassifier with 4-fold time-

Therefore, the DecisionTreeClassifier improves in accuracy, precision, recall, and F1-
score and ROC-AUC in the last fold (fold4). Table 7.7 gives a summary of each fold

series cross-validation for prediction

performance.

time-series cross-validation for DecisionTreeClassifier
metrics fold1 fold2 fold3 fold4
accuracy 0.593 0.770 0.868 0.818
precision 0 0.639 0.194 0.922
recall 0 0.976 0.317 0.704
F1-score 0 0.773 0.241 0.799
ROC AUC 0.405495 0.656 0.612065 0.820951

TABLE 7.7: 4-fold time-series cross-validation to improve the Decision-
TreeClassifier for prediction

In this part, it is worth mentioning that it is not necessary to stick with 4 folds.

Generally, somewhere between 5 and 10 will give good results. The window length

and number of folds are two factors with high influence in the output results.
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7.4.4 Long short-term memory (LSTM)

As itis described in section 3.1.3, NN is mostly used when there are complex nonlinear
relationships between inputs and output. LSTM networks are a type of RNN used for
sequence classification.

Preparing the input values is a vital part of the LSTM time-series predictions since
LSTM expects the input values in a specific 3D tensor format of test sample size by time
steps by the number of input features.[122] Since the input layer shape is significantly
in a different form compared to other ML models, so the Snippet 7.3 is applied to
convert the sequence data that may be a 1D or 2D matrix of numbers to the required
3D format of the LSTM input layer.

SNIPPET 7.3: convert the sequence data from 1D or 2D matrix to the
3D format required for LSTM input layer

train_features , test_features , train_labels , test_labels =
train_test_split(df_selected, y, test_size=0 .38, shuffle=False)
T = 45 # my choice of the rolling window

prepend_features = train_features.iloc[-(T-1):]
test_features = pd.concat([prepend_features, test_features ], axis=
0)

X_train, y_train = [], []

for i in range(train_labels.shape[ 0] - (T-1)):
X_train.append(train_features.iloc[i:i+T].values)
y_train.append(train_labels.iloc[i + (T-1)1)

X_train, y_train = np.array(X_train), np.array(y_train).reshape(-1,
1)

print(f’Train_data_dimensions:{X_train.shape},{y_train.shapel}’)

X_test, y_test = [], []

for i in range(test_labels.shape[ 0 ]):
X_test.append(test_features.iloc[i:i+T].values)
y_test.append(test_labels.iloc[i])

X_test, y_test = np.array(X_test), np.array(y_test).reshape(-1, 1)

print (f’Test_data_dimensions:{X_test.shape},{y_test.shape}’)

The Train_data_dimensions would be (1885, 45,2165), (1885, 1) and Test_data_dimensions
would be (1183, 45, 2165), (1183, 1). The meaning of the 3 input dimensions are:

* samples

* time steps
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e features

Note that in my dataset I have multivariate input features to predict one-dimensional y
values. Thus, in the LSTM input layer which is specified by the input_shape argument
on the first hidden layer of the network, there are X_train.shape[2] input features, and

there is only one unit in the Dense.

layers=[8, 8, 8, 1], train_examples=1885, test_examples=1183
batch = 1885, timesteps = 45, features = 2165, epochs = 3@

lr = 8.065, lambda = ©.83, dropout = 6.0, recurr_dropout = 9.9
Model: "sequential"

Layer (type) Output Shape Param #
lstn (LsTM)  (Nene, 45, 8)  eoses
batch_normalization (BatchNo (None, 45, 8) 32

1stm_1 (LSTM) (None, 45, 8) 544
batch_normalization_1 (Batch (None, 45, 8) 32

lstm_2 (LSTM) (None, 8) 544
batch_normalization_2 (Batch (None, 8) 32

dense (Dense) (None, 1) 9

Total params: 79,761
Trainable params: 70,713
Non-trainable params: 48

None
Restoring model weights from the end of the best epoch.
Epoch @ee31: early stopping

train accuracy = 71.2997%
test accuracy = 69.6534%
test error = 359 out of 1183 examples

TABLE 7.8: key parameters while building an LSTM model

A few key parameters provided in Table 7.8 for determining the quality of the net-
work.[123][124][125]

1. Epochs: is a hyperparameter that specifies the number of TimeSteps the data

will be passed to the neural network.

2. Batch size: in general refers to the number of Training examples utilized per
Iteration. This is not to be confused with the rolling window size used as

time-series predictors. This is also called Steps per epoch.
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3. Activations function: describing which activation function to use. This function
is used in order to help the network learn complex patterns in the data. The
activation function can either let no flow or complete flow of data throughout
the gates. Comparing to the neuron-based model like the brain, the activation

function filters what should be passed to the next level neurons.

4. Optimizer: Keras provides built-in optimizers in order to improve the accuracy
of the model.

5. Dropout: may be implemented on any or all hidden layers and it is a simple way
to prevent overfitting.
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FIGURE 7.26: LSTM performance

Loss value implies how poorly or well a model behaves after each iteration of optimiza-
tion while accuracy is the measure of how accurate the model’s prediction is compared
to the true data. Figure 7.26 shows a big difference between training and validation
performance which indicates that the network is overfitting badly since, in the case of
overfitting, the validation accuracy stops increasing. It is obvious that the validation
accuracy is only 69% and remains unchanged during different epochs. The model is

unable to generalize itself to get a validation accuracy above a certain threshold.

10 Loss curves accuracy curves
’ - 0.8
— training loss

09 — validation loss 07
0.8 06
07 05
05 04 —— ftraining accuracy

’ — validation accuracy

0.3
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Epochs Epochs

FIGURe 7.27: LSTM performance improvement by simplifying the
model to overcome the overfitting issue
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Validation loss and accuracy have improved with each epoch in Figure 7.27. Good
accuracy with lower loss means low errors have been made on a few data. To improve
the model, more layers can perform better but also harder to train, or sometimes a
dropout layer randomly drops some of the connections between layers. Also, Changing
the LSTM optimizer would result in better outputs and among different optimizers,
"Adam" is generally chosen as the best overall choice. the trial and error approach
for choosing the right amount of nodes and layers will provide the best results for any
individual problem. Here, the fundamental model in Table 7.8 has simplified by means
of neurons and batch size to resolve the overfitting issue.

After getting some intuition about how to choose the most important parameters, it
is time to build the model couple of times. Testing various configurations and then
evaluating the outcomes, the finalized model makes predictions with 74% accuracy
and the output is demonstrated in Figure 7.28.
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FIGURE 7.28: LSTM prediction results vs actual data
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Chapter 8

Conclusion and future work

The main objective of this thesis was to build several ML models to detect and predict
how a sequence of observations would threaten the well safety during the drilling
operations. Using Al and ML facilitate detecting and predicting the well control issues
such as kicks or loss circulations in high-risk industries like drilling. Although kicks
are eventually controlled before causing blowouts most of the time, the main focus in
this work was to predict kicks before happening in order to have enough time to take
countermeasures to save lives and rig instruments. This task has been completed, and
four different ML models were implemented, evaluated, and improved in this area.
The work could be divided into two parts. The first part was to collect and prepare the
data and the second part dedicated to ML models in terms of creation, evaluation, and

modification.

Building an ML model and designing relevant algorithms are not as straightforward
as they seem and deploying them in real business environments is even harder. Before
starting to gather data, it is vital to ensure that the domain of the problem is correctly
understood. "kick detection and kick prediction" is categorized as a supervised learning
and binary classification since models were being trained using labeled data which
means that data is already tagged with the correct answers. Moreover, working with
the oil and gas industry requires handling the ever-increasing amount of data and large
datasets which are of high importance in this field. To handle such an amount of data,
the Python programming language and scikit-learn library are utilized widely in this

work.

Time component is a crucial element in sequential forecasting problems where present
observation occurrence is dependent on previous observations. Time-series forecasting
problems are more complex as the time component adds an extra dimension to the
dataset. The next step towards building any ML model is to gather and organize data

which is the most time-taking task in this process.
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The work initially started with main operating parameters such as FlowRateln and
Out, Pressure, Density, ROP, SPP, and so on. From raw data to the ML model, an
advanced method of automatic feature engineering and feature selection is applied
in this work. A new Python package named 7SFRESH is used to extract hundreds
of new features out of the existing input features. This perfect open source library
generates new characteristics of data assisting in new insights into time-series and
their dynamics. Using feature_calculators module, the TSFRESH creates a total of
794 time-series features including deviation, correlation, entropy, quantile, kurtosis,
and so many other properties.

Keep in mind that having such a vast database, the crucial point was to remove outliers
and anomalies without losing valuable observations. Plotting and visualization played
an important role in this work to figure out what features to keep and what features
to omit. ReservePitDensity and ReservePitVolume had unique value during operation
and had no impact on kicks. Moreover, DeltaTemp and DeltaFlow were generated
to reduce dimensionality. Extracted features are directly influenced by different sizes
of the rolling window and train/test split. Even with the models themselves, the
input variables like number of nodes in LSTM or the maximum depth of the tree in

DecisionTreeClassifier would change the final result to some extent.

DecisionTreeClassifier, RandomForestClassifier, KNeighborsClassifier, and LSTM are
four models that have been implemented in this work and then, some techniques were
used to boost the performance of the ML models. In the detection process, Ran-
domPForestClassifier intensively outperformed the other models, while in the predic-
tion, RandomForestClassifier and DecisionTreeClassifier performed almost similarly
and better than KNeighborsClassifier. In the detection model improvement, cross-
validation enhanced the RandomForestClassifier model enhanced the accuracy by 2%
and ROC AUC by 8%. On the other part, the DecisionTreeClassifier prediction model
was boosted more successfully than others by time-series cross-validation. The ac-
curacy, precision, and ROC AUC were enhanced by 4%, 23%, and 15% respectively.
In the LSTM model, performance enhancement was accomplished by simplifying
the model (lower number of neurons and batch size and also change the optimizer
to "Adam") to overcome the overfitting problem. Finally, the LSTM performance
improved by 5% in total.

For future work, since the data is generated by the OpenLab drilling simulator delivered
by NORCE, real-world data analysis is lacking in this work. Walking through a real-
world use-case like kick incident and having a more realistic view of the trends and
patterns would assist in obtaining clearer insights into the procedure. In addition, this

work mainly puts more focus on the most common ML algorithms like K Nearest
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Neighbor, Decision Tree, and Random Forest and less on Neural Networks. The next
thing that could be experimented further is to examine Neural Networks and Long
Short-Term Memory behaviour in order to achieve more accurate performance out of
these models. Future studies could also aim to replicate the results of this work by
changing the primary configuration and settings like train/test split size and feature

filtering parameters.






100

List of Figures

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

[lustration of the drilling fluid circulation in the wellbore consists
of drill pipes and a heavy drill bit. Gas emission can occure during
circulation.[4] . . . . . . . ..
How a balance between formation pressure and hydrostatic pressure
keep the wellbore stable [S] . . . . . ... ... ... ... .....
Runnig casing process is followed by drilling to deeper depths and
by continuously adding lesser sized casings until the desired drilling
depthisreached [8]. . . . . . .. .. .. ... ... .. .......
Typical casing and cementing program. Multiple strings from large to
small diameter conductor may be required to reach the target producing
zone. [12]. . . . . . . e
The right range for drilling formation pressure (pore pressure as red
line) to balance the bottom-hole pressure [18] . . . . . .. ... ...
Any change in drilled cuttings size and shape might indicate well
control problematic issues [28] . . . . . . . .. ... L
Pit level is constant during normal drilling and circulation [21] . . . .
Pit gain (loss) is a relatively common problem in deep-water wells due
to the entrance (exit) of unwanted and uncontrolled amount of fluids
into (from) the wellbore. [21] . . . .. ... ... .. ... .....
Abnormal behaviour in flow-rate and how ML algorithms can reduce
false alarm by maintaining tight alarm threshold [29] . . . . . . . ..
Any change in drilling normal trends can be warning indications of
occurrence of a well control situation. For example a change in rate
of penetration is called drilling break and it is a sign of potential
problems. [21] . . . . . . ...
A deviation from a normal trend in formation pressure indicates a
high-risk incident is going to happen [30] . . . . . . .. ... .. ..
Well influx/kick detected from pressure while drilling showing an
abrupt increase in measured downhole pressure (PWD or ECD)and

temperature. [31] . . . . . .. L

15
16



List of Figures 101
3.1 A clear visualization of overlapping Artificial Intelligence-related ter-
minology. [32]. . . . . ... L 21
3.2 Recurrent Neural Network [39] . . . . . . . . . . . .. ... ..... 24
(a) RNNloops . . . ... . o 24
(b) The repeating module in standard RNN contains a single layer 24
3.3 Long Short-Term Memory (LSTM) network [39] . . . . .. .. ... 25
(a) LSTM . . . o 25
(b) LSTM Gates . . . . . .. . oo ittt 25
3.4 CRISP-DM overview and how a data mining project breaks into six
phases to obtain better results [43] . . . . . ... ... ... ... .. 26
4.1 How data scientists spend their time [76] . ... ... ... ..... 34
42 ML modelsteps [80] . . . ... ... ... ... ... ... ... 36
5.1 Hole section tab in OpenLab simulator [85] . . . ... ... ... .. 39
5.2 The visualization of wellpath tab structure in 3D [85] . . . . . . . .. 39
5.3 The mud tab contains pie charts and rheogram chart [85] . . . . . .. 40
5.4 The drill pipe inner and outer parameters can be varied in drillstring
tab [85] . . . . . 40
5.5 Geology tab in OpenLab simulator [85] . . . .. ... ... ..... 41
(a) Geopressure . . . . . ...l 41
(b) Geothermal . . . . .. .. ... ... . ... 41
(c) Formation . . . . . . . . . . . . ... 41
5.6 A schematic layout of the rig tab from OpenLab simulator [85]. . .. 42
5.7 The first simulation sensor data and duration . . . . . . .. .. .. .. 46
5.8 The second simulation sensor data and duration . . . . ... ... .. 47
5.9 ReservePitDensity and ReservePitVolume columns have unique value
inevery simulation . . . .. ... ... L Lo 49
5.10 The kick as output variable and other data as input variables show this
case is a Multivariate Time-series problem. The plots demonstrate
how the sensor readings are changing over time (these plots refer to
the first simulation) . . . . . . . . ... .. ... ... o 51
5.11 The input data distribution is not Gaussian(these plots refer to the first
simulation) . . . . . ... L 52
5.12 Once the model is built, it is possible to come back for further feature
engineering to see if the performance can be improved. [98] . . . . . . 53
5.13 Rolling window in TSFRESH package [97] . . .. ... ... . ... 58
6.1 A common train/test split size [111] . . . . . . .. .. .. ... ... 63



102 List of Figures

6.2 In KFold cross validation the size of training and testing remain un-
changed ineach split [115] . . . . . ... ... ... ... ...... 64

6.3 In timeseriesSplit, each split, the training size is getting bigger and

successive training sets [115] . . . . . . .. ... oL oL 65
6.4 ROCvs AUC[I21] . . . . . . o e 69
7.1 Dbefore scaling bigger fontsize . . .. ... ... ... .. ...... 72
7.2 scaledfeatures . . . . . . . ... 73
7.3  histplotof features. . . . . . ... ... 75
7.4 Dboxplotoffeatures . . . . .. .. .. ... ... L 76
7.5 Originalkicks . . . . .. ... oo 76
7.6 Original kicks vs shifted kicks . . . . . ... ... ... ....... 77
7.7 The most 15 relevant features in DecisionTreeClassifier . . . . . . . . 79
7.8 Predicted values of kicks in DecisionTreeClassifier . . . ... .. .. 80
7.9 The most 15 relevant features in RandomForestClassifier . . . . . . . 80
7.10 Predicted values of kicks in RandomForestClassifier . . . . . . .. .. 81
7.11 Find the optimal value of k in KNeighborsClassifier . . . . .. .. .. 81
7.12 Predicted values of kicks in KNeighborsClassifier . . . . . .. .. .. 82
7.13 confusion matrices for detection modeling . . . . . ... ... .... 82
(a) DecisionTreeClassifier . . . . ... . ... ... ... .... 82
(b) RandomForestClassifier . . . ... ... ... ........ 82
(©) KNeighborsClassifier . . . . . . ... ... ... ....... 82
7.14 ROC-AUC comparison for three detective models: DT(DecisionTreeClassifier),
RF(RandomForestClassifier) and KNN(KNeighborsClassifier) . . .. 84
(a) ROC . . . 84
(b) AUC . . 84
7.15 Original kicks vs shifted kicks for 30seconds . . . . . .. ... .. .. 84

7.16 The most 15 relevant features for prediction by DecisionTreeClassifier 85
7.17 Predicted values of kicks in DecisionTreeClassifier with y_shifted

target . ... e 85
7.18 The most 15 relevant features for prediction by RandomForestClassifier 86
7.19 Predicted values of kicks in RandomForestClassifier with y_shi fted

target . ... e e 86
7.20 Find the optimal value of k in KNeighborsClassifier for prediction . . 87
7.21 Predicted values of kicks in KNeighborsClassifier with y_shi fted target 87
7.22 confusion matrices for prediction modeling . . . . ... ... .. .. 88
(a) DecisionTreeClassifier . . . . ... ... ... ... ..... 88
(b) RandomForestClassifier . . . . ... ... ... ....... 88

(©) KNeighborsClassifier . . . . . . ... ... ... ....... 88



List of Figures 103

7.23

7.24

7.25

7.26
7.27

7.28

ROC-AUC comparison for three predictive models: DT(DecisionTreeClassifier),
RF(RandomForestClassifier) and KNN(KNeighborsClassifier) . . .. 89
(a) ROC . . . 89
(b) AUC . . 89
Improvement in RandomForestClassifier with 4-fold cross-validation
fordetection . . . . . . ... L 90
Improvement in DecisionTreeClassifier with 4-fold time-series cross-
validation for prediction . . . . . . . . ... ... L 91
LSTM performance . . . . . ... .. ... ... ... ........ 94
LSTM performance improvement by simplifying the model to over-

come the overfittingissue . . . . . . . . ... ... L 94
LSTM prediction results vs actualdata . . . . . . ... ... ..... 95



104

List of Tables

5.1

5.2

5.3

54
5.5

6.1

7.1
7.2

7.3

7.4

1.5

7.6

7.7

7.8

Diabetic Prediction as a sample of not time-series dataframe and it is
time-independent . . . . . .. .. ... Lo
Kick Forecasting as a time-series dataframe that includes a time-related
column . .. ...
Example of "id" column in a dataframe consists of two different entities
d1and2)[97] . . . . . . ..
Example of "id" after rolling [97] . . . . . . . . . ... ... ... ..
Example of "id" after rolling [97] . . . . . . . . .. ... ... ...

Confusion Matrix . . . . . . . . v v v v i e

Total features overview in an analysis-ready format . . . . . . .. ..
When max_timeshift is set to 5, the current observation plus 5 prior
time steps are all included as window features . . . . ... ... ...
When max_timeshift is set to 10, the current observation plus 10 prior
time steps are all included as window features . . . . ... ... ...
Evaluation measurements for detection modeling . . . . . ... ...
Evaluation measurements for predictive modeling . . . . . .. .. ..
4-fold cross-validation to improve the RandomForestClassifier for de-
tECHION . . . . . . e e e
4-fold time-series cross-validation to improve the DecisionTreeClassi-
fier for prediction . . . . . . ... ...
key parameters while building an LSTM model . . . . . ... .. ..



105

List of Snippets

5.1
5.2
5.3
54
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14

6.1
6.2
6.3
6.4

7.1

7.2

7.3

change the object type to numeric type for ML model . . . . . . . .. 47
Filling missing values . . . . . . . .. ... ... ... ........ 48
Finding columns with unique value . . . . . . . ... ... ... ... 49
Data reduction in order to solve the information overload problems . . 49
Filling missing values . . . . . . . .. ... ... ... ........ 50
There are two data types in ML modeling: 1.Numerical 2.Categorical 50

normalization as a scaling technique . . . . . ... ... ... .... 51
Concatenate all individual simulations to have a unique dataframe . . 54
Extract a comprehensive set of features on df dataframe . . . . . . . . 56
Rolling window in TSFRESH package . . . . . . ... ... ..... 58
Rolling window in TSFRESH package with max_timeshi ft parameter 60

Rolling window in TSFRESH package with min_timeshi ft parameter 60
Usual feature extraction on the rolled dataframe . . . . . . .. .. .. 60
Select the most relevent features out of all the features engineered for

ML modeling . . .. ... ... .. .. .. 60
traintest split . . . . . ... ... 62
Crossvalidation . . . . . . . ... ... ... .. ... ... 63
time-series train test split . . . . . ... ... ... L. 65
Useful packages for ROC curve and AUCscore . . . . ... ... .. 69

Select the most relevent features out of all the features engineered and
keptin df _features basedon y asthetarget . . . .. ... ... .. 79
Select the most relevent features out of all the features engineered and
keptin df_features based on y_shi fted as the target . . . .. . .. 84
convert the sequence data from 1D or 2D matrix to the 3D format
required for LSTM input layer . . . . . .. ... ... ... ..... 92



106

Bibliography

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

Haiyan Xie, Arun Kumar Shanmugam and Raja RA Issa. “Big Data Analysis
for Monitoring of Kick Formation in Complex Underwater Drilling Projects”.
in: Journal of Computing in Civil Engineering 32.5 (2018), page 04018030.

S Rana andothers. “Facts and data on environmental risks-oil and gas drilling
operations”. in: SPE Asia Pacific Oil and Gas Conference and Exhibition.
Society of Petroleum Engineers. 2008.

McKinsey Quarterly. The decoupling of GDP and energy growth: A CEO
guide. https://www.mckinsey . com/industries/electric-power-
and-natural -gas/our-insights/the-decoupling-of-gdp-and-
energy-growth-a-ceo-guide. April2019.

Gabriel Merhy de Oliveira, Jonathan Felipe Galdino and Admilson T Franco.
“PRESSURE PROPAGATION IN DRILLING FLUIDS DURING A KICK
OF GAS”. in: ().

OL Ayodele, JM van Bever Donker and M Opuwari. “Pore pressure pre-
diction of some selected wells from the Southern Pletmos Basin, offshore
South Africa”. in: South African Journal of Geology 2016 119.1 (2016),
pages 203-214.

Simon Haukanes. “State and Parameter Identification Applied to Dual Gradient
Drilling with Water Based Mud”. mathesis. NTNU, 2015.

Eric Bertet andothers. Method of cementing deformable casing inside a bore-
hole or a conduit. US Patent 5,718,288. 1998.

Bikram Singh. Offshore Well Drilling : A General Overview. https://
www . marineinsight . com/offshore/offshore-well-drilling-a-
general-overview/. Oct2019.


https://www.mckinsey.com/industries/electric-power-and-natural-gas/our-insights/the-decoupling-of-gdp-and-energy-growth-a-ceo-guide
https://www.mckinsey.com/industries/electric-power-and-natural-gas/our-insights/the-decoupling-of-gdp-and-energy-growth-a-ceo-guide
https://www.mckinsey.com/industries/electric-power-and-natural-gas/our-insights/the-decoupling-of-gdp-and-energy-growth-a-ceo-guide
https://www.marineinsight.com/offshore/offshore-well-drilling-a-general-overview/
https://www.marineinsight.com/offshore/offshore-well-drilling-a-general-overview/
https://www.marineinsight.com/offshore/offshore-well-drilling-a-general-overview/

Bibliography 107

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

The Government of Saskatchewan. “Casing and Cementing Requirements”.
in: Directive PNG005 (May2018).

Dipal Patel andothers. “A review on casing while drilling technology for oil
and gas production with well control model and economical analysis”. in:
Petroleum 5.1 (2019), pages 1-12.

Vivek Thakar andothers. “A Review On Casing While Drilling Technology
For Oil And Gas Production With Well Control Model And Economical Anal-
ysis”. in: AAPG European Region, 3rd Hydrocarbon Geothermal Cross Over
Technology Workshop.

Erik B. Nelson. Offshore Well Drilling : A General Overview. https://www.
slb.com/resource-library/oilfield-review/defining-series/
defining-cementing. 2011.

Wayne Nash. Tips for Running, Cementing Casing on Drilling Jobs. https:
//www.nationaldriller.com/articles/91049-tips-for-running-
cementing-casing-on-drilling-jobs. Dec2017.

G Hoetz, B Jaarsma, M Kortekaas andothers. “Drilling hazards inventory:
The key to safer-and cheaper-wells”. in: SPE Annual Technical Conference
and Exhibition. Society of Petroleum Engineers. 2013.

Qadir Mehmood Soomrob F. Sherwanic Muhammad Aamird Muhammad Mu-
jtaba Asada Razali Bin Hassana. “Identification of Hazardous Nature of Well
Drilling Operation With Associated Potential Hazards at Oil and Gas Extrac-
tion Industries: an Explanatory Approach”. in: 4th Scientific Conference on
Occupational Safety and Health 13.2 (2016), pages 85-92.

John Wihbey. Final report on the causes of BP’s Macondo Well blowout.
https://journalistsresource.org/studies/environment/energy/
final-report-causes-macondo-well-blowout/. Sep2011.

Zeyad Hassan. “Common Drilling well problems (Reasons, indications, miti-
gation and prevention)”. in: (April2018).

Selim Shaker. “The Double Edged Sword: The Impact of the Interaction be-
tween Salt and Sediment on Sub-salt Exploration Risk in Deepwater from
Mahogany to Jack™. in: (2008).


https://www.slb.com/resource-library/oilfield-review/defining-series/defining-cementing
https://www.slb.com/resource-library/oilfield-review/defining-series/defining-cementing
https://www.slb.com/resource-library/oilfield-review/defining-series/defining-cementing
https://www.nationaldriller.com/articles/91049-tips-for-running-cementing-casing-on-drilling-jobs
https://www.nationaldriller.com/articles/91049-tips-for-running-cementing-casing-on-drilling-jobs
https://www.nationaldriller.com/articles/91049-tips-for-running-cementing-casing-on-drilling-jobs
https://journalistsresource.org/studies/environment/energy/final-report-causes-macondo-well-blowout/
https://journalistsresource.org/studies/environment/energy/final-report-causes-macondo-well-blowout/

108

Bibliography

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

Derek Krieg. What is blowout? https://oilfieldbasics.com/2018/10/
11/what-is-a-blowout/. Oct2018.

Mariana Coelho. Causes of Kicks. https://www.linkedin.com/pulse/
causes-kicks-mariana-coelho/. April2017.

DrillingFormulas.Com. Possible Kick Indicators in Well Control. http://
www.drillingformulas.com/possible-kick-indicators-in-well-
control/. 2019.

Tonggiang Xia andothers. “Fluid flow in unconventional gas reservoirs”. in:
Geofluids 2018 (2018), page 2178582.

Hewei Tang andothers. Automatic abnormal trend detection of real time
drilling data for hazard avoidance. US Patent App. 16/649,249. 2020.

Fred NG. “Multiphase simulations enhance well designs, contingency plan-

ning”. in: Drilling contractor 68.6 (2012).

Inge Mosti, Bjgrn-Tore Anfinsen and Anne Sofie Flatebg. “Impact of thermal
expansion on kick tolerance should be part of pre-drilling risk assessment”.
in: Drilling contractor (2008), pages 104—106.

Pal Skalle, Agnar Aamodt, Isak Swahn andothers. “Detection of failures and
interpretation of causes during drilling operations”. in: Abu Dhabi Interna-
tional Petroleum Exhibition & Conference. Society of Petroleum Engineers.
2016.

Pél Skalle, Agnar Aamodt, Odd Erik Gundersen andothers. “Detection of
symptoms for revealing causes leading to drilling failures”. in: SPE Drilling
& Completion 28.02 (2013), pages 182—193.

Paul Fekete andothers. “Wellbore stability management in weak bedding
planes and angle of attack in well planing”. in: SPE Nigeria Annual Inter-
national Conference and Exhibition. Society of Petroleum Engineers. 2014.

Sean Unrau andothers. “Machine learning algorithms applied to detection
of well control events”. in: SPE Kingdom of Saudi Arabia Annual Technical
Symposium and Exhibition. Society of Petroleum Engineers. 2017.


https://oilfieldbasics.com/2018/10/11/what-is-a-blowout/
https://oilfieldbasics.com/2018/10/11/what-is-a-blowout/
https://www.linkedin.com/pulse/causes-kicks-mariana-coelho/
https://www.linkedin.com/pulse/causes-kicks-mariana-coelho/
http://www.drillingformulas.com/possible-kick-indicators-in-well-control/
http://www.drillingformulas.com/possible-kick-indicators-in-well-control/
http://www.drillingformulas.com/possible-kick-indicators-in-well-control/

Bibliography 109

[30] DrillingFormulas.Com. Possible Kick Indicators in Well Control. https://
www . drillingformulas . com/pore-pressure - evaluation-while-
drilling-is-important-for-well-control/. 2015.

[31] Jincai Zhang and Shangxian Yin. “Real-time pore pressure detection: indica-
tors and improved methods”. in: Geofluids 2017 (2017).

[32] Naresh Thakur. The differences between Data Science, Artificial Intelligence,
Machine Learning, and Deep Learning. https ://ai . plainenglish.
io/data- science-vs-artificial - intelligence - vs - machine -
learning-vs-deep-learning-50d3718d51e5. 2020.

[33] Jeft Williams. Is Al the fuel oil and gas needs? https://www.ey.com/en_
ro/applying-ai-in-oil-and-gas. June2019.

[34] M Enamul Hossain and Abdulaziz Abdullah Al-Majed. Fundamentals of sus-
tainable drilling engineering. John Wiley & Sons, 2015.

[35] import.io. Data Mining vs. Machine Learning: What’s The Difference? https:
//www.import.io/post/data-mining-machine-learning-difference/.
2017.

[36] Augustine Osarogiagbon andothers. “A new methodology for kick detection
during petroleum drilling using long short-term memory recurrent neural net-

work”™. in: Process Safety and Environmental Protection (2020).

[37] Jiahang Han, Yanji Sun, Shaoning Zhang andothers. “A data driven approach
of ROP prediction and drilling performance estimation”. in: International
Petroleum Technology Conference. International Petroleum Technology Con-
ference. 2019.

[38] Qishuai Yin andothers. “Field data analysis and risk assessment of gas kick
during industrial deepwater drilling process based on supervised learning
algorithm”. in: Process Safety and Environmental Protection 146 (2021),
pages 312-328.

[39] Christopher Olah. Understanding LSTM Networks.https://colah.github.
io/posts/2015-08-Understanding-LSTMs/. Aug2015.


https://www.drillingformulas.com/pore-pressure-evaluation-while-drilling-is-important-for-well-control/
https://www.drillingformulas.com/pore-pressure-evaluation-while-drilling-is-important-for-well-control/
https://www.drillingformulas.com/pore-pressure-evaluation-while-drilling-is-important-for-well-control/
https://ai.plainenglish.io/data-science-vs-artificial-intelligence-vs-machine-learning-vs-deep-learning-50d3718d51e5
https://ai.plainenglish.io/data-science-vs-artificial-intelligence-vs-machine-learning-vs-deep-learning-50d3718d51e5
https://ai.plainenglish.io/data-science-vs-artificial-intelligence-vs-machine-learning-vs-deep-learning-50d3718d51e5
https://www.ey.com/en_ro/applying-ai-in-oil-and-gas
https://www.ey.com/en_ro/applying-ai-in-oil-and-gas
https://www.import.io/post/data-mining-machine-learning-difference/
https://www.import.io/post/data-mining-machine-learning-difference/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

110

Bibliography

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Kenneth Omokhagbo Afebu andothers. “LSTM-based approach for predicting
periodic motions of an impacting system via transient dynamics”. in: Neural
Networks 140 (2021), pages 49—-64.

Yao Ming andothers. “Understanding hidden memories of recurrent neural
networks”. in: 2017 IEEE Conference on Visual Analytics Science and Tech-
nology (VAST). IEEE. 2017, pages 13-24.

Abdullah AlBar andothers. “Optimizing the Number of Nodes in Artificial
Intelligence Neural Network Using Parallel Computing Methods”. in: Abu
Dhabi International Petroleum Exhibition & Conference. Society of Petroleum

Engineers. 2018.

Ignitedata.com. How successful are your Data Science projects? https://
ignitedata.com.au/perspectives/how-complete-are-existing-
data-science-methodologies. 2020.

Data Science Project Management. What is CRISP DM? https://www.
datascience-pm.com/crisp-dm-2/. 2020.

Daniel Codazzi. Kick detection during drilling. US Patent 5,154,078. 1992.

Roland E Chemali, Volker Krueger and Rocco DiFoggio. Early Kick Detection
in an Oil and Gas Well. US Patent App. 11/841,527. 2008.

Jon Bang andothers. “Acoustic gas kick detection with wellhead sonar”. in:
SPE Annual Technical Conference and Exhibition. Society of Petroleum En-
gineers. 1994.

Quan Zhou andothers. “The application of ultrasonic based on Doppler effect
used in early kick detection for deep water drilling”. in: 2013 International
Conference on Communications, Circuits and Systems (ICCCAS). volume 2.
IEEE. 2013, pages 488—491.

Ali Karimi Vajargah and Eric van Oort. “Early kick detection and well control
decision-making for managed pressure drilling automation”. in: Journal of
Natural Gas Science and Engineering 27 (2015), pages 85-92.

Arne Handal andothers. “Safety barrier analysis and hazard identification of

blowout using managed pressure drilling compared with conventional drilling”.


https://ignitedata.com.au/perspectives/how-complete-are-existing-data-science-methodologies
https://ignitedata.com.au/perspectives/how-complete-are-existing-data-science-methodologies
https://ignitedata.com.au/perspectives/how-complete-are-existing-data-science-methodologies
https://www.datascience-pm.com/crisp-dm-2/
https://www.datascience-pm.com/crisp-dm-2/

Bibliography 111

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

in: JADC/SPE Managed Pressure Drilling and Underbalanced Operations

Conference and Exhibition. Society of Petroleum Engineers. 2013.

ED Toskey andothers. “Kick detection at the subsea mudline”. in: Offshore
Technology Conference. Offshore Technology Conference. 2015.

Adrian Ambrus andothers. “Real-time estimation of reservoir influx rate and
pore pressure using a simplified transient two-phase flow model”. in: Journal
of Natural Gas Science and Engineering 32 (2016), pages 439-452.

Opeyemi Bello andothers. “Application of artificial intelligence techniques
in drilling system design and operations: a state of the art review and future
research pathways”. in: SPE Nigeria Annual International Conference and

Exhibition. Society of Petroleum Engineers. 2016.

Opeyemi Bello andothers. “Application of artificial intelligence methods in
drilling system design and operations: a review of the state of the art”. in:
Journal of Artificial Intelligence and Soft Computing Research 5.2 (2015),
pages 121-139.

Farshad jafarizadeh By Mohammad Hossein Motamedie. “An Overview on

Applications of Machine learning in petroleum Engineering”. in: (MArch2020).

Christine I Noshi, Jerome J Schubert andothers. “The role of machine learning
in drilling operations; a review”. in: SPE/AAPG Eastern Regional Meeting.
Society of Petroleum Engineers. 2018.

Hu Yin andothers. “Kick Risk Forecasting and Evaluating During Drilling
Based on Autoregressive Integrated Moving Average Model”. in: Energies
12.18 (2019), page 3540.

Raed Alouhali andothers. “Drilling through data: Automated kick detection
using data mining”. in: SPE International Heavy Oil Conference and Exhibi-

tion. Society of Petroleum Engineers. 2018.

Somadina Muojeke, Ramachandran Venkatesan and Faisal Khan. “Supervised
data-driven approach to early kick detection during drilling operation”. in:
Journal of Petroleum Science and Engineering (2020), page 107324.



112

Bibliography

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

Dinh Minh Nhat, Ramachandran Venkatesan and Faisal Khan. “Data-driven
Bayesian network model for early kick detection in industrial drilling process”.

in: Process Safety and Environmental Protection (2020).

Idris O Sule, Faisal Khan and Stephen Butt. “Experimental investigation of
gas kick effects on dynamic drilling parameters”. in: Journal of Petroleum
Exploration and Production Technology 9.1 (2019), pages 605-616.

Mohammadreza Kamyab andothers. “Early kick detection using real time data
analysis with dynamic neural network: A case study in iranian oil fields”. in:
Nigeria annual international conference and exhibition. Society of Petroleum
Engineers. 2010.

Andreas K Fjetland andothers. “Kick detection and influx size estimation
during offshore drilling operations using deep learning”. in: 2019 14th IEEE
Conference on Industrial Electronics and Applications (ICIEA). IEEE. 2019,
pages 2321-2326.

Sergey Borozdin andothers. “Drilling Problems Forecast System Based on
Neural Network™. in: SPE Annual Caspian Technical Conference. Society of
Petroleum Engineers. 2020.

Qishuai Yin andothers. “Field data analysis and risk assessment of gas
kick during industrial deepwater drilling process based on supervised learn-
ing algorithm”. in: Process Safety and Environmental Protection 146 (),
pages 312-328.

Ahmed K Abbas andothers. “Intelligent decisions to stop or mitigate lost cir-
culation based on machine learning”. in: Energy 183 (2019), pages 1104-1113.

Xinxin Hou andothers. “Lost Circulation Prediction in South China Sea us-
ing Machine Learning and Big Data Technology”. in: Offshore Technology
Conference. Offshore Technology Conference. 2020.

Abdelkader Baaziz and Luc Quoniam. “How to use Big Data technologies to
optimize operations in Upstream Petroleum Industry”. in: 2 /st World Petroleum
Congress, Moscow. 2014.

Mehdi Mohammadpoor and Farshid Torabi. “Big Data analytics in oil and gas
industry: An emerging trend”. in: Petroleum (2018).



Bibliography 113

[70] Alex Bekker. How To Benefit from Big Data Analytics in the Oil and Gas
Industry? https://www.scnsoft.com/blog/big-data-analytics-
oil-gas. Feb2020.

[71] Avantika Monnappa. What’s the Big Deal About Big Data? https://www.
simplilearn.com/whats-the-big-deal-about-big-data-article.
May?2020.

[72] MILA JONES. Effective Ways How Data Analytics Help to Make a Bet-
ter Entrepreneur. https : / / towardsdatascience . com / how - data -
analytics-is-helping-small-businesses-re-imagine-growth-
opportunities-a33f3defe744. Sep2019.

[73] DeenaZaidi. Role of Data Analytics in the Oil Industry.https://towardsdatascience.
com/here-is-how-big-data-is-changing-the-o0il-industry-
13c752e58a5a. Oct2017.

[74] Ashish Kumar. Top Big Data Analytics Challenges Faced By Business En-
terprises. https://elearningindustry.com/big-data-analytics-
challenges-faced-business-enterprises-7-top. 2018.

[75] Debi Prasanna Acharjya and K Ahmed. “A survey on big data analytics: chal-
lenges, open research issues and tools”. in: International Journal of Advanced
Computer Science and Applications 7.2 (2016), pages 511-518.

[76] Alex Woodie. Data Prep Still Dominates Data Scientists’ Time. https://
www . datanami . com /2020 /07 /06 /data-prep-still - dominates-
data-scientists-time-survey-finds/. Jul2020.

[77] Jason Brownlee. Role of Data Analytics in the Oil Industry. https://www.
mygreatlearning.com/blog/what-is-machine-learning/. Aug2018.

[78] Bilal Esmael andothers. “A statistical feature-based approach for opera-
tions recognition in drilling time series”. in: International Journal of Com-
puter Information Systems and Industrial Management Applications 5 (2015),
pages 454-61.

[79] Akshay P Jain. Time Series Forecasting — Data, Analysis, and Practice.https:
//neptune.ai/blog/time-series-forecasting. March2021.


https://www.scnsoft.com/blog/big-data-analytics-oil-gas
https://www.scnsoft.com/blog/big-data-analytics-oil-gas
https://www.simplilearn.com/whats-the-big-deal-about-big-data-article
https://www.simplilearn.com/whats-the-big-deal-about-big-data-article
https://towardsdatascience.com/how-data-analytics-is-helping-small-businesses-re-imagine-growth-opportunities-a33f3defe744
https://towardsdatascience.com/how-data-analytics-is-helping-small-businesses-re-imagine-growth-opportunities-a33f3defe744
https://towardsdatascience.com/how-data-analytics-is-helping-small-businesses-re-imagine-growth-opportunities-a33f3defe744
https://towardsdatascience.com/here-is-how-big-data-is-changing-the-oil-industry-13c752e58a5a
https://towardsdatascience.com/here-is-how-big-data-is-changing-the-oil-industry-13c752e58a5a
https://towardsdatascience.com/here-is-how-big-data-is-changing-the-oil-industry-13c752e58a5a
https://elearningindustry.com/big-data-analytics-challenges-faced-business-enterprises-7-top
https://elearningindustry.com/big-data-analytics-challenges-faced-business-enterprises-7-top
https://www.datanami.com/2020/07/06/data-prep-still-dominates-data-scientists-time-survey-finds/
https://www.datanami.com/2020/07/06/data-prep-still-dominates-data-scientists-time-survey-finds/
https://www.datanami.com/2020/07/06/data-prep-still-dominates-data-scientists-time-survey-finds/
https://www.mygreatlearning.com/blog/what-is-machine-learning/
https://www.mygreatlearning.com/blog/what-is-machine-learning/
https://neptune.ai/blog/time-series-forecasting
https://neptune.ai/blog/time-series-forecasting

114 Bibliography

[80] Vaishali Advani. What is Machine Learning? How Machine Learning Works
and future of it? https://www.mygreatlearning.com/blog/what-is-
machine-learning/. March2021.

[81] Philippe Esling and Carlos Agon. “Time-series data mining”. in: ACM Com-
puting Surveys (CSUR) 45.1 (2012), pages 1-34.

[82] John Galt. Time series analysis and forecasting explained. https://blog.
johngalt.com/time-series-analysis-forecasting-explained.

[83] Research Council of Norway (RCN). OpenLab Drilling. https : / /www .
norceresearch.no/prosjekter/openlab-drilling. 2019.

[84] Andreas Kvalbein Fjetland. “Kick Detection During Offshore Drilling using
Artificial Intelligence”. mathesis. Universitetet i Agder; University of Agder,
2019.

[85] Nejm Saadallah andothers. “OpenLab: Design and Applications of a Modern
Drilling Digitalization Infrastructure”. in: SPE Norway One Day Seminar.
Society of Petroleum Engineers. 2019.

[86] Fred NG. “Kick handling with losses in an HPHT environment”. in: World oil
230.3 (2009).

[87] Attila Nagy. “Availability and Quality of Drilling Data in the Volve Dataset”.

mathesis. University of Stavanger, Norway, 2019.

[88] Serafeim Loukas. What is Machine Learning: Supervised, Unsupervised, Semi-
Supervised and Reinforcement learning methods. https://towardsdatascience.
com/what-is-machine-learning-a-short-note-on-supervised-
unsupervised-semi-supervised-and-aed1573ae9bb. June2020.

[89] Yuji Roh, Geon Heo and Steven Euijong Whang. “A survey on data collec-
tion for machine learning: a big data-ai integration perspective”. in: /[EEE

Transactions on Knowledge and Data Engineering (2019).

[90] Peng Li andothers. “CleanML: A Study for Evaluating the Impact of Data
Cleaning on ML Classification Tasks”. in: 36th IEEE International Confer-
ence on Data Engineering (ICDE 2020)(virtual). ETH Zurich, Institute for
Computing Platforms. 2021.


https://www.mygreatlearning.com/blog/what-is-machine-learning/
https://www.mygreatlearning.com/blog/what-is-machine-learning/
https://blog.johngalt.com/time-series-analysis-forecasting-explained
https://blog.johngalt.com/time-series-analysis-forecasting-explained
https://www.norceresearch.no/prosjekter/openlab-drilling
https://www.norceresearch.no/prosjekter/openlab-drilling
https://towardsdatascience.com/what-is-machine-learning-a-short-note-on-supervised-unsupervised-semi-supervised-and-aed1573ae9bb
https://towardsdatascience.com/what-is-machine-learning-a-short-note-on-supervised-unsupervised-semi-supervised-and-aed1573ae9bb
https://towardsdatascience.com/what-is-machine-learning-a-short-note-on-supervised-unsupervised-semi-supervised-and-aed1573ae9bb

Bibliography 115

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

Stacey Ronaghan. Data Preparation for Machine Learning: Cleansing, Trans-
formation Feature Engineering. https : //towardsdatascience . com/
data-preparation-for-machine-learning-cleansing-transformation-
feature-engineering-d2334079b06d. Sep2019.

Ira Cohen. The three different types of outliers. https://towardsdatascience.
com/outliers - analysis-a-quick-guide- to- the-different -
types-of-outliers-e41de37e6bf6. Oct2018.

D Addison, Stefan Wermter and Garen Z Arevian. “A comparison of fea-
ture extraction and selection techniques”. in: Proceedings of the International
Conference on Artificial Neural Networks. 2003, pages 212-215.

Petter Sgland and Mikkel Vatne Thue. “Machine learning for automated
stratigraphy classification: an empirical study to label subsurface formations
in the Johan Sverdrup field”. mathesis. 2019.

Girish Chandrashekar and Ferat Sahin. “A survey on feature selection meth-
ods”. in: Computers & Electrical Engineering 40.1 (2014), pages 16-28.

Jundong Li andothers. “Feature selection: A data perspective”. in: ACM Com-
puting Surveys (CSUR) 50.6 (2017), pages 1-45.

Nils Braun Maximilian Christ. The documentation of tsfresh. https : //
tsfresh.readthedocs.io/en/latest/index.html. 2018.

Llewelyn Fernandes openclassrooms.com. Create New Features From Exist-
ing Features. https://openclassrooms. com/en/courses/6389626-
train-a-supervised-machine-learning-model /6398776-create-
new- features-from-existing-features. 2020.

Hongtao Shi andothers. “Efficient and robust feature extraction and selection
for traffic classification”. in: Computer Networks 119 (2017), pages 1-16.

Rob J Hyndman and George Athanasopoulos. Forecasting: principles and
practice. OTexts, 2018.

Georgia Papacharalampous, Hristos Tyralis and Demetris Koutsoyiannis. “Uni-
variate time series forecasting of temperature and precipitation with a focus on
machine learning algorithms: A multiple-case study from Greece”. in: Water
resources management 32.15 (2018), pages 5207-5239.


https://towardsdatascience.com/data-preparation-for-machine-learning-cleansing-transformation-feature-engineering-d2334079b06d
https://towardsdatascience.com/data-preparation-for-machine-learning-cleansing-transformation-feature-engineering-d2334079b06d
https://towardsdatascience.com/data-preparation-for-machine-learning-cleansing-transformation-feature-engineering-d2334079b06d
https://towardsdatascience.com/outliers-analysis-a-quick-guide-to-the-different-types-of-outliers-e41de37e6bf6
https://towardsdatascience.com/outliers-analysis-a-quick-guide-to-the-different-types-of-outliers-e41de37e6bf6
https://towardsdatascience.com/outliers-analysis-a-quick-guide-to-the-different-types-of-outliers-e41de37e6bf6
https://tsfresh.readthedocs.io/en/latest/index.html
https://tsfresh.readthedocs.io/en/latest/index.html
https://openclassrooms.com/en/courses/6389626-train-a-supervised-machine-learning-model/6398776-create-new-features-from-existing-features
https://openclassrooms.com/en/courses/6389626-train-a-supervised-machine-learning-model/6398776-create-new-features-from-existing-features
https://openclassrooms.com/en/courses/6389626-train-a-supervised-machine-learning-model/6398776-create-new-features-from-existing-features

116

Bibliography

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

Maximilian Christ andothers. “Time series feature extraction on basis of
scalable hypothesis tests (tsfresh—a python package)”. in: Neurocomputing
307 (2018), pages 72-77.

Joseph Walters and S Kyle Travis. “Time-Series Forecasting: A Theoretical
Model for Predicting Performance Potential”. in: ().

JA Ferreira, AHZwinderman andothers. “On the benjamini—hochberg method”.
in: Annals of Statistics 34.4 (2006), pages 1827—1849.

José A Ferreira. “The Benjamini-Hochberg method in the case of discrete test
statistics”. in: The international journal of biostatistics 3.1 (2007).

Jason Brownlee. Difference Between Classification and Regression in Machine
Learning. https://machinelearningmastery.com/classification-

versus-regression-in-machine-learning/. Dec2017.

Dr. Michael J. Garbade. Regression Versus Classification Machine Learning:
What’s the Difference? https://medium.com/quick-code/regression-
versus-classification-machine-learning-whats-the-difference-
345c56dd15£7. Aug2018.

Ramadass Sathya and Annamma Abraham. “Comparison of supervised and
unsupervised learning algorithms for pattern classification”. in: International
Journal of Advanced Research in Artificial Intelligence 2.2 (2013), pages 34—38.

pythonbasics.org. Learn Python Programming. https://pythonbasics.
org/. 2021.

Jason Brownlee. Train-Test Split for Evaluating Machine Learning Algorithms.
https://machinelearningmastery.com/train-test-split- for-
evaluating-machine-learning-algorithms/. July2020.

Lars Buitinck andothers. “API design for machine learning software: experi-
ences from the scikit-learn project”. in: ECML PKDD Workshop: Languages
Jor Data Mining and Machine Learning. 2013, pages 108—122.

H Jabbar and Rafiqul Zaman Khan. “Methods to avoid over-fitting and under-
fitting in supervised machine learning (comparative study)”. in: Computer

Science, Communication and Instrumentation Devices (2015), pages 163—172.


https://machinelearningmastery.com/classification-versus-regression-in-machine-learning/
https://machinelearningmastery.com/classification-versus-regression-in-machine-learning/
https://medium.com/quick-code/regression-versus-classification-machine-learning-whats-the-difference-345c56dd15f7
https://medium.com/quick-code/regression-versus-classification-machine-learning-whats-the-difference-345c56dd15f7
https://medium.com/quick-code/regression-versus-classification-machine-learning-whats-the-difference-345c56dd15f7
https://pythonbasics.org/
https://pythonbasics.org/
https://machinelearningmastery.com/train-test-split-for-evaluating-machine-learning-algorithms/
https://machinelearningmastery.com/train-test-split-for-evaluating-machine-learning-algorithms/

Bibliography 117

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

Will Koehrsen. “Overfitting vs. Underfitting: A Complete Example”. in: To-
wards Data Science (2018).

F. Pedregosa andothers. “Scikit-learn: Machine Learning in Python”. in: Jour-
nal of Machine Learning Research 12 (2011), pages 2825-2830.

scikit learn.org. scikit-learn Machine Learning in Python. https://scikit-
learn.org/stable/.

Soumya Shrivastava. Cross Validation in Time Series. https://medium.
com/@soumyachess1496/cross-validation-in-time-series-566ae4981ce4.
Jan2020.

Christoph Bergmeir and José M Benitez. “On the use of cross-validation
for time series predictor evaluation”. in: Information Sciences 191 (2012),
pages 192-213.

DataQuest.io Christian Pascual. Understanding Regression Error Metrics in
Python.https://www.dataquest.io/blog/understanding-regression-
error-metrics/. Sep2018.

Will Koehrsen. Beyond Accuracy: Precision and Recall. https://towardsdatascience.
com/beyond-accuracy-precision-and-recall-3da®6bea9f6c. 2018.

Jason Brownlee. ROC Curves and Precision-Recall Curves for Imbalanced
Classification. https://machinelearningmastery.com/roc-curves-
and-precision-recall-curves-for-imbalanced-classification/.
Jan2020.

David Banys Daniel Kobran. Artificial Intelligence Wiki. https://docs.
paperspace . com/machine- learning/wiki/auc-area-under- the-
roc-curve. 2020.

Jaroslaw Kurek andothers. “Automatic Identification of Drill Condition Dur-
ing Drilling Process in Standard Laminated Chipboard with the Use of Long
Short-Term Memory (LSTM)”. in: 19th International Conference Computa-
tional Problems of Electrical Engineering. IEEE. 2018, pages 1-4.

Christian Garbin, Xingquan Zhu and Oge Marques. “Dropout vs. batch nor-
malization: an empirical study of their impact to deep learning”. in: Multimedia
Tools and Applications (2020), pages 1-39.


https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://medium.com/@soumyachess1496/cross-validation-in-time-series-566ae4981ce4
https://medium.com/@soumyachess1496/cross-validation-in-time-series-566ae4981ce4
https://www.dataquest.io/blog/understanding-regression-error-metrics/
https://www.dataquest.io/blog/understanding-regression-error-metrics/
https://towardsdatascience.com/beyond-accuracy-precision-and-recall-3da06bea9f6c
https://towardsdatascience.com/beyond-accuracy-precision-and-recall-3da06bea9f6c
https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-imbalanced-classification/
https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-imbalanced-classification/
https://docs.paperspace.com/machine-learning/wiki/auc-area-under-the-roc-curve
https://docs.paperspace.com/machine-learning/wiki/auc-area-under-the-roc-curve
https://docs.paperspace.com/machine-learning/wiki/auc-area-under-the-roc-curve

118 Bibliography

[124] Amir Farzad, Hoda Mashayekhi and Hamid Hassanpour. “A comparative per-
formance analysis of different activation functions in LSTM networks for clas-
sification”. in: Neural Computing and Applications 31.7 (2019), pages 2507-2521.

[125] David Banys Daniel Kobran. Artificial Intelligence Wiki. https://docs.
paperspace.com/machine-learning/wiki/epoch. 2020.


https://docs.paperspace.com/machine-learning/wiki/epoch
https://docs.paperspace.com/machine-learning/wiki/epoch

	List of Abbreviations
	Introduction
	Overview
	Motivation and Objective
	Limitations
	Methodology

	Background
	Drilling Operation
	Potential Risks in Drilling
	Abnormal trends in drilling

	State Of the Art
	Artificial Intelligence in Drilling
	Data Mining
	Machine Learning
	Neural network

	CRISP-DM
	Literature Review

	Big Data Analytics
	Big Data
	Benefits
	Challenges

	Time-series Analysis and Forecasting

	Data collection and preparation
	OpenLab Simulator
	Openlab tabs
	Hole Section
	Wellpath
	Fluid (Mud)
	Drillstring
	Geology
	Rig

	Strength
	Weakness

	Understanding the problem
	OpenLab Data
	Data Collection
	Data Preparation
	Data Cleansing
	Data Transformation

	Feature Engineering and Feature Selection
	Manual vs. Automated
	TSFRESH package
	Rolling dataframe for time-series forecasting



	Machine learning models selection
	Steps to choose the right ML model
	How to evaluate the chosen ML model

	Models implementation and evaluation
	Tools
	Hardware
	Sensors
	Programming language

	Data pre-processing
	Kick detection
	Kick prediction

	Window features (lag)
	Implementation
	Detection
	DecisionTreeClassifier
	RandomForestClassifier
	KNeighborsClassifier
	Evaluation for detective models

	Prediction
	DecisionTreeClassifier-Prediction
	RandomForestClassifier-Prediction
	KNeighborsClassifier-Prediction
	Evaluation for predictive models

	Improve the predictive ML model
	Detection
	Prediction

	Long short-term memory (LSTM)


	Conclusion and future work
	List of Figures
	List of Tables
	List of Snippets
	Bibliography

