
Frontpage for master thesis
Faculty of Science and Technology

Faculty of Science and Technology

MASTER’S THESIS

Study program/Specialization:

Spring semester, 20......

Open / Restricted access

Writer:

…………………………………………

(Writer’s signature)
Faculty supervisor:

External supervisor(s):

Thesis title:

Credits (ECTS):

Key words:

 Pages: …………………

 + enclosure: …………

 Stavanger, ………………..
 Date/year

21
Computer Science

Mohammed Ashraff Hathibelagal

Gianfranco Nencioni

Rosario Garroppo

Testbed for Analyzing the Migration of MEC-Assisted 5G-V2X Services

30

MEC, V2X, ETSI, Edge, Docker
59

June 10th/2021

6566
, 5G

67

Faculty of Science and Technology
Department of Electrical Engineering

and Computer Science

Testbed for Analyzing the
Migration of MEC-Assisted

5G-V2X Services

Master’s Thesis in Computer Science
by

Mohammed Ashraff Hathibelagal

Internal Supervisor

Gianfranco Nencioni
External Supervisor

Rosario Garroppo

Abstract

With the advent of 5th generation mobile networks (5G), the automotive
industry can manufacture vehicles that are capable of communicating not
only with each other, but also with everything else around them using
an ultra-reliable communication channel that offers high data rates and
extremely low latencies. This allows the development of applications that
can offer advanced features such as autonomous navigation, remote driving,
non-line-of-sight awareness, and vehicle platooning. Such applications are
expected to leverage the Multi-Access Edge Computing (MEC) paradigm
and support User Equipment (UE) mobility.

In this thesis, a testbed was built to compare three different strategies
for migrating three different MEC applications offering V2X services under
two different network conditions. The applications were containerized using
Docker and were capable of communicating with the ETSI MEC sandbox
using the recommended open APIs it exposed. The three strategies were
compared based on viability, service downtime observed, and amount of
state preserved after the migration.

The results obtained from this testbed showed that that all the three
strategies were viable. But there was also a very obvious trade-off to make
in any migration scenario: either decrease service downtime or decrease the
amount of state preserved after the migration. This meant that applications
that needed a high level of user or application-specific state preservation
tended to experience more service downtime.

Acknowledgements
I’m extremely grateful to my supervisors Dr. Gianfranco Nencioni and Dr.
Rosario Garroppo. This thesis wouldn’t have been possible without their
guidance, feedback, and patience.

ii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1

2 Background 4
2.1 The MEC Host . 5
2.2 An MEC Application . 6
2.3 The MEC Platform . 6
2.4 System Level Management Entities 7

2.4.1 The MEC Orchestrator 7
2.5 Host Level Management Entities 7
2.6 MEC Services . 8

2.6.1 Additional Support for V2X Services 9
2.7 Mobility . 9

2.7.1 UE Mobility in a 5G RAN 10
2.7.2 Application Mobility in an MEC System 10

3 Related Works 11
3.1 Virtualization or Containerization 11
3.2 Earlier Testbeds . 12

3.2.1 Service Replicated on Multiple Edge Hosts 13
3.2.2 Support for Live Migration 14
3.2.3 A Two-Phase Approach 15
3.2.4 An Application-Aware Strategy 16

4 A Baseline Testbed Implementation 18
4.1 Hardware and Software Specifications 18
4.2 Phases . 19

4.2.1 Service Pre-relocation 19
4.2.2 Service Relocation 20
4.2.3 Role of the V2X Application 21

iii

5 A More Stateful Testbed 22
5.1 Approach . 23

6 Testbed With Support for Live Migration 25
6.1 The CRIU Project . 26
6.2 Approach . 26

7 Experimental Setup 29
7.1 The ETSI MEC Sandbox . 29

7.1.1 The APIs . 29
7.1.2 The Scenario . 31

7.2 The API Gateway . 32
7.3 Applications . 32

7.3.1 Basic Application . 33
7.3.2 User State-Preserving Application 34
7.3.3 Application With a Stateful Workload 34

7.4 Variable Network Conditions 36

8 Results 37
8.1 Container Sizes . 38
8.2 Duration of Pre-relocation Phase 39

8.2.1 Time Spent on the Source MEC Host 39
8.2.2 Time Needed to Transfer the Tarball 41
8.2.3 Time Spent on the Target MEC Host 41

8.3 Duration of Relocation Phase 42
8.3.1 Time Spent on the Source MEC Host 42
8.3.2 Time Needed to Transfer Data 44
8.3.3 Time Spent on the Target MEC Host 45

8.4 Analysis . 46
8.4.1 Service Downtime . 47
8.4.2 Amount of state preserved 48
8.4.3 Viability . 48

9 Conclusion and Future Works 50

List of Figures 51

List of Tables 53

A Code Listings 54
A.1 Application A1 . 54

A.1.1 Source Code: app.js 54
A.1.2 Source Code: package.json 55
A.1.3 Dockerfile . 55

A.2 Application A2 . 55
A.2.1 Source Code: app.js 55
A.2.2 Source Code: package.json 57
A.2.3 Dockerfile . 58

A.3 Application A3 . 58
A.3.1 Source Code: app.js 58
A.3.2 Source Code: package.json 59
A.3.3 Dockerfile . 59

A.4 Gateway Configuration . 60
A.4.1 Source Code: httpd.conf 60
A.4.2 Dockerfile . 62

A.5 Congestion Implementation 62
A.5.1 Source Code: congestion.sh 62

Bibliography 64

Chapter 1

Introduction

The experience of being on the road is going to change significantly as
telecommunications service providers transition to 5th generation mobile
networks (5G). In the coming years, we can expect more optimized road
traffic, better in-vehicle infotainment services, and more road safety.

With 5G, the automotive industry and roadside-infrastructure manufactur-
ers can make use of networks that offer not only ultra-low latencies and
higher peak data speeds, but also assured qualities of service. This allows
them to create and support novel applications for use cases such as advanced
driver assistance, vehicle platooning, and eventually, even fully autonomous
driving.

Most of these use cases fall under the purview of V2X, a hypernym that
stands for Vehicle-to-everything, and currently covers concepts involving
wireless communications from Vehicles to Vehicles (V2V), Vehicles to Pedes-
trians (V2P), Vehicles to Cloud (V2C), and Vehicles to Infrastructure (V2I)
[1]. Because the use cases can generally tolerate only minuscule latencies
and expect extremely reliable communication channels, it is only 5G that
can currently enable their widespread adoption.

Furthermore, to support such low latencies and high reliability, the cloud
paradigm, which involves communicating with distant servers, is far from
adequate. The compute and data storage resources required must be avail-
able closer to the edge of the network, and thus, closer to the end user.

1

Chapter 1 Introduction 2

Therefore, the transition to 5G also invariably involves adoption of the
Multi-access Edge Computing (MEC) paradigm.

Because the underlying network supports User Equipment (UE) mobil-
ity, the MEC system needs to support application mobility in order to
ensure service continuity to the end user. In other words, the MEC system
needs to support the relocation of application instances and user-specific
states from one MEC host to another as the UE moves out of and into the
areas covered by the respective MEC hosts. This is especially important
for V2X services because the primary actors involved, cars, are expected to
cover large distances over a short period of time.

This project focused on creating a testbed for analyzing the feasibility
and performance of three-different migration strategies for MEC-assisted
5G-V2X services. Based on important metrics such as viability, service
downtime, and amount of data transferred given different network condi-
tions, the strategies were compared and analysed. Because real vehicles
and a full-fledged MEC system were not available for this project, a specific
configuration of the ETSI MEC sandbox was used to simulate significant
portions of the environment required.

This thesis builds on earlier migration strategies and testbed implementa-
tions and contributes the following:

1. Realistic MEC applications that use ETSI MEC service APIs, and
that need different amounts of state preserved to function correctly

2. A full-fledged API gateway that allows the MEC applications to
connect to the ETSI MEC sandbox, and thus the MEC service APIs

3. Analysis of migration strategies based on the movement of the Ve-
hicular User Equipment (VUE) through the ETSI MEC sandbox’s
simulated environment

4. Analysis of the amounts of data transferred between MEC hosts during
migrations, and how the amounts vary in the presence of network
congestion.

Chapter 1 Introduction 3

This thesis is structured in a way that reflects the sequence of steps I
underwent to arrive at the final results. It starts off with a background
chapter that introduces the reader to the key components and concepts
involved in an MEC system and how they interact with each other. The
next chapter mentions the latest trends in the migration of edge applica-
tions and describes in detail earlier testbeds that are similar to the testbed
implemented for this thesis.

Now that the reader has enough context, the next three chapters describe
the implementation details of the testbed. Each of these chapters represents
a step in the evolution of the testbed and care is taken to ensure that the
reader understands the rationale behind the evolution.

The next chapter describes in detail the experimental setup of the testbed.
In addition to explaining how the testbed interacts with the ETSI MEC
sandbox, it also talks about the implementation details of the three MEC
applications used in the experiments.

The chapter on results then explains the results obtained from running
the experiments and presents them as several graphs. It also includes an
analysis section that discusses how the migration strategies perform given
specific performance metrics. Then, in the last chapter, I give the conclusion
of this thesis and briefly describe how this project can be improved upon in
the future.

The appendix contains the complete source code of all the applications
developed during this project, including all the configuration files required
to install their dependencies and to containerize them.

Chapter 2

Background

In addition to network slicing and Radio Access Network (RAN) enhance-
ments, MEC is widely considered to be one of the key enabling technologies
for meeting several demanding performance metrics targeted by 5G net-
works. Indeed, in a 5G network, several components of an MEC system can
be mapped onto application functions (AF) [2].

The European Telecommunications Standards Institute (ETSI) Industry
Specification Group (ISG) [3] has a series of group specifications and group
reports that describe the components of MEC systems, outline their behav-
iors, and mention the use case scenarios they can or must support. Together,
these specifications and reports rigorously define the MEC framework and
provide two reference architectures.

One of the reference architectures is referred to as a generic architecture,
and is the architecture that this thesis follows. The other is a variant that’s
ideal for an MEC system deployed in a Network Functions Virtualization
(NFV) environment.

MEC, as mentioned earlier, allows for the placement of compute, storage,
and network resources at the edge of a network, allowing telecommunications
service providers to offer applications that demand extremely low end-to-end
latencies and high bandwidth efficiencies. As such, the MEC framework
and the reference architectures specify how these hardware resources are to

4

Chapter 2 Background 5

Figure 2.1: MEC System Overview

be used and the software entities that are to run on them [4]. Figure 2.1
gives a quick overview of the entities that are relevant to this thesis.

2.1 The MEC Host

MEC hosts are the most important entities in an MEC system. These are
often powerful, datacenter-grade computers [5] placed at locations close to
the telecommunications network operator’s base stations, wireless network
aggregation sites, and other wireless access points of presence.

There does not have to be a one-to-one mapping between a radio node and
an MEC host. In fact, usually, an MEC host serves multiple radio nodes.
The telecommunications network operator can decide the mapping based
on technical parameters such as maximum expected workload, security
requirements, Quality of Service (QoS) and Quality of Experience (QoE)
expected by users of popular apps [6], and business parameters such as
available site facilities [2].

The MEC host is where MEC applications run, so it is responsible for
also hosting the virtualization infrastructure—which includes the data
plane—and the MEC platform [4].

Chapter 2 Background 6

2.2 An MEC Application

An MEC application is a software-only entity that runs on virtualization
infrastructure that is available on the MEC host. It generally interacts with
MEC services, either consuming the data they provide or providing user
data to them. MEC applications can also provide services themselves, and
such services can be registered with the MEC platform.

MEC applications may or not be affected by UE mobility. Those that
are affected are referred to as UE mobility-sensitive applications, and are
the focus of this thesis.

2.3 The MEC Platform

An MEC application is expected to interact with the MEC system via
the MEC platform that’s present on the MEC host. Therefore, the MEC
platform offers two important types of APIs: application support APIs
and application service management APIs [7]. Using these APIs, an MEC
application can perform tasks such as discovering available MEC services
and registering any service it offers itself.

The MEC platform also provides reference points that are necessary for
access to persistent storage, routing IP packets to MEC applications, and
implementing DNS rules [4].

In a 5G deployment, the MEC platform is a host level entity that can
play the role of an AF to interact with a 5G Network Function (NF). Indeed,
in such a deployment, after an MEC application is instantiated on an MEC
host, it sees traffic only after the MEC platform acts as an AF and requests
the Policy Control Function (PCF) to steer traffic to it [2].

Chapter 2 Background 7

2.4 System Level Management Entities

An MEC system has several management entities. These entities can
function either at the system level or at the MEC host level. The most
important system level management entity is the MEC orchestrator, which,
in a 5G deployment, can be mapped onto an AF that can interact with the
5G Network Exposure Function (NEF).

2.4.1 The MEC Orchestrator

Not all MEC applications can run on all MEC hosts. This is because MEC
applications often have very specific latency and compute requirements, and
an MEC host might not be able to satisfy all of them. Therefore, there is a
need for an entity that can decide on which host an MEC application is to be
instantiated. According to ETSI GS MEC 003, the MEC orchestrator serves
as that entity [4]. As such, the orchestrator is responsible only for decision
making and generating triggers, and relies on host level management entities
to affect the actual instantiation, management and termination of MEC
applications.

Additionally, the orchestrator can receive requests for application instantia-
tion and termination from the Operations Support System (OSS), which is
another system level management entity.

2.5 Host Level Management Entities

Host level management entities are responsible for carrying out MEC-specific
tasks at the MEC host level. These are the entities that handle the actual
lifecycles of MEC applications on individual MEC hosts. The following host
level management entities are relevant to this thesis:

MEC Platform Manager - The platform manager is an entity responsi-
ble for deciding which services an MEC application is allowed to use, for
maintaining the DNS configuration, and for reporting various events an

Chapter 2 Background 8

MEC application raises to the MEC orchestrator. Additionally, it is capable
of sending fault and performance measurement reports to the orchestrator.

Virtualization Infrastructure Manager (VIM) - The VIM is another
low-level management entity responsible for receiving triggers from the
MEC orchestrator and allocating or releasing resources available on the
MEC host. Consequently, this is the entity that actually instantiates the
containers or VMs running the MEC applications.

2.6 MEC Services

An MEC service is a service registered in the MEC platform’s service registry,
and usually serves MEC applications or the MEC platform itself. MEC
services can offer REpresentational State Transfer (REST)-based APIs, and
can support popular formats for data exchange such as JavaScript Object
Notation (JSON) and Protocol Buffers (Protobuf).

MEC services are usually not accessed directly by MEC applications. In-
stead, they’re expected to be accessed via an API gateway, which is a feature
that accompanies the MEC platform or built into it. This facilitates load
balancing and mobility of the services.

An MEC system may offer several basic services as outlined in ETSI GS
MEC 002 [8]. Two such services are relevant to this thesis:

Location Service - This service offers location-specific data. For ex-
ample, it allows an MEC application to determine the location of a UE.
The location can be the GPS coordinates of the UE, the cell ID, or both.
This service also gives the MEC application the list of radio nodes that are
currently being served by the MEC host.

Radio Network Information Service (RNIS) - This service offers
detailed information about the state of the radio network. For example, an
MEC application can use this service to get information about Radio Access
Bearers (RABs), 5G UE measurement reports, and UE timing advance [9].

Chapter 2 Background 9

The information offered by both the aforementioned services can be con-
sumed using both the request-response and publish-subscribe models. With
the request-response model, the MEC application makes requests whenever
necessary and immediately gets a response. With the publish-subscribe
model, the MEC application is automatically notified in real time by the
MEC service whenever important events occur, so long as the MEC appli-
cation is subscribed to them.

2.6.1 Additional Support for V2X Services

According to ETSI GR 022 [10], V2X services need additional features and
functionality from an MEC system.

A V2X service generally falls into one of the following use case groups:
safety, convenience, vulnerable road user, and advanced driving assistance.
Each of these use case groups have varying requirements. To cater to such
requirements, the MEC system should:

1. allow V2X services to get information about the reliability of a com-
munication channel

2. support multi-network and multi-vendor scenarios

To better support V2X applications, ETSI suggests an additional service
called the V2X Information Service (VIS) [11]. By subscribing to VIS, a
V2X application can get access to additional events such as those related to
changes in network congestion and channel reliability.

2.7 Mobility

As mentioned earlier, VUEs can be expected to move from one location
to another. Colloquially, this can be defined as the VUE moving from one
serving cell to a neighboring one in the 5G RAN. In this section I briefly
describe UE and application mobility.

Chapter 2 Background 10

2.7.1 UE Mobility in a 5G RAN

In the context of the 5G RAN, mobility involves the UE moving away
from one 5G base station (gNodeB) Distributed Unit (gNB-DU), towards
another gNB-DU. In order to ensure that the gNB-DU is aware of the
signal strength the UE is experiencing, it sends measurement reports to
the gNB-DU. The gNB-DU in turn sends these reports to its corresponding
Central Unit (gNB-CU) for decision making.

Based on the information it gets, in order to minimize service degradation,
the gNB-CU can initiate a mobility procedure that leads to the handover of
the UE from the current gNB-DU to a different one [12].

It is worth mentioning that while the above procedure is sufficient in
the case of intra-gNB mobility, in the case of inter-gNB mobility where the
gNB-CU itself needs to be changed, an alternative procedure involving the
Access and Mobility Management Function (AMF) is followed in order to
complete the handover.

2.7.2 Application Mobility in an MEC System

Application mobility in an MEC system is the primary focus of this thesis.
From the perspective of an MEC application, most of the details related
to UE mobility are abstracted away. Nevertheless, application mobility is
still closely connected to UE mobility, and is usually triggered by it. As
mentioned earlier, as the UE moves from one serving cell to another in a
5G network, the MEC host that is serving it will eventually change too.
Thus, to maintain service continuity and offer optimal performance, there is
now a need to migrate the applications the UE was running on the previous
MEC host, referred to as the source MEC host, to the latest chosen MEC
host, referred to as the target MEC host [13].

In the case of common applications, which could already be present on the
target MEC host, there may still be a need for migrating the user-specific
state to avoid service disruptions.

Chapter 3

Related Works

Finding the optimal strategy for migrating applications from one MEC host
to another is a very active research topic, and extensive literature has been
published about it.

Migration strategies are closely coupled to the technologies used for re-
source isolation and hosting the applications. According to Wang et al’s
survey [14], the two most widely-used such technologies are: Virtual Machine
(VM) technology and container technology.

3.1 Virtualization or Containerization

Applications packaged into full-fledged virtual machines offer the high-
est degree of resource isolation and control. They run their own copies
of the operating systems they need and access emulated hardware [15].
They are thus completely separated from the other VMs that could be
running on the same physical hardware. VMs have been traditionally used
for migrating services from one edge host to another. However, they have
a large overhead and do not allow for efficient utilization of resources [16, 17].

Containers, compared to VMs, are far lighter because they rely on the
operating system running on the edge host for a lot of functionality. Tools
like Docker make use of separate namespaces and control groups to ensure
isolation of processes. However, because all the containers running on the

11

Chapter 3 Related Works 12

same edge host use the same kernel, the degree of isolation is not as high as
that available with VMs [18]. Nevertheless, containers offer the following
advantages that make them ideal for edge use cases:

1. small image size

2. very small memory footprint

3. and fast instantiation times

Consequently, they have mostly replaced VMs as the technology for packag-
ing and hosting applications running on the edge. Randazzo et al mention
that Docker is one of the most widely deployed container platforms [19].

It is also worth mentioning that there is a rise in a new breed of VMs
based on unikernels, which run minimal operating systems known as library
operating systems. IncludeOS and HermiTux are examples of such operating
systems [20, 21]. These VMs are only slightly larger than containers, quick
to boot, and are compatible with common hypervisors, thus offering all the
advantages of traditional VMs.

On a similar note, there is another emerging technology called kata-containers.
Kata-containers are VM-based containers that are expected to be as fast
and flexible as containers, but as secure and isolated as traditional VMs.
This security-oriented technology is based on Intel Clear containers and is
the successor of a now obsolete hypervisor-based runtime called hyper.sh
runV [19].

Because trends in the literature suggest traditional virtualization approaches
are turning obsolete and emerging lightweight VM approaches are still
experimental and not widely used, in this thesis, I focus primarily on
container-based migration strategies.

3.2 Earlier Testbeds

From the literature, it is very clear that creating a testbed is the ideal
approach to follow for measuring the performance of a migration strategy.

Chapter 3 Related Works 13

Most researchers keep their testbeds simple by having exactly two computers
in their setup: one serving as the source MEC host, and the other the target
MEC host. Most used physical workstations as the MEC hosts, but some
experimented with VMs too.

Most approaches did not involve transferring low-level details such as the
contents of the source container’s memory pages and CPU registers. Some
did, and chose to call their migrations "live migrations".

Table 3.1 gives an overview of the testbeds encountered during the lit-
erature review phase of this thesis.

Technology Live? Strategy
Farris et
al (2017)

Docker No Replicate services
and transfer only
application state

Addad et
al (2018)

LXC and
CRIU

Yes Live and iterative
migration

Campolo
et al
(2019)

Docker No Pre-relocate
filesystem and
transfer only state
later

Bellavista
et al
(2019)

Docker
Compose

No Proactive
application-aware
handoff extension to
the basic Docker
migration protocol

Table 3.1: Overview of earlier testbeds

3.2.1 Service Replicated on Multiple Edge Hosts

In March 2017, Farris et al [22] described an early proactive strategy for
service migration, which involved maintaining replicas of the service on
multiple MEC hosts to minimize downtime. Their testbed consisted of two
physical workstations acting as the MEC hosts. Both workstations had the
Docker engine installed on them.

The metrics they considered were total migration time and initialization

Chapter 3 Related Works 14

time. However, because there was no actual migration of the container
filesystem, the downtimes they observed were a function of the Docker vol-
ume (DV) size they used, and were on average less than 2 seconds. Indeed,
in their tests, they used the same Docker container image for all scenarios
and changed only the Docker volume size.

Although this approach results in very short service interruptions, it does
not use the resources available on the MEC host efficiently. This is because
the service needs to be instantiated on several MEC hosts even though the
UE will connect to only one of them at any given instant. Farris et al have
suggested optimizations such as replicating the service only on MEC hosts
that lie in the direction of movement of the UE.

3.2.2 Support for Live Migration

Most testbeds make a distinction between transferring the actual filesystem
of the container and the user state. Furthermore, they either assume the
service itself is stateless, or do not place any emphasis on the setup of its
initial default state. This often results in slow boot up times for the service.
For services that have complex initial states, it might be better to not build
them from scratch during container boot up. Examples of such services
could be Massively Multiple Online Role-Playing Games (MMORPGs),
where start up times can be long, and the game-world state is just as
important as the user state.

A live migration-based approach can overcome the above problems. In
this type of migration, the service does not start with a fresh new state on
the target MEC host. Instead, it simply resumes from the state it was in
on the source MEC host. This can be accomplished by various methods.

Earlier methods involved maintaining a log of all events generated by the
container on the source MEC host and replaying the log on the container of
the target MEC host. They were simply a container-oriented adaptation
of the system trace and replay approach commonly used in live migration
of VMs [23]. This was quite error prone, especially when there are lots of
asynchronous events present. Therefore, more recent methods favor directly

Chapter 3 Related Works 15

copying both the filesystem contents and memory pages of the container on
the source MEC host to the target MEC host [24].

For instance, in 2018, Addad et al [17] created an experimental testbed to
evaluate the performance of a live migration strategy in the context of 5G.
They were trying to minimize both downtime and total migration time.

Their testbed consisted of virtualized nodes running Ubuntu 16.04, and used
Linux Containers (LXC) and the Checkpoint/Restore In Userspace (CRIU)
project for creating application containers and managing their memory pages.
They ran their experiments with two containers: a blank Linux container
and a larger Linux container that had a video streaming server installed in it.

They compared both stateful and stateless migration scenarios. Addi-
tionally, their strategies could be classified as those that were ideal for
scenarios where the VUE path was pre-determined, and those ideal for
unknown-path scenarios.

They managed to achieve downtimes of approximately 1050 ms for the
blank container and 1300 ms for the video streaming container.

Transferring both the filesystem contents and memory pages can be time
consuming, especially if the MEC host has a large RAM. Therefore, these
researchers followed an iterative approach to transferring the memory. This
resulted in larger bandwidth consumption, but kept the service downtime
low.

3.2.3 A Two-Phase Approach

Campolo et al in 2019 created a relatively simple testbed in order to eval-
uate a custom migration strategy based on Docker containers [25]. They
too focused primarily on service downtime, but included other metrics.
Additionally, they tested the performance of their strategy under multiple
network conditions and their strategy was specifically designed for V2X
services.

Chapter 3 Related Works 16

Their testbed included two physical workstations that had the Docker
Engine installed on them. During their tests, they used two containers, the
main difference between them being their filesystem sizes. They also used
multiple Docker volumes, the main difference between them being their file
sizes.

Their migration strategy had two phases and relied extensively on the
use of Docker volumes. In the first phase, called the service pre-relocation
phase, they migrated only the filesystem of the source container. In the
second phase, called the service relocation phase, they migrated only the
additional state of the source container, which was now expected to be in a
small Docker volume. Because there was no downtime during the service
pre-relocation phase, transferring the Docker volume and booting up the
container accounted for most of the downtime they observed.

This strategy allowed them to reduce service downtimes to approximately 2
seconds, so long as the Docker Volume was 10 KB or smaller. Furthermore,
the downtime was largely independent of the the actual size of the container.

This strategy is feasible only if the application running inside the con-
tainer is custom-built to support it. This is because the application needs
to be aware of the migration, and act differently depending on the currently
active phase. More precisely, when there is no migration happening, the
application must store most of its state on the container’s filesystem. But
during the pre-relocation phase, it must stop writing to the container’s local
filesystem and instead store all of its state in a Docker volume.

In this thesis, Campolo et al’s approach was used as a baseline reference
implementation, so it is described in further detail in a later chapter.

3.2.4 An Application-Aware Strategy

All of the testbeds considered up to this point were application-agnostic.
That is, they work the same regardless of the service application being
migrated. These testbeds focused only the size of the container’s filesystem,
the user state, and the container memory pages.

Chapter 3 Related Works 17

Bellavista et al [26] suggest a proactive handoff strategy very similar to
that of Campolo et al, with an extension being that their strategy was
application aware. Consequently, instead of transferring the service as one
monolithic container, their approach suggests splitting it up into multiple
containers and transferring each of them individually.

Their testbed had three Linux computers, and was heterogeneous. It
was composed of two workstations and a Raspberry Pi3. Docker alone was
not ideal for their use case, so they used Docker Compose. This helped
them simplify the code needed to instantiate multiple containers and setup
their Docker volumes in an error-free manner.

The service they migrated was a Java web application that used Mon-
goDB as its database. Thus, their application had two distinct layers: a
service layer and a data layer, each of which could be migrated separately.

One of the obvious disadvantages of this approach is that it is feasible
only if the service involved has a modular architecture and is easy to split
into distinct layers. The distinction between the service layer and data layer,
for example, is not always clear. Furthermore, in some cases, such as when
closed-source applications are considered, such a split might not be possible
at all.

Chapter 4

A Baseline Testbed
Implementation

The approach suggested by Campolo et al was chosen as a baseline imple-
mentation for this project, primarily because it was aimed specifically at
V2X services. Furthermore, it was very accessible because it relied only on
open-source software and commodity hardware, making it easier for me to
compare my results with theirs.

4.1 Hardware and Software Specifications

The hardware and software used in the testbed are expected to have a large
impact on the service downtimes and most other metrics observed. There-
fore, their specifications are important if this testbed is to be replicated and
obtain similar results.

Two Intel Next Unit of Computing (NUC) small form factor workstations
were used as the two MEC hosts. Each had 16 GB of RAM, an Intel Core
i7 processor, and a solid state drive. The workstations could communicate
with each other over Ethernet.

Both the workstations ran Ubuntu 20.04 LTS as the operating system
and had Docker Engine 20.10.4 installed on them. Furthermore, to support

18

Chapter 4 A Baseline Testbed Implementation 19

live migration, CRIU 3.15 was manually compiled from its source code and
installed on both the workstations.

4.2 Phases

This implementation migrated the MEC application in two phases, and
the MEC orchestrator was responsible for triggering each phase at an
appropriate time. The sequence diagram in Figure 4.1 gives an overview of
the sequence of events that occur in a successful migration.

Figure 4.1: Overview of baseline migration strategy

4.2.1 Service Pre-relocation

When a migration is necessary, the service pre-relocation phase is triggered.
In a real world MEC system, according to ETSI GR MEC 018 [27], this
trigger could from any of the following entities:

1. MEC applications

Chapter 4 A Baseline Testbed Implementation 20

2. UE clients of MEC applications

3. Source/target MEC platforms using the associated RNIS

4. Source/target MEC platforms using the associated data planes

5. the MEC orchestrator

For this thesis, the orchestrator was chosen as the entity generating the
triggers. Like Campolo et al, as a part of the baseline testbed implementa-
tion, I used shell commands and scripts to create a manual orchestrator and
time all the phases. This meant running the appropriate Docker Engine
commands and timing them.

Once the trigger to start the pre-relocation is received, the layered filesystem
of the Docker container on the source MEC host is flattened and exported
into a tarball using the Docker export command. This tarball is then
securely copied to the target MEC host using the scp tool and used to
create a new container image using the Docker import command.

4.2.2 Service Relocation

Throughout the service pre-relocation phase, the source MEC host continues
to serve the UE without any interruptions. In the service relocation phase,
however, the container on the source MEC host is shut down. From this
point on, the UE starts experiencing service downtime and the rest of the
steps have to be completed as quickly as possible.

After the container is shut down, the DV it was using is copied to the
target MEC host. The contents of the DV were assumed to be merely
Floating Car Data (FCD) packets in Campolo et al’s testbed, so the remote
copy mechanism used was a combination of the Linux dd and nc commands.
The same commands were used in my implementation too. Because there is
no encryption overhead involved and no time is spent on the SSH handshake,
this copy operation can be very quick.

Once the DV is available on the target MEC host, the container image

Chapter 4 A Baseline Testbed Implementation 21

created in the previous phase is instantiated and booted up so the UE can
connect to it, at which point the service downtime ends. The DV is mounted
as the container is booted up.

4.2.3 Role of the V2X Application

In order to ensure the integrity of the UE’s data available on the target
MEC host after the migration, the V2X service running on the container
is expected to be aware of the need for a migration and implement the
following simple logic:

1. Is a migration in progress?

2. If yes then,

(a) Stop writing to the container’s filesystem

(b) Start writing to Docker volume mounted

3. If no then,

(a) Write to the container’s filesystem normally

This algorithm ensures that there are no changes in the filesystem after
the tarball is created during the pre-relocation phase. It also ensures that
all the new information the UE generates during the service pre-relocation
phase is available on the DV.

The above logic was implemented in the applications by exposing an end-
point the orchestrator could use to specify the current phase of migration.
The applications are described in more detail in a later chapter.

Chapter 5

A More Stateful Testbed

One of the biggest pitfalls of the baseline testbed implementation is that it
copies only the container’s filesystem and UE-related state from the source
MEC host to the target MEC host. It does not preserve any application
configuration or application-related state that is not present on the filesys-
tem.

Furthermore, the Dockerfile used to build the container at the source
MEC host is not available at the target MEC host. Because the container at
the target MEC host is built solely using the imported filesystem, it will not
be aware of common and crucial initialization instructions such as CMD or ENV.

Several Dockerized Linux applications use environment variables in order
to store configuration settings [28]. These could include critically important
details, such as the value of the PATH variable, which specifies the locations
where the Linux OS looks for executable files, or the PWD variable, which
specifies the current working directory. Without access to these details, the
MEC application, when it starts on the target MEC host, is unlikely to
behave the same way it did on the source MEC host.

To overcome these issues, the baseline testbed implementation was extended
to make it more stateful.

22

Chapter 5 A More Stateful Testbed 23

5.1 Approach

Fortunately, by making only minor changes to the baseline testbed imple-
mentation, all the environment variables, all the Docker instructions, and
several application settings can be preserved. Figure 5.1 gives an overview
of this approach.

The Docker save and load commands are better at preserving state. There-
fore, the Docker export command at the source MEC host is replaced with
the Docker save command. Similarly, at the target MEC host, the Docker
import command is replaced with the Docker load command. This is an
approach Bellavista et al mention in their article [26].

Unlike the Docker export command, however, the Docker save command
works only with container images. This means that a running or pre-
instantiated container cannot be saved directly. To overcome this limitation,
the Docker commit command is run before the save command. This gener-
ates a new container image identical to the currently running container.

The tarball generated by the Docker save command is, as one might expect,
slightly larger. This is because it contains not only additional state details,
but also details about all the necessary parent layers, such as their tag names
and versions. In order to reduce the tarball size, it can be compressed using
the gzip tool. There is no need for a corresponding explicit decompression
step at the target MEC host because the Docker load command can handle
compressed archives. However, because the compression and decompression
operations themselves were found to be time-consuming, they were not
included in this implementation.

It is worth mentioning that the Docker commit command, by default,
temporarily freezes the container while it creates a container image from
it. This is necessary to stop changes in the container state during the
commit operation, which could potentially lead to data corruption. But
a consequence of this is that there are potentially two service downtimes
during the migration: one during the commit operation and the other during
the actual handover.

Chapter 5 A More Stateful Testbed 24

Figure 5.1: Overview of more stateful migration strategy

Chapter 6

Testbed With Support for Live
Migration

Although the previous approach is capable of preserving much of the con-
tainer state, it is still the responsibility of the MEC V2X application(or its
developers) to maintain the list of all environment variables and settings it
needs. This is necessary because items in the list are to be passed individu-
ally to the Docker commit command as input parameters. As a result, the
previous approach too is limited only to open source applications or closed
source ones that are willing to share the list.

For a migration strategy to support all applications, even those that were
not built to run in an MEC scenario, it should not depend on any inputs
from the applications. So, the extended testbed from the previous chapter
was further extended to support live migration.

In this extension, the contents of all the memory pages, CPU registers,
and other resources used by the container on the source MEC host are
additionally copied to the target MEC host during the migration. Such
a migration is referred to as a live migration in the literature [29]. It is
important to note that the migration can now be fully transparent to the
MEC application. That is, after a successful live migration, the MEC
application would generally not even notice that it was migrated.

25

Chapter 6 Testbed With Support for Live Migration 26

6.1 The CRIU Project

CRIU is a tool that can be used to create a detailed copy of a process
that is running inside a container. It can record important details such as
the contents of the relevant memory pages, contents of CPU registers, the
sockets currently being used, files currently open for I/O operations, and
mountpoint-related information [30]. It does so using ptrace, a system call
meant for creating a process trace.

CRIU needs to be controlled by the Docker Engine. Because this is currently
an experimental feature, it is available only after Docker Engine is manually
configured to enable it. In this extension of the testbed, CRIU was installed
and enabled on both the source and target MEC hosts.

6.2 Approach

The approach followed is very similar to the approaches discussed earlier,
but there are a few fundamental differences. The first difference is that dur-
ing both the pre-relocation and relocation phases, the Docker checkpoint

command is run on the source MEC host to freeze the V2X application’s
container and save its state. By default, this operation immediately stops
the container. The leave-running flag is set during the pre-relocation
phase to keep the container alive afterwards. Doing so is not necessary
during the relocation phase, however, because the container is not expected
to be alive on the source MEC host any more.

The output of the checkpoint operation is a directory containing several
CRIU image files. These files are copied to the target MEC host so that
they can be used to restore the checkpoint-ed V2X application there. But
doing so is possible only if a valid container is already present and active
on the host.

Therefore, during the service pre-relocation phase, the container also needs
to be built on the target MEC host. For common applications, the easiest
way to achieve this is to use Docker Hub or any other container registry

Chapter 6 Testbed With Support for Live Migration 27

available in the MEC system. For custom applications, however, the Docker
commit, save, and load commands should be used to set up the container,
as described in the previous approach. Because a custom V2X application
was used in this project, the latter approach was followed.

The application is checkpoint-ed twice in order to leverage the rsync tool
and minimize the service downtime. This way, the entirety of the memory
pages are copied during the pre-location phase, and only the changed bits
are copied during the actual relocation. This is important because the
memory pages can often be as large as the container’s filesystem.

Figure 6.1: Overview of live migration strategy

Chapter 6 Testbed With Support for Live Migration 28

Strategy 1 Strategy 2 Strategy 3
Preserves
filesystem
contents

Yes Yes Yes

Preserves
container
configuration

No Yes Yes

Preserves
memory pages,
CPU register
contents

No No Yes

Application
needs to be
aware of
migration?

Yes Yes No

Is Live? No No Yes
Tools used Docker Engine Docker Engine Docker Engine +

CRIU

Table 6.1: Overview of the three migration strategies

Chapter 7

Experimental Setup

A common set of experiments were run on the baseline implementation
of the testbed and both the extended implementations in order to gather
metrics, which could then be used for comparison and analysis. Figure 7.1
gives an overview of the components and layout of the experimental setup
at the start of the migration.

7.1 The ETSI MEC Sandbox

All the experiments run during this project needed an MEC platform
offering necessary MEC services. Because setting up a real MEC platform
was not feasible, the ETSI MEC Sandbox environment, which is based
on the AdvantEDGE mobile edge emulation platform [31], was chosen for
emulating one.

7.1.1 The APIs

As Figure 7.2 shows, the ETSI MEC Sandbox is an interactive environment
targeted at developers. It offers several commonly used MEC service APIs
with OpenAPI-compliant descriptions. These REST-based APIs accept
inputs and generate responses in the form of both JSON and YAML docu-
ments. In this project, only the JSON format was used.

29

Chapter 7 Experimental Setup 30

Figure 7.1: Overview of the experimental setup at the start of the
migration

As mentioned earlier, the Location Service and Radio Network Information
Service APIs are among the most important APIs any MEC application
would need. This sandbox, at the time of this thesis, supported both APIs
but implemented only a limited subset of the endpoints mentioned by the
ETSI ISG[9, 32]. For example, the Location Service API implementation
did not support most of the distance and area related subscription endpoints.
Similarly, the RNIS API did not support endpoints that could fetch S1-U
bearer information or layer 2 measurements information.

Consequently, the V2X MEC applications built were designed to work
around the limitations.

Chapter 7 Experimental Setup 31

7.1.2 The Scenario

The ETSI MEC sandbox, at the time of this thesis, offered one scenario
with three different network configurations. The scenario was set to emulate
the urban environment in the city of Monaco, with a configurable number
of stationary, fast, and slow moving UEs.

The three different network configurations differed primarily in the network
technologies they supported. The simplest, named 4g-macro supported
only 4G points of access. The next, named 4g-wifi-macro, supported
both 4G and WiFi points of access. In this project, however, only the
third configuration, called 4g-5g-wifi-macro was used. This was the most
flexible configuration, and supported all the network technologies that are
likely to be available in a real-world implementation of the scenario.

In the 4g-5g-wifi-macro, nineteen 5G small cell points of access, eleven
WiFi points of access, and ten 4G macro cell points of access were available.
The fast moving UEs, which represented cars, had a velocity of 20ms−1

and the slow moving ones, which represented cyclists or pedestrians, had a
velocity of 9ms−1.

It is important to note that the sandbox does not specify the location
of the MEC hosts. It gives only the locations of the radio points of access
and the zones they belong to. Wang et al mention that it is very common
to place MEC hosts in close proximity to the mobile base stations [33].

Experiments were first run assuming that an MEC host was present near
each of the nineteen 5G points of access in the sandbox environment. For the
sake of simplicity, it was also assumed that each MEC host served exactly
one 5G small cell base station. Then, experiments were run assuming that
MEC host were associated only with zones instead of the individual points
of access they contained.

Chapter 7 Experimental Setup 32

Figure 7.2: Screenshot of the sandbox UI

7.2 The API Gateway

As mentioned earlier, MEC applications are usually expected to connect to
the MEC services they need through an API gateway. Therefore, an API
gateway was created using Apache HTTP Server 2.4. Using its mod_proxy

module, a reverse proxy was setup so that any requests to it were routed to
the ETSI MEC sandbox. The custom configuration file is included in the
appendix of this thesis.

The gateway was containerized and was set up on both the source and
target MEC hosts. It had the same Uniform Resource Locator (URL) on
both and the MEC applications could interact with it by using a Docker
bridge network.

The httpd:2.4 image available on Docker Hub was used as the base image
for the gateway.

7.3 Applications

Most of the research encountered during the literature review phase dealt
with the migration of blank container images or containers having generic
applications that were not aware of the MEC context. Consequently, their

Chapter 7 Experimental Setup 33

results often did not account for application startup time or the actual
feasibility of the migration in the real world.

An important contribution of this thesis is that I report the migration
of actual MEC V2X applications that are capable of interacting with MEC
services. The utility of these applications when used independently can
be considered limited, but it is very likely that they could serve as useful
modules inside larger, real-world V2X applications.

These applications relied on the API gateway for interacting with the
MEC services. This was necessary in order to ensure that the URL they
used to access a service did not change as they were migrated from one
MEC host to another.

It’s also worth mentioning that the URL used to access the sandbox itself
changed whenever it was restarted. Thanks to the API gateway, the appli-
cations did not have to be rebuilt or re-configured every time the sandbox
was restarted. Indeed, only the gateway’s configuration had to be changed.

Three containers, each containing a different V2X application, were used in
my experiments.

7.3.1 Basic Application

The simplest of the applications merely functioned as an RNI service con-
sumer. More precisely, it followed the request-response model to query RAB
information every 200 milliseconds using the RNIS API. Migrating this appli-
cation served as an initial test for the viability of the testbed implementation.

This application is considered simple because its functionality does not
depend on any state information, be it user state or application state. Con-
sequently, it does not have to depend on the contents of a Docker volume
or any other form of persistent storage.

The basic application was built using NodeJS 15.14.0 and got 11.8.2, which
is an HTTP request library.

Chapter 7 Experimental Setup 34

7.3.2 User State-Preserving Application

As its name suggests, the user state-preserving application needs the user-
specific state preserved to function correctly. To satisfy a realistic use case,
this application was designed to perform a single, atomic change to the user
state. This change involved incrementing a counter that was a part of the
user state.

During this experiment, the value of the counter is of critical importance.
For a migration to be considered successful, the counter should not start
from zero at the target MEC host. Instead it should resume from the value
it was at at the source MEC host. This emphasizes the point that although
the application itself is stateless, it is critical that the user-specific state be
preserved.

Implementation-wise, the counter counted zones. Its value was incremented
whenever the UE’s current zone changed. This was done using information
offered by the Location Service API.

This application too was built using NodeJS and got. It was designed
to be aware of the migration and used the DV to store the counter value
and run-time logs once the pre-relocation phase started. It was also ca-
pable of retrieving the counter value from the DV, if available during startup.

It’s also worth emphasizing that, much like the basic application, this
application too did not need to preserve any application instance-specific
state to function correctly. It needed only the user-specific state.

7.3.3 Application With a Stateful Workload

Key-value stores are indispensable in most web applications today. They
are often used as a cache to store the results of expensive or time-consuming
computations [34]. As such, they are large hash tables, with unique keys
pointing to important values.

Chapter 7 Experimental Setup 35

Application 1 Application 2 Application 3
State
preserva-
tion
require-
ments

No state
necessary

User-specific
state necessary

User-specific and
application-
specific state
necessary

What it
does

Query RAB
information
every 100ms
using the RNIS
API and log it

Keep a count of
the number of
zones a VUE
has travelled
through using
the Location
Service API

Use Memcached
to store the list
of all useable
access points in
the city

Uses
Docker
Volume?

No Yes No

Is aware of
migration?

No Yes No

Table 7.1: Overview of the three MEC applications migrated during the
experiments

Memcached has been used as a high-speed, in-memory, key-value data-
store in edge computing scenarios [35]. Therefore, it was chosen as a
candidate for testing the live migration strategy. Accordingly, Memcached
1.6.9 was used as the application with an in-memory stateful workload.
Because Memcached offers an easy to use command-line interface over Tel-
net [36], the Linux telnet utility was used to retrieve access point-related
information on it. This information was obtained from the Location Service
API using cURL, which is a Linux command-line utility.

All the three applications were run inside their own separate containers. The
basic and user state-preserving applications’ container images were built
with the Node 16-alpine3.11 image as the base. The stateful application’s
container image was built with the memcached 1.6.9 image as the base.
All of the base images were pulled from Docker Hub. The complete source
code for the applications can be found in the appendix.

Chapter 7 Experimental Setup 36

7.4 Variable Network Conditions

Containers running the three applications described above were migrated
from the source MEC host to the target MEC host under two different
network conditions: normal and congested.

Under normal conditions, the network had a bandwidth of approximately
1 Gbps. To simulate network congestion, traffic shaping was done using
the Linux tc utility. To configure tc appropriately, a classful queueing
discipline of type Hierarchical Token Bucket (HTB) was set up. A class was
then added with its rate set to 100 Mbps. Thus, whenever necessary, the
bandwidth could be easily reduced to 100 Mbps.

The complete code for the Bash script simulating network congestion can
be found in the appendix.

Chapter 8

Results

For easy readability, let us refer to the basic application container as A1,
the user state-preserving application container as A2, and the stateful appli-
cation container as A3. Similarly, let us call the baseline migration strategy
M1, the more stateful migration strategy M2, and the fully stateful, live
migration strategy M3. Lastly, let us refer to the normal network condition
as N1, and the congested network condition as N2.

Each final result obtained is based on a combination of the application, the
migration strategy, and the network condition. In other words, each final
result is a function of the three. For example, (A1,M1,N1) is the result
obtained for the basic application migrated using the baseline migration
strategy under normal network conditions and (A3,M3,N2) is the result
obtained for the stateful application, migrated using the live migration
strategy under the congested network condition.

I also mention several intermediate results that are independent of the
network condition. These are identified using only two parameters. For
example, (A1,M3) is the result obtained for some specific stage in the
migration of the basic application using the live migration strategy.

37

Chapter 8 Results 38

8.1 Container Sizes

There was a significant difference between the sizes of the container images
and the tarballs generated from the container instances. This was expected
because the Docker export, save, and checkpoint commands function
differently, and preserve varying amounts of run-time application state, as
discussed earlier.

As can be seen in figure 8.1, A1 had the smallest container image while A3

the largest. These sizes were obtained using the Docker inspect command.

Figure 8.1: Container image sizes

Figure 8.2 shows how the tarball sizes vary by migration strategy. For
migration strategies M1 and M2, there were only minor variations in the
tarball sizes for applications A1 and A2. This is because there was either
no state preserved or very little state preserved, respectively. In the case
of the M3 migration strategy, however, there was a noticeable increase in
tarball size for all applications.

Similarly, strategy M1 generated the smallest tarballs for all applications.
And strategy M3 generated the largest tarballs for all applications.

Chapter 8 Results 39

Figure 8.2: Tarball sizes

8.2 Duration of Pre-relocation Phase

The sizes mentioned above are expected to not have any significant impact
on the service downtime. This is because they are generated and transferred
during the service pre-relocation phase. Of course, this holds true only if
the service pre-relocation starts at the right time. Therefore, it is important
for the orchestrator to know the overall duration of the pre-relocation phase.
This duration is the sum of the durations mentioned in this section.

The Linux time utility was used to time all the operations discussed below.
Because the exact durations varied by a few milliseconds every time the
commands were run, the average of five runs was calculated and used as
the final result.

8.2.1 Time Spent on the Source MEC Host

In the case of strategy M1, this is only the time taken by the Docker export

command. For migration strategy M2, this is the sum of the times taken by
the Docker commit and save commands. And for strategy M3, this is the
sum of the times taken by the Docker commit, save, checkpoint commands.
Figure 8.3 shows the times measured.

Chapter 8 Results 40

In all scenarios, strategy M1 is the fastest. This is expected because only
one Docker command needs to be run and only the filesystem contents
are preserved. And with three different Docker commands and full state
preservation, strategy M3 is the slowest.

In strategies M2 and M3, the Docker commit operation, as mentioned earlier,
temporarily froze all the containers. As shown in Figure 8.4, although the
freeze durations were very short and the MEC applications being tested
were not affected at all, they were recorded for future optimization purposes.
This is because they could potentially degrade the end user experience for
some MEC applications.

Figure 8.3: Pre-relocation time spent on source host (in seconds)

Figure 8.4: Freeze durations during commit operation

Chapter 8 Results 41

8.2.2 Time Needed to Transfer the Tarball

This is the time taken by the scp command to transfer the tarball generated
on the source MEC host to the target MEC host. Because this is a function
of the network condition, two different results were obtained, as can be see
in figure 8.5.

Again, because strategies M1 and M2 generate smaller tarballs, they takes
the least amount of time to complete. Strategy M3, on the other hand, takes
slightly longer, especially when the network is experiencing congestion.

Figure 8.5: Pre-relocation time spent copying the tarball (in seconds)

8.2.3 Time Spent on the Target MEC Host

In the case of strategy M1, this is the time taken by the Docker import

command. For strategies M2 and M3, this is the time taken by the Docker
load command. As can be seen in figure 8.6, the times are identical for
both strategies M2 and M3 because the checkpoint data is not used yet, and
thus does not contribute to the duration.

Chapter 8 Results 42

Strategy M1 is again the fastest because it does it not preserve any Docker
layers information. Strategies M2 and M3 were much slower because they
had preserved information about six Docker layers, each of which had to be
restored individually.

Figure 8.6: Pre-relocation time spent on the target host (in seconds)

8.3 Duration of Relocation Phase

Throughout the pre-relocation phase, in all three implementations of the
testbed, the UE had largely uninterrupted access to the MEC application. In
fact, it was unaware of the phase all together. The relocation phase, however,
does introduce service downtimes, which were recorded and measured.

8.3.1 Time Spent on the Source MEC Host

In all the three strategies, the following operations needed to be run on the
source MEC host:

• Stop the container using the Docker stop command

• Create a tarball of the DV used by the container using the Linux tar

utility.

Chapter 8 Results 43

In strategy M3, however, the Docker checkpoint operation had to be run
additionally to create a new checkpoint. This had to be done before stopping
the container.

For applications A1 and A3, the DVs were always empty. In case of applica-
tion A1, the DV was empty because it was completely stateless. It needed to
store neither user nor application instance state. In the case of application
A3, on the other hand, the DV was empty because all the state was being
stored in the memory of the container.

The DV of application A2 was populated with data, and the amount of data
it contained was directly proportional to the duration of the pre-relocation
phase. This meant that network congestion increased the size of the DV.
This effect, although mentioned, was not fully accounted for in Campolo
et al’s testbed [25]. Therefore the final results generated by my implemen-
tations of the testbed and its extensions can be expected to be more realistic.

Figure 8.7 shows the size of the data volume for application A2 in the
absence and presence of network congestion. As can be seen, the size in-
creased significantly in the presence of network congestion.

The tar command is very quick, and the difference between the times
to archive the two data volumes is, on average, less than 0.001 seconds.
Therefore, it was assumed to be a constant while calculating the total time
spent on the source host.

Figure 8.8 shows the total time spent at the source MEC host during
the relocation phase. As can be seen, strategies M1 and M2 were the fastest.
Strategy M3 however was consistently slower because of the additional check-
point operation, and all applications took markedly longer times. It is
also worth noting how fast the strategies M1 and M2 are for application A3,
which doesn’t store any state in the file system. This only implies that they
ignored most of the state information A3 needs in order to run correctly on
the target host.

Chapter 8 Results 44

Figure 8.7: Size of Docker Volume for application A2 given two network
conditions

Figure 8.8: Time spent on source host during relocation

8.3.2 Time Needed to Transfer Data

The nc tool was used to copy the DV’s tarball from the source MEC host
to the target MEC host. This was necessary only in the case of application
A2 because it was the only application that used the DV to store additional
state while the pre-relocation was in progress.

In strategy M3, the rsync utility was additionally used to transfer the

Chapter 8 Results 45

checkpoint files generated by the the CRIU tool. This transfer was config-
ured to use SSH in order to maintain data confidentiality. All the three
applications generated at least 13 MB of checkpoint data, with A3 generat-
ing, on average, 16 MB. With the rsync command, it was noted that, on
average, only 2.9 MB of updated data had to be transferred, resulting in an
average speedup of 4.52x, as could be seen from the command’s logs. In
other words, compared to scp, the rsync command was about 4.52 times
faster.

Figure 8.9: Time to copy the additional user and application state to
target host (in seconds)

8.3.3 Time Spent on the Target MEC Host

In strategies M1 and M2, the following operations needed to be run on the
target MEC host:

1. Create a new DV by running the Docker volume create command
and add to it the contents of the tarball received from the source MEC
host

2. Boot up the container by running the Docker run command, mounting
the volume just created

Chapter 8 Results 46

In strategy M3, however, a slightly different set of commands had to be run:

1. Create a new DV by running the Docker volume create command
and add to it the contents of the tarball received from the source MEC
host

2. Use the Docker create command to create a new instance of the
container without booting it up

3. Use the Docker start command to start the container from the
appropriate checkpoint

All the three strategies showed promising results. All of them managed to
complete all their operations in less than 1 second, with M1 always being
the fastest, and M3 always being the slowest. Figure 8.10 gives an overview
of the total amount of time spent performing operations on the target MEC
host.

Figure 8.10: Time spent on target host during relocation

8.4 Analysis

Using the results obtained, the three migration strategies could be compared
and analysed. The following metrics were considered:

Chapter 8 Results 47

8.4.1 Service Downtime

This is one of the most important metrics of the testbed, and all the migra-
tion strategies were designed to minimize it. It starts as soon as the Docker
stop command is run on the source MEC host and ends only when the
MEC application has started successfully on the target MEC host.

As can be seen in Figure 8.11, operations on the source MEC host were
responsible for a significant portion of the downtime. The copy operations
contributed very little to the total service downtime, primarily because of
the small amounts of data transferred during the relocation phase. The bulk
of the data, as mentioned earlier, was transferred during the pre-relocation
phase. Lastly, the time spent performing operations on the target MEC
host was relatively short, with strategy M3 taking up the most time.

Network congestion had only a minor impact on service downtimes for
strategies M1 and M2. Strategy M3, however, did see a large increase in the
downtime for all the three applications.
Given these results, it’s obvious that strategy M1 is the fastest, regardless of
the application being migrated. Therefore, if minimizing service downtime
is the only priority, M1 would be the best choice for application migration.

Figure 8.11: Overview of service downtimes

Chapter 8 Results 48

Strategy M1 Strategy M2 Strategy M3
Application A1 Yes (with some

manual inputs)
Yes Yes

Application A2 No Yes Yes
Application A3 No No Yes

Table 8.1: Viability of migration strategies for the V2X applications

8.4.2 Amount of state preserved

As discussed earlier, with strategy M1, there was no configuration informa-
tion available on the target host. As a result, with this strategy, the Docker
run command didn’t know how to start the MEC application. This problem
was overcome by manually passing the CMD instruction to the Docker run

command.

For strategies M2 and M3, there was enough configuration information avail-
able to start all the MEC applications. But only strategy M3 was able to
preserve the complete state of application A3.

Therefore, if state preservation was the only criteria, strategy M3 would be
the ideal choice.

8.4.3 Viability

For the sake of completeness, two different viability metrics were considered.
These were the most important metrics because if a migration strategy is
not viable, the other metrics either can’t be calculated or don’t matter.

The first viability metric questioned whether an application was able to
start and run correctly on the target MEC host after it was migrated using
a given migration strategy. As expected, strategy M1 was the least viable
because with it even application A1, which needed no state at all, couldn’t
start without manual intervention. On the other hand, strategy M3 was the
most viable because it could correctly run all the three applications. Table
8.1 gives an overview of this viability metric.

Chapter 8 Results 49

If edge host is
associated with
each POA

If edge host is
associated with
each zone

Average time available
for migration

12.301s 53.151s

Shortest available
time observed

1.037s 1.854s

Table 8.2: Overview of amounts of time available for migration

The second viability metric questioned whether a migration strategy was
possible at all in the time frames available in the city scenario the ETSI
MEC sandbox simulated. This metric, it was observed, depended only on
how the MEC hosts were placed and didn’t help in comparing the migration
strategies. The rest of this section explains why.

If there was an MEC host associated with each 5G small cell point of
access, it was observed that all the migration strategies would be largely
viable in the absence of network congestion. On the other hand, if the MEC
hosts were associated with zones in the city, instead of the individual points
of access, all the migration strategies would be largely viable even in the
presence of network congestion.

There were, however, some paths a VUE could take in the city that had
areas where none of the migration strategies would be viable, regardless of
network congestion and MEC host placement. This was because, in those
areas, the VUE would switch between zones and points of access too quickly
for a successful migration. Table 8.2 gives an overview of the amounts of
time available for a migration.

Chapter 9

Conclusion and Future Works

In this thesis, three migration strategies were used to migrate three different
MEC applications from a source MEC host to a target MEC host. All of
them used the two-phase migration strategy described by Campolo et al
as a foundation. The primary difference between the three strategies was
the amount of user-specific and application-specific state and configuration
data they preserved.

It was found that each migration strategy was viable so long as it was
used to migrate only those applications whose user-specific and application-
specific state and configuration data preservation requirements it could
meet. Strategy M1 was the fastest strategy, and it can be considered ideal
for migration of applications that are specifically designed for it. Strategy
M3 was found to be the slowest, but it can be used to migrate any application
that is supported by the CRIU tool.

Strategy M2 preserves enough state and is generic enough to potentially sup-
port a large number of open source applications. It is also nearly as fast as
strategy M1. Therefore, in scenarios where minimizing service downtime and
preserving small amounts of application configuration data and user-specific
state are both critically important, it would be the ideal strategy.

The results of this testbed will apply to real-world MEC applications
that are based on common frameworks and components such as NodeJS

50

Chapter 9 Conclusion and Future Works 51

and Memcached. However, it could be extended in the future by integrat-
ing it with an MEC system that has a full-fledged orchestrator and other
management-level entities that make the SmartRelocation feature possible.
Doing so would result in a more automated workflow and more accurate
observations of service downtimes and amounts of data transferred during
the experiments. Furthermore, the MEC applications developed during this
thesis could be upgraded to use the publish-subscribe model instead of the
request-response model while accessing the MEC services. This would lead
to better optimized bandwidth and CPU resource consumption.

List of Figures

2.1 MEC System Overview . 5

4.1 Overview of baseline migration strategy 19

5.1 Overview of more stateful migration strategy 24

6.1 Overview of live migration strategy 27

7.1 Overview of the experimental setup at the start of the migration 30
7.2 Screenshot of the sandbox UI 32

8.1 Container image sizes . 38
8.2 Tarball sizes . 39
8.3 Pre-relocation time spent on source host (in seconds) 40
8.4 Freeze durations during commit operation 40
8.5 Pre-relocation time spent copying the tarball (in seconds) . . 41
8.6 Pre-relocation time spent on the target host (in seconds) . . 42
8.7 Size of Docker Volume for application A2 given two network

conditions . 44
8.8 Time spent on source host during relocation 44
8.9 Time to copy the additional user and application state to

target host (in seconds) . 45
8.10 Time spent on target host during relocation 46
8.11 Overview of service downtimes 47

52

List of Tables

3.1 Overview of earlier testbeds 13

6.1 Overview of the three migration strategies 28

7.1 Overview of the three MEC applications migrated during the
experiments . 35

8.1 Viability of migration strategies for the V2X applications . . 48
8.2 Overview of amounts of time available for migration 49

53

Appendix A

Code Listings

A.1 Application A1

A.1.1 Source Code: app.js

1 var got = require (’got ’);

2

3 // The URL of the RNIS API through the API gateway

4 var url = ’http :// gateway -app/rni/v2/ queries / rab_info ’;

5

6 function getRABInfo () {

7 // Make a HTTP GET request to the URL

8 got(url).then ((response) => {

9 // Parse the JSON document returned

10 var data = JSON.parse(response .body);

11 try {

12 // Print the E-RAB info obtained

13 console .log(data[’cellUserInfo ’][0][’ueInfo ’][0][’

erabInfo ’]);

14 } catch(e) {

15 console .log(’No RAB info available ’);

16 }

17 });

18 }

19

20 // Repeat every 200 ms

21 setInterval (getRABInfo , 200);

54

Appendix A Code Listings 55

A.1.2 Source Code: package.json

1 {

2 "name": "basic -v2x",

3 " version ": "1.0.0",

4 " description ": "Basic v2x application ",

5 "main": "app.js",

6 " keywords ": [

7 "v2x"

8],

9 " author ": " Hathibelagal ",

10 " license ": "ISC",

11 " dependencies ": {

12 "got": " ^11.8.2 "

13 }

14 }

A.1.3 Dockerfile

1 FROM node :16- alpine3 .11

2

3 COPY . .

4

5 RUN npm install

6

7 CMD node app.js

A.2 Application A2

A.2.1 Source Code: app.js

1 var got = require (’got ’);

2 var fs = require (’fs’);

3 var express = require (’express ’);

4 var app = express ()

5

6 // The URL of the Location Service API through the API

gateway

7 var url = ’http :// gateway -app/ location /v2/ queries /users ’;

Appendix A Code Listings 56

8

9 var oldZone = -1;

10 var zoneCounter = 0;

11 var inMigration = 0;

12 function getUserInfo () {

13 // Make a HTTP GET request to the URL

14 got(url).then ((response) => {

15 var data = JSON.parse(response .body);

16 console .log(inMigration);

17 if(! inMigration) {

18 console .log(zoneCounter);

19 console .log(JSON. stringify (data));

20 } else {

21 var runtimeLogs = "";

22 try {

23 runtimeLogs = fs. readFileSync (’/data/

runtimedata .dat ’, ’utf -8’);

24 } catch(noFile) {}

25 runtimeLogs += "\n" + JSON. stringify (data);

26 fs. writeFileSync (’/data/ runtimedata .dat ’,

runtimeLogs);

27 }

28 try {

29 var zone = data[’userList ’][’user ’][0][’zoneId ’

];

30 if(zone != oldZone) {

31 oldZone = zone;

32 zoneCounter += 1;

33

34 // persist state in volume

35 var state = {

36 ’counter ’: zoneCounter ,

37 ’zone ’: oldZone

38 };

39 fs. writeFileSync (’/data/state.json ’, JSON.

stringify (state));

40 }

41 } catch(e) {

42 console .log(’No zone info available ’);

43 }

44 });

45 }

46

47 // user state init

Appendix A Code Listings 57

48 try {

49 var data = JSON.parse(fs. readFileSync (’/data/state.json ’

, ’utf -8’));

50 zoneCounter = data[’counter ’];

51 oldZone = data[’zone ’];

52 console .log("Using saved state");

53 } catch(e) {

54 console .log("No state present ");

55 }

56

57 // Repeat every 200 ms

58 setInterval (getUserInfo , 200);

59

60 // An endpoint that this application exposes so that

61 // it can be told when the migration phase changes

62 app.get(’/ changePhase ’, (req , res) => {

63 if(req.query. inMigration) {

64 inMigration = 1;

65 } else {

66 inMigration = 0;

67 }

68 fs. writeFileSync (’/data/ runtimedata .dat ’, "");

69 res. status (200).send("OK");

70 });

71

72 // Start a web server so the endpoint is accessible

73 app. listen (3000 , () => {

74 console .log(" Started app");

75 });

A.2.2 Source Code: package.json

1 {

2 "name": "some -state -v2x",

3 " version ": "1.0.0",

4 " description ": "V2X application needing user state",

5 "main": "app.js",

6 " keywords ": [

7 "v2x"

8],

9 " author ": " Hathibelagal ",

10 " license ": "ISC",

Appendix A Code Listings 58

11 " dependencies ": {

12 "got": " ^11.8.2 ",

13 " express ": " ^4.17.1 "

14 }

15 }

A.2.3 Dockerfile

1 FROM node :16- alpine3 .11

2

3 COPY . .

4

5 RUN npm install

6

7 EXPOSE 3000

8

9 CMD node app.js

A.3 Application A3

Note that the container for application A3 contains only the Memcached
server. The NodeJS code to add data to it needs to be run independently
or in its own separate container.

A.3.1 Source Code: app.js

1 var memcached = require (’memcached - promise ’);

2 var client = new memcached (’127.0.0.1:3000 ’);

3 var got = require (’got ’);

4

5 async function addToMemcache () {

6 var url = ’http :// localhost :8080/ ’ +

7 ’location /v2/ queries /zones ’;

8 var response = await got(url);

9 var data = JSON.parse(response .body);

10 var zones = data[" zoneList "]["zone"];

11 for(var i=0;i<zones. length ;i++) {

12 var zoneId = zones[i][" zoneId "];

Appendix A Code Listings 59

13 var nPOA = zones[i][" numberOfAccessPoints "];

14 try {

15 await client .add(zoneId , nPOA , 100);

16 console .log(‘Added ${ zoneId }‘);

17 } catch(e) {

18 console .log(‘Not added ${ zoneId }. May be present

already ‘);

19 }

20 }

21 }

22

23 async function start () {

24 await addToMemcache ();

25 // Test if the data is available on Memcache now

26 var data = await client .get(’zone01 ’);

27 console .log(data);

28 }

29

30 start ();

A.3.2 Source Code: package.json

1 {

2 "name": "live",

3 " version ": "1.0.0",

4 " description ": " Stores POA data on Memcached ",

5 "main": "app.js",

6 " author ": "",

7 " license ": "ISC",

8 " dependencies ": {

9 "got": " ^11.8.2 ",

10 " memcached ": " ^2.2.2 ",

11 "memcached - promise ": " ^1.0.1 "

12 }

13 }

A.3.3 Dockerfile

1 FROM memcached :1.6.9

2

Appendix A Code Listings 60

3 USER root

4 RUN apt -get update ; apt -get install nodejs -y

5 USER memcache

A.4 Gateway Configuration

The following is the configuration of the reverse proxy for connecting to the
ETSI MEC sandbox.

A.4.1 Source Code: httpd.conf

1 ServerRoot "/ usr/local/ apache2 "

2 Listen 80

3

4 # Default modules

5 LoadModule mpm_event_module modules / mod_mpm_event .so

6 LoadModule authn_file_module modules / mod_authn_file .so

7 LoadModule authn_core_module modules / mod_authn_core .so

8 LoadModule authz_host_module modules / mod_authz_host .so

9 LoadModule authz_groupfile_module modules /

mod_authz_groupfile .so

10 LoadModule authz_user_module modules / mod_authz_user .so

11 LoadModule authz_core_module modules / mod_authz_core .so

12 LoadModule access_compat_module modules / mod_access_compat .so

13 LoadModule auth_basic_module modules / mod_auth_basic .so

14 LoadModule reqtimeout_module modules / mod_reqtimeout .so

15 LoadModule filter_module modules / mod_filter .so

16 LoadModule mime_module modules / mod_mime .so

17 LoadModule log_config_module modules / mod_log_config .so

18 LoadModule env_module modules / mod_env .so

19 LoadModule headers_module modules / mod_headers .so

20 LoadModule setenvif_module modules / mod_setenvif .so

21 LoadModule version_module modules / mod_version .so

22 LoadModule unixd_module modules / mod_unixd .so

23 LoadModule status_module modules / mod_status .so

24 LoadModule autoindex_module modules / mod_autoindex .so

25 LoadModule dir_module modules / mod_dir .so

26 LoadModule alias_module modules / mod_alias .so

27

28 # Modules necessary for the gateway

Appendix A Code Listings 61

29 LoadModule rewrite_module modules / mod_rewrite .so

30 LoadModule proxy_module modules / mod_proxy .so

31 LoadModule proxy_http_module modules / mod_proxy_http .so

32 LoadModule ssl_module modules / mod_ssl .so

33 LoadModule proxy_connect_module modules / mod_proxy_connect .so

34

35 <IfModule unixd_module >

36 User daemon

37 Group daemon

38 </IfModule >

39 ServerAdmin localhost

40 <Directory />

41 AllowOverride none

42 Require all denied

43 </Directory >

44 DocumentRoot "/ usr/local/ apache2 / htdocs "

45 <Directory "/ usr/local/ apache2 / htdocs ">

46 Options Indexes FollowSymLinks

47 AllowOverride None

48 Require all granted

49 </Directory >

50 <IfModule dir_module >

51 DirectoryIndex index.html

52 </IfModule >

53 <Files ".ht*">

54 Require all denied

55 </Files >

56 ErrorLog /proc/self/fd/2

57 LogLevel warn

58 <IfModule log_config_module >

59 LogFormat "%h %l %u %t \"%r\" %>s %b \"%{ Referer }i\"

\"%{ User -Agent}i\"" combined

60 LogFormat "%h %l %u %t \"%r\" %>s %b" common

61 <IfModule logio_module >

62 LogFormat "%h %l %u %t \"%r\" %>s %b \"%{ Referer }i\"

\"%{ User -Agent}i\" %I %O" combinedio

63 </IfModule >

64 CustomLog /proc/self/fd/1 common

65 </IfModule >

66 <IfModule alias_module >

67 ScriptAlias /cgi -bin/ "/ usr/local/ apache2 /cgi -bin /"

68 </IfModule >

69 <Directory "/ usr/local/ apache2 /cgi -bin">

70 AllowOverride None

Appendix A Code Listings 62

71 Options None

72 Require all granted

73 </Directory >

74 <IfModule headers_module >

75 RequestHeader unset Proxy early

76 </IfModule >

77 <IfModule mime_module >

78 TypesConfig conf/mime.types

79 AddType application /x- compress .Z

80 AddType application /x-gzip .gz .tgz

81 </IfModule >

82 <IfModule proxy_html_module >

83 Include conf/extra/proxy -html.conf

84 </IfModule >

85 <IfModule ssl_module >

86 SSLRandomSeed startup builtin

87 SSLRandomSeed connect builtin

88 </IfModule >

89

90 SSLProxyEngine On

91 <VirtualHost *:*>

92 ProxyPass / https :// try -mec.etsi.org/ sbxfr7e7k2 /

93 ProxyPassReverse / https :// try -mec.etsi.org/ sbxfr7e7k2 /

94 </ VirtualHost >

A.4.2 Dockerfile

1 FROM httpd :2.4

2 COPY ./ httpd.conf /usr/local/ apache2 /conf/httpd.conf

A.5 Congestion Implementation

The following is the script that runs tc to simulate network congestion.

A.5.1 Source Code: congestion.sh

1 echo " Limiting "

Appendix A Code Listings 63

2 # Create a classful queueing discipline of type Hierarchical

Token Bucket

3 tc qdisc add dev eno1 root handle 1: htb default 99

4 echo $?

5 # Create a class with rate of 100 mbit

6 tc class add dev eno1 parent 1: classid 1:99 htb rate 100

mbit

7 echo $?

8 # Wait until user hits enter

9 read a

10 # And cleanup

11 echo " Deleting "

12 tc qdisc del dev eno1 root

13 tc qdisc show

Bibliography

[1] Jian Wang, Yameng Shao, Yuming Ge, and Rundong Yu. A survey of
vehicle to everything (v2x) testing. Sensors, 19(2):334, 2019.

[2] Sami Kekki, Walter Featherstone, Yonggang Fang, Pekka Kuure, Alice
Li, Anurag Ranjan, Debashish Purkayastha, Feng Jiangping, Danny
Frydman, Gianluca Verin, et al. Mec in 5g networks. ETSI white paper,
28:1–28, 2018.

[3] Fabio Giust, Xavier Costa-Perez, and Alex Reznik. Multi-access edge
computing: An overview of etsi mec isg. IEEE 5G Tech Focus, 1(4):4,
2017.

[4] ETSI ISG. Multi-access edge computing (mec); framework and reference
architecture. ETSI Standards Search, 2020.

[5] Dongkee Lee and Woohyun Nam. Case study of scaled-up skt* 5g mec
reference architecture. Intel Whitepapers, 2021.

[6] Tero Lähderanta, Teemu Leppänen, Leena Ruha, Lauri Lovén, Erkki
Harjula, Mika Ylianttila, Jukka Riekki, and Mikko J Sillanpää. Edge
computing server placement with capacitated location allocation. Jour-
nal of Parallel and Distributed Computing, 153:130–149, 2021.

[7] ETSI ISG. Multi-access edge computing(mec);edge platform application
enablement. ETSI Standards Search, 2019.

[8] ETSI ISG. Multi-access edge computing (mec); phase 2: Use cases and
requirements. ETSI Standards Search, 2018.

[9] ETSI ISG. Multi-access edge computing (mec); radio network informa-
tion api. ETSI Standards Search, 2019.

64

Bibliography 65

[10] ETSI ISG. Etsi gr mec 022 v2.1.1 (2018-09)multi-access edge comput-
ing(mec); study on mec support for v2x use cases. ETSI Standards
Search, 2018.

[11] ETSI ISG. Multi-access edge computing (mec);v2x information service
api. ETSI Standards Search, 2020.

[12] ETSI 3rd Generation Partnership Project. 5g; ng ran architecture
description. ETSI Technical Specifications, 2018.

[13] ETSI ISG. Multi-access edge computing (mec); application mobility
service api. ETSI Standards Search, 2020.

[14] Shangguang Wang, Jinliang Xu, Ning Zhang, and Yujiong Liu. A
survey on service migration in mobile edge computing. IEEE Access,
6:23511–23528, 2018.

[15] Khasa Gillani and Jong-Hyouk Lee. Comparison of linux virtual ma-
chines and containers for a service migration in 5g multi-access edge
computing. ICT Express, 6(1):1–2, 2020.

[16] Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio.
An updated performance comparison of virtual machines and linux
containers. In 2015 IEEE international symposium on performance
analysis of systems and software (ISPASS), pages 171–172. IEEE, 2015.

[17] Rami Akrem Addad, Diego Leonel Cadette Dutra, Miloud Bagaa,
Tarik Taleb, and Hannu Flinck. Towards a fast service migration in
5g. In 2018 IEEE Conference on Standards for Communications and
Networking (CSCN), pages 1–6. IEEE, 2018.

[18] Dirk Merkel. Docker: lightweight linux containers for consistent devel-
opment and deployment. Linux journal, 2014(239):2, 2014.

[19] Alessandro Randazzo and Ilenia Tinnirello. Kata containers: An
emerging architecture for enabling mec services in fast and secure way.
In 2019 Sixth International Conference on Internet of Things: Systems,
Management and Security (IOTSMS), pages 209–214. IEEE, 2019.

[20] Alfred Bratterud, Alf-Andre Walla, Hårek Haugerud, Paal E Engelstad,
and Kyrre Begnum. Includeos: A minimal, resource efficient unikernel

Bibliography 66

for cloud services. In 2015 IEEE 7th international conference on cloud
computing technology and science (cloudcom), pages 250–257. IEEE,
2015.

[21] Pierre Olivier, Daniel Chiba, Stefan Lankes, Changwoo Min, and Binoy
Ravindran. A binary-compatible unikernel. In Proceedings of the
15th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, pages 59–73, 2019.

[22] Ivan Farris, Tarik Taleb, Hannu Flinck, and Antonio Iera. Providing
ultra-short latency to user-centric 5g applications at the mobile network
edge. Transactions on Emerging Telecommunications Technologies, 29
(4):e3169, 2018.

[23] Haikun Liu, Hai Jin, Xiaofei Liao, Liting Hu, and Chen Yu. Live
migration of virtual machine based on full system trace and replay.
In Proceedings of the 18th ACM international symposium on High
performance distributed computing, pages 101–110, 2009.

[24] Simon Pickartz, Niklas Eiling, Stefan Lankes, Lukas Razik, and An-
tonello Monti. Migrating linux containers using criu. In International
Conference on High Performance Computing, pages 674–684. Springer,
2016.

[25] Claudia Campolo, Antonio Iera, Antonella Molinaro, and Giuseppe
Ruggeri. Mec support for 5g-v2x use cases through docker containers.
In 2019 IEEE Wireless Communications and Networking Conference
(WCNC), pages 1–6. IEEE, 2019.

[26] Paolo Bellavista, Antonio Corradi, Luca Foschini, and Domenico
Scotece. Differentiated service/data migration for edge services lever-
aging container characteristics. IEEE Access, 7:139746–139758, 2019.

[27] ETSI ISG. Mobile edge computing (mec);end to end mobility aspects.
ETSI Standards Search, 2017.

[28] Brian Ward. How Linux works: What every superuser should know. no
starch press, 2021.

Bibliography 67

[29] Radostin Stoyanov and Martin J Kollingbaum. Efficient live migration
of linux containers. In International Conference on High Performance
Computing, pages 184–193. Springer, 2018.

[30] Yuhei Takagawa and Katsuya Matsubara. Yet another container mi-
gration on freebsd. In AsiaBSDCon 2019 Proceedings, pages 97–102,
2019.

[31] James R Blakley, Roger Iyengar, and Michel Roy. Simulating edge
computing environments to optimize application experience. 2020.

[32] ETSI ISG. Multi-access edge computing (mec); location api. ETSI
Standards Search, 2019.

[33] Wei Wang, Yongli Zhao, Massimo Tornatore, Abhishek Gupta, Jie
Zhang, and Biswanath Mukherjee. Virtual machine placement and
workload assignment for mobile edge computing. In 2017 IEEE 6th
International Conference on Cloud Networking (CloudNet), pages 1–6.
IEEE, 2017.

[34] Mateusz Berezecki, Eitan Frachtenberg, Mike Paleczny, and Kenneth
Steele. Many-core key-value store. In 2011 International Green Com-
puting Conference and Workshops, pages 1–8. IEEE, 2011.

[35] Seung-Jun Cha, Seung Hyub Jeon, Yeon Jeong Jeong, Jin Mee Kim,
Sungin Jung, Sangheon Pack, et al. Boosting edge computing perfor-
mance through heterogeneous manycore systems. In 2018 International
Conference on Information and Communication Technology Conver-
gence (ICTC), pages 922–924. IEEE, 2018.

[36] Ahmed Soliman. Getting Started with Memcached. Packt Publishing
Ltd, 2013.

	Abstract
	Acknowledgements
	1 Introduction
	2 Background
	2.1 The MEC Host
	2.2 An MEC Application
	2.3 The MEC Platform
	2.4 System Level Management Entities
	2.4.1 The MEC Orchestrator

	2.5 Host Level Management Entities
	2.6 MEC Services
	2.6.1 Additional Support for V2X Services

	2.7 Mobility
	2.7.1 UE Mobility in a 5G RAN
	2.7.2 Application Mobility in an MEC System

	3 Related Works
	3.1 Virtualization or Containerization
	3.2 Earlier Testbeds
	3.2.1 Service Replicated on Multiple Edge Hosts
	3.2.2 Support for Live Migration
	3.2.3 A Two-Phase Approach
	3.2.4 An Application-Aware Strategy

	4 A Baseline Testbed Implementation
	4.1 Hardware and Software Specifications
	4.2 Phases
	4.2.1 Service Pre-relocation
	4.2.2 Service Relocation
	4.2.3 Role of the V2X Application

	5 A More Stateful Testbed
	5.1 Approach

	6 Testbed With Support for Live Migration
	6.1 The CRIU Project
	6.2 Approach

	7 Experimental Setup
	7.1 The ETSI MEC Sandbox
	7.1.1 The APIs
	7.1.2 The Scenario

	7.2 The API Gateway
	7.3 Applications
	7.3.1 Basic Application
	7.3.2 User State-Preserving Application
	7.3.3 Application With a Stateful Workload

	7.4 Variable Network Conditions

	8 Results
	8.1 Container Sizes
	8.2 Duration of Pre-relocation Phase
	8.2.1 Time Spent on the Source MEC Host
	8.2.2 Time Needed to Transfer the Tarball
	8.2.3 Time Spent on the Target MEC Host

	8.3 Duration of Relocation Phase
	8.3.1 Time Spent on the Source MEC Host
	8.3.2 Time Needed to Transfer Data
	8.3.3 Time Spent on the Target MEC Host

	8.4 Analysis
	8.4.1 Service Downtime
	8.4.2 Amount of state preserved
	8.4.3 Viability

	9 Conclusion and Future Works
	List of Figures
	List of Tables
	A Code Listings
	A.1 Application A1
	A.1.1 Source Code: app.js
	A.1.2 Source Code: package.json
	A.1.3 Dockerfile

	A.2 Application A2
	A.2.1 Source Code: app.js
	A.2.2 Source Code: package.json
	A.2.3 Dockerfile

	A.3 Application A3
	A.3.1 Source Code: app.js
	A.3.2 Source Code: package.json
	A.3.3 Dockerfile

	A.4 Gateway Configuration
	A.4.1 Source Code: httpd.conf
	A.4.2 Dockerfile

	A.5 Congestion Implementation
	A.5.1 Source Code: congestion.sh

	Bibliography

