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Abstract

Cloud Computing provides on-demand computing services like software, networking,
storage, analytics, and so on over the Internet. However, the explosion of the Internet
of Things (IoT) devices and the high volume and variety of data generated by these
devices, is creating challenges in handling large and rapid computations. Such challenges
require a reliable and secure system with low latency. Fog Computing is a promising
solution to address these challenges. The approach allocates tasks down to devices that
are closer to the sensors which will provide immediate feedback to systems of time
sensitive IoT applications. Latency, location awareness and highly virtualized
computational models are some of the advantages that Fog Computing has over Cloud
Computing. In this thesis work, smart grid is used as a use case. Power consumption
prediction was used as a task to perform model training and prediction. In addition,
comparisons of the mathematical models were performed to find out which of the models
perform better in providing sound predictions and which models are better in resource
usage. Finally, the computations were performed on both Fog and Cloud devices to

compare CPU time and memory usages of the models in each device.

Keywords: cloud computing, fog computing, smart city, smart grids, deep learning,

machine learning
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1. Introduction

1.1 The Cloud

Cloud computing is revolutionizing the technology world with the provision of easy
access and security to the huge set of data that’s being produced by the ever-growing
use of computing devices. Basically, cloud computing refers to an always available, on-
demand computing service that is based off of data centers located in remote locations.
The services that it offers include data storage, data computing power or resources, web
or applications hosting, and so forth. As mentioned, a user will access all these and more
such services from a remotely managed set of networked computer systems, over the
internet, that are located in a data center, and hence the name ‘cloud’ [1][2]. Figure 1.1

depicts the general idea of the cloud technology.

Cloud

Servers

M

1ot

Devices

°
-
Figure 1.1 Basic depiction of Cloud Technology.

The advances made in the technology coupled with abundant availability of mobile or
hand-held smart devices and increased access to better internet services had played an
enormous role in making cloud computing a very important part of information
technology (IT) [1]. Practically, cloud computing got prominence because it removes the
need of many structural requirements for a typical setup. This is apparent especially
when compared to a conventional set up. In the conventional setup a user, say a client,
needs to make investment for setting up and maintaining the infrastructure and for the

human resources that need to carry out these tasks. In contrast, the on-demand service
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approach of cloud computing provides a type of pay-as-you-go solution allowing clients
to effectively cater the services as per their business’ need. Moreover, durability,
elasticity and accessibility are the most important and appealing features that cloud

computing offers. Table 1.1 summarizes the characteristics of cloud computing.

Table 1.1: Summary of Characteristics of Cloud Computing.[1]

Features Description
On-demand Resources are accessed whenever needed.
Broad access points Computing capabilities and resources are accessible

through a variety set of platforms such as hand-held smart
devices, workstation, laptop and so on.

Resource pooling Resources such as computing, storage and others are
pooled and get allocated based on consumers’ needs.
Customers has little to no say in requiring location of some
resources as they can be reallocated based on demand.

Elasticity Resources’ capabilities can be almost unlimitedly increased
or decreased depending on business demand.

Metered services Use of resources like account management, bulk storage
and processing power is easily controlled and metered for
better optimization.

Multitenancy Simultaneous sharing of same resources, like serverless
computing, by multiple users (or tenants) allows for better
use of resources and lower coast.

Fault tolerance Creating duplicates of private cloud servers across multiple
data centers allow for high availability of data and
resources that can overcome physical and technical
failures.

Security Security can be improved by applying security at multiple
levels, such as at the server level and at subnet level.

To summarize, benefits of cloud computing include lower coasts of operation and
services, rapid scalability and elasticity, ability to pool resources, increased data safety
and easy access to a wide range of computational resources or applications. On the other
hand, the need for continuous fast internet, possibility of latency, security susceptibility
of processes taking place or data stored, data loss or service interruption due to physical
damage to data centers are some of the limitations and challenges faced by cloud
computing technology. Moreover, account or service traffic hijacking, distributed denial
of service (DDoS) attacks and malicious insiders are some of the threats to cloud

computing as identified by the Cloud Security Alliance [3][4].
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1.2 Smart cities

The progression towards smart cities has met a partner in the cloud technologies. Smart
cities come about with the use of data collected from a vast number of sensors from that
urban area. The data is used both to efficiently manage resources in real time and to
forecast future challenges. The data originates from the dwelling individuals and the
physical devices they use that are interconnected with each other. The interconnection
and interaction of devices, known as Internet of things (IoT), creates a large network
that advances to a better utilization and management of resources. Beyond the
commonly known day-to-day household electronics we use, it’s important to note that
the “things” in the IoT does no longer refer to the typical personal computing systems.
Rather it may refer to things as simple as a building door or a blood sugar monitor or a
geo-locator on a wild animal, or as complex as a self-driving vehicle or as big as a

building, and so onl[5].

It is projected that in just the coming few decades population growth will significantly
increase and, of these billions of people, as many as two-third are projected to reside in
cities [6-8]. Moreover, in about the same time, it is estimated that about 75 billion
devices will be in operation for day-to-day use [9]. This will in turn intensify the need
for services and resources, that are already in short supply, and infrastructure which will
be crucial for such sustainably manage resources. So, to efficiently accommodate urban
communities, cities will have to employ intelligent technologies and provide efficient
services in all aspects of life. This will mean that services such as healthcare, energy,
transportation, construction, education and so on should become smart in their

application [7].

However, it is sure that such rapid development and expansion of future cities creates

some challenges:[7]

e Smart city goals are realized by constructing large scale infrastructures of city
components such as roads, subways, power grid, pipelines, bridges and so on. So,
it is as important building significant amount of sensing networks that are
geospatially distributed which in real-time and accurately monitor the health of
the infrastructure elements.

e These networks of geospatially distributed sensors generate enormous magnitude
of information or “big data” that will require a fast and real-time analysis.[10]

e Besides the massive amount of data they generate, the Internet of Things mashed
by the machine-to-machine communication between these large number of sensors

will dominate the communication system traffic [11][12].



e For the systems in smart cities to efficiently work, all the elements of
infrastructures demand intelligent monitoring mechanisms with rapid feed-back
systems. In other words, the need for intelligent and efficient decision-making

systems with integrated optimal feed-back loop is paramount.

Hence, smart cities need to deploy high performance computing systems that can interact
with the huge number of sensors and handle the massive volume of data with capabilities
of live system assessment and course correction. Moreover, the proximity of this location-
ware system to the data sources determines the latency that is inherent to such
geospatially distributed internet of things [7]. Table 1.2 summarizes the basic design
considerations that are needed for industrial Internet of Things applications as outlined
by [12].

Table 1.2: General Considerations for Designing Large Scale IoT Applications.

Goals Description

Energy How will the IoT device be powered and how efficiently
will the system use power?

Latency What is the optimal message propagation and processing
mode and how fast will it be?

Throughput What maximum amount of data can be transported
through the network?

Scalability How many devices are going to be supported?

Topology What are the communicating agents in the system?

Safety and security How safe and secure will the system be and what are the
vulnerabilities?

Because of its distributed and scalable data management structures, cloud computing is
used to address the challenges faced by smart city systems. However, the sheer volume
of data needed to be handled and the necessity to have geolocation-aware smart system
with fast response time calls for different paradigm all together. The new paradigm that
addresses these challenges builds on the features of cloud computing where at the same
time providing real time need based solutions. A system with such capabilities and ripe

for a number of use cases is Fog Computing.



Table 1.3 Some examples of smart city applications and roles of Fog and Cloud

Computing have. Adopted from [18].

Smart City Sub-applications Fog Roles Cloud Roles

Applications

Intelligent e Route planning and Fogs in the form of Road Side Clouds collects, filters, and stores

transportation congestion avoidance Units  (RSUs) or other traffic information. It helps in
e Intelligent traffic light computerized units provide coordinating city traffic and

control
e Intelligent parking services
e  Accident avoidance
e Self-driving vehicles

low-cost relays among vehicles,
roads and parks sensors, traffic
lights, and the cloud. They
provide fast response and

control services.

parking optimizations. It also helps
in planning for enhancing traffic

systems.

Smart energy

e  Smart grid

e  Smart buildings

e  Renewable energy plants
e Smart meters

e  Wind farms

e  Hydropower plants

Fogs provide local control for
energy systems, distribution
units, and consumer locations.
They also enable smooth
integration of different energy

systems.

Clouds collects, filters, and stores

energy information. It supports
decision making for utilizing smart
grids and renewable energy features
based on collected and analyzed
data for consumers needs and

renewable energy productions.

Smart water

e Leakage detections

o  Water leakage reduction
e  Water quality monitoring
e  Smart water meter

e  Smart irrigation

Fogs provide better and faster
local monitoring and controls

for smart water networks.
They also offer real-time
monitoring for faults and

leakage and support repair and
maintenance operations.

Smart water networks information
is collected, stored, and utilized by
cloud services to enhance the water
networks, production, and quality
and to reduce water losses.

City structure
health

e  Health monitoring for
e DBridges
e  Large public buildings

Fogs helps to reduce data

traffic between the sensors

monitoring the structures and

Cloud collects, filters, and stores
structure health information. The
cloud can help analyze collected

monitoring
e  Tunnels their main control stations. In  data to enhance the maintenance
e Train and subway rails addition, they provide fast processes and improve the health of
e (il and gas pipelines safety controls for some the city structures.
applications.
Environmental e  Air quality monitoring Fogs helps enhance Cloud provides processes to
monitoring e Noise monitoring environmental monitoring collectively analyze city

e River monitoring
e  Coastal monitoring

process by providing smart
environmental monitoring
closer to the monitored area.

environmental and health status.

Public safety
and security

e Crowed control (for sports
games, parades, and so on)

e  (Crime alerts

e  Emergency response service

(floods, earthquakes, etc.)

Fogs help reduce the
communication traffic
between these places and the
main security monitoring

stations.

Cloud provides a powerful platform
for analyzing the collected data
about the current situation to help
in providing possible actions for

better control and emergency relief.




1.3 Fog Computing

As Cloud Computing, Fog Computing is built with storage, compute, and networking
resources as integral components. The following characteristics define a few of these

Cloud Computing extension services [13]:

e The location awareness property is essential especially to those applications that
require low latency.

e Decentralized geospatial distribution that help provide services for non-stationary
components.

e Handle data from large number of scale sensors that allows to monitor
components of smart city infrastructures. Data analysis from these arrays of
sensors performed close to the sources.

e Ability to communicate with mobile systems permitting dissociation of spatial
information from the host.

e The ability to perform real time interactions as opposed to batched interactions.

e Allow for deployment in a variety of heterogeneous environments where

components across systems interoperate.

Cloud

Fog

Sources
(Sensors)

Figure 1.2 Depiction of basic Fog Computing architecture.

With these inherent properties, Fog architecture distributes computing tasks through
the network of devices for enhanced computing capability. On top of helping improve
efficiency and performance, Fog Computing alleviates the need to transfer all the data

from sensors in the network to the cloud by temporarily storing and performing necessary



analysis at the edge locations (or edge devices) [14]. Edge location, or edge device refers
to a position in the IoT that is closest to the source of data or to the end user of a
system. In other words, the fog computing approach allocates tasks down to devices
closer to the sensors which will provide immediate feedback to systems of time sensitive
[oT applications. Latency, location awareness and highly virtualized computational
models are some of the advantages that Fog Computing has over the Cloud Computing.

Table 1.4 lays out some of the features these systems have.

In summary, the expected future population growth, and thereby, the inevitable push
towards urbanization, unavoidably will result in the increased need and use of a number
of geospatially networking sensors and monitors [6]. This creates a challenge in handling
the large volume of data [15,16]. To this end, studies done by [7] show ways of
implementing a hierarchical Fog computing architecture to handle such big data
analysis. Moreover, the study suggests that the communication among the increased
number of sensors themselves will take up notable size of part of the communication
traffic. In addition, works done by [11] and [17] also show how fog computing parallelizes
the data handling at edge of network. Figure 1.2 represents the basic structure of Fog

Computing.

Table 1.4: Basic features of both Cloud Computing and Fog Computing. Adopted from
[9] and [14].

Features Cloud Computing Fog Computing

Latency High Low

Hardware and Computing power and Computing power  and

processing structure storage are scalable storage are limited

Communication mode IP networks WLAN, WiFi, LAN, WAN,
cellular networks

Working location Physical data warehouses  Closer to sensors (outdoor)

Security measures Defined Not easy to define

Architecture Centralized Distributed

Location and context No Yes

aware system
Geographic coverage Global Local

1.3.1 Smart Grid as a Use Case

With these features as a major input, there are several applicable use cases where Fog

computing plays an important role in the realization of smart cities. [7] considered smart
7



pipeline monitoring as a use case. Smart buildings and intelligent traffic systems are
explained as relevant smart city applications by [18]. [13] details how Connected Vehicle
systems, Wireless Sensor and Actuator Networks and Smart Grid are important use
cases. In this thesis we consider smart grid as a use case and how to best optimize power
usage predictions using machine learning and deep learning. Table 1.3 outlines areas of
smart city applications where both Cloud and Fog computing play roles as summarized
by [18]. All these and other important applications where Fog computing has significant
edge over Cloud computing, rely on its innate properties to achieve their goals. For
example, if we consider smart traffic systems, if an accident happens on a specific road,
response to manage and reroute traffic flow should be immediate. This is better achieved
if data is collected and analyzed locally rather than if it was going to be handled by
applications on the Cloud.

Another important application point, that this paper mainly focuses on, is Smart Grid.
Smart Grids aims to efficiently manage power demand and supply, minimize power
wastage, detect and correct faults in the power transmission and distribution lines and

spot anomalous power usage patterns that may lead to hazardous conditions.[19]

Both the EU and the US define smart grid as incorporation or networks of electricity
that can intelligently incorporate actions taken by both generators and consumers in
order to intelligently deliver sustainable and secure electricity in a fully automated
manner [20,21]. Smart grid totally revolutionizes all the major components of electric
power system — namely, the generation, transmission, distribution and consumption of
electricity power. These components, in Smart Grid, are executed across different
network sizes. Table 1.5 summarizes the different network sizes and their respective
characteristics [22,23]. At each network level, sensors for components of Smart Grid,
produce a large volume of data that is used to monitor and manage such a system.
Therefore, large-scale computation will have a vital role in fine tuning efficiency and
avoiding disasters. Consequently, data analysis techniques and algorithms are needed for
successful implementation of Smart Grids where fault detection and predictive

distribution of power is possible.

Being located at the edge of network, Fog computing nodes will collect data from the
power pipeline in Smart Grid where data analysis takes place. In contrast to having to
collect the data at the Cloud Servers for analysis, Fog Computing allows operations to
be more efficient and predictions relevant. Despite the technological advances and the
ability to diversify power sources, nations are still prone to negative consequences of
power outages. The report on the 2003 U.S. — Canada power outage shows that the

blackout coasted the two countries billions of dollars [24].



Smart Homes

Power / Fog Networks
Generation

el

Power
Distribution

Power
Transmission

Figure 1.3 Depiction of the generation, transmission, distributions and consumption of
power in a Smart Grid system.

Table 1.5: Summary of types and characteristics of network areas in Smart Grids.

Type of network Function and Characteristic

House Area Network Installed nearest to the ground. Consists of smart
(HAN) devices that are used in houses or small offices.
Enables smart meters for local energy management.

Neighborhood Area Deployed covering larger area. Connects smart
Network (NAN) metering devices across multiple HANs.
Wide Area Network Installed within a wide area that enables

(WAN) communication of all Smart Grid components.

Facilitates data  aggregation and proper
synchronization among transmission systems.

More recently, cost of an unlikely weather condition that hit the state of Texas in the
U.S. and caused a power outage has been estimated to be several billions [25]. This shows
that power outages are very costly and need to be managed. Consequently, power
consumption prediction and anomaly detection are an integral part of Smart Grids. To
this end, Fog Computing plays an essential role because the internet communication
technologies (ICT) used by Smart Grids can be better operated on its framework.
Moreover, smart houses of today will have a substantially large number of sensors that

produce massive amount of data that need to be analyzed in real-time for hazard



prevention and intelligent power distribution. This need makes Fog technology and

forecasting of power consumption using Fog technologies very important.
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2. Problem Definition

As mentioned in the previous section, smart grid systems rely heavily on real-time data
analysis and feedback loops that are efficiently run. Moreover, Fog computing is suitable
for tackling drawbacks that are faced should the systems be deployed solely on the
Cloud. Furthermore, due to the massive volume of data involved in such systems, big

data analysis systems and computing algorithms and models are needed to be used.

In this work, mathematical models will be used to predict household electric power
consumption. In addition, a comparison will be made as to which models of already
established mathematical algorithms perform better in providing sound predictions and
which models have better resource usage while reducing latency. The predictions will be
performed on both Fog and Cloud devices to compare the memory usage and CPU time

of the models on each of them.
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3. Approach

3.1 Data Analysis

A large amount of real-time data is generated and collected from smart sensors and
meters in Smart Grids. The collected data is essential to evaluate the overall status of
the system and to direct everyday actions that will solve problems. This is possible
through the use of data analyzing technics which will help in deriving meaning out of

the large data sets at hand through a process generally known as Data Analysis.

Data analysis [23] is a process of computationally extracting possible relations among
variables by use of technics such as statistics, pattern recognition, machine learning,
databases and so on. In various parts of our life, such valuable information that is
extracted in this manner is applied in supporting crucial decision makings. However,
because data by its characteristic nature is not “clean”, any data set needs to go through

preprocessing steps before it gets analyzed.

Data integration, data cleansing and transformation are the main data preprocessing
steps that will improve the quality, and therefore, reliability of data. The data
integration process mainly helps to aggregate datasets that are collected from multiple
sources. This process identifies and normalizes data types and dispels out any redundant
value. Data cleansing generally deals with abnormal values in the dataset of which
missing values are common. And lastly, data transformation handles preprocessing
procedures such as data standardization. Figure 3.1 shows some of the steps needed for

preprocessing of data.

[23] describes the possible useful application areas where data analytics in smart grid is

especially useful. The main few of these applications are listed as follows:

e Fault detection

e Predictive maintenance

e Transient stability analysis

e Electric devices health monitoring

e Power quality monitoring

e Load profiling, monitoring and forecasting

e Power loss detection

12



Data Preprocessing

Data Integration Data Cleansing Data Transformation

Skewness Processing
Missing value processing Data standardization

Abnormal value processing Data discretization

Data entity identification
Data redundancy

identification
Attribute construction.

Figure 3.1 Hierarchical flow of data preprocessing techniques.[23]

3.2 Data Analysis Techniques

As a branch of artificial intelligent (Al), Machine Learning (ML) employs mathematical
and statistical methods for driving at probabilities and yielding approximations. Using
ML technics and models, a system can predict a certain outcome based on inputted data.
In other words, by means of ML models, systems that are trained with a historical data
will give best fitting results to a particular problem. In general, ML, as the name
indicates, is a mechanism used to teach machines how to spot pattern and interpret

meaning from data [26].

There are numerous ML algorithms available for use and which particular one gets to
be used depends on the type of problem at hand and the property of the available data.
Some of the categories of data analytic algorithms are supervised learning, unsupervised
learning, semi-supervised learning, correlation, dimensionality reduction. Table 3.1
summarizes basic concepts related to data analysis where Table 3.2 describes some of

the algorithms used in data analysis.

As the name implies, the supervised machine learning algorithms need outside assistance.
Here, input dataset is divided into two, train and test datasets. The train dataset is used
to train the system. Such algorithms learn to identify patterns from the training dataset
and apply the same patterns to the test dataset to predict or for classification [26]. On
the other hand, unsupervised learning algorithms learn main features that define the

data and use these learned features to identify the class of the data [26,27].
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Table 3.1: Category and basic description of common data analytic algorithms.

Category Algorithm Description
Supervised Decision tree A non-parametric method with a tree-like method
Learning whose leaves represent class labels and branches
represent conjunctions of features
Naive Bayes A probabilistic method based on Bayes theorem
with the assumption of independence between every
pair of features
Support vector ~ An algorithm to find a separating hyperplane
machine between the two classes by mapping the labelled
classifier data to a high-dimensional feature space
K Nearest A non-parametric method based on the minimum
Neighbor dissimilarity between new items and the labelled
items in different classes
Random Forest  An algorithm consisting of a collection of simple tree
predictors independently for the estimation of the
final outcome
Unsupervised K-means An unsupervised learning method with a given
Learning number of clusters to sort the data based on the
average value of data in each group as the centroid
K-medoids An unsupervised learning method similar to k-means
by assigning the centroid of each group with an
existing data point instead of the average value
Hierarchical An alternative approach which aims to build a
Clustering hierarchy of clusters in a dendrogram without a
given number of clusters
DBSCAN A density-based clustering algorithm to identify
clusters with specific shape in distribution
Expectation- An iterative way to approximate the maximum
Maximization likelihood estimates for model parameters
Correlation FP-Growth An efficient method for mining the complete set of
Algorithm frequent patterns with a special data structure
named frequent-pattern tree with all the association
information reserved
Apriori A classical data analytics algorithm to discover the
Algorithm potential association rules among frequent items
Dimensionality ~ Principal An orthogonal transformation of data with a new
reduction Component coordinate system with the greatest variance
Analysis projected to the first coordinate
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Category Algorithm Description

Self-organizing A type of artificial neural network for a low-

Map

dimensional

representation of the training data space

Random Matrix An algorithm which reveals potential regulations

with high order matrices for large data by eigenvalue
analysis

Table 3.2 Concepts that are commonly used in data analysis. [23]

Terms

Description

Statistics

Machine learning

Data mining

Pattern recognition

Deep learning

Artificial intelligence

The study of collecting, analyzing and interpreting data with
mathematics to discover possible associations based on a
particular rule

A method for understanding the rule in the data and pulling
useful information out of the data by means of algorithms
Computing data for learning valuable information in large data
sets by employing statistical models, machine learning and
database systems

A kind of machine learning that mainly handles consistencies
in a dataset

A type of machine learning for complex structures of neural
networks

The study of intelligent systems with ability to learn from
circumstances by solving problems

The Machine Learning techniques that are employed in this work are Support Vector
Regressions (SVR), Artificial Neural Network (ANN), Long Short-Term Memory
(LSTM) and Recursive Neural Network (RNN).

3.2.1 Support Vector Regression (SVR)

The Support Vector (SV) algorithm [28] is based on the context of statistical learning

theory. It is a nonlinear generalization of the Generalized Portrait algorithm and enables

learning machines to generalize into unseen data. Since its formulation and development

in the 1960s by Vapnik, Lerner and Chervonenkis in Russia, SV it has become an

important tool in the Machine Learning field, especially in applications like object

recognition and in regression and time series predictions.
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3.2.1.1 Mechanism

To describe the basic principles involved in SVR [28-30], consider a training dataset
{(z,y1 ), . ,(x1y:1 )} € x x R, where x represents the space of the input patterns,
say R4 So, the goal in &SVR is to find a function f(z) that has at most ¢ deviation from
the actually obtained targets y; for all data in the training set while at the same time it
is as flat as possible. This is to mean that errors are acceptable so long as they do not
exceed the threshold & As shown in Figure 3.2 where a one-dimensional SVR is
described, the data points represent the predicted values y; and the solid red line depicts
the reference data, y. Found at exactly at the distance of € on either side are the two
dashed lines which bound the tubular area out of which the data points used for

prediction are found. So, training an SVR entails solving the function

n
1
minimize > llw||? +CZ(EL* + &) 3.1
i=1

yi— (w,x;))—b <E+ &

wxi))+b—y; <E+ & 3.2

subject to {

where, w is the learned weight vector, x; is the " training occurrence, y; is the training
label and &, is the distance between the bounds — represented by the dotted line in
Figure 3.2 One-dimensional representation of SVR model. — and predicted values outside
of these bounds. Another important constant parameter, C, in equation 3.1 is a
constraint set by the user to control the penalty imposed on those observations outside

the ; bounds which helps to prevent overfitting.

Another important task needed to make SVR capable of non-linear predictions. For such
cases, we need to introduce a radial basis function (RBF) kernel by replacing the inner
product part of equation 3.2 with it. This helps map the data to a higher dimensional

feature space without which the SVR remains linear.
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Vi = (W,xi>+ b+ €&

“«— yi=wx)+b- &

Figure 3.2 One-dimensional representation of SVR model.

3.2.2 Artificial Neural Network

Artificial Neural Network (ANN) [30-32] is another most effective machine learning
approach that is effective in pattern recognition. The principle in ANN is drawn from
the working concept of the biological neurons in the living body in that learning in ANN
happens in the same way like in the brain. The brain is excellent in recognizing patterns.
This is evident in the fact that it is immediately that we recognize an object which we
are looking at is what it is, as long as we have come across it in the past. This is because
we have trained our brain with the information about the specific object. So, with the
help of large number of brain cells called neurons, at the mere sight of the object the
information associated with the description (pattern) is recognized, and therefore,

knowledge is recalled.

In the same manner, ANN is a computational model made up of hundreds of artificial
neurons. These single units of artificial neurons are connected with weights (coefficients)
that make up the neural structure. Because they process input information, they are also
called processing elements and each of them have weighted inputs, transfer function and
one output. Each artificial neuron is constructed in the image of a biological neuron in
that the functions of the two are similar. To produce the output for a particular artificial

neuron, the inputs are multiplied by the combined connection weights and then passing
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them through a transfer function. The sigmoid function is the most commonly used

transfer function. Figure 3.3 represents a model of a single artificial neuron.

Xi Weights Activation: Y, X;W;

Transform: f(Q XiW;)

X
Activation | Transform Yy

Output
Inputs
X
Figure 3.3 Representation of a single artificial neuron.
Input Hidden Output

Layer Layer Layer

Xi

Y

— O —
v AOER

Y,

Figure 3.4 Representation of both feedback and feedforward connection types. The red
lines denote the additional input direction in a network with feedback mechanism.
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Artificial Neural Networks architecturally consists three layers: [31,33]

e Input layer of the neural network is where neurons receive data or inputs,

e Output layer is the layer where the output neurons deliver responses based on
the inputs and

e Hidden layer is the intermediate layer of the neural network found between the
Input and Output layers that is made up of hidden neurons. This is layer is
essential for learning as it is where the mapping of inputs to outputs takes place.
Moreover, because during the training phase inputs are transformed by the
connection weights, the number of neurons in this layer has an impact on the
network performance, and ultimately, learning process. This means, having too
few neurons in the hidden layer slows down the learning process while having too

many results in overtraining which leads to weakened prediction abilities.[33]

Connection of these neural units forms the artificial neural network. There are however
a number of different types of connections that impact the operation of the network.
Figure 3.4 illustrates the feedforward network and the feedback network connection
types. Feedback connection type is a common one where the output of a layer goes back
to the input of the prior layer. In Figure 3.4 the red arrows path denotes the backward
flow. On the other hand, in feedforward connections, there is no such backward input
from the output neurons and therefore such connections do not have the one extra degree

of freedom that comes with having an additional weight.

There are several types of ANNs in use. The network’s arrangement or the ANN models
and the type of computations or algorithm are the two most important factors needed

to be considered when considering neural networks for data analysis.

3.2.3 Recurrent Neural Network (RNN)

Recurrent Neural Network (RNN) [34,35] is a machine learning archetype that is similar
to the structure and working theory of that of ANN but with one or more feedback
loop(s) built in the structure. The feedback loops in RNN are sequences or recurrent
cycles over time. Requiring a dataset of input-target pairs, the objective in this
architecture is to decrease the variance between the output and the target pairs which
is called the loss value. This minimizing of difference achieved by finetuning the weights

of the network. Because of the feedback loops and the circular connections between
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higher and lower layers, data propagates from earlier events to current steps. This

propagation of data between the processing steps forms a memory of time in RNNs.

As mentioned above, just like ANNs, RNN has the three layers: input layer, output layer
and hidden layer. However, in this case, in addition to new inputs, the state of the
previous sequential input is also entered which will provide a short memory regarding

the previous state. Figure 3.5 depicts the basic architecture of RNN.
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Figure 3.5 Depiction of basic architecture of foldled RNN.
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Figure 3.6 Basic depiction of Unfolded RNN across timesteps.

Consider the basic RNN structure represented in Figure 3.5 and Figure 3.6 with the
input layer having N units, the hidden layer M units and the output layer P units. The

inputs to the input layer are a sequence of vectors across time ¢ such that {.., X.1, X,
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X1, -}, where Xy = (21, 2, ..., 2v). These inputs are connected to the units in the hidden
layer with a weight matrix noted as Wiz And, the units in the hidden layer form a
recurrent connection to each other across time such that he = (hy, hy, ..., ha). With these

parameters, the “memory” of the whole system is defined by the hidden layer as

h: = fu(0y), 3.3

Where Ot = WIHXt + WHHht—l + bh, 34

b, is the bias vector and fu(-) is the activation function of the hidden layer. Wgo
represents the weighted connection between the hidden and the output layers. The units

in the output layer y; = (yi, y2, .., yp) are then calculated as

Ve = fo(Whoh: + by) 3.5

where, bo is the bias vector and fo(-) is the activation function in the output layer.
These steps are repeated over time t = (1, 2, .., T) because the pairs formed by the
input and the target are serial across the timesteps. Moreover, based on the input vector,

the hidden units provide a prediction at the output layer in each timestep.

As mentioned earlier, the objective in RNNs is to minimize the loss value — the difference
between the output and the target pairs. The loss function £ is used to perform this
evaluation by comparing the output y; with its target pair z;. The loss function calculates

the sum total of all losses in each timestep as

T
L(ylz) = Z"Ct (ytlzt)' 36
t=1

Of the many available recursive neural networks, most common mechanisms are real-
time recurrent learning (RTRL), where the gradient information is propagated forward
and backpropagation through time (BPTT) learning model where the network is

unfolded to form a feedforward neural network to help update the weights.

3.2.4 Long Short-Term Memory (LSTM)

Long short-term memory (LSTM) [34-39] model is a model that is based on recursive
neural network architectures. The variable size of input/output neurons in RNN is very
large and so there needs to be too much computation demanding computational
resources. This, coupled with the lack of parameter sharing between the hidden units,

limits the memory achieved from the recurrent connections. Though RNN connections
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provide learning opportunity through the sequential dependencies, the model fails to

deliver one that can be considered long term learning.

Instead of activation functions, LSTM model makes use of memory cells where flow of
information is controlled by blocks called “gates”. While preserving the extracted
features from previous timesteps, the gates manage information flow to the hidden
neurons. The need for control of flow is to avoid input and output weight conflicts. The
gates involved in this architecture are: input gate which controls flow of inputs to the
memory cell, the output gate that controls the output control of cell activations in the
network and the forget gate, one that is added to the memory block. So, these gating
units along with one or more memory cells form the basic or memory unit of an LSTM
model. Such a memory cell has a unit called constant error carousels (CEC) which is

recurrently self-connected.

Due to inability to detect relevant information in naturally reoccurring continuous
sequences, the forget gate learns weights controlling the rate of decay for values stored
in the memory cell. So, a memory cell holds its value over a period of time when the
forget gate is not the cause of decay and when both the input and output gates are off.
This mechanism enables the network structure to hold information or “remember” for
longer period time. Generally speaking, though the memory is improved, LSTM employs
more parameters than a simple RNN, making it complex. Figure 3.7 depicts shows a
typical LSTM cell.

With W, gi s the weight matrix from the input layer to the input gate, W gi that from
hidden state to the input gate, W e, from cell activation to the input gate and bgi is

the bias of the input gate, the input of LSTM can be defined as:

gé = O-(ngiXt + WHgiht—l + Wgcgigg—l + bgi. 37

Similarly, with W, gf as the weight matrix from the input layer to the forget gate, W, of
as that from hidden state to the forget gate, Weyr as that from cell activation to the

forget gate and b o as the bias of the forget gate, the forget gate is defined as:

g[ = O'(ngth + WHgfht—l + Wgcgfgg_l +bgf. 38
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Figure 3.7 The basic LSTM memory unit where the dashed line represents time lag.

In addition, with W, g0 8s the weight matrix from the input layer to the output gate,
Wy g0 as that from hidden state to the output gate, Wgeqo as that from cell activation

to the output gate and bgo as the bias of the output gate, the output gate is defined as:

gl = O'(ngoXt + WHQOht—l + Wgcgogf_l + bgo. 3.9

Likewise, with W;4c as the weight matrix from the input layer to the cell gate, Wy 4c as
that from hidden state to the cell gate, and bgc as the bias of the cell gate, the cell gate

is defined as:

gi = gtitanh(W,cht + Wygchi_1 + bye + g{gg_l. 3.10

And finally, the hidden state can be calculated as

h; = g? tanh(g{). 3.11
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4. Experiment and Result

4.1 Experiment

As mentioned in Section 2, the aim of this work is to predict power consumption using
mathematical models on both Fog and Cloud devices and compare the resource usage
among them. Furthermore, this work also compares prediction results among the models.

The mathematical models that are used for this task are those discussed in Section 3.

4.1.1 Data Preprocessing

The dataset used in this thesis is the “Individual household electric power consumption
Data Set” from UCI machine learning repository [40]. Data computation was performed

both a personal computer and on a cloud server.

Date Time Global_active_power Global_reactive_power Voltage Global_intensity Sub_metering_ 1 Sub_metering_2  Sub_metering_3

0 16122006 17:24:00 4216 0418 234.840 18.400 0.000 1.000 17.0
1 16122006 17:25:00 5.380 0436 232630 22.000 0.000 1.000 16.0
2 16122006 17:26:00 5374 0483 233280 22.000 0000 2.000 17.0
3 16MZ2006 172700 5388 0502 233740 23.000 0.000 1.000 17.0
4 16122006 17:28:00 2.666 0523 235680 15.200 0.000 1.000 17.0

Figure 4.1 Sample of the top five records of power consumption data.

The data from machine learning repository of the Center for Machine Learning and
Intelligent Systems at the University of California, Irvine measures electric power
consumption by a household [40]. The data represents a reading of close to four years of
consumption taken every minute. This multivariate time series real data of a house
located in Sceaux in France, contains 2075259 readings in total and the measurements
were taken from December 2006 to November 2010.

As can be seen from Figure 4.1, the dataset has nine variables:

e date: Date in dd/mm/yyyy format

e time: time in hh:mm:ss format

e ¢lobal active power: total minute-averaged active power of the household in
kilowatt

e global reactive power: total minute-averaged reactive power of the household
in kilowatt

e voltage: minute-averaged voltage in volt
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e global intensity: total minute-averaged current intensity for the household in
amperes

e sub_ metering 1: energy sub-metering No. 1 in watt-hour which corresponds to
appliances in kitchen such as a dishwasher, an oven and a microwave.

e sub metering 2: energy sub-metering No. 2 in watt-hour that corresponds to
appliances in the laundry room such as washing-machine, tumble-drier, a
refrigerator and a light.

e sub metering 3: energy sub-metering No. 3 in watt-hour which corresponds to

an electric water-heater and an air-conditioner.

The number of rows, records, and the data types of the fields can be learned from the
metadata of the dataset. The dataset has 2,075,259 and the file type is object. Moreover,

as can be seen from the random sample data in Figure 4.2, the data contains missing

records.
Date Time Global_active_power Global_reactive_power Voltage Global_intensity Sub_metering_1 Sub_metering 2 Sub_metering_3
1933567  20/8/2010 11:31:00 ? ? ? ? ? ? NaN
1205539  1/4/2009 21:43:00 2.628 0.192 240.060 11.000 0.000 0.000 17.0
1036004 5/12/2008 04:08:00 0.274 0.054 243.810 1.200 0.000 0.000 0.0
697519  14/4/2008 02:43:00 0.460 0.262 243.080 2.200 0.000 1.000 1.0
1046743 12/12/2008 15:07:00 0.432 0.094 246.710 1.800 0.000 0.000 0.0

Figure 4.2 Sample of the data taken randomly form the set.

The data and time fields were combined and used to create a new field, named

date time. The new field that replaced the two date and time.

The missing records, specified by the character ‘7’ in Figure 4.2, were replaced with
‘NaN’ values. This step will help to keep the datatype of the records as float making
computations possible. Along with this process, the data type of the
Global active power field was also changed to float data type. After replacing the
missing values with ‘NaN’ values, inquiring for the number of missing records show that
there were 25,979 records of them in each field as can be seen in Figure 4.3. The missing

values were then replaced and filled with the mean values to have a complete set of data.

Global_active_power 25979
Global_reactive_power 25579
Voltage 25979
Global_intensity 25979
sub_metering_1 25379
Sub_metering_2 25979
sub_metering_z 25979

diype: inted

Figure 4.3 Number of missing records in the dataset.
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Next, the Global active power attribute along with the date_time field was extracted
from the set as it is the only attribute this work needs. Moreover, to make sure the data
time series is not broken, the data was sorted in an ascending order and the newly added

date time field was used to index the data.

As mentioned before and as can be seen from Figure 4.1, the data was collected every
minute. So, the data was resampled to create an hourly record by summing up each all
the values in each hour. Figure 4.4 shows the first few lines of the data that is ready for

use in the models for calculation.

Global_active_power

date_time
2006-12-16 17:00:00 152.024
2006-12-16 18:00:00 217.932
2006-12-16 19:00:00 204.014
2006-12-16 20:00:00 196.114
2006-12-16 21:00:00 183.388

Figure 4.4 First few lines of the final preprocessed dataset

After the preprocessing was all done, the data was divided in two sets for use in the
computational models: training dataset and testing dataset. For training, the data record
with date ranges from 01/01/2007 — 31/12/2008, two years’ data, was used. And for
testing, a data set with date range from 01/01/2009 — 31/01/2009, which is a month’s
data, was used. The mean and standard deviation values for the two year
Global active power hourly data, are 66.22 (KW) and 57.30 (KW) respectively. The
standard deviation will be used as a threshold in error calculations to evaluate the

performances of the models.

Due to the nature of the data, in that values vary from very high to low, using it directly
in the models for prediction calculation will not be optimal. Therefore, before using the
“Global active power” values in the model calculations, the time series values were

normalized to be scaled between 0 and 1 using Min Max Scaler.

The machine learning computation was performed using this normalized data set.
However, after each computation was performed, each data value was inverse

transformed to the original value which was then used to check for error value.
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4.1.2 Error Calculations

4.1.2.1 Mean Squared Error

Mean Square Error (MSE) is calculated as the average of the squared differences between
the predicted and actual values. The result is always positive in the range between 0
and 1 and a perfect value is 0. For n numbers of observations, MSE is defined by the
formula

i=1(Pi— 0))°

MSE = 4.1
n

where, P;is the predicted time series value and O; is the observed time series value.

Training loss can be seen as a distance between the true values of the problem and the
values predicted by the model. Hence, the greater the loss means the more erroneous the

data is.
4.1.2.2 Root Mean Square Error

To calculate the accuracy of the predictions obtained from the models used Root Mean
Square Error (RMSE) is used. RMSE [41] is a standard means of measuring the error of
a model in predicting time series numerical data. The technique takes the square of the
difference between the observed and the predicted values and divide the sum of all such
values by the number of all observations and then calculate the square root to calculate

the error. For n number of observations, RMSE is calculated by the formula

n . — 0.2
RMSE = j i=1(Pi ~ 01) 4.2
n

where, P;is the predicted time series value and O; is the observed time series value.

In this work, the standard deviation of the two year Global active power hourly data
used as a threshold, lower value of RMSE indicates that the performance of the

prediction model is good.
4.1.3 System Specification

The prediction computations were performed on two different devices: on the cloud and
on a local personal computer acting as fog. The system specifications such as the memory
or RAM and processor speed of both machines used as the cloud and the fog are

summarized in Table 4.1.
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Table 4.1 System specifications of devices used for computing the prediction models.

Device Memory (RAM) Processor
Fog 12 GB 2.70GHz dual-core Intel Core i5, 64- bit
Cloud 25GB 2.30GHz quad-core Intel(R) Xeon(R)

4.1.4 Tools

The computing tool used are the libraries in the Python programing language; mainly,
Tensorflow, pandas, numpy sklearn, matplotlib. Jupyter, a browser-based development
environment which runs on Anaconda system was the main environment used to perform

the computations for this work.

4.2 Results

The machine learning calculations in all the models were done using the training and
testing data sets assigned for the task and prediction are performed for one month. The

following are the results obtained from computations made on a Fog device for each

model.
Real consumption power versus predictions using SVR
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Figure 4.5 Plots of real power consumption and predicted data that were generated using
one month test data in SVR machine learning model on Fog device.
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Real consumption power versus predictions using ANN
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Figure 4.6 Plots of real power consumption and predicted data that were generated using
one month test data in ANN machine learning model on Fog device.

Real consumption power versus predictions using RNN
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Figure 4.7 Plots of real power consumption and predicted data that were generated using
one month test data in RNN machine learning model on Fog device.
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Real consumption power versus predictions using LSTM
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Figure 4.8 Plots of real power consumption and predicted data that were generated
using one month test data in LSTM machine learning model on Fog device.

RMSE scores were also calculated for each of the models and the results are summarized

in the following table.

Table 4.2 RMSE scores in KW of the four models run on Fog device

Model RMSE Scores
SVR 40.89
ANN 39.50
RNN 39.58
LSTM 40.80

Moreover, the deep learning models’ training losses are shown in the following table.

Table 4.3 Training loss values of the models used run on Fog device.

Model Training Loss Value
ANN 0.0091
RNN 0.0084
LSTM 0.0079
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Resource consumptions of all the computation models were also measured and compared.
The following graphs show the results for memory and CPU utilizations by the models

that run on a Fog device.
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Figure 4.9 Comparison of memory consumption (measured in MB) of each model run

on a Fog device.
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Figure 4.10 Comparison of CPU utilization time (measured in seconds) of each model
run on a Fog device.
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Similar to all the experimental computations performed on a Fog device, computations

were also run on a Cloud device using one month test data.

Real consumption power versus predictions using SVR
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Figure 4.11 Plots of real power consumption and predicted data that were generated
using one month test data in SVR machine learning model on Cloud device.

Real consumption power versus predictions using ANN
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Figure 4.12 Plots of real power consumption and predicted data that were generated
using one month test data in ANN machine learning model on Cloud device.



Real consumption power versus predictions using RNN
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Figure 4.13 Plots of real power consumption and predicted data that were generated
using one month test data in RNN machine learning model on Cloud device.

Real consumption power versus predictions using LSTM

w— Real power
—— Predictions

50

g

s

Consumed power(KW)
g g

g

0 100 200 300 400 500 00 700
Hours

Figure 4.14 Plots of real power consumption and predicted data that were generated
using one month test data in LSTM machine learning model on Cloud device.

Once again, similar to the case in Fog computing, RMSE scores were also calculated for
each of the models for computations performed on a Cloud device and the results are

summarized in the following table.



Table 4.4 RMSE scores in KW of the four models run on Cloud device

Models RMSE Scores
SVR 40.89
ANN 39.92
RNN 39.75
LSTM 42.15

In the same manner, the deep learning models’ training losses for computations made on

a cloud device are shown in the following table.

Table 4.5 Training loss values of the models used run on a Cloud device.

Models Training Loss Values
ANN 0.0090
RNN 0.0083
LSTM 0.0067

For Cloud computations also, resource consumptions of all the models were measured
and compared. The following graphs show the results for memory and CPU utilizations

by the models.
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Figure 4.15 Comparison of memory consumption (measured in MB) of each model run

on a Cloud device.
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Figure 4.16 Comparison of CPU utilization time (measured in seconds) of each model
run on a Cloud device.
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5. Discussion and Analysis

As discussed in section 4.1.2.2, the lower the RMSE values are than the threshold value
the better are the performances of the models. The RMES scores for all models in both
fog and cloud, as presented in Table 4.2 and Table 4.4, show that the RMSE scores for
all the models are comparatively similar and smaller than the threshold by small
magnitude. This implies that the performances of all the computation models

implemented on both Fog and Cloud devices are the similar and in the acceptable range.

Similarly, as discussed in section 4.1.2.1, the MSE loss function value that is closer to 0,
indicates higher confidence of in the performance of prediction models. The training loss
results presented in Table 4.3 and Table 4.5 for all the three deep-learning models, ANN,
RNN and LSTM, run on both Fog and Cloud devices are closer to zero. This shows that
all the predictions made with these models have high confidence of performance.
Moreover, the results show that among the deep-learning models used in this work,
LSTM has the lowest training loss value in both Fog and Cloud devises indicating that
its performance is better than those of ANN and RNN.

Memory usage and CPU utilization time results are presented in the figures:
Figure 4.9, Figure 4.10, Figure 4.15 and Figure 4.16. The graphs show that CPU
utilization time and memory consumption for each model are different between the Fog
and Cloud computation devices. For Cloud computations, CPU time for SVR, ANN,
RNN and LSTM are 100, 134, 139 and 166 seconds and for computation on a Fog device
they are 100, 171, 213 and 278 seconds respectively. Furthermore, for computations made
on a Cloud server, memory usage for models SVR, ANN, RNN and LSTM are 0.57, 2.25,
0.89, and 0.97 MB and for that of on Fog device are 5.66, 25.75, 9.66 and 19.27 MB
respectively. These results suggest that memory usage and CPU time performances are
better in Cloud device than in Fog. However, these rather insignificant improved
performances can be attributed to the difference in system specifications of both devices.
As detailed in section 4.1.3, the system specifications of the Cloud server are much better

than that of the devise used as a Fog device.

Fog devices, despite having low processing capacity, reside near the sensor networks and,
therefore, the transmission delay to send the huge sensor Fog device is less. Whereas,
the Cloud server is centralized with high processing capacity. The sensor data has to
pass from the local area network to the IP network and then to the Cloud in order to

be processed. The processing result has to be sent back via the same network for decision
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making. The networks between sensor and Cloud have limited bandwidth and many
sensor networks are connected to the same IP network which usually creates delay in
data transmission. Therefore, Fog device processing is highly advantageous as it is fast,
secure and localized. To summarize, Fog Computing is a better choice for power

consumption prediction applications based on our experimental results.
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6. Conclusion and Future Direction

6.1 Conclusion

In this project, by using dataset from UCI machine learning repository, forecasts of one
month power consumption were done. The predictions were done using four different
machine learning models: SVR, ANN, RNN and LSTM. The forecasts that were
performed on both Fog and Cloud devices were found to be in the acceptable error range
and so reliable. However, when comparing the performances of the models in predicting
power consumption computations on both Fog and Cloud devices, the model LSTM is
found to be better. Finally, memory usage and CPU time of all the models was examined

and results suggest that Fog computation is better than that of Cloud.

6.2 Future Direction

For future work, measuring of the actual network bandwidth and communication delay
from sensors to the Fog device and from Fog device to Cloud server is planned to be
looked into. Moreover, the Fog experiment is planned to be performed on an Edge device
from Nvidia called Nvidia Nano. In addition, measuring the power consumption of

running the IOT application on Fog and Cloud devices is planned.
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Appendix

A. User Manual

In this project Python 3.8.3 version used and the following packages are required to run

the implemented applications:

. For preprocessing the dataframe

o

e pandas, numpy, math, datetime, time
b. For visualization

e pyplot from matplotlib
c¢. For normalization (scaling the dataframe)

e MInMaxScaler from sklearn.preprocessing
d. For the Models

e SVR from sklearn.svm
e tensorflow, keras, layers from tensorflow.keras
e Dense, RNN, SimpleRNN, LSTM from layers Sequential

. For computing CPU and memory usages

@

e 0s, psutil
The dataset used in this work is obtained from the UCI machine learning repository.

Accessed from:

https://archive.ics.uci.edu/ml/datasets/individual4+household+-electric+power—+consu

mption
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B. Source Code

The source code for this thesis is attached starting on the next page. The codes for

both Fog and Cloud applications are similar.
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Power Consumption  Forecast

June 13, 2021

[3]: | ## Importing required packages
import pandas as pd
import numpy as np
import math
from matplotlib import pyplot as plt
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
from sklearn.neighbors import NearestNeighbors
from sklearn.preprocessing import MinMaxScaler
from sklearn.svm import SVR
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers

from keras.layers import Dense

from keras.layers import RNN

from keras.layers import LSTM

from keras.models import Sequential

from keras.layers import GRU

from keras.layers import SimpleRNN, Dropout
import datetime

import time

from datetime import timedelta

import os
import psutil
from pandas import concat

0.1 Preload data and preprocess

[2]:  #loading the original data
data = pd.read_csv('datasets/household_power_consumption.csv', sep=';"')

C:\Users\pcl\anaconda3\lib\site-packages\IPython\core\interactiveshell.py:3071:
DtypeWarning: Columns (2,3,4,5,6,7) have mixed types.Specify dtype option on
import or set low_memory=False.

has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
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[3]: # original data set
data.head()

[3]: Date Time Global_active_power Global_reactive_power Voltage \
0 16/12/2006 17:24:00 4.216 0.418 234.840
1 16/12/2006 17:25:00 5.360 0.436 233.630
2 16/12/2006 17:26:00 5.374 0.498 233.290
3 16/12/2006 17:27:00 5.388 0.502 233.740
4 16/12/2006 17:28:00 3.666 0.528 235.680

Global_intensity Sub_metering_1 Sub_metering_2 Sub_metering 3

0 18.400 0.000 1.000 17.0
1 23.000 0.000 1.000 16.0
2 23.000 0.000 2.000 17.0
3 23.000 0.000 1.000 17.0
4 15.800 0.000 1.000 17.0

[4]: # Combining date and time
data['date_time'] = pd.to_datetime(datal['Date'] + ' ' + datal['Time'] )

[5]: # replacing "?" with nan

data = data.replace(['?'], np.nan)

# converting 'Global_active_power' to numeric data type

datal['Global_active_power'] = pd.to_numeric(datal'Global_active_power'],
—errors='coerce')

# replacing NalN wvalues of Global_active_power with the mean of the column

datal'Global_active_power'].fillna(float(datal['Global_active_power'] .mean()),
—inplace=True)

[6]: # extract the two columns ['date_time', 'Global_active_power']
data = data.loc[:, ['date_time', 'Global_active_power']]
data.sort_values('date_time', inplace=True, ascending=True)
data = data.reset_index(drop=True)

#set 'date_time' as an index
data.set_index('date_time', inplace=True)

[7]: # resample the data into hours as opposed to minutes
data = data.resample('H').sum()

[8]: data.head()

[8]: Global_active_power
date_time
2006-12-16 17:00:00 152.024
2006-12-16 18:00:00 217.932
2006-12-16 19:00:00 204.014
2006-12-16 20:00:00 196.114
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2006-12-16 21:00:00 183.388

0.1.1 Divide the data in to train and test

[9]: | # Extract two yerars data for training
df_train = data.loc['2007-01-01':'2008-12-31',]['Global_active_power']
data_train = df _train.to_frame()

[10]: data_train.head()

[10]: Global_active_power
date_time
2007-01-01 00:00:00 153.038
2007-01-01 01:00:00 151.404
2007-01-01 02:00:00 154.940
2007-01-01 03:00:00 152.500
2007-01-01 04:00:00 148.544

[11]: # wvisualization of train data
data['Global_active_power'] .plot()

plt.ylabel('Hourly Global active power')
plt.xlabel('Date')

[11]: Text(0.5, 0, 'Date')
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[12]:

[13]:

[14] :

[14] :

[15]:

[15]:

# write the training data to disk as a csv file for later use
df _train.to_csv('datasets/cleaned_household_power_consumption_train.csv')

#Extract one month test data
data_test_a = data.loc['2009-01-01':'2009-01-31',]['Global_active_power']
data_test_1 = data_test_a.to_frame()

data_test_1.head()

Global_active_power
date_time
2009-01-01 00:00:00 32.096
2009-01-01 01:00:00 32.428
2009-01-01 02:00:00 34.522
2009-01-01 03:00:00 31.590
2009-01-01 04:00:00 31.314
# visualization of 1 month test set

data_test_1['Global_active_power'].plot()
plt.ylabel('Hourly power consumption')
plt.xlabel('One Month')

Text (0.5, 0, 'One Month')
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[16]: | # write the one month test data to disk as a csv file for later use
data_test_1.to_csv('datasets/cleaned_household_power_consumption_data_test_1.
—csv')

0.2 Memory and CPU Utilization Measurement tool

{}
{3

[4]: mem_dic
cpu_dic

def measureit(func):
nnn

Measures a function's memory usage and running time.
nimnn

pid = os.getpid()
ps = psutil.Process(pid)

start_mem = ps.memory_info() .rss/1024*%2
start_cpu_time = ps.cpu_percent()

def measure_mem_cpu(*args, *xkw):

result = func(*args, **kw)
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[5]:

[5]:

[6]:

[6]:

[7]:

end_cpu_time = ps.cpu_percent ()

mem
cpu

ps.memory_info() .rss/1024**2 - start_mem
end_cpu_time - start_cpu_time

dic_key = func.__qualname__
mem_dic.update({dic_key:mem})
cpu_dic.update({dic_key:cpu})

print ("Memory usage of %s(): %.2f MB." 7 (func.__qualname__, mem))

print("Processing cpu time of %s(): %.0f seconds." 7 (func.
<__qualname__, cpu))

return result

return measure_mem_cpu

def prep_cpu_mem_df():

mem_df = pd.DataFrame(list(zip(mem_dic.keys(), mem_dic.values())),
columns =['Model', 'Val'l)

cpu_df = pd.DataFrame(list(zip(cpu_dic.keys(), cpu_dic.values())),
columns =['Model', 'Val'l)

return mem_df, cpu_df

0.3 Reusable Data and Functions

df_train = pd.read_csv('datasets/cleaned_household_power_consumption_train.
—csv', usecols=[1], engine='python')
df_train.size

17544

data_test_1 = pd.read_csv('datasets/
—scleaned_household_power_consumption_data_test_1.csv', usecols=[1],,
—engine='python')

data_test_1.size

744

# appendig test dataframe on training dataframe for use in different models
dfl = df_train.append(data_test_1, ignore_index=True, sort=False)
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[8]:

[9]:

[10]:

[11]:

[12]:

[13]:

[14] :

# constants which will be used by all models
look_back = 30

# transform dataframe using scaler

def normalize_df (data_frame):
dataset = scaler.fit_transform(data_frame)
return dataset

# divide the dataframe into train and test
def split_to_train_and_test(dataset):
train, test = dataset[0:df train.size:], dataset[df_train.size:len(dataset):
1]

return train, test

# convert an array of wvalues into a dataset matriz
def create_dataset(dataset):
dataX, dataY = [1, [
for i in range(len(dataset)-look_back-1):
a = dataset[i: (i+look_back), 0]
dataX.append(a)
dataY.append(dataset[i + look_back, 0])
#print ("Inside create dataset”, dataX, datal)
return np.array(dataX), np.array(dataY)

# reshape input to be [samples, time steps, features]
def reshape_input(train, test):
trainX, trainY = create_dataset(train)
testX, testY = create_dataset(test)
trainX = np.reshape(trainX, (trainX.shapel[0], 1, trainX.shape[1]))
testX = np.reshape(testX, (testX.shapelO], 1, testX.shapel[1]))
print("inside reshape dataset",trainX.shape, trainY.shape, testX.shape,
—testY.shape )
return trainX, trainY, testX, testY

def make_predictions(model, trainX, testX):
trainPredict = model.predict(trainX)

testPredict = model.predict(testX)
return trainPredict, testPredict

def invert_predictions(model, trainX, trainY, testX):
trainPredict, testPredict = make_predictions(model, trainX, testX)

train_predict = scaler.inverse_transform(trainPredict)
train_y = scaler.inverse_transform([trainY])
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[15]:

[16]:

[17]:

[18]:

[18]:

[19]:

test_predict = scaler.inverse_transform(testPredict)

return train_predict, train_y, test_predict

def plot_predictions(dataset, trainPredict, testPredict):
# shift train predictions for plotting
trainPredictPlot = np.empty_like(dataset)
trainPredictPlot[:, :] = np.nan
trainPredictPlot [look_back:len(trainPredict)+look_back, :] = trainPredict
# shift test predictions for plotting
testPredictPlot = np.empty_like(dataset)
testPredictPlot[:, :] = np.nan
testPredictPlot [len(trainPredict)+(look_back#*2)+1:len(dataset)-1, :]1 =
—testPredict

# plot baseline and predictions

fig= plt.figure(figsize=(15,8))
power_changes=fig.add_subplot(l,1,1)
power_changes.set_ylabel ('Consumed power')
power_changes.set_xlabel('Hours')

power_changes.plot(scaler.inverse_transform(dataset), color='blue',
—label='Real power')

power_changes.plot (trainPredictPlot, color= 'orange', label='Train
—Predictions')

power_changes.plot (testPredictPlot, color= 'Green', label='Test,
—Predictions"')

power_changes.set_title('Real consumption power versus predictions by SVR
—using timeseries data ')

power_changes.legend(loc='best"')

#dataset with one month test data
dataset = dfl

d = df1['Global_active_power'].values

# mean of the dataset
d.mean()

66.2211870811391

# standard devation of the dataset
import statistics
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print("Standard Deviation of dfl is % s "
% (statistics.stdev(d)))

Standard Deviation of dfl is 57.303972419572375

0.3.1 SVR

[30]: # split and convert to dataset matriz
train_data, test_data = split_to_train_and_test(dataset)
trainX, trainY = create_dataset(train_data.values)
testX, testY = create_dataset(test_data.values)
print("Train and test data after converting to supervised", trainX.shape,trainY.
—»shape, testX.shape, testY.shape )

Train and test data after converting to supervised (17519, 24) (17519,) (719,
24) (719,)

[31]: | # Scale the trainX and reshape trainY and after that normalized trainY, only,

—normalized testX

scaler_svr=MinMaxScaler(feature_range=(0, 1))

X _train_scaled = scaler_svr.fit_transform(trainX)

print ("X_train_scaled shape after scaling by minmax scaler", X_train_scaled.
—»shape)

print("Y_train shape after scaling by minmax scaler", trainY.shape)
X_test_scaled = scaler_svr.transform(testX)

print ("X_test_scaled shape after scaling by minmax scaler", X_test_scaled.shape)
# did not normalized testY

X_train_scaled shape after scaling by minmax scaler (17519, 24)
Y_train shape after scaling by minmax scaler (17519,)
X_test_scaled shape after scaling by minmax scaler (719, 24)

[32]: | # convert windows of hourly data into a series of total power
def to_series(data):
series = np.array(data).flatten()
return series

[33]: | Gmeasureit
def svr_model(train_X_scaled, trainY):
svr_rbf = SVR(kernel='rbf', C=100, gamma=0.01, epsilon=0.1)
svr_rbf.fit(train_X_scaled, trainY)
return svr_rbf

[34]: | # sur model and fit: memory usage and processing cpu time is varying
svr_m = svr_model(X_train_scaled,trainY)
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yhat_sequence=svr_m.predict(X_test_scaled)

Memory usage of svr_model(): 5.66 MB.
Processing cpu time of svr_model(): 100 seconds.

[35]: print("predictions on X_test_scaled", yhat_sequence.shape, testY.shape)

predictions on X_test_scaled (719,) (719,)

[36]: predictions=to_series(yhat_sequence)
test_data=to_series(testY)

[37]: | #visualization of Real power consumption versus predictions by SVR using one,
—month test data
fig= plt.figure(figsize=(15,8))
power_changes=fig.add_subplot(l,1,1)
power_changes.set_ylabel('Consumed power (KW)')
power_changes.set_xlabel ('Hours')

power_changes.plot(test_data, color='blue', label='Real power')

power _changes.plot(predictions, color= 'red', label='Predictions')
power_changes.set_title('Real consumption power versus predictions using SVR')
power_changes.legend(loc="'best"')

[37]: <matplotlib.legend.Legend at 0x1b698dclca0>
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[38]: #Calculating RMSE
def print_scores(y_test,y_pred):
rmse= np.sqrt(mean_squared_error(y_test,y_pred))
return rmse
rmse=print_scores(predictions,test_data)
print (rmse)

40.898533648082974

0.3.2 ANN

[39]: print("Train and test data after converting to supervised", trainX.shape,trainY.
—»shape, testX.shape, testY.shape )

Train and test data after converting to supervised (17519, 24) (17519,) (719,
24) (719,)

[40]: scaler_ann = MinMaxScaler(feature_range=(0, 1))

X _train_scaled_ann = scaler_ann.fit_transform(trainX)

print ("X_train_scaled shape after scaling by minmax scaler", X_train_scaled_ann.
—sshape)

trainY=np.reshape(trainV, (trainY.size, 1))

Y train_scaled_ann= scaler_ann.fit_transform(trainY)

print("Y_train_scaled shape after scaling by minmax scaler", Y_train_scaled_ann.
—shape)

X_test_scaled_ann = scaler_ann.transform(testX)
print("X_train_scaled shape after scaling by minmax scaler", X_test_scaled_ann.

—»shape)

X_train_scaled shape after scaling by minmax scaler (17519, 24)
Y_train_scaled shape after scaling by minmax scaler (17519, 1)
X_train_scaled shape after scaling by minmax scaler (719, 24)

[41]: #ANN Model

Omeasureit

def ann_model (num_neurons_1,X, y, verbose=2):
model_ann = Sequential ()
# define number of input wvartiables and the hidden layer
model_ann.add(Dense(num_neurons_1, input_dim= X.shapel[1],,

—activation='relu'))

# add another layer
model_ann.add(Dense(20, kernel_initializer='normal', activation='relu'))
# create output layer
model _ann.add(Dense(l, kernel initializer='normal'))
model_ann.compile(loss='mean_squared_error', optimizer='adam')
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# fit the model on the training set
model_ann.fit(X, y, epochs=50, batch_size=32, verbose=verbose)
return model_ann

#number of neurons in the hidden layer
num_neurons_1= 10
model ann=ann_model (num_neurons_1,X_train_scaled_ann, Y_train_scaled_ann)

Epoch 1/50
548/548 - 1s - loss: 0.0145
Epoch 2/50
548/548 - 0s - loss: 0.0099
Epoch 3/50
548/548 - 0s - loss: 0.0098
Epoch 4/50
548/548 - 0Os - loss: 0.0096
Epoch 5/50
548/548 - 0Os - loss: 0.0096
Epoch 6/50
548/548 - 0s - loss: 0.0096
Epoch 7/50
548/548 - 0s - loss: 0.0095
Epoch 8/50
548/548 - 0s - loss: 0.0095
Epoch 9/50

548/548 - 0s - loss: 0.0095
Epoch 10/50
548/548 - 0Os - loss: 0.0095
Epoch 11/50
548/548 - 0s - loss: 0.0095
Epoch 12/50
548/548 - 0s - loss: 0.0095
Epoch 13/50
548/548 - 0s - loss: 0.0095
Epoch 14/50
548/548 - O0s - loss: 0.0094
Epoch 15/50
548/548 - 0s - loss: 0.0094
Epoch 16/50
548/548 - 0s - loss: 0.0094
Epoch 17/50
548/548 - 0s - loss: 0.0094
Epoch 18/50
548/548 - 0Os - loss: 0.0094
Epoch 19/50
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548/548 - Os
Epoch 20/50
548/548 - Os
Epoch 21/50
548/548 - Os
Epoch 22/50
548/548 - Os
Epoch 23/50
548/548 - 0Os
Epoch 24/50
548/548 - Os
Epoch 25/50
548/548 - Os
Epoch 26/50
548/548 - Os
Epoch 27/50
548/548 - Os
Epoch 28/50
548/548 - Os
Epoch 29/50
548/548 - Os
Epoch 30/50
548/548 - 0Os
Epoch 31/50
548/548 - Os
Epoch 32/50
548/548 - Os
Epoch 33/50
548/548 - Os
Epoch 34/50
548/548 - Os
Epoch 35/50
548/548 - Os
Epoch 36/50
548/548 - Os
Epoch 37/50
548/548 - 0Os
Epoch 38/50
548/548 - 0Os
Epoch 39/50
548/548 - Os
Epoch 40/50
548/548 - Os
Epoch 41/50
548/548 - Os
Epoch 42/50
548/548 - Os
Epoch 43/50

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

.0094

.0093

.0093

.0093

.0093

.0093

.0093

.0093

.0093

.0093

.0093

.0092

.0092

.0093

.0092

.0092

.0092

.0092

.0092

.0092

.0092

.0092

.0091

.0092
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[42] :

[43] :

[44] :

[44] :

548/548 - 0s - loss: 0.0092

Epoch 44/50

548/548 - 0s - loss: 0.0091

Epoch 45/50

548/548 - 0s - loss: 0.0091

Epoch 46/50

548/548 - 0s - loss: 0.0091

Epoch 47/50

548/548 - 0s - loss: 0.0091

Epoch 48/50

548/548 - 0s - loss: 0.0091

Epoch 49/50

548/548 - 0s - loss: 0.0091

Epoch 50/50

548/548 - 0s - loss: 0.0091

Memory usage of ann_model(): 25.78 MB.
Processing cpu time of ann_model(): 171 seconds.

testPredict=model_ann.predict(X_test_scaled)
print (testPredict.shape) #printed scaled predicted values

(719, 1)

1 Invert predictions and test dataset
inv_yhat = scaler_ann.inverse_transform(testPredict)

predictions=to_series(inv_yhat)
test_data=to_series(testY)

#visualization of Real power consumption wversus predictions by ANN using oney
—month test data

fig= plt.figure(figsize=(15,8))

power_changes=fig.add_subplot(1l,1,1)

power_changes.set_ylabel ('Consumed power (KW) ')

power_changes.set_xlabel ('Hours')

power_changes.plot(test_data, color='blue', label='Real power')
power_changes.plot(predictions, color= 'red', label='Predictions')

power_changes.set_title('Real consumption power versus predictions using ANN')
power_changes.legend(loc="'best')

<matplotlib.legend.Legend at 0x1b6a8d7d040>
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[45] :

[83]:

Real consumption power versus predictions using ANN

—— Real power
—— Predictions

350 4

300
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#Calculating RMSE
def print_scores(y_test,y_pred):
rmse= np.sqrt(mean_squared_error(y_test,y_pred))
return rmse
rmse=print_scores(predictions,test_data)
print(rmse)

39.502684241815885

1.0.1 RNN

scaler_rnn = MinMaxScaler(feature_range=(0, 1))

X_train_scaled_rnn = scaler_rnn.fit_transform(trainX)

print("X_train_scaled shape after scaling by minmax scaler", X_train_scaled_rnn.
—»shape)

Y train_scaled_rnn= scaler_rnn.fit_transform(trainY)
print("Y_train_scaled shape after scaling by minmax scaler", Y_train_scaled_rnn.
—»shape)

X_test_scaled_rnn = scaler_rnn.transform(testX)
print("X_train_scaled shape after scaling by minmax scaler", X_test_scaled_rnn.
—shape)

trainX_re = np.reshape(X_train_scaled_rnn, (X_train_scaled_rnn.shape[0], 1,
—X_train_scaled_rnn.shape[1]))
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testX_re

np.reshape(X_test_scaled_rnn, (X_test_scaled_rnn.shapel[0], 1,

—X_test_scaled_rnn.shape[1]))

print(trainX_re.shape, testX_re.shape)

X_train_scaled shape after scaling by minmax scaler (17519, 24)
Y_train_scaled shape after scaling by minmax scaler (17519, 1)
X_train_scaled shape after scaling by minmax scaler (719, 24)
(17519, 1, 24) (719, 1, 24)

[84]: | # StimpleRNN model

@measureit

def rnn_model():

model

model.

model

model.

model

model.

= Sequential()
add (SimpleRNN(units=32, input_shape=(1,look_back), activation="relu"))

.add(Dense(8, activation="relu"))

add (Dense (1))

.compile(loss='mean_squared_error', optimizer='Adam')

fit(trainX_re,Y_train_scaled_rnn, epochs=100, batch_size=32,,

—verbose=2)

return model

[85]: rnn_mod =

rnn_model ()

Epoch 1/100

548/548 - 1s - loss: 0.0176
Epoch 2/100
548/548 - 0s - loss: 0.0100
Epoch 3/100
548/548 - 0s - loss: 0.0097
Epoch 4/100
548/548 - 0s - loss: 0.0096
Epoch 5/100
548/548 - 0s - loss: 0.0095
Epoch 6/100
548/548 - Os loss: 0.0094
Epoch 7/100
548/548 - 0s - loss: 0.0094
Epoch 8/100
548/548 - 0s - loss: 0.0094
Epoch 9/100
548/548 - 0s - loss: 0.0093
Epoch 10/100
548/548 - 1s - loss: 0.0093
Epoch 11/100
548/548 - 0s - loss: 0.0093
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Epoch 12/100
548/548 - Os
Epoch 13/100
548/548 - Os
Epoch 14/100
548/548 - Os
Epoch 15/100
548/548 - Os
Epoch 16/100
548/548 - Os
Epoch 17/100
548/548 - Os
Epoch 18/100
548/548 - Os
Epoch 19/100
548/548 - Os
Epoch 20/100
548/548 - Os
Epoch 21/100
548/548 - Os
Epoch 22/100
548/548 - Os
Epoch 23/100
548/548 - Os
Epoch 24/100
548/548 - Os
Epoch 25/100
548/548 - Os
Epoch 26/100
548/548 - Os
Epoch 27/100
548/548 - Os
Epoch 28/100
548/548 - Os
Epoch 29/100
548/548 - Os
Epoch 30/100
548/548 - Os
Epoch 31/100
548/548 - Os
Epoch 32/100
548/548 - Os
Epoch 33/100
548/548 - Os
Epoch 34/100
548/548 - Os
Epoch 35/100
548/548 - Os

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

.0092

.0092

.0092

.0091

.0091

.0091

.0091

.0091

.0091

.0090

.0090

.0090

.0090

.0089

.0090

.0090

.0089

.0089

.0089

.0089

.0089

.0089

.0088

.0089
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Epoch 36/100
548/548 - Os
Epoch 37/100
548/548 - Os
Epoch 38/100
548/548 - Os
Epoch 39/100
548/548 - Os
Epoch 40/100
548/548 - 0Os
Epoch 41/100
548/548 - Os
Epoch 42/100
548/548 - Os
Epoch 43/100
548/548 - Os
Epoch 44/100
548/548 - Os
Epoch 45/100
548/548 - Os
Epoch 46/100
548/548 - Os
Epoch 47/100
548/548 - 0Os
Epoch 48/100
548/548 - Os
Epoch 49/100
548/548 - Os
Epoch 50/100
548/548 - Os
Epoch 51/100
548/548 - Os
Epoch 52/100
548/548 - Os
Epoch 53/100
548/548 - Os
Epoch 54/100
548/548 - Os
Epoch 55/100
548/548 - Os
Epoch 56/100
548/548 - Os
Epoch 57/100
548/548 - 1s
Epoch 58/100
548/548 - Os
Epoch 59/100
548/548 - Os

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

.0089

.0088

.0088

.0088

.0088

.0088

.0088

.0087

.0088

.0087

.0087

.0087

.0087

.0087

.0087

.0087

.0087

.0087

.0087

.0087

.0086

.0087

.0086

.0086

62



Epoch 60/100
548/548 - Os
Epoch 61/100
548/548 - Os
Epoch 62/100
548/548 - Os
Epoch 63/100
548/548 - Os
Epoch 64/100
548/548 - Os
Epoch 65/100
548/548 - Os
Epoch 66/100
548/548 - Os
Epoch 67/100
548/548 - Os
Epoch 68/100
548/548 - Os
Epoch 69/100
548/548 - Os
Epoch 70/100
548/548 - Os
Epoch 71/100
548/548 - Os
Epoch 72/100
548/548 - Os
Epoch 73/100
548/548 - Os
Epoch 74/100
548/548 - Os
Epoch 75/100
548/548 - Os
Epoch 76/100
548/548 - Os
Epoch 77/100
548/548 - Os
Epoch 78/100
548/548 - Os
Epoch 79/100
548/548 - Os
Epoch 80/100
548/548 - Os
Epoch 81/100
548/548 - Os
Epoch 82/100
548/548 - Os
Epoch 83/100
548/548 - Os

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

.0086

.0087

.0086

.0086

.0086

.0086

.0086

.0086

.0086

.0086

.0086

.0086

.0086

.0085

.0086

.0086

.0086

.0085

.0085

.0086

.0085

.0085

.0085

.0085
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Epoch 84/100

548/548 - 0s - loss: 0.0085
Epoch 85/100

548/548 - 0s - loss: 0.0085
Epoch 86/100

548/548 - 0s - loss: 0.0085
Epoch 87/100

548/548 - 0s - loss: 0.0085
Epoch 88/100

548/548 - 0s - loss: 0.0085
Epoch 89/100

548/548 - 0s - loss: 0.0085
Epoch 90/100

548/548 - 0s - loss: 0.0085
Epoch 91/100

548/548 - 1s - loss: 0.0085
Epoch 92/100

548/548 - 1s - loss: 0.0085
Epoch 93/100

548/548 - 0s - loss: 0.0085
Epoch 94/100

548/548 - 0s - loss: 0.0085
Epoch 95/100

548/548 - 0s - loss: 0.0085
Epoch 96/100

548/548 - Os - loss: 0.0084
Epoch 97/100

548/548 - 0s - loss: 0.0084
Epoch 98/100

548/548 - 0s - loss: 0.0085
Epoch 99/100

548/548 - Os - loss: 0.0085
Epoch 100/100

548/548 - Os - loss: 0.0084
Memory usage of rnn_model(): 9.66 MB.
Processing cpu time of rnn_model(): 213 seconds.

[49]: testPredict=rnn_mod.predict(testX_re)
print (testPredict.shape) #printed scaled predicted values

(719, 1)

[50]: trainScore = rnn_mod.evaluate(trainX re, Y train_scaled_rnn, verbose=0)
print(trainScore)

0.0080118328332901
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[51]:

[52]:

[52] :

[63]:

inv_yhat = scaler_rnn.inverse_transform(testPredict)

predictions_rnn=to_series(inv_yhat)

test_data_rnn=

to_series(testY)

#visualization of Real power consumption versus predictions by ENN using oney

—month test data

fig= plt.figure(figsize=(15,8))

power_changes=

power_changes.
power_changes.

power_changes
power_changes
power_changes.
power_changes.

fig.add_subplot(1,1,1)
set_ylabel ('Consumed power (KW) ')
set_xlabel ('Hours')

.plot(test_data_rnn, color='blue', label='Real power')
.plot(predictions_rnn, color= 'red', label='Predictions')

set_title('Real consumption power versus predictions using RNN')
legend(loc="'best"')

<matplotlib.legend.Legend at 0x1b6a9d869a0>

Real consumption power versus predictions using RNN
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#Calculating RMSE

def print_scores(y_test,y_pred):
rmse= np.sqrt(mean_squared_error(y_test,y_pred))
return rmse

rmse=print_scores(predictions_rnn,test_data_rnn)

print(rmse)

39.5803241095926
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1.0.2 LSTM

[75]: scaler_lstm = MinMaxScaler (feature_range=(0, 1))
X _train_scaled_lstm = scaler_lstm.fit_transform(trainX)
print ("X_train_scaled shape after scaling by minmax scaler",
—X_train_scaled_lstm.shape)

Y train_scaled_lstm= scaler_ lstm.fit transform(trainY)
print("Y_train_scaled shape after scaling by minmax scaler",
—Y_train_scaled_lstm.shape)

X_test_scaled_lstm = scaler_lstm.transform(testX)
print ("X_train_scaled shape after scaling by minmax scaler", X_test_scaled_lstm.
—»shape)

trainX_re_lstm = np.reshape(X_train_scaled_lstm, (X_train_scaled_lstm.shapel[0],
1, X_train_scaled_lstm.shape[1]))

testX_re_lstm = np.reshape(X_test_scaled_lstm, (X_test_scaled_lstm.shapel[0], 1,
—X_test_scaled_lstm.shape[1]))

print(trainX_re_lstm.shape, testX_re_lstm.shape)

X_train_scaled shape after scaling by minmax scaler (17519, 24)
Y_train_scaled shape after scaling by minmax scaler (17519, 1)
X_train_scaled shape after scaling by minmax scaler (719, 24)
(17519, 1, 24) (719, 1, 24)

[76] : | Gmeasureit
def lstm_model(X, Y, verbose=2):
batch_size= 32
model = Sequential()
model.add(LSTM(216, activation='relu', input_shape=(1, look_back )))
model .add(Dense (1))
optimizer = keras.optimizers.Adam(lr=0.001, clipvalue=0.5)
model.compile(loss="mse", optimizer=optimizer)
model.fit (X, Y, epochs= 50, batch_size= batch_size, verbose=verbose)
return model

[77]: model 1lstm=1stm_model (trainX re lstm, Y train scaled_lstm)

Epoch 1/50
548/548 - 2s - loss: 0.0114
Epoch 2/50
548/548 - 1s - loss: 0.0097
Epoch 3/50
548/548 - 1s - loss: 0.0094
Epoch 4/50
548/548 - 1s - loss: 0.0093
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Epoch 5/50

548/548 - 1s
Epoch 6/50

548/548 - 1s
Epoch 7/50

548/548 - 1s
Epoch 8/50

548/548 - 1s
Epoch 9/50

548/548 - 1s
Epoch 10/50
548/548 - 1s
Epoch 11/50
548/548 - 1s
Epoch 12/50
548/548 - 1s
Epoch 13/50
548/548 - 1s
Epoch 14/50
548/548 - 1s
Epoch 15/50
548/548 - 1s
Epoch 16/50
548/548 - 1s
Epoch 17/50
548/548 - 1s
Epoch 18/50
548/548 - 1s
Epoch 19/50
548/548 - 1s
Epoch 20/50
548/548 - 1s
Epoch 21/50
548/548 - 1s
Epoch 22/50
548/548 - 1s
Epoch 23/50
548/548 - 1s
Epoch 24/50
548/548 - 1s
Epoch 25/50
548/548 - 1s
Epoch 26/50
548/548 - 1s
Epoch 27/50
548/548 - 1s
Epoch 28/50
548/548 - 1s

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

.0093

.0093

.0092

.0092

.0092

.0091

.0091

.0091

.0090

.0090

.0090

.0090

.0089

.0089

.0089

.0088

.0088

.0088

.0087

.0088

.0087

.0087

.0087

.0086
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Epoch 29/50

548/548 - 1s - loss: 0.0086
Epoch 30/50

548/548 - 1s - loss: 0.0085
Epoch 31/50

548/548 - 1s - loss: 0.0085
Epoch 32/50

548/548 - 1s - loss: 0.0085
Epoch 33/50

548/548 - 1s - loss: 0.0085
Epoch 34/50

548/548 - 1s - loss: 0.0084
Epoch 35/50

548/548 - 1s - loss: 0.0084
Epoch 36/50

548/548 - 1s - loss: 0.0084
Epoch 37/50

548/548 - 1s - loss: 0.0083
Epoch 38/50

548/548 - 1s - loss: 0.0082
Epoch 39/50

548/548 - 1s - loss: 0.0082
Epoch 40/50

548/548 - 1s - loss: 0.0082
Epoch 41/50

548/548 - 1s - loss: 0.0082
Epoch 42/50

548/548 - 1s - loss: 0.0081
Epoch 43/50

548/548 - 1s - loss: 0.0081
Epoch 44/50

548/548 - 1s - loss: 0.0081
Epoch 45/50

548/548 - 1s - loss: 0.0080
Epoch 46/50

548/548 - 1s - loss: 0.0080
Epoch 47/50

548/548 - 1s - loss: 0.0080
Epoch 48/50

548/548 - 1s - loss: 0.0079
Epoch 49/50

548/548 - 1s - loss: 0.0079
Epoch 50/50

548/548 - 1s - loss: 0.0079
Memory usage of lstm_model(): 19.27 MB.
Processing cpu time of lstm_model(): 278 seconds.
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[57]:

[58]:

[59]:

[60]:

[60]:

testPredict_lstm= model_lstm.predict(testX_re_lstm)
inv_yhat = scaler_lstm.inverse_transform(testPredict_lstm)

predictions_lstm=to_series(inv_yhat)
test_data_lstm=to_series(testY)

#Calculating RMSE
def print_scores(y_test,y_pred):
rmse= np.sqrt(mean_squared_error(y_test,y_pred))
return rmse
rmse=print_scores(predictions_lstm,test_data_lstm)
print (rmse)

40.80439774947916

#visualization of Real power consumption wversus predictions by LSTM using oney
—month test data

fig= plt.figure(figsize=(15,8))

power_changes=fig.add_subplot(1l,1,1)

power_changes.set_ylabel('Consumed power (KW)')

power_changes.set_xlabel('Hours')

power_changes.plot(test_data_lstm, color='blue', label='Real power')
power_changes.plot(predictions_lstm, color= 'red', label='Predictions')
power_changes.set_title('Real consumption power versus predictions using LSTM')
power_changes.legend(loc="'best')

<matplotlib.legend.Legend at Oxlb6ab24cfal>
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1.1 Memory and CPU utilization visualization

[86]: mem_df, cpu_df = prep_cpu_mem_df ()

[87]: | # memory usage visualization of a model
plt.ylabel('Memory Consumption(MB)',fontsize=15)
plt.xlabel('model name',fontsize=15)
plt.xticks(fontsize=12)
plt.yticks(fontsize=15)
plt.bar(mem_df.Model, mem_df.Val)

[87]: <BarContainer object of 4 artists>

o = ) Mt
o n o Ln

Memory Consumption(MB)
LN

=

svr_model  ann_model mn_model Istm_model
model name

[88]: # cpu utilization visualization of a model
plt.ylabel('CPU time Utilization(sec)',fontsize=15)
plt.xlabel('model name',fontsize=15)
plt.xticks(fontsize=12)
plt.yticks(fontsize=15)
plt.bar(cpu_df .Model, cpu_df.Val)

[88]: <BarContainer object of 4 artists>
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