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Chapter 1

Introduction

1.1 Background:

Healthcare services is a crucial part of modern societies, where it’s main role is to provide
the necessary healthcare for the community, assisting those in need of medical attention.
However, it is also an important establishment as a work-provider, providing work at all lev-
els within the community. In the recent years, the COVID-19 pandemic has highlighted a lot
of the challenges in running healthcare services as they have been put to the test. The gained
attention to healthcare has increased the discussion and interest in how healthcare sectors
are in terms of quality, cost, and efficiency. A challenge that has always been present in
healthcare services are patients not showing up for their appointments, no-shows, and late
cancellations. Patient no-shows adds to the healthcare clinics costs, because this is time lost
that the trained medical workers could potentially have used to treat other patients instead.

The thesis project was proposed by Helse Vest Regionalt helseforetak (RHF). Helse Vest
RHF has the overall responsibility for the healthcare in the counties of western Norway and
they provide the healthcare for about a million residents (Helse Vest RHF, 2017). It con-
sists of several larger hospitals and numerous smaller clinics both in rural and urban areas.
Helse Vest RHF has annually 230.000 planned patient-healthcare-contacts, appointments
which are cancelled either due to no-shows or cancellations ahead of time. There are many
factors which contribute such an outcome, and there are several strategies that attempts
to reduce no-shows. All patient interactions lead to large amounts of data surrounding the
appointments and the patients. The gathered data is useful for statistical analysis about the
patients and the healthcare-providers and its services. It can assist in further understanding
the interaction of patients and the day-by-day operation of clinics, and the possible areas
of further improvements. Statistics is useful when working with the data analysis, but there
are often limitations and challenges with traditional statistics, and in these cases modern
machine learning can outperform the more traditional methods. In the last few decades
machine learning has gained momentum and traction as technology and algorithms have
improved. Classical statistics has traditionally been limited to few dozen input variables and
tractability of computations (Bzdok et al., 2018). Modern machine learning can be used to
generate knowledge (and predictions), where statistics previously has focused on describing
data and testing hypotheses (Soria-Comas and Domingo-Ferrer, 2016). Pursuing the goal of
improving the services from healthcare-providers, machine learning can be applied to the
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1.2 Motivation:

large amount of data available in order to generate more knowledge about the patients and
appointments.

1.2 Motivation:

The motivation for the thesis is to investigate ways of identifying which patients are at high
risk of not showing based on the analysis and prediction of various methods of statistics and
machine learning (ML). With ML algorithms and large quantities of data, one can statisti-
cally analyze some of the tendencies and investigate which features/attributes that are the
most significant of no-show patients. Based on this, it is possible to develop models that
can be used by healthcare-providers to forecast and predict likely no-show candidates. It
has been done in the past in a few papers with different approaches and strategies, some
of which are summarized in Dantas et al. (2018). Ideally a machine learning model would
be reliable enough in its prediction for health-providers to apply follow-up routines to the
patients who are likely to not show up. A strategy could be in the form of an additional
reminder via text or phone calls, or some other form of encouragement or incentive prac-
tice depending on the patient group. Reducing no-shows will reduce downtime, and will
thereby improve waitlines and costs. This could raise the overall quality and experience of
the service for both healthcare providers and the patients. According to estimates made by
Helse Vest RHF for a specific clinic, they estimated possible cost reduction of around NOK
615.000,- when using a sufficiently accurate model for predicting no-shows. The numbers
are based on a wait line cut of 50% with a model with 70% accuracy for predicting no-shows.

Another important part of this thesis is the challenges around gathering patient records
and the restrictions surrounding it. There is as previously mentioned a lot of information
which is gathered as data in these appointments. The analysis done on the data needs to be
in line with general data protection regulation (GDPR) as a lot of the information is personal
data. That means a lot of the information surrounding the clinic and the patients is either
blurred or generalized to achieve anonymity. Another important part of the GDPR is that the
patients also have the right to openness and transparency of the applications of their data.
They have the right to know how their personal information is being used in the model. This
means a model using their data cannot be a “black box”. A model must be explainable to be
able to justify the actions based on the data driven models’ prediction.

The data we worked with is real data supplied by Helse Vest RHF for a psychiatric clinic
for adults. According to Mitchell and Selmes (2007) patients with mental health problems
miss about double the amount of appointments compared to other medicinal fields. This
was based on data in the United Kingdom but this tendency is also seen elsewhere. A psy-
chiatric clinic for our project is thereby of particularly of interest, as the data is based on
a patient group with higher rates of no-shows. The provided information about the clinic
has been anonymized and limited in the amount of features in order to reduce the risk of
inference, linkability and re-identification of the people involved. The supplied data was
originally for the years 2016-2018 in the early development, but at later stages it was ex-
panded to also include 2019 as well to serve as a test set. most information about the clinic
is limited to that which is seen in the data.

2



1.3 Objective:

1.3 Objective:

In the thesis we will investigate the gathered data itself and the circumstances surrounding
it. With the data we need to address challenges such dependencies, anonymity, sample
size, and imbalance, all at once. Dealing with these challenges will be important as they are
a vital step in creating a decent machine learning model. The main emphasize will be on
finding a model that can predict no-shows with high enough performance at the selected
Helse Vest RHF psychiatric clinic. We will investigate the best model types and the best
features to pair them with, in order to handle these challenges. We also need to find decent
ways of measuring performance and evaluating models as it is a part of the challenges in
the underlying circumstances of the data, i.e. the imbalance in the dataset between people
showing to appointments and those who do not. We need to ensure a model that is simple
and transparent enough for medical workers to able to understand it at some level, so they
can explain it to patients. This will ensure that the patient’s GDPR rights are fulfilled. We
will also consider and discuss some of the challenges surrounding the deployment and
application of a model in practice. All of these goals are mostly summarized in the following
objective:

Investigate relevant features, explore potential machine learning
models, and look into the practical challenges of the application
of an appointment prediction model at a psychiatric clinic.

3



Chapter 2

Theory

2.1 Personal Data Protection and anonymity

The EU General Data Protection Regulation (GDPR) was implemented in May 2018, and in
Norway later the same year in July. The goal was to restrict and regulate how personal data
is handled and processed. It sets strict requirements for how information is gathered and
used, but also underlines the responsibilities around the security of personal data. Busi-
nesses must request permission for data gathering and have to disclose the personal infor-
mation gathered if requested by the individual. It gives private individuals more control of
the data being gathered, and transparency around the application of it. This has been nec-
essary with the increased growth of big data application which allows further knowledge
gathering with data mining based on all the data being generated by patient interaction
and transactions.

An important aspect of the GDPR is how one handles the security aspect. Anonymized
data are exempt from the obligations of the GDPR, as part of recital 26, which implies that
the principle of data protection should not apply to anonymous information. For infor-
mation to be anonymous, the information is not just de-identified, but the information is
anonymized enough so that individuals can not be re-identified by any reasonable means
(Goldsteen et al., 2020). There are several ways of achieving anonymity such as k-anonymity,
and e-differential privacy, both with their pros, cons and caveats, some of which is discussed
in Soria-Comas and Domingo-Ferrer (2016). Information about individual is at risk amongst
others due to quasi-identifiers and linkabillity across datasets. Quasi-identifiers are vari-
ables like; zip-code, date of birth, and sex, which together can be used as a tuple to identify
an individual. A selection of such attributes can be enough to identify someone although it is
not an explicit unique identifier like a social security number. This was among other shown
by Samarati and Sweeney (1998) with an example re-identifying anonymous medical data
with the help of voter-lists. It shows how large enough tuples identifiers of information can
identify individuals. When records are sorted into smaller sets based on similarities, they
are also at risk of linkabillity if you have other independent resources which can be used to
identify individuals. This puts some records at risk of re-identification if the anonymization
process and algorithm is not thorough enough. With increase of big data and data mining,
another challenge has been membership inference and attribute inference attacks where
certain sensitive features may be inferred (Goldsteen et al., 2020). This all highlights the im-
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2.2 Definition of a no-show and errors

portance of anonymity of the data being handled, and of the obligations present. The effects
on privacy methods for anonymizing personal data on machine learning can result in poor
accuracy. Performance changes have been compared on different types of machine learning
models after k-anonymization by (Wimmer and Powell, 2014). The K in K-anonymization
is a measure of to what degree the data has been anonymized. If the K is 10, it means we
only can identify down to groups of minimum 10 people. The data used in this thesis has
undergone anonymization before being handed over, which if efficient enough is exempt of
GDPR regulations. However, to ensure that the information is safe, and to reduce the risk of
any security breaches of personal information; all the data was kept on machines that are a
part of Helse Vest RHF data systems.

GDPR is especially important when looking at the applications which is based on
gathered data about a subject, and where decisions are made because of the predictions.
Article 22 from the GDPR states (EU, 2018):

The data subject shall have the right not to be subject to a decision based solely
on automated processing, including profiling, which produces legal effects con-
cerning him or her or similarly significantly affects him or her.

It points to an important ethical aspect, where one should not be judged with severe
repercussions and consequences solely based on an automated process. This is one of the
more challenging aspects of the practical applications of a prediction model. Thereby the
possible applications of the final model is somewhat restricted and limited to what has been
pre-approved by the legal team at Helse Vest. That is why the model currently is planned for
application in predicting no-shows to trigger additional follow-up.

2.2 Definition of a no-show and errors

When predicting no-shows it is necessary to set some of the definitions. We break down the
problem into a bi-classification for either no-show or show. Late cancellations are some-
times in practice as inconvenient as no-shows. The threshold for late-cancellations which
are considered as no-show based on the clinic practices is chosen based on clinic practices
(elaborated in later chapter about method). Similarly to the setup of Huang and Hanauer
(2014), a basic definition for the classification of appointment i is given as prediction M̂i ,
where:

M̂i =

�

0, Show predicted
1, No-show predicted

(2.1)

The way prediction is made differs from model to model, but generally it will be the one
with the highest probability. In our project, we define no-show as 1, and show as 0. The
reason for the switch is to emphasize what prediction the model is attempting, which is
identifying the no-show candidates. This means based on the actual observed outcome of
the appointment M , we can define an error as:

Ei =

�

0, M̂i =Mi

1, M̂i 6=Mi
(2.2)
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2.3 The Bias-variance tradeoff

This gives us the possible errors in the predictions, but there is an important distinction
in the type of errors. Type I error (also called a false positive) is when a patient is classified
as a no-show, while being show. Type II error is a false negative, which is a no-show being
classified as a show. This distinction might seem arbitrary, however, (Prati et al., 2009, p. 360)
describes an example in medical diagnosis where most patients, but a small percentage have
cancer. Here it is important to classify those with cancer correctly because if a cancerous
patient is classified as healthy it could have lethal consequences. A healthy patient classified
as sick will just result in a more extensive check-up before being declared healthy. To define
the type of errors, Ns ho w is set to be total number of actual show patients in the training set,
and Nno−s ho w as the actual no-show patient population (Huang and Hanauer, 2014). The
errors are thereby defined as;

Type I error:
ΣE s ho w

i

Ns ho w
(2.3)

Type II error:
ΣE no−s ho w

i

Nno−s ho w
. (2.4)

Where minimizing type II is the type of error that should be prioritized when optimizing
the model. Although the potential cost of these errors can be defined and weighted.

2.3 The Bias-variance tradeoff

When determining which model performs best we want to find a model with an error as
small as possible. The mean squared error is often used as a measure for error when work-
ing with machine learning algorithms, but for this problem it might not be the best solution.
The mean squared error takes the true value, subtracts the predicted value and squares it,
but since this problem is of a classification sort, there are more intuitive ways of explaining
the error that occurs. More ways have been suggested to describe this relation for classifi-
cation problems (Domingos, 2000).

When describing the error of a model there are often two terms that are used to explain it
all; Bias and variance. It is imperative to understand these terms when understanding how
a model performs. In figure 2.1 you can see a visualization of how bias and variance work.
Bias means that center of our predictions has shifted from the optimal target. We want the
bias to be as low as possible, this means that the chance of hitting our target is better and the
likelihood of favoring one class over another goes down. When the bias increases it means
we might get a skewed prediction. The variance is measure of how collective the predictions
are. High variance means that small changes in our data might lead the prediction to end
in another class or we can say that precision is lower.
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2.3 The Bias-variance tradeoff

low variance High variance
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Figure 2.1: An example illustration of the bias-variance tradeoff

The predicted error has an additive relation between the bias and variance. We will do
as Domingos (2000) and define a loss function L (t , y ), which measures the cost of predicting
y when the true value is t . For our classification problem a zero-one loss function could be
proposed (L (t , y ) = 0 if y = t and L (t , y ) = 1 otherwise). We then define the expected loss
of our model as ED ,t [L (t , y )]. D is here the training set, which can be divided up in multiple
training sets. For some loss functions, like our one-zero loss function this decomposition of
ED ,t [L (t , y )] holds:

ED ,t [L (t , y )]

= c1Et [L (t , y∗) + L (y∗, ym ) + c2ED [L (ym , y )]]

= c1N (x ) +B (x ) + c2V (x )

(2.5)

Where V (x ) is the variance, N (x ) is the noise in our data and B (x ) is the bias on our
model. The y∗ represents the optimal prediction, ym represents the main prediction and y
is all the predictions for the different training sets.The noise is impossible to eliminate, so it
is often not taken into the equation, but it is important to note that it is a factor. The point
is to reduce both the variance and the bias of our model, but in reality it is hard to reduce
one without increasing the other. This is what is meant with the bias-variance tradeoff and
the optimal point for this tradeoff varies from application to application (Domingos, 2000).

What this mean is that the bias of the model can be defined as 1 if the prediction does
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2.4 Feature selection

not agree with the true label and zero otherwise.

Bias=

�

1, if y 6= t
0, otherwise

(2.6)

We can also set up a definition for the variance in this case which can be seen as the
probability of predicted label not matching the main prediction.

Variance= P (y∗ 6= t ) (2.7)

In practice, when working with machine learning and artificial intelligence (AI), this is
important to take into consideration. High variance in our model could often translate to
overfitting. If the model performs better on the training data, than it does on the test data,
this could indicate high variance. The model could in this case have learned the training
data too well, and will now follow the noise in the training data which is not necessarily
present in the test data. What we mean by this is that the model has not learned the general
pattern for the data, but the exact pattern of the data in the training set. On the other hand,
if we try to make our model too general, it might not learn the correct patterns and maybe
show prejudice towards some classes. This is referred to as an undertrained or underfitted
model.

2.4 Feature selection

In machine learning there are often big datasets with a lot of features. When many features
are present we sometimes want to limit the amount of features used for creating the model.
This might seem counter intuitive because we usually would like as much information as
possible when training a model, but there is actually a couple of reason why this, in some
cases, is a good idea (Garreta and Moncecchi, 2013):

• For some methods, for example decision trees, we reduce number of features used to
refine the model at each step. When a model does this it is possible that irrelevant
features suggests correlation where there really is none. Some features might also be
highly correlated to each other and give little new information. The model might also
be prone to overfitting.

• The other reason is that a large amount of features could greatly increase the compu-
tation time without making the model any better. A model based on fewer features
might also make it more generalizable, which means the model might perform better
on a wider variety of problems. An example could be if Helse Vest RFH would like to
extend the model to be used on other clinics as well.

The idea is to remove features that might be of less value to the model. This compresses the
data, but good feature selection can also contribute to improved learning accuracy, avoid
overfitting, reduced learning time and to simplify learning results (Langley et al., 1994; Lan-
gley, 1996; Zhao et al., 2010; Saeys et al., 2007). Compared to other algorithms, such as com-
pression or projection (Principal componenent analysis), feature selection does not alter the
original data, but chooses a subset from the data, and this could also increase interpretabil-
ity for a domain expert (Saeys et al., 2007).
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Normally more features means decreased classification error, but in cases where data is
sparse, more features can cause increase in variance and further entail increased error (Hua
et al., 2004). For the problem in this thesis, there are not enormous amounts of data, but
there are not too many features present either. This will therefore not be a notable issue in
this case, but if the problem was to scale with data that incorporate more features, it could
be something to consider.

The library Scikit-learn comes with a high variety of methods to be used for feature se-
lection, from ExtraTreesClassifier to varianceThreshold. To figure out what works best it has
to be tested on the data. A manual approach could also be considered. For example could a
correlation plot between the features be explored and some decisions could be made from
this, but with many features it could be hard to get an accurate overview.

Another thing to consider is the presence of features that are not available in the pre-
diction moment. If a variable is not available at the time of prediction, it is not useful when
training the model either.

Zhao et al. (2010) arguments that two key concepts are important for feature selection:
Relevance and redundancy. A features relevance is due to a couple of reasons, one of them
is about the feature being strongly related to the class and the other is that the feature forms
a subset with other features and this subset is strongly related to the class. Redundancy is
about the features property related to other features. If a feature provide similar prediction
power as other features it might become redundant.

For our thesis there are too many feature selection methods to test them all and compare
them across the multiple models trained. Some of the feature selection methods are more
popular or widely used than others and we will look into a couple of them, more specifically
the ANOVA method and the extra trees classifier. This is what Saeys et al. (2007) calls a filter
and an embedded method. There are other variants of these and we have an entire third
category he classifies as wrappers that will not be investigated in this thesis, both because
these methods can be computationally costly and they are at risk of overfitting data, which
is not commendable when working with ensemble models (Saeys et al., 2007).

2.4.1 ANOVA

A popular way of finding the best possible features for a dataset is the ANOVA, or Analysis of
Variance, method. ANOVA is a univariate feature selector (Drotár et al., 2015). This means
that each feature is examined individually to find how their relationship with the target value
is. This make the interpretability of the feature selection fairly simple and some studies show
that they do not necessarily underperform in contest with more complex solution (Haury
et al., 2011; Saeys et al., 2007).

Being a univariate feature selection we have the advantages that it is fast, scalable and
independent of the classifier, but it also ignores interactions with the classifier and feature
dependencies (Saeys et al., 2007).

2.4.2 Extra Trees Classifier

The Extra Trees Classifier, or extremely randomized trees, is a tree-based ensemble method
for classification (Geurts et al., 2006). For our thesis we will use this method for feature
selection. The method is similar to the Random Forest in that it is based on building trees,
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but for the Extra Trees Classifier all tree models are made from the entirety of the sample-
size and attribute, and cut-point choice are highly or entirely randomized. Making just one
tree in such a fashion often results in high variance, but make a lot of them and you can
lower the variance without increasing bias to much.

When using this classifier for feature selection, the algorithm can measure something
called the Gini-impurity. This is usually used to measure how often a randomly chosen el-
ement would be classified incorrectly, but instead we can use this as a measure for feature
importance, rank the features in our dataset and choose only the features that gives us the
lowest probability of wrongful classification. In figure 2.2 you see that each node in the tree
is assigned a Gini-value and each of these splits are done based upon one of the features in
the dataset. Then you can average over all the trees and choose the features the Gini-values
implies will give the lowest error rate.

G = 0.5

G = 0.3

G = 0 G = 0

G = 0.44

G = 0 G = 0

G = 0.38

G = 0.23

G = 0 G = 0

G = 0.46

G = 0 G = 0

G = 0.51

G = 0.55

G = 0 G = 0

G = 0.44

G = 0 G = 0

. . . . . .

Figure 2.2: The extra trees classifier draws up multiple trees and the Gini-impurity is cal-
culated for each feature in the trees. From there the features with the highest Gini-values
are chosen for the further exploration. The G is short for Gini. The trees do not have to be
symmetrical as in the figure, but when a leaf node has G-value 0 it stops splitting.

2.5 Imbalanced data

In machine learning we are often provided with the “curse of imbalanced data”, where many
of our datapoints belong to the same class (Lemaître et al., 2017). What often happens in
these cases is that the model will prioritize the class with most samples, because it tends to
skew towards higher accuracy, but we might be more interested in finding patterns for the
smaller classes (Prati et al., 2009). To handle this imbalance some effort have been made and
a couple of alternatives for dealing with the problem has been procured: (i) Change perfor-
mance metrics, (ii) random undersampling of majority class, (iii) random oversampling of
minority class, (iv) change algorithm or (v) make synthetic samples of the data (Boyle, 2019).
A combination of these could also be a possibility. There are no single best alternative to use,
so some experimentation is required to figure out what is best for your project (Brownlee,
2020b).

Dealing with this problem we are looking into theimbalanced-learn library, which
is an open-source python toolbox made for this exact problem (Lemaître et al., 2017).
This toolbox is also fully compatible with scikit-learn and therefore compatible with the
sklearn-library
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2.5.1 Performance metrics

Often we speak of the accuracy of a model, but this might not always be the best method for
evaluating performance of our model. The basis for most of the evaluation metrics is the
confusion matrix.

• True negative (TN): Values that are correctly classified to 0

• True positive (TP): Values that are correctly classified to 1

• False negative (FN): Values that are really 1, but classified to 0

• False positive (FP): Values that are really 0, but classified to 1

Table 2.1: A simple 2x2 confusion matrix

Predicted: 0 Predicted: 1
Actual: 0 True negative (TN) False postive (FP)
Actual: 1 False negative (FN) True postive (TP)

According to Ghoneim (2019) accuracy is defined as the ratio of correctly labeled subject to
the whole pool of subjects.

Accuracy=
T P +T N

T P + F P + F N +T N
(2.8)

When we work with imbalanced dataset, the accuracy becomes practically useless (Thai-
Nghe et al., 2010). This is because a model prioritizing accuracy could potentially classify
almost everything to majority class, while the interesting thing is to figure out what charac-
terizes the data in the minority class.

Thai-Nghe et al. (2010) further goes on to define precision as the ratio of correctly clas-
sified as 1 to all who have been labeled 1.

Precision=
T P

T P + F P
(2.9)

Recall is the ratio of correctly labeled 1 to all who are actually label 1.

Recall=
T P

T P + F N
(2.10)

F1-score is a value calculated by combining precision and the recall.

F1-Score=
2 ·Recall ·Precision

Recall+Precision
(2.11)

Specificity-metric is also mentioned as an important score for the performance of our
model, but in reality it is actually the same as the recall value, but for the other label. So if
the target is 0 and 1 you could switch them and calculate recall and get the same value. We
calculate how many is classified correctly as true negative and divide on all who are actually
true negative.

Specificity=
T N

T N + F P
(2.12)
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2.5 Imbalanced data

Combining more of these values can give a more accurate picture on how our model actually
performs when predicting classes. Accuracy is a great measure when the data is symmet-
ric or distributed homogeneously, but when data is imbalanced we can get a better picture
using F1-score.

There might also be cases where there is acceptable that we classify something as false
negatives, but not as false positives or vice versa. Then recall or specificity might give us
better indications on how our model performs.

If what we want is to be confident that one class is classified correctly, then precision
might give us the best measure for our data. In our case the recall performance might be
especially important because we get a measure for how good our model is to classify the
minority class.

2.5.2 ROC-curve

We often use specificity (False positive rate) and recall (True positive rate) in combination
to make a ROC-curve (Receiver Operating Characteristic). Figure 2.3 shows an example.
Indication of a good model is if the graph goes high up in the left corner.

The area under the ROC-Curve is called AUC (Area Under Curve). The closer this value
is to 1, the closer we are to the perfect model. This would mean that all positive values are
classified correctly and no negative values are classified as positive (Chawla, 2009). Still, if
classifying positive correctly is more important than classifying false correctly, or vice versa,
we might want to look at the specificity and recall individually and find what works best for
our particular problem.
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Figure 2.3: ROC curve, the area under the curve is often refered to as AUC (area under curve).
The higher this value is, the better.

When deciding on our model we look to the ROC-curve and see that we would like to find a
value for predictions that prioritizes true positive rate(TPR) over true negative rate(TNR). To
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do this we introduce the G-mean metric (Thai-Nghe et al., 2010). The formula for calculating
this is:

G-Mean=
p

TPR ·TNR=
p

TPR · (1−FPR) (2.13)

Where FPR is the false positive rate. The G-mean is a probability threshold value for the
cutoff between classes. This metric tries to optimize the accuracy of each class while keeping
them balanced.

2.5.3 Sampling strategies

When dealing with imbalanced datasets over- and undersampling has been introduced as
possible solutions to the problem (Guo and Viktor, 2004; Weiss and Provost, 2003; Chawla,
2009). We also look into the use of Synthetic Minority Over-Sampling TEchnique (SMOTE),
which is a way of making synthetic samples of the minority class based on what data already
exists in this class (Mishra, 2017).

There are different ways of implementing these techniques. For our project we will look
into the use of Random over- and undersampling strategies. Undersampling is a pretty sim-
ple way of handling imbalanced data, but it does not come without its drawbacks (Lemaître
et al., 2017; Mishra, 2017). How do we know what data to remove from our dataset? We could
potentially remove some datapoints that contains a lot of useful information for our model.
The data could be processed manually, but this could lead to bias from the editor. Therefore
we look into the random undersampler from the python imblearn-library. This library
provides four different ways of dealing with the sampling problem: (i) under-sampling, (ii)
over-sampling, (iii) a combination of both and (iv) ensemble learning (Lemaître et al., 2017).

Oversampling in turn can lead to replication of the same data over and over and lead to
some weird results where certain data could be more influential to the model than what is
the actual case .A combination of these methods is certainly also a possibility, but it is not
easy to know what combination or what ratio of over and undersampling will give the best
result for a particular problem.

Another thing to consider when sampling like this is that the balance between the classes
will be different from the training set to the test set. This might cause some problems since
most classifiers are built on the assumption that our test data is drawn from an equal distri-
bution as the training data (Khalilia et al., 2011).

2.5.4 Changing the algorithm

One way of dealing with imbalanced data can be to explore different models. Some models
are less suited to dealing with the problems of imbalanced data than others. Some models
assumes well balanced classes and they can therefore tend to prioritize accuracy and end up
neglecting the minority class, but in some cases the minority class could be the interesting
part of the problem.

Knowing what algorithm to use for training the data is not always straightforward. There
are so many alternatives to choose from: linear regression, logistic regression, naive bayes,
decision tree classifier, random forest classifier, support vector machine and more. Some
are more suited than others for dealing with the imbalance problem and some can be mod-
ified to work better with imbalanced data than they originally do.
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One of the more popular choices when working with imbalanced data is the random
forest classifier due to it being able to have a high degree of adaptability in the bias variance
trade-off, so that we often get more of the minor classes correctly classified when making
the trees a little deeper. Still, we have to be wary of not overfitting the classes. Combined
with some of the sampling techniques it could also be interesting to see how a naive bayes
classifier or xgboost could perform.

2.5.5 Create synthetic samples of data

Another interesting approach is SMOTE from the python library imblearn (we use this li-
brary also for over- and undersampling methods). This method oversamples the minority
class by synthetically generating new data points based on the original data. What is impor-
tant to remember when oversampling, with SMOTE as well, is to split the data into training
and test-set before applying the method (Mishra, 2017). This is done to minimize the prob-
ability of the same data being present both in test and training set.

Over the years, different variations of the SMOTE-method has been developed. SMOTE
itself works by selecting samples that are close to each other in the feature space (Brownlee,
2020b). Drawing a line between these samples (interpolate) you can take out a new sample
along this line. Then you have made a syntethic sample that should be close to existing data
in the specific class.

Other extensions to SMOTE could for example be Borderline-SMOTE and Borderline
Oversampling. These two has the idea that we need more samples in the borderline between
the minority class and the majority class, because this is where the samples that are difficult
to classify exist (Brownlee, 2020b; Han et al., 2005). These and other methods exist, but it
would be outside the scope of this thesis to test them all.

2.6 Model selection

Choosing a model is a particularly important part of the project. To find out which model
will perform best there is some trying and failing involved, but we can also rely somewhat
on what has been done before and what experiences others have had with the different ma-
chine learning algorithms. Least squares is a method not very well suited for a large mul-
tidimensional problem with imbalanced data. It is a method that draws a straight line or
plane between the classes in a problem. This makes it a method that have problems with
overlapping classes and can also be sensitive to outliers. On the other side we have Random
Forest Classifier which have been proven to perform better on imbalanced data (Ghoneim,
2019; Khalilia et al., 2011). This might be because a decision tree often have high variance
and can find small nuances in high granularity data, while averaging or voting over multiple
decision trees could lower variance without increasing the bias significantly.

Another practical thing about random forest classifiers is that they are built on the idea of
decision trees and therefore the interpretability is high compared to for example an artificial
neural network (ANN). You can see how the logic transverses down a tree, but in for example
a neural network it is not always as easy to understand how the decisions are made. It is
frequently referred to as the black-box nature of neural networks and makes it hard for us
humans to explain why the model makes a prediction, why some features are favored and
how we can improve upon the model (Fan et al., 2020). In our thesis where we are dealing
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with patients at a healthcare clinic, an ensemble tree method might be favorable because it
is easier to explain and visualize, both for the practitioner and the patient.

2.6.1 Naive Bayes Classifier

There are a lot of different variations on the Bayes classifier and over the years they have
found to perform well on different sorts of problems (Lewis, 1998). On some problems it
can perform very well, but more complex problems with bigger training sets over the last
year have seen some more complex models like ANN perform better. The reason for this
is multifaceted, but in short ANN is a highly adaptable algorithm and on big datasets with
many features it can find more subtle patterns in the data than Naive Bayes. Still we can find
respectable results using the Naive Bayes method, especially for smaller datasets (Lewis,
1998).

By classifier we mean that the data is assigned to a class. If you look at figure 2.4 you
can see a simple two-class problem with a defined decision border based on the Gaussian
Naive Bayes classifier. If a new data point is introduced to this set, it will be assigned to a
class based on what side of the decision border it is.

The Bayes network classifier is based upon the Bayes theorem, which for a multiclass
purpose can be formulated as:

P (ck |x) =
P (ck )×

∏d
j=1 P (x j |ck )

P (x)
(2.14)

Where ck is the class and x is the entity being classified and x j is the value of the j -th
attribute. We want the posterior, P (ck |x), to be as high as possible. The feature vector will
be assigned to the class with highest posterior. This form of of classification has as goal to
minimize the number of errors and this perspective the name naive Bayes classifier come
from.

Naive Bayes has some key features (Webb, 2010):

• training time is linear with respect to number of data points and number of features.
Classification time is only affected by number of features. In other words, the naive
Bayes is very efficient.

• The bias-variance trade-off often skews toward high bias and low variance.

• When new training data is available the model can be updated, so the naive Bayes will
improve over time

• Posterior probabilities are directly computed

• Uses all attributes when predicting and is therefore insensitive to noise

• Also robust when classifying examples with missing values.
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Figure 2.4: In this figure you see a simple example of the thought behind Naive Bayes. You
can calculate the probabilities for the outcomes and draw a decision boundary between the
classes. Everything on one side will be classified as one class and on the other side it will be
classified as the other class. For n-dimensional problems it gets harder to visualize, but the
idea is still the same.

Since the Naive Bayes Classifier is based on the Bayes theorem, which in itself is a pretty
simple formula it has the advantage of being a model that is simple to explain, but for a
multidimensional problem, like in this thesis, it could be hard to visualize.

2.6.2 Random Forest Classifier

Decision trees has long been a popular choice for making predictions, but it comes with
some drawbacks. Often they come with low bias and high variance, which means that small
changes to training data can make very different trees. A popular choice addressing this is
to make many different trees and aggregate the results.

There are a couple of methods that are popular when constructing the different trees.
One of the methods are boosting (Schapire et al., 1998) and another one is bagging (Breiman,
1996). Boosting is a method where each successive tree is given weight. At a given step
the training examples that are classfied correctly will be given lowered weight while those
classified wrong will have their weights increased (Liaw et al., 2002). In doing so, the idea is
that we can combine many weaker classifier into a stronger one.

The other alternative, bagging (bootstrap aggregating), is where each tree is made in-
dependent from each other. Each of the trees is made independently by taking a bootstrap
sample from the training data. Then a simple majority vote among the trees is taken for pre-
diction. In figure 2.5 you can see what bootstrapping in itself is. If you have a dataset you
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Dataset
D = {t1, t2, t3, ..., tn }

Resample from the dataset

D1 = {t1, t2, t3, t5} D2 = {t3, t5, t6, t2} D3 = {t1, t5, t3, t7}

Figure 2.5: Example of bootstrapping. A randomized sample with reversal is subtracted from
the dataset to create subsamples

can sample rows from that dataset without taking the data out and make multiple datasets
from the first one.

This idea has been developed further into what we now know as Random Forest classifiers
(Breiman, 2001). The difference here is that each node is split on the best variable among a
subset of the features at that node. This gives an extra dimension of randomness to the mak-
ing of the trees and it turns out this makes the classifier robust against overfitting (Breiman,
2001). A visualization of the Random Forest can be seen in figure 2.6.

Liaw et al. (2002) describes the algorithm for making a random forest as follows:

1. draw n bootstrap samples from the training data.

2. For each of the bootstrap samples grow a tree where you find the best split among a
subset of the features. The splitting criterion can be defined in different way, but we
will explore the use of entropy (Shih, 1999) and gini impurity (Khalilia et al., 2011).

3. predict by aggregating over the n trees in the forest.

Liaw et al. (2002) also have some notes for practical use. For example: The number of
trees necessary for good performance is dependent on how many features is used to train
the model. The numbers of trees needed increases when number of features increases.

Another thing is that we might adjust the threshold for majority vote when dealing with
imbalanced data, which in our problem might be relevant to have in mind.

When making our model many hyperparameters for the random forest classifier has to
be adjusted and tried. From number of estimators (number of trees), splitting criterion,
depth of the tree and more. To find the best combination we will look into the use of a
gridsearch which will be explained in section 2.7.
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Training Data

bootstrap samples and features

. . .

Tree 1 Tree 2 Tree n

vote from each tree, majority vote decides class

prediction

Figure 2.6: An example of a random forest. Many trees have been assembled and a vote
between them is taken for which class the data belongs to. The orange color is the path
through each tree for a single data entry. The end leaf contains the vote for which class it
belongs to.

2.6.3 Tree boosting with XGBoost

As stated before, gradient boosting is a method where combining multiple weak learners
into a better learner. A typical such weak learner is the decision tree. XGBoost stands for
extreme gradient boosting and is a scalable machine learning method that has proven to
perform at a state-of-the-art level for both classification and regression problems (Chen and
Guestrin, 2016). For our project we will be using the python library xgboost that provide
all we need and is integrated well with the scikit-learn package that we use for the
other models.

A decision tree is, as explained in chapter 2.6.2, a classifier with high variance and low
bias, but there are also different versions of the decision tree. In the xgboost package they
actually have multiple variants of the splitting criteria for the decision trees. In the library
we have the greedy algorithm, approximate algorithm, weighted quantile sketch and the
sparsity aware split finding (Chen and Guestrin, 2016). For small datasets like the one in our
problem the greedy algorithm will be chosen and for bigger datasets where we expect to find
a lot of null- and missing values the sparsity aware method can save a lot of computation
time. This is why the method is highly scalable and may be one of the better approaches to
our problem. In a problem like this where the dataset will increase in size over time and as
more data is available for training, the better our model might perform. There is also a pos-
sibility for weighting the data when using xgboost. We could either give weight to selected
features or to more recent samples.

In the same way as the Random Forest Classifier the xgboost algorithm has high inter-
pretability, because we can write out and show the trees that give our prediction and from
there show patients how the model makes its decision. An example of how the model is
trained is shown in 2.7. From the first tree misclassification errors is punished, so that the

18



2.7 Grid Search/ Cross validation

Train Train Train Train
Test

Find errors
Test

Find errors
Test

Find errors

Figure 2.7: The point of boosting is creating new trees based on the last one. If you have cost
function, the next tree will try to minimize errors based on this cost function.

next tree that is based on the first tree will hopefully perform a little better. When this ap-
proach is repeated enough the classifier should perform better.

2.7 Grid Search/ Cross validation

Many of the machine learning algorithms have some hyperparameters (will just call them
parameters from here) that can be tuned. These make som changes to how the algorithms
makes its decision and will affect the results to some degree. Therefore we have to figure out
what valaues these parameters need to have for best performance in our model. Testing all
possibilites is not realistic because it can be an infinite number of possibilities, so we have
to do this for a limited set of possibilities.

A nice feature of the scikit-learn framework is the GridSearchCV class that
can do some of the work for us. This method does cross validation and tests combinations
of specified parameters to figure out the best possible fit. For more parameters we want to
test, complexity of the search will increase and the time to figure out the best fit will increase
exponentially (Garreta and Moncecchi, 2013).

K-fold cross validation is often used when determining the best model (Anguita et al.,
2012; Jung, 2018). The idea of the method is fairly simple. By splitting the data into k-subsets
we can use each of these subsets as the “target”-data and use all the other data to train a
model with different parameters and then estimate the error in the model. An effort to vi-
sualize this has been made in figure 2.8. We see for each cross validation the red rectangle
represents the temporary test set and all the white ones are the training data for each step
of the cross validation.

This procedure will be executed for each subset and the parameters which gives the
model with the best estimation, will be used to train the final model with all the data in
our training set. How big the k should be there is no exact answer for, but if unsure it is often
usual to use k = 5 or k = 10 (Jung, 2018).

Another regular method is the leave-one-out-cross-validation (LOOCV), where you use
all data except from one to train a model and test upon that single point. A drawback with
this is that it greatly increases computational time and there is no guarantee of better per-
formance on our model.
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D1
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Total number of training sets Test set

Dataset

Figure 2.8: Cross validation. The red rectangles represent the dataset that is used for testing
the model (temporary test set) when trained on all the other four white ones on that line,
based on the results for these the hyperparameters for the model is set. Then the model is
trained on all the training set. The test set is used when all parameters are decided after the
cross validation

2.8 Concept Drift

There is generally a challenge with machine learning models that are deployed where over
time the model performance decays. The reduced performance of the model is the result of
changes in the underlying data over time. The changes in the data shifts the model or the
patterns of the target variable (concept), and can in turn change the outcome of the pre-
diction of a target. This phenomenon is known as concept drift (Widmer and Kubat 1996).
Gathered data will generally drift as there are changes that occur over time to the distri-
bution of the data for the different features of the observed events. The temporal changes
are sometimes inevitable and can be due to factors out of your control. The changes in the
data might change properties or patterns of the target variable which a model is trained to
look for, as the target variables properties evolve. It is hard to predict what the underlying
changes in the data will be, and small changes in the data can propagate and shift the model
in unpredictable ways. Concept drift is illustrated in the simplified example of an arbitrary
classification model in the figure 2.9, where we see that the boundary of two different classes
can shift over time because of changes in the distribution of the data. They are still similar,
but as seen regions are now overlapping between the old and new observations.

As a result, patterns in the features for new observations might not align with the pat-
terns in the predictions of a model trained on past data. New data might shift the models’
concept or target variable when incorporated into a new model. This means new data is in-
correctly predicted for a while and with a new model based on new data, old data based on
the old concept is thereby likely to be misclassified. Both of these are scenarios that could
reduce the performances of these models. The Netflix movie recommendation competition
(known as Netflix Prize) is a practical example discussed by Žliobaitė et al. (2016). Some
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Figure 2.9: An illustration (Chilakapati, 2019) of how the region of two classes can shift due
to changes in the distribution.

of the algorithms from that competition revealed the importance of seasonal patterns in
product perception and popularity (IE. Holiday themed movies), but also user preferences
that change over time independently (IE. Superhero movie fatigue). Concept drift can be
observed in different ways, it is summarized and illustrated in figure 2.10. The changes to
the concept or drift in the model can be; Sudden, Gradual, Incremental, or Reocurring. The
colours indicate different classification for the target (concept), where we see sometimes
everything can suddenly change after a certain time, or it can be a change over time, or
something periodic.

An ideal model would be able to notice the shifts in the concept despite them manifest-
ing differently and being unpredictable. The model would also have to be robust, not too
susceptible to unforeseen changes in the data, while also being able to discern shifts from
general noise in the data to actual drifts. It can be difficult to develop the perfect model ca-
pable of fulfilling all these criterions, as the interactions with all the drift and changes to the
data and concept is a complicated interaction. There are algorithms developed to assist in
detecting drift, for example the early drift detection method (EDDM) as described in Dong
et al. (2018).
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Figure 2.10: A illustration of different types of concept drift (Dong et al., 2018).

2.9 Summary of theory

From the legislation around the data to the underlying theory about building machine learn-
ing models, this chapter attempts to give a light introduction to many of the aspects sur-
rounding this project. For the project three different models will be investigated to see how
they perform on the data provided by Helse Vest. In order to do this, one must understand
the circumstances surrounding the data, define the basic terms and definitions within this
field, and understand how and which type of model to develop.

Before creating the models, the code will extract the most significant features using one
of two feature selection techniques, ANOVA or Extra Trees Classifier. After this, one of three
different sampling methods (Random under-/over-sampling or SMOTE) will be used to deal
with the imbalance found in the dataset.

The Gaussian Naive Bayes, Random Forest Classifier and the xgboost-model are the
three models that are explored. The two tree based models have the advantage of inter-
pretability with printable representations of the trees used for prediction. The Gaussian
Naive Bayes model is based on probability and could therefore be transparent in its own
way.

When the model has been trained, the last step is to look at the performance of the
model. This could be measured using many of the metrics described in chapter 2.5.1. How-
ever, there is not a single performance metric that alone can decide which model is best.
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Chapter 3

Method

3.1 CRISP-DM process

For this thesis, the work process followed the cross-industry standard process for data min-
ing (CRISP-DM or CRISP for short). The generic CRISP-DM process model is useful for plan-
ning, communication within and outside the project team, and documentation (Wirth and
Hipp, 2000). As part of this process, the project was divided into to the main phases outlined
below:

1. Business Understanding

2. Data Understanding

3. Data Preparation

4. Modelling

5. Evaluation

6. Deployment

These steps are not strictly chronological, and the work often goes back and forth be-
tween phases based on feedback as illustrated in figure 3.1. This workflow also serves as an
overview and documentation of the workflow and process we had throughout the work. For
this project we mainly dealt with the 5 first steps up until deployment.

Initially, a lot of time was spent working with the Business Understanding, which is un-
derstanding the context or the problem you are trying to solve. In order to understand more
about the field of no-shows in medical work, we started by reviewing past literature and
talking with those at Helse Vest RHF. After spending some time reading the literature and
reviewing different theories, the patient data was supplied. Most of the first step has been
covered in the previous chapters, the introduction and theory.

The Data Understanding step relies on delving into the data, where statistics and visu-
alizations were used to explore the traits of the data. The aim of this step is to gain some
insight into the data, in light of the problem (business understanding). It can shed light on
how the distribution of the data is, and the possible strength and shortcomings of the input
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Figure 3.1: A diagram by Jensen (2012) showing the relationship between the different
phases of CRISP-DM and illustrates the recursive nature of a data mining project.

for the model. This step helps in possibly identifying some of the more important variables
and features for the model. Some of the analysis performed on the data is described and
shown as part of the results chapter. We also wanted to identify some of the general traits of
no-show candidates, and pre-emptively estimate which features are more relevant.

After reviewing the data, we moved on to the Data preparation step, referred to as pre-
processing, which is more closely described in the following sections in this chapter. Some
of the methods applied in this step was based on the initial analysis, but also on the model
evaluation (which is shown as the arrows going both ways between the latter 3 steps in figure
3.1).

The objective of the thesis is mainly related to the Evaluation step. Although it might
be the final goal of the thesis to have a working model, a continuous evaluation is ongoing
throughout this process in light of the problem and the other steps. We attempt to find some
of the strongest models in the evaluation step. The final step of Deployment is outside the
main scope of the thesis, although some of the potential challenges of this phase is discussed
in the discussion and future work.

3.2 Dataset

The data is from a clinic that offers psychiatric healthcare-services for adults. Not much in-
formation about this facility was not disclosed to us students in order to protect the identity
of the individuals. Most information was thereby on a need-to-know basis, and generally
limited. The received data was not completely raw, it was processed by the IT systems and
a group at Helse Vest RHF. Most noticeably some information had been dropped, blurred
and/or generalized in order to achieve k=5 order of K-anonymity. Decisions based on data
about ethnicity, sex or religion need to be cleared in legislation due to dangers of discrim-
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ination. Helse Vest told us this information was therefore dropped from this project. The
specific methods of handling the raw data and the anonymization of it, was a process which
was not disclosed to us. The anonymization step is necessary to reduce information which
could serve as quasi-identifiers and potential linkability. The provided rows of records were
often referred to as "contacts", which are appointments at the investigated clinic. Due to
the anonymization and generalization each contacts for the same patients can not be con-
nected or grouped. Each contact consists of information about the appointment, the at-
tending patient, and other variables surrounding the interaction. For each of these features
there are several variables, which can be categorical or numerical. The most important vari-
able is the registered outcome of the appointment, which has the following codes in the
data:

• 305 - When a patient did not show up.

• 308 - A cancellation by the patient

• 314 - The appointment was held as intended.

As a measure of the outcome of the appointment, it was for a while directly used as the
target variable but this is changed and discussed in a later section. Some of the gathered
information about the patient is about their characteristics such as their age or their travel
distance to the clinic. Both of these are examples of generalized features. The patients age
for instance was grouped in classes or bins, were one class was for instance 20 ≤ a g e <
30. The features about the appointment, can be for instance the time of year (although not
what year), month, week, and weekday. Some of the features were calculated features, based
on other features or on historical values. A full list of all these features, with some further
explanation is provided in appendix B.

All in all we have around 69.000 patient-healthcare-contacts, with roughly 46.000 is the
train set, and 23.000 in the test set. For the train set the distribution of the attendance is as
seen in figure 3.2. As seen in the figure, the data is very imbalanced, especially when only
no-show and a sub-set of the cancellations are of interest. This imbalance is one of the main
challenges in the modelling, where different sampling techniques are tried and tested as a
possible workaround.

Another important element of the dataset is the validity and quality of it. The dataset
revealed some suspicious inconsistencies with contradicting feature values such as those
who had immediate appointments, either not showing up/cancelling ahead of time or mis-
reporting as being immediate. These can be due to possible human errors, where either
wrong code for an ended appointment or other values being registered incorrectly. There
are also intended misreporting, as there are fines for patients not showing up (around 1500
NOK), which is meant as an incentive for patients to show up. Sometimes no-shows and
late cancellations were given some lee-way or mercy and registered as regular show, which
has resulted in some of the contradicting records according to Helse Vest RHF.

3.2.1 Assumption of independence

There are some assumptions that must be made when modelling with this type of data. One
of them is just like with most forms of statistics, we must assume the data is independent to
a certain degree. All the appointments or records are anonymized, with the intention of not
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Figure 3.2: The distribution of the different outcomes in training data for the years 2016-
2018.

being able to tell which record belongs to a specific patient. We know that the observations
are not independent, as some are for the same patient, but also that some of the features
surrounding the patient is also dependent. There will be some dependencies between the
features, but also between the records. Some of the features that are dependent are the ones
that refer to appointment or patient (abbreviated in Norwegian as “perHenv” or “perPas”) in
their feature name. These features are calculated feature, combined across appointments
and other features, which means that they are dependent. With the methods applied we
believe the features that are dependent, will still lead to better model performance as it gives
more information about the target. We will compare the results with and without some of
these features to investigate the assumptions closer.

3.3 Computer setup and Python libraries

For the entirety of the thesis, most of the programming was done on provided Dell-laptops,
which was integrated with Helse Vests computer systems. The controlled workspace within
the system, was limited and with quite strict terms of access outside the regular features
of the operating system. It also meant that other than using pre-existing programs, new
programs had to be installed through their ICT-group among others. This was a security
requirement in order to have access to the confidential patient data. The laptops used had
the following specifications:

• Operating system: Windows 10 - 64-bit version

• Processor: Intel(R) Core(TM) i5- 6300U CPU @2.4 GHz

• RAM: 8 GB

For the programming we used Anaconda navigator for handling the environment, with
Python (3.8.5) as the programming language in Jupyter Notebook (6.1.4). Some of the main
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libraries used:

• Pandas

• Numpy

• Matplotlib

• Seaborn

• imblearn

• SKLearn

• And others.

These libraries were used to handle the data in data frames, for the different operations
of arrays and matrices, for plotting and also for the modelling with machine learning algo-
rithms. The list of all imported libraries is also found in the provided code in the jupyter
notebook for the project. This set the framework for most of the work around the data pre-
processing, visualization, and modelling.

3.4 Data pre-processing

As mentioned in the previous sections, the data had already been processed and filtered
to a certain extent for reasons such as anonymity and discrimination. This does not mean
that the data was processed completely, as for the specific application changes still had to
be made. Some of the records for the appointments had missing values, and some of the
features that were initially classed or categorical were changed. Throughout the "cleaning"
process, we noticed that for some appointments there were missing age of the patient, what
kind of medical reference and the distance. Initially we developed codes which assigned
the mean, and used linear models to estimate the distance. However because there were
quite few records with these issues, and because other connected variables were missing
for possible inference (due to anonymization), these were dropped (less than 20) in total.

Classed features such as distance to the clinic and patient age was to be replaced, to use
it as a numerical value in the models. As part of the pre-processing the interval values were
replaced with the middle value of the upper and lower bounds of the class. For instance for
distance the value set to the interval 50 km≤ distance< 100 km was replaced with the value
75 km. The highest valued class was just set to the lower bound as it did not have an upper
bound.

While modelling we came across some features that can not be used as predictors in
the model. The reason is that some of the variables used as features are time dependent,
meaning that they might not be available at the time of the prediction. These are variables
other than the previously mentioned appointment outcome result, which are not available
until after or shortly before the appointment. One of those variables was the variable for
"the time (in days) between cancellation and appointment". If there are no cancellations,
it is registered as -1, otherwise it is how many days ahead of time it was cancelled. These
variables are not available at the time of prediction, but are also an indirect indicator of the
outcome. Another similar problem is the feature "ReminderSent"-feature. This is a feature
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which just tracks whether a text message has been sent. This is one of the measures that
has been introduced in the past to attempt to reduce no-shows. The problem is that this is
registered two days prior to the appointment, which means this is also an indirect measure
of the possible outcome of an appointment as it is at least not canceled up until then. This
leaks information about the possible outcome of the appointment. That means that the
feature also had to be dropped as it was indirect information about the outcome based on
information unavailable at the time of prediction.

Some of the appointments where references of category 4, which means immediate help,
these had to be dropped as they do not fall into type of data we are working with for this
model. This lead to a significant loss of data, and went down to around 42.000 appoint-
ments/contacts in the training data. A very small amount of the appointments were also
patients that registered were as dead, so their outcome was not much of mystery and thereby
dropped.

3.4.1 Target feature

We initially used the outcome code (305,308 or 314) as the target feature or variable we
wanted to predict (a three-class prediction). However shortly into the process we decided
on moving away from a three classification problem (No-show, cancelled or completed),
and instead addressed it as a binary classification problem. In previous sections it has been
mentioned that in practice late cancellations will have some of the same consequences as a
plain no-show. Throughout the project the threshold for the amount of days required to be
too late has been adjusted to investigate some differences in the models and distributions.
The main threshold we operated with was 3 days (although also compared with 1), as 3 days
before was when the reminders were sent and where the clinic potentially passed on slots
to other patients. Thereby knowing 3 days before, one could implement other measures in
an attempt to reduce the likelihood of a no-show. Similarly to the standard "show"/"no-
show" we change the definition slightly for the new re-purposing. In the new target feature
anyone that showed up or cancelled ahead of time (before the set threshold) is classified as
non-followup candidate (show or early cancellation), at times referred to as pass and with
the value 0. Late cancellation or no-show, meaning a follow-up candidate is set to 1. Equa-
tion 3.1 shows the redefined prediction-variable

M̂i =

�

0, Pass (Show or early cancellation)
1, Follow-up

(3.1)

The errors is defined the same way as previously only with the new definition for these two
classes. For the rest of the thesis no-show and follow-up will at times be used interchange-
ably, amongst other due to the literature and old habits. Our final analysis and predictions
models are mainly concerned about whether candidates are in the "Follow-up" or "Pass"
category.

3.5 Visualization of data

After cleaning up the data and adjusting some of the features we could begin visualizing
the different features to explore the data. It helped with understanding the data, and find-
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ing unique and interesting relationships that the models did not explicitly reveal. The data
was visualized in different ways by using matplotlib, as well as seaborn. Seaborn combines
pandas dataframes and matplotlib plotting in a practical and efficient way. This meant we
could produce wedge plots, bar plots, joint-distribution plots and more. An issue that was
revealed with the visualization was that the scale, and the distribution of some feature were
quite spread. For instance the duration of appointments (a feature) normally had a duration
of around hours, however sometimes they also last for days (although rarely). It is thereby
hard to plot all the data at once, and requires some processing. A handful of the features
were capped at the 99th percentile as an upper limit, as some of the plots generated were
hard to read otherwise. Another challenge is the granularity of the data as a result of the
generalization. It led to some less useful scatter plots in a grid-formation as some of the fea-
tures were discrete valued due to generalization, as seen in figure 3.3 (left). In order to cre-
ate more useful plots we applied seaborn’s kernel-density-estimation (KDE) method when
plotting the joint-distribution to show where observations were concentrated the most. An
example of what it looks like is seen with age and month in the right plot of the figure. This
method estimates the distribution centred at different areas of high concentration using a
Gaussian kernel. This is seen as contour lines, but where the plots on the sides show the
same topology but just for one of the features at the time. These contours show where the
concentrations of the different outcomes (based on colours) can be seen. A higher density
of contour lines means a higher gradient of the distribution, and thereby a higher concen-
tration. In the scatter plot to the left in figure it is impossible to tell the concentration based
on just a handful marked points due to repeated discrete values. The contour plot is thereby
used to illustrate density in order to investigate possible areas of interests in feature-pairs. It
can potentially help in identifying unique isolated groups at risk of no-show, or for picking
features that can be useful in separating no-show candidates from the rest.

Figure 3.3: Two plots of the same two discrete valued features, "Month" and "Age" (group).
Left is a scatter plot, and right is KDE-plot with contours for the densities of the different
outcomes. 305: No-show, 308: Cancelled, 314: Completed.
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3.6 Train/test split

Splitting data is an essential part of machine learning. We split the data into test and train
data, so that we have some data that can be used to train our model and some data we can
test our model on. We want these two datasets to be independent from each other, so they
are separated to avoid potential data leakage. To achieve this split we use a function from
thesklearn-library as shown in listing 3.1. When doing this we have to decide what ratio
of our data is supposed to be training and test data. Usually this ratio is somewhere between
20%-35% test data, and respectively 65% - 80% training data. The benefit of having less data
in the test-set means that we have more data to train our model, and it probably will get
better, but we have less data to test it on and can not be as sure on our results. There is no
right or wrong to where we put the split, so we find a limit that we think represents the data
in a good way both for the training and test data (Brownlee, 2020c). The first models we
created was based on this method and much of the code and initial thoughts were centered
around this issue.

Because of the anonymization we have no idea of knowing if some of the datapoints is
a recurring patient or a new one, so in this way we would not know in our model if there is
some leakage between the datasets. What impact this will have on our final model is not
easy to say as well. It could lead to a more generalized model, but it could also incur some
relations that we would not know in the moment of prediction.

Later in the project we got two updated datasets that were already divided into training
and test data based on year. This was probably more representative for the actual problem
since the trained model will always use previously recorded data to make assumption for
the future.

1 import numpy as np
2 from sklearn.model_selection import train_test_split
3

4 x_train, x_test, y_train, y_test = train_test_split(model_df, target,
test_size = 0.3, random_state = 42)

5

Listing 3.1: Implementation of test/train data split

3.7 Sampling

When dealing with an imbalanced dataset as in our task, a common way of dealing with the
curse of imbalance is applying sampling methods. To figure out the best way of sampling,
different methods are applied and compared. Many sampling methods have been devel-
oped through the years and to find out what works for our specific problem a few has to
be tested. For our problem we use the RandomOverSampler, RandomUnderSampler and
SMOTE from the imblearn-library.

1 from imblearn.under_sampling import RandomUnderSampler
2 from imblearn.over_sampling import RandomOverSampler
3 from imblearn.over_sampling import SMOTE
4

5 def sampling_strategy(x_train, y_train, samp_strat = "
RandomUnderSampler", ratio = 0.5):

6 if samp_strat == "RandomUnderSampler":
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7 sampler = RandomUnderSampler(ratio)
8 elif samp_strat == "RandomOverSampler":
9 sampler = RandomOverSampler(ratio)

10 elif samp_strat == "SMOTE":
11 sampler = SMOTE(ratio)
12

13 x_train, y_train = sampler.fit_resample(x_train, y_train)
14 return x_train, y_train

Listing 3.2: Implementation of sampling strategies

Before actually using the code it is important that the split of training and test data has been
done before sampling. This is to avoid possible data leakage between the two datasets. The
idea behind each of the sampling methods is pretty simple, but they all come with their pros
and cons:

• RandomUnderSampler: Undersampling of the majority class. The imbalance is ad-
dressed, but we get rid of much data in the majority class. By randomly picking out
data we could remove some data which could be influential to the performance of our
model.

• RandomOverSampler: Oversampling resamples from the minority class to make
more of the data in the minority class. This means we do not have to remove any
data, but we could give some data more weight when training the model and we could
maybe experience some bias in our predictions towards data that actually should not
be as important.

• SMOTE: Making synthetic samples of the data. More data is generated through an
algorithm to try and make more data points for the minority class based on the data
that is already in this class. Some of the same drawbacks as with oversampling can
often be found with this method.

An important part of this is deciding the ratio-parameter. If the ratio is zero it means we keep
the original balance between the classes, but if we change this to one we will have sampled
to a point where there is an equal number of data points in each class. Often a ratio of 1 could
give a better recall value, but it might end up hurting the overall accuracy of the model. This
is also something that has to be tried and tested to figure out what works.

When training the different models we found that there could be big differences in how
the model performed based on what sampling method were used and what the ratio be-
tween major and minor class is. Often we found that the model performed better when
using the Random undersampling method compared with the other ones. Although not al-
ways. Therefore we decided that in the result we would present a model that used this form
of sampling with a ratio of about 0.67.

3.8 Selecting features

In our dataset there are 63 features to begin with, but not all of these are eligible for training
our model. A couple of them is different ways of representing our target value, a couple is
not present in the prediction moment and some of them correlate highly with each other
and may cause overfitting in our model. To prevent this we look at our data to figure out
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what features will give new information to our model and what features will not. Another
thing that comes in to play here is that a model trained on less features has a considerably
less computational cost and it often generalizes better.

We started this process by looking at a correlation plot to see what values correlates well
with our target and what correlates highly with each other, but with around 60 features this
amounted to a lot of combinations between the variables and to find the best combina-
tion of features this way could lead to bias from the interpreter. So instead we look at the
methods explained in chapter 2.4.1 and 2.4.2 with the ANOVA and Extra Trees Classifier. We
actually looked at a couple more, like a linear support vector classifier, variance-threshold
and multiple scoring-functions in the SelectKBest-method, but decided it would take
to much time to look at them all.

ANOVA is a feature in the SelectKBest-method which we focused on.
SelectKBest is a method in the sklearn-library. As described in chapter 2.4.1
it makes an analysis of the variance and chooses the k-values with minimum variance. The
k-value we decide ourselves and is the number of features chosen for further exploration
and to train our final model. Knowing what the best number for this variable is case-
dependent and we kind of just have to try and see what works. A higher value might give
our model more data to train on, but it might also make our model very problem-specific.
Say we wanted our model to also work outside the psychiatric outpatient clinic, then our
model might be more generalizable and relevant for a wider range of branches. If our
training data grows with time, it might also help considerably on the time it takes to train
the model without necessarily reducing performance.

Using all features or too many can also harm our model performance if the data con-
tributes with false patterns that our model give to much weight and selecting too few fea-
tures might cause our model to be biased toward a class.

The other method we investigated for our project was the
ExtraTreesClassifier. As described in chapter 2.4.2 this method chooses the
number of features used for further investigation. For our problem we often ended up with
a little over 30 features for the different runs we tried. The method is tree based and the
trees are very randomized, so we can end up with different features each time we run it. We
can decrease this variance by increasing the numbers of estimators used when selecting
features, but this will also increase the run-time.

We ran the model with different values for k when we used the ANOVA method, but even
with a range between 10 and 40 with a 5 increment we could not find much evidence that it
performed better or worse than the extra trees classifier. The models that are shown in the
results are therefore based on the extra trees classifier.

1 from sklearn.feature_selection import SelectKBest
2 from sklearn.feature_selection import f_classif
3 from sklearn.feature_selection import ExtraTreesClasssifier
4 feature_selector = "ExtraTreesClassifier"
5

6 if feature_selector == "ANOVA":
7 #f_classif is the ANOVA method
8 k_value = 10
9 sel = SelectKBest(f_classif, k = k_value)

10 sel.fit(x_train, y_train)
11 elif feature_selector == "ExtraTreesClassifier":
12 n_estimators = 100
13 sel = ExtraTreesClassifier(n_estimators = n_estimators)
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14 sel.fit(x_train, y_train)
15 sel = SelectFromModel(sel, prefit = True)
16

17 # make the new x_train-set
18 X_new = sel.transform(x_train)
19

20 #get the names of columns so we can adjust test-set.
21 #x_train is a pandas dataframe
22

23 names = list(x_train.columns[sel.get_support(indices =True)])
24

Listing 3.3: Implementation of ANOVA and ExtraTreesClassifier

Also in this example (listing 3.3) we make a variable with the names of the chosen
columns, so we can adjust the test-data for predictions as well.

3.9 Selecting model

There are a lot of models we can try for our project, but it is hard to know what works best for
any specific problem. In the start of our project we looked into different models like support
vector classifiers, mlpclassifier (ANN), Least squares and more, but to narrow our project a
little we ended up focusing on just tree different models. Based on our own experience and
some of what has been read (Huang and Li, 2011; Lewis, 1998; Schapire et al., 1998; Breiman,
1996; Chen and Guestrin, 2016) we found that Naive Bayes, Random Forest and xgboost are
often referred to as models that works good with small sample sets, are highly interpretable
and the tree models are also easy to visualize for patients of the clinic. From a performance
standpoint some of other models could be interesting to investigate as well, but we found
that more of them could be harder to explain for a patient.

After deciding on what models to focus on, there is the issue of implementing them in
our code. There are some things we have to consider before training the model and have it
ready for evaluation.

First of all we want to scale our data, so that columns with inconsistent sizes on the
values are not weighted different for each model. For this we use the StandardScaler from
sklearnwhich gives the data a mean of zero and a standard deviation equal to one (Hale,
2019). The Naive Bayes and our tree models are not the models most known for being highly
affected by the different features having different scale to the values. Still, by using a stan-
dard scaler we do not change the nature of the data (Brownlee, 2020a). The algorithms be-
hind the models often have an easier time with scaled data and the code itself can more
easily be used to implement other models as well if we at a later point would like to investi-
gate for example a mlpclassifier.

Each of the models have their own set of hyperparameters that can be tuned for that spe-
cific model. Some are considered more important than other, but all can more or less influ-
ence how the final model will perform. For the Random Forest Classifier and the xgboost-
models number of estimators can have a lot to say for how the final model will perform.
Having a small number of estimators can make a model that evaluates both good and horri-
ble. This is because there are few trees to combine for a final production and it is more up to
chance if the trees combined will represent the data. Having more estimators will decrease
the chance , but it will also increase complexity and time to make the final model. To find
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what the value of each of these parameters should be we have to test a lot of different combi-
nations of them. In the sklearn-library we have the GridsearchCV-method that can
test many of these combination, but it is a time consuming effort, so we limit the number of
parameters tested. Each new parameter that we want to test will increase the time it takes
to test them all exponentially.

3.9.1 Pipeline

When implementing the standard scaler, our model and gridsearch with cross validation,
there is a possibility of data leakage (Zhao, 2019). We do not want the standard scaler for
temporary test set in the cross validation (see figure 2.8) to bee influenced by the temporary
training set. Therefore we implement a pipeline. With this we can do a temporary scaler for
each of the temporary training sets while doing the gridsearch.

3.9.2 GridsearchCV

Because each of our models have different parameters there have to be set a different pa-
rameter grid for each of the models when doing a gridsearch. A parameter grid is all the
hyperparameters we want to test for our model and then the gridsearch-method tests the
combination of them all to find what yields best performance in our model. We can in this
part also choose what class to prioritize for our model. Here we have gone for the option
“recall” to make our parameters prioritize classifying the follow-up-patients correctly.

The implementation is similar for the other three models, but the xgboost-model is not
from the sklearn-library and the Gaussian Naive Bayes has no hyperparameters other than
the prior, but this is adjusted based on the dataset, so we will not change the value.

1 #models
2 from sklearn.ensemble import RandomForestClassifier
3 from sklearn.naive_bayes import GaussianNB
4 import xgboost as xgb
5

6 #choosing model parameters
7 from sklearn.preprocessing import StandardScaler
8 from sklearn.pipeline import Pipeline
9 from sklearn.model_selection import GridSearchCV

10

11 if model == "RandomForestClassifier":
12 pipe = Pipeline([(’scaler’, StandardScaler()),
13 (’clf’, RandomForestClassifier())])
14 param_grid = {
15 ’clf_n_estimators’: [200, 400, 600, 800, 1000],
16 ’clf_max_features’: [’auto’, ’sqrt’],
17 ’clf_max_depth’: [4,5,6],
18 ’clf_criterion’: [’gini’, ’entropy’],
19 ’clf_class_weight’: [{0:w} for w in [1,2,3,4]],
20 ’clf_min_samples_split’: [10, 20, 40, 50],
21 ’clf_min_samples_leaf’: [4,8,12]
22 }
23 elif model == "GaussianNB":
24 pipe = Pipeline([(’scaler’, StandardScaler()),
25 (’clf’, GaussianNB())])
26 param_grid = {}
27 elif model == "xgboost":
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3.10 Evaluating model

28 pipe = Pipeline([(’scaler’, StandardScaler()),
29 (’clf’, xgb.XGBClassifier(eval_metric = "logloss", scale_pos_weight =

10))])
30 param_grid = {
31 ’clf__max_depth’: [4, 5, 6, 7],
32 ’clf__n_estimators’: [10, 12, 20, 40],
33 ’clf__gamma’: [0.01, 0.1, 0.2],
34 ’clf__min_child_weight’:[0.1, 0.3]
35 }
36

37 clf = GridSearchCV(estimator = pipe, param_grid = param_grid, scoring =
’recall’, cv = 5)

38 clf.fit(x_train, y_train)

Listing 3.4: Implementation of a pipeline and gridsearchCV

Here we can easily change, remove or add more hyperparameters to test. We tried to
keep the numbers to a minimum, so we could run multiple tries with different sampling
strategies, features and models without it being too time consuming. The PC we worked
with had its limitations as well, so with a more powerful PC it would have been easier to test
with more parameters.

3.10 Evaluating model

When evaluating the model there are multiple aspects we would like to look at. As described
in chapter 2.5.1 we have different metrics that are used for evaluation of the model perfor-
mance. When our trained model makes it predictions, it does so based on a probability
value of what class show and follow-ups are a part of. The cutoff or threshold for this prob-
ability is based on the G-mean value described in formula 2.13. This value could also be set
to some fixed value. The Threshold is used for predictions so we have a possibility of setting
up a confusion matrix and evaluate our model. In practice we would more likely use the
probability value for a prediction to set up different kind of measures to prevent follow-ups
from happening. For example set a 50% value for sending a text message or a 70% value for
calling the patient.

1 from sklearn.metrics import roc_curve
2

3 # prediction probabilities
4 predict_p = clf.predict_proba(x_test)[:,1]
5

6 #false and true positive rates of test data
7 fpr, tpr, thresholds = roc_curve(y_test, predict_p)
8 gmeans = np.sqrt(tpr*(1-fpr))
9 index = np.argmax(gmeans)

10

11 #predictions and optimal thresholds
12 y_pred = np.where(predict_p>thresholds[index], 1 ,0)

Listing 3.5: Using G-mean to find threshold and use it for predicitons

After predictions are done we would like to see the performance of our model. We use the
methods from thesklearn-library to get a confusion matrix and an accuracy-, precision-,
recall- and F1-score for our model.
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The point of all these measures is to get an accurate overview of the model performance
and to see what works in regards to our problem.

1 from sklearn.metrics import confusion_matrix,
precision_recall_fscore_support, accuracy_score

2

3 print(confusion_matrix(y_test, y_pred))
4 print(accuracy_score(y_test, y_pred))
5 print("precision: ", precision_recall_fscore_support(y_test, y_pred)

[0])
6 print("recall: ", precision_recall_fscore_support(y_test, y_pred)[1])
7 print("f_score: ", precision_recall_fscore_support(y_test, y_pred)[2])

Listing 3.6: sklearn.metrics provides all the scores for our model

In our problem we want to make a model that predicts the follow-ups correctly. So the
recall-value ends up being very important in this case. Still, our model will not be very good
if all shows are predicted as follow-ups as well. Because of the nature of the data and the
imbalance in the dataset many shows get predicted as follow-ups when we train it with pri-
oritized recall value. The F1-score gives a value that should represent the balance between
the precision- and recall-scoring. When presenting the results we also show the ROC-plots.
It can show how the false and true positive rate will be affected for what threshold value we
choose

Having all the values as close to one would be the optimal solution, but in practice this
would probably mean we have done something wrong, because this is close to impossible.
Human behavior is hard to predict and in the end, the idea is to strike a balance between
the best possible care for the patient and the cost for the healthcare system.

3.11 Summary of method

The CRISP process has been used as the outline of our workflow throughout the project. At
the start of the project relevant articles provided by Helse Vest was read to understand what
no-shows in healthcare practice actually meant (Dantas et al., 2018; Molfenter, 2013), and to
understand the business side of the problem. From there, the project moved on to preparing
and understanding the data, so that it could be visualized to understand relationships of the
features and outcomes. In light of this a new target feature was defined, for the outcome
follow-up and pass, instead of the standard no-show and show.

When data was understood and processed, the models could be built and evaluated,
but this was not a linear process. After a model was built and evaluated, the process often
returned to the start and was evaluated in light of the first stages of CRISP (see figure 3.1).
The work continued in circle of the first five stages of CRISP throughout the project. This
continued until there was no more time to optimize and experiment with the models, when
we had to write up the results.
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Chapter 4

Result

Before going into the main results of the thesis, the prediction models, we take a look at
what the data reveals about the relationship between appointments and patients. In the
following subsections, the training data (data from 2016-2018) is investigated with different
forms of visualization to try and see why some of the features are relevant for the outcome
of an appointment. All in all, there are about 63 features as mentioned earlier, which means
that we do not have a chance to illustrate them all at once. We qualitatively investigate for
points of interests by looking at the different features’ distribution and density in one and
two dimensions as part of our initial analysis. The focus narrowed down to the features
which often appeared in the feature selection in the modeling stage. This might seem out
of order, but understanding the data and the development of the models was a continuous
and recursive process that went back and forth throughout the project. The analysis is not
necessarily representative of how all models approach the data, as models have different
strategies and underlying algorithms. The goal with the initial analysis is to shed light on
some possible and unique distinctions observed within the data, which might be relevant
for some of the models. The analysis starts with a look at the original feature for the outcome,
No-show/Cancelled/Completed.

4.1 Qualitative analysis of the training data

4.1.1 Analysis for no-show, cancelled and completed

One dimension relative ratio distribution

If we have a look at the distribution of no-shows (305) versus the cancelled and completed
appointments (308+314) we see that there is a significant drop in July as seen in figure 4.1.
At first glance it might seem that July is significant, but the drop is seen in both categories,
and it is simply due to reduced activity over the summer break. This points out the weakness
of using the raw frequency when trying to investigate relationships between appointment
outcomes and features.

That is why we look at the relative ratio distribution of these subsets where all counts
are divided by the total count within the subset. That means we have taken the amount of
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4.1 Qualitative analysis of the training data

Figure 4.1: The distribution of no-shows vs cancelled and completed, over the different
months. At first glance july seems unique.

appointments for the subset 305 in month 1 (January) and divided by the total of appoint-
ments in month 1. The formula for the ratio of no-shows in January can be expressed as:

RNo-Show ∧ January =
NNo-shows in January

NAppointments in January
(4.1)

Figure 4.2 shows the same distribution as previously, but where each column is the rela-
tive ratio within each subgroup. The right plot is the same calculation, but where its the sum
of 308 and 314 divided by the total in each month. We see that pair-wise the same columns
of each plot add up to a total of 1 as they are complementary events, and represent the entire
sample space for appointments in January.

Other than the relative frequency being calculated as a ratio within the subset, we also
provide a baseline with the marked diamonds. This shows the ratio between the selected
subset and the total count. The purpose of the baseline is just to to know what the size of
the selected subset is in regards to the total. It can help determine whether deviations are
significant or just likely outliers. Some bars might have a large relative ratio, but it might just
be due to a low amount of observations within that subset. Thereby if a bar has a large ratio
compared to the rest while the baseline marker is closer to 0, it is considered an outlier as the
ratio might just be due to a small sample size. This is well illustrated in figure 4.3, and can
be seen with all the ratios above 15 hours in the time of day of appointments. We see that
the distribution shows that there is a higher relative frequency for appointments around 16
and 17, however note that the markers put the appointment count quite close to 0. These
appointments can either be removed, or accumulated and combined into a separate bin.

The reason the data is visualized as these ratios, is that it is a useful way of displaying the
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4.1 Qualitative analysis of the training data

Figure 4.2: The relative ratio distribution of no-shows and the rest over different months.
The plot shows that raw distribution is not as significant if we take into consideration the
amount of appointments in each month. Note July especially, compared with last figure.

data as the subgroups of these features are at times quite imbalanced as well. These plots
reveal some possible interesting characteristics of the appointments in the training data.
If we look at the monthly distribution there can be some indication of seasonal variation,
but the differences are not that large when taking the scale into consideration. It can be
significant when combined with other features in the later models. Another feature where
we can see the need for the relative ratio, is the age feature as seen in figure 4.4. In the figure
we see that a significant group of the appointments are younger people in the 20 to 29 years
group (marked as 20). More than two thirds of the appointments are with patients that are
under 40 years. If we compare the frequency distributions in figure 4.5, it is no surprise that
both highest on attending and not attending is the major class of “20”.

That is why we introduce the relative scaling again, to show that age is significant other
than just being the major group (although it is the major group for a reason). In figure 4.6 we
see the distribution with relative scaling, so that we look at the proportions of attendance
relative to size of the subset. In this figure, we can see that age has a connection with atten-
dance, the relative frequencies decreases with increasing age.

This suggests that the younger patients needs more closer attention as they are at higher
risk of no-shows. Not all the dependencies are as clear as the distribution of the age feature,
figure 4.3 shows that appointments closer to noon have a higher no-show ratio.

Another feature which showed something interesting was the feature for patient no-
show history, as seen in figure 4.7. This indicates that the patients with a past history of
no-shows is important in future predictions. In the plot we see that the higher the no-show
rate, the higher the ratio of no-show for each bin. We see that the right most bars in both
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4.1 Qualitative analysis of the training data

Figure 4.3: The relative ratio distribution of no-show and the rests as subsets for the time
of day of the appointments. The plot shows that appointments closer to noon have a larger
fraction of cancellation

Figure 4.4: The distribution of the age plots, here the 70+ group also includes everyone
above (a small number).

plots can be considered outliers (especially the one in the right plot). We can see that by
enlarge the mean of the no-show candidates is much larger than for the cancelled and com-
pleted patients.
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4.1 Qualitative analysis of the training data

Figure 4.5: A bar plot with the raw frequency for the different age groups for no-show and
the rest.

Figure 4.6: The relative ratio distribution for the different age groups for no-show and the
rest. The plot shows that the fraction of no-show is "inverse proportionally" when taking
the amount of appointments within each subset into account.
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4.1 Qualitative analysis of the training data

Figure 4.7: The relative ratio distribution for the past no-show counts for the patient for the
subset of no-show and the rest. The bar plot to the left indicates that the fraction of no-
shows increases for patient with higher past no-shows.

The analysis up until now has been done for the individual features in one dimension.
The goal has been to discover features of interest for the outcome. Next the analysis move
on to representing some of these features with plots in two dimensions to see possible rela-
tionships between features.

Two dimensional kernel density estimates

Not all features revealed anything of interest on their own in the one dimensional visualiza-
tion. Some relationships emerge in two dimensions, when viewed as joint distributions of
different features. In figure 3.3, it was shown that the granularity of the data causes some
challenges with the visualization. By creating KDE-plots it is easier to see where, and how,
the distributions are concentrated in two dimensions. It is not necessarily the true distribu-
tion (especially with the discrete valued features), but it is an estimation of the distribution
around the values. With the contours of the KDE-plots, you can make the areas of higher
concentrations and see overlapping regions between the different outcomes.

In figure 4.8 we see the joint distribution for prior no-show ratio
(n_andelIkkeMottPerPAs_c) and age in an interesting KDE-plot. The figure confirms
some of the observations we made about these features in one-dimension. We see that
there are fewer older people that have no-show, but also that they have lower no-show ratio
over all. However since this is density we need to be careful with some of the assumptions
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4.1 Qualitative analysis of the training data

Figure 4.8: The features Age vs "Ratio of no-show per patient" in a joint distribution (KDE).

and conclusions we make, as the age group is very uneven (there are many more people
under 40 than above). That is why we looked at the relative ratio in one-dimension for the
age among others in the previous section. Due to the KDE-plot being based on the raw
frequency, not all these observations are necessarily significant. That is why for the next
figures the outcomes of attended appointments are dropped as the scale of densities of
regular appointments overshadows the others due to the imbalance. In figure 4.8 we see
some of the same tendencies as some of the earlier one-dimensional plots has implied. In
the next figures we have removed "Completed" appointments, to have a closer look on the
boundaries between no-shows and cancellations.

The reason to drop completed appointments, is that these at times overshadows the out-
comes we are the most interested in. A point of interest can also be what seperates a patient
that cancels appointments and a patient that does not show up. In figure 4.9 we see that
patients with a high ratio of no-shows are likely to not show up for their appointments. This
can be seen by the green region above the densest area in the figure. The same was also
observed for the days feature (not shown). In figure 4.10 we see the same with patients that
have a high ratio of no-show, do not show up, and that patients with high ratio of cancel-
lation tend to cancel. This observation is however a bit of a tautology, as the feature is de-
pendent on past outcomes. What we can tell by the three figures shown in this subsection
is that past history of patients seems to be significant for no-show.

It is hard to find clear boundaries between these two categories, so in the next subsection
we will look closer at plots for our target feature, candidates to "Follow-up" and "Pass".
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4.1 Qualitative analysis of the training data

Figure 4.9: The features "Day of the week" vs "Ratio of no-show per patient" in a joint dis-
tribution (KDE).

Figure 4.10: The features "Ratio of cancelled per patient" vs "Ratio of no-show per patient"
in a joint distribution (KDE).
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4.1 Qualitative analysis of the training data

4.1.2 Analysis of Follow-up and Pass

One dimension relative ratio distribution

As part of the pre-processing, very late cancellations and no-show outcomes were combined
as possible "Follow-up" candidates. Currently the threshold for a "too late"-cancellation is
set at 3 days before the appointment due to existing practices at the clinic (although other
threshold was also investigated). In this sub-section we will not revisit all the different plots,
but we will highlight some of most notable observations made in the visualization of the new
target category.

Figure 4.11: The relative ratio distribution for the different age groups for follow-up (left)
and the rest (right) 3 days before.

We see that the distribution is slightly changed as some "cancelled" appointments mi-
grate over to the "follow-up" category. The same change is also observed in the past no-show
feature in figure 4.12. This means that when some of the cancelled patients has migrated
over, we might see some changes in the distribution and boundaries of the features.
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Figure 4.12: The relative ratio distribution for "past no-show counts" for follow-up (left) and
the rest (right) 3 days before.

Two dimensional kernel density estimates

For the two-dimensional KDE of the target feature, we decided it was more appropriate to
have an approach similar to that of the modelling. An issue which has been highlighted
throughout this thesis, also in this section, has been the imbalance of the classes. This has
been discussed in terms of the algorithms for the machine learning as part of the sampling
before implementing different models. One of the approaches which has been used is the
"Random undersampler", with the help of imblearn-library in python. We decided that it
was reasonable to have the same approach in the analysis of the target feature, in order
to look at the data in a similar fashion as the model would do. For the following plots we
have applied a random under sampler with a ratio of 0.7, and a random seed with the value
2021. This means the analysis of features is subjective just for this seed of random samples,
so there will be some differences with each sampling. The hope is to see some points of
interests that can be investigated further with other seeds if needed. Other than to simulate
an approach similar of the modelling, we have this approach because the majority class
so often drowns the minor class. When the majority class is undersampled, we hope the
density plots can show some more interesting characteristics with the joint distributions.

In figure 4.13 the advantage of undersampling of the majority class is clearly seen. There
is a region of only follow-up which can be isolated, which enforces what we see in previous
plots of the "ratio of past no-show" being an important feature. It is quite clear when com-
pared with figure 4.8, where we see the same for no-show but where the majority class com-
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Figure 4.13: The features "age" vs "Ratio of no-show per patient" in a joint distribution (KDE)
for the under sampled target feature.

pletely engulfs it. We also see some of the same observations in figure 4.14 with "week day"
and "ratio of no-show", which also is similar to figure 4.9 (which had to be shown without
the majority class). There are two figures that revealed some new and interesting relation-
ships than what has been seen prior to the undersampling, figures 4.15 and 4.16. In both
figures we see there are islands and regions that are almost completely isolated which is
useful when trying to identify important groups of follow-up candidates both for the mod-
els and potentially for the clinic.

The plots were controlled for other random seeds as well, and the same patterns
emerged in the those sets too. A sample is provided for the reader in appendix A. Although
these distributions are not explicitly used in creating the models themselves, they are useful
in understanding their significance. We now understand why some of these features have
been seen again and again in the models as they find some of these unique regions. These
regions and areas might seem irrelevant or marginal, however in light of the imbalance these
are the type of patterns that models often look for. The rest is caught within the boundaries
where they are well mixed and where they are not as easily discerned.
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Figure 4.14: The features "Day of week" vs "Ratio of no-show per patient" in a joint distri-
bution (KDE) for the under sampled target feature.

Figure 4.15: KDE plot of target for features: "time of day" vs "Duration in min of planned
appointments divided by days between appointment allocation and first appointment".
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Figure 4.16: KDE plot of target for features: "Ratio of no-show per patient" vs "Days from
allocation and to appointment".

4.2 Models

After training a myriad of models, with different sampling methods, classifiers, hyperparam-
eters, feature selectors and some with and without certain features available we got a lot of
different results. We wanted to look at some of these results and compare the performance,
strengths and weaknesses of the different models.

Going into specific details on all of the different models is not realizable as there are
endless possibilities. Therefore some choices were made on what samples to display here.
After running several models, we discovered that models are less prone to overfitting, with
a good recall-score and overall performance when using random undersampling. It seems
to help when dealing with the imbalance, and the Extra Trees Classifier when selecting fea-
tures. When testing multiple models we ran them with other types of sampling methods,
but as described in chapter 3.7, we will show models based solely on undersampling.

The three models used in this project performed differently for the different metrics de-
scribed in chapter 2.5.1. In this section there is a small summary of the strengths and weak-
nesses of each model with and without dependent data.

4.2.1 Independent models

As described in chapter 3.2.1 we have an assumption of independence in our data, but some
of our data is not really independent. So we wanted to see how our model would perform
without these feature. We removed all features which contained the phrases “PerPas” or
“PerHen” as these indicated features that were based on other appointments and ran the
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4.2 Models

same code as for the other models. A complete list of these features can be seen in appendix
C.

For these particular models we have used the following parameters

• Sampling Strategy (ratio): RandomUndersampler (0.67)

• feature selector: ExtraTreesClassifier

Random Forest Classifier

When assessing the model, the first thing we do is check the confusion matrix for the train-
ing and test data with accuracy and recall-score. The confusion matrix is made from the
predictions of the data, and our predictions are based on the G-mean value (see equation
2.13). This is found when checking the true positive vs. the false positive values in a ROC-
plot.

We do the same procedure for the training data. If there is to much of difference between
the training and test data we probably have some sort of over- or underfitting in our model.

(a) Training data with the Random Forest Classifier (b) Test data with the Random Forest Classifier

Figure 4.17: Comparing ROC plots for train and test set. The best threshold value shows the
probability cutoff between those classified as pass and those classified as follow-up candi-
dates

There are some signs of overfitting since there is a higher degree of accuracy in the train-
ing data than in the test data. As you can see from the top of the ROC-plot, the best threshold
value based on the G-mean is represented and the predictions are based on this value. If the
value is larger, the data is predicted as a follow-up and if it gets smaller it is predicted as a
pass. Beneath you have a couple of lists that show the metrics for the training and the test
data. The recall and the F1-score has two values in a list. The reason is that the model give
the score for both classes. The first value in the list shows the score for the pass-class and
the second one shows the value for the follow-up class.
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Table 4.1: Confusion matrix for test and training data with the Random Forest Classifier

Training Data Predicted
Pass Follow-up

A
ct

u
al Pass 2430 1041

Follow-up 731 1595

Test Data Predicted
Pass Follow-up

A
ct

u
al Pass 12088 8494

Follow-up 268 636

Training data:

• Accuracy: 0.694

• Recall: [0.700 0.686]

• F1-score: [0.756 0.686]

Test data :

• Accuracy: 0.592

• Recall: [0.587 0.704]

• F1-score: [0.804 0.157]

The second F1-score value is much lower on the test set. As the model is trained on recall
this kind of makes sense, because more of the patients that meet for their appointment is
predicted as not showing and this could hurt the precision (see formula 2.9).

Since this model is based on the independent variables we do not have a lot of features
and after the ExtraTreesClassifier and the RandomForestclassifier has run, the final model
is only based on eight different features. The built-in “feature importance”-method from
RandomForestClassifier ranks the three most important features in descending order as:

1. n_dagerFraTildeltTilOppmote_c

2. n_ventetid_c

3. c_kontakt_OppmoteUka_r

The first value describes the amount of time from the appointment was given till it was held,
the second one is the time from a referral has been assessed by specialist health service and
the last one is what day of the week the appointment is set.

Gaussian Naive Bayes

We want to present the result in the same way as we did for the Random Forest for the Gaus-
sian Naive Bayes (GNB) as well. One important difference to have in mind for the Random
Forest is that the “feature importance”-method does not exist for the GNB, but we have an-
other one called the “permutation importance”-method which works in a similar fashion.
For further reading on the difference between these methods check out Scikit-learn (2021).
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(a) Train data (b) Test data

Figure 4.18: Comparing ROC plots for the Gaussian Naive Bayes train and test set.

The AUC-value is lower for the GNB than it was for the random forest classifier, but when
you compare the test results for these first two models you see the accuracy increase some-
what for the GNB-model. Even so the recall value for the follow-up class has gone down
considerably, and we see the same pattern with the F1-score where it decreases consider-
ably down for the test data. This happens with all the models.

Table 4.2: Confusion matrix for test and training data

Training Data Predicted
Pass Follow-up

A
ct

u
al Pass 2424 1047

Follow-up 1071 1255

Test Data Predicted
Pass Follow-up

A
ct

u
al Pass 13235 7347

Follow-up 381 523

Training data:

• Accuracy: 0.635

• Recall: [0.698 0.540]

• F1-score: [0.695 0.542]

Test data :

• Accuracy: 0.640

• Recall: [0.643 0.579]

• F1-score: [0.774 0.119]

The most important features for the GaussianNB-model is listed below. You can see that the
second feature is age, which is an attribute of the patient, but the first and third feature are
related to the appointment and logistic at the healthcare clinic.

1. c_kontaktOppmoteMaaned_r

2. c_pasAlder_r

3. c_kontaktOppmoteUka_r
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xgboost

The xgboost model performs more stable than the other two models when not all features
are present. We see that there are no big fluctuations between the scores in the training and
test set. This could mean there is less chance of overfitting in this model. At least with the
parameters used to train this model (check listing 3.4).

(a) Train data with the xgboost-model (b) Test data with the xgboost-model

Figure 4.19: Comparing ROC plots for the xgboost. A bug in the numpy round-function
caused the threshold value to show more decimals than intended

Table 4.3: Confusion matrix for test and training data with the xgboost

Training Data Predicted
Pass Follow-up

A
ct

u
al Pass 2255 1216

Follow-up 739 1587

Test Data Predicted
Pass Follow-up

A
ct

u
al Pass 13230 7352

Follow-up 319 585

As in the other models we still get a lot of patients that actually show up predicted as candi-
dates to follow up. This is less important for the model than classifying the ones who does
not show correctly. Still, if there is too many it will still end up being a lot of work for the
healthcare service.

Training data:

• Accuracy: 0.663

• Recall: [0.650 0.682]

• F1-score: [0.698 0.619]

Test data :

• Accuracy: 0.643

• Recall: [0.643 0.647]

• F1-score: [0.775 0.132]

For the xgboost we got that the three most important features was described as:
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1. n_dagerFraTildeltTilOppmote_c

2. n_dagerTilTimeGitt_c

3. n_kontaktVarighet

We can see that both the xgboost model and the random forest has both set the feature
n_dagerFraTildeltTilOppmote_c as the most influential one for classification in these inde-
pendent models. Both the Random Forest and the Naive Bayes model uses the feature that
explains which day of the week the appointment is scheduled as one of the more influential
attributes for the model.

4.2.2 Dependent models

Previously we removed the dependent variables to see if the model worked in a different
manner without these variables and because some of them might not be available at the
time of prediction. We now put them back in the mix and look at the models which will
contain some history for the patient.

RandomForest

The Random forest is the first we will look at with all features involved. As you can see from
figure 4.20 the ROC-plot now is more drawn up towards the left corner. A bit more for the
training data, which means there could be some overfitting.

(a) Train data with the Random Forest Classifier (b) Test data with the Random Forest Classifier

Figure 4.20: Comparing ROC plots for Random Forest Classifier train and test set

The confusion matrix with the accuracy and recall score now tells almost the same story
about a model which is better at predicting on the training set than on the test set. Still, we
can see that values have increased significantly from the models with fewer features. The
recall value is actually slightly lower for the follow-up-class, but the accuracy is much higher.
Which means we have a lot fewer people that are classified wrongly as follow-ups.
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Table 4.4: Confusion matrix for test and training data

Training Data Predicted
Pass Follow-up

A
ct

u
al Pass 2462 1009

Follow-up 583 1743

Test Data Predicted
Pass Follow-up

A
ct

u
al Pass 14007 6575

Follow-up 269 635

Training data:

• Accuracy: 0.725

• Recall: [0.709 0.749]

• F1-score: [0.756 0.686]

Test data :

• Accuracy: 0.681

• Recall: [0.680 0.702]

• F1-score: [0.804 0.157]

We see that all of the features which are classified as important for the model has something
to do about the waiting time for the appointment.

1. n_kontaktVarighetPerDagerFraTildeltTilOppmote_c

2. n_dagerFraTildeltTilOppmoteIPeriodenPerPas_c

3. n_dagerFraTildeltTilOppmote_c

Gaussian Naive Bayes

In the Gaussian model we can see that it still struggles somewhat compared to the other
methods. The ROC curve leans more closely towards the “no-skill”-line and the results pre-
sented in this subchapter shows that the performance is overall poorer. The accuracy on the
test data is about the same as some of the other models, but the recall value for the follow-
up-patients is much lower.

(a) Train data with Gaussian Naive Bayes (b) Test data with Gaussian Naive Bayes

Figure 4.21: Comparing ROC plots for GaussianNB train and test set
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Table 4.5: Confusion matrix for test and training data

Training Data Predicted
Pass Follow-up

A
ct

u
al Pass 2345 1126

Follow-up 1021 1305

Test Data Predicted
Pass Follow-up

A
ct

u
al Pass 14373 6209

Follow-up 390 514

Training data:

• Accuracy: 0.630

• Recall: [0.676 0.561]

• F1-score: [0.686 0.549]

Test data :

• Accuracy: 0.681

• Recall: [0.698 0.569]

• F1-score: [0.813 0.135]

With all features available the Gaussian Naive Bayes still uses the appointment day of the
week and month as one of the three most important features together with age.

1. c_kontaktOppmoteMaaned_r

2. c_pasAlder_r

3. c_kontakt_OppmoteUka_r

Xgboost

This last xgboost model has increased its accuracy in the test set with about 0.04 which is
pretty significant. It means that about 800 people less in this model is classified wrongly to
the follow-up class and we still get 36 more classified correctly. The accuracy is about the
same as the random forest with all features involved, but the the recall value for the follow-
up is a bit less.

(a) Train data with the xgboost (b) Test data with the xgboost

Figure 4.22: Comparing ROC plots for xgboost train and test set. As with the independent
models there is a bug in the numpy library that does not round the value for the threshold.
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Table 4.6: Confusion matrix for test and training data

Training Data Predicted
Pass Follow-up

A
ct

u
al Pass 2368 1103

Follow-up 642 1684

Test Data Predicted
Pass Follow-up

A
ct

u
al Pass 14030 6552

Follow-up 283 621

Training data:

• Accuracy: 0.699

• Recall: [0.682 0.724]

• F1-score: [0.731 0.659]

Test data :

• Accuracy: 0.682

• Recall: [0.682 0.687]

• F1-score: [0.804 0.154]

In the same way as the random forest the feature “n_kontaktVarighetPerDagerFraTildeltTilOppmote_c”
is classified as the most important one for prediction, but there are two other features fea-
tured on the next two places. All of these features were not available when we trained the
first xgboost-model.

1. n_kontaktVarighetPerDagerFraTildeltTilOppmote_c

2. n_dagerSidenSisteUtfortEpisodeOver7DagerPerPas_c

3. n_andelPasAvbestPerHenv_c

4.3 Summary of results

In this chapter the features that showed promise when training the models was highlighted.
Some of them yields interesting plots where you can see that the patterns of the follow-up
class diverges from the ones we expect to show (pass) for appointments. The models also
shows some unique behavior where the Gaussian Naive Bayes seems to prioritize features
differently than the tree based models.

Table 4.7: This table shows the scores of all the different models for the test data. They have
not been trained on the test data and therefore these metrics are often the ones used to
compare the models

Independent Accuracy Recall F1-score
Random Forest 0.592 [0.587, 0.704] [0.804, 0.157]

Gaussian NB 0.640 [0.643, 0.579] [0.774, 0.119]
Xgboost 0.643 [0.643, 0.647] [0.775, 0.132]

Dependent Accuracy Recall F1-score
Random Forest 0.681 [0.680, 0.0.702] [0.804, 0.157]

Gaussian NB 0.681 [0.698, 0.569] [0.813, 0.135]
Xgboost 0.682 [0.682, 0.687] [0.804, 0.154]
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4.3 Summary of results

An important part of the results was to compare the dependent models with the inde-
pendent models. Overall the performance metrics shows that the models that uses the his-
toric features (thereby dependent) of the patient when training the models perform signif-
icantly better (see table 4.7). Even though the accuracy scores are quite similar for the de-
pendent models, we can see that the recall score (amount of correctly classified follow-up
patients) goes in disfavor when using the Gaussian Naive Bayes model.

58



Chapter 5

Discussion

For this thesis, we have looked into the data provided by Helse Vest RHF and tried to figure
out what characterizes a patient who does not show up to their scheduled appointment. We
have used some more traditional methods, where the data has been been looked at directly
and we have set up different forms of visualization, like bar plots, sector diagrams and KDE-
plots to see if we could spot some discrepancies or points of interests. We also set up three
prediction models, applying some of the more acknowledged machine learning algorithms
in Random Forest, Gaussian Naive Bayes (GNB) and xgboost.

5.1 Discussion of model

While the Random Forest and the xgboost are both based upon an ensemble tree model,
they have some key differences described in chapter 2.6. The Naive Bayes is fundamen-
tally different in the way that it sets up the model and as we see in the compared models, it
diverges a bit from the other models in what features it categorizes as more important.

When looking at the models (see table 4.7), the best ones seldom reach an accuracy
higher than about 70 %. This might not seem very high, but human behavior is a fickle
thing and is not very easy to predict. Even though the data fed into the model is identical,
it does not mean that people are, and the outcome of the appointment might in practice
end with two different results. It is especially relevant for psychiatric and addiction patients
which have a higher no-show rate than patients from other areas of medicine (Molfenter,
2013).

5.1.1 Optimal model

Discussing and deciding on an optimal model is not as straightforward as looking at the
accuracy and saying that one is superior to the other. We have shown multiple models, with
different performance metrics, which has their pros and cons regarding interpretability.

If you look at the independent models with GNB we see that the accuracy score for this
model can compete with the other two models, but the recall score shows that there a lot
more of the type II error (see chapter 2.2) than for the other models. This score also is lower
for the GNB trained with all features, but for this model also the accuracy is lower than the
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5.1 Discussion of model

other models. There could be variations for the setup of the parameters, but with our setup
it seems that when more features and data are available, the more complex tree models have
an advantage for this specific problem. With that said, you could argue for a trial with GNB
if the model were to be scaled to include other clinics as well. In that case a model has to
be more generalizable across clinics, and a model based on less or different variables might
perform better with the GNB.

The Random Forest does seem to get the highest recall value in both the independent
and dependent model, but with hyperparameters used for this model it seems that both the
independent model (see table 4.1) and the dependent model (see table 4.4) has a small ten-
dency of overfitting the data. This is seen by the accuracy being a bit higher for the training
data than it is with the test data. This could probably be improved with smaller trees and
more samples in split or in leaf nodes, but training a model with many parameters in grid
search, to then check performance in the test data, is a time consuming effort.

Apart from that the Random Forest model with all features available performed very well
with 0.681 accuracy and a lower type II error present than the other models.

The last model applied is the xgboost model with all features available and this model
seems to perform more stable between the training and test data. It matches the other mod-
els on accuracy and is not far behind the Random Forest on classifying no-shows correctly.
Between all these model it is therefore very difficult to conclude which model performs best,
or which would be best suited for implementation in the healthcare clinic.

The balance between accuracy and recall in this project is a difficult task to judge. You
would like to get a high as possible recall score without it worsening the accuracy score, but
for these types of models it is often a balance. If you want to increase the models ability to
predict the non showing patients, it will often times also get worse at predicting the patients
that do show. It is a give and take scenario, where you need to strike a balance on what to
prioritize.

If the model is implemented into daily use, a balance will be easier to find when applied
to a real life situation to see how the cost and workload is affected. Another thing to consider
is whether the implementation and resources invested, is experienced as an improvement
for the patient. Will the patient experience the predictions and actions based on the model
as an incentive to show up for their appointment, or as an invasion of their privacy? There
are many possible pitfalls one would like to avoid in such a scenario.

In general we do see that with all the features available the models performs better, and
that coincides with what was presented in chapter 2.4. When we started the project we were
also given some research from Helse Vest that suggested that having a patients history was
crucial for good performance in the model (Dantas et al., 2018; Molfenter, 2013). The data
that was taken out from the first models where mostly specific to the patient history, so this
could substantiate the notion that it is important for accurate predictions.

5.1.2 Optimal features

In the results we started by looking at some of the most relevant features manually by visu-
alizing them in different ways. The plots revealed some interesting patterns and tendencies
in the data. Some of the features that were highlighted was the time of the appointment,
patient age, and patient history. A nice characteristic of the models is the ability to say what
features are more important for predictions, a summary can be seen in table 5.1. We see
some of the type of features found in the analysis coincides with the top features in the
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5.1 Discussion of model

models. Not all of the features are represented, but in some cases it can just be due to a
different variant of the same feature (i.e. ratio vs count).

One thing that we found interesting when looking through the output of our models is
that many of the features ranked as most important for predictions were not dependent on
the patient. The GNB-model in both the dependent and independent case, listed the fea-
tures for month and day of the week as two of the three most important features for predic-
tion. This is interesting because it does not necessarily have anything to do with the patient,
but it might give some incentive to set patients prone to not showing up with appointments
in months and on days where they would be more likely to show. The age feature is de-
pendent upon the patient, but this is one of the features that has been grouped because of
anonymization. This could mean a GNB-model could perform better on the data prior to
discretization.

Both the Random Forest and the xgboost models characterizes the feature
n_kontaktVarighetPerDagerFraTildeltTilOppmote_c as the most important feature for
prediction when all features are available. This feature tells something about the planned
duration of all contacts to be held with the patient. For the xgboost the two other features
are more patient specific, but for the Random Forest model the most important features
says something about the scheduled time for attendance for the patient. This is interesting,
since as stated in the last chapter, patient history is crucial for good performance.

Table 5.1: The most important features for the models when predicting outcomes.

RandomForest

• n_kontaktVarighetPerDagerFraTildeltTilOppmote_c

• n_dagerFraTildeltTilOppmoteIPeriodenPerPas_c

• n_dagerFraTildeltTilOppmote_c

GNB

• c_kontaktOppmoteMaaned_r

• c_pasAlder_r

• c_kontakt_OppmoteUka_r

Xgboost

• n_kontaktVarighetPerDagerFra TildeltTilOppmote_c

• n_dagerSidenSisteUtfort EpisodeOver7DagerPerPas_c

• n_andelPasAvbestPerHenv_c

It is important however to note that when looking at past literature about no-show, that
different countries have different approaches and circumstances surrounding their health-
care services. The patients, the culture and setup of healthcare services (public/private)
vary, and thereby the results and conclusion in some of those papers may not be the trans-
ferable to Norway. The data itself is sometimes very different in what features are gathered.
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What features that are allowed is also very different in Norway as we have strong ethical
rules, and we will discuss this in section 5.2.2. The granularity in the data caused by the
anonymization makes the machine learning harder as well. If we had access to more accu-
rate values for the age and distance to clinic, or possibly if the patient live in an area with
decent public transport, we could possibly improve the predictions. The point is that given
the circumstances, the provided features are the ones found as most important, there could
however be better features available if allowed through legislation.

Hyperparameters

The models are trained as they go through a gridsearch with cross validation, and many
different parameters are tested in combination on the training data to find best fit for the
model. It is pretty straight forward, but for the Random Forest and the xgboost it can be a
time consuming effort and with all the different models that have been tested with different
feature selectors and sampling strategies it has taken some time to single out the models we
show in this thesis.

The hyperparameters for the models are chosen manually when put through the
GridSearchCV-method, which is explained in further detail in chapter 3.9.2. Many more
parameters could be tested at this stage. For example the number of estimators for Random
Forest could be set even higher to possibly reduce randomness and variation in the tress or
we could add more depth to the trees to find more subtle patterns, but this could potentially
cause the model to increase variance. One could further experiment with these parameters
to find better models.

The Gaussian Naive Bayes does not have as many possibilities for hyperparameter-
tuning. The only thing that may be worth changing is the prior, but that is if you have a
good estimate for the prior, else it uses the dataset and count the classes for the prior val-
ues. This could be looked into, and for the models we used with undersampling it could be
a good idea to change the prior, because it might think the balance between classes is more
symmetric than what is the actual case, but this will be for someone to check in the future.

5.1.3 Model transparency

One of the things we originally set out to do with these models, was to develop a model that
was not a complete black-box model. We wanted to find models that are somewhat explain-
able both for patients and healthcare workers. Now, when comparing the different models,
we made sure that the most important features was given as outputs, so that it is easier
to explain to patients why actions due to model prediction has been executed. Healthcare
workers can point to the features generated from the models as part of the reasoning for the
intervention. This is the same across all three models, which means that they all have this
option. However, if we want a more detailed explanation and more transparency it is clear
that random forest and xgboost is much better suited as one can refer to the trees as seen in
figure 5.1 to explain why a patient was predicted as a follow-up candidate.
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entropy = 0.75
samples = 60

value = [66, 18]

entropy = 0.0
samples = 15
value = [23, 0]

entropy = 0.945
samples = 58

value = [58, 33]

entropy = 0.0
samples = 2
value = [0, 5]

entropy = 0.962
samples = 209

value = [134, 214]

entropy = 0.978
samples = 70

value = [67, 47]

entropy = 0.869
samples = 97

value = [105, 43]

entropy = 0.999
samples = 50

value = [39, 36]

entropy = 0.641
samples = 224

value = [57, 293]

entropy = 0.86
samples = 200

value = [92, 233]

entropy = 0.89
samples = 11
value = [9, 4]

entropy = 0.0
samples = 2
value = [0, 7]

n_dagerSidenSisteUtfortEpisodeOver15DagerPerHenv_c <= 29.5
entropy = 0.654

samples = 75
value = [89, 18]

n_dagerSidenSisteUtfortEpisodeOver7DagerPerHenv_c <= 1042.0
entropy = 0.968

samples = 60
value = [58, 38]

n_antallDagerIPeriodenPerHenv_c <= 490.0
entropy = 0.988
samples = 279

value = [201, 261]

c_kontakt_OppmoteUka_r <= 4.5
entropy = 0.938
samples = 147

value = [144, 79]

entropy = 0.0
samples = 38
value = [0, 63]

n_dagerSidenSisteUtfortEpisodeOver7DagerPerHenv_c <= 10.5
entropy = 0.762
samples = 424

value = [149, 526]

n_dagerFraTildeltTilOppmote_c <= 13.0
entropy = 0.993

samples = 13
value = [9, 11]

entropy = 0.0
samples = 4
value = [6, 0]

n_dagerSidenSisteUtfortEpisodePerPas_c <= 20.0
entropy = 0.85
samples = 135

value = [147, 56]

n_dagerSidenSisteUtfortEpisodeOver15DagerPerPas_c <= 30.5
entropy = 1.0
samples = 426

value = [345, 340]

n_dagerFraTildeltTilOppmote_c <= 3.5
entropy = 0.726
samples = 462

value = [149, 589]

n_andelSykAvbestPerPas_c <= 11.0
entropy = 0.983

samples = 17
value = [15, 11]

n_antallDagerIPeriodenPerHenv_c <= 85.5
entropy = 0.992
samples = 561

value = [492, 396]

n_dagerSidenSisteUtfortEpisodeOver7DagerPerPas_c <= 78.0
entropy = 0.75
samples = 479

value = [164, 600]

n_kontaktVarighetPerDagerFraTildeltTilOppmote_c <= 363.0
entropy = 0.969
samples = 1040

value = [656, 996]

Figure 5.1: The Random Forest Classifier can print out the trees in the models, like this one.
Right here the scale is small, so it is hard to make out the different features and conditions
on each step, but it makes the model easy to interpret.

5.1.4 Independency assumption

At the start of our project we were led to believe that each row in the dataset could be seen as
independent from each other, even though the same patient could be represented multiple
times. It was not until much later that we discovered and were informed that many of the
features and rows are both dependent and based upon earlier data from patients. Still, there
was an agreement to continue the work as if each row were independent, because this is an
underlying assumption made already by Helse Vest in their ongoing project. Even though
we are making the same inaccurate assumption of independence, the models that contain
the dependent features outperforms the independent ones. In most cases the features are
historic and they supply more information for the prediction even though they are depen-
dent. They are available at the moment of prediction, so they can be used although they are
based on previous rows.

One thing that is important to remember here, especially since we do not have insight
about the clinic and information about which data that belongs to which patient, there
could be single patients that have a lot of rows in the dataset assigned to them. If this is
the case, and if that actual patient behaves in a way that is representative for the user base,
a single patient might actually affect how the model performs.

5.1.5 Computational Power

One of the largest obstacles in this thesis has been the hardware provided. Because of the
strict protection of the data for the patients we had to work on the computer provided by
Helse Vest. It was not the most powerful laptops and the preprocessing, analytics, plotting,
training the model and producing outputs took a lot time. After looking through the mod-
els, tweaking them and running the code multiple times, time went by quickly and some
point we had to stop experimenting, and focus our efforts on wrapping it up. At the end
of the project there are still multiple things we would have liked to explore further which
is not possible due to the time constraints and the limited hardware power. Some of these
explorations are summarized in the "Future Work" section.
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5.2 Practical application and challenges

5.2.1 Anonymity

As stated earlier in the thesis the provided patient data was partly pre-processed. The id
of the patients had been stripped, and some features were generalized such as the age and
distance from the hospital. The features like where they live, their sex, or other features
that could be used for re-identification had been plucked from the dataset. All to ensure
that it is anonymized to a k-anonymization of k=5, so that sensitive information is untied
to specific patients and GDPR is fulfilled. This is important for the privacy of the patients
and that ensures protection for potential misuse of the data if they were to go astray. As a
consequence of anonymization, we had to address how to handle the grouped data, and
discuss how the loss of granularity and features affects the models.

There has been extensive processes as part of the pre-processing in dealing with the gen-
eralized and somewhat incomplete data. However, we do not know if the way it was gen-
eralized as part of the anonymization is the optimal way for maintaining the performance,
as it drops due to anonymization as shown Wimmer and Powell (2014). For instance the
decision to divide the intervals for the age of patients could be reconsidered to better rep-
resent stages of life and their effects on appointment outcome. Maybe 20 to 27 years and
28 to 35 are better groups to capture these nuances? A point that was made as part of the
initial analysis was also the uneven sizes of the subgroups for the different ages. Possibly
the groups or bin-size could be made so that each subset was more uniform with the help
of adjusted intervals.

The distance being similar, and location being undisclosed was also a challenge. There
are differences for rural and urban areas according to Molfenter (2013). For the modelling
knowing if the location or the distance is within an area of decent cover of transport service
could be useful. Is it within a city or in a rural area with longer distances? Maybe one of
those locations are more likely to have residents with their own vehicles and therefore easier
access to the clinic. The purpose of this section is to briefly highlight that there are some
aspects of the objectives’ context that we did not have control over, and to discuss what
impact some of the anonymization could have had on the final result. Without access to the
prior data, it is not possible to investigate this further.

5.2.2 Ethics and discrimination

Some information about the patient will not be available to use for a project like this at all,
even though they could improve the performance of the model. Other than ensuring GDPR
rights, anonymization also has an ethical aspect to it. As part of the anonymization, features
in the data which can lead to discrimination are dropped. A feature that could give a perfor-
mance boost for a model like this, is the household income for the patient, but due to Nor-
wegian law this was not prescribed in this project (see chapter 2.1). It could be possible to
use, but there would be a long process to see how it would work on a legal level. At the same
time it could be hard to procure this data about the patient. The reason is that one should
not be judged solely on an automated process, especially where some groups can lead to
more frequent target prediction (follow-up) based on things they themselves cannot con-
trol. The ethnicity of a patient could give a more accurate model, but this would be based
on a irrational prejudice and would be considered discrimination if used for predictions.
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The fact is that in a society certain ethnic groups have been discriminated to some degree,
so some of these groups could have certain disadvantages, like weaker socio-economics.
Thereby ethnicity, sex and religion is not part of the features that are taken into considera-
tion. If a model were to incorporate this kind of patient information, there would be a risk of
built-in discrimination bias in the prediction. This kind of prejudice and built-in discrim-
ination in machine learning has been described in the paper by Pappada and Pauli (2018),
where it shows it is important to detect and eliminate these both from an ethical and legal
point of view. Thereby most information in the data provided is related to very basic patient
information, or details around the appointments and past history. This reduces the risk of
discrimination in any of the models based on these features.

5.2.3 Concept drift and practical application

An important stage of CRISP-DM (see figure 3.1) is the deployment stage. The deployment
stage has not been discussed in great detail up until now as the main focus of the thesis has
been the prior stages about the data and the development of the model itself. After working
on the latter stages, we wanted to devote some attention to discuss some of the challenges
we expect to see in the future with the deployment of the model (or similar models) consid-
ering the current plans for application. We decided to look into the field of "concept drift"
and how it can affect the application of models such as this.

Concept drift in follow-up predictions

The reason we bring concept drift into the discussion is that we want to prepare the future
development of a model like this at Helse Vest about some of the coming obstacles. In the
theory we explained the concept of concept drift. The discussion is to point out likely chal-
lenges to come, although it is mostly speculation based on assumptions and what we have
read about it in relevant literature. We do not have the possibility to test it in practice until
it is deployed, but it is important to plan ahead for the possible pitfalls. Currently the plan
for the application of the predictions of the no-show model (or follow-up in our case), is to
initiate some sort of intervention. This is possibly just an additional text or a phone call to
candidates that have high probability of not showing up a few days prior to the appoint-
ment. The intention of this intervention is to try and reduce these no-shows for the good of
the patient, but also for the benefits of reducing costs and wait times for others in turn as
well.

The problem with the current planned application is that it is very susceptible to concept
drift in the model as with the current practice it intervenes before an outcome is observed.
A candidate prior to the appointment can bear all the traits and features of a candidate for
follow-up. If the intervention takes place prior (and debatably even after) to the outcome,
candidates’ behaviour might alter. The observation is then a subjective observation due to
the intervention. This means a candidate with features resembling a typical follow-up (or
no-show), can be classified as a regular show as a result of an intervention. If the interven-
tions are effective enough and continues over time, the model performance will decay as
the characteristics or patterns of a follow-up candidate evolves. It is important to reiterate
that this is all based on assumptions, like assuming the intervention has an effect, and there
are more dimensions to it as well. The intervention could only have short term effect on
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one appointment for instance, but it could also depend on what type of intervention is ap-
plied. Either way, it raises some questions around whether the application of this type of
a model should change in order to be more sustainable over time. A different application
could reduce the rate of decay due to the interventions. In literature, some of the no-shows
predictions studies have the goal of developing a model with predictions of no-show to per-
form double-booking (see Huang and Hanauer (2014)). Applying a model this way will not
directly affect the target variable through its practices as it is a response to the outcome of an
appointment rather than aiming at changing a patients behaviour and decisions. This ap-
proach could be more sustainable based on what we have seen in the literature surrounding
concept drift. It will not completely remove concept drift, but the data will not drift directly
because of healthcare intervention on patients. The double booking approach is currently
not allowed in Norway due to article 22 in the GDPR as mentioned in the theory.

Figure 5.2: An illustration of the decay in models in terms of performance, and with regular
maintenance and retraining (Samuylova, 2020).

Probably the most common and simplest way of handling concept drift is simply by re-
training models as their performance drop below a certain threshold (see figure 5.2). It can
either be done periodically as manual learning where you manually re-develop the model
(like the process in this thesis). Or by having an automated system that can continuously
evaluate and monitor the performance, that re-trains the model as soon as it drops too low.
In all these cases the frequency and threshold for re-develop or re-train must be considered.
It is important to note that in the CRISP-DM process, the circle can go on indefinitely be-
tween the data, model, evaluation, and deployment. With the need of maintenance, there
is more work past the initial deployment as well. The process of maintaining and updating
models is something that must continue indefinitely, and as mentioned there are different
ways of re-training the models, either manually or automated. Part of this solution should
also be to introduce a new feature for the interventions in the model so that it can be taken
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into account when trying to find new patterns for the targeted variable. This also means
that the data might have to be divided into pre- and post-model-intervention data as the
context will be different for the target after the model deployment. Concept drift is a known
field within machine learning, where this section barely scratches the surface in an attempt
to bring attention to the phenomenon.

Concept drift due to the COVID-19 pandemic

Another challenge we see with the current models, is that we predict a change in the data
due to the COVID-19 pandemic. We do not know how the clinic has adapted it routines, but
assuming there have been changes in the year 2020, the data will probably also be different.
We do not know if the clinic for instance introduced digital options, or reduced the daily
capacity but we assume changes will be seen in the data for both 2020 and 2021 due to the
pandemic. This will change the landscape in the data, meaning that depending on how big
changes there has been in these years and whether new routines have been introduced, the
data can paint a different picture of typical follow-up candidates. Most of this, however,
is again speculation as we have no insight in specifically how the clinic has dealt with the
pandemic, and the challenges there. We just assume the pattern might have changed or
drifted, meaning that the post-pandemic model most likely will have to be trained more
similar to the pre-pandemic data, unless there has been new practice changes, like online
meetings or such.

5.2.4 Possible application and practices

In light of the described context and challenges around applications of these models we
would like to discuss some of the possibilities around the way a model is used. As high-
lighted in the last sections, double booking has the incentive of possibly performing better
in terms of concept drift, however, it is not currently legal. So how can we use the predictions
of our follow-up candidates? The prediction of the model was already coined as follow-up,
which means that there is an intention for reactively doing something with the candidates
that are either no-show or cancelling late. A discussion should be had around what way
the intervention or patient follow-up routine should be. It could as previously mentioned,
just be a reminder, however if you want to change behavior for the better, you likely need
something that is not as easy to ignore. There are many possibilities here, but it could for
instance be that patients actively have to confirm their appointments, so that they are fur-
ther obligated to meet up. In a study by Molfenter (2013), behaviour engagement strategies
was one of the more efficient approaches, which consisted of contingency management and
motivational interviewing. The largest challenge is to find approaches that outweighs the
cost-benefit and which are not too complicated to implement.

Our data did not have a profile for individuals, but as seen in some papers (i.e. (Huang
and Hanauer, 2014)) and also in our results that patients prior history is important. In the
model itself, this can be improved on by having possibly more features around this. It is im-
portant to distinct patients who have a one time slip up, such as a forgotten appointment,
and those who have recurrent and systematic absence. This should be taken into consider-
ation when deciding what way to follow up a patient, where a long time no-shower should
be taken in for a more thorough follow-up intervention.
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5.3 Future work

As mentioned in last section, the recent year has shown new and creative ways of offering
services remotely and digitally due to the pandemic, so there could be some possibilities
here as well. With the models, several of the predictions come with a "probability", where
the type of follow-up routines could be moderated by the probability of a follow-up. These
applications rely on reactively changing the outcome of an appointment, so the underlying
risk of deteriorating the model over time is present. Other than hoping on improving the no-
show rates, and reducing wait lines and costs, there are also other possible applications for
the model. We believe that having access to a model like this can be useful for the day to day
planing of the people offering these healthcare services. Having a way of forecasting which
appointments are at risk of not happening, could prove useful for short-term planning for
the healthcare workers involved. This means that healthcare possibly could plan ahead for
a more efficient work day, i.e. when to do paper work. Using the model in this way, does
not directly affect the patient, and would thereby not add to the concept drift directly. It
could also be something that is done in parallel with follow-up either way. There are in
other words, many possibilities for the application of the model itself. Which applications
to use has to be experimented on in practice, and reviewed over time to see their possible
effects.

5.3 Future work

In the future more and more models like this will be used to give patients a better health-
care offer. Hopefully without increasing the workload of the healthcare workers, or in a best
case scenario actually decreasing it and at the same time cutting costs. Before getting there,
multiple aspects of such a model has to be assessed. The legals of launching such a model
is massive, because every aspect of a patients privacy and rights has to be considered. Then
there is the actual practice of how it is to be used. What incentives could you potentially
implement for a patient to increase probability of them showing up without it being to in-
vasive and how do you check if the model actually performs. As discussed in the chapter
about concept drift, this is not as straight forward as it seems because of the fact that if you
go in and affect the outcome of a target value the performance of the model might decrease.

There has been some literature (Goldsteen et al., 2020) that optimizes the anonymiza-
tion process with the help of machine learning, where it can find the optimal anonymization
based on the performance of the applied model. This could be interesting to investigate fur-
ther, however it requires access to the un-anonymized patient data, where it is anonymized
as part of the model development. It is something that was outside our scope, as we do not
have access to the prior data. It could however be something for Helse Vest RHF to take into
their further development.

These aspects are more on the practical use of the model, but there are multiple things
that could be looked into directly related to our work as well. In this thesis we focused only
on three type of models that have been trained and tested. There are many more and it
could be interesting to investigate mplregressor (ANN) or maybe logistic regression models,
to compare how these models perform.

There are also other things to investigate, like try out other ratios on the sampling meth-
ods or maybe just try other sampling methods. BorderlineSMOTE for example tries in the
same way as SMOTE to synthesize new data based on the old data, but only in the region
that it classifies as just between two classes because this is the place where it is harder to
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5.3 Future work

distinguish classes. There could also be worth investigating other feature selecting meth-
ods or maybe just try the Extra Trees Classifier with other hyperparameters and see if other
features would be selected.

One thing that should be done, which was a little bit late into the project before we
figured out, is to implement the feature selector as part of the pipeline in sklearn. This
should not make an impact on performance, but could streamline the process of training
the model and maybe lead to a better method for testing what value k should get in the
SelectKBest-method.

In the end, we could also look into better methods of testing hyperparameter op-
tions for the model. In our project we used the GridsearchCV-method, but the
RandomizedSearchCV-method could possibly make it easier to test a wider range of
hyperparameters without increasing training time. It works by testing random selection of
the grid that has been set up and choose the best model.
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Chapter 6

Conclusions

6.1 The project

The objective of this master thesis has been to investigate and explore how machine learning
can be applied in appointment predictions (no-shows) at a psychiatric clinic. The project
was approached with a CRISP workflow (see figure 3.1), the industry standard for data min-
ing. Thereby the first stage of this project was studying up on relevant theory that could
help us understand the business aspect of a healthcare service, and how machine learning
has been used before. The studies we read were not performed in Norway and have there-
fore very different circumstances, with other rules, laws and regulations to follow. Still, it
gave us some ideas on how to proceed with our project, and it was also useful for the data
understanding and preparation (CRISP).

With the processed data, we explored the data by visualizing it with different types of
plots to investigate and search for relevant features for the prediction model. The initial
steps lead to a better understanding of the context, and the issues surrounding patient no-
shows. In light of the challenges in the project, we found that a more practical approach
to the target variable was to redefine the standard target of no-show to a follow-up candi-
date instead. Follow-up candidates are any patients that do not show up on the day, or that
cancel less than 3 days beforehand. The purpose was to adjust it for the intended practical
applications (forecasting 3 days in advance), but it also helped out with the imbalance of
the different outcomes.

With the theoretical background and most of the preparation of the data finished, the
project moved onto the modelling. Other than finding the right type of model, optimiza-
tion and fine tuning of each model was a big part of the evaluation stage of this project. In
many ways this was work that could have continued indefinitely. As addressed throughout
this thesis, finding the optimal or best model for this kind of problem is a challenge in itself.
There are no obsolete performance metrics; Some models score better on accuracy, while
others score better on recall or precision. There is also a limit due to the very nature of hu-
man behaviour to how well a model like this can perform at all. That means several metrics
have to be taken into consideration when looking for the right model together with its prac-
tical advantages. Openness and transparency of the model was sought after as GDPR and
Helse Vest requires a model that is easy to interpret, both for the patient and the healthcare
workers. This is one of the aspects that also has to be taken into consideration when picking
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6.2 What have we personally learned?

a model. We found that in most cases that both the xgboost and the Random Forest Classifier
performed somewhat better than Gaussian Naive Bayes. Xgboost and Random Forest also
have the possibility to print out their underlying decision trees. That means these models
can help with the transparency of these processes, where healthcare workers can show the
trees to patients and explain it’s predictions if requested. All these models could however
show which features that made the most significant impact for the decision.

As mentioned earlier, the art of predicting human behaviour is a difficult one. When we
went into the project we had a preconception that a patient’s individual properties would be
vital for the prediction outcomes, and in some cases they are. However many of the features
prioritized by the models were not necessarily patient specific, but more of a logistical type.
Like what day of the week or month the patient appointment was scheduled, or the duration
from scheduled appointment till it was held. Even so, we can see that the models trained in
this project still have some skill at forecasting what patient will show, and not show. A deep
dive in the theory suggested that making profiles with history of the patient was vital for
good performance in our models, but we have seen that these are not the only features im-
portant for prediction. Either way this means that it can be worthwhile investigating which
scheduling times are at risk for certain patient groups. We also had some discussion about
the application and future deployment of these models, where we see some challenges to
come related to the data for the next few years. It is hard to make any specific suggestions
in light of this without any insight into the new data, or the changes at the clinic itself.

One of the most exciting steps was when we stumbled onto the area of concept drift when
looking into the deployment stage. We had little knowledge about it beforehand, and it was
exciting to read about it and implementing it as part of our discussion. We learned that
these models will need maintenance to prevent degradation of the future model and it’s
predictions. Some suggestions about what to do to avoid or reduce it has been discussed,
but it cannot be tested before the model is deployed.

6.2 What have we personally learned?

Working on this thesis has been fruitful in many ways. We had a project with an exciting
problem, and with an opportunity to apply a lot of the knowledge attained throughout the
last few years of our masters degree. It has been exciting to work on real data, and on a real
case within a field we initially knew little about, no-show predictions in health care. It has
been motivating to work on a project proposed by Helse Vest RHF, knowing that the work
invested here could potentially be useful for their ongoing project. The master thesis has
been an excellent way of experiencing the CRISP workflow, and seeing first hand how the
different stages are intertwined. Past projects in past courses have had somewhat idealized
and simplified cases, where as in this thesis we got to experience it in practice and at a greater
extent. Generally we hope our discoveries, discussions and methods will be of interest and
use for Helse Vest RHF.

Throughout the thesis we have had meetings with Helse Vest with our latest findings. It
has been vital for our work, where we have presented our progress for feedback and to clar-
ify questions we have had along the way. Having to work with a business, communicating
the ongoing work, the plan and their expectations has been major part of the experiences
attained. It has been very insightful, but also challenging and frustrating at times.

Working on this project has required us to refine a lot of our existing knowledge and pro-
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6.2 What have we personally learned?

gramming skills. We had to address various challenges such as working with an imbalanced
and anonymized data set. Trying to work around these challenges in the visualization and
the model development has been a decent learning curve that we feel we managed to over-
come. Both of us have experiences with previous masters, but co-writing a masters thesis
has been a completely new experience. It has been a challenge overall surrounding the hard-
ware and workspace requirement on Helse Vest’s computer systems. Having to sync up our
coding and writing was also a big part of the challenge. However, cooperating on a project
like this has been absolutely priceless as well. We have had an excellent opportunity for
bouncing off ideas and observations we have made throughout the thesis. There has been a
lot problems to solve, and having a partner to discuss possible solutions with has been very
useful. Although we did not always agree, we always managed to find a compromise. It all
allowed us to extend much further and thoroughly at each stage of the thesis. In order to
make it work with two of us co-writing and solving theses issues, we had to plan ahead and
delegate different roles and responsibilities throughout the project. Overall we are pleased
with how well the cooperation has worked with each other and Helse Vest.

The project gave us experience in having to solve a problem for an arbitrary business and
field we had little knowledge about beforehand. The overall process of attaining necessary
understanding, processing the data, developing models and evaluating them, was filled with
many obstacles to overcome. We believe this is the most important experience overall, as
with most projects within applied data science it is all about bridging machine learning with
the unknown.
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Appendix A

Plots with undersampled data

In this section you will find a sample of random seeds for the of some of the same selected
KDE-plots for the "Follow-up" target value for other random undersamples. All of these
used the same settings as discussed in the results, imblearn’s random undersampler with
a ratio of 0.7. We see that some of these observations are consistent for with each random
under sample, and that the selected plots in the results are not just cherry picked.
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Plots with undersampled data

Figure A.1: Example KDE-plots for random under sampling with seed 687.
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Plots with undersampled data

Figure A.2: Example KDE-plots for random under sampling with seed 1281.
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Plots with undersampled data

Figure A.3: Example KDE-plots for random under sampling with seed 8464.
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Appendix B

Data variables and description

This appendix covers a more detailed list for the variables in the data set provided by Helse
Vest RHF. The data was provided as CSV-files and we also got an excel file with information
for the different variables/features. The description is for both the training and test set. The
variable names are descriptive explanations in Norwegian, followed by a column with more
in depth description of the variable in English. Not all of these description are complete as
they did not unveil all the information about all the variables. The column a the of datatype
has the following types:

• Bool - Boolean, binary values.

• Int - Numeric value, sometimes categorical

• Char - String value, categorical features.

The column "Available" is meant to be "Available at the time of prediction". Not all vari-
ables can be used in the model as they are estimated or gathered close before an appoint-
ment or after. Some of the values in "Available" are set to "Predicted" which means it is the
target features (to be predicted). Some description fields are marked ????, where Helse Vest
could not disclose the full explanation of the feature.
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Data variables and description

Variable name Variable description Datatype Available
b_erNyPasient_c New patient (1 = YES, 0 = NO) For this and

other variables, "new" means new in the con-
text of the time period of the dataset. Thus,
a patient is regarded as a new patient if the
scheduled appointment is the first appoint-
ment in the dataset belonging to this spesific
patient.

Bool Yes

b_erNyPasientIHenv_c New medical referral? (1 = YES, 0 = NO)
The medical referral is regarded as new if the
scheduled appointment is the first appoint-
ment in the dataset related to this spesific re-
ferral.

Bool Yes

b_kontaktErDirekteTime_c The appointment time is set directly (1 = YES)
or a tentative time slot is used before a final ap-
pointment time is confirmed (0=NO). In both
cases, the patient is only informed about the
final appointment time.

Bool Yes

b_kontaktOnskerPaaminning Has the patient of the scheduled appoint-
ment given written consent to recieve SMS re-
minders for upcoming appointments (0 = No
registered answer, 1 = YES, 2 =NO)

Int Yes

b_kontaktPaaminingSendt Has an SMS reminder related to the scheduled
appointment been sent to the patient? (1=
YES, 0 =NO)

Bool No

c_henvFagomraade The medical field of the scheduled appoint-
ment’s referral. Pseudonomized, i.e. the num-
bers can not be used to find the spesific field
names, just used to separate between the dif-
ferent fields.

Int Yes

c_henvType Referral type (1= Assessment , 2 = Treatment,
3 = Check-up)

Int Yes

c_kontakt_OppmoteTid_r Scheduled appointment time, hour Int Yes
c_kontakt_OppmoteUka_r Scheduled appointment time, weekday (1 =

Monday, 2 = Tuesday, 3 = Wednesday, 4 =
Thursday, 5=Friday, 6= Saturday, 7= Sunday)

Int Yes

c_kontaktAvsluttkodeID Appointment exit code, numeric (305 = No-
show, 308 = Canceled by patient, 314 = Ap-
pointment conducted)

Int Predicted

c_kontaktAvsluttkodeNavn Appointment exit code, text Char Predicted
c_kontaktOmsorgsNivaa Care level of the scheduled appointment (1 =

Residential, 2 = Day treatmeant, 3 = Outpa-
tient clinic )

Int Yes
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Data variables and description

c_kontaktOppmoteMaaned_r Scheduled appointment time, month (1= Jan-
uary, 2 = February, 3 = March, 4 = April, 5 =
May, 6= June, 7= July, 8=August, 9= Septem-
ber, 10 = October, 11 = November, 12 = De-
cember)

Int Yes

c_kontaktType Appointment type (1= Assessment , 2= Treat-
ment, 3 = Check-up)

Int Yes

c_pasAlder_r The patient’s age group. Each age group con-
sists of 10 years, e.g. [20-29)

Int Yes

c_sistePLKontaktAvsluttKode _c Exit code for the previous appointment,
i.e. the patient’s latest appointment that
precedes the scheduled appointment in
question. Missing value if this is the pa-
tient’s first appointment in the dataset. See
"DIM_c_sistePLKontakt AvslutKode_c.xlsx"

Int Yes

n_andel_PasAvbestPerPas Over7Dager_c Historic cancellation ratio for the patient
of the scheduled appointment, where the
cancellation finds place 7 days or more be-
fore the appointment time. The patient’s
number of previous appointments with
c_kontaktAvsluttkodeID = 308 (registered
at least 7 days before the appointments),
divided by the patient’s total number of pre-
vious appointments (which is present in the
dataset).

Int Yes

n_andelIkkeMottPerPas_c Historic no-show ratio for the patient of
the scheduled appointment. The patient’s
number of previous appointments with
c_kontaktAvsluttkodeID = 305, divided by the
patient’s total number of previous appoint-
ments (which is present in the dataset).

Int Yes

n_andelPasAvbestPerHenv_c Historic cancellation ratio for the referral of
the scheduled appointment. The number of
previous appointments related to the refer-
ral in question with c_kontaktAvsluttkodeID=
308, divided by the total number of previous
appointments related to this referral (which is
present in the dataset).

Int Yes

n_andelPasAvbestPerPas_c Historic cancellation ratio for the patient
of the scheduled appointment. The pa-
tient’s number of previous appointments with
c_kontaktAvsluttkodeID = 308, divided by the
patient’s total number of previous appoint-
ments (which is present in the dataset).

Int Yes
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Data variables and description

n_andelPasAvbestPerPas3Dager_c Historic cancellation ratio for the patient
of the scheduled appointment, where the
cancellation finds place 3 days or less be-
fore the appointment time. The patient’s
number of previous appointments with
c_kontaktAvsluttkodeID = 308 (registered
at most 3 days before the appointments),
divided by the patient’s total number of pre-
vious appointments (which is present in the
dataset).

Int Yes

n_andelPasAvbestPerPas7Dager_c Historic cancellation ratio for the patient
of the scheduled appointment, where the
cancellation finds place 7 days or less be-
fore the appointment time. The patient’s
number of previous appointments with
c_kontaktAvsluttkodeID = 308 (registered
at most 7 days before the appointments),
divided by the patient’s total number of pre-
vious appointments (which is present in the
dataset).

Int Yes

n_andelSykAvbestPerHenv_c Historic hospital cancellation ratio for the re-
ferral of the scheduled appointment. The
number of previous appointments related to
the referral in question that have been can-
celled by the hospital (not by the patient), di-
vided by the total number of previous appoint-
ments related to this referral (which is present
in the dataset).

Int Yes

n_andelSykAvbestPerPas_c Historic hospital cancellation ratio for the pa-
tient of the scheduled appointment. The num-
ber of the patient’s previous appointments
that have been cancelled by the hospital (not
by the patient), divided by the patient’s total
number of previous appointments (which is
present in the dataset).

Int Yes

n_andelUtfortElekEpisoder IPeriodenPer-
Henv_c

Number of historic elective appointments per
day, for the referral related to the scheduled
appointment. The number of elective ap-
poitments related to the referral in question
present in the dataset, divided by the dataset’s
day count.

Int Yes

n_andelUtfortElekEpisoderIPeriodenPerPas_c Number of historic elective appointments per
day, for the patient of the scheduled appoint-
ment. The patient’s number of elective appoit-
ments present in the dataset, divided by the
dataset’s day count.

Int Yes
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Data variables and description

n_andelUtfortOHEpisoderIPeriodenPerHenv_c Number of historic urgent appointments per
day, for the patient of the scheduled appoint-
ment. The patient’s number of urgent appoit-
ments present in the dataset, divided by the
dataset’s day count.

Int Yes

n_andelUtfortOHEpisoder IPeriodenPerPas_c Number of historic urgent appointments per
day, for the patient of the scheduled appoint-
ment. The patient’s number of urgent appoit-
ments present in the dataset, divided by the
dataset’s day count.

Int Yes

n_antallDagerIPerioden PerHenv_c ??????? Int Yes
n_antallDagerIPerioden PerPas_c ??????? Int Yes
n_antallIkkeMottPerPas_c Historic no-show count for the patient of

the scheduled appointment. The patient’s
number of previous appointments with
c_kontaktAvsluttkodeID = 305 (which is
present in the dataset).

Int Yes

n_antallKontakterPerHenv_c Number of historic appointments for the refer-
ral of the scheduled appointment in question.

Int Yes

n_antallKontakterPerPas_c Number of historic appointments for the pa-
tient of the scheduled appointment in ques-
tion.

Int Yes

n_antallPasAvbestPerHenv_c Historic cancellation count for the referral of
the scheduled appointment. The number of
previous appointments related to the refer-
ral in question with c_kontaktAvsluttkodeID=
308 (which is present in the dataset).

Int Yes

n_antallPasAvbestPerPas_c Historic cancellation count for the patient
of the scheduled appointment. The pa-
tient’s number of previous appointments
with c_kontaktAvsluttkodeID = 308 (which is
present in the dataset).

Int Yes

n_antallPasAvbestPerPas3Dager_c Historic cancellation count for the patient
of the scheduled appointment, where the
cancellation finds place 3 days or less be-
fore the appointment time. The patient’s
number of previous appointments with
c_kontaktAvsluttkodeID = 308 (registered at
most 3 days before the appointments).

Int Yes

n_antallPasAvbestPerPas7Dager_c Historic cancellation count for the patient
of the scheduled appointment, where the
cancellation finds place 7 days or less be-
fore the appointment time. The patient’s
number of previous appointments with
c_kontaktAvsluttkodeID = 308 (registered at
most 7 days before the appointments).

Int Yes
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Data variables and description

n_antallPasAvbestPerPasOver7Dager_c Historic cancellation count for the patient
of the scheduled appointment, where the
cancellation finds place 7 days or more be-
fore the appointment time. The patient’s
number of previous appointments with
c_kontaktAvsluttkodeID = 308 (registered at
least 7 days before the appointments).

Int Yes

n_antallSykAvbestPerHenv_c Historic hospital cancellation count for the
referral of the scheduled appointment. The
number of previous appointments related to
the referral in question that have been can-
celled by the hospital (not by the patient).

Int Yes

n_antallSykAvbestPerPas_c Historic hospital cancellation count for the pa-
tient of the scheduled appointment. The num-
ber of the patient’s previous appointments
that have been cancelled by the hospital (not
by the patient).

Int Yes

n_antallUtfortElekEpisoderIPeriodenPerHenv_c Number of historic elective appointments, for
the referral of the scheduled appointment.

Int Yes

n_antallUtfortElekEpisoderIPeriodenPerPas_c Number of historic elective appointments, for
the patient of the scheduled appointment.

Int Yes

n_antallUtfortOHEpisoderIPeriodenPerHenv_c Number of historic urgent appointments, for
the referral of the scheduled appointment.

Int Yes

n_antallUtfortOHEpisoderIPeriodenPerPas_c Number of historic urgent appointments, for
the patient of the scheduled appointment.

Int Yes

n_avstandKomSyk Distance between the patient’s municipality
and the hospital’s municipality, given in kilo-
meters.

Int Yes

n_dagerFraAvbestTilOppmote_c If the appointment was canceled, this variable
describes at what point in time the cancella-
tion found place, measures in number of days
before the scheduled appointment time.

Int No

n_dagerFraTideltTilOppmote_c How early was the patient informed of the
scheduled appointment? Given in number of
days prior to the scheduled appointment time.

Int Yes

n_dagerFraTildeltTil OppmoteIPeriodenPer-
Henv_c

??????? Int Yes

n_dagerFraTildeltTil OppmoteIPeriodenPer-
Pas_c

??????? Int Yes

n_dagerSidenSisteUtfort
EpisodeOver15DagerPer Henv_c

Number of days between the refer-
rals’s last conducted appointment
(c_kontaktAvsluttkodeID =314) and the
scheduled appointment in question. This
"last appointment" must have been con-
ducted at least 15 days before the scheduled
appointment (so it is not necessarily the most
recent appointment)

Int Maybe
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Data variables and description

n_dagerSidenSisteUtfort
EpisodeOver15DagerPer Pas_c

Number of days between the patient’s last con-
ducted appointment (c_kontaktAvsluttkodeID
=314) and the scheduled appointment in
question. This "last appointment" must have
been conducted at least 15 days before the
scheduled appointment (so it is not necessar-
ily the most recent appointment)

Int Maybe

n_dagerSidenSisteUtfort
EpisodeOver7DagerPer Henv_c

Number of days between the refer-
rals’s last conducted appointment
(c_kontaktAvsluttkodeID =314) and the
scheduled appointment in question. This
"last appointment" must have been con-
ducted at least 7 days before the scheduled
appointment (so it is not necessarily the most
recent appointment)

Int Maybe

n_dagerSidenSisteUtfort
EpisodeOver7DagerPerPas_c

Number of days between the patient’s last con-
ducted appointment (c_kontaktAvsluttkodeID
=314) and the scheduled appointment in
question. This "last appointment" must have
been conducted at least 7 days before the
scheduled appointment (so it is not necessar-
ily the most recent appointment)

Int Maybe

n_dagerSidenSisteUtfort EpisodePerHenv_c Number of days between the last conducted
appointment related to the referral in ques-
tion (c_kontaktAvsluttkodeID =314) and the
scheduled appointment in question.

Int Maybe

n_dagerSidenSisteUtfort EpisodePerPas_c Number of days between the pa-
tient’s last conducted appointment
(c_kontaktAvsluttkodeID=314) and the
scheduled appointment in question.

Int Maybe

n_dagerTilTimeGitt_c Number of days between the patient’s last ap-
pointment and the scheduled appointment in
question?

Int Yes

n_kjoretidKomSyk Driving time between the patient’s municipal-
ity and the hospital’s municipality, given in
hours.

Int Yes

n_kontaktVarighet Planned duration of the scheduled appoint-
ment, given in minutes.

Int Yes

n_kontaktVarighetPerDager FraTildeltTilOpp-
mote_c

??????? Int Yes

n_kontaktVarighetPerDager IPerioden_c ??????? Int Yes
n_venteTid_c Patient "wait time" for the referral of the

scheduled appointment. The time from the
referral was set in motion till the referral has
been assessed by the specialist health service.

Int Maybe
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Appendix C

Dependent model variables

The following features are considered dependent features:

• n_antallUtforteOHEpisoderIPeriodenPerPas_c

• n_antallUtforteOHEpisoderIPeriodenPerHenv_c

• n_antallUtforteElekEpisoderIPeriodenPerPas_c

• n_antallUtforteElekEpisoderIPeriodenPerHenv_c

• n_andelUtforteOHEpisoderIPeriodenPerPas_c

• n_andelUtforteOHEpisoderIPeriodenPerHenv_c

• n_dagerFraTildeltTilOppmoteIPeriodenPerHenv_c

• n_kontaktVarighetPerDagerIPerioden_c

• n_kontaktVarighetPerDagerFraTildeltTilOppmote_c

• n_andelUtforteElekEpisoderIPeriodenPerPas_c

• n_andelUtforteElekEpisoderIPeriodenPerHenv_c

• n_dagerSidenSisteUtfortEpisodePerPas_c

• n_dagerSidenSisteUtfortEpisodeOver15DagerPerPas_c

• n_dagerSidenSisteUtfortEpisodeOver7DagerPerPas_c

• n_dagerSidenSisteUtfortEpisodePerHenv_c

• n_dagerSidenSisteUtfortEpisodeOver15DagerPerHenv_c

• n_dagerSidenSisteUtfortEpisodeOver7DagerPerHenv_c

• n_dagerFraTildeltTilOppmoteIPeriodenPerPas_c

• n_antallSykAvbestPerPas_c

84



Dependent model variables

• n_antallSykAvbestPerHenv_c

• n_antallPasAvbestPerPas_c

• n_antallPasAvbestPerHenv_c

• n_antallKontakterPerPas_c

• n_antallKontakterPerHenv_c

• n_antallPasAvbestPerPas3Dager_c

• n_antallPasAvbestPerPas7Dager_c

• n_antallPasAvbestPerPasOver7Dager_c

• n_antallIkkeMottPerPas_c

• n_andelSykAvbestPerPas_c

• n_andelSykAvbestPerHenv_c

• n_andelPasAvbestPerPas_c

• n_andelPasAvbestPerHenv_c

• n_andelPasAvbestPerPas3Dager_c

• n_andelPasAvbestPerPas7Dager_c

• n_andel_PasAvbestPerPasOver7Dager_c

• n_andelIkkeMottPerPas_c
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