
 

 
Faculty of Science and Technology 

Department of Electrical Engineering and Computer Science 
 

 
 

A General Infrastructure for Communication between Petri 
Modules 

 
 

An approach based on GPenSIM 

 
 

Master’s Thesis in Computer Science 
By 

MD Suhel Ahmed 

 
 

Internal Supervisors 

Dr. Reggie Davidrajuh 

 
 
 

June 15, 2021 
 
 
 
 
 
 
 
 



Abstract 
 
Modularization provides many benefits to real-world discrete-event systems, such as flexibility, 
comprehensibility, and robustness. Davidrajuh[2] presents a new modular Petri net with well-defined 
Petri modules. With the new modular Petri net, distributed Petri modules are designed. The modules are 
hosted on different computers that are geographically kept apart but can communicate over the network. 
The distributed Petri modules approach minimizes the simulation time; reduces the state space size and 
other complexities. The distributed Petri modules are implemented in the software known as General-
purpose Petri Net Simulator (GPenSIM). 
 
In this thesis, a network layer is implemented into GPenSIM to allow the distributed modules to 
communicate. Two distributed systems are designed and implemented in GPenSIM, and MATLAB TCP/IP 
socket communication is used to develop the network. Implementing a network layer into GPenSIM allows 
simulation that is more realistic and easy to analyze the performance. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

I am grateful to my supervisor, Dr. Reggie Davidrajuh, for giving me the chance to work on my thesis under 

his supervision. Despite his hectic schedule, his help, guidance, support, and helpful suggestions and 

advice were vital throughout the thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Contents 
1 Introduction .......................................................................................................................................... 6 

1.1 Outline........................................................................................................................................... 7 

2 Background ........................................................................................................................................... 8 

2.1 Technical and Theoretical Background ......................................................................................... 8 

2.1.1 Petri Net ................................................................................................................................ 8 

2.1.2 Modular Petri net ................................................................................................................ 10 

2.1.3 GPenSIM .............................................................................................................................. 11 

2.1.4 TCP/IP .................................................................................................................................. 13 

2.2 Literature Review and Formulation of the Problem ................................................................... 17 

2.2.1 Literature review ................................................................................................................. 17 

2.2.2 Problem definition .............................................................................................................. 18 

3 Method and Design ............................................................................................................................. 20 

3.1 Design .......................................................................................................................................... 20 

3.1.1 Distributed System for Computing Quadratic Equation ..................................................... 20 

3.1.2 Client-Server Model ............................................................................................................ 24 

3.2 Techniques .................................................................................................................................. 30 

3.2.1 IO port-driven Modules....................................................................................................... 30 

3.2.2 Colored Petri Net ................................................................................................................ 30 

3.2.3 TCP/IP Socket Communication ........................................................................................... 31 

4 Implementation .................................................................................................................................. 32 

4.1 Distributed System for Computing Quadratic Equation ............................................................. 32 

4.1.1 Client ................................................................................................................................... 32 

4.1.2 Multiplier ............................................................................................................................. 35 

4.1.3 Adder ................................................................................................................................... 37 

4.2 Client-Server Model. ................................................................................................................... 38 

4.2.1 Module A ............................................................................................................................. 38 

4.2.2 Module B ............................................................................................................................. 41 

4.2.3 Module X ............................................................................................................................. 42 

5 Testing, Analysis and Results .............................................................................................................. 45 

5.1 Compute Quadratic Equation ..................................................................................................... 45 

5.2 Client-Server Model .................................................................................................................... 49 



6 Discussion ............................................................................................................................................ 54 

6.1 Limitations of the work ............................................................................................................... 54 

6.2 Future work ................................................................................................................................. 55 

References .................................................................................................................................................. 56 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1 

 

1 Introduction 
 

In a distributed architecture, components are displayed on separate platforms, and vast number of 
components might collaborate through a communication network to achieve a specific purpose. The 
client-server architecture is an example of a distributed system. Distributed systems are built on the 
principles of transparency, dependability, and availability. 
 
The project deals with discrete event dynamic systems (DEDS), which are asynchronous dynamic systems 
in which discrete events in the system trigger state transitions [1]. Manufacturing and communication 
systems are only two examples of dynamic systems that feature a DEDS framework. More applications 
may be added to the DEDS framework due to the state space method for expressing and evaluating such 
systems. In developing the state space method to studying DEDS, it will be assumed that some of the 
system's events are controllable, i.e., may be activated or deactivated. The purpose of DEDS control is to 
direct the system's behavior in a way that we find desirable. However, it's also believed that we can only 
view a subset of the events, i.e., we can only view part of the events that are taking place in the system, 
not all of them. Therefore, we may be obliged to make choices about the system's condition and regulate 
a DEDS based only on our observations in some instances. 
 
There is booming progress in DEDS areas; as a result, it may genuinely describe and solve some issues in 
manufacturing systems, communication, and computer networks. However, many natural systems which 
need to be studied by DEDS are usually very complicated. The system describes at three different levels, 
logical level, timed models, and stochastic performance level from the different views, analyze its behavior 
and performance and solve the control problem [2]. An important area of the logical level DEDS research 
is the Petri Net formalism. The most remarkable topic is the development of high-level PN. The spirit is to 
specify more structured content for the tokens, thus reducing the number of places and the complexity 
of the PN operations. 
 
Petri net is a handy tool for modeling discrete-event systems. Many application areas of Petri net, such as 
performance evaluation and communication protocol design, are successful applications. Up-and-coming 
applications model and analyze distributed software systems, distributed databases, flexible 
manufacturing, and industrial control systems [2]. However, Petri's new models of real-life systems are 
enormous, even for a simple system, and their state spaces are usually of infinite size. Due to the vast size 
of the model, analyzing the model for its structural and behavioral properties become difficult. The most 
important and useful property of Petri nets is their explicit state space. The state space is automatically 
generated, showing every possible state that can be eventually reached from an initial state. Model-
checking from the huge or infinite state space is often difficult, if it is possible at all. During simulations, 
the tokens in a Petri net have to go through every transition and place on their path. In addition, the 
transitions have to be checked for their enabled and the other firing conditions from the environment 
that makes the simulations run slowly. 

 



To minimize the size of the Petri nets and the state space, specific slicing methods are recommended. 
Unfortunately, though effective in a tiny hypothetical example, these slicing methods have little or no 
effect in real-world discrete-event systems. As a result, there is a need for alternate slicing approaches 
that are successful for Petri net models of massive real-world systems. As a remedy to the problem, Reggie 
Davidrajuh [3] presented a new Modular Petri net. Large Petri net models are divided into modules in a 
modular Petri net. These modules are small, and their state spaces are small enough that they may be 
thoroughly examined. The novel Petri net is implemented in the program GPenSIM [4], which is critical 
for modeling, analyzing, and optimizing real-world discrete-event systems with GPenSIM. Many 
advantages of modularization have been discovered, including flexibility (the ability to add or remove 
functionality), comprehensibility (model readability), reduced development time, and robustness (less 
prone to error). One of the new modular Petri net's development goals is to construct distributed systems; 
the modules must be able to execute on several processors. Modeling cyber-physical systems with 
geographically dispersed components but integrated via inter-modular communication are made possible 
by running modules on various computers. 

 
All distributed systems have a communication infrastructure at their core. It's pointless to analyze 
distributed systems without looking at how processes on various computers might communicate data. In 
distributed systems, communication relied on low-level message forwarding provided by the underlying 
network. Because no distributed platforms exist, expressing communication through message passing is 
more complicated than utilizing primitives based on shared memory. When process A wishes to interact 
with process B, it creates a message in its own address space. Then it makes a system call, which instructs 
the operating system to transmit the message to B through the network. Although the underlying concept 
is straightforward, A and B must agree on the meaning of the bits being transferred to avoid unrest. To 
communicate via a network, a collection of computers must all agree on the protocols to be used. Before 
sharing data, the sender and receiver must explicitly establish a connection and perhaps negotiate the 
protocol they will use with connection-oriented protocols. Finally, they must disconnect the connection 
after they are finished. This thesis will communicate with Petri nodules using the TCP/IP protocol suite, 
which is the most widely used protocol. We will also examine the protocol's regulations. 
 
In this project, two models of large discrete-event systems with Petri modules are designed: distributed 

systems for computing quadratic equations [5] and a client-server model of distributed systems. The 

thesis focuses on general infrastructure for communication between Petri modules. The modules that 

make up the model can be run on different computers. A network layer has been implemented in 

GPenSIM to allow the Petri modules to communicate with each other. The TCP/IP socket has been used 

for the communication between Petri modules. 

 

1.1 Outline 
 

There are six chapters in this thesis report. Chapter 2 discusses the technical and theoretical background 
in addition to related works. Chapter 3 provides the design and methods of the project where the block 
diagrams that explore the components of the system besides that the flowchart shows how the system is 
working. Chapter 4 represents the implementation of the systems of distributed modules. Chapter 5 
provides the user manual and analyzes the simulation results. Finally, chapter 6 discusses the work's 
originality and limitations and proposes some future work that can be executed in the future. 

 



Chapter 2 

 

2 Background 
 

This chapter provides a background to the work. This chapter has two sections. In the first section, the 

theoretical and technical background will be discussed, which is required to understand the work of this 

thesis. It starts by explaining the basic theory of Petri net and modular Petri net. Then, will give a brief 

idea about GPenSIM, a General-purpose Petri Net Simulator software used to implement modular Petri 

net and simulation purpose. Finally, it provides the basic knowledge of TCP/IP protocol and how it works 

in the MATLAB platform. The second section discusses some related works that have been done before 

on this topic. Then, it discusses the problem definition and approach solution to the problem. 

 

2.1 Technical and Theoretical Background 
 

As mentioned above, this section aims to talk about the technical and theoretical background of the topic. 

Therefore, this summary on technical and theoretical knowledge will help understand the work done in 

this thesis. 

 

2.1.1 Petri Net 
 
Because of its graphical representation and well-defined semantics, the Petri net is frequently used to 

model and simulate discrete-event systems [6]. It provides advantages such as being readily available, 

simple to comprehend, and simple to use. Petri nets have a distinct edge over other networks in terms of 

description and analysis. At the same time, a Petri net is a mathematical entity with a precise definition. 

It may be utilized for static structural analysis and dynamic behavior analysis thanks to the mathematical 

advancement of Petri nets analysis methodologies and techniques. Petri net modeling methodology may 

mimic systems having properties like concurrency, asynchrony, distributed parallelism, and uncertain 

equivalence. 

Places and transitions are the two sorts of elements in a P/T Petri net. Transitions indicate active 

components, whereas locations represent passive components (such as input and output buffers and 

conveyor belts) (such as machines, robots). A Petri net is a directed bipartite graph, which means that a 

place may only be linked to transition(s) and a transition to place(s); arcs are the connections between 

places and transitions. 

Petri nets have tokens in addition to places, transitions, and arcs. Tokens are things that may flow between 

nodes in a network, such as materials in a material flow system or data (or information) in an information 

flow. Tokens are stored in places, and they travel between them via the arcs. In a Petri net, tokens appear 

as black dots. When a place has a significant number of tokens, it is more common to use digits rather 



than black dots to indicate the number of tokens. The default weight of the arcs connecting places to 

transitions and transitions to places is one. If the weight of an arc is more than unity, the weight is 

displayed in the arc. Thus, the arc weight is a measurement of the arc's ability to transfer many tokens at 

once. 

P1, P2, and P3 are shown in Figure 1.1. These three places each have 5 tokens, 2 tokens, and 0 tokens. 

When a transition fires, several tokens are removed (‘consumed') from the input place, and new tokens 

are placed (‘produced') in the output place; the arc weights determine the quantity of tokens consumed 

and created. The number of tokens in the input places must be equal to or more than the weights of the 

arcs linking the input places to the transition for the transition to fire. After that, the transition will be able 

to fire (enabled transition). After the transition t1 has fired once, Figure 1.2 depicts the condition of the 

sample Petri net from Fig. 1.1. 

 

 
 
 
 
 
 
 
 

 
 

Fig. 2.1: Sample Petri net 
 

 

 

 

 

 

 

Fig. 2.2: Petri net after one firing of t1 
 

In the Petri net shown in Fig. 1.2, the places P1 and P2 are input places to transition t1, and P3 is an output 
place of transition t1. 
 

 Places: Input and output buffers, as well as conveyor belts, are examples of passive components. 

 Transitions: Active components such as machines and robots are represented by transitions. 

 Tokens: Tokens are items that may move between nodes in a network. 

 



Formal Definition of Petri nets 

A Petri net is a 4-tuple (P, T, A, m0) 
Where 

P is the set of places, P = {p1, p2, . . . pn} 
T is the set of transitions, T = {t1, t2, . . ., tm} 
A is the set of arcs (from places to transitions and from transitions to places) 
 

A _ (P x T) ꓴ (T x P), and [6] 
 
m is the row vector of markings (tokens) on the set of places 

m = [m (P1), m (P1), . . ., m (Pn)] ϵ Nn, m0 is the initial marking. 
 

 

2.1.2 Modular Petri net 
 

There are certain drawbacks to using Petri nets to represent real-world discrete-event systems, such as 
the size of the model (even for a basic system), the slowness of simulation, the complexity of analyzing 
the model, and the explicit state space [3]. As a result, certain slicing methods are proposed for reducing 
the size of Petri nets and the state space. These slicing methods, however, are ineffective on real-world 
discrete-event systems. 
 
The problem can be solved using a modular Petri net. Modularization is a way of breaking down Petri net 
models into modules to make them easier to develop and analyze. The huge and sophisticated Petri net 
models of real-life discrete-event systems are broken into modules in a modular Petri net. These modules 
are small, and their state spaces are small enough that they may be thoroughly examined. The following 
are some of the advantages of modularization: 
 

 Adaptability (ability to add or change functionality) 
 Comprehensibility (readability of the models) 
 Reduced development time, as well as 
 Robustness is a quality that describes a person's ability to withstand (less prone to error) 

 
Numerous studies have been done on developing modular models with Petri nets, and many strategies, 
such as fusion places, fusion transitions, and substitution transitions, have been proposed. A 
modularization of Petri nets using fusion locations and fusion transitions was reported in ref. [20]. Fusion 
places and fusion transitions are two distinct types of locations and transitions. Due to the firings of the 
local (members of the module) transitions, these locations and transitions are only used to divide a Petri 
net model into modules and examine them independently. Though fusion locations and fusion transitions 
appear to be highly beneficial for modular model construction, they go against the core notion of 
modularization: data hiding. 
 
A new modular Petri net was presented by Reggie Davidrajuh [3]. There are zero or more Petri Modules 
and Inter-Modular Connectors in a modular Petri net (IMC). The Petri modules are self-contained, allowing 
them to be built and tested separately. The Inter-Modular Connector (IMC) joins the modules together. 
This new modular Petri net was created specifically for use with GPenSIM. 



The new design's objectives are as follows: 
 

 Data hiding: The purpose of storing data inside modules is to abstract away internal information 
at a higher level. 

 Independent modules: The modules are self-contained and have the potential to become self-
contained. 

 Synchronization of modules: Modules must be able to execute on separate processors, according 
to synchronization. 

 
 
There are four separate sets of elements in a Petri module: 
 

1. Input ports: The input gates of a module are input port transitions. Tokens can only be directed 
into the module through these transitions (input ports). 

2. Output ports: The output gates of a module are output port transitions. Tokens can only be routed 
away from the module through these transitions (output ports). 

3. Local transitions: A local transition consumes tokens from local input locations and deposits 
tokens into local output places as the module's local member (internal element). 

4. Local places: A local location, as a module's local member, feeds tokens to the module's local 
transitions or input and output ports. Tokens are obtained by a local location from either local 
transitions or the module's input and output ports. 

 

 

2.1.3 GPenSIM 
 

GPenSIM defines a Petri net language for modeling and simulation of discrete-event systems on MATLAB 
platform [6]. GPenSIM is developed by Reggie Davidrajuh [4]. GPenSIM is also a simulator with which Petri 
net models can be developed, simulated, and analyzed. In addition, GPenSIM can also be used as a real-
time controller. Even though GPenSIM is a new simulator, many researchers around the world are using 
it. GPenSIM is easy to learn, use, and extend. 
 
With the addition of the ability to create modular Petri net models, GPenSIM may now be used to model 
and evaluate real-world systems. The newer version of GPenSIM (version 10) allows modularization so 
that flexibility (ability to add or change functionality) and comprehensibility (readability) of the model can 
be improved. GPenSIM supports many Petri nets extensions, such as inhibitor arcs, transition priorities, 
enabling functions, color extension. In addition, it provides a collection of functions for performance 
analysis. Because of its flexibility, it is also easy to implement any other Petri net extensions with GPenSIM 
 
GPenSIM was created with three primary objectives in mind: 
 

1. Discrete-event systems modeling, simulation, performance analysis, and control. 
2. A tool that is simple to use and expand, as well as 
3. Integration of Petri net models with other MATLAB toolboxes. 

 
 
 



Methodology for Creating a Petri net with GPenSIM 
 
There are three steps to create a Petri net model in GPensIM- 
 
Step-1. Defining the Petri net graph in a PDF. 
Step-2. Coding the firing conditions in the relevant pre-processor files and post-firing activities in the post-      
processor files. 
Step-3. Assigning the initial dynamics of a Petri net in the MSF. 
 

● Petri net Definition Files (PDF): The Petri net Definition File contains the definition of a Petri net 
graph (static information). The purpose of a PDF is to identify the elements (places, transitions) of 
a Petri net and specify how they are connected. If the Petri net model is broken into several 
modules, each module is defined in its PDF; there may be several PDFs. 

 
● Pre-processor file: A pre-processor file contains the code for additional conditions to check 

whether an enabled transition can fire; in other words, a pre-processor is run before firing a 
transition to make sure that an enabled transition can start firing depending upon some other 
additional conditions (‘firing conditions’). Further, we can write separate pre-processors for each 
transition or combine them into a single common pre-processor. It is also allowed to use individual 
pre-processors together with the common pre-processor. 

 
● Post-processor file: A Post-processor file is run after the firing of a transition. A post-processor 

contains code for actions that have to be carried out after a specific transition completes firing. 
Just like pre-processors, post-processors can be specified for individual transitions or combined 
into one common post-processor. 

 
● Main Simulation File (MSF): Main simulation file contains the dynamic information such as initial 

tokens in places, firing times of transitions of the Petri net. 
 

 
 

Integrating with MATLAB Environment 
 
One of the most important reasons for developing GPenSIM and its most advantage is its integration with 
the MATLAB environment to harness diverse toolboxes available in the MATLAB environment [6]; see Fig. 
2.2. For example, by combining GPenSIM with the Control System Toolbox, we can experiment with hybrid 
discrete-continuous control applications. 
 
 
 
 
 
 
 
 
 



 

 

 

 

 

 

 

 

 

 

 

Fig. 2.3: Integrating with MATLAB environment 
 

 

 

2.1.4 TCP/IP 
 

Transmission Control Protocol/Internet Protocol (TCP/IP) allows digital machines to interact across great 
distances. The Internet protocol suite specifies how data should be packetized, addressed, transferred, 
routed, and received from beginning to finish. 
 
This functionality is divided into four abstraction levels, each of which categorizes all connected protocols 
based on the breadth of the networking involved. The layers are as follows: 
 

1. Application layer: Responsible for node-to-node communication and controls user-interface 
specifications. 

 
2. Transport layer: Responsible for end-to-end communication and error free delivery of data. 

 
3. Internet layer: Provides internetworking between independent networks. 

 
4. Network access/Link layer: Contains communication methods for data that remains within a 

single network segment 
 
 
 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.4: TCP/IP model 
 

 

TCP/IP in Matlab 

TCP/IP communication functionality in Instrument Control Toolbox offers the ability to construct clients 
and servers. TCP/IP client functionality allows you to connect to distant hosts via network socket 
communication from MATLAB for reading and writing binary and ASCII data. In addition, you may 
construct a network socket for communication between MATLAB and a single client using TCP/IP server 
functionality. 
 

TCP/IP communication with a Remote Host 

There are some steps required to communicate with a remote host using TCP/IP. 

1. Create an instrument object- First need to create a TCP/IP instrument object. 

t = tcpip (‘127.0.0.1’, 80); 

Here, 127.0.0.1 is the host address and 80 is port. In most cases, you need to specify the value of 

the port otherwise 80 will be used as default value. 

2. Connect to the instrument- Once the object is created, you need to establish a connection with 

remote host by open the connection to the server. The function is-  

fopen (t); 

An error may occurs if the server is not available, busy or do not accept the connection request. 



3. Write and read data- If the connection established successfully, you will be able to communicate 

with the server. The functions of write and read operations are- fprintf, fscanf, fwrite and fread. 

4. Disconnect- If the write and read operations are done, disconnect the communication with the 

object by calling fclose function. 

fclose (t); 

 

 

TCP/IP Server Sockets Communication 

TCP/IP Server Sockets Communication in Matlab is available using the tcpserver function. This support is 
for a single remote connection. This connection is used to communicate between a client and MATLAB or 
between two instances of MATLAB. For example, collect data from one instance of MATLAB and then 
transfer it to another instance of MATLAB. 
 
In server socket communication, it is necessary to set the NetworkRole property in the tcpip interface. It 
uses two values, client and server, to establish a connection as the client or the server. The server socket 
feature supports binary and ASCII transfers. 
 
There is an issue with TCP/IP server socket communication in MATLAB; while a server socket is waiting for 
a connection after calling fopen, the MATLAB processing thread is blocked. 
 

 

Communication between Two Instances of MATLAB 

The sample code for each session is shown in the following example, which explains how to link two 

MATLAB sessions on the same machine. In the code for Session 2, substitute "localhost" with the server's 

IP address to utilize two distinct PCs. The IP address "0.0.0.0" indicates that the server will accept the first 

computer that attempts to connect. Replace "0.0.0.0" in the code for Session 1 with the client's address 

to limit the connections that will be made. 

Session 1: Server 

A TCP/IP server is represented by a tcpserver object, which accepts a TCP/IP client connection request 
from the supplied IP address and port number. The data may be obtained from the client using the read 
function once the server has established a connection. 
 
t = tcpip ('0.0.0.0', 4000, 'NetworkRole', 'server');  
fopen(t); 
fread(t); 

The server accepts a connection from any machine on port 4000 and open the connection by calling 

fopen(), then read the data by function fread(). 

 

 



Session 2: Client 

A tcpclient object in MATLAB represents a connection to a remote host and port for writing and reading 
data. The remote host must already exist and can be a server or hardware that supports TCP/IP 
connection. 
 
t = tcpip ('localhost', 4000, 'NetworkRole', 'client');  
fopen(t); 
fwrite(t, data); 

Client, creates a client interface and looks for connection on port 4000 by fopen(). Then, writes data to 

the server by calling fwrite() function. 

Functions and Properties to Read and Write Data over TCP/IP 

These are some functions used to read and write ASCII and binary data over TCP/IP. 

Functions Purpose Operate mode 

fprintf Writes data as text to the server Synchronous 

fscanf Reads data as text from the server Synchronous 

fwrite Writes binary data to the server Synchronous 

fread Reads binary data from the server Synchronous 

fgetl Reads a line from the server Synchronous 

 

There are some properties, which are associated with reading and writing operation of data over TCP/IP. 

Property Purpose 

InputBufferSize Specify the size of input buffer in bytes during read operation 

OutputBufferSize Specify the size of output buffer in bytes during write operation 

Timeout States the waiting time to complete read and write operations in second 

ValuesReceived Total number of values read from the server 

ValuesSent Total number of values written to the server 

 

When the object operates in synchronous mode, the MATLAB command line is blocked by the reading 
and write routines until the job is done or a timeout occurs. When the object operates in asynchronous 
mode, the read and writes routines return control immediately to the MATLAB command line. Read data 
asynchronously by setting the function ReadAsyncMode in continuous or manual mode. 

t.ReadAsyncMode = continuous; 



2.2  Literature Review and Formulation of the Problem 
 

This section aims to discuss some related works. First, I will give a short literature review on some of the 
many beautiful pieces that have been done about Petri net. Then, I will define the problem going to be 
solved, explaining why the topic is engaging. 
 
 

2.2.1 Literature review  
 

The basic P/T Petri net does not support modules. Savi [7] is one of the early works to mention Petri Net 
modules. Savi (1992) used event graphs as modules, and the modules had transitions as interfaces. 
 
De (1994) also is one of the early works on modules [8]. De (1994) focuses on modeling and optimization 
of circuit boards [8]. Proposed the modular Petri net solution to the problem. Here, the proposed model 
must be designed so that all the necessary communication must be preserved in one module to avoid 
complexity and improve efficiency. They have also suggested using a two-level hierarchy in the models 
for better and fast design. 
Xue (1998) focuses on modeling flexible manufacturing systems with modular Petri net models [9]. In Xue 
(1998), a flexible manufacturing system is divided into subsystems (e.g., the arrival of raw material, 
machining, and finishing, etc.), and each subsystem is modeled as a Petri net module [8]. 
 
After that, the fusion modular-Petri net gain importance. Refs [10], proposed a model using the fusion 
places in place of standard places and the fusion transitions in place of standard transitions.  These places 
and transitions are modified versions of the original that are used to convert the models in modules based 
on firing of the local transitions. 
 
  
Tsinarakis (2005) is about reusable generic modules [11]. Tsinarakis (2005) assumes that a manufacturing 
system can be divided into basic building blocks such as production lines, assembly, disassembly, and 
parallel machining elements. And these basic building blocks can be developed as generic modules, then 
customized to specific needs [11]. Similar to Tsinarakis (2005), Lee (2009) also proposes "reconfigurable 
modules'' to tackle uncertainties associated with models [12]. 
 
The modular Petri net modules are also used in the medical modeling and applications. Refs [13, 14], 
proposed a modular-Petri net system for the “Spanish Health System”. The proposed model used the 
advantages of the modular scheme and model, the complex system in an easy systematic fashion. The 
model allows the easy analysis and exploration of the system. 
 
There are tools for making modular Petri net models. Bonnet (2006) presents "Exhost-PIPE'' [15], and 
Jensen (2015) present "CPN", a well-known tool for Petri Nets [16]. Though all these tools support modular 
model building, they do not support distributed modules that can communicate between themselves. 
 
Refs [17], proposed a modular network for the avoidance of risk or threats in an IT system. Here, two 
different set of models have been used for the design of an overall system. One of them is used for the 
production systems and other for the IT system. The overall system is referred to as information and the 
control network. 
 



The idea of hosting Petri modules on different computers that are geographically kept apart and the 
modules communicating between themselves did not exist before it was presented by Davidrajuh (2020) 
[18]. Davidrajuh (2020) presents geographically distributed Petri modules to minimize the simulation 
time, reduce the state space size and other complexities, and keep the modules closer to where they are 
needed [18]. To develop distributed Petri net modules, Davidrajuh (2019) presents a new modular Petri 
Net with well-defined Petri modules [3]. All the ideas behind the distributed Petri modules are 
implemented in the software known as General-purpose Petri Net Simulator (GPenSIM), presented in 
Davidrajuh (2018) [6].  
  
 

2.2.2 Problem definition 
 

Modeling a large discrete-event system with Petri modules in which the modules are distributed. In a large 
modular Petri net model, the modules that make up the model can be run on different computers. We 
need to make a network layer in GPenSIM, allowing the Petri modules to communicate with each other 
using TCP/IP sockets. 
 
Many works have been done on Petri net and modular Petri net, but these are not distributed modules, 
and communicating ideas do not exist between modules. The proposed idea [11], distributed Petri 
modules are different and quite interesting because modules must be running on different computers 
and exchange information between them through a communication channel. This master thesis can be 
considered as a continuation of the work presented in Davidrajuh (2020). Though Davidrajuh (2020) 
presents the idea and definition of distributed modules, the communication between modules is not 
mentioned in detail. 
 
In this thesis, two systems developed with modular Petri net where system possesses different modules, 
the modules are distributed and capable of running on different computers. The modules are using the 
TCP/IP for communication. TCP/IP is the Internet protocol suite available with every computer; thus, it is 
chosen as the protocol for data exchange between the modules.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.5: Distributed Petri modules 
 
 



Fig. 2.5 shows a system consists of three modules, where the modules are distributed and connected with 
a TCP/IP-based communication channel to exchange information between them. A network layer is 
implemented in GPenSIM using MATLAB TCP/IP sockets so that the distributed agents can communicate 
with each other and exchange information to perform the job. 
 
The models are designed and implemented with GPenSIM. This modeling approach minimizes the 
simulation time and reduces the state space size and other complexities. In addition, GPenSIM is used to 
analyze and understand the performance of the system. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3 

 

3 Method and Design 
 

This chapter discusses the design architecture of the models and the techniques are used to design the 

modules. It starts with discussing the design of a distributed system for computing quadratic equations 

and the overall functions of the system. Then, discuss the design of the client-server model to dissolve 

overall into modules and necessary operations performed by transitions and places of the modules. 

Finally, it discusses the methods/techniques are used to implement the distributed systems for 

communication. 

 

3.1 Design 
 

In this thesis, two modular Petri net models are designed and implemented in GpenSIM. The idea of 

creating the modular Petri net is to make the Petri modules enable to run on different computers and 

communicate with each other over the network. One model is developed for a system to compute a 

quadratic function; the system consists of three modules: client, multiplier, and adder. Another model is 

designed for client-server communication; this system also possesses three modules. In both systems, the 

modules are distributed and can be run on different computers and can communicate in a distributed 

environment. The overall design of the two systems is explained below. 

 

3.1.1 Distributed System for Computing Quadratic Equation 
 

The system consists of three distributed modules (communicating agents), client, multiplier, and adder to 

solve a quadratic function (e.g., f = ax2 + bx + c) collaboratively. 

 Client: takes the values of the variables a, b, c, and x, and provides the job to be done. 

 Multiplier: receive the input values of a, b, c, and x, and do the multiplication. E.g, perform (a,x,x), 

(b,x) and returns the calculated values to the client. 

 Adder: takes the input value, perform arithmetic operations, and return the arithmetic sum. E.g, 

takes input (a,b,c) and returns (a+b+c). 

 

Fig. 3.1 shows the sequential operations between the modules. The client, multiplier, and adder are 

three distributed Petri modules; they exchange information like TCP/IP packets to complete the job. In 

fig. 3.1, the client first sends the values of (a.b,c,x) to multiplier as input. After multiplication is done, the 

multiplier returns the result values to the client. E.g., (a.x2, b.x, c). Then, the client receives the result 



values and sends them to the adder as input. Finally, the adder returns the arithmetic sum to the client 

as the final result, and the job is done. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1: Basic functionality of the modules 
 

 

Overall Design of the Model 

Each module of the system consists of transitions and places, where the transitions represent the activities 

and places represent the buffer for messages [3]. For example, fig. 3.2 represents an IO port-driven-based 

modular Petri net model designed and implemented in GPenSIM. Three Petri modules (client, multiplier, 

and adder) make up the Petri model for computing quadratic equations connected by a TCP/IP-based 

communication channel. When the modules are distributed that need to communicate, a set of transitions 

is defined as I/O ports through which the modules can send their packet to communicate with each other. 

Client: has four transitions and four places, two input transitions (tCI_Mul, tCI_Add), two output 

transitions (tCO_Mul, tCO_Add), and four places (pC0, pC1, pC2, pC3) respectively. 

Multiplier: consists of three transitions and two places, one input (tMI), one output (tMO), one local 

transition (tM), and two places (pM1, pM2) respectively. 

Adder: has same as multiplier, three transitions and two places. One input (tAI), one output (tAO), one 

local transition (tA), and two places (pA1, pA2) respectively. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2: IO port-driven based modular Petri model 
 

Functionalities of the System 

To solve the quadratic function (e.g., f = ax2 + bx + c), the transition tCO_Mul takes input values of the 

respective variables and creates a message as TCP/IP packet. After making the packet, it requests a 

connection to the multiplier server to send the packet/message (values) through TCP/IP 

socket, tCO_Mul acts as a client. 

In the multiplier module, the input transition tMI acts as a server that establishes a connection when it 

gets the connection request from the client and reads the data packet. Once the message is received, the 

values (message/packet) are saved to place pM1 as a token. Transition tM is a local transition, which 

consumes the token from the place pM1, performs computation (multiplication), and saves the result to 

the place pM2 as a token. The output transition tMO acts as a module client, which consumes the token 



from place pM2 and creates a TCP/IP packet message. Then, tMO sends a connection request to the 

server of the client module to return the result values through the communication channel. 

In the client module, the tCI_Mul is an input transition that serves as a server of the client module that 

establishes a connection when it gets connection requests from the multiplier module and starts reading 

the data packet. The received values (message/packet) are saved into the place pC2 as a token. 

Transition tCO_Add consumes the token from the place pC2 and creates a data packet to send it to the 

adder module for arithmetic operations. The tCO_Add acts as a client, which requests a connection to the 

adder server and sends the packet through TCP/IP socket. 

The functions of the adder module are the same as the functions of the multiplier module; only the local 

transition tA is responsible for doing the arithmetic operations instead of multiplication and save the sum 

into the place pA2 as a token. Finally, tCI_Add establish a connection after getting a connection request 

from the adder and read the packet to receive the results as a message, tCI_Add acting as a server of the 

client module. Display the results, and the job is done. After one job is done, the client gets ready for 

another job or computation. 

 

Table 3.1, 3.2, and 3.3 explain the functions of the transitions and places of the different modules. 

 

Elements Purpose 

tCO_Mul Gets input values, makes connection request, and send values to the 

multiplier as TCP/IP packet. 

tCI_Mul Establish connection with multiplier, reads network packet, and receive 

messages from multiplier. 

tCO_Add Consumes token (message/values) from input place, make connection 

request, and send the values to the adder. 

tCI_Add Establish connection with adder, reads data packet, and receive the results 

from adder. 

pC0, pC1, pC3 These three places used only to make connection with transitions into client 

module for looping purpose 

pC2 The result values from multiplier is saved into this place. 

 

Table 3.1: Elements of the client module and their purpose 

 

 

 



Elements Purpose 

tMI Establish connection with client, reads network message, and save the 

values into respective place. 

tM Do the necessary multiplication. 

tMO Consumes tokens from input place, creates data packet, and make 

connection request to returns the results.  

pM1 The values from client are saved into this place. 

pM2 Calculated values of local transition tM are saved into this place. 

 

Table 3.2: Elements of the multiplier module and their purpose 

 

Elements Purpose 

tAI Establish connection with client, reads network message, and save the 

values into respective place. 

tA Do the arithmetic operations. 

tAO Consumes tokens from input place, creates data packet, and make 

connection request to returns the results. 

pA1 The values from client are saved into this place. 

pA2 Arithmetic values calculated by tA are saved into this place. 

 

Table 3.3: Elements of the adder module and their purpose 

 

 

3.1.2 Client-Server Model 
 

The client-server model is designed to see how the communication of distributed systems works in client-

server interaction patterns. In this thesis, TCP/IP is used as middleware for communication in a client-

server architecture. The system can be considered an example of an electronic mail system where every 

user agent is allowed to write, send, and receive e-mail. In this modular Petri net model, when a module 

wants to communicate with another module, it first creates a message in its address, passes the message 

to the server, and then gets acknowledgment that message is delivered. Likewise, the receiver module 

connects to the server and check whether any message is addressed to it. If so, read the message and 

display it. Fig. 3.3 shows the basic client-server interaction. 



 

 

 

 

 

 

 

Fig. 3.3: The client-server interaction 
 

 

 

Overall design of the system 

The system contains three different Petri modules in which the modules are distributed and run on 
different processors. In addition, these modules exchange information like TCP/IP packets. Here, 
modules A and B are communicating agents, allowed to send and receive messages. The module X acting 
as a server, I would say a “transceiver” because this module has a direct TCP/IP-based connection 
to A and B to receive and transfer the message for communication between A and B. 
 

 Module A: Generates tokens (messages) at different times and sends the message to 
module B through the module X. In addition, the module receives messages addressed to it. There 
is no connection or provision to send any message to module B directly. 
 

 Module B: Generates tokens (messages) at different times and sends the message to 
module A through module X. Moreover, the module receives messages addressed to it. There is 
no connection or provision to send any message to module A directly. 

 
 Module X: Acts as a transceiver. Therefore, X receives messages from A and B, checks the source 

and destination, and then transfers the messages to the destination. 
 

 
 
 
 
 
 
 
 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.4: Distributed system in client-server architecture 
 

Functionalities of the system 

Fig. 3.4 represents a client-server based distributed system, which is designed and implemented in 

GPenSIM. A set of transitions are defined as I/O ports through which the modules can communicate with 

each other. 

Module A has three transitions and two places. One input transition (tAl), one output transition (tAO), 
one local transition (tA), and two places (pA1 and pA2). 
 
Module B: contains three transitions and two places. One input transition (tBl), one output transition 
(tBO), one local transition (tB), and two places (pB1 and pB2). 
 
Module X: consists of two transitions and one place. One input transition (tXl), one output transition 
(tXO), and a place (pX0). 
 
Tokens (messages) are generated by the local transitions of both modules A and B arbitrarily. For 
example, suppose in module A, the local transition tA generates a token at time unit 20 and saved into 
place pA1. The token possesses two colors, “From: A” and “To: B”. tAO consumes the token in 



place pA1 and creates a message (data packet). Then, tAO requests for a connection to server X to send 
the message. Also, tAO receives an acknowledgment from the server as the message is received. 
 
In module X, tXl will establish the connection request and reads the network message to receive 
it. tXl also sends an acknowledgment to the sender. The received message will be stored in place pX0 as 
a token. The tXO consumes the token from the place pX0 and extracts the message by identifying the 
source and destination. For example, if the message's source is “From: A”, it will make a connection to the 
destination (e.g., To: B) of the message to transfer the message to the intended destination and vice 
versa. tXO will get an acknowledgment once the recipient receives the message. 
 
Transition tBl of module B will listen to the communication channel and establish the requested 
connection of module X. tBl reads the network message once the connection is established, send an 
acknowledgment message, and saves the message to the place pB2. The transition tAl of module A will 
do the same function as of module B. 
 
The activities of module B are similar to A. The only difference is that when local transition tB generates 
tokens, the colors would be “From: B” and “To: A”. This is how modules A and B will generate tokens at 
different times and communicate with each other through module X. 
 
 
 

Elements Purpose 

tXI Establish the connections, removes messages from TCP/IP, sends 

acknowledgment message, and store into pX0 as a token 

tXO Consumes the token from pX0, identify the source and destination of the 

message; make connection to the destination to transfer the message, and 

receive acknowledgment once the message is received. 

pX0 Holds the received messages by tXI. 

 

Table 3.4: Transitions and places of module X and their purpose 

 

Table 3.4, 3.5, and 3.6 represents the transitions and places of the modules and their functionality. 

 

 

 

 

 

 



Elements Purpose 

tAI Listen to the communication channel; receive any message addressed to it, 

send an acknowledgment message to the sender, and save the received 

message as a token in pA2. 

tA Produces tokens arbitrarily at different times and deposit the tokens into 

pA1. Tokens possess two colors “From: A” and “To: B” 

tAO Consumes the token in place pA1, creates data packet, sends a connection 

request to X server, and receives acknowledgment. 

pA1 Holds the token from tA 

pA2 Holds the received message by tAI 

 

Table 3.5: Transitions and places of module A and their purpose 

 

Elements Purpose 

tBI Listen to the communication channel; receive any message addressed to it, 

send acknowledgment message, and save the received message as a token 

in pB2. 

tB Produces tokens arbitrarily at different times and deposit the tokens into 

pB1. Tokens possess two colors “From: B” and “To: A” 

tBO Consumes the token in place pB1, creates data packet, sends a connection 

request to X server, and get acknowledgment. 

pB1 Holds the token from tB 

pB2 Holds the received message by tBI 

Table 3.6: Transitions and places of module B and their purpose 

 

Fig. 3.5 shows how the modules work during the system running time. When the system started, three 

modules are running. Module X has direct TCP/IP-based connections to A and B to receive and transfer 

the messages. After generating the tokens by modules A and B, send a connection request to X, TCP/IP; 

check the connection status if connections status is open and the server is ready, then establish the 

connection with the server. If the connection status is closed or the server is busy with another job, it will 

wait for a while and send a connection request again. Then, X receives the tokens and extracts the 

message, check all the possible statements to make the connection with the intended destination, e.g., if 

the message is from B, then send the message to A or if the message is from A then send the message 

to B. After the job is done, the server will be activated again to receive another message. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.5: Executions of the modules in client-server based distributed system 



3.2 Techniques 
 

This section discusses the techniques and methods are used to implement the modular Petri models and 

the network protocol used to developed communication between the modules. There are two techniques 

used to model the Petri Modules and the TCP/IP protocol used to implement the communication between 

the modules. 

 

3.2.1 IO port-driven Modules 
 

The GPenSIM supports three types of modules: IO port-driven, IO buffer-driven, and Hybrid type module. 

In IO port-driven modules, the input and the output gates of the module are transitions. At the same time, 

the input and the output gates of the module are placed in an IO buffer-driven module. 

IO port-driven modules for modeling more independent agents in a peer-to-peer topology, whereas IO 

buffer-driven modules for modeling agents in a master-slave environment. The models are designed as IO 

port-driven modules as it is better for the peer-to-peer approach, where the transitions represent the 

activities, and the places represent buffer for messages. All the messages exchanged between the 

modules happens in the form of tokens. In IO port-driven modules, each module can take the tokens (jobs) 

destined for them, perform the work, and then send the results to whoever needs the results through the 

com-mon buffer. However, IO port-driven modules need more implementation (coding) as more functions 

have to be programmed for grabbing the jobs from the common buffer and placing the results back into 

the common buffer with the address of the recipient tagged on the results. 

 

3.2.2 Colored Petri Net 
 

GPenSIM's coloring is fundamental, as it only accepts ASCII tags as colors [3]. Colored Petri Net (CPN) is a 
mathematical construct based on Petri nets. Coloured Petri nets maintain valuable Petri net traits while 
also extending the basic formalism to allow token differentiation. Colored Petri Nets vary from standard 
Petri Nets in one crucial way: tokens are more than blank markers; they include data. Tokens can have a 
data value linked to them in CPN. The token color refers to the connected data value. Even though the 
color can be of any kind, colored Petri nets usually contain tokens of just one kind. The place's color set is 
the name for this category. The modeling language can function with systems that require 
synchronization, communication, and resource sharing thanks to the data tokens. 
 
 
CPNs are extremely useful for conversational modeling because: 
 

 They're a straightforward formal model. 

 They are shown graphically. 

 They enable concurrency, which is required for many complex interactions. 

 They've been well investigated and understood, and they've been used in a variety of real-world 
scenarios. 



 There are several tools and methodologies for designing and analyzing CPN-based systems. 
 
 
 

Coloring Tokens 

• When using colors in GPenSIM: 

– Only transitions can manipulate colors: in Pre-processor, one can add, delete, or alter 

colors of the output tokens.    

– By default, colors are inherited: when a transition  fires, colors from the input tokens are 

collected and given to the output tokens. However, color inheritance can be prevented 

by overriding. 

• Enabled transition can select specific input tokens based on colors.  

• Enabled transition can also select specific input tokens based on time; e.g. the time the tokens 

are created.  

• Structure of tokens: tokens have a unique tokID number, in addition, creation time, and a set of 

colors.  

• In GPenSIM, color of a token is a set of strings on the token. 

 

3.2.3 TCP/IP Socket Communication 
 

The TCP/IP socket server communication is used to developed communication between the modules. A 

socket is a communication endpoint where the read and write operation can be performed to receive and 

send data over a network. 

TCP/IP used some socket primitive for the communication purpose, to create a new communication 

socket primitive is called. Bind primitive is used to bind the IP address together with the port number to 

a socket. Listen primitive is the willingness to accept connections. Accept primitive block the caller until a 

connection request arrives. Send and receive primitives are used to sending and receiving data over a 

connection, respectively. Close primitive release the connection. 

The client end first creates a socket calling socket primitive but doesn’t need to use bind and listen 

primitive. Moreover, the client uses connect primitive instead of listening primitive to specify the address 

to which the connection request to be sent. The rest of the primitives are the same for both the client and 

server end. 

 

 
 
 



Chapter 4 

 

4 Implementation 
 

This chapter explains how each module of the system is implemented to discuss how the input, output, 

and local transition work. Moreover, how the connections are developed as both client and server will be 

discussed in this chapter. Section 4.1 explain details how each module of the model function, with 

necessary codes. Finally, section 4.2 describes the detailed implementation of each module of the client-

server model. 

 

4.1 Distributed System for Computing Quadratic Equation 
 

This model is designed and implemented to compute a quadratic function. The system consists of three 

distributed Petri modules and communicates through TCP/IP. Section 3.1.1 explained the overall design 

and purpose of these three modules, how many transitions and places are in each module, and their 

functions. In addition, a brief explanation was given in that section about how the whole system works 

and communicates to complete the quadratic function. This section aims to discuss how each module is 

implemented. 

 

4.1.1 Client 
 

Client module contains six MATLAB files, Main Simulation File (MSF), Petri net Definition File (PDF), and 

four pre_processor files. In PDF, the transitions and places are identified, and defined how they are 

connected. The pre_processor files have code, written the conditions how an enable transitions can fire. 

function [png] = module_client_pdf() 
png.PN_name = 'Client'; 
png.set_of_Ps = {'pC0', 'pC1', 'pC2', 'pC3'}; 
png.set_of_Ts = {'tCO_Mul', 'tCI_Mul', ... 
                'tCO_Add', 'tCI_Add'}; 
png.set_of_As = { 
                'pC0','tCO_Mul',1, ... 
                'tCO_Mul','pC1',1, ... 
                'pC1','tCI_Mul',1, ... 
                'tCI_Mul','pC2',1, ... 
                'pC2','tCO_Add',1, ... 
                'tCO_Add','pC3',1, ... 
                'pC3','tCI_Add',1, ... 
                'tCI_Add','pC0',1};   
png.set_of_Ports = {'tCO_Mul', 'tCI_Mul', 'tCO_Add', 'tCI_Add'}; 

 



The module has two input ports ('tCI_Add','tCI_Mul') and two output ports ('tCO_Add', 

'tCO_Mul'), ports are responsible to send and receive data when module communicate in distributed 

environment. 

 

When we run the client module, transition tCO_Mul prompts user input for the variables of (a,b,c, and 

x), and checks the condition statements. If the values of all the variables are “0” then it stops the 

simulation. Otherwise, the client module takes multiple input and run a loop until the variables are all “0”. 

 

If the else statement is true, it creates a message (data packet), requests a TCP/IP connection, and writes 

the message to the network to send it to multiplier through TCP/IP. Here, the transition is acting as a 

client; from the code, we can see the network role is a client. 

 
After firing transition tCO_Mul, transition tCI_Mul open the server and establish connection with 
multiplier to get the result (ax2, b.x, and c) back. From the code, we can see the network role is “server”. 
Read the network message by calling the function “fgetl”, and extract the message after receiving.  
 
 
 
 

disp('Kindly Enter the values of the variables: ') 
a = input('Enter the value of a: '); 
b = input('Enter the value of b: '); 
c = input('Enter the value of c: '); 
x = input('Enter the value of x: '); 

  
if ((a == 0) && (b == 0) && (c == 0) && (x == 0)) 
    global_info.STOP_SIMULATION = 1; 
else 
    %constructing the client message 
    

client_message=char([num2str(a),',',num2str(b),',',num2str(c),',',nu

m2str(x)]); 

 

client_mul = tcpip('localhost',7000,'NetworkRole','client'); 
fopen(client_mul); 
fwrite(client_mul,client_message); 

 

client_server2 = tcpip('0.0.0.0',4000,'NetworkRole','server'); 
fopen(client_server2); 
read_msg_from_mult = fgetl(client_server2); 

 



 

 
Then, stores the received message in place pC2. 
 

Next step is to send the values of (ax2, b.x, and c) to the adder. Transition tCO_Add consumes the token 
from place pC2. Colored petri net is used so tokens have color. In GPenSIM, color of a token is a set of 
strings on the token 
 

 

 

Then, creates the message to be sent, request for a connection, and write the message to the network in 
order to send to the adder.   
 
 
Final step, transition tCI_Add open the server and establish connection with the adder to get the 
arithmetic sum of (ax2 + bx + c). 

 
 

Read the network message by calling “fgetl” and display the message after received; the job is done. Now, 

the transition will run again to get another input, and it will do so until the values of variables all ‘0’. 

 

 

 

msg=[num2str(received_msg(1)),',',num2str(received_msg(2)),',',num2s

tr(received_msg(3))]; 
transition.override = 1; 
transition.new_color={msg}; 

 

pC2_tokenID = tokenAny('pC2', 1); 
pC2_colors = get_color('pC2', pC2_tokenID); 

 
msg_to_adder = [ax_square,',',bx,',',c]; 

 
client_t2 = tcpip('localhost',5000,'NetworkRole','client'); 
fopen(client_t2); 
fwrite(client_t2,msg_to_adder) 

 

client_server1 = tcpip('0.0.0.0',9000,'NetworkRole','server'); 
fopen(client_server1); 
received_msg_from_adder = fgetl(client_server1); 

 

fprintf('The received sum is: %d\n\n', msg); 

 



4.1.2 Multiplier 
 

Multiplier module contains five MATLAB files, Main Simulation File (MSF), Petri net Definition File (PDF), 

and three pre_processor files. In PDF, the transitions and places are identified and defined how they are 

connected. The pre_processor files have code, written the conditions how an enable transitions can fire. 

Now, I will explain how the multiplier module works with some code snippets. 

 

From the PDF file, we can see how the elements (transitions and places) are connected. In addition, the 

module has one input port ('tMI') and one output port ('tMO'). As I mentioned before with the ports 

the module can communicate with other modules. 

After running the multiplier module, the input transition 'tMI' gets enable and listen to the 

communication channel, receives any message addressed to it. 

 
The code shows transition tMI acts as a server and establishes a connection when gets the connection 
request from the client. Read the network message by function “fgetl”, and extract the message after 
receiving. Then, stores the message in place pM1as a token, token forms as color, and fire the transition. 
 

%Module Multiplier PDF 

  
function [png]=module_multiplier_pdf() 
png.PN_name = 'Multiplier'; 
png.set_of_Ps = {'pM1', 'pM2'}; 
png.set_of_Ts = {'tMI', 'tM', 'tMO'}; 
png.set_of_As = {'tMI', 'pM1', 1, ... 
                'pM1', 'tM', 1, ... 
                'tM', 'pM2', 1, ... 
                'pM2', 'tMO', 1}; 
png.set_of_Ports = {'tMI','tMO'}; 

 

multiplier_server = tcpip('0.0.0.0',7000,'NetworkRole','server'); 
fopen(multiplier_server); 
received_packet_from_client = fgetl(multiplier_server); 

 

msg=char([num2str(extracted_msg(1)),',',num2str(extracted_msg(2)),',

',num2str(extracted_msg(3)),',',num2str(extracted_msg(4))]); 

transition.new_color={msg}; 

fire=1; 

 

 



After that, the local transition tM gets enable and do the necessary multiplication. 

Transition, tM consumes the token and get colors of the token from place pM1. Extract the message by 

getting individual values of the variables. 

 
After getting each values, transition calculate the values of (ax2, b.x, and c) and create message. Then, 
save the message in place pM2, and fire the transition. 
 

In last step, the output transition tMO gets enable and consume token from place pM2.Also, transition 
make the data packet of the calculated values, request TCP/IP connection, write the packet to the network 
by calling function fwrite to returns the values of (ax2, b.x, and c) to the client, and fire the transitions.  

 
 

pM1_tokenID = tokenAny('pM1',1); 
pM1_colors = get_color('pM1',pM1_tokenID); 

 
%extract the values 
a=str2num(char(pM1_colors(1))); 
b=str2num(char(pM1_colors(2))); 
c=str2num(char(pM1_colors(3))); 
x=str2num(char(pM1_colors(4))); 

 

 

%Compute the values of a_x_square, b_x, and c 
ax_square = a*x*x; 
bx = b*x; 

 
message =[a_xx,',', b_x,',',c_v]; 
transition.override = 1; 
transition.new_color = {message}; 
fire=1; 

 

 

pM2_tokenID = tokenAny('pM2', 1); 
pM2_colors = get_color('pM2', pM2_tokenID); 

 
result_back_to_client = [ax_square,',',bx,',',c]; 

 
multiplier_client = tcpip('localhost',4000,'NetworkRole','client'); 
fopen(multiplier_client); 
fwrite(multiplier_client, result_back_to_client); 

 

 



Finally, after firing the transition, I have opened the server (input port) globally by declaring the global 
variable of the server. We already know that in GPenSIM, we have a property called global visibility by 
which the global variables are accessible within the modules. The purpose of opening the server is to make 
the module active and get ready to receive the next message. 

 
We can see from the code, after transition fired I called the TCP/IP server and open it by calling fopen 
function. 
 

 

4.1.3 Adder 
 

The activities of the adder module are similar to the multiplier module. The only difference is the local 
transition tA performs the necessary arithmetic operations. 
 
Adder module also contains five MATLAB files, Main Simulation File (MSF), Petri net Definition File (PDF), 
and three pre_processor files. In PDF, the transitions and places are identified and defined how they are 
connected. The pre_processor files have code, written the conditions how an enable transitions can fire. 
 

 

PDF file represents how the elements (transitions and places) of adder module are connected. Adder 

module also have one input 'tAI' and one output 'tAO'ports same as multiplier module. 

Input port tAI receive the message from the client and output port tAO send the arithmetic sum to the 

client, and transition tA only do arithmetic function. 

 

fire=1; 

  

  
%open the server to get message from client again 
multiplier_server = tcpip('0.0.0.0',7000,'NetworkRole','server'); 
fopen(multiplier_server); 

%Module Adder PDF 

  
function [png] = module_adder_pdf() 
png.PN_name = 'Adder'; 
png.set_of_Ps = {'pA1', 'pA2'}; 
png.set_of_Ts = {'tAI', 'tA', 'tAO'}; 
png.set_of_As = {'tAI', 'pA1', 1, ... 
    'pA1', 'tA', 1, ... 
    'tA', 'pA2', 1, ... 
    'pA2', 'tAO', 1}; 
png.set_of_Ports = {'tAI','tAO'}; 

 



4.2 Client-Server Model. 
 

This model is designed to develop a distributed communication in client-server-based architecture. The 

system consists of three distributed Petri modules and exchange information TCP/IP sockets. Section 3.1.1 

explained the overall design and purpose of these three modules, how many transitions and places are in 

each module, and their functions. In addition, a brief explanation was given in that section about how the 

whole systems work and communicate with each other. This section aims to discuss how each module is 

implemented, and network is developed. 

 

4.2.1 Module A 
 

Module A contains five MATLAB files, Main Simulation File (MSF), Petri net Definition File (PDF), and three 

pre_processor files. In PDF, the transitions and places are identified and defined how they are connected. 

The pre_processor files have code, written the conditions how an enable transitions can fire. In this 

section, I will explain how each transition works and how they develop a connection to communicate with 

other distributed modules.PDF file expresses the set of places and transitions, also shows how they are 

connected. This module has one input 'tAI' and one output 'tAO' ports, which are responsible to 

receive and send data over the network respectively.  

 

This module generates tokens at different time and send it to module X, this module also receive messages 

from module X. So, local transition 'tA' generates token at different time and save in place 'pA1' 

transition 'tAI' sends message over the network, and transition 'tAO' receives message from the 

network. 

 

 

 

%Module "A" pdf 

  
function [png] = A_pdf() 
png.PN_name = 'A'; 
png.set_of_Ps = {'pA1', 'pA2'}; 
png.set_of_Ts = {'tA', 'tAO', 'tAI'}; 
png.set_of_As = { 
    'tA', 'pA1', 1, ... 
    'pA1', 'tAO', 1, ... 
    'tAI', 'pA2', 1}; 
png.set_of_Ports = {'tAI','tAO'}; 

 



When we run this module, transition 'tAI' gets enable first and run the server to check any message 

addressed to it. I did this by setting transition firing time.  

 
I have set two token firing times in global variables. One is for input transition 'tAI' so that it gets active 
at this time and check any message in the network if so receive it, save it in place pA2, and fire the 
transition. Another token firing time is for transition tA, so that it can generate token at that time, and 
transfer the message by output transition 'tAO'. 
 

 
 
Therefore, the transition will generate a token at that time and fire; if the fire=1, then open the server 
and establish a connection. Then, read the network message by function fgetl, receive if there any 
message, send an acknowledgment message to the sender, save the received message in place pA2, and 
fire the transition. 
 

Then, it will move to local transition tA. This transition only generates token by a token generator at 

different times and save the token in place pA1. 

 

 

 

 

global_info.TOKEN_FIRING_TIME = [10 25 40 55 70]; 
global_info.TOKEN_FIRING_TIME1 = [1 15 30 45 60]; 

 

time_to_generate_token = global_info.TOKEN_FIRING_TIME1(1); 
ctime = current_time(); 

 
fire = 1; 

 

if (fire==1) 

 

%establish connection 
A_server = tcpip('0.0.0.0',7000,'NetworkRole','server'); 
fopen(A_server); 
received_packet = fgetl(A_server); 

 

%sending acknowledgment 
fwrite(A_server, 'message is received'); 
 

transition.new_color={msg}; 
fire = 1; 

 



 

The code shows a token generator, generating token at different time, token possess two colors “From: 

A” and “To: B”, and save the token in place pA1. 

Now the transition 'tAO' consumes the token from pA1, and create a message with source and 

destination that need to be sent through TCP/IP. 

 

After creating network message, it calls a TCP/IP connection request and write the message on it. Then, 

wait to get acknowledgment from the receiver. 

% if the variable "TOKEN_FIRING_TIME" is empty, then all  
%    the firings are done; no more firing 
if isempty(global_info.TOKEN_FIRING_TIME) 
    fire = 0; 
    return; 
end 

  

  
time_to_generate_token = global_info.TOKEN_FIRING_TIME(1); 
ctime = current_time(); 

    
% if it is time to fire, then remoev the time from variable and fire 
if ge(ctime, time_to_generate_token) 
    if ge(length(global_info.TOKEN_FIRING_TIME),2) 
        global_info.TOKEN_FIRING_TIME = ... 
            global_info.TOKEN_FIRING_TIME(2:end); 
    else 
        global_info.TOKEN_FIRING_TIME = []; 
    end 
    transition.new_color = {'From: A', 'To: B'}; 
    fire = 1; 
else  % it is not time to fire 
    fire = 0; 

  
 end 

 

pA1_tokenID = tokenAny('pA1',1); 
pA1_colors = get_color('pA1', pA1_tokenID); 

 

msg = [source,',',destination]; 

 

A_client = tcpip('localhost',4000,'NetworkRole','client'); 
fopen(A_client); 

fwrite(A_client,msg); 

 
%receiving message acknowledgment 
RecAck= fgetl(A_client); 
fprintf('Acknowledgment: %s\n',RecAck); 

 



4.2.2 Module B 
 

Module B also contains five MATLAB files, Main Simulation File (MSF), Petri net Definition File (PDF), and 

three pre_processor files. In PDF, the transitions and places are identified and defined how they are 

connected. The pre_processor files have code, written the conditions how an enable transitions can fire. 

The functions of module B are the same as Module A. The only difference is first the local transition 

generates token and send by output transition, and then input transition gets enable and check network 

messages. The token generating times and transition firing conditions are different between these two 

modules. 

 

PDF file shows the set of places and transitions also shows how they are connected. Module B also has 

one input 'tBI' and one output 'tBO' ports, which are responsible for receiving and sending data over the 

network, respectively. 

 

Token firing times of module B.  

In addition, in this module, I have used the try-catch function for the connection request. In try, every 

client will send a TCP/IP connection request to the server; the server might be busy with other work, or 

the server is not open. In that case, the connection request will move to the catch function and wait for 

as long the pause time is set, and then send the request again to the server. 

 

 

 

 

%Module "B" pdf 

  
function [png]=B_pdf() 
png.PN_name = 'B'; 
png.set_of_Ps = {'pB1', 'pB2'}; 
png.set_of_Ts = {'tB', 'tBO', 'tBI'}; 
png.set_of_As = { 
    'tB', 'pB1', 1, ... 
    'pB1', 'tBO', 1, ... 
    'tBI', 'pB2', 1}; 
png.set_of_Ports = {'tBI','tBO'}; 

 

global_info.TOKEN_FIRING_TIME = [1 15 30 45 60]; 
global_info.TOKEN_FIRING_TIME1 = [5 20 35 50 65]; 

 



4.2.3 Module X 
 

This module works as transceivers, receives messages from modules A and B, and sends messages to A 

and B. The module contains four MATLAB files, Main Simulation File (MSF), Petri net Definition File (PDF), 

and two pre_processor files. In PDF, the transitions and places are identified, and defined how they are 

connected. The pre_processor files have code, written the conditions how an enable transitions can fire. 

 

PDF file represents the set of places and transitions of the module, also shows how they are connected. 

This module has one input 'tXI' and one output 'tXO' ports, which are responsible to receive and send 

data over the network respectively. 

As it is a transceiver, first it will try to receive message and then transfer to the destination. Therefore, 

input port 'tXI' opens the server and establish TCP/IP connections with the requested connection. 

 

The code shows, transition establish a connection, read network message by calling fgetl function, and 

then sends an acknowledgment message to the sender. After that, save the received message in place 

'pX0' and fire.  

 

%Module X 

  
function [png] = X_pdf() 
png.PN_name = 'X'; 
png.set_of_Ps = {'pX0'}; 
png.set_of_Ts = {'tXI', 'tXO'}; 
png.set_of_As = { 
    'tXI', 'pX0', 1, ... 
    'pX0', 'tXO', 1}; 

  
png.set_of_Ports = {'tXI','tXO'}; 

 

X_server = tcpip('0.0.0.0',4000,'NetworkRole','server'); 
fopen(X_server); 

 
%read the network msg and receive it, either from A or B 
network_msg = fgetl(X_server); 

 

%sending acknowledgment that message is received 
fwrite(X_server, 'message is received'); 

 

transition.new_color={msg}; 
fire = 1; 

 



Transition 'tXO' consumes token from place 'pX0', extracts message, and identify the source and 

destination of the message. 

pX0_tokenID = tokenAny('pX0',1); 
pX0_colors = get_color('pX0', pX0_tokenID); 

 

%extracted message 
source = pX0_colors(1); 
destination = pX0_colors(2); 

 

if strcmp(destination, 'To: A') 
    disp('Sending the message to A'); 
    try 
        %request for connection 
        client_A = tcpip('localhost',7000,'NetworkRole','client'); 
        fopen(client_A); 

         
        %checking connection status, open means connected 
        connection_status = client_A.Status; 
        fprintf('Connection status is: %s\n',connection_status); 
        disp('....connected'); 

         
        %writing the message to the network 
        fwrite(client_A,source) 

         
        %receiving message acknowledgment 
        RecAck= fgetl(client_A); 
        fprintf('Acknowledgment: %s\n',RecAck); 

         
        fclose(client_A); 
    catch 
        disp('.......server is busy!'); 
        disp('waiting.......'); 
        pause(20); 

         
        %request for connection 
        client_A = tcpip('localhost',7000,'NetworkRole','client'); 
        fopen(client_A); 

         
        %checking connection status, open means connected 
        connection_status = client_A.Status; 
        fprintf('Connection status is: %s\n',connection_status); 
        disp('....connected'); 

         
        %writing the message to the network 
        fwrite(client_A,source) 

         
        %receiving message acknowledgment 
        RecAck= fgetl(client_A); 
        fprintf('Acknowledgment: %s\n',RecAck); 

         
        fclose(client_A); 
    end 

 



After extracting the message, it checks the source and destination of the message and connects with the 

destination accordingly.  

From the above code, we can see that if the string in the destination is “To: A”, it will send a connection 

request to the server of module A. Otherwise, it will check the next statement. Else if the string in 

destination is “To: B” then send a connection request to the server of module B. Moreover, it will receive 

an acknowledgment from the receivers once the recipient receives the message. 

Once the message is transferred to the intended destination, the server end of module X will be activated 

to receive the following message. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5 

5 Testing, Analysis and Results 
 

This chapter presents the results from the implementation done in Chapter 4. It starts by showing the 

results of a distributed system for computing quadratic function in section 5.1. Then, section 5.2 shows 

how distributed modules exchange information in a client-server architecture. The systems were run in 

MATLAB; GPenSIM software was installed for simulation. For each model, three distributed modules ran 

in three different MATLAB instances and communicated with them. MATLAB TCP/IP sockets are used to 

communicate with the MATLAB instances. 

 

5.1 Compute Quadratic Equation 
This section shows the result of the quadratic equation performed by client, multiplier, and adder in 

distributed system. 

 

Fig. 5.1: Sending input values to multiplier   Fig. 5.2: Multiplier received input values 

 

 

  

 

 

 

 

 

Fig. 5.3: Computed values and sending to client    Fig. 5.4: Client received results 



 

  

 

 

 

 

 

 

Fig. 5.5: Adder received the values     Fig. 5.6: Adder sending results to client 

 

 

 

 

Fig. 5.7: Client received the arithmetic sum 
 

Fig. 5.1 Shows the client getting user input for the variables and sending it to the multiplier. Fig. 5.2 express 

multiplier received the values from the client and extracted values. Fig. 5.3 shows calculated multiplier 

values of (ax2, bx, and c) and returns the results to the client. Fig. 5.4 presents the client received results 

from the multiplier and sending the values to the adder. Fig. 5.5 shows adder received the values from 

the client and extracted the values. Fig. 5.6 express adder done the arithmetic operations and calculated 

sum and returns the sum to the client. Finally, fig. 5.7 shows the client received the sum. 

 

Fig. 5.8 represents the results after computed the quadratic function. Likewise, 5.10 and 5.11 represent 

the output after one job is done. Fig. 5.9 shows the client module gets stop only if the values are 0 for all 

the variables. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.8: Results of client for one iteration 
 

 

 

 

 

 

 

Fig. 5.9: Simulation stops if values are all zero 
 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.10: Results of multiplier module 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.11: Results of adder module 



5.2 Client-Server Model  
 

This section presents the output how the distributed modules exchange information through TCP/IP 

sockets in client-server based system. 

 

 

 

  

 

 

 

 

Fig. 5.12: B sending message to X     Fig. 5.13: X received message and sending to A 

 

 

 

 

  

 

 

 

Fig. 5.14: A received message from X    Fig. 5.15: A sending message to X 

 

 



 

 

 

 

 

 

Fig. 5.16: X received message from A    Fig. 5.17: B received message from X 

 

Fig. 5.12 shows a token generated by module B and sending it to X; module X received the message from 

B in fig. 5.13, and then checked the message’s source and destination, and sending the message to module 

A (destination). Fig. 5.14 shows that the message is received by module A. Then, module A sending a 

message to X in fig. 5.15. Fig.5.16 shows the message is received by X and sends an acknowledgment to 

the sender. Finally, the received message is transferred to module A which is shown in fig. 5.17. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.18: Module B sending and receiving messages at different time 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.19: Module X receiving and transferring messages constantly 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.20: Module A receiving and sending messages at different times 

 

 

 

 

 

 



Chapter 6 

 

6 Discussion 
 

The main objectives of this thesis were to implement Petri Networks using the GPenSIM toolbox and 

integrate it with the MATLAB TCP/IP toolbox. The idea of hosting Petri modules on different computers 

that are geographically kept apart and the modules communicating between themselves did not exist 

before it was presented by Davidrajuh  [11]. The network was successfully implemented, the real-time 

simulation results are obtained in the MATLAB command window, and the corresponding graphical results 

are obtained. Section 5.1 and 5.2 show how the two distributed systems work without interrupting, 

compute quadratic function, and exchange information in a client-server pattern. The results show that 

distributed Petri net modules concept will reduce the state space size and complexities for discrete event 

systems. Therefore, develop distributed Petri net modules with the new modular Petri net [2] and 

implement a network layer to connect the modules minimize the simulation time, reduce the state space 

size, and other complexities. 

 

6.1 Limitations of the work 
 

A limitation is encountered regarding the TCP/IP in Matlab. TCP/IP has some limitations in distributed 

communication. In this thesis, TCP/IP sockets communication has been used as a communication protocol. 

In MATLAB, when we open a connection either as the ‘server ’ or the ‘client’ using a ‘tcpip’ object, the call 

blocks the MATLAB execution until either the connection is made or a timeout occurred. MATLAB does 

not provide any provision to interrupt the tcpip socket, which makes the distributed communication a 

little bit complicated. 

The purpose of the client-server model (3.1.2) was to develop a system where one transition (input) will 

always listen to the communication channel and receive any message addressed to it. Another transition 

will produce tokens at different times, and another transition (output) sends the token to the 

communication channel. My developed system is working like this, but I have generated token and set 

firing times for input transition as well, which can be challenging if we have a huge number of distributed 

modules and we want to make communication between them. Because of the limitation of the tcpip 

sockets, I did so. Otherwise, when this transition gets enable, it will wait to establish a connection. If there 

is no connection request from any client, there is no provision to interrupt it means the system cannot 

move to another transition because MATLAB execution is blocked. In addition, sometimes unwanted 

timeout occurred in tcpip means tcpip is unable to read all data. 

 

 



6.2 Future work 
 

Because so much distributed communication is focused on sending and receiving messages, message-
queuing systems, similar to electronic mail systems, can be utilized as an alternative middleware service. 
The system's primary concept is that communication is accomplished by placing messages in queues. The 
message is then transmitted through several communication servers to reach its intended recipient. The 
message will be placed in the recipient queues, and it will be read by the recipient at some point, but 
there are no assurances as to when it will be read. Both the transmitter and the receiver can operate 
independently in this form of the communication system. When a message is transmitted to its queues, 
the receiver does not need to be executing. When the receiver removes a message from the queues, the 
sender does not need to be running. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

References 
 

[1]  T. M. Sobh, "Discrete Event Dynamic Systems: An Overview," 

https://repository.upenn.edu/cis_reports/388, May 1991. 

[2]  Y. ZHENG, "Discrete Event Dynamic System:Methodology and Some Recent Progresses," Institute 

of Automation, Academia Sinica, Beijing, China, 1995. 

[3]  R. Davidrajuh, "A New Modular Petri Net for Modeling Large Discrete-Event Systems: A proposal 

Based on the Literature Study," MDPI, 15 November 2019. 

[4]  R. Davidrajuh, "GPenSIM, "General-purpose Petri Net Simulator"," 

http://www.davidrajuh.net/gpensim/. 

[5]  R. Davidrajuh, "Modular Petri Net models of Communicating Agents," ResearchGate, 2018. 

[6]  R. DAVIDRAJUH, "Modeling discrete-event systems with gpensim: An introduction," Springer 

International Publishing, 2018. 

[7]  V. M. X. X. SAVI, "Liveness and boundedness analysis for petri nets with event graph modules.," 

International Conference on Application and Theory of Petri Nets. Springer, Berlin, Heidelberg, 

1992. 

[8]  G. G. DE JONG and B. LIN, "A communicating Petri net model for the design of concurrent 

asynchronous modules," 31st Design Automation Conference. IEEE, 1994. 

[9]  Y. XUE, R. M. KIECKHAFER and F. F. CHOOBINEH, "Automated construction of GSPN models for 

flexible manufacturing systems," Computers in Industry, 1998. 

[10]  S. Christensen and L. Petrucci, "Modular analysis of Petri nets," The computer journal, 2000.. 

[11]  G. J. TSINARAKIS, N. C. TSOURVELOUDIS and K. P. VALAVANIS, "Modular Petri Net based modeling, 

analysis, synthesis and performance evaluation of random topology dedicated production 

systems," Journal of Intelligent Manufacturing, 2005. 

[12]  H. LEE and A. BANERJEE, "A modular Petri Net based architecture to model manufacturing systems 

exhibiting resource and timing uncertainties.," 2009 IEEE International Conference on Automation 

Science and Engineering, 2009. 

[13]  C. Mahulea, J.-M. Garcıá-Soriano and J.-M. Colom, "Modular Petri net modeling of the Spanish 

health system," in Proceedings of 2012 IEEE 17th International Conference on Emerging 

Technologies & Factory Automation (ETFA 2012), 2012.  



[14]  C. Mahulea, L. Mahulea, J. M. G. Soriano and J. M. Colom, "Modular Petri net modeling of 

healthcare systems," Flexible Services and Manufacturing Journal, vol. 30, pp. 329-357, 2018.  

[15]  O. BONNET-TORRÈS, " Pipe extended for two classes of monitoring Petri nets," International 

Conference on Application and Theory of Petri Nets. Springer, Berlin, Heidelberg, 2006. 

[16]  K. JENSEN and L. M. KRISTENSEN, "Colored Petri nets: a graphical language for formal modeling 

and validation of concurrent systems," Communications of the ACM, 2015. 

[17]  S. Berger, M. Bogenreuther, B. Häckel and O. Niesel, "Modelling availability risks of IT threats in 

smart factory networks--a modular Petri net approach," 2019.  

[18]  R. DAVIDRAJUH, "Extracting Petri Modules From Large and Legacy Petri Net Models," IEEE Access, 

2020. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



List of Figures 
 
 
Fig. 2.1: Sample Petri net ________________________________________________________________________ 9 
Fig. 2.2: Petri net after one firing of t1 ______________________________________________________________ 9 
Fig. 2.3: Integrating with MATLAB environment _____________________________________________________ 13 
Fig. 2.4: TCP/IP model __________________________________________________________________________ 14 
Fig. 2.5: Distributed Petri modules ________________________________________________________________ 18 
Fig. 3.1: Basic functionality of the modules _________________________________________________________ 21 
Fig. 3.2: IO port-driven based modular Petri model ___________________________________________________ 22 
Fig. 3.3: The client-server interaction ______________________________________________________________ 25 
Fig. 3.4: Distributed system in client-server architecture_______________________________________________ 26 
Fig. 3.5: Executions of the modules in client-server based distributed system ______________________________ 29 
Fig. 5.1: Sending input values to multiplier _________________________________________________________ 45 
Fig. 5.3: Computed values and sending to client _____________________________________________________ 45 
Fig. 5.5: Adder received the values ________________________________________________________________ 46 
Fig. 5.7: Client received the arithmetic sum _________________________________________________________ 46 
Fig. 5.8: Results of client for one iteration __________________________________________________________ 47 
Fig. 5.9: Simulation stops if values are all zero ______________________________________________________ 47 
Fig. 5.10: Results of multiplier module _____________________________________________________________ 48 
Fig. 5.11: Results of adder module ________________________________________________________________ 48 
Fig. 5.12: B sending message to X ________________________________________________________________ 49 
Fig. 5.14: A received message from X ______________________________________________________________ 49 
Fig. 5.16: X received message from A ______________________________________________________________ 50 
Fig. 5.18: Module B sending and receiving messages at different time ___________________________________ 51 
Fig. 5.19: Module X receiving and transferring messages constantly _____________________________________ 52 
Fig. 5.20: Module A receiving and sending messages at different times __________________________________ 53 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



List of Tables 
 
 
Table 3.1: Elements of the client module and their purpose ____________________________________________ 23 
Table 3.2: Elements of the multiplier module and their purpose ________________________________________ 24 
Table 3.3: Elements of the adder module and their purpose ___________________________________________ 24 
Table 3.4: Transitions and places of module X and their purpose ________________________________________ 27 
Table 3.5: Transitions and places of module A and their purpose _______________________________________ 28 
Table 3.6: Transitions and places of module B and their purpose ________________________________________ 28 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix 
 
 
A1. User Manual 

1. Install MATLAB software (2019 or updated) 

2. Download and install GPenSIM. 

a. Unzip GPenSIM_v10_System_Files.zip 

b. Set MATLAB Path command 

3. Download and unzip the Petri_modules.rar file 

4. Select which model you want to run (Client-server or Quadratic) 

5. Open a MATLAB instance for each module (3 instances for each model) 

6. Add the modules to your MATLAB 

7. Select the path as GPenSIM 

8. To run Quadratic model 

a. Open the folder, folder contains (adder, multiplier, and client) 

b. Open three folders 

c. Open three matlab instances 

d. Run client.msf in one instance, multiplier.msf in another instance, and adder.msf in 

another instance. 

e. Simulation will start once you enter the input values in client end 

9. To run Client-server model 

a. Open the folder, folder contains (A, B, and X) 

b. Open three different MATLAB instances 

c. First run x.msf in one instance, then A and B in two different instances. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



A2. Distributed System for Quadratic Function 
 
Adder 
 
%Adder MSF 

  
clear all; 
clc; 

  
global adder_server 
global global_info 
global_info.STOP_AT = 100000; 
global network 

  

  
pns = pnstruct({'module_adder_pdf'}); 
dyn.ft = {'allothers', 10}; 
pni = initialdynamics(pns, dyn); 

  
fprintf('....server activated....\n'); 
adder_server = tcpip('0.0.0.0',5000,'NetworkRole','server'); 
fopen(adder_server); 

  
sim = gpensim(pni); 

 
 
%Module Adder PDF 

  
function [png] = module_adder_pdf() 
png.PN_name = 'Adder'; 
png.set_of_Ps = {'pA1', 'pA2'}; 
png.set_of_Ts = {'tAI', 'tA', 'tAO'}; 
png.set_of_As = {'tAI', 'pA1', 1, ... 
    'pA1', 'tA', 1, ... 
    'tA', 'pA2', 1, ... 
    'pA2', 'tAO', 1}; 
png.set_of_Ports = {'tAI','tAO'}; 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



%tAI_pre 
function [fire,transition]=tAI_pre(transition) 
global adder_server 
global network 
global global_info 

  

  
%read the network message 
received_packet = fgetl(adder_server); 

  

  
% We will display the message once we will have some information 
% we will ignore the empty message 
if ~isempty(received_packet) 
    %extrcting the information from the received packet 
    extracted_msg=received_packet; 

     
    %converting the information to number 
    extracted_msg = str2num(char(extracted_msg)); 
    disp('The received values from the client are: '); 
    disp(extracted_msg) 

     

  
    %constructing message and converting to char  
    msg = 

char([num2str(extracted_msg(1)),',',num2str(extracted_msg(2)),',',num2str(ext

racted_msg(3))]);  

     
    transition.new_color={msg}; 
    fire=1; 
else 
    fire=0; 
end 

 

 
 
%tA_pre 
function [fire,transition]=tA_pre(transition) 
global network 
global global_info 

  

  
%select token from 'pA1' 
pA1_tokenID = tokenAny('pA1',1); 

  
%getting colors 
pA1_colors = get_color('pA1',pA1_tokenID); 

  

  
%splitting the stream to get independent values of ax_square, bx and c by 
%considering ',' as the delimiter 
pA1_colors=strjoin(pA1_colors); 
pA1_colors=char(pA1_colors); 
pA1_colors=string(pA1_colors); 



pA1_colors=split(pA1_colors,','); 

  

  
disp('Extracting the values'); 
%converting the received strings caharcter into number for the further 
%computation and processing 
ax_square = str2num(pA1_colors(1)); 
bx = str2num(pA1_colors(2)); 
c = str2num(pA1_colors(3)); 

  
disp('The extracted values are:'); 
fprintf('ax_square: %d\n', ax_square); 
fprintf('       bx: %d\n', bx); 
fprintf('        c: %d\n\n', c); 

  

  
disp('Calculating Sum') 
%computing sum 
sum = ax_square+bx+c; 
adder_sum=num2str(sum); 
fprintf('The sum is: %d\n\n',sum); 

  
transition.override=1; 
transition.new_color={adder_sum}; 
fire=1; 

  
end 

 

 

 

%tAO_pre 
function [fire,transition]=tAO_pre(transition) 
global network 
global global_info 
global adder_server 

  

  
%select token from 'pA2' 
pA2_tokenID = tokenAny('pA2',1); 

  
%getting colors 
pA2_colors=get_color('pA2',pA2_tokenID); 

  

  
%converting the values from string to number 
pA2_colors = char(pA2_colors); 
pA2_colors = str2num(pA2_colors); 

  
sum = num2str(pA2_colors); 

  

  



%making connection with client to send the computed sum 
disp('Sending the calculated sum to the client'); 
disp('Looking for connection.....'); 
adder_client = tcpip('localhost',9000,'NetworkRole','client'); 
fopen(adder_client); 
disp('........connected'); 

  
result_to_client = sum; 
fwrite(adder_client,result_to_client) 
disp('Values sent successfully!!'); 

  
fclose(adder_client); 
fire=1; 

  
%open the server to get message from client again 
adder_server = tcpip('0.0.0.0',5000,'NetworkRole','server'); 
fopen(adder_server); 
fprintf('\n....server activated....\n'); 

  
end 

 

 

Multiplier 

% Multiplier MSF 

  
clear all; 
clc; 

  
global multiplier_server 
global global_info 
global_info.STOP_AT = 100000; 
global network 

  

  
pns = pnstruct('module_multiplier_pdf'); 
dyn.ft = {'allothers',10}; 
pni = initialdynamics(pns, dyn); 

  
fprintf('....server activated....\n'); 
multiplier_server = tcpip('0.0.0.0',7000,'NetworkRole','server'); 
fopen(multiplier_server); 

  
sim = gpensim(pni); 

 

 

 

 

 



%Module Multiplier PDF 

  
function [png]=module_multiplier_pdf() 
png.PN_name = 'Multiplier'; 
png.set_of_Ps = {'pM1', 'pM2'}; 
png.set_of_Ts = {'tMI', 'tM', 'tMO'}; 
png.set_of_As = {'tMI', 'pM1', 1, ... 
                'pM1', 'tM', 1, ... 
                'tM', 'pM2', 1, ... 
                'pM2', 'tMO', 1}; 
png.set_of_Ports = {'tMI','tMO'}; 

 

 

%tMI_pre 
function [fire,transition]=tMI_pre(transition) 
global multiplier_server 
global network 
global global_info 

  

  
%read the network message 
received_packet_from_client = fgetl(multiplier_server); 

  
%We will display the message once we will have some information and 
%we will ignore the empty message 
if ~isempty(received_packet_from_client) 
    %extrcting the information from the received packet 
    extracted_msg = received_packet_from_client; 

     
    %converting the information to number 
    extracted_msg = str2num(char(extracted_msg)); 
    disp('The received values from the client are: '); 
    disp(extracted_msg) 

     
    %constructing message and converting to char 
    

msg=char([num2str(extracted_msg(1)),',',num2str(extracted_msg(2)),',',num2str

(extracted_msg(3)),',',num2str(extracted_msg(4))]); 

     
    transition.new_color={msg}; 
    fire=1; 
else 
    fire=0; 
end 

 

 

 

 

 



%tM_pre 
function [fire,transition]=tM_pre(transition) 

  

  
%select token from 'pM1' 
pM1_tokenID = tokenAny('pM1',1); 

  
%getting colors 
pM1_colors = get_color('pM1',pM1_tokenID); 

  

  
%splitting the stream to get independent values of a, b and c by 
%considering ',' as the delimiter 
pM1_colors = strjoin(pM1_colors); 
pM1_colors = char(pM1_colors); 
pM1_colors = string(pM1_colors); 
pM1_colors = split(pM1_colors,','); 

  

  
disp('Extracting the values'); 
%converting the received strings caharcter into number for the further 
%computation and processing 
a=str2num(char(pM1_colors(1))); 
b=str2num(char(pM1_colors(2))); 
c=str2num(char(pM1_colors(3))); 
x=str2num(char(pM1_colors(4))); 

  
disp('The extracted values are:'); 
fprintf('a: %d\n', a); 
fprintf('b: %d\n', b); 
fprintf('c: %d\n', c); 
fprintf('x: %d\n\n', x); 

  

  
disp('Computing the values of a_x_square, b_x, and c'); 
%ax_square 
ax_square = a*x*x; 
a_xx = num2str(ax_square); 

  
%bx 
bx = b*x; 
b_x = num2str(bx); 

  
%c 
c_v = num2str(c); 

  

  
disp('The computed values are: '); 
fprintf('ax_square: %d\n', ax_square); 
fprintf('       bx: %d\n', bx); 
fprintf('        c: %d\n\n', c); 

  
%making a token using comma as delimeter and save to place for further 

process 



message =[a_xx,',', b_x,',',c_v]; 

  

  
transition.override = 1; 
transition.new_color = {message}; 
fire=1; 

  
end 

 

 

%tMO_pre 
function [fire,transition]=tMO_pre(transition) 
global network 
global global_info 
global multiplier_server 

  
%select token from 'pM2' 
pM2_tokenID = tokenAny('pM2', 1); 

  
%getting colors 
pM2_colors = get_color('pM2', pM2_tokenID); 

  

  
%splitting the stream to get independent values of ax_square, bx and c by 
%considering ',' as the delimiter 
pM2_colors = split(pM2_colors,','); 
pM2_colors = char(pM2_colors); 
pM2_colors = str2num(pM2_colors); 

  

  
%extracting the value of ax_square, bx and c, and converting them from 
%number to string 
ax_square = num2str(pM2_colors(1)); 
bx = num2str(pM2_colors(2)); 
c = num2str(pM2_colors(3)); 

  

  
disp('Sending the values back to the client') 
disp('Looking for connection.....'); 
multiplier_client = tcpip('localhost',4000,'NetworkRole','client'); 
fopen(multiplier_client); 
disp('....connected'); 

  
result_back_to_client = [ax_square,',',bx,',',c]; 
fwrite(multiplier_client, result_back_to_client); 
disp('Values sent successfully!!'); 

  
fclose(multiplier_client); 
fire=1; 

  

  
%open the server to get message from client again 
multiplier_server = tcpip('0.0.0.0',7000,'NetworkRole','server'); 



fopen(multiplier_server); 
fprintf('\n....server activated....\n'); 

  

  
end 

 

Client 

% Client MSF 

  
clear all; 
clc; 
global global_info 
global_info.STOP_AT = 100000; 
global network 

  

  
pns = pnstruct('module_client_pdf'); 
dyn.m0={'pC0', 1}; 
dyn.ft={'allothers',10}; 
pni = initialdynamics(pns, dyn); 
sim = gpensim(pni); 

  
disp('The end of the simulation!!!'); 

 

%Module Client PDF 

  
function [png] = module_client_pdf() 
png.PN_name = 'Client'; 
png.set_of_Ps = {'pC0', 'pC1', 'pC2', 'pC3'}; 
png.set_of_Ts = {'tCO_Mul', 'tCI_Mul', ... 
                'tCO_Add', 'tCI_Add'}; 
png.set_of_As = { 
                'pC0','tCO_Mul',1, ... 
                'tCO_Mul','pC1',1, ... 
                'pC1','tCI_Mul',1, ... 
                'tCI_Mul','pC2',1, ... 
                'pC2','tCO_Add',1, ... 
                'tCO_Add','pC3',1, ... 
                'pC3','tCI_Add',1, ... 
                'tCI_Add','pC0',1};   
png.set_of_Ports = {'tCO_Mul', 'tCI_Mul', 'tCO_Add', 'tCI_Add'}; 

 

 

 

 

 

 



%tCO_Mul 
function [fire,transition]=tCO_Mul_pre(transition) 
global global_info 
global client_mul 

  

  
disp('Kindly Enter the values of the variables: ') 
a = input('Enter the value of a: '); 
b = input('Enter the value of b: '); 
c = input('Enter the value of c: '); 
x = input('Enter the value of x: '); 

  
if ((a == 0) && (b == 0) && (c == 0) && (x == 0)) 
    global_info.STOP_SIMULATION = 1; 
else 
    %constructing the client message 
    

client_message=char([num2str(a),',',num2str(b),',',num2str(c),',',num2str(x)]

); 

     
    disp('**************************'); 
    fprintf('\nSending the values of a, b, c and x to the multiplier\n'); 

     
    %making connection to the multiplier 
    disp('Looking for connection.....'); 
    client_mul = tcpip('localhost',7000,'NetworkRole','client'); 
    fopen(client_mul); 
    disp('.......connected'); 

     
    %sending the values 
    fwrite(client_mul,client_message); 
    fprintf('The values sent successfully!\n\n'); 
    fclose(client_mul); 

  
end 
fire=1; 

  
end 

 

%tCI_Mul 
function [fire,transition]=tCI_Mul_pre(transition) 
global global_info 
global client_server2 

  

  
%open the server to get result values from the multiplier 
disp('Waiting to get result from the multiplier'); 
client_server2 = tcpip('0.0.0.0',4000,'NetworkRole','server'); 
fopen(client_server2); 
disp('....server activated....'); 

  
%receiving the values sent by multiplier 
read_msg_from_mult = fgetl(client_server2); 



  
if ~isempty(read_msg_from_mult) 
    received_msg = str2num(char(read_msg_from_mult)); 

     
    %displaying the values 
    disp('The received values are:'); 
    fprintf('ax_square: %d\n',received_msg(1)); 
    fprintf('       bx: %d\n',received_msg(2)); 
    fprintf('        c: %d\n',received_msg(3)); 

     

     
    msg = 

[num2str(received_msg(1)),',',num2str(received_msg(2)),',',num2str(received_m

sg(3))]; 
    transition.override = 1; 
    transition.new_color={msg}; 

  
end 
    fire = 1; 
end 

 

%tCO_Add 
function [fire,transition]=tCO_Add_pre(transition) 
global global_info 
global client_t2 

  

  
%select token from 'pM2' 
pC2_tokenID = tokenAny('pC2', 1); 

  
%getting colors 
pC2_colors = get_color('pC2', pC2_tokenID); 

  
%splitting the stream to get independent values of ax_square, bx and c by 
%considering ',' as the delimiter 
pC2_colors = split(pC2_colors,','); 
pC2_colors = char(pC2_colors); 
pC2_colors = str2num(pC2_colors); 

  

  
%extracting the value of ax_square, bx and c, and converting them from 
%number to string 
ax_square = num2str(pC2_colors(1)); 
bx = num2str(pC2_colors(2)); 
c = num2str(pC2_colors(3)); 

  

  
%making connection with adder 
fprintf('\n\nSending the values of ax_square, bx and c to the adder\n'); 
disp('Looking for connection.....'); 
client_t2 = tcpip('localhost',5000,'NetworkRole','client'); 
fopen(client_t2); 
disp('.......connected'); 



  
%sending extracted values to adder 
msg_to_adder = [ax_square,',',bx,',',c]; 
fwrite(client_t2,msg_to_adder) 
fprintf('The values sent successfully!\n\n'); 

  
fclose(client_t2); 
fire = 1; 

  
end 
 

 

%tCI_Add 
function [fire,transition]=tCI_Add_pre(transition) 
global global_info 
global client_server1 

  

  
disp('Waiting to get result from the adder'); 
client_server1 = tcpip('0.0.0.0',9000,'NetworkRole','server'); 
fopen(client_server1); 
fprintf('...server activated...\n'); 
received_msg_from_adder = fgetl(client_server1); 

  
if ~isempty(received_msg_from_adder) 
    msg = received_msg_from_adder; 
    msg = str2num(char(msg)); 

     
    fprintf('The received sum is: %d\n\n', msg); 

  
end 
    fclose(client_server1); 
    fire = 1; 
end 

 

 

A3. Client-server model 

Module A 

%Module A MSF 

  
clear all; 
clc; 
global global_info 

  
global_info.TOKEN_FIRING_TIME = [10 25 40 55 70]; 
global_info.TOKEN_FIRING_TIME1 = [1 15 30 45 60];  
global_info.STOP_AT = 100; 
global_info.DELTA_TIME = 1; 

  

  



pns = pnstruct('A_pdf'); 

  
%dyn.m0 = {'pA1', 0}; % tokens initially 
%dyn.ft = {'tA', 1, 'allothers', 10}; 
%pni = initialdynamics(pns, dyn); 

  
pni = initialdynamics(pns); 

  
sim = gpensim(pni); 
prnss(sim); 

 

 

%Module "A" pdf 

  
function [png] = A_pdf() 
png.PN_name = 'A'; 
png.set_of_Ps = {'pA1', 'pA2'}; 
png.set_of_Ts = {'tA', 'tAO', 'tAI'}; 
png.set_of_As = { 
    'tA', 'pA1', 1, ... 
    'pA1', 'tAO', 1, ... 
    'tAI', 'pA2', 1}; 
png.set_of_Ports = {'tAI','tAO'}; 

 

%tAI_pre 
function [fire,transition]=tAI_pre(transition) 
global A_server 
global network 
global global_info 

  

  

  
% if the variable "TOKEN_FIRING_TIME" is empty, then all  
%    the firings are done; no more firing 
if isempty(global_info.TOKEN_FIRING_TIME1), 
    fire = 0; 
    return; 
end 

  
time_to_generate_token = global_info.TOKEN_FIRING_TIME1(1); 
ctime = current_time(); 

    
% if it is time to fire, then remoev the time from variable and fire 
if ge(ctime, time_to_generate_token), 
    if ge(length(global_info.TOKEN_FIRING_TIME1),2), 
        global_info.TOKEN_FIRING_TIME1 = ... 
            global_info.TOKEN_FIRING_TIME1(2:end); 
    else 
        global_info.TOKEN_FIRING_TIME1 = []; 
    end 
    fire = 1; 
else  % it is not time to fire 
    fire = 0; 



  
end 

  
if (fire==1) 

  

  
%open the server to receive message 
A_server = tcpip('0.0.0.0',7000,'NetworkRole','server'); 
fopen(A_server); 
fprintf('\n...server activated...\n'); 

  
%read the network message 
received_packet = fgetl(A_server); 

  
%We will display the message once we will have some information and 
%we will ignore the empty message 
if ~isempty(received_packet) 
    fprintf('received a message "%s"\n\n', received_packet); 

     
    %sending acknowledgment 
    fwrite(A_server, 'message is received'); 

  
    %converting to character 
    msg=char(received_packet); 

  
    transition.new_color={msg}; 
    fire = 1; 
end 

  
end 

 

 

%tA_pre 
function [fire,transition]=tA_pre(transition) 
global network 
global global_info 

  

  

  
% if the variable "TOKEN_FIRING_TIME" is empty, then all  
%    the firings are done; no more firing 
if isempty(global_info.TOKEN_FIRING_TIME) 
    fire = 0; 
    return; 
end 

  

  
time_to_generate_token = global_info.TOKEN_FIRING_TIME(1); 
ctime = current_time(); 

    
% if it is time to fire, then remoev the time from variable and fire 
if ge(ctime, time_to_generate_token) 



    if ge(length(global_info.TOKEN_FIRING_TIME),2) 
        global_info.TOKEN_FIRING_TIME = ... 
            global_info.TOKEN_FIRING_TIME(2:end); 
    else 
        global_info.TOKEN_FIRING_TIME = []; 
    end 
    transition.new_color = {'From: A', 'To: B'}; 
    fire = 1; 
else  % it is not time to fire 
    fire = 0; 

  
 end 

 

 

%tAO_pre 
function [fire,transition]=tAO_pre(transition) 
global network 
global global_info 
global A_client 

  

  

  
disp('Now time to fire token: select a token and possess color'); 

  
%select a token from 'pA1' 
pA1_tokenID = tokenAny('pA1',1); 

  
%getting colors 
disp('Colors of the token: '); 
pA1_colors = get_color('pA1', pA1_tokenID); 
disp(pA1_colors); 

  

  
source = char(string(pA1_colors(1))); 
destination = char(string(pA1_colors(2))); 

  

  
msg = [source,',',destination]; 

  

  
% making connection with X server to send the message 
disp('Sending message to X'); 
disp('Looking for connection.....'); 

  
try 
    %request for connection 
    A_client = tcpip('localhost',4000,'NetworkRole','client'); 
    fopen(A_client); 

     
    %checking connection status, open means connected 
    connection_status = A_client.Status; 
    fprintf('Connection status is: %s\n',connection_status); 



    disp('........connected'); 

     
    %writing the message to the network 
    fwrite(A_client,msg); 

     
    %receiving message acknowledgment 
    RecAck= fgetl(A_client); 
    fprintf('Acknowledgment: %s\n',RecAck); 

  
    fire=1; 
    fclose(A_client); 
catch 
    disp('......waiting'); 
    disp('Server is busy.....'); 
    pause(20); 

     
    %request for connection 
    A_client = tcpip('localhost',4000,'NetworkRole','client'); 
    fopen(A_client); 

     
    %checking connection status, open means connected 
    connection_status = A_client.Status; 
    fprintf('Connection status is: %s\n',connection_status); 
    disp('........connected'); 

     
    %writing the message to the network 
    fwrite(A_client,msg); 

     
    %receiving message acknowledgment 
    RecAck= fgetl(A_client); 
    fprintf('Acknowledgment: %s\n',RecAck); 

  
    fire=1; 
    fclose(A_client); 
end 

     

  
end 

 

 

Module B 

% Module "B" MSF 

  
clear all; 
clc; 
global global_info 

  
global_info.TOKEN_FIRING_TIME = [1 15 30 45 60]; 
global_info.TOKEN_FIRING_TIME1 = [5 20 35 50 65];  
global_info.STOP_AT = 100; 
global_info.DELTA_TIME = 1; 



  

  
pns = pnstruct('B_pdf'); 

  
%dyn.m0 = {'pB1', 0}; % tokens initially 
%dyn.ft = {'tB', 1, 'allothers', 10}; 
%pni = initialdynamics(pns, dyn); 

  
pni = initialdynamics(pns); 

  
sim = gpensim(pni); 
prnss(sim); 

 

 

%Module "B" pdf 

  
function [png]=B_pdf() 
png.PN_name = 'B'; 
png.set_of_Ps = {'pB1', 'pB2'}; 
png.set_of_Ts = {'tB', 'tBO', 'tBI'}; 
png.set_of_As = { 
    'tB', 'pB1', 1, ... 
    'pB1', 'tBO', 1, ... 
    'tBI', 'pB2', 1}; 
png.set_of_Ports = {'tBI','tBO'}; 

 

%tBI_pre 
function [fire,transition]=tBI_pre(transition) 
global B_server 
global network 
global global_info 

  

  
% if the variable "TOKEN_FIRING_TIME" is empty, then all  
%    the firings are done; no more firing 
if isempty(global_info.TOKEN_FIRING_TIME1), 
    fire = 0; 
    return; 
end 

  
time_to_generate_token = global_info.TOKEN_FIRING_TIME1(1); 
ctime = current_time(); 

    
% if it is time to fire, then remoev the time from variable and fire 
if ge(ctime, time_to_generate_token) 
    if ge(length(global_info.TOKEN_FIRING_TIME1),2) 
        global_info.TOKEN_FIRING_TIME1 = ... 
            global_info.TOKEN_FIRING_TIME1(2:end); 
    else 
        global_info.TOKEN_FIRING_TIME1 = []; 
    end 
    fire = 1; 
else  % it is not time to fire 



    fire = 0; 

  
end 

  
if (fire==1) 

  

   
%open the server to receive message 
B_server = tcpip('0.0.0.0',3000,'NetworkRole','server'); 
fopen(B_server); 
fprintf('\n...server activated...\n'); 

  
%read the network message 
received_packet = fgetl(B_server); 

  
%We will display the message once we will have some information and 
%we will ignore the empty message 
if ~isempty(received_packet) 
    fprintf('received a message "%s"\n\n', received_packet); 

     
    %sending acknowledgment 
    fwrite(B_server, 'message is received'); 

  
    %converting to character 
    msg=char(received_packet); 

     
    transition.new_color={msg}; 
    fire = 1; 

  
end 

     
end 

 

 

%tB_pre 
function [fire,transition]=tB_pre(transition) 
global network 
global global_info 

  

  

  
% if the variable "TOKEN_FIRING_TIME" is empty, then all  
%    the firings are done; no more firing 
if isempty(global_info.TOKEN_FIRING_TIME) 
    fire = 0; 
    return; 
end 

  

  
time_to_generate_token = global_info.TOKEN_FIRING_TIME(1); 
ctime = current_time(); 



    
% if it is time to fire, then remoev the time from variable and fire 
if ge(ctime, time_to_generate_token) 
    if ge(length(global_info.TOKEN_FIRING_TIME),2) 
        global_info.TOKEN_FIRING_TIME = ... 
            global_info.TOKEN_FIRING_TIME(2:end); 
    else 
        global_info.TOKEN_FIRING_TIME = []; 
    end 
    transition.new_color = {'From: B', 'To: A'}; 
    fire = 1; 
else  % it is not time to fire 
    fire = 0; 

  
 end 

 

 

%tBO_pre 
function [fire,transition]=tBO_pre(transition) 
global network 
global global_info 
global B_client 

  

  

  
disp('Now time to fire token: select a token and possess color'); 

  
%select a token from 'pB1' 
pB1_tokenID = tokenAny('pB1', 1); 

  
%getting colors 
disp('Colors of the token: '); 
pB1_colors = get_color('pB1', pB1_tokenID); 
disp(pB1_colors); 

  

  
source = char(string(pB1_colors(1))); 
destination = char(string(pB1_colors(2))); 

  
msg = [source,',',destination]; 

  

  
% making connection with X server to send the message 
disp('Sending message to X'); 
disp('Looking for connection....'); 

  
try 
    %request for connection 
    B_client = tcpip('localhost',4000,'NetworkRole','client'); 
    fopen(B_client); 

     
    %checking connection status, open means connected 



    connection_status = B_client.Status;  
    fprintf('Connection status is: %s\n',connection_status); 
    disp('....connected'); 

     
    %writing the message to the network 
    fwrite(B_client, msg); 

     
    %receiving message acknowledgment 
    RecAck= fgetl(B_client); 
    fprintf('Acknowledgment: %s\n',RecAck); 

     
    fire=1; 
    fclose(B_client); 
catch 
    disp('.......server is busy!'); 
    disp('waiting.......'); 
    pause(30); 

     
    %request for connection 
    B_client = tcpip('localhost',4000,'NetworkRole','client'); 
    fopen(B_client); 

     
    %checking connection status, open means connected 
    connection_status = B_client.Status;  
    fprintf('Connection status is: %s\n',connection_status); 
    disp('....connected'); 

     
    %writing the message to the network 
    fwrite(B_client, msg); 

     
    %receiving message acknowledgment 
    RecAck= fgetl(B_client); 
    fprintf('Acknowledgment: %s\n',RecAck); 

     
    fire=1; 
    fclose(B_client); 
end 

     

  
end 

 

 

Module X 

% Module X MSF 

  
clear all; 
clc; 
global X_server 
global global_info 
global network 

  



  
pns = pnstruct('X_pdf'); 
dyn.ft={'allothers',10}; 
pni = initialdynamics(pns, dyn); 

  
disp('...server activated...'); 
X_server = tcpip('0.0.0.0',4000,'NetworkRole','server'); 
fopen(X_server); 

  
sim = gpensim(pni); 

 

 

%Module X 

  
function [png] = X_pdf() 
png.PN_name = 'X'; 
png.set_of_Ps = {'pX0'}; 
png.set_of_Ts = {'tXI', 'tXO'}; 
png.set_of_As = { 
    'tXI', 'pX0', 1, ... 
    'pX0', 'tXO', 1}; 

  
png.set_of_Ports = {'tXI','tXO'}; 

 

%tXI_pre 
function [fire,transition]=tXI_pre(transition) 
global X_server 
global global_info 
global network 

  

  
%read the network msg and receive it, either from A or B 
network_msg = fgetl(X_server); 

  
if ~isempty(network_msg) 
    disp('Received a message'); 

     
    %sending acknowledgment that message is received 
    fwrite(X_server, 'message is received'); 

     
    %conveerting message to char 
    msg = char(network_msg); 

  
    transition.new_color={msg}; 
    fire = 1; 
else 
    fire = 0; 

  
end 

  
end 



 

 

%tXO_pre 
function [fire,transition]=tXO_pre(transition) 
global client_A 
global X_server 
global client_B 
global global_info 
global network 

  

  
%select a token from 'pX0' 
pX0_tokenID = tokenAny('pX0',1); 

  
%getting colors 
pX0_colors = get_color('pX0', pX0_tokenID); 

  
%extracted message 
pX0_colors = split(pX0_colors,','); 

  
source = pX0_colors(1); 
destination = pX0_colors(2); 

  

  
source = char(strjoin(source)); 
destination = char(strjoin(destination)); 

  
fprintf('\n== extracted message ==\n'); 
fprintf('Source: "%s"\n', source); 
fprintf('Destination: "%s"\n\n', destination); 

  

  
%making connection to send messages 
if strcmp(destination, 'To: A') 
    disp('Sending the message to A'); 
    disp('Looking for connection....'); 
    try 
        %request for connection 
        client_A = tcpip('localhost',7000,'NetworkRole','client'); 
        fopen(client_A); 

         
        %checking connection status, open means connected 
        connection_status = client_A.Status; 
        fprintf('Connection status is: %s\n',connection_status); 
        disp('....connected'); 

         
        %writing the message to the network 
        fwrite(client_A,source) 

         
        %receiving message acknowledgment 
        RecAck= fgetl(client_A); 
        fprintf('Acknowledgment: %s\n',RecAck); 



         
        fclose(client_A); 
    catch 
        disp('.......server is busy!'); 
        disp('waiting.......'); 
        pause(20); 

         
        %request for connection 
        client_A = tcpip('localhost',7000,'NetworkRole','client'); 
        fopen(client_A); 

         
        %checking connection status, open means connected 
        connection_status = client_A.Status; 
        fprintf('Connection status is: %s\n',connection_status); 
        disp('....connected'); 

         
        %writing the message to the network 
        fwrite(client_A,source) 

         
        %receiving message acknowledgment 
        RecAck= fgetl(client_A); 
        fprintf('Acknowledgment: %s\n',RecAck); 

         
        fclose(client_A); 
    end 

     
elseif strcmp(destination, 'To: B') 
    disp('Sending the message to B'); 
    disp('Looking for connection....'); 
    try 
        %request for connection 
        client_B = tcpip('localhost',3000,'NetworkRole','client'); 
        fopen(client_B); 

         
        %checking connection status, open means connected 
        connection_status = client_B.Status;  
        fprintf('Connection status is: %s\n',connection_status); 
        disp('....connected'); 

         
        %writing the message to the network 
        fwrite(client_B,source) 

         
        %receiving message acknowledgment 
        RecAck= fgetl(client_B); 
        fprintf('Acknowledgment: %s\n',RecAck); 

         
        fclose(client_B); 
    catch 
        disp('.......server is busy!'); 
        disp('waiting.......'); 
        pause(20); 

         
        %request for connection 
        client_B = tcpip('localhost',3000,'NetworkRole','client'); 



        fopen(client_B); 

         
        %checking connection status, open means connected 
        connection_status = client_B.Status;  
        fprintf('Connection status is: %s\n',connection_status); 
        disp('....connected'); 

         
        %writing the message to the network 
        fwrite(client_B,source) 

         
        %receiving message acknowledgment 
        RecAck= fgetl(client_B); 
        fprintf('Acknowledgment: %s\n',RecAck); 

         
        fclose(client_B); 
    end 
else 
    disp('No messages in the channel'); 

  
end 

  
fire = 1; 

  
%open the server to receive messges from clients 
X_server = tcpip('0.0.0.0',4000,'NetworkRole','server'); 
fopen(X_server); 
fprintf('\n...server activated...\n'); 

  
end 

 


