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Abstract 

The assessment of structural reliability for offshore wind turbines (OWTs) is challenging. The 

environmental conditions and loads on a wind turbine have large variability, and wind and wave 

act simultaneously on the structures, giving rise to combined effects that are difficult to assess. 

Often a time-domain simulation of the load components is required to assess the loads and the 

combination of loads. Hence, the minimum of simulations that still produces sufficiently accurate 

results is beneficial. 

The objective of this thesis is to test different methods for estimating the fatigue reliability of a 

wind turbine structure and particularly seeking methods where a minimum of such load-response 

simulations is required while maintaining a high level of accuracy. Achieving this objective would 

require a simplified model of the wind turbine and its substructure, in this case, a jacket structure. 

This simplified model would allow for implementing an effective way of calculating the loads 

affecting the system and the response of the wind turbine structure.  In this thesis, the fatigue of 

the substructure of the wind turbine due to wind loading is studied based on pre-performed damage 

simulations.  

Gaussian processes are a relatively new approach to obtaining structural reliability, is presented 

using a statistical regression model to estimate fatigue damage. Predicting the total wind-induced 

fatigue damage in the structure is the aim of this research. The method is compared with other 

methods, such as Monte Carlo Integration and Bins Method, which requires hundreds if not 

thousands of load-response simulations, which is time-consuming and costly. The results obtained 

in this thesis show that the adopted Gaussian Process regression approach is applicable to 

evaluating structural reliability analysis using a small number of training datasets.  
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Nomenclature 

Abbreviation  

OWT  Offshore Wind Turbine 

SCF  Stress Concentration Factor 

PV  Photovoltaics 

CV  Coefficient of Variation 

NREL  National Renewable Energy Laboratory 

FORM  First-Order Reliability Method 

FOSM  First-order second-moment 

MCI  Monte Carlo Integration 

GPR  Gaussian Process Regression 

CG  Conjugate gradient 

PDF  Probability density function 

CDF  Cumulative density function 

Roman Symbols 

𝐶𝐷  Drag Coefficient 

D  accumulated fatigue damage, Chord diameter 

A  Cross-section Area 

U  Wind Speed 

𝐶𝑀  Inertia Force Coefficient 

V  Volume 

t  time 

H  wave height 

𝑘  wave number 
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𝑥  direction of propagation 

𝑅𝑒  Reynolds number 

𝑛𝑖  number of stress cycles in a stress block i 

𝑔  gravitational constant 

𝑐  wave phase velocity 

𝑢  horizontal particle speed 

U  wind velocity 

𝑢𝑟𝑒𝑓  reference wind velocity 

𝑍  hub height 

𝑍𝑟𝑒𝑓  reference height 

𝑍0  surface roughness 

𝐾𝑟  terrain roughness factor 

𝐹𝐷  drag force 

𝐹𝐿  lifting force 

𝐶𝐿  lift coefficient 

𝐶𝑀  moment coefficient 

𝐶𝑝  surface pressure coefficient 

𝑀  mean overturning moment 

𝐵  arm reference value 

𝑝  static pressure 

𝑝0  velocity pressure 

𝑞  dynamic pressure 

Greek Symbols 

𝜔  Eigen Frequency   

𝛽  𝑑/𝐷 

𝛾  𝑅/𝑇 
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𝜌  density 

𝜎𝑛𝑜𝑚𝑖𝑛𝑎𝑙 Nominal Stress 

𝜎ℎ𝑜𝑡 𝑠𝑝𝑜𝑡 Hot Spot Stress 

𝛼  𝐿/𝐷, power coefficient  

𝜏  𝑡/𝑇 

𝜆  wavelength 

∅  velocity potential 

𝜂  water surface elevation 

𝜎  standard deviation 

𝜇  mean 

𝜑  density function 
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Chapter 1: Introduction 
 

1.1 Wind Turbines 

Wind turbines have been considered as one of the primary power sources in the renewable industry. 

They are used onshore and offshore, and both have a considerable contribution in generating the 

required energy for residential and economic purposes. The industry is now heading towards 

offshore wind turbines. It allows more power to be generated due to the wind profile's higher wind 

speeds and stability during the different seasons of the year. Offshore wind turbines enable the 

industry to go more prominent in both the generation capacity and turbine size. The offshore wind 

turbines reached 8-10 MW in use today, with 12-15 MW being under development.  

One of the most critical issues to be handled is wind turbines' safety and their substructures; as the 

development tends towards larger wind turbines, the failure frequency increases[1]. Wind turbines 

face multiple failure modes such as Gearbox failure modes, Generator failure modes, and Rotor 

blade failure modes. 

There are multiple approaches to estimate the loads due to waves and wind acting on the 

substructure and the turbine. A practical method is to evaluate the loads using simulations of 

different load cases and different environmental conditions. A fatigue analysis is an essential 

procedure that leads to knowing the lifetime of each member of the structure.  A statistical model 

is then evaluating the probability of failure of different members of the structure. 

In this thesis, the issue of calculating the fatigue life of an offshore wind turbine jacket is to be 

addressed and discussed. The goal is to calculate the fatigue reliability of an offshore wind turbine 

(OWT) jacket by using statistical models. For accuracy, time-domain analysis of the load and 

response is needed. However, this is rather time-consuming. Hence, for efficient analysis of the 

lifetime of integrated offshore wind turbine models, the load case assessment is simplified. The 

load-response simulations of the fixed jacket are typically implemented using OpenFAST software 

for the different load cases and environmental conditions. The results obtained from these time 

simulations are, by the use of rain-flow counting procedures, used to estimate load cycles and the 

fatigue damage. 

A practical approach is to simulate the load cases, and the outcome data can be used as test data. 

These data can then be used to build the approximation model. A more general way uses 
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probability distributions with only a few parameters to estimate the fatigue load, which allows for 

quick but not too accurate estimates.  

The accuracy depends on the data used for estimating the parameters; the studies mentioned above 

relied on many hundred load cases in the time domain to achieve acceptable accuracy. It is not 

clear how this methodology can efficiently estimate fatigue damage when the design of the 

structures is changed. 

As a new approach, we present a more efficient method for simplified fatigue load assessment. We 

focus on the estimation of the total fatigue damage of the structure. The main idea is that a few 

selected load cases are sufficient for estimating the real fatigue damage. 

The calculation of structural reliability is implemented via simulating the model using different 

load cases and load case combinations. The load cases are reaching hundreds of load case 

combinations. However, we need a few numbers of those combinations, and to find the most 

reliable data, we have to use statistical modelling.  

1.2 Motivation and Objective 

The motivation for this thesis is based on developing an efficient approach for determining the 

fatigue reliability that may lead to a cost-efficient design for offshore substructures. The main 

objective is to use probabilistic models to estimate the reliability of the structure with a low number 

of data points as possible. The accuracy of results increases with increasing the number of points. 

Nevertheless, sub-objectives have to be done as a predecessor to the main objective throughout the 

thesis. Research has to be done for literature review and results from previously tested approaches 

of simplified analysis. 
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1.3 Approach 

The structural reliability of the addressed jacket is estimated using the OC4 jacket structure. The 

model is assessed using finite element methods as a time-domain simulation in OpenFAST, 

calculating all forces and moments acting on each structure member. Furthermore, calculations for 

fatigue damage and estimation of the reliability will be done using Julia's programming language. 

Structural reliability analysis will be estimated by performing probabilistic analysis and 

distributions with OC4 model structure. Other parameters affecting the loads on the structure, such 

as Aerodynamic damping and member stiffness, are included in the input files of OpenFAST and 

their results in the output files and represented in detail.  

The steps of calculating the reliability are as follows: 

• Using OpenFAST to simulate wind conditions and a sea state based on given wave height, 

wave period, and wind speed. 

• Reading the output file in Julia to import loads of the members and using them for the 

fatigue load estimation. 

• Identifying the type of the structure's joints and estimate the stress concentration factor 

(SCF) for each joint type using DNVGL-RP-C203 for fatigue design. 

Figure 1-1 OC4 Jacket substructure CAD model(a), and 

simplified tower model(b) (Lai et al., 2016) 
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• Using the calculated SCFs to estimate the hot spot stresses. 

• Using the Rainflow counting method to estimate the fatigue cycles within a time domain. 

• Using the outcome from the rainflow counting to obtain the fatigue damage through a 

simulation of 60 minutes. 

• Using the resulting damage curve along with probability densities of the same wind speeds 

using Weibull distribution. 

• Implementing different methods to calculate the probability of failure of the structure and 

having the numerical solution as the reference value. 

• Estimating the reliability from the results obtained from the previous methods. 

• Using a meta-model, Gaussian Process, as a new approach to estimate the reliability of the 

OC4 jacket. 

• Choosing the training data points to be used in the meta-model and developing the best 

method of selecting these training observations. 

• Comparing the results from the Gaussian Process with the reference value to check the 

accuracy of the method. 

The damage curve is extracted from a pre-performed analysis of the OC4 model. The model is 

assessed in a time-domain simulation. This curve was extracted to implement the deterministic 

damage methods (MCI, Bins method, and numerical integration) and obtain the probability of 

failure. The Gaussian process is using the Weibull distribution and indicating how the damage 

curve should look like, as the curve is unknown. 

In this thesis, the last seven points are implemented, starting with using Weibull distribution and 

the damage curves and ending with comparing the results obtained from the Gaussian Process with 

the other methods. The Gaussian process regression uses the Weibull distribution. 
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1.4 Structure of the thesis 

• Chapter 2 presenting a background about wind energy and the calculation of loads caused 

by environmental conditions. 

• Chapter 3 presents a better understanding of the thesis. It includes the finite elements and 

approaches used before and the progress up to date, and how is the probabilistic modelling 

is of use along the reliability estimation process. 

• Chapter 4 explains the used methodology and detailed approach steps and how the used 

approach stands compared to the currently used techniques. 

• Chapter 5, the calculations and results of the models and simulations are presented. 

• Chapter 6 presents the discussion of the obtained results and how these results are 

improving the methods of reliability estimation 

• Chapter 7 is presenting the conclusion of the previously shown results and the suggested 

further work.  
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Chapter 2: Background  
 

2.1 Offshore wind turbine  

Although offshore wind turbines have a high cost, some advantages compensate for this issue. The 

higher wind speeds produce magnificently higher power per unit capacity. Offshore wind turbines 

also complement solar photovoltaic (PV) as it produces efficiently in winter as the load becomes 

at its peak day in and day out throughout the year.  

Offshore wind farms began operating in the 1990s. Specifically, the world's first wind farm started 

running in 1991 in Vindeby, featuring 0.45 MW turbines. Looking at the wind farms now, they 

have more than 14 GW of cumulative installed capacity worldwide[2]. 

Substructures for offshore wind turbines are humongous, weighing over 1000 tons for wind 

turbines of 5 MW. 

The substructures of wind turbines are categorized as fixed and floating substructures. In this 

thesis, we address the OC4 jacket. OC4 jacket is a fixed substructure that is still in the theoretical 

phase, designed but not implemented yet in practice. 

2.2 Fixed substructures 

The used offshore substructure in this study is the fixed piled structures, primarily used in shallow 

water; these structures are widely known as jacket structures. More than 90% of the offshore 

platforms existing now are using jacket structure. This type of fixed substructure is a tubular 

structure fixed to the seabed by drilled and grouted piles. The water depth for the jacket structure 

does not exceed 500m [3], [4]. 

The types of fixed substructures are: 

• Monopile  

• Jacket 

• Tripod 

• Gravity based 

 

Scour can be a problem facing all types of fixed substructures, depending on water depth (WD), 

soil type, grading, and seabed current. 
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It might be allowed to develop even longer piles or gravel and rock dump protection required (costs 

around €500 -700 k per monopile). Alternatives include frond mats, the so-called plastic seaweed, 

rock mats, pile eddy breaking fin or diversion berms, and fences[5]. 

In offshore structures, failure is caused mainly by insufficient pile strength. The phenomena of 

scouring have a significant effect on the load transition and the pile strength[6]. The necessity of 

considering scouring phenomena amplifies when the scour depth becomes remarkable, which can 

endanger the jacket stability. 

The main thing that should be put into consideration is the loads caused by wind and waves. Wave 

loads and wind speeds cause many load cases, and the forces acting on the turbine tower can be 

calculated using Morison's equation. 

Morison's equation calculates the wave force applied to a body by a uniform unsteady flow 

 𝐷(𝑡) =
1

2
𝐶𝐷𝐴𝜌𝑈(𝑡)|𝑈(𝑡)| + 𝐶𝑀𝑉𝜌

𝑑𝑈(𝑡)

𝑑𝑡
 

2-1 

Where 

V, A: Volume and cross-section area of the body 

𝐶𝐷: drag coefficient 

𝐶𝑀 = 𝑐𝑚 + 1: inertia force coefficient, where "1" accounts for a hydrostatic force component in 

the accelerated fluid. 

With assuming having a regular wave, we can use an Airy wave which is a sinusoidal wave. 

Airy wave's wave elevation can be determined as: 

 

 
𝜂(𝑥, 𝑡) =

𝐻

2
cos(𝑘𝑥 − 𝜔𝑡) =

𝐻

2
𝑅𝑒{𝑒𝑖(𝑘𝑥−𝜔𝑡)} 

 

2-2 

And the velocity potential: 

 

𝜙 =

𝑔𝐻
2𝜔 cosh

[𝑘(𝑧 + 𝑑)]

cosh(𝑘𝑑)
cos(𝑘𝑥 − 𝜔𝑡) 

2-3 

Dispersion relation: 

 𝑐2 =
𝜔2

𝑘2
=
𝑔

𝑘
tanh(𝑘𝑑) 

2-4 
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Where     

 𝜔2 = 𝑔𝑘 ∗ tanh(𝑘𝑑) 2-5 

As we are dealing with a fixed bottom wind turbine so using a jacket is recommended, and jackets 

are built in shallow water, and this is known when 𝑑 <
𝜆

20
 then the frequency can be calculated as: 

 𝜔2 = 𝑔𝑘 ∗ 𝑘𝑑 2-6 

As in shallow water kd<<1 so we can consider tanh(kd) ≈ kd 

Two essential factors that affect the calculation of the wave loads are acceleration and velocity. 

Acceleration:  

 
𝜕𝑢

𝜕𝑡
(𝑥, 𝑧, 𝑡) = 𝑎𝜔2

cosh (𝑘(ℎ + 𝑧))

sinh (𝑘ℎ)
cos(𝜔𝑡 − 𝑘𝑥) 2-7 

 

 
𝜕𝑤

𝜕𝑡
(𝑥, 𝑧, 𝑡) = −𝑎𝜔2

sinh (𝑘(ℎ + 𝑧))

sinh (𝑘ℎ)
sin(𝜔𝑡 − 𝑘𝑥) 2-8 

 

Velocity:     

 𝑢(𝑥, 𝑧, 𝑡) = 𝑎𝜔
cosh (𝑘(ℎ + 𝑧))

sinh (𝑘ℎ)
sin(𝜔𝑡 − 𝑘𝑥) 2-9 

 

 𝑢(𝑥, 𝑧, 𝑡) = 𝑎𝜔
sinh (𝑘(ℎ + 𝑧))

sinh (𝑘ℎ)
cos(𝜔𝑡 − 𝑘𝑥) 2-10 

For the wind, it is different compared to the onshore wind. Offshore wind changes uniformly as it 

is stable mainly during springtime and mostly unstable during wintertime. On onshore, the current 

changes diurnally. This significant difference is that the sea surface has a vast area. It saves the 

temperature, high heat capacity for a long time, leading to small temperature changes advancing 

through time[7], [8]. 

Also, offshore we deal with non-stationary lower boundary, ocean waves, which depends on the 

wind speed. 

The lower surface roughness offshore results in a very different vertical structure of the boundary 

layer, i.e., the depth of the surface layer can be as low as 30m [9]. 
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For the non-stationary boundary layer, we have different wind profile for different wind speeds 

 

The jacket structure is best suitable for shallow water and intermediate water up to 500 m depth. 

In shallow water, the waves are long, and as waves move closer to surface water, the phase velocity 

decreases. The wave amplitude increases, and the waves start bending, breaking, and making a 

significant impact on the structure, causing a substantial load on the jacket's leg and members. 

2.3 Power law wind profile 

The relation between the wind speeds at a certain height and another is known as the wind profile 

power law. 

 𝑈(𝑧) = 𝑢𝑟𝑒𝑓 (
𝑍

𝑍𝑟𝑒𝑓
)

𝛼

 
2-11 

Where U is the wind speed at the hub height Z and 𝑢𝑟𝑒𝑓 is the wind speed at the reference hub 

height 𝑍𝑟𝑒𝑓 . 𝛼  is the power-law exponent that is a coefficient derived empirically that differs 

depending on the atmospheric stability. A commonly used value of 𝛼 is 0.143 in neutral stability 

conditions[10], [11]. 

This method is currently recommended in IEC standards, but this profile does not have a 

fundamental physical basis and is only valid for neutral wind conditions. 

 

Figure 2-1 wind profile (Halici and Mutungi, 2016) 
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Figure 2-2 vertical wind shear profile (Maran, Sard 2019) 

2.4 Logarithmic wind profile 

The log wind profile is a commonly used semi-empirical relationship to define the vertical 

distribution within the lowest boundary layer of the horizontal mean wind speed.  

The wind speeds logarithmic profile is available within the first 100 m, the so-called surface layer, 

of the atmosphere. The rest of the atmospheric layer, up to 1000 m, is composed boundary layer 

and the free atmosphere.  

 𝑈(𝑍) = (
𝑢∗
𝑘
) (ln

𝑍

𝑍0
− 𝜑) 2-12 

Where 𝑘 = 0.4 refers to Von Karman's constant, z is the height, 𝑢∗ is the friction velocity, z0 is 

the surface roughness length, and 𝜑 is a stability-dependent function. 

A corrective measure to rely on for the effect of the surface roughness of a wind flow is the 

roughness length. 

It is challenging to define absolute values because of the indication of the values range by 

references.  

This method is currently recommended on the DNV standards and is based on Similarity theory. 

In most cases, the roughness length 𝑧0 is given based on specific terrain descriptions.  
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Table 2-1 Surface roughness in different terrains 

Terrain  𝑘𝑟 𝑍0 
𝑍𝑚𝑖𝑛 

EN 1991-4 

𝑍𝑚𝑖𝑛 

Nat. Annex 

Sea or coastal area exposed to 

the open sea. 
0.155 0.003 1 2 

Rough open sea, lakes with at 

least 5 km fetch upwind and 

smooth flat country without 

obstacles 

0.17 0.01 1 2 

Farmland with boundary 

hedges, occasional small farm 

structures, houses, and trees 

0.19 0.05 2 4 

Suburban or industrial areas 

and permanent forests 
0.22 0.3 5 8 

Urban areas in which at least 

15% of the surface is covered 

with buildings and their 

average height exceeds 15m 

0.24 1 10 16 
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The profiles shown in Figure 2-3 are matched at 30 m, but the roughness length of them all is the 

same. The difference in the mean wind gradient is caused by the different instabilities, although 

they are for the same terrain and hub height. 

Different pressure and temperature gradients with height can cause different stability conditions. 

An example of such an effect on the wind profile is shown in Figure 2-4 below [12].  

Figure 2-3 wind speed profiles vs static stability in the 

surface layer (Abdalla et al., 2017) 

Figure 2-4 seasonal cycle of wind shear (Abdalla et al., 2017) 
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Experimentally obtained (mean) wind forces on different objects/cross-sections are commonly 

expressed in terms of non-dimensional force coefficients, which depend on the cross-section shape 

and, in some cases, also on Reynolds number. 

CD: drag coefficient expresses the static force in the along-wind direction, FD ≡ D normalized with 

the velocity pressure and the cross-sectional height H, i.e., the wind-exposed area Hx1m:  

 𝐶𝐷 =
𝐹𝐷

1
2𝜌𝑈

2𝐻
 2-13 

CL: lift coefficient expresses the mean force in the across-wind direction, FL ≡ L normalized with 

the velocity pressure and the "lift-generating area" B (B x 1m).  

Figure 2-8  Wind speed profiles for different conditions in Winter 

(Abdalla et al. (2017)) 
Figure 2-7 Wind speed profiles for different conditions in Spring 

(Abdalla et al. (2017)) 

Figure 2-5 Wind speed profiles for different conditions in 

Summer (Abdalla et al. (2017)) 
Figure 2-6 Wind speed profiles for different conditions in 

Autumn (Abdalla et al. (2017)) 
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 𝐶𝐿 =
𝐹𝐿

1
2
𝜌𝑈2𝐵

 2-14 

The resulting aerodynamic load does not necessarily act at the shear center of the cross-section, 

i.e., it may also generate an overturning moment.  

CM: moment coefficient expresses the mean overturning moment M about the shear center, L 

normalized with the velocity pressure and the "lift-generating area" B times arm reference value 

B, i.e., 𝐵2 (𝐵2 x 1m).  

 𝐶𝑀 =
𝑀

1
2𝜌𝑈

2𝐵2
 2-15 

Force coefficients are typically obtained either by direct force measurements are by integrating the 

surface pressures, i.e., surface pressure coefficients Cp, Where 

 
𝐶𝑝 =

𝑝 − 𝑝0
1
2𝜌𝑈

2
 2-16 

𝑝 𝑎𝑛𝑑 𝑝0 are local pressure referenced to the static pressure and normalized by the velocity pressure. 

2.5 Mean and total wind load 

The dynamic pressure acting on a structure associated with wind speed U is defined as: 

 𝑞 =
1

2
𝜌𝑈2 

2-17 

Comprehends the force on a wind-exposed structural area A using a shape factor 𝐶𝐴:  

 𝐹𝑞 = 𝐶𝐴𝐴𝑞 2-18 

We can also calculate the force per unit length by replacing the exposed area with a reference 

dimension D/B/H. 

The shape factor reflects the integrated effect of mean surface pressures on the structural cross-

section/wind-exposed area as the airflow passes the structures.  

Turbulence is an inseparable part of wind flow, so the total wind load includes a time-varying, 

fluctuating component, in addition to the mean value: 

Where:   
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 𝐹𝑡𝑜𝑡 = 𝐶𝐴𝐴
1

2
𝜌 𝑈𝑡𝑜𝑡

2  
2-19 

 𝑈𝑡𝑜𝑡
2 = (𝑈 + 𝑢)2 

2-20 

In the case of a "small", "point-like" structure, i.e., a structure small compared to the size of 

significant eddies in the natural wind, the largest total force on the structure can be formulated: 

 𝐹𝑚𝑎𝑥 = 𝐹𝑞 + 𝑘𝑝𝜎𝐹 = 𝐹𝑞(1 + 𝑘𝑝2𝐼𝑢) 
2-21 

Where 𝜎𝐹  is the standard deviation of the load, which depends on the turbulence intensity 𝐼𝑢: 𝜎𝐹 =

𝐹𝑞2𝐼𝑢 and 𝑘𝑝 is the peak factor, which relates the maximum variation of the force to its standard 

deviation. For a normally distributed process 𝑘𝑝 is in the range from 3-5. More significant peak 

factors may be present in the suction regions around the building corners or on the roof of a 

building. 

Equation 2-21 gives the most significant force expected on a point-like structure, i.e., a structure 

small compared to the size of substantial eddies in the natural wind.  

In the case of a "large" structure, the above expression modifies into: 

 𝐹𝑚𝑎𝑥 = 𝐹𝑞(1 + 𝑘𝑝2𝐼𝑢√𝑘𝑏) 
2-22 

Where, 𝑘𝑏 is a factor taking into account the lack of turbulence over the structural span or surface. 
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2.6 Mal functions of components  

The downtimes calculated are due to both regular maintenance and unexpected malfunctions. The 

following evaluations refer only to the unexpected malfunctions, which concerned half mechanical 

and half electrical components[13]. 

Regardless of failure rates, downtimes of machines after a failure are an essential factor in defining 

a machine's reliability. Downtime duration caused by malfunctions is dependent on necessary 

maintenance and repair work, replacement parts availability, and the personnel capacity of service 

teams. Previously, generator repairs, drive train, hub, gearbox, and blades have usually caused 

hold periods of several weeks [14]. 

Figure 2-9 main components' share of the total number of failures 

(Hossain et al., 2018) 
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Considering all the reported repair measures that are available now, the average rate of failure and 

downtime per component can be given. It is noticed that the downtimes declined in the past five 

to ten years. So, the high number of failures of some components is now balanced out to a certain 

extent by short standstill periods. However, damages to generators, gearboxes, and drive trains are 

mainly caused by extended downtime of one week as an average [15], [16]. 

The industry-accepted turbine lifetime is 20 years. Thus, a wind turbine's reliability is the 

percentage of time that the turbine will be functioning at total capacity during appropriate wind 

conditions at a site with specified wind resource characterization for a 20-year life. Reliability 

specialists use a graphical representation called the bathtub curve. The bathtub curve consists of 

three regions; an infant mortality period with a decreasing failure rate followed by an average life 

period with a low and relatively constant failure rate and ending with displaying an increasing 

failure rate of the wear-out period[17], [18]. 

2.7 Fatigue Analysis 

The primary failure focused on in this thesis is fatigue failure. Fatigue is the most common type 

of failure an offshore structure experiences due to the different and cyclic environmental loads 

applied by the wind and waves. Defining the type of joints is required to understand the fatigue 

Figure 2-10 Reliability characteristics for different components of wind turbine (Faulstich et al., 2011) 
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subjected to the OC4 jacket, as there are different types of joints such as T, X, Y, K, and complex 

joints. 

In the DNV-RP-C203 standard for fatigue design, different types of fatigue modes and joints types 

are mentioned. As the jacket addressed is made of tubular joints, the nominal stress can be 

calculated using the simple beam theory as: 

 
𝜎𝑁𝑜𝑚𝑖𝑛𝑎𝑙 =

𝑃

𝐴
±
𝑀

𝐼
𝑦 

 

2-23 

Where P is the applied axial load, A is the cross-sectional area, M is the applied bending moment, 

I is the inertia of the section area about the neutral axis, and y is the perpendicular distance from 

the neutral axis to a point on the section. [19]  

The intriguing matter is what defines the axial load. The most probable guess is that the x-axis is 

where the axial load exists, to make sure this is the right guess, the local axis has to be transformed 

into the correct coordinate to define the direction of every load in x y and z. This transformation 

can be done by multiplying the transpose of the transformation matrix by the load vector[20]. After 

estimating the nominal stresses, we need to calculate the fatigue damage, which is defined in DNV 

standard as it is dependent on the S-N curve and is estimated as: 

 
𝐷 =  ∑

𝑛𝑖
𝑁𝑖

𝑘

𝑖=1

=
1

�̅�
∑𝑛𝑖 . (∆𝜎𝑖)

𝑚

𝑘

𝑖=1

 

 

2-24 

Where  

D = accumulated fatigue damage 

�̅�  = intercept of the design S-N curve with the log N axis 

m = negative inverse slope of the S-N curve 

k = number of stress blocks 

ni = number of stress cycles in stress block i 

Ni = number of cycles to failure at constant stress range Δσi 
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As shown in the equation, stress is the hot spot stress, and the hot spot stress is the stress that we 

are most interested in. The hot spot stress is simply calculated by multiplying the nominal stress 

by a stress concentration factor (SCF). Defining the type of the joints depend on the direction of 

the forces and moments, if the load is compression or tension, and if the moment is in-plane or out 

of plane. Having the global to local transformation matrices from the output files, the definition of 

the in-plane and out of plane became more accessible as we can assume a coordinate system of 

local x, y, and z and then use the inverse of the global to local transfer matrices and then 

transforming from the global back to the assumed coordinate system.  

 
Figure 2-11 classification of joints (DNVGL-RP-C203) 
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A complex joint is defined as a joint that has a combination of Y and K, or X and K joints 

properties. Geometrical parameters play a significant role in calculating the SCF of each joint. So, 

taking a simple T joint, for example, as shown below in Figure 2-12, with in-plane bending, SCF 

is calculated as 

For chord crown: 

1.45𝛽𝜏0.85𝛾1−0.68𝛽(𝑠𝑖𝑛𝜃)0.7 

For brace crown: 

1 + 0.65𝛽𝜏0.4𝛾1.09−0.77𝛽(𝑠𝑖𝑛𝜃)0.06𝛾−1.16 

Where 𝛽 is the ratio between the brace diameter and the chord diameter, 𝜏 is the ratio between the 

thickness of the brace and thickness of the chord,  𝛾 is 
𝐷

2𝑇
, 𝜃 is the angle between the brace and the 

chord. 

To further explain the stress concentration phenomena in the T joint discussed above, the zone of 

the stress concentration is pointed at in Figure 2-13 above[16]. 

Figure 2-13 stress concentration in T joint (Tong et al., 2019) 

Figure 2-12 SCF of T joint (DNVGL-RP-C203) 
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As shown in Figure 2-13, it is clear that the stress at the welded joint is higher than the nominal 

stress due to the stress concentration. 

The main goal is to calculate the damage done to the joint due to environmental conditions. 

Calculating the nominal stress is the main procedure for calculating the damage. 

However, the stress we are interested in is the hot spot stress, and that is calculated by multiplying 

the SCF by the nominal stress calculated.  

To analyze the design, a simplified numerical procedure is implemented to reduce the demand for 

large fine-mesh models for the calculation of SCF factors: 

• the stress concentration or the notch factor due to the weld itself is included in the S-N 

curve to be used, the D-curve. This S-N curve is also known as the hot spot S-N curve. 

Figure 2-14 Definition of geometrical parameters (DNVGL-RP-C203) 
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• The stress concentration due to the geometric effect of the precise detail can be calculated 

using different methods, such as considering the use of solid elements, resulting in a 

geometric SCF factor. 

This procedure is defined as the hot spot method. 

The hot-spot stress method, which is also known as the geometric stress method, considers the 

stress increment effect due to the structural discontinuity except for the stress concentration due to 

weld toe, i.e., without the consideration of the localized weld notch stress. Hot spot stress is the 

value of the structural stress of the surface at hot spots. The hot spots are located at a welded joint 

where the cracks possibly initiate under cyclic loading due to the increased stress value. 

In the hot spot stress method, the fatigue life is related to hot spot stress directly instead of the 

nominal stress. The fatigue life of tubular and non-tubular joints is usually identified using S−N 

curves. An S −N curve shows the relation between the hot spot stress range and the number of 

cycles to failure. The performance fatigue life of tubular and non-tubular joints is also dependent 

on the structural members' thickness. The fatigue life of tubular and non-tubular joints gets 

decreased as the thickness of the structural member increases.  
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Chapter 3: Literature Review 
 

The offshore wind industry faces many challenges in the support structures design process, and 

the main challenge would be the cost of design. The main goal of reliability analysis is to have an 

optimal design with a lower cost. When we address fatigue damage assessment, we often discuss 

the fatigue load of an offshore wind turbine in time-domain simulations, which leads to a long 

process. To obtain a high level of accuracy in the results, we use a large number of load cases, and 

the objective to be achieved here is reaching an accurate solution with a lower number of load 

cases. There are many approaches applied to achieve this goal using statistical models.  

3.1 Modelling of uncertainties in structural engineering 

Close to all input parameters in a structural design problem is associated with uncertainties, which 

need to be addressed in the analysis. As an example, the load on a turbine has uncertainties due to 

the randomness of the environmental conditions, such as the wind speed. Furthermore, it is 

associated with uncertainty in, for example, the drag coefficient (𝐶𝑑 ). In addition, there are 

uncertainties in system parameters, such as the damping coefficient and the stiffness of the soil.  

The modelling of these uncertainties is a crucial point within the formulation of a structural 

problem of offshore wind turbines. There are several mathematical and statistical models to 

describe these uncertainties in a probabilistic model of the structure.  

A probability distribution is a statistical function. The function describes the likelihoods that a 

random variable can obtain in a range of given numbers. The probability distribution functions are 

typically described by their mean, standard deviation, kurtosis, and skewness. 

The normal distribution is the most common. The normal distribution is frequently used in 

Engineering, investing, finance, and science. The normal distribution is defined and characterized 

by its mean and standard deviation, which means that the distribution is neither skewed nor exhibits 

kurtosis, which makes the distribution symmetric. 

To the probability of occurrence of uncertain events which are naturally stochastic, two main 

functions are used, and those are the probability density function and cumulative density function.  

To describe a random variable statistically, it can be entirely described by using a cumulative 

density function as 𝐹𝑋(𝑥) or by using a probability density function 𝑓𝑋(𝑥), shown as follows 
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 𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) =  ∫ 𝑓𝑋(𝑥)𝑑𝑥
𝑥

−∞

 3-1 

The distribution of the variables is defined by some parameters in association with the probability 

distribution. These parameters are known as statistical moments. Known that the most commonly 

used moments are the mean value 𝜇(𝑋), known as the first moment, and also called the expected 

value as denoted by E(X), and the second moment, known as variance and denoted by 𝜎2(𝑋) or 

Var(X). the two moments (parameters) can be described as follows: 

 

 𝑀𝑒𝑎𝑛:    𝜇(𝑋) =
∑ 𝑋𝑖
𝑁
𝑖=1

𝑁
 

3-2 

 

 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒:    𝜎2(𝑋) =
∑(𝑥 − 𝜇)2

𝑁
 

3-3 

The probability distributions used for structural engineering are log-normal, uniform, and Weibull 

distributions. A significant parameter in the distributions is the coefficient of variation (CV), and 

it is defined as the standard deviation divided by the mean value[21]. 

 𝐶𝑉 =
𝜎

𝜇
 3-4 
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A very common continuous distribution presenting the probability is the normal or Gaussian 

distribution. One can define the density function of such probability distribution by plotting a curve 

with specific mean and standard deviation as follows: 

 

 𝑓(𝑥; 𝜇, 𝜎) =
1

𝜎√2𝜋
𝑒
−
(𝑥−𝜇)2

2𝜎2 =
1

𝜎
𝜑 (
(𝑥 − 𝜇)

𝜎
) 3-5 

Where 

 𝜑(𝑥) =
1

√2𝜋
𝑒−

1
2
𝑥2

 3-6 

Another type of continuous probability distribution is the log-normal distribution. The log-normal 

distribution has random variables that possess a logarithm that is normally distributed. 

To plot a distribution with specific mean 𝜇(𝑥) and variance 𝜎2(𝑥) we can use  

Figure 3-1 density functions with different mean and standard deviation 



 38 

 

 University of Stavanger 

 𝜇 = ln(
𝜇2(𝑋)

√𝜇2(𝑋) + 𝜎2(𝑋)
) 3-7 

 

 𝜎2 = ln (1 +
𝜎2(𝑋)

𝜇2(𝑋)
) 3-8 

And both of those variables are positive. The probability distribution has a density function defined 

as follows 

 

Figure 3-2 Log-Normal distributions with a different mean and standard deviation 

3.2 First-Order Reliability Method (FORM) 

FORM was developed originally to assess the structures’ reliability[22], [23]. The objective of 

FORM is to estimate the integral in 3-9 and hence the failure probability. 

 𝑃𝑓 = ∫ 𝑓𝑥(𝑋) 𝑑𝑥
 

𝐺(𝑋)<0

 3-9 

Where 𝐺(𝑋) = 𝑅 − 𝐿; R is resistance and L is load, and 𝑓𝑥(𝑋) is the probability density function 

of 𝑋. 

The failure probability is obtained by using the computed reliability index 𝛽 as 
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 𝑃𝑓 = 𝛷(−𝛽) 
3-10 

Where 𝛷 is the normal cumulative density function. If we have 𝑛 random variables, 𝛽 is then 

defined as the minimum distance between 𝑛 variable mean and the failure surface as shown in 

Figure 3-3 below [24]. 

3.3 First-Order Second-Moment (FOSM) method  

The FOSM, also known as mean value first-order second-moment (MVFOSM) method, in 

probability theory is a method to determine the moments of a function that has random input 

variables[25]. The FOSM method is an approximation  methods,  and  one  of  the  most  commonly 

applied in engineering. The method took the name from the fact that it uses the first-order term of 

the Taylor series expansion about the mean value of each input variable and requires up to the 

second-moment of the uncertain variables. Furthermore, it allows the estimation of uncertainty in 

the output variables without knowing the shape of the probability density functions (PDFs) of input 

variables in detail. The mean value and the standard deviations of the input variables suffice to 

compute the mean value and standard deviation of the output. For a better understanding of the 

principle of this method, we consider a function y transforming a random variable X into random 

variable Y, where 𝑌 = 𝑦(𝑋). The expected mean value can be estimated as 

Figure 3-3 FORM approximation of the failure surface (Maier et al., 2001) 
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 𝐸(𝑌) = ∫ 𝑦(𝑥)𝑝𝑋(𝑥)𝑑𝑥
∞

−∞

 3-11 

And the variance is  

 𝑉𝑎𝑟(𝑌) = ∫ [𝑦(𝑥) − 𝐸(𝑌)]2𝑝𝑋(𝑥)𝑑𝑥
∞

−∞

 3-12 

Where 𝑝𝑋 is the PDF of 𝑋. The mean and variance of 𝑌 require information of 𝑝𝑋, which in many 

cases the available information is limited to the mean and variance of 𝑋 . Furthermore, even 

knowing 𝑝𝑋, the computation of the integrals in Equations 3-11and 3-12 may, to a great extent, 

consume time (Ang & Tang, 1975) [26]. 

3.4 Structural Reliability Analysis 

The goal is to determine how reliable these structures are, using a statistical model that reduces 

uncertainties in the estimates of the probability of failure of the jacket. 

Structural reliability is capable of including uncertainties in the parameters of a structural system 

and the different environmental loads.  

A deterministic approach to structural engineering is typically based on the partial factor, and limit 

state method, also called the Load and Resistance Factor Design (LRFD).  This method addresses 

uncertainties in parameters by determining the characteristic values of material properties and load 

intensities. In addition, partial safety factors are used to cope with some aspects of uncertainty. 

However, it might not in all cases be cost-optimal and may in some cases be too much on the safe 

side. Hence, for offshore wind turbines, it is of interest to investigate methods such as structural 

reliability analysis in order to seek a more cost-efficient design. 

A suitable way of obtaining this, probability of failure, the risk is the approach of probabilistic 

models. Such an approach allows designing the structure with a sufficient and acceptable 

probability of failure during the structure's lifetime. 

The simplest problem of structural reliability is illustrating this theory. If we consider a single load 

effect S that is resisted by a single resistance R. each of these parameters is defined by a known 

probability density function, 𝑓𝑆 and 𝑓𝑅 respectively, expressing both R and S in the same unit, as 

illustrated in Figure 3-4. 
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Figure 3-4 reliability-based design curve (Melchers, 2018) 

The failure of the structure in this simple example can be considered to occur if the resultant S is 

surpassing the resistance R. The probability of failure of an element can be defined as follows [27], 

[28]. 

 𝑝𝑓 = 𝑃(𝑔(𝑅, 𝑆) ≤ 0) 3-13 

Where 𝑔 is the limit state, and the failure probability is the same as the probability of violating the 

limit state. Equation 3-13 can be used to estimate the probability failure of a probabilistic model 

for the number of observations considered in the analysis. A reliability analysis is required for the 

statistical description of the limit state values 𝑔𝑖(𝑖 = 1,2,3, … , 𝑛) . Defining the statistical 

characteristics using the most suitable probability distributions is an essential step before 

implementing reliability analysis. Eventually, the probability of failure is estimated using 

numerical calculations efficiently and economically. 

This is known as “convolution integral”, with meaning easily explained as shown in Figure 3-5. 

Figure 3-5 Basic R-S problem (Melchers, R.E., 2018) 
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𝐹𝑅(𝑥) is the probability that 𝑅 ≤ 𝑥 or the probability that actual resistance R of the member is less 

than range value x. This failure is represented if the loading is larger than 𝑥. The probability of this 

case is given by the term 𝑓𝑆(𝑥) that represents the probability of the load effect S that acts in the 

member has a value between 𝑥 and 𝑥 + ∆𝑥 in the limit as ∆𝑥 goes towards zero. By considering 

all possible values of x, i.e. by taking the integral over all x, the total failure probability is obtained. 

 𝑃𝑓 = ∫ (1 − 𝐹𝑠(𝑥))𝑓𝑅(𝑥)𝑑𝑥
∞

−∞

 
3-14 

This can be defined as the summation of the failure probabilities of the load that exceeds the 

resistance. 

Numerous methods have been developed aiming to obtain the integrated probability in structural 

reliability analysis. The most common methods are the first and second-order reliability methods 

(FORM and SORM) and Monte Carlo simulation. Direct methods to integrate over the failure 

domain is also in use by different numerical integrating methods, such as the Newton-Raphson 

method, Monte Carlo Integration and the so-called Bins method. These approaches aimed to 

estimate the failure probability from the data provided by the test of many samples and data 

points[29], [30]. 

The term Structural reliability of a structure refers to the probability of safe performance of a limit 

state. Limit states refer to ultimate failures, such as collapse, or unserviceability, such as deflection, 

vibrations, or crack propagation. An efficient way to designing a structure is using a probabilistic 

model to treat structural loads and resistance. Structural reliability is becoming the ideal way of 

designing a structure as it replaces the deterministic traditional ways of maintenance and design.  

The reliability can be estimated as 

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1 − 𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒 

The reliability-based design has the objective of ensuring that the failure probability of a system 

is reasonably low.   

3.5 Bins Method 

The bins method, or as known Numerical Binning, is a method to group or collect a number of 

more or fewer values which are continuous into smaller bins number. Creating bins or ranges helps 
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in understanding the numerical data in a better way. Taking, an example, data on the age of a group 

of people, we might want to have their ages arranged into a smaller number of age intervals. 

The same thing can be illustrated in the data collected to calculate the reliability of a structure from 

having the damage of every wind speed ranging from 0 to 40𝑚/𝑠. Arranging this wind speed range 

into smaller groups, 5𝑚/𝑠 for example, helps in understanding the data sets better than taking the 

whole range at once[31]. 

3.6 Monte Carlo Integration 

The numerical integration in mathematics uses equally spaced numbers in calculations. The 

difference between Monte Carlo Integration and numerical integration is the use of random 

numbers. 

A simple way to illustrate this method is integrating a univariant function s denoting by S the 

integral value 

𝑆 = ∫ 𝑠(𝑥)𝑑𝑥
𝑏

𝑎

 

This integral can be considered as the area below the curve of the function. Taking a random 

function as 

𝑠(𝑥) = 𝑥2 − 3𝑥 + 2 

The function can be plotted as shown in Figure 3-6 above and choosing 𝑎 = −2 and 𝑏 = 5 

Figure 3-6 𝑥2 − 3𝑥 + 2 



 44 

 

 University of Stavanger 

If we choose a random 𝑥 value between 𝑎 and 𝑏, multiplying 𝑠(𝑥) by (𝑏 − 𝑎), we get the area of 

a rectangle width of 𝑏 − 𝑎 and the height of 𝑥. The main reason why Monte Carlo is to estimate 

an approximation of the integral value by the average area of the rectangles shown in Figure 3-7 

below, computed for random chosen 𝑥 values [32]. 

By summing the area of the rectangles and obtaining the average of the sum, the number keeps 

getting closer to the actual result of the integral. The idea is generally formalized as  

𝐹𝑁 = (𝑏 − 𝑎)
1

𝑁 − 1
∑𝑓(𝑋𝑖)

𝑁

𝑖=0

 

Where 𝑋𝑖 is the random variable chosen for every rectangle. Large numbers have a law that gives 

us that as N tends to infinity, the true value of the integral becomes: 

𝑃𝑟( lim
𝑁→∞

(𝐹𝑁) = 𝐹) = 1 

That means that the more numbers are used in this method, the more accurate the results become. 

The Monte Carlo method has been used before for reliability estimation with some limitations of 

simplifying the structure. This method showed relatively well performance, managing to assess 

Figure 3-7 summing the rectangles (Cumer et al. 2020) 
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structural reliability with doable effort. The results obtained by this approach is indicating the 

importance of the probabilistic assessment in the optimization of a structure’s design [33].  

3.7 Numerical Integration 

The numerical integration method is computing an approximation to the integral of a certain 

function. In structural reliability, numerical integration can be used for obtaining the failure 

probability in a high accuracy manner. The use of this method starts with combining the 

probabilities with the required parameter to be assessed and integrate them numerically.  

Numerical integration is still used to estimate structural reliability, and it showed higher accuracy 

than the traditional first-order second-moment method (FOSM). When a small number of points 

is used, it shows lower accuracy yet satisfying to the accuracy requirement in engineering. With a 

higher number of points, the accuracy increases accordingly[34], [35]. 

3.8 Gaussian Process 

The Gaussian Process is a stochastic process with random variables defined by time and space, 

and every collection of those variables has a multivariate normal distribution. The process allows 

predicting the available data by incorporating previous knowledge. It is commonly used in fitting 

a function of the data, which is basically called regression.  

The Gaussian process as a tool is powerful in machine learning. It is not limited to regression but 

can also be used in classification tasks. Each data set has infinitely many functions to help with 

fitting the data. The Gaussian process gives a creative and elegant solution to this problem by 

simply assigning probabilities to every function. Additionally, the use of probabilistic approaches 

allows us to include the confidence of the regression results from the prediction[36]. 

The model can then predict the mean and variance of function value at new points. The main 

Gaussian process is defined as 

𝑓(𝑥)~𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥′)) 

Where 𝑚(𝑥) is the mean function and 𝑘(𝑥, 𝑥′) is the kernel function. The mean function gives the 

mean at any point of the input space, and the kernel sets the covariance between points. Usually, 

the mean is set to zero for simplicity, and the kernel should be positive definite[37]. 
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A Gaussian process regression (GPR) defines a probabilistic model over a set of given data points. 

It is constructed so that the probability of the value of the function is maximized for all given data 

points. The process is successfully used in many fields such as Internet of Things (IoT), prediction 

analysis of time series, and dynamic system control[38]–[40]. GPR method, however, continues 

to possess a few deficiencies such as calculations and limitation of the noise distribution. Studies 

revealed that selecting the hyperparameters significantly affect the GPR performance. The optimal 

selection of these hyperparameters leads to significant reduction of iterations of GPR learning and 

improve the accuracy of model fitting. Optimizing the parameters can be done using experiment 

trials and experience selection. However, these types of optimizing methods involve deficiencies, 

including the high cost of calculation and poor efficiency[41]. In this thesis, the GPR is 

implemented in Julia, where two optimization methods: conjugate gradient and L-BFGS. 

Conjugate gradient (CG) is a solver which is iterative, used for linear equation systems 𝐴𝑥 = 𝑏 

where 𝐴 ∈ ℝ𝑁∗𝑁 a real, positive definite, and symmetric matrix. In practice, CG is used as an 

approximate solver, and it can provide a good estimation to 𝑥 in significantly small 𝑁 steps[42]. 

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) is an iterative method for solving unconstrained 

nonlinear optimization problems. Furthermore, L-BFGS is using a limited amount of computer 

memory. It is a typical algorithm for parameter estimation in machine learning. This algorithm’s 

target problem is to minimize 𝑓(𝑥) over unconstrained values of the real vector 𝑥 where 𝑓 is a 

differential scalar function. 

The use of the Gaussian process in structural reliability in previous studies showed promising 

results with the process managing to significantly reduce the number of required training data 

points and providing accurate estimations of the failure probability when compared to the 

FORM[43], [44]. 
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Chapter 4: Methodology 
 

The methodology of this thesis objectives is the approach of using statistical modelling to obtain 

the fatigue reliability of the jacket structure. The industry uses methods that are time-consuming 

and costly, implementing the different numerical approaches with deterministic damage values to 

compare between them and the applied approach, statistical model, of the Gaussian Process. The 

comparison will show how the statistical approach is standing against the currently used methods 

in terms of accuracy and time efficiency. 

The Gaussian process is defined by its mean and covariance functions, where the mean function 

𝑚(𝑥) describes the mean of any point in the process, and the kernel 𝑘(𝑥, 𝑥′) =  𝜎2  describes the 

covariance between two training points. 

The Gaussian process is a non-parametric model. That makes it easier as we do not have to worry 

about fitting too much data, training, points added to the model, unlike a linear model on a non-

linear data point.  

4.1 Wind Distribution 

The wind speed probability is in the thesis modelled by a Weibull distribution. 

 

Figure 4-1 Weibull distribution 
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4.2 Damage Curve 

The damage curve used in this thesis is extracted from the results obtained from the research article 

“Simplified fatigue load assessment in offshore wind turbine structural analysis” written by Daniel 

Zwick and Michael Muskulus [45]. For each member connected to a Y-joint, K-joint or X-joint, 

FEDEM Windpower was used to establish the time series data for the axial force as well as in-

plane and out-of-plane bending moments as outputs. From the raw time series data, a transient of 

60 to 200 seconds was cut off depending on the wind speed. The simulation produced results in a 

total analysis length of 60 minutes. Force and moment time series were converted to sectional 

stresses, using beam cross-section data for the specific members. Using Equation 2-24, these time 

series are adjusted by the relevant SCF, and then a rainflow counting method is used in order to 

get the 𝑛 and ∆𝜎. With these and the relevant 𝑆 − 𝑁 curve, the total damage is calculated. 

 

Figure 4-2 Damage curve 

4.3 Total damage estimation 

The results of the damage and the probability density function corresponding to wind speed are 

obtained for the jacket. 

The total damage required to estimate the reliability is obtained using four methods: 

• Damage estimation using numerical integration  

• Damage estimation using bins method 
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• Damage estimation using Monte Carlo Integration (MCI) 

• Damage estimation using Gaussian Process 

4.3.1 Numerical Integration 

This method demands combining the damage curve with the probability density distribution and 

then integrating them numerically at every damage position for every wind speed. The results 

obtained from numerical integration are considered, in this thesis, as the reference results.  

4.3.2 Bins Method 

This method is implemented by obtaining the probabilities by integrating the probability densities 

at every wind speed and then multiplying these probabilities with every damage corresponding to 

the same wind speeds. 

4.3.3 Monte Carlo Integration 

In numerical integration, the used methods are using a deterministic approach in obtaining the total 

damage. However, Monte Carlo integration utilizes a non-deterministic approach. Each set of 

chosen points give a different outcome as they are chosen randomly. The outcome is an 

approximation of the true value or the reference value of the total damage, which is the numerical 

integration, value with respective error bars. These error bars are likely to contain the reference 

value or the required accurate value.  

This method is implemented with the same procedure as the Bins method in having the 

probabilities estimated and then combining each probability with the corresponding damage.  

4.3.4 Failure probability using deterministic value 

The total damage estimated using the three previously explained methods is used to obtain the 

failure probability by integrating the PDF of the normal distribution of 𝜇 = 1 𝑎𝑛𝑑 𝜎 = 0.3 with 

the total damage. This integral can be descriped as shown in Figure 5-2 in Chapter 5:. 
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4.3.5 Gaussian Process 

The Gaussian Process still possesses high uncertainty in controlling the distribution using its length 

scale and standard deviation. In Julia, the used package "GaussianProcess" requires four inputs: 

training data in X and Y, the kernel, and the gaussian mean. The Gaussian process is mainly 

controlled by its mean and kernel. The kernel is dependent on two variables: the length scale and 

standard deviation. The used type of kernel in this thesis is the squared exponential kernel, and it 

can be described as shown in Figure 4-3 below 

 

Controlling the kernel is implemented by fixing a mean with a zero value and changing the kernel 

accordingly by choosing the data points.  

After plotting the gaussian distribution, the mean curve values and the variance are obtained using 

a prediction function in the "GaussianProcess" package. Then the mean and the covariance matrix 

are calculated using those predicted data generated. 

Figure 4-3 gaussian and exponential kernel plot (Rasmussen and Williams, 2006) 
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The probability of failure is estimated by integrating CDF of the log-normal of a mean value of 

1.0 and a standard deviation of 0.3 with the PDF of the normal distribution of the Gaussian 

Process's mean and standard deviation, as shown in Equation3-14. 

The reliability can be obtained by simply using the equation 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1 − 𝑃𝑓. The procedure 

of the proposed method is as follows: 

1. Assuming initial data points R= (𝑅1, 𝑅2, 𝑅3,…, 𝑅𝑛).  

2. Building the training datasets and scale them. 

3. Train the Gaussian process model through the training datasets and obtain the optimum 

hyperparameters required. The kernel used in this thesis is the squared exponential. 

4. Extract the explicit formulation of the approximate performance function through the use 

of the well-trained GP model. 

5. Compute the failure probability of the Gaussian process. 

6. Check the convergence criterion for (𝑃𝑓(𝑖) − 𝑃𝑓(𝑖 − 1) < 0.0001). 

a. If the criteria are not satisfied, then repeat step 3 to step 6 until they are satisfied. 

b. If the convergence criterion is satisfied, then implement the next step. 

7. Calculate the structural reliability. 

 

  

Figure 4-4 Gaussian Process distribution 
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Chapter 5: Results 
 

5.1 Damage Estimation 

The total damage is estimated using both the probability densities from the Weibull distribution 

and the damage distribution.  

5.1.1 Damage Estimation Using Bins Method 

As explained before in the Bins method, the process requires estimating the probabilities by 

integrating the probability densities with the wind speeds. 

• Using N = 7, we get a damage of 0.2558089937513546 

• Using N = 100, we get a damage of 0.2758387314741845 

• Using N = 500, we get a damage of 0.2738720963063552 

As shown from the results above, the more bins we use, the more accurate the results are. Reaching 

a high number of samples shows results very close to the reference value with a difference of 

almost 0.0001%. 

5.1.2 Damage Estimation Using Monte Carlo Integration 

The difference between Monte Carlo Integration and the Bins method is that Monte Carlo chooses 

random points to evaluate the damage. In contrast, the Bins method chooses specific points to 

evaluate the damage. 

• Using an "Rn" value of 100, we get a damage value of 0.25726065445676505 

• Using an "Rn" value of 10000, we get a damage value of 0.2737818225936027 

• Using an "Rn" value of 1000000, we get a damage value of 0.2738712725766772 

As we can observe from the above-shown results, the more points we used, the closer we get to 

the reference value of the numerical integration. Using 1000000 showing a difference of almost 

0.0004% between Monte Carlo damage and the reference damage. 
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5.1.3 Damage Estimation Using Numerical Integration 

Numerical Integration is different from the two previous methods. The probability densities and 

the damage distribution are combined first before Integrating the resultant array with the wind 

speeds. 

The resulting damage in using S = 0.004, which is 10000 points, is 0.27387240804147867. 

Usually, the industry uses a step length of 1m/s, and in that case, we get resulting damage of 

0.2738724080351072. 

The total damage obtained from the Numerical Integration using 100,000 data points is 

𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑚𝑎𝑔𝑒 = 0.27382 

5.1.4 Method Used in the Industry 

In practice, the used method is choosing a point for every wind speed. Having a wind speed 

varying from 0 to 40m/s makes them have 40 data points. 

5.2 Damage Comparison 

Using the Bins method for each wind speed gives results as follows 

𝑇𝑜𝑡𝑎𝑙 𝑑𝑎𝑚𝑎𝑔𝑒 = 0.27317 

That brings us to the comparison between these results, as shown in Table 5-1 below 

Table 5-1 Total damage comparison 

 Bins Method 
Monte Carlo 

Integration 

Numerical 

Integration 

Method in 

Practice 

Total 

Damage 
0.2738720963063552 0.2738712725766772 0.27382 0.27317 

Difference 

compared to 

reference 

value 

0.019% 0.018% - 0.24% 
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5.3 Reliability estimation 

Estimating the reliability using the load resistance method in deterministic values is done by 

integrating the lognormal curve with the damage resulting from the methods above. The normal 

distribution, in this case, has a mean of 1 and a CV of 0.3. the lognormal parameters can be 

calculated as follows: 

Mean = exp (𝜇 +
𝜎2

2
) = 1 

Variance = [exp(𝜎2) − 1] exp(2𝜇 + 𝜎2) = 0.3 

So, 𝜇 = −0.0431  and  𝜎 =  0.2935 

The lognormal is then integrated with the deterministic damage estimated above. 

 

Figure 5-1 lognormal distribution 

Figure 5-2 integrating lognormal with deterministic damage 
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The integration result is simply the area from −∞ to the deterministic damage [−∞, 0.274]. This 

area represents the probability of failure of the OC4 structure due to this damage. In this case, the 

probability of failure is equal to 9.9623 ∗ 10−6.  

5.4 Probability of Failure and Reliability 

The total damage value is known from the damage distribution, therefore, the failure probability 

estimation is simply integrating the log-normal pdf with the deterministic total damage value. 

As explained in the previous chapter, the parameters estimated for the log-normal are  

𝜇 =  −0.0431 and 𝜎 =  0.2935 

𝑃𝑓 = 𝑃(𝑋 ≤ 0.27382) = ∫ 𝑓𝑋(𝑦)𝑑𝑦
0.27382

−∞

 

Where 𝑓𝑋 is the pdf function, and y is the deterministic value. 

𝑃𝑓 = 1 × 10
−5 

The reliability is then:  

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1 − 𝑃𝑓 = 0.99999 

5.5 Gaussian Process 

The Gaussian Process, as implemented in Julia, is a function dependent on three different 

parameters. As explained in the previous chapter that the kernel is the most critical parameter of 

the three of them. The kernel is controlled by the length scale and the standard deviation. 

For an accurate result, the length scale should be changed depending on a specific criterion. For 

the current case a length scale between 0.1 and 1.0 is used with an increment (0.1, 0.2, 0.3, …, 1.0) 

value of 0.1. 

One factor included in this Gaussian Process is the noise of the distribution. This noise prevents a 

zero variance at the chosen point, as shown in Figure 5-3, which affects the integration of the data 

points with the mean curve. Removing the noise from the distribution helps reshape the distribution 

and better fits with increasing the number of data points, as shown in Figure 5-4. However, 
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removing the noise from the Gaussian Process has the disadvantage of having a limited number of 

data points.   

Figure 5-4 Gaussian Distribution with noise included 

Figure 5-3 Gaussian Distribution without noise 
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5.5.1 The strategy of choosing observations 

Knowing that in practice, the damage distribution is unknown and given only the probability 

density function with the wind speed, and the observations should be used depending on a 

particular strategy to define the damage curve accurately.  

The strategy used in this thesis is to choose the points where the highest probabilities of the damage 

exist, starting with 5 points to check how the damage curve would look. The first plot was shown 

in Figure 5-5 below. 

 

The uncertainty between every two points is as high as almost 1.5. The next step is to add a point 

where the highest uncertainty is at 5.005m/s. After adding this point, the distribution changes as 

follows 

Figure 5-6 Damage Curve after adding a point 

Figure 5-5 Damage Curve starting with 5 points 
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That shows that adding a point and replotting the distribution gives a hint on where to choose the 

next point. As mentioned previously in sub-chapter 3.8, the covariance matrix is always positive 

definite, and an issue appears when adding points using the same strategy at the highest uncertainty 

location with having a constant length scale of 1.0 results in allowing only 124 points to the graph. 

The reason behind the limited number of points is that for more than 124 points, the covariance 

matrix becomes negative definite, which is not allowable when implementing the Gaussian 

process. Using 65 observations to the distribution is shown in Figure 5-7 

As discussed before, the more points being added to the distribution, the more accurate it becomes. 

Increasing the number of observations is done by decreasing the length scale. Figure 5-8 shows 

how the length scale changes the number of observations with having 1000 points as a maximum 

number of points. 

Figure 5-7 Damage Curve with 65 observations and length scale of 1.0 

Figure 5-8 No. of observations vs length scale 
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As the graph above shows, the highest number of added points with the lowest length scale is 

around 200 points. The purpose of choosing these points is to have an accurate reliability 

value[46]. 

If the standard deviation is computed as a function of the length scale for a fixed number of 

65observations, we can notice the change in the standard deviation as shown in Figure 5-9 below 

 

Accordingly, the effect on the probability of failure can be seen as shown in Figure 5-10 below 

Figure 5-9 The length scale vs the standard deviation with having a constant 

number of points 

Figure 5-10 the relation between the length scale and the failure probability with 

having 65 data points 
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Using the available probability densities of the wind, the points that possess the highest 

probabilities are chosen to be inspected, as explained before. By adding the points, the probability 

of failure can be calculated by obtaining the mean and standard deviation of the gaussian process. 

Estimating the mean value of the Gaussian Process requires combining the damage curve with the 

probability densities. The integration of the resultant vector with the wind speeds gives the mean 

value needed. 

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑀𝑒𝑎𝑛 =  0.274 

Obtaining the standard deviation requires, first, calculating the total variance. The total damage 𝐷 

can be estimated as the sum of mean predicted damages 𝑑𝑖 of each bin multiplied by the probability 

of occurrence 𝑝𝑖 of the same bin. 

𝐷 =∑𝑝𝑖𝑑𝑖

𝑁

𝑖=1

(𝑥𝑖) 

The expected total damage 𝐸(𝐷) can be calculated based on the mean damage estimates �̂�𝑖 and 

their corresponding probability 𝑝𝑖 similarly: 

𝐸(𝐷) = 𝐸(∑𝑝𝑖𝑑𝑖(𝑥𝑖

𝑁

𝑖=1

)) =   ∑𝑝𝑖𝐸(𝑑𝑖(𝑥𝑖)

𝑁

𝑖=1

) =∑𝑝𝑖�̂�𝑖(𝑥𝑖)

𝑁

𝑖=1

 

Assuming that each location is independent of the other, which leads to an omitting of the 

covariances since these are zero for independent random variables. Since the covariances in the 

covariance matrix in the Gaussian process are all non-zero, this assumption cannot be applied 

anymore. The covariances must be included in the calculation of the variance. 

Knowing that: 

𝑉𝑎𝑟(𝑋 + 𝑌) = 𝑉𝑎𝑟𝑋 + 𝑉𝑎𝑟𝑌 + 2𝐶𝑜𝑣(𝑋, 𝑌) 

If N random variables 𝑋𝑖, with 𝑖 = 1…𝑁, are considered, the variance of the sum of all random 

variables can be summarized as follows: 

𝑉𝑎𝑟 (∑𝑋𝑖

𝑁

𝑖=1

) =∑∑𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗)

𝑁

𝑗=1

=∑𝑉𝑎𝑟(𝑋𝑖) + 2 ∑ 𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗)

1≤𝑖<𝑗≤𝑁

𝑁

𝑖=1

𝑁

𝑖=1
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This leads to the variance of the total damage: 

𝑉𝑎𝑟(𝐷) = 𝑉𝑎𝑟 (∑𝑝𝑖𝑑𝑖(𝑥𝑖)

𝑁

𝑖=1

) =∑∑𝐶𝑜𝑣(𝑝𝑖𝑑𝑖(𝑥𝑖), 𝑝𝑗𝑑𝑗(𝑥𝑗))

𝑁

𝑗=1

𝑁

𝑖=1

 

Knowing that: 

𝐶𝑜𝑣(𝑋, 𝑌) = 𝐸(𝑋𝑌) − 𝐸(𝑋)𝐸(𝑌) 

𝐸(𝑎𝑋) = 𝑎𝐸(𝑋) 

𝐶𝑜𝑣(𝑎𝑋, 𝑏𝑌) = 𝐸(𝑎𝑋𝑏𝑌) − 𝐸(𝑎𝑋)𝐸(𝑏𝑌) = 𝑎𝑏𝐸(𝑋𝑌) − 𝑎𝑏𝐸(𝑋)𝐸(𝑌)

= 𝑎𝑏(𝐸(𝑋𝑌) − 𝐸(𝑋)𝐸(𝑌)) = 𝑎𝑏𝐶𝑜𝑣(𝑋, 𝑌) 

This leads to: 

𝑉𝑎𝑟(𝐷) =∑∑𝑝𝑖𝑝𝑗𝐶𝑜𝑣 (𝑑𝑖(𝑥𝑖), 𝑑𝑗(𝑥𝑗)) =

𝑁

𝑗=1

𝑁

𝑖=1

∑𝑝𝑖

𝑁

𝑖=1

∑𝑝𝑗𝐶𝑜𝑣 (𝑑𝑖(𝑥𝑖), 𝑑𝑗(𝑥𝑗))⏟              
𝐾𝑒𝑟𝑛𝑒𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑁

𝑗=1

 

Looking at the covariance matrix (e.g. for 𝑛 = 3), it can be seen that the above equation is the sum 

of all covariance elements (multiplied with 𝑝𝑖 and 𝑝𝑗 respectively). 

𝛴 = [

𝑉𝑎𝑟 𝑋1 𝐶𝑜𝑣(𝑋1, 𝑋2) 𝐶𝑜𝑣(𝑋1, 𝑋3)
𝐶𝑜𝑣(𝑋2, 𝑋1) 𝑉𝑎𝑟 𝑋2 𝐶𝑜𝑣(𝑋2, 𝑋3)
𝐶𝑜𝑣(𝑋3, 𝑋1) 𝐶𝑜𝑣(𝑋3, 𝑋2) 𝑉𝑎𝑟 𝑋3

] 

The total variance is then: 

𝑉𝑎𝑟(𝐷) = 1.44 ∗ 10−6 

The standard deviation is calculated as the square root of the variance  

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑆𝐷 = √𝑉𝑎𝑟(𝐷) =  0.0012  

The probability of failure is calculated by integrating CDF of the log-normal and PDF of the 

normal distribution of the gaussian mean and standard deviation. 

𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑃𝑓) =  1.0 ∗ 10
−5  

 The reliability is then calculated as: 
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𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1 − 𝑃𝑓 =  0.9999899 

Adjusting the parameters of the Gaussian Process is of great importance. These parameters are 

shaping the gaussian distribution and indicating if the training points are in the correct location or 

not. 

The results are obtained with having a length scale of 1.0, 65 observations, and a noise value of 0. 

It is required to have reliability within the standard limit, as explained earlier. The probability of 

failure starts to converge, and the change becomes very small, beginning with 35 points, and 

adding one more point changes the reliability by less than 0.0002%. 

The number of observations is limited for every chosen length scale. However, adding the noise 

to the process allows an infinite number of data points. The question is, how many data points are 

needed to have an accurate and reliable solution? The answer to this can be explained by plotting 

the Gaussian Process with a different number of data points. 

Using noise of 0.05 as a constant and choosing 100 data points, we get 

𝑀𝑒𝑎𝑛 =  0.2738 

𝑆𝐷 =  0.073 

𝑃𝑓 = 0.00026 

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 0.99974 

Figure 5-11 Gaussian Process with 0.05 noise and 100 data points 
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Using 200 data points, we get 

𝑀𝑒𝑎𝑛 = 0.2739 

𝑆𝐷 = 0.05 

𝑃𝑓 = 7.95 ∗ 10
−5 

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 0.9999205 

However, increasing the number of data points will reduce the failure probability and increase the 

reliability until it converges to the same value obtained without the noise at about 500 observations. 

Although the number of data points affects the standard deviation and the reliability, an alternative 

solution is having constant data points and changing the noise. Reducing the noise and increasing 

Figure 5-12 Gaussian Process with 0.05 noise and 200 data points 

Figure 5-13 Gaussian Process with 0.02 noise and 100 data points 
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it changes the uncertainty of the distribution. If we have 100 data points and reduce the noise to 

0.02, for instance, we get 

𝑀𝑒𝑎𝑛 = 0.2739 

𝑆𝐷 = 0.0292 

𝑃𝑓 = 2.4 ∗ 10
−5 

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 0.999976 

This also shows that the change of noise influences the reliability as reducing the noise increases 

the reliability, and decreasing it increases the reliability value. 

If we have a constant number of data points, the standard deviation changes accordingly, as shown 

in Figure 5-14 below  

Figure 5-14 Relation between the noise and standard deviation with having 100 

data points 

Figure 5-15 Relation between the standard deviation and the no. of points with 

having a constant noise of 0.05 
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Accordingly, if we have a fixed noise, for instance, of 0.05 and we change the number of 

observations, we can notice the change of the standard deviation as shown in Figure 5-15 above. 

Using the same comparison with the reliability instead of the standard deviation, for constant noise, 

we can see the decrement of the probability of failure as shown in Figure 5-17 below 

Similarly, we can see the change of the reliability with changing the noise while having a constant 

number of data points, as shown in Figure 5-16 below 

 

Figure 5-17 the relation between no. of points and the probability of failure with 

having constant noise of 0.05 

Figure 5-16 the relation between the noise and reliability with having 100 data 

points 
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The above curves show how the number of observations differs by changing the hyperparameters 

of the Gaussian Process. With the right choice of hyperparameters, one can reach the desired 

results with the minimum number of observations. As explained earlier, if the noise is removed, 

an accurate value of failure probability can be achieved using 35 points in the Gaussian 

distribution. The exact value can be reached by adding slight noise and more than 500 

observations. As the goal is to achieve the desired reliability with the minimum number of 

observations, it would be more efficient and economical to use the method with fewer points. 

  



67 

 

Structural reliability of a fixed jacket of offshore wind turbine 

 

Chapter 6: Discussion 
 

Although the Gaussian Process has some challenges, the results obtained using this approach, 

however, show that structural reliability can be obtained using a significantly small number of data 

points instead of the hundreds and thousands of load-response simulations used in traditional 

numerical methods. The challenge faced is the control of the hyperparameters of the Gaussian 

Process together at the same time. Each of these parameters has an effect on the distribution of the 

observations chosen.  

6.1 Effect of Length Scale 

The length scale showed how it could control the distribution from possessing high error or almost 

zero error. Changing the length scale changes the number of observations and, consequently, the 

shape of the distribution. 

As explained in the previous chapter, the lower the length scale is, the more points can be added. 

Having a small length scale with a low number of observations can lead to having a high failure 

probability. It would be more accurate to have a constant length scale, 0.5, for instance, and keep 

adding points until the results converge with the desired failure probability. 

6.2 Effect of Noise 

Although the noise, in a way, does not allow perfect fitting of the mean curve of the gaussian 

distribution with the data points, it will enable adding as many data points as needed to estimate 

the structure's accurate probability of failure and reliability. As shown in the results, the noise 

Figure 6-1 Gaussian distribution with different length scales 



 68 

 

 University of Stavanger 

effect cannot be ignored if more data points are needed to be added. The larger the noise, the more 

error exists in the distribution.  

For a small error, a minimal value of noise is allowed to exist in the Gaussian Process. Increasing 

the noise showed an increase in the error of the distribution. Adding more points contributed to 

having a more accurate result, but the more points added to the process, the more reliable the 

system becomes. The convergence of the failure probability happens after 200 to 300 data points. 

That means that it is neither necessary nor efficient to add more points to the process with so little 

change happening to the failure probability. The challenge faced by controlling noise is changing 

the noise with the number of points as both of them contribute to reducing the error. Choosing a 

suitable noise value is the main challenge in this case. A proper noise value selected in this case is 

a noise of 0.05. A fixed 0.05 noise made the convergence of the failure probability possible at 500 

points, which means adding more than 500 points would not be efficient in evaluating the structural 

reliability. 

6.3 Convergence  

A good strategy implemented using the Gaussian Process is to keep the noise = 0 and start with a 

small number of observations, five observations, and keep adding points until the probability of 

failure converges. By that, it is meant that the more points are added, the less the change of the 

failure probability. 

Figure 6-2 convergence of the failure probability 
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As shown in Figure 6-2 above, the change in the failure probability is as low as 2 ∗ 10−6 every 

five added points.  

Eventually, comparing the Gaussian Process to the other deterministic methods shows that the 

Gaussian Process achieves the desired results with significantly lower observations. 

Table 6-1 Comparison between the different methods of obtaining the probability of failure 

 Bins Methos 
Monte Carlo 

Integration 

Numerical 

Integration 
Gaussian Process 

Number of 

Points 
1,000 1,000,000 10,000 65 

Probability of 

Failure 
1 ∗ 10−5 

Mean Damage 0.274 
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Chapter 7: Conclusion, Recommendation, and Further Work 
 

The Gaussian Process is showing promising results in obtaining accurate fatigue reliability. With 

fewer load-response simulations, it is possible to achieve the desired failure probability with a high 

level of accuracy. Controlling the hyperparameters is the primary key to reaching the objective 

required.  

Comparing the Gaussian Process to other methods, such as Monte Carlo Integration, Bins method, 

and Numerical Integration shows significant accuracy in the calculations with a significantly 

smaller number of data points, which makes this approach efficient in terms of time consumption 

and cost. 

The Gaussian Process approach is performing, compared to the currently used methods in the 

industry, relatively well. Challenges implementing the Gaussian Process, controlling the 

hyperparameters, can be handled using efficient strategies.  

7.1 Recommendations 

7.1.1 Points Selection 

A practical strategy is to start with defining the selected points of the Gaussian distribution. An 

advantage of using the Gaussian Process is that it shows the variance in the distribution plot. The 

highest variance value is the position of interest to add one more point to the distribution. 

Replotting the distribution with the added point would show the following location to add more 

points. This strategy helps to reduce the error significantly rather than choosing random points at 

random locations of the distribution. 

7.1.2 Convergence 

Adding points lead to having more accurate results. A strategy to know where to stop adding points 

or indicate having enough points would be the convergence of the probability of failure. If the 

change in the likelihood of failure that occurs by adding points is too low, the process of adding 

more points can be stopped. 

A low difference is that the change is happening to the 4th or the 5th digit only. The convergence 

value used in this thesis was 0.0001. Consequently, a change below this value indicates that adding 

more points to the process is unnecessary. 
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7.2 Further Work 

• Using a different type of hyperparameters optimization for more accuracy and efficiency. 

• Using a different type of kernel function and how it would influence the whole Gaussian 

process and the outputs. 

• The Gaussian Process is implemented on one dimension, wind loading, in this thesis. It 

would be exciting and beneficial to add another dimension, wave loading, for instance, to 

the process and test its accuracy under different conditions. 
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Appendix 

Julia Script 

This script is written using Julia version 1.5.3. 

using NumericalIntegration 

using QuadGK 

using Distributions 

import Random: randn, MersenneTwister 

# Probability density function for the wind 

""" 

    Weibull(beta,eta,gamma,x) 

Returns the Weibull distribution for `x`. 

`beta`  ... Shape parameter (or slope) 

`eta`   ... Scale parameter 

`gamma` ... Location parameter; frequently not used 

""" 

function weibull( beta::AbstractFloat, 

                  eta::AbstractFloat, 

                  gamma::AbstractFloat, 

                  x::Array{<:AbstractFloat,1}) 

   return beta/eta*((x.-gamma)/eta).^(beta-1).*exp.(-((x.-gamma)/eta).^beta) 

end 

# version for x as Float64 

function weibull( beta::AbstractFloat, 

                  eta::AbstractFloat, 

                  gamma::AbstractFloat, 

                  x::AbstractFloat) 

   return weibull(beta, eta, gamma, [x])[1] 

end 

 

# Parameter for the Upwind Deepwater-Site 

beta  = 2.04 

eta   = 11.75 

gamma = 0.0 

# Define wind distribution function as function depending only on wind speed v 
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upwindDistr(v) = weibull(beta,eta,gamma,v) 

 

""" 

    linearInterpolation(xarray, yarray, interpolateX) 

Linear interpolation between two values. 

# Example 

```julia-repl 

julia> linearInterpolation([1, 2], [0, 4], 1.5) 

2.0 

``` 

""" 

function linearInterpolation(xarray::Array{Float64,1},yarray::Array{Float64,1}, 

                            interpolateX::Float64) 

   minX, maxX = minimum(xarray), maximum(xarray) 

   # Check argument in bounds 

   minX <= interpolateX <= maxX || error("Input value out of bounds, no interpola

tion possible!") 

   interpolateX == maxX && return yarray[end] 

   # Location in array which is below interpolation value 

   loc1 = findall(x -> x<=interpolateX, xarray)[end] 

   # Linear interpolation 

   x1, x2  = xarray[loc1], xarray[loc1+1] 

   y1, y2  = yarray[loc1], yarray[loc1+1] 

   return interpolateY = (interpolateX-x1)/(x2-x1)*(y2-y1)+y1 

end 

# Version for Array input 

function linearInterpolation(xarray::Array{Float64,1},yarray::Array{Float64,1}, 

                              interpolateX::Array{Float64,1}) 

   interpolateY = Float64[] 

   for i in interpolateX 

      push!(interpolateY, linearInterpolation(xarray,yarray,i)) 

   end 

   return interpolateY 

end 

# Int version 
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function linearInterpolation(xarray::Array{Float64,1},yarray::Array{Float64,1}, 

                            interpolateX::Int64) 

   return linearInterpolation(xarray, yarray, Float64(interpolateX)) 

end 

""" 

    createDamageData() 

Generates the artifical damage results for wind speeds between 0 and 40 m/s. 

- returns 2 1D arrays: windVelocity and damage 

""" 

function createDamageData(;deltaV = 0.05, noiseRatio = 0.025) 

   # Raw data from Zwick, Muskulus 

   # Simplified fatigue load assessment in offshore wind turbine structural analy

sis 

   # Figure 3 - level 5 

   rawdata = [ 

   # Linear assumption to zero velocity 

   0.0     0.0; 

   # Data from paper 

   3.99304 0.00761; 

   5.00209 0.01269; 

   6.00418 0.02081; 

   7.00626 0.02690; 

   7.99443 0.04061; 

   8.99652 0.07310; 

   9.99861 0.11472; 

   11.0007 0.14112; 

   12.0027 0.14365; 

   13.0048 0.12995; 

   14.0069 0.12132; 

   # artifical peak #1 

   14.2000 0.14021; 

   14.3000 0.11903; 

   # end 

   14.9951 0.12030; 

   15.9972 0.12335; 
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   16.9993 0.12843; 

   19.0034 0.11168; 

   # artifical peak #2 

   19.2000 0.13579; 

   19.3000 0.12403; 

   # end 

   20.9937 0.08985; 

   24.0069 0.04924; 

   # made up data for higher wind speeds 

   29.0    0.02690; 

   30.0000 0.02081; 

   # artifical peak #3 

   30.2000 0.03021; 

   30.3000 0.01903; 

   # end 

   35.0000 0.01269; 

   40.0000 0.00000] 

 

   rawdata[:,2] = rawdata[:,2]*3.554648550953938 

 

   # Add noise 

   # Random number generator with constant seed 

   rng = MersenneTwister(123456); 

 

   # Wind speed array 

   # from 0 m/s to 40 m/s, every 0.05 m/s 

   windVelocity = collect(0:deltaV:40) 

   l=length(windVelocity) 

 

   damages = Float64[] 

   for i in windVelocity 

      velocity = linearInterpolation(rawdata[:,1],rawdata[:,2],i) 

      noise = noiseRatio*velocity*randn(rng) 

      push!(damages,velocity+noise) 

   end 
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   return windVelocity, damages 

end 

 

# example plot of wind distribution and damage data 

import Plots 

# Generate the wind velocity and damage arrays 

v, d =createDamageData(); 

# Generate the Weibull PDF for the given wind velocity array 

p = upwindDistr(v); 

p1 = Plots.plot(v,p, xlabel="wind speed [m/s]", label="Weibull distribution", lw=

2, linecolor = :black) 

p2 = Plots.plot(v,d, xlabel="wind speed [m/s]", label="Damage curve", lw=2) 

Plots.plot(p1, p2, layout=(2,1)) 

 

# 2020-03-10: Additional linearInterpolation posibilities 

# getting return value inbetween two values, x as Float64 

linearInterpolation(v,d,3.12341234) 

# getting return value inbetween two values, x as Int64 

linearInterpolation(v,d,3) 

# getting return value inbetween two values, x as Array of Floats 

linearInterpolation(v,d,[3.12341234, 17.12334, 33.12]) 

 

#damage with bins 

using Distributions 

using QuadGK 

function BinsDam(N) 

       step = floor(Int, length(v)/N)     #defining the step between each point 

       speed = v[1:step:end]               

       speed2=Float64[] 

       Pdf=[]        #empty array to push in the probabilities        

       for i in 1:N 

            spd = (speed[i]+speed[i+1])/2 

            push!(speed2 , spd) 

       end 
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       IntDmg = linearInterpolation(v,d, speed2)         #getting the damage for 

every wind speed using linear interpolation 

       for i in 1:N 

           pdfspd = quadgk(upwindDistr, speed[i], speed[i+1])[1]     #calculating

 the probabilities through the integration of the probability densities 

           push!(Pdf,pdfspd) 

       end 

       Totaldamage=[]            #empty array to push in the total damage 

       for j in 1:N 

           totaldmg = IntDmg[j]*Pdf[j] 

           push!(Totaldamage, totaldmg) 

       end 

       return Totaldamage 

 end 

sum(BinsDam(500)) 

 

#Monte Carlo Integration method 

 

function MonteCarloInt(Rn) 

   Randomspeed = sort(rand(Uniform(0,40),Rn))         #generating random numbers 

from 0 to 40 m/s 

   RandomDmg = linearInterpolation(v,d, Randomspeed)        #getting the damage u

sing the linear interpolation 

   prob=[]        #empty array to push in the probabilities 

   MtDmg=[]       #empty array to push in the damage 

   for i in 1:Rn-1 

      pdf=quadgk(upwindDistr, Randomspeed[i],Randomspeed[i+1])[1] 

      push!(prob,pdf) 

   end 

   for j in 1:Rn-1 

      montecarlo = RandomDmg[j]*prob[j] 

      push!(MtDmg, montecarlo) 

   end 

   return(MtDmg) 

end 
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sum(MonteCarloInt(1000000)) 

 

using StatsPlots 

using Plots 

plot(Normal(1, 0.3), label="pdf") 

plot!(Normal(1, 0.3), func=cdf, label="cdf") 

 

#the numerical integration method 

 

function NumInteg(S) 

   vel = [0:S:40;] 

   interpolateddmg(vel) = linearInterpolation(v,d, vel) 

   combinedcurve(vel)=interpolateddmg(vel)*upwindDistr(vel)       #combining the 

damage with probability densities 

   results=[] 

   for i in 1:length(vel)-1 

       int = quadgk(combinedcurve, vel[i], vel[i+1])[1] 

       push!(results, int) 

   end 

   return results 

end 

sum(NumInteg(0.004)) 

 

using StatsBase 

using StatsFuns 

probs=[] 

for i in 1:length(v)-1 

   pdf = quadgk(upwindDistr, v[i], v[i+1])[1] 

   push!(probs, pdf) 

end 

t= plot(Normal(1, 0.3)) 

t2=plot(v[1:end-1],cumsum(probs)) 

plotly() 

Plots.PlotlyBackend() 
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miuD = -0.0431          #miu of the log-normal 

sigmaD = 0.2935           #sigma of the log-normal 

 

plot(LogNormal(miuD, sigmaD), func= cdf) 

roll=LogNormal(miuD, sigmaD) 

plot(roll , label="Lognormal PDF") 

vline!([0.278], label="determinitsic damage") 

Pf = quadgk(x->pdf(roll,x), 0,sum(NumInteg(0.004)))[1] 

reliability = 1-Pf 

 

 

using GaussianProcesses 

import LinearAlgebra: diag 

R=Float64[0.0,  10.0,  20.0,  30.0,  40.0]         #array with the initially chos

en points 

 

#a function to generate the data of the gaussian process 

 

function gendata(x) 

   y= linearInterpolation(v,d,x) 

   kernel=SE(log(1.0),log(1.0))        #the kernel function of the gaussian proce

ss 

   Mean=MeanZero() 

   LogNoise = log(0.05) 

   gaussianprocess= GP(x, y, Mean, kernel, LogNoise) 

 

   rangeval = range(0,stop=40,length=1000)      #dividing the wind speed into 100

0 segments 

   rangevalue = [0.0:0.04004004004004004:40.0;] 

   meanval, CoVmatrix = predict_f(gaussianprocess,rangeval;full_cov=true); 

   varval = abs.(diag(CoVmatrix)) 

   return meanval, varval, rangevalue, sum(CoVmatrix) 

end 
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#function to locate the maximum variance value in the gaussian distribution 

 

function Locatevar(wind,Var) 

   return wind[findmax((Var)[1:end])[2]] 

end 

 

#function to add the point corresponding to the maximum variance to the initially

 selected points (R)  

 

function Addingpt(R, newlocation) 

   G = push!(R,newlocation) 

   return sort(G) 

end 

 

#a function collecting the previous three functions to generate the points automa

tically into "R" array 

function DataPoints(s) 

   R=sort(R) 

   Mean,Var,wind,totVar=gendata(R) 

   Maxvarpt=Locatevar(wind,Var) 

   Addingpt(R,Maxvarpt) 

   return R 

end 

DataPoints(R) 

 

#Function to calculate the Gaussian Process reliability 

 

function GaussianRel(z,v,d)                         

   y= linearInterpolation(v,d,z)                 #linear interpolation to calcula

te the damage at the chosen wind speeds 

   kernel=SE(log(1.0),log(1.0))                  #Kernel function of the Gaussian

 Process 

   Mean=MeanZero()                               #mean function of the Gaussian P

rocess 



85 

 

Structural reliability of a fixed jacket of offshore wind turbine 

 

   LogNoise = log(0.0)                           #the noise of the Gaussian Proce

ss set to zero 

   gaussianprocess= GP(z, y, Mean, kernel, LogNoise)     #generating the Gaussian

 Process data 

   rangeval = range(0,stop=40,length=1000)               #rangeval divides the wi

nd speeds into a desired number of points 

   rangevalue = [0.0:0.04004004004004004:40.0;] 

   meanval, CovMtx = predict_f(gaussianprocess,rangeval;full_cov=true);       #th

is function predicts the mean and covariance matrix depending on the data generat

ed from the Gaussian Process 

   boundary = meanval 

   combinedMeanGaussDmg=upwindDistr(rangevalue).*boundary         #combining the 

probability densities with the mean damage 

   Meanval = integrate(rangeval,combinedMeanGaussDmg)             #calculating th

e mean of the Gaussian Process through the integration of the combined damage wit

h the wind speeds 

   Prob=[]        #empty array to stor the probabilities 

   #for loop to generate the probabilities from the Weibull distribution 

   for i in 1:length(valrange)-1 

       probability=quadgk(upwindDistr, valrange[i], valrange[i+1])[1] 

       push!(Prob, probability) 

   end 

   Covariance=((Prob'.*Prob)*CovMtx)      #calculating the covariance by multiply

ing the probabilities times the covariance matrix 

   StandDev=sqrt(sum(Covariance))         #calculating the standard deviation by 

taking the square root of the sum of the covariance 

   GaussianPf=quadgk(z-

>cdf(LogNormal(miuD, sigmaD),z)*pdf(Normal(Meanval, StandDev),z), 0, Inf)[1]     

    # estimating the Gaussian failure probability by integrating the cdf function

 of the log-normal with the pdf function of the gaussian normal distribution 

   GaussianReliability = 1-

GaussianPf        #calculating the reliability of the Gaussian Process 

   return GaussianReliability, StandDev, GaussianPf 

end 

GaussianRel(R,v,d) 
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#Gaussian plot function 

 

function GaussianPlot(z) 

   y= linearInterpolation(v,d,z)        

   kernel=SE(log(1.0),log(1.0))         

   Mean=MeanZero() 

   LogNoise = log(0.0) 

   gaussianprocess= GP(z, y, Mean, kernel, LogNoise) 

   gauplot = plot(gaussianprocess, xlabel="Wind Speed", ylabel="Mean Damage", tit

le="Gaussian Process", label="Length Scale = 1.0", fillcolor = :green)  

   return gauplot 

end 

GaussianPlot(R) 

 


