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Introduction

This thesis is a study of medium-induced particle energy-loss, which occur in heavy-
ion collisions where quark-gluon plasma (QGP) is created. Quantum chromodynam-
ics (QCD), the theory of strong interactions, is the underlying theory of the following.
Therefore, the first half of this paper is dedicated to the introduction and derivation
of several interesting results of this theory.

Quantum chromodynamics is a non-Abelian theory. To better understand what
this means, an introduction to group theory is included in Chapter 1. The rest of
the chapter includes a short introduction as well as commonly used terminology in
QCD. Chapter 2 contains some detailed derivations. First, the action on the lattice
is connected to the Yang-Mills action. Then, the gluon propagator is derived and
compared to that of the photon propagator used in quantum electrodynamics (QED).
A short study of the interaction of quarks are made to find out whether these are
attractive or repulsive. Lastly, the Feynman diagrams involving the 3- and 4-point
gluon vertices, arising from the colour charge, are derived.

In Chapter 3, I will look at the time evolution of heavy-ion collisions and the observed
elliptic flow, nuclear modification factor, jet-suppression and strangeness enhance-
ment. We will see how these observables suggest the production of quark-gluon
plasma in heavy-ion collisions.

In Chapter 4, I follow the work done by Arnold [1] and use his result for predicting
the energy-loss of a particle travelling through a finite medium. The study starts by
understanding how a particle loses energy due to medium interactions in a ”"simple”,
time-independent medium profile referred to as the brick. Most of the medium-
induced radiation will be to soft gluon emissions carrying energy /frequency, w < we.
The critical value, w,.., is defined as the intersection point of the two asymptotic
solutions of the gluon emission spectrum. Emitting a gluon of higher energy than
this value is possible, but does not happen as frequently as in the low w-regime.



Next, a more complicated medium, which depends on time via the power-law, oc 1/t
is considered. A general formula for the asymptotic behaviour of the spectrum is
applied. A quick dimensional analysis suggests that for values of a > 2, the spectrum
follows closely that of the small L expansion (see Section 4.4). This is due to the fact
that the medium effects drops fast enough for it to look like a small system.

Lastly, a comparison of the two medium profiles are made and connected via the use
of a scaling law (Section 4.6). A scaling law let us find the gluon emission spectrum
of a time-dependent medium using the simpler solution of the brick. Three different
scaling laws are considered: one provided by Salgado and Wiedemann [2] and two
derived by me. I connect the scaling laws to the analytical solution found by [1] and
compare their accuracy. This is the first time such a comparison has been done, as
far as I know. The scaling law provided by Salgado and Wiedemann is easy to use
and gives a good approximation to the time-dependent spectrum. One of the scaling
laws derived in this paper shows an even smaller deviation from the time-dependent
spectrum for energies w > 0.65w,, (approximate vale). It will be shown that the
total energy-loss of a particle depends on the value of w,... Thus, if one is interested
in the spectrum around w,, or higher energies, the scaling law derived in this paper
gives a better fit than the one provided by Salgado and Wiedemann.

The following will be done in natural units, for which ¢ = h = 1.



Chapter 1

Quantum Chromodynamics

In this chapter, a short introduction to quantum chromodynamics (QCD) is given.
Terminology often used in this theory, such as color charge, confinement and asymp-
totic freedom, is explained. The strong interaction is described by quantum chromo-
dynamics which is a non-Abelian group theory. To understand what a non-Abelian
group theory is, we need to have an insight to the mathematics behind Lie groups.
A small introduction to group theory is thus included to understand some of the
mathematics that lies behind the theory. The important multiplication rule of the
Lie group, the Lie bracket, is defined and the Casimir is introduced. For simplicity,
examples of these are made using the group SU(2). However, since the group de-
scribing QCD is SU(3), a simpler way of determining the Casimir of any group in
SU(N) is also provided.

Quark-gluon plasma (QGP) and the concept of a perfect fluid is mentioned in the
last part of this chapter. QGP filled the early universe, and small droplets of this
is created in heavy-ion collisions. So far, it is the closest we have come to find a
perfect fluid. The study of heavy-ion collisions provide more insight to the strong
interaction acting between coloured particles and the properties of QGP which can
be derived from the observables.

1.1 Lie Groups

In this section, a short introduction to some of the most important parts of group
theory connected to particle physics is given. This section is inspired by [3, p.159-
160, 481-488]. The main focus will be on the special unitary group, SU(N). SU(2)



describes the theory of weak interactions and are generated by the Pauli spin matri-
ces, 0% These are used in quantum mechanics to describe the spin of fundamental
particles and are given by

N T U T (A PR

Quantum chromodynamics is described by the group SU(3), generated by the trace-
less, hermitean Gell-Mann matrices, A%, given by

0 1 0 i 1
M=110 . o M=1i 0 . A= -1 ,
0 0 0
1 0 —1 0
= 0 . N = 0 . A= 0 1],
1 i 0 10
0 L (!
N = 0 —i|, N=-—"— 1 : (1.2)

A group is a set of elements {g;} and a rule which describes how a binary operation
"x” between two elements produces a third, ¢g; x g; = gx. The rule must be associa-
tive, (¢; X gj) X gr = ¢i X (g X gx), the group must have an identity element, g; x 1 =
1 x g; = g;, and each element has an inverse such that g; 'xg =1 [3, p.159]. A Lie
group is a group with infinitely many group elements and also a differential manifold,
meaning a space which locally look like the Euclidean space. Any group element can
be written in terms of the group generator, 7%, and a number, #%, parametrizing the
group element:

g =T (1.3)

The rule defining the Lie group is the Lie algebra (or Lie bracket), where the group
generators must obey the following relation:

[T“, Tb} — jfabere (1.4)
where repeated indices is summed over, by the Einstein summation convention, and

faobe is called the structure factor. The structure factor is antisymmetric under the
permutation of its indices and depends on the group considered. For example, in
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the case of the Pauli spin group, SU(2), the group generators of the fundamental

. . . . . a
representation are the Pauli matrices, o, conventionally normalized to T = %-.

They satisfy [T“, T b] = [%U", %ab] = g, and we can read off the structure

factor as the Levi-Civita tensor, €.

Eq.(1.4) looks very similar to a commutation relation. The formal definition of the
Lie bracket does not require that [A, B} = AB — BA, as long as the Jacobi identity
holds. However, for most physical cases, where the theory is described by a group
SU(N), the generators are embedded into finite dimensional matrices, so the Lie
bracket can be defined as a commutator. In terms of the structure factor, the Jacobi
identity takes the form:

(7o, [, 7)) + (77, [T, 7]+ 7 [7, 7)) = 0

[Ta’ Z‘fbchd} + [Tb, Z'fcade] 4 [TC, Z'faded] =0

ibedifadeTe + ifcadifbdeTe 4 ifabdideeTe =0
fbcdfade + fcadfbde + fabdfcde =0.

A Lie group is said to be Abelian, after the Norwegian mathematician Niels Henrik
Abel, if f¢ =0, i.e. if the generators commute. Otherwise, the group is said to be
non-Abelian.

Representations and the Casimir, Cy

In particle physics, the two most important representations of a group are the funda-
mental representation (F') and the adjoint representation (A or adj). The fundamen-
tal representation is the smallest non-trivial representation of the algebra [3, p.484].
In SU(N), the fundamental representation is built up by N x N traceless, hermitean
matrices with determinant 1. In SU(2), this was the 2 x 2 matrices T% = 0%/2 where
the subscript, F', refers to the fundamental representation. Using Eq.(1.1), we can
check that these conditions are fulfilled:

Tr[o!] = Tr ((1) é) =0 — Traceless, (1.5)
T
01 01
1 T_ . . 1 o .
(") = (1 0) = (1 0) =0 — Hermitian, (1.6)
detlo!] = ‘? (1)’ =0—-(-1)=1, (1.7)

which can easily be shown for o2 and ¢® as well.
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In SU(3), the fundamental representation is a 3 x 3 matrix, (7});;, where the position
in the matrix, (ij), denotes the colour. There are three colours, such that i = red,
blue or green.

The adjoint representation is defined by the structure factor of the group consid-
ered:
(1o

adj

)bc — _ifabc. (18)

The adjoint representation acts on the vector space spanned by the generators. There
are N2 — 1 generators embedded into matrices for the group SU(NN). Since there are
N? — 1 generators, the adjoint representation must consist of N2 — 1 dimensional
matrices. In SU(2), the structure factor was the Levi-Civita tensor. The dimension of
the adjoint representation is N> —1 = 22 —1 = 3, thus we must use the 3-dimensional
Levi-Civita tensor which takes the form:

+1 ,for even permutations (abc) : (123), (231), (312)
e ¢ —1  for odd permutations (abc) : (321), (213), (132) (1.9)

0 , for any repeated index.

The Levi-civita tensor in 3 dimensions is a 3 X 3 X 3 matrix. By assigning the 3
possible values for one of the indices, we can find the corresponding 2-dimensional
3 x 3 matrix of each "layer”:

0 0 -1 0 1
ettt = 0 1|, = 0 e =1-10 : (1.10)
-1 0 1 0 0
Combining Eq.(1.8) and Eq.(1.9), the adjoint representation of SU(2), T, is given
by
0 0 ? 0 —2
Thy = 0 —i| T2 = 0 Toi=11 0 : (1.11)
¢t 0 —1 0 0

For simplicity, only Ty, in SU(2) is derived since, in SU(3), the adjoint representa-
tions are 8 X 8 matrices.

The quadratic Casimir is defined as:

TeT? = Cpl, (1.12)
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where the subscript R is denoting the representation considered, F' (fundamental)
or A = adj (adjoint). It is some number produced by summing the square of the
representation matrices of a group. Thus, it depends on both the group considered as
well as the representation. An example is given for the fundamental representation
in the group SU(2). Recall that the generators in this group are the Pauli matrices.
Casimir of the fundamental representation, Cr, in SU(2) is found using Eq.(1.12)
and Eq.(1.1). We get

mm:ﬁﬁ+ﬁﬁ+ﬁﬂ
1 3

PO 90606y
)0+ )

1
Thus, Cr = 3/4 for SU(2).

q»—t
)

N7 N\
— = O
o

A;Ico »lklr—k »lkl)—\w
o

(1.13)

An easier way to find the Casimir for different representations in SU(N) is given by
the general formulas [1, p. 488|

Cp = Ca=N. (1.14)

2N

From this, the determination of the Casimirs of the group SU(3) is straight forward.
Since quantum chromodynamics is described by this group, we can note that the
Casimirs of the fundamental and adjoint representations in SU(3) are Cp = 1 _4

23 3
and C'y = 3, respectively.

1.2 Theory of the strong interaction

Quantum chromodynamics is the quantum theory of strong interactions. The strong
interaction is a short-ranged force and governs the nuclear interactions involving
quarks and gluons. These are some of the elementary particles of the Standard
Model. QCD is described by the symmetry group SU(3) and is a non-Abelian gauge
theory, i.e. f% £ 0. The generators of this group are commonly written in terms of



normalized Gell-Mann matrices T = %)\“, where the Gell-Mann matrices are given
by Eq.(1.2).

In quantum electrodynamics, the theory describing charged particles interacting with
the electric field, the force carriers (photons) only interact with electrically charged
particles. The colour charge of a particle is a property related to strong interactions
in QCD (from chromo: colour). In the Standard model, these particles are the quarks
and gluons. Recall from the previous section that the position in the fundamental
representation matrix, (7f);;, denotes the colour (i = 1,2,3 = red, blue, green).
Every particle has a corresponding antiparticle with the same mass and spin, but
with the opposite electric charge and anticolour. E.g. the antiparticle corresponding
to an up quark with colour red, will be the up antiquark with colour antired.

Figure 1.1 shows a table of the elementary particles in the Standard Model. The
particles involved in QCD are the quarks and gluons, since these are the ones that
carry colour charge. The quarks are the matter particles, and the gluons are the force
carriers of the strong force. Due to the fact that gluons also carry a colour charge,
the force carriers of QCD can interact with themselves (in contrast to QED where
the photons cannot). The gluon propagator and the additional Feynman diagrams
for the allowed interactions between gluons in QCD are derived in section 2.4.

Standard Model of Elementary Particles

three generations of matter interactions / force carriers
(fermions) (bosons)

mass  =2.2 Mev/c? =1.28 Gev/c2 =173.1 GeV/c? o =124.97 GeV/c?
- @ IO |t® || @ |- H
up—J cham top—J gluon higgs
=4.7 MeV/c2 =96 MeV/c2 =4.18 GeV/c2 o
‘OO |-@® |
dovl) strange J bottom J [ photon )

=0.511 MeV/c2 =105.66 MeV/c2 =1.7768 GeV/c2 91.19 GeV/cz

- n
1 1 1 o

=2

V’ e/ & I“l/ = T/ ! 2 (@)
eIectroU muonJ tau J LZ boson 8 2
0 2 @3
Z <1.0 eVic2 <0.17 MeV/c2 <18.2 MeV/c2 =80.39 GeV/c2 I.IJ g
O o 0 0 1 x
= . (Ve » Vi . Vt N o o
o | ™4 4 ™4 DE
17| electron muon tau < (8]
| neutrino neutrino neutrino W boson ) O %

Figure 1.1: Standard model of elementary particles [4].
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Confinement

Gluon-gluon interactions are believed to give rise to colour confinement. At large
separation distance, the potential between two quarks is thought to increase linearly,
that is, Vqep(r) ~ kr, for some constant, k [5]. At small separation distance, the
potential between two quarks will be given by the Coulomb potential, Viouomb(7) =
—%f—; = —%%, where the strong coupling constant is defined as a = ¢?/4x. This
potential will be derived on page 22.

Figure 1.2 shows the overall QCD potential, Vocp(r) = —52 + kr. For simplicity,
a have been factored out, and the value of k/a = 3 have been used to sketch the

potential.

5/
-
1 — g
C -5| o TVacp = -41 +£&r
’// _____ j:VCoulomb = —43-17
-10}
[ ]
r J
L 1
0.0 0.5 1.0 15 2.0

r

Figure 1.2: Potential as a function of distance between quarks. The overall QCD
potential is Vep(r) = —%%-l—k??‘. The Coulomb potential, Viouiomb () = —%%, is also
shown. The coupling constant, «, has been factored out so the only a-depending
term left is the linear term,gr, of éVQCD. In this sketch, the value of k/a = 3 have
been used. At large distances, the strength of the force between a quark-antiquark
pair increases linearly, and is why we do not observe isolated quarks. This plot is

motivated by [5].

The strong interaction forces the quarks to be bound into colour-neutral states, called
hadrons. Trying to separate two quarks by stretching them far apart will, due to the
increasing potential, create a quark-antiquark pair instead of separating them (see
Figure 1.3 for illustration). This is why one cannot see isolated quarks in nature and
is what we call confinement. We can think of the strong force as a thick rubber band.
Trying to separate two quarks by pulling them apart will only increase the strength
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of the force between them. The strong force acting between two quarks increases
with the distance separating them.

Figure 1.3: Illustration of the strong force carried by gluons between quarks.

There are two main types of hadrons called mesons and baryons. Mesons are built
up by a quark and an antiquark (¢g) which have the same colour, e.g. red and
antired, making them a colour-neutral combination. We can also have three quarks
or antiquarks (gqq or gqq) each carrying a different colour (red, blue or green). These
are called baryons. Two of the best known baryons are the proton (uud) and the
neutron (udd), which are the building blocks of atomic nuclei. Any colour-neutral
combination containing a higher number of quarks and antiquarks, are called exotic
hadrons. Examples of these are the tetraquark (¢qqq), made of two mesons, and the
pentaquark (gqqqq), which is a combination of a meson and a baryon. 1.

Asymptotic freedom and deconfinement

The running of the coupling constant, «, refers to the fact that the coupling constant
depends on the energies involved. For low energies (large distances), the coupling
constant is very large, and decreases with increasing energies (small distances). The
property that the interaction strength, or the coupling constant, between quarks
becomes weaker with decreasing distance is called asymptotic freedom.

1.3 Quark-Gluon Plasma

In ordinary matter, quarks are confined into hadrons. In quark-gluon plasma, the
quarks are deconfined due to high temperatures and pressure. Inside this high energy-
density region, quarks are moving freely without being coupled into hadrons. QGP

'Recent discovery of previously predicted exotic hadrons, which consists of a higher number of
quarks and antiquarks, have been observed at LHC at CERN. From 2003 there have been proposed
several candidates for observation of these exotic hadrons. In 2015 LHCDb reported the pentaquark
uudce [6] and in 2020 they announced the discovery of the tetraquark ccee [7].
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is a state of matter with approximately (local) thermal equilibrium. It is a nearly
perfect fluid, which means that it can be described well using hydrodynamics. QGP
filled the early universe. It is therefore of much interest to understand the properties
of this state of matter. To create QGP one needs extreme temperatures and pressure
beyond what can be found naturally on Earth today. By accelerating heavy-ions,
like is done at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National
Laboratory and at the Large Hadron Collider (LHC) at CERN, the velocity of the
nuclei is boosted up to velocities comparable with the speed of light 2. Colliding two
such nuclei will provide the high energy needed to create QGP. The plasma produced
can then be studied by observation of the final states produced in the collisions.

One motivation for the study on heavy-ion collisions, is to learn more about the
phase diagram of QCD. Fig. 1.4 shows the conjectured phase diagram for QCD in
terms of temperature, T', and baryon chemical potential, ;z. The baryon chemical
potential can be thought of as the excess of matter to antimatter. Thus, at high up,
there is a higher amount of matter compared to antimatter. For small g and low T,
the quarks exists in a confined hadron gas. Increasing the temperature, a continuous
crossover into quark-gluon plasma phase occurs. The region at large up and low
T is of importance for the study of different regions in neutron stars. Around this
region of the diagram, there is hypothesized to be a first order transition between the
hadron gas and the QGP [9] [10], illustrated by the solid line in Figure 1.4. Probing
heavy-ion collisions at smaller pp and higher T', we can learn whether (and where)
a critical point exist between the continuous and first-order transitions.

Observables supporting the creation of QGP in heavy-ion collisions are collective
flow, parton energy-loss and strangeness enhancements, which will all be discussed
in Section 3.2.1. By comparing data with a proton-proton (pp) collision, where
no medium is formed, we clearly see that in heavy-ion (AA) collisions, something
is interacting with the particles involved. This suggests the formation of QGP in
the latter case. A study of how particles are affected by a medium created in AA-
collisions is done in Chapter 4.

2As an estimate using the collision energies available at LHC, the relativistic gamma-factors
corresponds to 1400 [8], producing velocities of v, = 1/y/1 —~2 = 1/v/1 — 14002 = 0.9999 (units
in ).
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i Early universe

Temperature (T)

Quark-gluon plasma

Crossover Critical point
~170MeV [Eemcge
Isy
O,Q,e
7o D, -6'9
Se
.

Hadron gas c%6‘16
%\

Vacuum

0MeV 900 MeV Baryon chemical
potential (u)

Figure 1.4: This figure shows the conjectured phase diagram for QCD. There is a
continuous crossover from the hadron gas phase to the quark-gluon phase at low
pp and T'. If there is a 1st order phase transition occurring around 7" ~ 170 MeV
and pup < 900 MeV is only suggested. By probing heavy-ion collisions, one might
determine whether there is a critical value for which the continuous crossover turns
into a 1st order phase transition occurs. Figure from [11].

1.4 Perfect fluid

Shear viscosity, 7, is a measure of the internal friction in a fluid. The dimensionless
ratio, n/s (viscosity/entropy), is used to determine how “perfect” a fluid is. The
lower bound conjectured to this ratio is n/s > 1/47 =~ 0.08 [12]. Meaning that if we
have a fluid with n/s = 1/4m, we have a perfect fluid which can then be described
approximately by hydrodynamics. Figure 1.5 shows constant pressure curves for
n/s vs. temperature for different fluids. At the critical temperature, Ty, a phase
transition from a gaseous phase (left hand side of Tj) to a liquid phase (right hand
side of Ty) occurs. For gases, the ratio decrease with temperature, and for liquids it
increases. We see that for QGP, this ratio is almost at the boundary conjectured,
n/s = 1/4x, implying that this is a nearly perfect fluid.

However, this lower bound have since been argued to be n/s > 16/251 /47 ~ 0.05 [14]
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1F

0 -
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(T-To) Ty

Figure 1.5: Constant pressure curves for different fluids/gases. T} is the critical
temperature for the phase transition. Gaseous phases to the left and liquid phases to
the right side of the plot. The ratio approaches the value of /s ~ 1/4x, conjectured
by [12] Figure from [13].

and also, from a quantum field theory point of view, that the ratio should approach
0 [15]. When applying the most complete Bayesian fits nowadays, the ratio fitted
to the data from LHC experiments also show a lower value than n/s < 1/47 [16].
Even though the lowest possible value of /s is yet to be determined, QGP is still
the most perfect fluid discovered so far.
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Chapter 2

QCD: Derivations

In this chapter, some results of QCD are derived. These are based on the theory
given in [3, ch.254-26] and [17, ch.15416]. In Section 2.1, the action in the lattice is
connected to that of the Yang-Mills theory using a plaquette, which is the smallest
loop one can make on the lattice. In Section 2.2, the gluon propagator is derived.
A short study of the interaction between quarks is given in Section 2.3. Lastly, the
derivation of the Feynmann diagrams for the three- and four-point gluon vertices are
presented in Section 2.4.

2.1 Action on the lattice

This derivation closely follows [3, p.504-505]. We want to compare field values at
different point in our lattice in a gauge invariant way. The field values transforms
as

¢(n) = e g(n) = U(n) ¢(n) (2.1)
¢"(n) = ¢"(n) U™ (n),

where a®(n) are real functions of space-time and T are the group generators of the
fundamental representation in SU(3).

Since the convention used at a point x* should be independent of the convention
used at a different point, y#, the difference between them would be phase-dependent.
To be able to compare the field values independent of the phase used, we create a
new field, W, that acts as a link between two sites. If the sites are separated by a
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distance a, ji has the unit length a in p-direction and (n+/) and (n) are neighbouring
sites (see Figure 2.1). The new field transforms as

Wu(n) = Un)W,(n) U (n+ f). (2.3)

The fields, W), (n;), are called link fields. We define W_,,(n) = W/(n — j1) as the link
in the opposite direction. In the continuum case: W,(n) = ¢4 = ¢ichu The
simplest loop one can make that is non-trivial is a small box called a plaquette:

W(n)=W_,(n+0)W_,(n+ f+v) Wy(n+ 1) W,(n)
=W n+0—-0)W7(n+ i+ —p)W,(n+ o) Wy(n)
=W, () Wi (n+0)W,(n+ i) Wu(n). (2.4)

v

A plaquette is the multiplication of link-fields around a closed loop, and is a gauge
invariant object.

W, (n+ i +7)

[ 2 L J
S

W, (n + )

n+v n+v

W_,(n+79) YA W, (n) A W,(n+p)

n‘ > ‘n+ﬁ

W, (n)

(a) (b)

Figure 2.1: (a) Neighbouring sites on a lattice. Each site is separated by a distance,
a, in either fi-direction or r-direction, where || = |#| = a. (b) The smallest, non-
trivial loop one can make on the lattice is called a plaquette. The link fields, W, (n),
compare the field values of two neighbouring sites. The two gray arrows denotes
the corresponding link fields in the opposite direction, as used in Eq.(2.4). Figure
inspired by [3, p. 504].

Using the Campbell-Baker-Hausdorff formula, exp(A)exp(B) = exp (A+B—|—%[A,B]),
where [A, B] is the commutation relation between A and B, one can write W, up
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to order a?

Wou(n) = explia( — Au(n) = Au(n +5) + Ay (n+ i) + Ay(n))

+

(—ia)[A(n), Au(n+0)] + %(m)Q (A (n+2), Au(n)]

+
N — Do~

(—ia)(ia) [A,(n) + Au(n+ D), Ay(n+ 1) + Au(n)] } . (25)

We Taylor-expand to connect to the continuum limit: A, (n+7) = A, (n) + ad,A,(n)
+ O(a?) .

W = exp{ia( —A,(n)—A,(n) —ad,A,(n)+ A,(n) +ad,A(n) + A#(n))

= S [A ), Au(n) + a0, Au(0)] = 5 [Ay(n) + 0D, A, (), Ay(n)]
+ LA () + Au(n) + a0, A(n), Ay(n) + Ay () +ad A ()]}
(2.6)
Up to order a?, the last term vanishes. We use that [A,,A,] =-[A,,A,] and get
W = exp{ia2 <8MA,,(n) — 8,,Au(n)> +a? [Au(n) , Al,(n)] + O(a3)}
= exp{mQFW(n) + (’)(a3)} : (2.7)

where the field-strength tensor is defined as F,, = ((9MAV—(3VAM) —1 [Au , AV} )
We want to relate the action on the lattice using the plaquette to that of the Yang-

Mills action expressed in terms of the field-strength tensor. We can discretize the
continuoum of Syy by rescaling A, — éAu and use that the index of the adjoint
representation in a non-Abelian gauge theory is T'(adj) = C'y = N:

ia*

| 1
Syu[Fl] = i / d%[ - @ww)?] - —sztr(ﬂf) . (2.8)

We then define the Yang-Mills action on the lattice to be

Slattice[Wuu] = _ZQZTNEn,MVRe [tr(l - W/,LV(N))] ) (29)
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so that when we expand W, at small a, we get

. 4
1 . a
Slattice[Wuu] = _%TNZ"%NVRG |:tI'(]_ — (1 + ZCLQFMV<N) — EFMVQ(N) + O(GB)):|
ia* 9
= _ZlgTNZn“uytT(F‘uy (N)) ’ (210)

which is the same as the discrete version of the Yang-Mills action, Eq.(2.8).

2.2 The Gluon propagator
We can find the gluon propagator using the generating functional [3, p.262]

o = ij(l'l — LCQ) . (211)

In our case, the functional Z[J] = [ DA+ [ d*#I(@)A@)  without the presence of
a source will be

Z[0) = / DA — / DAt =i r] / DAt a5 o005 41 |
(2.12)

Given a vector p with n dimensions, a Gaussian integral is related to the matrix of
the quadratic part via the relation [3, p.255]

& 1 L 7 2T)" 1 png—1 7
[ gt [T s o

—00

In momentum space, the matrix we are interested in from Eq.(2.12), namely (9%g,,, —
9,0,), will read: (—k%g,, + k,k,). For eigenvalues proportional to k, or k,, we will
have det(—k?g,, + k,k,) = 0, which means that this matrix is not invertible. We will
therefore follow the logic behind the the following idea: Suppose we have an integral
of the form [ dxdy e~**. This will not change if we shift y by some variable, say
y'. We can therefore insert the delta-function [ dy’d(y —y') = 1 into the previous
integral, without changing the total expression. We could also add a Gaussian which
depends on 3/, and divide by some normalization constant (A) in front to make this
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contribution 1. Thus we can write the initial integral as

/dxdye_ﬂ';2 :/\/'/dxdye_x2 /dy'e %5@ y') N/dxdye -
(2.14)

The gauge field transforms in the non-Abelian theory as follows:
a a 1 a aoc C a 1 a iy
AH—>A#+§8u7r + oAl :Au+§Du7r = A", (2.15)
where A™ denotes the transformed field and D, is the covariant derivative defined as
D, =0, + gf*cAd.

Since the action should be invariant under this change, it should stay invariant under
a shift in 7% as well. We have that 1 = [ dxd(az) = [ du%. If 7 is a n-dimensional

vector, we can similarly write 1 = [dz d(a) = [ dﬂ%. If we now have a function
of a vector as the argument in the delta-function, we get the Jacobian because of the
change of variables, which gives us the relation

- /dm(f(f)) - /dﬂ%. (2.16)

We can rewrite this expression in terms of 7, A™ and G(A™, which is some smooth
function of the transformed field A,

1= /Dwé(G(A”))det(aGagﬁﬂ)> : (2.17)

where D is the integral over all possible 7.

Then we can write Eq.(2.12) as

/DAeZ“] = /DA@ZS[A]/DWF G(A™))de t(a%(A >> : (2.18)
T

We choose the generalized Lorentz gauge condition G(A) = J,Af, — w*, such that
G(A™) = 0, A% + 18 D, — w®. The determinant can then be evaluated and it
turns out to be invarlant of 7, as Clalmed above.

x d9(0,A¢ + 19,D,m* — w®
da(@GSﬁ )) :det( ( ny ga;b it )) _ ;det(ﬁﬂDu)- (2.19)
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Since the determinant does not depend on 7* we can take it out of the m-integral. It
does however depend on the covariant derivative, and thus the field A, so we must
still include it in the remaining integral over A. Inserting Eq.(2.19) into Eq.(2.18),
we get

/ DACSA = N7 / Dr / DA §(G(A™)) det(D,D,) (2.20)

where N is the collection of all constants and normalization factors that appear along
the derivation. If we now transform the field Af — A™ according to Eq.(2.15), the
integration measure will not change since it is an integral over all possible fields, so
DA = DA™. Similarly, nothing will happen to the action, since the Lagrangian is
invariant under this transformation, thus S[A] = S[A™]. This means that we can
think of A™ as a dummy-variable, and rename it to A. The delta-function can now
be written in terms of the generalized gauge-condition, G(A) = 9,4, — w®. Let
us follow the trick from Eq.(2.14) and add a Gaussian integral over w and put the
corresponding normalization out in the front. Then we have,

/ DA = N / Dr / DA / Dwe 72659, A% — w) det(8,D,.)
(2.21)

where the factor of % is just a convention. We can write the determinant as a
path integral over the Grassmann numbers, ¢ and ¢, in this way: det(9,D,) =

| DeDcexp|—i [ d*xc(9,D,)c] [3, p-497]. ¢ and ¢ are called the Faddeev-Popov
ghosts and anti-ghosts and are anticommuting Lorentz scalars. For each gauge field,
A, there is one ghost and one anti-ghost. Next, we use the delta-function to do the
integral over w, which leave us at

/ DASA = N / Dr / DADEDe e -1 =& @ 2@D ] (g 99)

Since we know that S[A] = [ d*zL[A], we can read off the Lagrangian from this
expression. We find the so-called Faddeev-Popov Lagrangian which is the gauge-
fixed Lagrangian only involving the non-Abelian gauge-bosons:

1 a
£R£ = _Z(FMV)Z

1

- i(auAZ)Q —C (auDu) C = ‘CYang-Mills +£gauge ﬁxing+£ghosts . (223)

To find the gluon propagator, we need only look at the two first terms, since these
are the ones containing two gauge-fields. Rearranging so that they can be written in
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one term and switching to momentum space, we get

1

1 1
L) = (0,07 = A (g, — 0,0, + £0n0. ) A

b s (- D]

We invert the term in the bracket, which is acting as the matrix M in Eq.(2.13). We
must have that

28

[— k20,0 + (1 _ %) k:ﬂka] o = g, (2.25)

so we make an ansatz that 177 must be of the form Ag?” + Bk?k" since these are the
only combinations we can make out of g and k. We use the identity that g,,97" = g,
and g,,k7 = k,. Then,

1
|~ K+ (1 ¢ Kuks| |Ag™ + BRRY| = g (2.26)
1 1
—k*Ag, — K’ Bk, k" + (1 — E)Akuk” +(1- E)Bkuk?k” =g/, (2.27)
which give us two equations that we can solve for A and B:
1
. 24 —
I:—k*A=1 —>A——ﬁ,

o 1 1 9 1

[I.—kBJr(l—E)AJr(l—E)Bk =0 —>B:F(1—5).

We plug these values for A and B into our ansatz for II,,,, and we arrive at the gluon
propagator

-T1Q - k k a

ZH,ulz)/ = k’2 |:g/u/ - (1 - f) k}2 ] 5 b (228)
where the §% comes from the colour of the fields. This propagator only differs from
that of the photon propagator by the additional factor of 5.

2.3 Attractive and repulsive interactions

We want to know if the interactions between a quark and an antiquark is attractive
or repulsive. We can consider the 2—2 scattering process ud — ud, where u is an
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up-quarks and d is a down antiquark. The matrix element is very similar to that
of the Rutherford scattering e~ pt™ — e p™, with an addition of the colour factor
and the strong coupling constant, ¢, instead of e. As shown in the previous section,
the gluon propagator only differs from the photon propagator by a Kronecker-delta,
9% which will act on the additional colour factor making it a sum over all colours
(T°T*6% = T°T*). The matrix element for the ud — ud process then takes the
form

T “ilow - (94|
= (i9)" T}; Ty u;(ps) ¥ ui(p1) 12 Uk(p2) v vi(pa)

9
=TT =25 iMooy (2.29)

Since the potential is proportional to the matrix element, the potential can written
similarly be written as

_92 g2
V = Tyl =2 Vegrsepr = ~TiTi (2:30)

where we have used that V.- ,+_,.-,+ is the Coulomb potential, —%. Now we need to

look at the T3 Ty, factors which can be divided into two cases: the initial states have
the same colour (i = k) and the initial states have different colours (i # k).

In SU(3), the generators can be expressed as T = X%, where \* are the Gell-Mann
matrices. Instead of computing all T Ty, by hand, the Fierz identity will be useful
in this calculation: . .

Y T35 Tg = B <5jl5z‘k — §5ji5kz> . (2.31)
Starting with case one, lets assume that the initial quark has colour charge red and
the antiquark has colour charge antired, i.e. ¢ =1, k = 1. Then,
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(2.32)

O Owl=
O~ O

apa _ 1 1
ThTh = B <5jz511 — §5j151l> =

o= O O

If we start out with red-antired, the final state colours can remain the same, or it can
change to either blue-antiblue or green-antigreen with a slightly bigger probability.
Similarly for the other two possible initial states where we have a colour and its
corresponding anti-colour. The colour factor is Tj, Ty = diag(%, %, %) for blue-antiblue
and TTg = diag(3, 3, 3) for green-antigreen. Either way, the colour factor comes
out with a positive number and the sign of the matrix element will be the same as
for the e~ p™ — e p™' process, so this is an attractive interaction.

For the second case, we look at two different initial colour charges, e.g. red (i = 1)
and antigreen (k = 3). Using the Fierz identity again, we find the 77Ty factor to
be

1
G

a a 1 1 ;
Th15 = 5(53'1513 - §5j153l> = 8 . (2.33)

o O O
o O O

The final states will have the same colour charges as the initial states, which is not
surprising since the colour must be conserved. This will be the case for all ¢ # k,
thus the matrix element will have a negative sign independent of the initial colours.
Thus, we see that these interactions are repulsive.

Using the obtained values for T5;Ty; in Eq.(2.30), we find the potentials for the
different interactions

4 2
V= _549_777“ , (colour singlet, same initial colour) (2.34)
1 2
V= 649? . (colour octet, different initial colour) (2.35)

supporting the conclusion of the attractive interaction between gg with same initial
colour, and the repulsive interaction between ¢q of different initial colour.
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2.4 Feynman rules for the gluon vertices

The interaction-terms in the non-Abelian theory is given by [3, p.510]

1
Lin = —gf (0, 42) ALAT = 29° (S ALAL) (£ A5 A7)
(0,0 AL + gALD A T

J

+ig AT (670,05 — 0;0.97) + 9°07 AT T AL, (2.36)

The first and second term is representing interactions between three and four gluons,
respectively. The third term is the interaction between a gluon, a ghost and an
anti-ghost, and the fourth term is the quark-antiquark-gluon vertex. The two last
terms are representing interactions involving complex fields. In our convention, the
Fourier-transform of A(x) is

Al(z) = / (;’;4 e AL (k) . (2.37)

2.4.1 Triple-gluon vertex

We will now derive the Feynman rule to the triple-gluon vertex, and start by looking
at the first term in Eq.(2.36)

iS?)—point interaction — _igfabc / d%(@MA,‘i(x))AZ(x)Af,(m) : (238)

We want to do our calculation in momentum-space so we Fourier-transform Eq.(2.38)
according to Eq.(2.37) and relabel A, = A,¢"".

i5=iar [0, [ e aw) [ am [ e aon
(2.39)

The derivative only acts on the z-dependence which occurs in the exponential, keep-
ing in mind that the dot-product contains indices, p, - 2#, this gives a factor of ip,,.
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Rearranging the terms we get

d* d*k d* -
w:gﬂ%/@gﬁ/@ﬂﬁ/@gg/&%mﬁﬂmwﬁwmﬂ@%www
d* d*k d*
=05 [ o [y [ i @ b A AL A )
= gf / PuA(p) AL (K) A%(g) g (2.40)
pkq

where we have defined fpkq to be all the integral terms and the delta-function term
comes from the integral over x. This diagram is not symmetric, so we continue by
making it symmetric around two of the axes by dividing the equation into two equal
parts, and relabel the dummy-indices of one of them: (a, v, p) — (¢, p, q).

iS=g [% /p . Fpu A (p) Ay (K) Ag(a) g™ + % / f‘“’cpuAﬁ(p)AZ(k)AZ(Q)g””]

pkq

I%L@JWmM@MHM%@W”ﬁlfm%@wmym@@mﬂ

kp

=5 [ A A0 A0 6~ a), (2.41)

where we have used the antisymmetry of f%¢ in the last step. We do this one more
time, making the diagram symmetric around all the axis by dividing into 3 parts
(together with the 1/2 from above we get an overall factor of 1/3!). We permute the
indices (v, a, p) — (u, b, k) — (p, ¢, q) in one of the parts and then the other way
around for the last one. We get

) g abc pa c L
is = 5| [P AGAR A" 0 0)

[ A A )™ (5, — )
qp
[ A A AL B a0, 1)
qpk
= %f‘”’c/ AL(p) AL (R)AS(q) [97 (D — au) + 67 (ky — 1) + 9" (0 — k)] -
: pkq
(2.42)
Again, the antisymmetry of fo is used as well as we can write the integrals inde-

pendent of the order of p, k and ¢ (i.e. fpkq =/ kap = pkq). We have then obtained
the Feynman rule for the triple-gluon vertex:
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b, i

qf»% =9/ [g" (pu — 4u) + 9" (kp — pp) + ¢""(0 — k)] . (243)
~

&GP p a,v

2.4.2 Four-gluon vertex

The corresponding Feynman rule for the four-point gluon vertex is found using the
second term of Eq.(2.36), — ;g% f«" A% A} f A% AZ. In the same fashion as the previ-
ous section, we will use the short-hand notation for the integrals which comes from
the Fourier-transform and the delta-function as prg. In the case of the four-point
vertex, we do not have any derivative, so we will not get an extra factor of momen-
tum. We will write Af, = Afg,, and Al = Alg,, to separate them from each other.
Taking all the A’s in front, we can focus on the structure-factors, £ and £, and
the g’s. The action for the 4-point interaction can then be written as

2
. Zg a C ea €C
ZS4—point interaction — _T AMAZApAg-f bf dgupglla . (244)
pvpo

There are 4! ways of permuting the u, v, p, o-indices, giving us a symmetry-factor
of %. For simplicity, we rename the set of indices like this: (a,pu) = 1, (b,v) = 2,
(¢,p) = 3 and (d,0) = 4. The possible ways we can permute the three last indices
giving that the first index stays the same is: 1234, 1243, 1324, 1342, 1423, 1432.
Only looking at the structure-factors and the ¢g“s (which are the ones that will be
changing) with these permutations gives us these six terms in the integral:

F 13000 + 2 4 910003
+ f P 10030 + f2 914030
+ [P 10903 + f P 13942 (2.45)

Using the antisymmetry of the structure-factor, f¥1? = — 2! we can write this in a
more compact form:

f812f€34(913924 - 914923)
+ f€13f€24(912934 — §14932)
+ [P (912943 — 9139a2) - (2.46)
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The next permutations will also give us six terms and are obtained by swapping two
of the indices such that (1234) — (2134) in the previous expression. A cyclic shift to
the right, (1234)—(4123), will also give us six terms. These 6 + 6 terms are shown
below:

f621f634(923914 - 924913) fe4lf623(942913 - 943912)
+ [ [ (ga1934 — g24931) + 2 £ (941923 — guzgro)
+ f 3 (991943 — Gosgar) + P 2 (ga1932 — Ga2g31) - (2.47)

After using the antisymmetry of the structure-factor and the symmetry of g (g12 =
g21), these terms turns out to be the same as those of Eq.(2.46). The last way of
permuting is by swapping the two last indices and then do a cyclic shift to the right,
ie. (1234)—(1243)—(3124). By using what we found out from the previous step,
namely that if we swap two indices the terms will become that of Eq.(2.46) and
similarly if we cyclically permute one step to the right, we know that these last six
terms will also look exactly like Eq.(2.46). Then we are left with 4 - Eq.(2.46), which
cancels the i in the front of Eq.(2.44), though we still have a factor of % from the
symmetry mentioned above. Converting the indices back from numbers to letters,
Eq.(2.44) now looks like

- 2

; g a c eab rec

ZS4P0mt = _I/ AuAgApAg f bf d(g,upglfo - g,uogyp)
* Juvpo

+ feac]cebd(gw/gpa - g,uagpy)
o (GG — Gplow)| (2.48)

and we can read off the Feynman rule for the four-gluon vertex as:

@, [ d. g

b-, v C,p

— —Zg2 feabf60d<g,upgz/o o g#ggyp)
+ feaCfebd(guyng o guagpy)
+ F P G Gop — GupGov) | - (2.49)

28



Chapter 3

Heavy-ion collisions

In heavy-ion (AA) collisions, nuclei are accelerated to relativistic velocities. The
nucleus consists of protons and neutrons, which in turn are build up by quarks and
gluons, collectively called partons. The mass number, A, is the sum of protons and
neutrons in the nucleus. If the radius of the nucleus is Ra (e.g. Rpy, ~ 15 fm), the
relativistic thickness is given by Ra /7, where v = 1/4/1 — v? and v, is the velocity
of the nucleus in the direction of the beam in units of speed of light. For PbPb
collisions at LHC, the nuclei are collided with a total collision energy /s = 2.76
TeV, giving us a gamma-factor of about v = 1400. This means that the nuclei gets
highly Lorentz contracted. Instead of thinking about two spheres colliding, we can
imagine thin pancake-like objects. The impact parameter, b, is the distance between
the center of the two nuclei. Observation of the centrality of a collision tries to tell
us about the impact parameter. In a central collision, they collide head-on and thus
b = 0. In a peripheral collision, b # 0, the collision will happen in the overlap region
(see Fig. 3.1). The particles contributing in the collision process by colliding into
other nucleons are called participants. Those not contributing are called spectators
and will simply continue their paths along the beam axis.

3.1 Evolution of the collision

The physical picture of how the collisions are modelled is described in the following
and illustrated in Figure 3.2. After about 1 fm/c after the collision of the two
Lorentz contracted nuclei, the quarks and gluons are deconfined into quark-gluon
plasma. This state of matter is often described using relativistic hydrodynamics
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Spectators

b 7— Overlap region

Participants

Spectators

Figure 3.1: The participant nucleons in a collision of two Lorentz contracted disks
are the ones inside the overlap region and collides with at least one other nucleon.
The nucleons outside the overlap region are called the spectators. These will simply
continue their paths along the beam axis. The impact parameter, b, tells how far the
center of each nucleus is from each other. In a central (head-on) collision, b = 0.

since it is established as a strongly interacting fluid [18].

After expanding and consequently cooling for roughly 10 fm/c, quarks and gluons
becomes confined into hadrons and resonances. This process is called hadroniza-
tion. The hadrons continue to collide both inelastically, changing the species of the
hadrons, and elastically, which alters their energy-momenta. Chemical freeze-out
occurs when the inelastic scattering between hadrons stop. When the proper time
between collisions are of the scales of the mean-free-path between the hadrons, i.e.
Teoll ™~ Amyfp, Kinetic freeze-out occurs and the elastic scattering stops. After ~ 10-15
fm/c the hadrons are free streaming to the detectors.

In a proton-proton (pp) collision, the participants will collide once and produce
roughly 10 charged particles. In an AA-collision, the number of participating nu-
cleons will be much higher and these will collide many times creating thousands of
charged particles. E.g., AuAu-collisions taking place at RHIC happens with a total
collision energy /s = 200 GeV. About 5000 charged particles get created in these col-
lisions [19], which is over 10 times the initial number of particles. In PbPb-collisions
at LHC, the total collision energy is significantly higher, /s = 2.76 TeV, so even
more charged particles can be produced. In these large systems, QGP is formed due
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to the multiple scatterings, high temperatures and enormous energies involved.
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Figure 3.2: An illustration of the current understanding of how heavy-ion collisions
evolve. Figure from [20].

3.2 Observables

There are three important physical objects supporting the idea of the creation of QGP
in heavy-ion collisions: collective flow, parton energy-loss and strangeness enhance-
ment. The first is observed by the elliptic flow determined from anisotropies in the
final states observables. The nuclear modification factor, R44, and jet-suppression
are two observations for parton energy-loss. Strangness enchancement in heavy-ion
collisions shows a number of produced strange quarks comparable to predictions from
thermal equilibium, in contrast to what is observed in pp-collisions. In this section
we will look closer at these four observables.

3.2.1 Elliptic flow

The initial momentum of the participants (the particles involved in the collision) will
mostly be in the beam direction (longitudinal momentum, py ). If any, they can also
have some transverse momentum, py, which would be isotropically distributed. If the
particles do not interact with each other after the collision, then the final transverse
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momentum distribution will also be isotropic. If they instead interact with their sur-
rounding particles with enough strength and frequency, the quarks can be deconfined
within this small region, and achieve approximately (local) equilibrium.

The initial geometry of the overlap region can have an effect on the final momentum
distribution. In a central collision, the two nuclei collide head-on and the initial
geometry is (almost) circular (see Figure 3.3a). The pressure of the system will be
distributed equally along the overlap region and it will expand isotropically in the
radial direction. Thus, the final states observed will be equally distributed. In a
peripheral collision of two Lorentz contracted discs, the overlap region will have e.g.
an almond-like shape (see Figure 3.3b). Due to the spatial anisotropy in the medium,
it will expand unevenly due to the difference in pressure. This will lead to anisotropy
in the final momentum distribution.

|
N / P ¢

N el
~ N

/ . /TN
l Overlap region

Overlap region

(b) In a peripheral collision, the overlap
(a) The overlap region in a central collision region has an almond-like shape and will
is nearly circular and is expanding equally therefore have an anisotropic flow in the ra-
in the radial direction. dial direction.

Figure 3.3: The geometry of the overlap region of collisions with different centrality
is illustrated. The view is along the beam axis, i.e., either in or out of the paper.

Fig. 3.4 shows final energy distributions from four different collisions. In the upper
left and bottom right corners, an almost circular distribution of the final states
momentum is observed. Thus, these collisions are most likely central collisions. In
the upper right and lower left corners of the figure, the final distributions shows a
clear anisotropy in the final energies. This is an example of how the initial almond-
like shape from Figure 3.3b have influenced the final states distribution.
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Figure 3.4: Azimuthal distribution measurements done by CMS. The charged particle
tracks are shown in green. The red is the energy in the electromagnetic calorimeter,
which is designed to measure the energies of particles interacting via the electromag-
netic force (electrons, positrons, photons) [21]. The particles which interacts via the
strong force, i.e., colour charged particles, are measured using a hadronic calorime-
ter. By the time these particles hit the detector, they are confined into hadrons.
Thus, the observed energies are from neutral hadrons and is shown in blue. A clear
anisotropy in the final states are observed for the upper right and lower left corners.
Figure from [§].

3.2.2 Nuclear modification factor, R 44

The nuclear modification factor [22],

1 dN44/dpy
Neouy dANPP/dpy

Raa(pr) = { (3.1)
is a ratio between the number of particles produced in a AA-collision to the number
produced in a similar pp-collision. The number of parton collisions in an A A-collision
is denoted by <Ncoll>. A factor of this is included to normalize the AA-collision to
that of a pp-collision.
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The number of particles with momentum, p7, produced in an AA-collision is given
by dAN44/dpy. Similarly, the notation dN??/dpr, represents the equivalent yield in
a pp-collision. If no medium were produced in the AA-collision, we would expect
that Rya ~ 1, i.e., that the number of particles with momentum, pr, produced
where roughly the same. However, if there is a medium present in the collision, the
momentum of the produced particles may be affected due to interactions with the
medium. Thus, we will expect that R x < 1.

27.4 pb™ (5.02 TeV pp) + 404 ub™ (5.02 TeV PbPb)

1.6 ; 27.4 pb™ (5.02 TeV pp) + 404 ub™' (5.02 TeV PbPb)
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Figure 3.5: Nuclear modification factor, R4, for PbPb as a function of transverse
momentum, pr, for the two centrality classes (a) 0-5% and (b) 70-90%. The plots
show results from two different collisions energies, 1/s = 2.76 TeV and 5.02 TeV from
CMS. Additional results from ALICE and ATLAS are shown for the most central
case. The statistical uncertainties (error bars) and systematical uncertainties (boxes)
are also shown. See text for further discussion about the plots. Figure from [22].

Figure 3.5 shows the nuclear modification factor for PbPb collisions as a function of
transverse momentum, pr. Figure 3.5a shows R4 for the centrality class 0 — 5%,
which is an average over the most central collisions. An observed suppression in the
low-pr regime can suggest a parton energy-loss due to medium interactions. Even
though R4 takes into account the number of collisions, it does not take medium
interactions into consideration. Since this is a central collision, the number of par-
ticipants is very high. Thus, a large droplet of medium can be created. Soft partons,
i.e., particles with low momentum, loses energy due to medium interactions. Hard
particles, however, have much more energy and is not as affected by the medium.
Thus, as we can observe from the plot, R4 is much closer to 1 for high-py. The
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different collisions energies considered (/s = 2.76 TeV and /s = 5.02 TeV) does
not seem to affect the value of R4 for the most central cases. Figure 3.5b shows
the R4 of very peripheral collisions in the centrality class 70 — 90%. Compared to
the most central collisions, R44 seems to be much closer to 1 in the low-pr regime.
Due to fewer participants in very peripheral collisions, the medium formed may not
be as large as in the central collisions. Thus, the probability of interactions with
the medium may be lower since there is a smaller area that can affect the parton
energy. The values at larger pr comes with very high uncertainties, but similar to
the central case, these are also close to 1. The nuclear modification factor seems to
be a little bit smaller for the collisions at lower energy, 1/s = 2.76 TeV, even when
taken the systematical uncertainties into consideration. This might be because at
lower collision energies, the low-pr yields are larger. Since these are the one that
gets most affected by medium interactions, the resulting R 44 is thus lower for lower
collision energy compared to higher collision energy.

3.2.3 Jet-suppression

It can happen that two hard particles (particles with high momentum) collide with
each other during the collision process, creating a back-to-back jet with high-pr.
Because of energy conservation, we would expect to observe two (almost) equally
energetic jets on opposite sides in the detector. Figure 3.6 is an example of jet-
suppression observed from the CMS detector. The figure shows transverse energy of
final states as a function of rapidity and azimuthal angle. The jet is coloured red
and is found by using a jet-finding algorithm. We observe one jet with high energy
(leading jet), and one significantly smaller, suppressed jet (subleading jet). One may
think of the plot as a cylinder wrapped around the ¢-axis, where ¢ is the azimuthal
angle of the beam axis (see Figure 3.7a for illustration). The pseudorapidity is defined
as 7 = —In[tan(0/2)], where 6 is the polar angle relative to the beam axis [23]. The
collision take place at ¢ =n = 0.

The polar angles to the jets in Figure 3.6 can be found by rewriting the expression
for n, i.e., = 2tan~! [e‘ﬂ. For simplicity, we can approximate the values of 7 to be
n = —1 (leading jet) and n = 1 (subleading jet), leading to the polar angles:

180
Oreading = 2tan”" [e' | — = 140°, (3.2)
™
180
esubleading = Qtanil [eil] — & 40° s (33)
™

where 180/7 is used to convert from radians to degrees. Both the azimuthal angle,
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Figure 3.6: An example of observed jet-suppression. The transverse energy distri-
bution in PbPb collision at /s = 2.76 TeV performed at the CMS detector at LHC,
CERN. The collision happens at ¢ = n = 0, where ¢ is the azimuthal angle and
n = —In[tand /2] is the pseudorapidity connected to the polar angle, §. The observed
jet-suppression of the back-to-back jet indicates medium creation in the collision.
The subleading jet would have been affected by medium interactions, causing it to
lose energy. Figure from [23].

¢, and the pseudorapidity, n, for the leading jet are negative (seen in Figure 3.6),
so the polar angle found must be negative. Thus, Ojeqaing ~ —140° (or ~ 220°).
The angle between these two jets is therefore 180°, which we would expect due to
energy-momentum conservation. Figure 3.7b is an illustration of how the two jets
from Figure 3.6 look like in 3 dimensions.

Imagine pushing the n-axis from Figure 3.6 together and wrap it around the ¢-axis
(or, similarly, push the cylinder from Figure 3.7a together along the beam-axis).
Then, we would get the energy distribution as a function of azimuthal angle, which
is what Figure 3.4 displayed.

Jet-suppression may indicate the production of some medium during the evolution of
the collision. The suppression of one of the jets can happen if the collision of the hard
particles is oriented just the right way, say close to the surface of the medium. Then,
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(a) The detector is shaped like a cylinder, when unwrapped gives the plot in Figure 3.6.
The beam direction is shown together with the azimuthal angle as well as the polar angle,
which is connected to the pseudorapidity in heavy-ion collisions.

Subleading jet

gsubleading =~ 40°
ol

z

Bieading = —140° (or 220°)

Leading jet

(b) Hlustration of the direction of the back-to-back jet from Figure 3.6 is given
by the red arrow. I used the approximate values of n = —1 <> Ojcqqing =~ —140°
and 7 = 1 < Osupleading =~ 40°. The red, dotted line is the projection of the
subleading jet onto the xz-plane and shows the azimuthal angle, ¢. The difference
in transverse energy is not taken into account.

Figure 3.7: Simplified illustration of the back-to-back jet created in the collision
centre.
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one of the jets will go straight out to the detector being highly energetic (leading
jet), while the other will travel some distance through the medium before reaching
the detector on the other side (subleading jet). The subleading jet will encounter
energy-loss due to interactions with the medium before reaching the detector. In
Chapter 4, we will look at a simple model for parton energy-loss due to medium
interactions.

3.2.4 Strangeness enhancement

The last observable is the strangeness enhancement in AA-collisions compared to
pp-collisions. Although I will not go into much details on this subject, I still think
it is worth mentioning, so I will explain it shortly through the results provided in
Figure 3.8.

Strangeness enhancement means a higher production of strange particles, which are
particles build up by at least one strange quark, s. Figure 3.8 shows results from
ALICE for pp-, pPb- and PbPb-collisions of yield ratios to pions as a function of
final state particle density, <dNCh / d77>. On the left hand side we see the yield from
pp-collision is increasing with particle density, and approaches the results from the
small pPb-collisions. On the right hand side we observe the yields of PbPb-collisions
with the collision energy, /s = 2.76 TeV. The yields are almost constant and is
approaching the predicted values for thermal yields [25]. This may indicate that the
strange particles produced in the heavy-ion collisions must originate from a thermal
source, i.e. from QGP that gets created in these collisions. The fact that the yield
from pp-collisions is lower supports this idea, as we know that no medium is formed
in these small collisions.
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Figure 3.8: Strange particle production for pp-, pPb- and PbPb-collisions with sta-
tistical uncertainty (error bars) and total systematic uncertainty (empty boxes) are
shown. Figure from [24].
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Chapter 4

Energy-loss of a particle travelling
through a medium

In this chapter, a parton energy-loss model by Arnold [1] is studied. This is a simple
model, derived from the BDMPS-Z formalism, that provides the energy spectrum
of emitted gluons of a hard particle due to soft interactions with a medium. The
radiation of gluons is the same as how much energy the particle loses. The observables
discussed in the previous chapter are based on final states of the collisions. This
chapter considers two models of how the medium evolves and studies how the hard
particle radiate energy (loses energy) leading to the final states observed.

4.1 Medium-induced gluon radiation

The basic picture is illustrated in Figure 4.1. A hard particle with energy, F, interacts
with the medium which alters its transverse momentum with small changes, Apy.
Over the total length travelled in the medium, L, the particle picks up a total change
in its transverse momentum, called the transverse momentum broadening coefficient,
q= <Ap2T>. Each Apy comes from several small interactions along the medium. The
medium is assumed to be finite, so after a length, L, the particle emerges into vacuum.

The general result for the medium-induced energy-loss spectrum is given by [1]

Al — Ie.) «
W = ;xPs_m(x)ln\c(Oﬂ : (4.1)
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Figure 4.1: Incoming hard particle with energy F interact with the medium inside
the brick with a total momentum ¢ and emits gluons with energy w = xE. We
assume small x, which means a small fraction of the initial energy. The length of the
medium/length travelled in the medium, L, is assumed to be finite.

where [ is the probability of emission from the hard particle and I, is the probability
that the emitted gluon is produced in vacuum. There is still much to be understood
about [,,.. However, since this is a simple model, no further discussion about this
is included. In the following, I will use the short-hand notation, I, representing the
difference, I — I,q4.

The coupling constant is denoted by « and w = xF is the energy of the emitted
gluon. In the following, the assumption of small x is made. This means that we
assume that the energy of the emitted gluon is very small compared to the initial
energy of the particle. The splitting function, P;_,,, is the probability of a particle
of species s (quark or gluon) to split into a gluon.

For simplicity, the choice of gluon to gluon scattering inside the medium is used.
Using a small x approximation, the splitting function can be written as
1+zt+ (1 +2)? 2

Pg—>g($) = O}y $(1 — I) smﬁlx ;CA’ (42)

where C'4 is the Casimir of the adjoint representation and is used because we are
considering g — g scattering. At the end of Section 1.1, C4 for the group SU(3) was
shown to have the value C'y = N = 3. Choosing a ¢ — ¢ scattering will only alter
the splitting factor by some constant related to Cr, since quarks are described by
the fundamental representation.

To avoid chosing a value for the coupling constant, « is factored out to the other side
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of Eq.(4.1). In the small z approximation, Eq.(4.1) can then be expressed as

1 dI 2
—w— = ﬂln|c(0)| . (4.3)

a dw T

The function ¢(¢) must satisfy the differential equation

d*c )
e ), (4.4

where wy(t) is a complex number. Eq. (4.4) has the following boundary conditions:
c(t) > last — oo and é(t) = de/dt = 0 at t — o0o. The complex number, wy(t), is
related to the transverse momentum broadening coefficient, ¢, by

(1—2)Cr+2°Chlat) _ .Cralt) _ .a(t) , (4.5)

2 .
t = — ~~
) =~ A e smalle | 225 2w

where we define Cg§ = ¢ and Cp is the Casimir of the representation, R. The
transverse momentum broadening coefficient, ¢, is the average squared transverse
momentum transfer, <Ap%>7 the high energy particle picks up from medium interac-
tions. Each transverse momentum picked up along the medium interactions follow
Brownian motion. Thus, ¢ will increase with larger distance travelled in the medium.
It can be worth noting the relation

q(t)

wo(®) = /L2, (46)

following from Eq.(4.5), as it will be used in the following derivations.

Since the model used assume a finite medium, we must have that w2(t) — 0 as
t — oo. This corresponds to the the particle leaving the medium and goes into
vacuum at some point.

4.2 The ”brick” (uniform, time-independent medium)

In this section, the simplest model of a medium is considered for simplicity. After we
understand what happens in the case of a finite, uniform, time-independent medium,
we can start studying more complicated medium profiles, as will be done in Section
4.4.
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We start by looking at the radiation spectrum due to interactions inside a finite
medium of length L which is uniform and time-independent. Such a medium is often
referred to as a "brick” (see Figure 4.1). These conditions imply that the strength
of the medium interaction is independent of time. Thus, ¢(t) = ¢ which also means
that Wo(t> = Wwp-.

The particle will end up in vacuum after it has travelled through the medium of
length L, so we have

2 _ _ ;4 .
9 wy = —l5 b <L
wi(t) = “ 4.7

olt) {0 6> L. (4.7
We want ¢(t) to be continuous and smooth. By applying the boundary conditions:
¢(L) =1 and ¢(L) = 0, the analytical solution takes the form

L—t t < Lj;
C(t) _ COS(WO( )) ) ’ (48)
1 ,t> L.
The complex number, wy, can be rewritten in terms of real values only by replacing
v/—i in terms of a phase e/, Thus, In|c(0)| takes the form

In|e(0)| = In|cos(woL)|

= In|cos(e™"/* |wo|L)|
1. 711 1
= §ln[§cosh(\/§]w0]l}) + §Cos(\/§|wo|L)} , (4.9)

where we have used the identity from [1, Eq. 4.3] in the last step and |wy| is a real
number defined by Eq.(4.6). Thus, the spectrum of the medium-induced radiation
from a particle travelling through a brick is given by

1 dI 2 1 1 1
1,90 _2Ca Sn bcosh(\/iwow) + §cos(¢§|wo|L)} . (4.10)

o dw

4.2.1 Asymptotic solutions

In this section, the asymptotic behaviour of Eq.(4.10) will be studied. First, the
small and large L expansions of Eq.(4.9) is found. Then, these are compared to the
asymptotic behaviour of the w expansions. Since the spectrum is only a function of
the ratio between the three parameter involved (¢, w and L), we can write |wy|L =

% LL—; o« where L. and w are the critical values of the length and the
emitted energy, which will be discussed more later. Thus, the critical values goes

like L., o< v/w/q and we, oc gL
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Small L

For small L, or more precisely |wo|L < 1, we first Taylor expand the terms inside
the logarithm of Eq.(4.9), and then Taylor expand the remaining term. Thus, for a
small medium /length travelled through the medium, we obtain

Loy W2lL? | (VD) (il ()]

1
In|c(0)] ~ §1n[

> 2! Il 2] a
1 5ol L)
= Shnf1+ (V2lenlL)* |
2 Il
_ (wolL)" — ¢°L*
1 (4.11)

Large L
Similarly, by looking at the large L behaviour (Jwo|L > 1), Eq.(4.9) goes like

1
5 5 ) + §COS(\/§|W()|L)

1
~ §ln [ZeﬁlwolL}

_ \/§|WO|L
2

1 1 eVl
In|e(0)]| =~ 5111[—(
1

—1In(2)

—~ |ewo| L _ qL?

V2 4w’

neglecting the In(2) term since |wo|L > 1.

(4.12)

Thus, the limiting cases for the medium-induced gluon radiation, Eq.(4.10), goes
like

A2L4
1 dIl  2C 20, | f5en , for Jwo|L < 1
—wo— = A nfe(0)| & AL B o (4.13)
a dw T L RV , for |wo|L > 1.

The critical value, L., can be defined by the intersection point of the two asymptotic
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solutions. Thus, by equating Eq.(4.11) and Eq.(4.12), we obtain

@2L4 B qLQ
4802V 4w
(_?4L8 B qAL2
48204 4w
6 482

CT—Q\/_\/7 ( |w0|> (4.14)

By assigning different values to |wp|, the change of the radiation spectrum can be
studied. In Figure 4.2, the spectrum for three different values of |wp| is shown. Since
the spectrum only depends on the combination |wg|L, the assigned values are in
arbitrary units, for simplicity. The figure clearly show that by increasing |wol|, Ly
decreases, which is consistent with what was shown in Eq.(4.14).

100+

|wo| =1
1,4l 017 — |wo| =3
a  dw

— |wo| =5

1074} o L*

x L

005010 050 1 5 10 50
L

Figure 4.2: Radiation spectrum as a function of medium size/length travelled by the
particle, L. The dotted (dashed) line corresponds to the small (large) L solutions
found in Eq.(4.13). The critical value, L., is shown as vertical lines crossing their
intersection point. It will decrease with increasing value of the medium interaction
strength, |wo|, as shown in Eq.(4.14). The spectrum is dimensionless and since it
only depends on the ratio |wy|L, the units used is arbitrary, for simplicity.
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Small w

The small w behaviour of the spectrum will now be discussed and connected to that
of the medium size, L. Recall Eq.(4.6), where |wg| = \/¢/2w. Using this relation in
the large L expansion, for which |wg|L > 1, one can equally write

[qL? G172

Thus for large L, w must be small. The asymptotic solution for large L therefore
corresponds to the asymptotic solution for small w. The spectrum in the low-w
regime can therefore be expressed as

1 dI  2C 112
SR Y - ,forw < 1. (4.16)
a dw T 4w

Large w

Following the same steps as above, the large w expansion for the spectrum is found.
Since one can write |wo|L = y/¢L?/2w < 1 (for the large L expansion), one finds
GL?/2 < w. Thus, when L is small, w must be large. Consequently, the large w
expansion for the spectrum goes like the small L expansion. Namely, in the large w
regime, the spectrum goes like

1 dl 20, PL*

a dw T 48w2

,forw>1. (4.17)

The critical value, w,, can be defined in the same fashion as L.,. Equating Eq.(4.16)

and Eq.(4.17), we obtain
[il? _ gL
dw  48w?

(jL2 B q4L8
4o 48204
4
3 ~316
= — &L
YT et
qL?
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Combining Eq.(4.16) and Eq.(4.17) into one and rewriting in terms of the critical
energy, we., the spectrum for induced gluon emission takes the form

1 dIl 20, [ /22 « /2= -
T — s A{ dw X w W K Wer s (419)

274 2
o d( ) T G°L w,
1= X (—CT) s Wer L W

w

Figure 4.3 shows the spectrum as a function of emitted energy, w, for different values
of L, i.e., for different lengths travelled through the medium. For simplicity, the
units used are arbitrary. In this figure, I want to show how w,, in fact does increase
with medium size, as expected from Eq.(4.18). Thus, for longer time in the medium,
the probability of emitting a gluon of higher energy also increases.

100
10

1
1 dl

9 0.100
0.010
0.001

0.1 05 1 5 10 50 100
w

Figure 4.3: Medium-induced gluon radiation spectrum, Eq.(4.1), as a function of
emitted energy, w. Asymptotic solutions for small (large) w are shown as dotted
(dashed) lines. The gray vertical lines corresponds to the critical value, w,,, found at
their intersection point. In agreement with Eq.(4.18), w,, increases with increasing
medium size/length travelled inside the medium. Since df/dw is the probability of
emitting a gluon of energy w, w dI/dw is a measure of how many gluons are emitted
at that energy. Note that at w,., the spectrum is approximately 1. This will be
discussed further in the next section.
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4.3 From medium-induced radiation spectrum to
the energy-loss of a particle

The spectrum of emitted gluons, Eq.(4.1), is a measure of how much radiation comes
from different emitted energies, w. By integrating over all w, we obtain the total
energy-loss of the hard particle. The only combination of the variables at hand is
%. A quick dimensional analysis shows that: (an\f)z gz\?/ = GeV fm ~ 5 1. This tells
that the energy-loss only depends on the dimensionless ratio of the three parameters

involved. Using Eq.(4.19), we find that the energy-loss scales like:

I
E= /dwwd—

2 1L? A2L4 1
~ 20Ca ,/q / / dw —2] (4.20)
™ \/_ wer W
20C4 1 [qL? A2L4 1
= —2 cr ]
r VTV TR,
2004 7, 5 5= o
= 2 V/3\/Wer /Dy + V32, } (4.21)
™ L Wer
6v3aC
— @ . (4.22)
T

In Eq.(4.20), an estimate of the total energy-loss was done by inserting the two
asymptotic solutions, found in the previous section, since the integrals will be dom-
inated byche upper and lower limits. The definition of the critical emission energy,
Wer = gagars, Was applied in Eq.(4.21). From Eq.(4.22), one can see that the energy-
loss scales like w,,., meaning that the average energy of the emitted gluon will have
its value around w,,. As shown in Fig. 4.3, w,., will increase with medium size. Thus,
the energy-loss of a particle will increase with increasing distance travelled through
a medium.

Probability of radiation and number of emitted gluons

The probability of emitting a gluon of energy w is given by d/ /dw. Thus, multiplying
the probability by w provides the number of produced particles of this energy. One

In natural units, ¢ = h = 1, so the conversion constant hc = 197.3 MeV fm, taken from

CODATA [26], gives 1fm = 57— GeV™! = 5.0684GeV ™. Thus, GeV fin = 5.0684 ~ 5.
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can observe from Fig. 4.3, that most of the emitted gluons have very low energies
(w < wer) and the particle will emit very few high-energy gluons (w > w,,). If one
takes the average, there will emitted one particle of energy w,,, and is why the total
energy-loss scales like this value.

If the hard particle splits into two, i.e., if only one gluon is emitted in the process, the
energy of the emitted gluon, wy;, can be found using w dI /dw o< \/wer fwepiir = 1,
because we only consider the hard particle to emit one gluon. Rewrite in terms of
the splitting energy one gets, wspiit = Wep X GgL?. Thus, the energy-loss of the hard
particle in this process will be F o< L?. The length the hard particle has to travel
before emitting a gluon of this energy is found by rewriting the previous expression:

Loc\/zm
q

Example

Imagine that the hard particle travels through an infinitely long medium. We will
now try to understand what will happen to that particle. The formation time, g,
is the time it takes a gluon emission to "separate” from a particle (see Figure 4.4a
for illustration). During the splitting time, ts, the hard particle can be affected by
several soft gluon emissions with a probability, a, due to medium interactions. The
total splitting times is then connected to the formation time by tpi = o tiorm-

In the previous section, the connection, £ o< ¢L?, between the energy-loss and the
length travelled in the medium was made. This can also be expressed in terms of

the splitting time, tpu = L =< \/% . Thus, the time it takes to split a particle with

energy E to half its energy is teu < 4/ E/q. The time it takes to split the particle

with energy F/2 in half will then be ¢, o< v/ E/2q, and so on (see Figure 4.5 of the
simplified idea).

If one considers the medium to be infinitely long, the particle can continue to split
like this using the time

1 1 1
t=top 1+ —=+ —+ —+... |, 4.23
Plt( \/§ \/Z \/g > ( )

which is a geometric series that can be expressed as (using r = \/5)

/3
Z o ﬁ_1—2+¢§. (4.24)
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Figure 4.4: Ilustration of the formation time, t¢.,, and how this is related to the
splitting time, ts e, between each scattering that comes with probability of a. (a)
The formation time is the time it takes the two particles to be separated into distinct
particles, i.e., when their gluon fields do not overlap anymore. (b) Each radiation
comes with a factor of a. The splitting time is related to the formation time by

_ 1
tform - Etsplit-

After a time ¢ = tg,;e(2 + \/5), the hard particle have been divided in half so many
times that it is now indistinguishable from the medium and we cannot see any radia-
tion from the emitted gluons. If the splitting of the particle is oriented such that one
of the particles is directed straight out of the medium, and its counterpart travels a
long time through the medium, this can be an explanation to why we do not observe
radiation on the other side. If they are not directed as such, we may observe similar
strengths of the radiation on both sides.

In this example, the consideration of an infinitely long medium was done. If one
instead look at a finite medium, which is more realistic, the hard particle may not
have the time to "disappear” completely. However, one of the emitted rays may
loose a significantly amount of energy due to medium interactions, and can be one

50



N

fr

N m

E E E
tsplit"’ E tsplit"’ 2_51\ tsplitN 4_§

Figure 4.5: Splitting of a hard particle with energy E into two during a splitting
time, €gp-

explanation of the observed jet-suppression from Fig. 3.6, discussed in the previous
chapter.

4.4 Power-law (time-dependent medium)

Since the medium formed in heavy-ion collisions is a fast expanding quark-gluon
plasma, ideally we want to have a model of the medium evolution as similar to
that as possible. However, such a model can be very complex, containing spots of
different energy-density as well as it is expanding in time. A good way to start
understanding how particles loses energy in QGP, is by considering a uniform, time-
dependent medium. From this point of view, it may be easier to understand a more
complicated profile, which is left for future study.

In this section, a uniform, time-dependent medium will be considered. This implies
that ¢ = ¢(t) and w? = w3(t). The medium-induced effects will drop with some
power, a, of time. The transverse broadening coefficient is ¢(t) = ¢o (to/t)*, where
qo is the initial value of the medium interaction. The particle emerges into vacuum
after length L. The medium-induced radiation will be found for different values of
a and compared to the asymptotic solutions, which in this section if found using a
general formula from [1]. At the end of this section, a comparison is also drawn to
the time-independent medium, the brick.
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We have:

_iM:_iﬁi(L@)a to<t<to+L;
A=) e = TRE) h<t<hor L (4.25)
0 ,t0+L<t;

where ty is the initial time of the emitted particle (for the brick we used that t, = 0)
and ¢y is a real number. Using the same boundary conditions as before, ¢(t) = 1
and ¢(t) = 0 for t >ty + L, i.e. the particle emerges into vacuum after to + L in the
medium, we borrow the solution to the differential equation, Eq.(4.4), from Arnold
1, Eq.4.12]:

w1 (217 ()Y, Y, (2)J,_ Jto<t<to+L;
o= [ IR ) oty
1 ,t0+L<t,
where
1
V= y
2—a
t 1/2v
z:z(t)ZQVwoto(—> ,
to
20 Z(to),
ZL:Z(t0+L).

Asymptotic solutions

General solutions for the limiting cases for small and large L behaviour is taken from
[1]. The reference uses the value ¢, = 0. However, since I am using a power-law,
which goes like ~ 1/t, I have rewritten the equations in terms of a general initial time,
to. Then, Eq.(4.27) and Eq.(4.29) are two general solutions for the medium-induced
spectrum. The following derivation is made for the value a = 1.
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Small L

Implementing Eq.(4.6) in the general solution for small lengths travelled trough the
medium, the spectrum of the emitted particle will go like

In|e(to)| = % [ / " an(t - t@lwé(t)l]

to

- [Tt - wydo) [ v - o) (4.27)

2
1 to+L qu tO
== dt(t —tg)——
2 [/to (t=t)5,7

to+L ~ to+L A
t t
- / dt(t — o) L / at'(t — t)Jo to
t

to w 2wt

2
L/Ggo, \2| [ to
2 (2w 0 [ /to t

~ 2 to+L t to+L t
_ (@t()) / dt(l _ —°) / dt/<1 _ —)
2w to t/ J t’

_ <@t0)21 [L(L —6t0) + 283 (— 3Inte) + ()" + BIn(L + 1))

o

)
|

2(,0 4 to—l—L

£ T4
gy L
avl
w2

: (4.28)

where the upper limit ¢, + L has been used since |wy| = 0 for ¢ > ¢y + L.
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Large L

Next, we look at the large L behaviour of Eq.(4.6). The medium-induced spectrum
goes like

Infc(to)] ~ —— /t " it (0) (4.29)

(4.30)

Thus, the medium-induced radiation spectrum at small and large L (or similarly
lwo| L) will go like

*2L4
1 dI - sJwol L <1
{2 ol (4.31)

—w— X -
a dw %  |wo|L > 1.

Small and large w behaviour of the spectrum

In the same fashion as the small and large w behaviour of the spectrum for the
brick-profile where deduced (on page 46), the same can be done in this case. Using
the relation |wg| = /q/(2w), the asymptotic behaviour for the spectrum can be
found. For a small system, for which |wg|L o< y/¢L?/w < 1, one can rewrite and
find ¢L> < w. Thus, for small L, w must be large. This means that the small L
behaviour is the same as the large w behaviour of the spectrum.

The same can be shown for the other limiting case, namely that the large L behaviour
is the same as the small w behaviour. I will rewrite the asymptotic solutions using w.
since this is proportional to §L?. Thus, the medium-induced spectrum as function
of emitted energy, w, will go like

1 dI e er 3
{ R (4.32)

(2)° > wer

I have solved the medium-induced radiation for some given values of ty, L and ¢
(in arbitrary units). The results are shown in Figure 4.6. The spectrum fits very

o4



well with the limiting solutions found in Eq.(4.32). In the intersection-point of the
small and large w, is the point we irica;- This is the average energy of the emitted
particles. As the value of a increases, w. decreases. This is because the medium
effects drops faster, recall that ¢o(t) o< 1/t*, so we can think of the particle travelling
a shorter distance in the medium. Thus, increasing a will be as if the medium size,
L, decreased. This can also be seen by comparing Figure 4.6 and Figure 4.2.

10:
1_. .
a = 0 (brick)
0.100¢ -
Lyl a=1
adw 0.010 a=2
0.001 o« #
1074 o« L
10—5_‘ o 1o L ﬁ
0.01 0.050.10 0.50 1 5 10

wl/ wcr, brick

Figure 4.6: Spectrum from medium-induced radiation, wdl /dw (divided by «), as a
function of emitted energy for different values of a. The z-axis is w/wWer brick, Where
Wer brick 1 the critical value derived for the brick (i.e. for the case where a = 0). The
dotted lines corresponds to the asymptotic behaviour for small w behaviour of the
spectrum and goes like 1/w?, as found in Eq.(4.30). The asymptotic behaviour for
large w goes like 1/4/w, as found in Eq.(4.28), and are shown as dashed lines. The
gray, vertical lines are the corresponding critical energies for the different values of
a. This value decreases for increasing value of a, because the medium effects drops
faster, making the medium seem smaller/shorter. This can also be seen by comparing
this figure to the similar behaviour of the critical points observed in Fig. 4.2.

Another thing that is interesting when looking closely at the very small w regime of
Fig. 4.6, is how the asymptotic solution starts to deviate more and more from the
spectrum as the value of a increases. Recall that small w behaviour was the same
as the large L behaviour of the spectrum. Thus, by increasing the value of a, the
spectrum starts to deviate from the large L solution. In the next section, this trend
will be looked at when the determination of a critical value of a is found.
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4.5 Comparing different mediums: Brick vs. Power-
law

In this section, the spectrum for the power-law will be compared to that of the brick.
I will also determine the approximate value of a for which the asymptotic solution
for small w deviates from the spectrum.

The brick was defined through the time-independent transverse momentum broaden-
ing coefficient, geg. One can also get to the brick through the power-law by choosing
a =0, then, ¢(t) = Go(to/t)*° = Gegr-

If one were to apply the general solutions, Eq.(4.27) and Eq.(4.29), to the brick-
profile, one obtain the same results which where found using small and large expan-
sions. This will be done on page 60 and 62. Thus, the general solutions provided by
[1], seem to work very well, at least in the case for small values of a.

In the following, I will try to find the critical value of a for which the asymptotic
behaviour of the small w-regime deviates from the spectrum. This trend was seen
for increasing values of a at very small w in Fig. 4.6 and can be seen to a greater
extent in Figure 4.7.

‘I /
0.100 a =0 (brick)
19l — a=1
a”dw 0.001} e -
a =5, small L solution
1075t )
a =5, large L solution

005010 050 1 5 10 50

L
Figure 4.7: Medium-induced radiation spectrum as a function of L for different values
of a. The limiting solutions for a = 5 is found using Eqgs.(4.27) and (4.29) and are
showed as dotted/dashed lines. Recall that looking at the large L behaviour is the
same as studying the small w-behaviour. For a = 1, the spectrum looks very similar
to that of the brick (a = 0). For a = 5, the function goes like the limiting solution for
small L. This is because the medium effects drops so quickly, that one can think of
the particle going through a shorter medium. Thus, it makes sense that the spectrum
for large a goes like a small medium.
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This is because ¢(t) drops very rapidly, meaning that the interaction from the medium
will rapidly decrease and thus barely affect the particle after a short time (length).
After a short time, it will be like the medium is not there at all, so it makes sense
that it looks like the small L approximation. Increasing the length will not give
a larger energy-loss. This can also be seen in Figure 4.8, where In|c(t)| goes to a
constant when L — oo.

0.25¢
0.20r a = 0 (brick)
—— a=05
1,4 0'15’:' — a=1
a%ow i
0.10p} — a=15
.'\ a=2
Ly
0.05 '\\‘\\ _____ a=25
0.00] ‘ ‘ ‘ Jp— a3
0 10 20 30 40 50
w
(a)
10¢
1L _ )
a = 0 (brick)
0.100¢ —— a=05
1 ar —_—a=1
2Waw 0.010¢
adw — q=15
0.001¢ a=2
04 TN T, T a=25
————— a=3

Figure 4.8: (a) Medium-induced radiation spectrum as a function of w for different
values of a. (b) LogLogPlot of (a). The straight lines in the LogLogPlot means that
the function is not changing. E.g. for the a = 0 (brick), the spectrum changes from
the asymptotic solutions ~ 1/y/w to ~ 1/w? which is shown in the LogLogPlot as
the bend of the spectra (around w,.). The fact that for a > 2, the plots are very
close to linear, means that these are the values for which the asymptotic solution
deviate from the spectrum.
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By dimensional analysis, the value of a for which the small L approximation equals
the large L approximation is found. Using Eq.(4.27) and Eq.(4.29), the two asymp-
totic solutions goes like:

L1 to+L ta 2 1 2
In|e(to)] “S / dt (t —to) \wg\t—g ~ L(L—1)E ~ LA (4.33)

to

and L
s1 [TF 4 1 1-a/2
In|c(tg)] "~ /to dt |wol e LLa/2 ~ L : (4.34)
Equating the powers, we get that
4—2a=1—-a/2 —>a=2. (4.35)

Thus, for a > 2, the medium-induced effects will drop fast enough that increasing
the length travelled through the medium will not contribute much to the spectrum.
Figure 4.8a shows the spectra as a function of emitted energy, w, for different values
of a. We see that close to the value a = 2, the spectrum is rapidly decreasing. Figure
4.8b is a loglogplot of the same functions. It is easier to see where the spectrum is
going from a curved line to an (almost) straight line, indicating that the function
itself goes to a constant.

4.6 Scaling laws

In this section, different scaling laws will be studied. The scaling law provided by
Salgado and Wiedemann [2] is one way of finding the spectrum for a time-dependent
medium using the simple analytical solution for the brick, Eq.(4.8). The accuracy
of this scaling law will now be checked against the solution for a time-dependent
medium given by Arnold [1], Eq.(4.26). In addition, I will derive two new scaling
laws, look at their accuracy and compare them to the formula provided by [2].

The idea behind the scaling law is as follows: One can find the radiation spectrum
to a particle travelling though a time-dependent medium following a power-law, by
defining an initial value ¢y and a. The analytical solution to the function c(ty) is
given by Eq.(4.26), which is used in the final equation determining the spectrum.
The scaling law is an equation relating the ¢y and a used in the complicated solution,
to the effective broadening g.g used in the much simpler analytical solution given by

Eq.(4.8): ¢(0) = cos(y/defr/2w) L. This means that a radiation spectrum in the brick
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(using a de) can equivalently be found using the power-law solution by [1], Eq.(4.26)
(using Gp). The spectrum using the scaling laws are compared to the solution found
by [1], and compared for the three different values of a. The accuracy of the different
scaling laws varies along different regimes of the radiation spectrum.

4.6.1 Salgado and Wiedemann

The scaling law provided by Salgado and Wiedemann [2] is rewritten to match the
notation used in this paper. It is given by

. 2qy ["tF to\@
Qoft = F/ dt (t — to)(;) ) (4.36)

to

Salgado and Wiedemann did not have the analytical solution to the power-law, which
we borrowed from [1] in Eq.(4.26). So the idea is that the spectrum one would get by
considering a medium which drops like the power-law for a given a and some value of
Go, would give the same spectrum as if one used the analytical solution for the brick,
Eq.(4.8) with a Geg determined by the scaling law, Eq.(4.36). When computing the
different spectra, I assigned a value to the effective gog to the brick solution. Then,
do was determined for different values of a by Eq.(4.36). This was done so that all
spectra would match the same scaled brick-spectrum. Whether one finds go¢ for the
brick by defining gy or define ¢.¢ and then find the corresponding ¢, for different a
will give the same results. When finding the different spectra from this scaling law,
I used the value o = 3.2 in arbitrary units for the brick spectrum. The resulting ¢
and the corresponding spectra for different values of a are shown in Figure 4.9.

The z-axis of Fig. 4.9 is in w/Wer prick; Where wep prick 1S the critical value derived
for the brick. The accuracy of the scaling law provided by Salgado and Wiedemann
seems to be overall very good. The spectra for the scaled brick are very close to
the ones found for different values of a. For very small w and w > w,,, the scaled
spectrum shows more deviations, so there is still room for improvements.

4.6.2 Small w scaling

In this section, I will derive a new scaling law by using the small w expansion of the
medium-induced spectrum, Eq.(4.29). Since the ratio of the spectra will be used, the
factor of 2aC'y /7 will cancel. Thus, one only need to find the expansions for In|c(ty)].
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Salgado and Wiedemanns scaling law

100¢
107======§"~"==
Rt a=0, gefr = 3.2
1pdl 1t R s NS S e a=1,qy=12.4
a  dw e
A a=2,q0=417
QQ\
0.10: N a=3,qo=115.2
\\*\\
ooty
0.01 0.050.10 0.50 1 5 10

w | Wer, brick

Figure 4.9: This figure shows how accurate the scaling law by Salgado and Wiede-
mann is. The dotted lines are found using the solution to the power-law, given by
[1], with the given values of ¢y and a. The pink line (a = 0) is the corresponding
spectrum using geg defined by Eq.(4.36). To have all the spectra compare to the
same brick-spectra, I used Eq.(4.36) "the other way around”. Starting with a given
value for the effective broadening, ¢.¢ = 3.2 in arbitrary units, and then found the
corresponding Gy (if I had used the same o for the different a, I would have gotten
three different brick-solutions). The asymptotic solutions are shown for a = 0 (brick)
and the intersection point of these, which occurs at 1, is our definition of wey prick-
The z-axis is scaled by w/wer prick. The gray vertical lines corresponds to we /Wer brick
for each value of a. It decrease with increasing a. By noticing how close these values
are to 1, one can see that this scaling gives a good approximation. However, as the
critical values is shifted from 1, so is the spectra, making it a little bit worse at the
two ends of the figure.

Solving the integral, the small w expansion for the brick takes the form:

(brick) 1 otk
In|c(to) [P :—/ dt|wo(t)]
) = 7o [ et
1 to+L Ae
_ _/ dty ] Lt
\/§ to 2UJ
Cjeff
= ) 2 ) 4 Lo — ¢
4w[o+ ff 0]
quﬁ‘LQﬁ‘
=1/ —=. 4.37
Vi (4.37)
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The small w expansion for the power-law is:

In|c(to)| = % /:H dt@ _ \/% /t:w dt\/@ | (4.38)

Equate the two asymptotic solutions and take the square to find an expression for
Jee in terms of ¢p and a. Thus, the new scaling law is:

2
deﬁLgﬁz @/t0+Ldt (t_())a
4w Vdw J,, V\t ’
to+L tO a 2
Gest Log = Go / dtw(;) : (4.39)
to

The accuracy of this scaling law is shown in Figure 4.10. In the same fashion as for
the previous scaling law, I have chosen a value of oy = 3.2 in arbitrary units, and
found the corresponding ¢y and a using Eq.(4.39). In the very low w-regime, this
scaling law works to a good accuracy. However, this approximation gets very bad in
the large w-regime. This can also been understood by observing the bigger difference
of we,, compared to the ones found by the previous scaling (see Figure 4.9). If the
critical values where 1, the spectra would have been perfectly overlapped. The bigger
the difference, the worse accuracy one gets.

4.6.3 Large w scaling

In the same fashion as the previous scaling law was derived, the same will be done
using the large w expansion, Eq.(4.27). Solving the integral for the brick, we find
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Small w scaling

100¢
(]St — )
1 ====:::::~\ a-= 0’ Geff = 3.2
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Figure 4.10: The medium-induced spectrum for three different values of a compared
to the corresponding brick spectrum found using Eq.(4.39). The z-axis is given in
W/wWerbrick- The asymptotic solutions are shown for a = 0 (brick) and the intersection
point of these, which occurs at 1, is our definition of we,iicqr- The asymptotic solutions
are shown for a = 0 (brick) and the intersection point of these, which occurs at 1,
is our definition of w... The dotted lines are the spectra found using the analytic
solution for a power-law using the corresponding values of ¢y and a. The solid line
is the corresponding scaled spectra using geg found by Eq.(4.39). For very small
energies, this scaling shows good accuracy. The opposite end of the spectra gets very
bad, which can be understood by how much the critical values differ from 1. If they
where exactly 1, the spectra would overlap perfectly.

the large w expansion to be:

i 1| [etE , 2
nettn) [ =5 | [ dle — o))
to

to Z 2w
_ (@)2 1Lig  Lea _ Genlen (4.40)
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The large w expansion for the power-law gives:

Inje(to)] = %[i / e - to)(j(t)]2

to
1 to+L

to+L
~om | we—wa [ e - v

2
dw* Jy,

- e[ e oo

_ / e - o)) / " dt’(t’—t)cj(t’)]. (4.41)

to t

The power-law considered, for which ¢(t) = Go(to/t)*, can be simplified further by
placing @2 in front, and keep the time-dependent term, (t,/t)?, in the integrals. To
keep this as general as possible, this simplification will be done in the last step of
the following equation. Equating the two expansions, one gets the following relation
between gog and ¢o:

Plly 17 [t 2 ot oL
emezaﬁ/ dt(t — to)q(t)] ‘/ ﬁ@—mﬂﬂ/ dt' (¢ — 1)q(t')

to to t

2
~2 4 to+L
qeffLeﬁ ~2 to @
e = dt(t — tg) | —
L ([ a0 (2))
to+L to\ @ to+L L to\ @
—z/t dt(t—to)(?>/t ar —n(2)] (4.43)

0

(4.42)

where Eq.(4.42) is a general expression only involving some time-dependent trans-
verse momentum broadening coefficient, ¢(t), yet to be defined. The scaling law
for the power-law considered in this chapter, for which §(t) = go(to/t)%, is given by
Eq.(4.43).

The results are provided in Figure 4.11. Given that this scaling law is derived using
the large w expansion, it is not surprising that its accuracy in the large w regime is
very high. If the different combinations of ¢y and a would give the same w,,, they
would have given the same spectrum. Thus, by observing of how close these values
are (seen as gray, vertical lines in the figure), can be seen as a way of measuring the
accuracy of the scaling law.
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Large w scaling

100;
10§~====:====~~\

i *====§_g§=~ a=0, Qe =3.2
1pd 1L e, - a=1,qo=132
a  dw £ \,\

i ~., @ mmm-- a=2,q9=475

0.10: \“x\ a=3,qo=138.8
0.017\ L TS N S| L P R | . L \\\\\\:
0.01 0.050.10 0.50 1 5 10
W | Wer, brick

Figure 4.11: The medium-induced spectrum for three different values of a compared
to the corresponding brick spectrum found using Eq.(4.43). The z-axis is given in
W/Werbrick- The asymptotic solutions are shown for a = 0 (brick) and the intersection
point of these, which occurs at 1, is our definition of w,,.. The spectra using this scal-
ing law is a very good approximation when considering the regime around the critical
value, w,, and higher energy. One can also note that the different w,, corresponding
to different a are closer than those found by using Salgado and Wiedemann as well
as the one found using small w expansion.

4.6.4 Comparing different scaling laws

The accuracy of the three scaling laws mentioned in the previous section will now be
discussed further and compared. Fig. 4.12 shows the deviation from the power-laws
using the three different scaling laws. The deviation is found by the absolute value of
the difference between the corresponding spectra. At first glance, one can divide the
spectrum of Fig. 4.12 into three main regimes: (w < 0.065we,), (0.065 we, < 0.65we,)
and (w > 0.65w,.). Note that these values are only approximate. These values are
marked with gray, vertical lines together with a line at 1 corresponding to the critical
energy. In the low w regime, the scaling law derived using the small w expansion gives
the minimum difference. Thus, in this regime, this scaling law will provides the most
accurate approximation of the spectra. In the region 0.065 w,, < 0.65 w,,., the scaling
law provided by Salgado and Wiedemann has the best accuracy and is shown in gray.
The dip in this line is because these spectra overlap around the value w = 0.4 w,,
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(see Fig. 4.9). For higher energies than w > 0.65w,,, the best approximation is
given by the scaling law derived using the large w expansion. The difference between
the spectra drops rapidly towards zero after the critical value, which means that the
approximation basically overlaps the spectrum at high energies.

5
b= 1
3
J 0.100
.0
< 0.010
2 Small w scaling
g 0.001 — Salgado and Wiedemanns scaling
“: 104 — Large w scaling
9
S 1078
[0
o ) ) ) ) l ) )
0.01 0.05 0.10 0.50 1 5 10

W | Wer, brick

Figure 4.12: Comparison of the different scaling laws shown in a LogLogPlot. The
plot shows deviation from the brick-profile using the different scaling laws from Sec-
tion 4.6. The dip in the gray line is where the scaled function is overlapping/equals
that of the brick (see Figure 4.9). The z-axis is given in the ratio w/weriticar- The
vertical lines at 0.065 and 0.65 mark the three approximate parts of the spectrum
where different scaling laws provide the highest accuracy. By our definition, the line
at 1 is where w = wey brick-

Another way of determining the accuracy of the different scaling laws is to look at
the critical energy, w,, for the different values of a. This can be seen by comparing
the separation of the vertical gray lines in Figures 4.9, 4.10 and 4.11. The scaling
using the small w expansion is clearly the worst. The critical values are very far
apart, and this is also reflected by how bad the approximations gets at high energy.
The two other scaling laws, on the other hand, provides much better values for w.,.
In fact, the values derived from large w expansion seems to be a little bit closer
to0 Werprick- Ioven though this approximation gets slightly worse at low energies, at
higher energies this scaling law provides more accurate spectra compared to those
from Salgado and Wiedemann.
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Summary and Outlook

In this thesis, important features of quantum chromodynamics have been introduced
and derived. The allowed self-interaction between the force carriers, due to the colour
charge, led to additional Feynman diagrams. These explains the allowed interactions
between gluons in the theory of strong interactions. Gluon-gluon interactions also
give rise to confinement among quarks. If one tries to separate quarks by increasing
the length between them, the force between them gets stronger. Thus, no isolated
quarks can be found in nature. On the other hand, by pushing them closely together,
quarks can act as if they are free within a certain region. This is called asymptotic
freedom.

By accelerating nuclei to relativistic energies and colliding them, quarks and gluons
can exist in a new state of matter called quark-gluon plasma. A motiviation for
study heavy-ioin collisions is to know more about the properties of this phase and to
know more about the phase diagram of QCD. From heavy-ion collisions, one acquire
observables suggesting the creation of QGP in heavy-ion collisions, which is not there
in smaller systems such as pp-collisions. The observables are data from final states
created in the collisions. By backtracking, one can learn more about the medium
that is formed during these heavy-ion collisions.

In Chapter 4, a simple formula for determining the energy-loss of a particle travelling
through a medium were studied for two simple medium-profiles. The simple formula
by [1] was used to find the medium-induced radiation spectrum. By looking at
how the hard particle radiates gluons due to interactions with the medium, one
can find how much energy it loses. The total energy-loss was found by integrating
over all emitted energies. The energy-loss of a particle travelling through a medium
was studied for two different medium-profiles: the time-independent brick and the
time-dependent medium described by a power-law. The medium-induced radiation
spectrum showed that most of the radiation comes from a large number of gluons
with low energy. A few hard gluons can also be emitted. The total energy-loss
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of a particle travelling though some medium will depend on the critical value, w,,,
defined by the transverse momentum broadening coefficient as well as the medium
size. Not surprising, one finds that travelling though a thicker medium will give a
higher energy-loss.

For values of a < 2 in the time-dependent medium, the spectra looks like the one
obtain by the brick. The spectra also follows closely the limiting solutions provided
by [1]. A dimensional analysis suggests that around a > 2, the spectrum will look
more like the asymptotic solution for small L. This is because the "strength” of the
medium interactions drops so fast, that after some time it will be as if there were no
medium present. Thus, by increasing the value of a will be the same as if one looked
at a smaller medium.

At the end of Chapter 4, different scaling laws were studied. The deviation from the
power-laws using the brick-solution with a scaled, effective broadening coefficient,
Jer are shown in Figure 4.12. The scaling law derived by Salgado and Wiedemann
is easy to use and gives a good accuracy over almost the whole spectrum. However,
we saw that the energy-loss of a particle depends on the critical value of the emitted
energy, we.. In this part of the emitted energies, the new scaling law derived in this
paper, using the large w expansion, gave the best fit. The scaling law itself might
be a bit more complicated compared to Salgado and Wiedemanns. However, this
resulted in even better values (closer to the desired value of 1, if it is to overlap
the time-dependent spectra) for the corresponding critical values. In the end, which
scaling law is better to use really depends on which part of the spectrum one is
interested in, and to what degree of accuracy is needed.

The power-law used in this paper assumed uniform distribution and interaction along
the medium. If we want to apply this scaling law to the study of QGP that gets
created in heavy-ion collisions, it needs to work for much more complicated profiles.
QCD is not a uniform medium, but ¢(¢) can have very different values depending on
both time and space. Thus, it should actually be written as §(z,t). For future work,
it can be interesting to study how complicated the time-dependent medium has to
be before the scaling law breaks down. Since the two new scaling laws derived in the
previous chapter worked very well for small and large energies, perhaps one could
combine them in one way to create an even more accurate scaling law.
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