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Abstract 

The use of machine learning algorithms for predictive analytics is making a growing 

impact in the field of petroleum geosciences. With the increasing cost and time-related 

factors for obtaining accurate porosity measurements from well logging and coring 

operations, machine learning (ML) provides a more economical and efficient solution 

to this challenge. 

In this thesis, various ML models are applied to predict porosity in a well penetrating 

the reservoir interval of the Brent Group to Top Cook formation. The study area is the 

Statfjord field, located in the Norwegian sector of the North Sea. Statfjord produces 

oil and associated gas from Jurassic sandstone in the Cook formation, Brent and 

Statfjord Group.  

Sixteen wells with several well logs serve as input features to predict the porosity in a 

blind well 33/9-4, all located in the field. The machine learning input features are the 

well logs, feature engineered logs, location points and the measured depth. The logs 

include: caliper, resistivity, gamma-ray, sonic, density; the engineered logs include: 

acoustic impedance and facies; the location: x,y,z; and the well’s measured depth. The 

input features are varied and ingested into the ML models to estimate the porosity in 

the predefined reservoir interval. 

The predicted porosity results for the blind well indicated an excellent performance 

demonstrated by the Bayesian ridge regression, linear regression and random forest 

models compared to the other ML models used in this study. These three algorithms 

are highly effective and accurate in predicting porosity with the limited range of the 

dataset and the results show they can be applied as a more general porosity estimation 

technique by varying the scale of the data samples and the number of wells. 
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1 Introduction 

The process of performing a good reservoir characterization and formation evaluation 

is a critical stage in oil and gas exploration. Porosity is a key characteristic of 

hydrocarbon-bearing formations. As well-logging and coring operations are time-

consuming and expensive to carry out, all wells in typical oil and gas fields are often 

logged using different tools to measure various petrophysical parameters such as 

porosity. Furthermore, well logs related to porosity (such as bulk density and neutron 

porosity) and well logs related to both permeability (such as sonic and nuclear 

magnetic resonance) often fail to provide satisfactory interpretation results due to 

empirical parameter uncertainty and response equation adaptability (Zhong et al., 

2019). Therefore, it is necessary to establish a low-cost, time-saving, and reliable 

evaluation method for porosity estimation. 

In geosciences, amongst many other machine learning applications, machines have 

learned to perform rapid reservoir characterizations. Machine learning (ML) has made 

this process much easier, faster, and economical by learning through uncounted 

experiences from already explored and developed reservoirs, their rock properties, 

and the cross-ponding fluid flow behaviour under different circumstances and hence, 

predicts accordingly. Machine learning is at the forefront of artificial intelligence (AI) 

technology: a group of data analysis algorithms that include classification, regression, 

and clustering (Hall, 2016). The ML technique is broadly divided into a supervised 

and unsupervised group. For supervised ML, the essential members are input features 

and target output. In this study, multiple AI and ML techniques are compared and 

discussed in detail to predict porosity using supervised ML algorithms and an 

advanced deep learning neural network from a series of input features.  

Recent advances in machine learning have improved over the years, leading to many  

of its applications in geoscience. It has been shown that artificial neural networks 



   

2 

 

 

(ANNs), as a method of artificial intelligence, can increase the ability of problem-

solving to geoscience and petroleum industry problems, particularly in case of limited 

availability or lack of input data (Ashena et al, 2015). 

 

1.1 Previous ML Applications in Reservoir Characterization 

ML methodologies in reservoir characterization has been on steady growth over the 

years. ML was applied by Al Khalifa et al. (1995)  in the prediction of permeability and 

diagenesis in tight carbonates using various techniques in which the ANN technique 

provided the best overall prediction method, quantified by the lowest root-mean-

square error (RMSE) and highest coefficient of determination value (R2). 

Al-Anazi and Gates (2015) used support vector machine (SVM) to predict Poisson’s 

ratio and Young modulus of reservoir rocks, in which the learning and predictive 

capabilities of the SVM method were compared to that of a backpropagation neural 

network (BPNN). The results demonstrate that SVM has similar or superior learning 

and prediction capabilities to that of the BPNN. 

Another case study for the Appalachian Basin in the USA indicated that accurate 

prediction of facies and fractures in sedimentary rocks could be performed using 

Bayesian network and Random Forest methods based on petrophysical logs 

(Bhattacharya & Mishra, 2018). 

Active Learning Method (ALM) was used to estimate missing logs in hydrocarbon 

reservoirs by Bahrpeyma et al. (2015). The regression and normalized mean squared 



   

3 

 

 

error (MSE) for estimating density log using ALM were ~ 0.9 and 0.042, respectively. 

The results, including errors and regression coefficients, proved that ALM was 

successful in estimating the density. 

Another study further investigated the application of SVM in lithology classification, 

with an observation that SVM performs poor classification results in crystalline rocks 

when the training samples are imbalanced (Deng et al., 2017). For lithofacies 

classification, Dell’Aversana (2019) compared six different machine learning methods. 

The Random Forest and Adaptive Boosting were regarded as slightly more reliable 

than Naïve Bayes, Decision Tree, and CN2 Rule Induction in lithofacies classification 

problems, with SVM having a good classification performance.  

Yasin et al. (2020) used ML to predict the porosity of the clastic depositional system of 

the Indus Basin, Pakistan. Their paper presented an approach of joint inversion that 

combines SVM and particle swarm optimization (PSO) algorithms to predict the 

porosity’s spatial distribution using well logs and seismic data. The results showed 

that their joint inversion technique led to the most stable prediction of AI and porosity 

distribution in the lower Goru reservoir of Pakistan’s Sawan Field. The tuning of the 

individual spatial distribution of lithology and porosity from well logs using Gaussian 

simulation and post-stack seismic inversion using SVM and PSO; revealed favourable 

matching with the spatial pattern of low AI corresponding with the high porosity and 

sandstone lithofacies. 
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1.2 Aim of the Study 

This study aims to develop several machine learning models to predict porosity by 

inputting a series of petrophysical logging data and engineered features to estimate 

the porosity log values in the oil-bearing reservoir intervals of the Brent Group and 

Top Cook in a single well. 

1.3 Objectives 

• Features generation from the following;  

o Location data (x,y,z) and measured depth (MD) of the wells 

o Density (RHOB), sonic (DT), caliper (CALI) and resistivity (RT) logs. 

o Acoustic impedance logs (AI); computed from the product of sonic (DT) 

and density (RHOB) logs. 

o Facies log; generated from gamma-ray (GR) cut-offs. 

• Build training and test models by applying several machine learning 

algorithms: Bayesian ridge regression, random forest, support vector machine, 

linear regression, k-nearest neighbour, decision tree and an artificial neural 

network. 

• Predict porosity log values of the defined target zone in a single-blind well 

(33/9-4). 

• Compare the various input features to observe their influence on the predicted 

porosity results, determine the best machine learning algorithm for this study 

case, and rank them accordingly. 
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2 Geological Setting  

This chapter provides a brief overview of the structural geology and stratigraphic 

evolution of the Statfjord field, including a description of the reservoir properties of 

the field.  

 

          

Figure 2.1. Location of the study area in Statfjord field: highlighted in a red box (NPD, 2021) 
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2.1 Structural and Stratigraphy setting of the Statfjord field 

The Statfjord field is the largest oil field in the Northern North Sea. It straddles the 

Norway/UK boundary and is considered the major field that led to the rise of Norway 

as a dominant oil-producing nation. Statfjord is located at the southwestern part of 

the Tampen Spur within the East Shetland Basin. The Tampen Spur is an area where 

Jurassic-Triassic rocks are structurally high. The major fault trends have a north-south 

to southeast orientation. Tampen spur is bounded to the east by the West Viking 

trough marginal fault, which shows a displacement of up to 1500m at the Base 

Cretaceous level (Spencer et al., 1987). The accumulated hydrocarbon is trapped inside 

a 6-8° west-northwest dipping rotated fault block comprised of Jurassic-Triassic strata 

sealed by Middle to Upper Jurassic and Cretaceous shales. Structurally, the field is 

subdivided into the main field area characterized by relatively undeformed west to 

northwest dipping strata and a heavily deformed east flank area characterized by 

several phases of ‘eastward’ gravitational collapse (Gibbons et al. 2003). 

 

Figure 2.2. A simplified map showing the main structural elements of the Northern North Sea 

(modified from Duffy, 2015) 
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The NW-SE extension was initiated during the Late Triassic times (Figure 2.1.1); this 

is expressed by numerous listric faults which are not connected to the underlying 

Permian-early Triassic age horst and graben features. Extention continued throughout 

Jurassic time, culminating during late Middle Jurassic to Early Cretaceous times with 

domal uplift and erosion (Ziegler, 1981) 

A  regional unconformity is widely developed within the Lower and Middle Jurassic 

succession. This unconformity was termed the Mid-Cimmerian unconformity in 

earlier literature (Ziegler 1990a) and identified as the ‘Intra-Aalenian Unconformity’ 

by Underhill and Partington (1993). (Evans et al. 2003).  

However, this unconformity is shown to cover a wider length over most of the study 

area as this stratigraphic gap widens as it extends eastwards from the West Province 

and further southwards in the North-Central Province. In significant areas of the 

Central Province and large parts of the East Province, the Lower Jurassic strata are 

noticeably absent, and Middle Jurassic strata are observed to rest unconformably on 

Triassic or older rocks. 

 

Figure 2.3. Diagrammatic profiles across the Northern North Sea, modified from (Evans et al. 2003). 
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Figure 2.3 shows the diagrammatic profiles across the Northern North Sea. They 

indicate that the position of the Viking Graben moves westward across the northern 

North Sea from north to south. The field’s reserves are located in three distinct 

reservoirs: Middle Jurassic; which holds the Brent Group’s deltaic sediments, Lower 

Jurassic; which consists of marine-shelf sandstones and siltstone sediments of the 

Dunlin Group and the Upper Triassic-lowermost Jurassic fluviatile sediments of the 

Statfjord Formation. The Brent Group lithostratigraphy is essentially simple, 

consisting of five formations, which from the base upwards are: Broom, Rannoch, 

Etive, Ness, and Tarbert (Bowen 1975; Deegan & Scull 1977; Vollset & Dore 1984). The 

first formal lithostratigraphic nomenclature for this offshore area was proposed in a 

UK–Norwegian collaborative report by Deegan and Scull (1977) that spanned these 

two national sectors.  

2.2 Reservoir Properties of the Statfjord field 

The main oil-producing reservoirs of the field are sandstones of the Middle Jurassic 

Brent group and the Lower Jurassic/Upper Triassic Statfjord formation. The reservoirs 

dip to the west, and the field is bounded on the east by a boundary fault system. These 

accumulations are sealed by Upper Jurassic and Cretaceous shales (Aadland et al. 

1994) as seen in Figure 2.3 which shows a representational west-east cross-section 

through the field. The majority of the reserves within the Brent Group and Statfjord 

formation sediments exhibit good to excellent reservoir properties with porosities 

ranging from 20-30%, permeabilities going up to several darcies and an average net-

to-gross of 60-75% (Gibbons et al., 2003). 

Spencer et al. (1987) described the Statfjord formation as 200m thick in the Statfjord 

field area but thins progressively to the northeast, with thickness variations locally 

controlled by early Cimmerian block rotation transgressed in the course of Early 

Jurassic times. 
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The sandstones and siltstones of the Dunlin Group have more inferior reservoir 

properties where the best reservoir unit exhibits an average porosity of 22%, an 

average permeability of 300 raD, and net-to-gross of 45% (Gibbons et al. 2003).  

The Upper Brent reservoir (Figure 2.4) 

consists of the Tarbert and Ness 

formations. The Tarbet has good 

horizontal permeability ranging from 2 

to 3 darcies, as excellent vertical 

communication exists. Although 

restricted communication occurs 

between the single sand bodies in the 

fluvial Ness formation, permeability is in 

the 1-darcy range in each sand interval. 

The Lower Brent consists of Etive, 

Rannoch, and Broom formations. The 

Etive generally holds very clean sands 

with excellent reservoir properties and 

permeability in the 5-6 darcy range. 

Initial oil saturation is >90%. 

Permeability in the Rannoch Formation 

ranges from poor (10 mD) to moderate at 

the base to good (1 darcy) at the top. 

(Aadland et al. 1994).  

The most important source rock for the 

Statfjord field petroleum system lies in the Upper Jurassic – The Kimmeridge clay 

(UK) and the Draupne formation( Norway). The significance of the source rock is 

shown by its estimated potential of 80 litres of oil being generated per cubic meter of 

rock (Spencer et al. 1987) 

Figure 2.4. Lithostratigraphic chart of the North 

Sea with its main sub-sections. (NPD, 2020). 

Red box outlines the key lithostratigraphic 

intervals that have been studied in this thesis. 

Figure 2.4. Lithostratigraphic chart of the North 

Sea with its main sub-sections. (NPD, 2020). 

Red box outlines the key lithostratigraphic 

intervals that have been studied in this thesis 
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3 Machine Learning  

Machine learning is a branch of artificial intelligence (AI) and is defined as a training 

process of giving computers the capability to learn and act using sets of algorithms, 

and there are various definitions of machine learning from different perspectives. In 

Nikhil’s (2017) work, he describes machine learning as: instead of teaching a computer 

a massive list of rules to solve the problem, give it a model with which it can evaluate 

examples and a small set of instructions to modify the model when it makes a mistake.  

Alpaydin (2014) describes machine learning as applying statistics principles in 

building mathematical models because the core task is to make inferences from a 

sample. He further describes it as programming computers to optimize a performance 

criterion using example data or past experience. When a model is defined up to some 

parameters, learning is executing a computer program to optimize the model’s 

parameters using the training data or past experience. This model could be predictive 

to make predictions in the future, or descriptive to gain knowledge from data, or 

possibly both.  

In ML, uncertainty arises in many forms: what is the best prediction about the future 

given previous information? What is the best ML model to explain the dataset? What 

are the successive measurements to be performed?. The probabilistic approach to 

machine learning is strongly related to the field of statistics but slightly differs in its 

emphasis and terminology (Murphy, 2012).  

Machine learning is typically divided into two main types; the supervised or 

predictive learning approach and the unsupervised or descriptive learning approach. 

The third type of machine learning, known as reinforcement learning, is somewhat 

less commonly used.  
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3.1 Artificial Neural Networks  

Artificial Neural Networks (ANN) are computing systems modeled on the biological 

brain structure, and can be used for ML and AI. It is made up of an abstracted model 

of connected neurons whose unique link and arrangement solve computerized 

application problems in various fields such as statistics, technology, or economics.  

Unsupervised learning in an ANN attempts to get the ANN to “understand” the 

structure of the provided input data “on its own”. The biological neuron is simulated 

in an ANN by an activation function. In classification tasks (e.g., identify spam e-

mails), the activation function has a “switch-on” characteristic – which means, once 

the input is greater than a specific value, the output should change state, e.g., from 0 

to 1, from -1 to 1 or from 0 to > 0. This simulates the “turning on” of a biological neuron. 

A very common activation function that is used in ANN is the sigmoid function.  

 

                

Figure 3.1. Artificial Neural Network (Feed-forward) 
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Neural networks learn in two steps, feedforward as in Figure 3.1 (using the activation 

function) and back propagation, which is broken down into two stages: computing 

for the cost and minimizing the cost. 

The cost is the difference between the predicted value from the network and the 

expected value from the dataset. The larger the cost the more significant the error, 

with the objective of having the smallest possible cost. To achieve this, minimizing the 

cost through altering the weights and biases is the primary goal.  

As in Figure 3.1, the input layer is often illustrated with one node for each feature of 

the 𝑝-dimensional vector  𝑥 and simplified to one node for 𝑥 in a graph. The number 

of hidden nodes are flexible but usually less than the number of input nodes. For many 

applications, there is only one output node such as real number 𝑦 for regression and 

categorical variable 𝑐 for classification (Buland, 2020) 

 

 

 

 

 

 

 

 

 

 

 



   

13 

 

 

3.2 K Nearest Neighbour 

Cover and Hart (1967) were pioneers of the theoretical analysis of nearest neighbours, 

covering both regression and classification as exceptional prediction cases in general. 

The principle behind nearest neighbour technique is to find a predefined number of 

training samples closest in the distance to the new point and predict the label from 

these. The number of samples can be a user-defined constant (k-nearest neighbour 

learning) or vary based on the local density of points (radius-based neighbour 

learning).  

 

 

Figure 3.2. Example of KNN classification. (modified from Bronshtein, 2017) 

 

 

A typical K nearest neighbour (KNN) classification, as in Figure 3.2, shows a test 

sample (inside the circle), should be classified either to the first class of blue squares 
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or to the second class of red squares. If k = 3 (outside circle), it is assigned to the second 

class because there are two red squares and only one blue square inside the inner 

circle. If, for example, k = 5, it is assigned to the first class (three blue squares vs. two 

red squares outside the outer circle). 

KNN algorithm is based on feature similarity: How closely out-of-sample features 

resemble our training set determines how we classify a given data point (Bronshtein, 

2017). The distance can generally be any metric measure, with the standard Euclidean 

distance the most common choice. Neighbours based methods are non-

generalizing machine learning methods since they recollect all of its training data 

(possibly transformed into a fast indexing structure). This algorithm acts as a uniform 

interface to three different nearest neighbours algorithms.  

For regression, assume the nearest neighbour of a vector 𝑥 is the 𝑥𝑖  closest to it. The 𝑘 

nearest neighbours are the 𝑘 vectors 𝑥 closest to 𝑥𝑖 (whether or not 𝑥  is also one of 

the 𝑥𝑖). We often need a way of keeping track of the indices of the neighbours, so 

𝑁𝑁(𝑥, 𝑗) is written for the index of 𝑗𝑡ℎ the nearest neighbour of 𝑥. 

The KNN estimate of the regression function is then the average value of the response 

over the KNN: 

 
𝜇(𝑥) =  

1

𝑘
 ∑ 𝑦𝑁𝑁 (𝑥, 𝑗)

𝑘

𝑗=1

 

 

(1) 

And then threshold it: 

                              
c(𝑥) = 1(𝑝(𝑥) ≥ 0.5) 

 
(2) 

Where;  

𝑝 is the probability distribution function, 

𝑐 is the class.  
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3.3 Random Forest 

In Random Forest (RF) classification, multiple trees are used to train and predict 

samples. RF algorithm is being used in an increasing number of engineering research 

studies but is still rarely used for porosity and permeability classification (Sun et al., 

2021). Since the random forest contains multiple decision trees, the output category of 

the classifier is the category with the largest output of all single decision trees.  

 

 

Figure 3.3. Illustration of random forest algorithm structure 

 

As in Figure 3.3, The number of training samples is N, and the number of feature types 

is M. Inputting m features to determine the decision result of the previous node in the 

decision tree (m < M) using the put-back method to sample N times (i.e., bootstrap 

sampling) to form a training set, unsampled samples are used to predict and evaluate 

the error. For each node, m features are randomly selected, and decisions for each 
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node on the decision tree are determined based on these features. Then, according to 

m features to calculate the best split mode. One leaf node of the decision tree cannot 

continue to split, or all samples point to the same category, and each tree will grow 

ultimately without being pruned.  

The random forest algorithm can produce a high-accuracy classifier for classification 

problems with a large number of features. It can assess the importance of feature 

parameters when determining categories, and it can balance errors and maintain 

accuracy for missing data or unbalanced data. 

 

3.4 Decision Tree 

The decision tree (DT) is a supervised learning algorithm for predictive modeling 

approaches in statistics, data mining, and machine learning, Figure 3.3. It uses a 

decision tree (predictive model) to go from observations about an item (branches) to 

conclusions about the item’s target value (leaves). The decision tree used in this study 

is the regression tree. The regression tree is a recursively constructed binary decision 

tree based on minimizing the square error (Sun et al., 2021). The regression tree is 

described below: 

Suppose vectors 𝑥 and 𝑦 are input variable and output variable, respectively, and 𝑦 is 

a continuous variable, given a training data set: 

 

 𝐷 = {(𝑥1, 𝑦
1
), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛)} (3) 

A regression tree divides the input space (i.e., the feature space) into M units 

{𝑅1, 𝑅2, . . ., 𝑅𝑚} and each leaf node of the regression tree corresponds to a unit, which 
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correspondingly has a fixed output value 𝑐𝑚. When the input feature is 𝑥, the 

regression tree will determine it to a leaf node, and the output value cm corresponding 

to the leaf node is used as the output of the regression tree. In this way, the regression 

tree model can be expressed as: 

 

 𝑇(𝑥) =  ∑ 𝑐𝑚𝐼(𝑥 ∈ 𝑅𝑚)

𝑚

𝑚=1

 (4) 

Where: 

 𝐼(𝑥 ∈ 𝑅𝑚) is the index function when the regression tree determines that 𝑥 belongs to 

𝑅𝑚 its value is 1; otherwise, it is 0. 

The goal of establishing a regression tree is to minimize the square error for data set 

D and choose the appropriate spatial partitioning method (i.e., the way the decision 

tree is generated) and the corresponding output values. 

 
∑ (𝑦𝑖

𝑥𝑖∈𝐷

− 𝑇(𝑥𝑖))2 
(5) 

Firstly, the appropriate space division method should be chosen. At each decision 

node, the 𝑗𝑡ℎ dimension of the variable x and the corresponding threshold 𝑠 are 

selected as the segmentation feature and the segmentation threshold, and the node 

divides the space into two regions: 

 

  𝑅1(𝑗, 𝑠) = {𝑥|𝑥[𝑗] ≤ 𝑠}  (6) 

And the second region as: 
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𝑅2(𝐽, 𝑠) = {𝑥|𝑥[𝑗] > 𝑠} 

 
(7) 

The optimal segmentation feature 𝑗 and the segmentation threshold 𝑠 at the node are 

given by:  

 𝑚𝑖𝑛𝑗,𝑠 [𝑚𝑖𝑛𝑐1
∑ (𝑦𝑖 −  𝑐𝑖

𝑥𝑖∈𝑅1(𝑗,𝑠)

)2 +  𝑚𝑖𝑛𝑐2
∑ (𝑦𝑖− 𝑐𝑖

)2

𝑥1∈𝑅2(𝑗,𝑠)

] (8) 

 

The node divides the sample set into two sub-sample sets according to the 

segmentation feature 𝑗 and the segmentation threshold 𝑠. The specific purpose of 

Eq. (8) is that the variance of the two sub-sample sets is as tiny as possible. The values 

of 𝑐1  and 𝑐2 in Eq. (8) are the mean values of the samples, and the choices 

of 𝑗 and 𝑠s are determined by traversal. The segmentation threshold 𝑠 is a continuous 

variable, but its value can be selected according to the actual distribution of the sample 

to select a suitable specific value without continuous traversal. 

Secondly, the output value of the regression tree should be determined. For each sub-

region 𝑅𝑚 (the leaf node of the tree), the corresponding output value 𝑐𝑚 can directly 

select the category mean values, i.e., 

 

 
𝑐𝑚 =   arg 𝑚𝑖𝑛𝑐 ∑ ( 𝑦𝑖 −  𝑐 

𝑥𝑖∈𝑅𝑚

)2 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ( 𝑦𝑖| ∈  𝑅𝑚) 
(9) 

3.5 Support Vector Machine 

Support vectors are power-supervised training machine learning methods for 

segmentation. Vapnik et al. (1995) first proposed SVMs as one effective algorithm for 

model pattern recognition. It is a fundamental method that the SVMs can solve 

nonlinear functions by leveling the data into a higher-dimensional space and 

https://link-springer-com.ezproxy.uis.no/article/10.1007/s13369-021-05432-x#Equ3
https://link-springer-com.ezproxy.uis.no/article/10.1007/s13369-021-05432-x#Equ3
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introducing an optimal hyperspace in the space through kernel functions. SVMs can 

be further divided into support vector classification (SVC) and support vector 

regression (SVR). SVR is developed on the basics of SVC with the same methodology. 

Multiple types of kernels have been developed to map data into differing dimensions. 

If the kernel transformation function does not fully separate our data, a slack error 

variable is used to create a soft margin decision function for data separation (Boyle, 

2011). Figure 3.4 illustrates an example SVM decision function and displays the 

margin. Therefore, some definitions and properties of SVC are restated as follows: 

SVM is a discriminative classifier designed to separate by a hyperplane. The 

hyperplane is used to divide the margins as wide as possible between the points of 

different categories (Qiang et al., 2020). These are evaluated according the subset of 

training sample that lie closest to the boundary and called support vectors (Burges, 

1998), as illustrated in Figure 3.5. 

 

 

Figure 3.4. Illustration of boundary decision: spatial (left) and multivariate (right), (modified from 

Pyrcz, 2020). 
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Figure 3.5. Support vector illustration 

 

The support vector model can further be explained mathematically by; 

Solve for the hyperplane: 

 
𝑓(𝑥) =  𝑥𝑇𝛽 +  𝛽0 

 
(10) 

𝑓(𝑥) is proportional to the sine distance from the boundary, - one side and + the other, 

0 on the boundary  

 
𝐺(𝑥) = 𝑠𝑖𝑔𝑛(𝑓(𝑥)) 

 
(11) 

Where 𝑥 is a vector 𝑥𝑗 , 𝑗 = 1, … , 𝑚 predictor features. 

We can represent the constraint: where all data of each category must be on its correct 

side of the boundary by: 

 

 𝑦𝑖 (𝑥𝐼
𝑇𝛽 + 𝛽0) ≥ 0 + (12) 



   

21 

 

 

If 𝑦𝑖 is the response feature with categories -1 or +1 

When the training data categories overlapping it would not be possible, not desirable, 

to develop a decision boundary that perfectly separates the categories which this 

condition would hold. This makes it needful to have a model that allows for some 

misclassification: 

 𝑦𝑖 (𝑥𝐼
𝑇𝛽 + 𝛽0) ≥ 𝑀 −  ξ𝑖 (13) 

Where 𝑀 is inside the boundary and ξi the is error relative to 𝑀. 

Solving for the SVMs using quadratic with linear inequality constraint Eq. (13). We 

express the previous relationship using convex optimization problem (to avoid local 

minimum issues) as   

 

 𝑚𝑖𝑛𝛽,𝛽0
(

1

2𝑀2
+ C ∑ ξI

N

I=1

) (14) 

 

Subject to  ξi ≥ 0, 𝑦𝑖 (𝑥𝐼
𝑇𝛽 + 𝛽0) ≥ 𝑀 −  ξ𝑖 (15) 

 

As in Eq. (15), the parameters of the plane are found to maximize the margin while 

minimizing the error. The C, which is constant and  the hyperparameter is included 

to weigh the sum of errors ξi, higher C will result in reduced margin and lead to 

overfitting. 
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3.6 Linear Regression 

Regression analysis is a statistical technique for investigating and modeling the 

relationship between variables. (Montgomery et al., 2012). Linear Regression can be 

defined as a supervised machine learning algorithm where the predicted output is 

continuous and has a constant slope. It can be used to predict values within a 

continuous range rather than trying to classify them. It is common to discuss the 

complexity of a regression model like linear regression, which refers to the number of 

coefficients used. 

 

 

Figure 3.6.  ( a ) Scatter diagram for x and y ( b ) Straight-line relationship between x and y 

 

Figure 3.6a displays a relationship between data points x and y. The idea is that the 

data points typically, but not precisely, fall along a straight line. Figure 3.6b illustrates 

this straight-line relationship. 

The 𝑥 signifies data from the x-axis, and 𝑦 signifies the y-axis. A straight line relating 

these two variables can be written as:  
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𝑦 =  𝛽0 +  𝛽1𝑥  

 
(16) 

Where; 𝛽0 is the intercept and 𝛽1 the slope.  

When the coefficient becomes zero, it effectively removes the influence of the input 

variable on the model and, therefore, from the model’s prediction. 

As the data points do not fall precisely on a straight line, Eq. (16) is modified to account 

for this. Let the difference between the observed value of 𝑦 and the straight line (𝛽0 +

 𝛽1𝑥)  be a statistical error 𝜀. The error  is a random variable that accounts for the failure 

of the model to fit the data exactly and the linear regression model is given by 

 
𝑦 =  𝛽0 +  𝛽1𝑥 +  𝜀 

 
(17) 

In general, the response variable 𝑦 may be related to 𝑘 regressors,  𝑥1, 𝑥2, .  .  .  , 𝑥𝑘 so 

that 

 
𝑦 =  𝛽0 +  𝛽1𝑥1 + 𝛽2𝑥2𝛽𝑘𝑥𝑘 +  𝜀 

 
(18) 

Eq. (18) is the multiple linear regression model as more than one regressor is involved. 

The adjective linear is employed to indicate that the model is linear in the parameters 

 𝛽0, 𝛽1 , .  .  .  .  ,  𝛽𝑘, not because 𝑦 is a linear function of the 𝑥′𝑠. 

However, a regression model does not imply a cause-and-effect relationship between 

the variables. Even though a solid empirical relationship may exist between two or 

more variables, this cannot be considered evidence that the regressor variables and 

the response are related in a cause-and-effect manner (Montgomery, 2012). 
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3.7 Bayesian Ridge Regression 

Bayesian ridge regression is a regression model defined in probabilistic terms, with 

explicit priors on the parameters. The choice of priors can have a regularizing effect. 

The end product of a Bayesian Regression model is obtained from a probability 

distribution compared to traditional regression techniques, where the output is 

obtained from a single value of each attribute. However, Bayesian ridge regression is 

used relatively rarely in practice ( Pasanen, 2015).  

The output, ‘𝑦’ in Eq. (16), is generated from a normal distribution (where mean and 

variance are normalized). Bayesian regression does not aim to find the model 

parameters but the model parameter’s posterior distribution, not just the output 𝑦, 

but the model parameters are also assumed to come from a distribution. The 

expression for Posterior is : 

 

 𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =  
𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ∗ 𝑃𝑟𝑖𝑜𝑟

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛
 (19) 

 

• Posterior: The probability of an event to occur; say, H, given another event; say, E 

has already occurred. i.e., P(H | E). 

• Prior: The probability of an event H has occurred prior to another event. i.e., P(H) 

• Likelihood: A likelihood function in which some parameter variable is 

marginalized. 

 

Eq. (19) a simple expression of Bayes theorem, the fundamental underpinning of 

bayesian inference, which is: 

 𝑃(𝛽|𝑦, 𝑋) =  
𝑃(𝑦, 𝑋|𝛽)𝑃(𝛽)

𝑃(𝑦, 𝑋)
 (20) 



   

25 

 

 

Where; 

 𝑃(𝛽|𝑦, 𝑋) is the model parameter’s posterior probability distribution given the inputs 

and outputs. This is equal to 𝑃(𝑦|𝛽, 𝑋) representing the likelihood of the data 

multiplied by the prior probability of the parameters and derived by a normalization 

constant.  

From Eq. (20), in contrast to ordinary least square (OLS), we have a posterior 

distribution for the model parameters, proportional to the likelihood of the data 

multiplied by the prior probability of the parameters. As the number of data points 

increases, the value of likelihood will increase and become much larger than the 

prior value. In an infinite number of data points, the values for the parameters 

converge to the values obtained from OLS. 

Additionally, to begin the regression process with an initial estimate (the prior value) 

and as more data points are covered, the model is more precise. For Bayesian ridge 

regression, a large number of training data is needed to make the model accurate. 

Consider a linear model; if ‘𝑦’ is the predicted value, then: 

 

𝑦̂(𝑤, 𝑥) =  𝑤0 + 𝑤1𝑥1𝑤𝑝𝑥𝑝 

 
(21) 

Where; 

 ‘𝑤’ is the vector 𝑤. 𝑤 consists of  𝑤0, 𝑤1, . . . ′𝑥′  is the value of the weights: 

 

𝑤 =  (𝑤1, . . . 𝑤𝑝) 

 
(22) 

For the Bayesian regression to attain a fully probabilistic model, the output ‘𝑦’ is 

assumed to be the Gaussian distribution around 𝑋𝑤  as shown below: 

 

 𝑝(𝑦|𝑋, 𝑤, 𝛼) = 𝑁(𝑦|𝑋𝑤, 𝛼) (23) 
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Where; 𝛼 is a hyper-parameter for the prior gamma distribution, this leads it to be 

assessed as a random variable.  

The Bayesian ridge regression is given as a mathematical expression: 

 
𝑝(𝑤|𝜆) = 𝑁(𝑤|0, 𝜆−1) 

 
(24) 

Where; α is the shape parameter for the gamma prior to the α parameter and λ is the 

shape parameter for the gamma prior to the λ parameter. A linear regression model 

is formulated, considering probability distributions before seeing the data instead of 

just training data.  
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4 Data 

Equinor ASA provided the data used for this study. The original data obtained 

comprised of well log data from 610 wells with well tops.  

 

 

Figure 4.1. The dataset containing the seismic cube and wells 
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Data from seventeen (17) spatially distributed wells are used for this study, as shown in 

Table 1. The wells encompass the study area, and several logs are available, providing 

crucial knowledge of target reservoir interval. In addition, checkshot surveys are available 

for all the wells. Wireline logs included are the gamma-ray (GR),  density (RHOB),  sonic 

(DT), porosity (PHIT), caliper (CALI), and resistivity (RT). 

 

Table 1. Well dataset and corresponding well logs 

Wells GR 

(gAPI

) 

DT  

(s/ft) 

RHOB 

(g/cm3) 

PHIT 

(m3/m3) 

CALI   

(in) 

RT 

(ohm) 

33/12-1 ✔ ✔ ✔ ✔ ✔ ✔ 

33/12-2 ✔ ✔ ✔ ✔ ✔ ✔ 

33/12-B-17 ✔ ✔ ✔ ✔ ✔ ✔ 

33/12-B-18 ✔ ✔ ✔ ✔ ✔ ✔ 

33/12-B-20 ✔ ✔ ✔ ✔ ✔ ✔ 

33/12-B-28 B ✔ ✔ ✔ ✔ ✔ ✔ 

33/12-B-29-T2 ✔ ✔ ✔ ✔ ✔ ✔ 

33/12-B-3 ✔ ✔ ✔ ✔ ✔ ✔ 

33/12-B-38 ✔ ✔ ✔ ✔ ✔ ✔ 

33 /12-B-38 A ✔ ✔ ✔ ✔ ✔ ✔ 

33/12-B-39 ✔ ✔ ✔ ✔ ✔ ✔ 

33/12-B-7 ✔ ✔ ✔ ✔ ✔ ✔ 

33/12-B-8 ✔ ✔ ✔ ✔ ✔ ✔ 

33/9-1 ✔ ✔ ✔ ✔ ✔ ✔ 

33/9-4 ✔ ✔ ✔ ✔ ✔ ✔ 

33/9-A-41 ✔ ✔ ✔ ✔ ✔ ✔ 

33/12-B-28 C ✔ ✔ ✔ ✔ ✔ ✔ 
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5 Methodology 

 

Figure 5.1. General workflow for this study 

 

 

In this chapter, the workflow and various methodologies applied for the study are 

described. In addition, the various ML methods predefined in chapter 3 are applied 

in predicting the porosity value for well 33/9-4 (blind well).  

A generic workflow in Figure 5.1 provides an overview of the methods that are applied 

in the study. Firstly, data exploration was carried out; this involved sorting and filtering 

the wells to find the wells that had the target reservoir interval well tops. This was 

followed by computing for the acoustic impedance (AI) log; derived from the product of 

the sonic and density logs in Petrel. Subsequently, facies classification was done, and then 

other essential features needed for the ML models extracted. Finally, ML training and test 

were carried out to predict the assigned label (porosity), using the various input features, 

and then concluded with a  performance evaluation to compare the different ML results.  

Two key applications used for this study were Schlumberger’s Petrel 2020 software and 

Anaconda’s Jupyter notebook. This notebook uses the Python programming language 

containing a suite of imported libraries. The Python libraries used for this study include 

but not limited to; Pandas (data frame manipulation), NumPy (numerical operation), 
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Seaborn and Plotly (graph and visual plots), Sci-kit learn (machine learning), and 

Tensorflow/Keras (artificial neural network)  

 

5.1 Data Preparation 

Having a good ML model always begins with utilizing a suitable input dataset. Data 

preparation is the first and most crucial step in building good models. The data 

preparation process for this thesis involved sorting and filtering the provided dataset 

and extracting the key wells which had the BCU and Top Cook well tops in them.  

Seventeen wells were chosen as they had the reservoir interval needed for this study 

and were spatially distributed across the field. Furthermore, as there was no horizon 

for the Top Cook available in the dataset, only the well logs was used in this study. 

 

5.1.1 Well Log Data Analysis and QC 

This step involves a QC of the selected wells and their corresponding well logs. Data 

acquisition comes with its limitations due to numerous pitfalls in methods of 

acquisition which can reduce overall precision and accuracy, resulting in reduced 

confidence and robustness. The fact that datasets can often be incomplete or sparse is 

the primary motivation for most operators to focus on maximizing and fully 

integrating all information available. Also, washouts and other bad borehole 

conditions affect the log readings and lead to wrong interpretations. Well tops were 

compared to available litho-stratigraphic markers from NPD. All well logs were 

thoroughly reviewed to rigorous QC and condition the data to ensure the quality of 

the input data moving forward.  

 

 



   

31 

 

 
 

Figure 5.2. Preview of the selected wells and well tops 
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5.2 Acoustic Impendence 

The next step of the process is to compute for Acoustic Impedance (AI) log. This 

process is carried out in Petrel. Acoustic impedance Eq. (25) is calculated from the 

product of compressional velocity derived from the sonic log (DT) and density 

derived from the density log (RHOB) and is a fundamental physical property of rocks: 

 𝑍 =  𝜌𝑣 (25) 

 

Where;  

𝑍  is Acoustic impedance, 

𝜌 is density,  

𝑣 is compressional velocity.  

 

5.3 Facies classification 

In this process for the wells, a GR cut-off was determined that most effectively 

separated sand from shale interbeds. The ‘sand’ and ‘shale’ lithologies were 

distinguished and classed based on the Gamma Ray (GR) level. In this study, the sand 

was defined by a lower GR level (GR<70), while shale was defined by a higher GR 

level (GR>= 70). Figure 5.3 shows the process applied in Python. This step was 

executed using the Pandas library in Python. 
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Figure 5.3. Dataframe after the facies classification process 

 

5.4 Exploratory Data Analysis 

Exploratory data analysis (EDA) describes the key process of analyzing and 

investigating data sets to summarize their main statistical features, often utilizing data 

visualization techniques. EDA determines the best way to manipulate the data sources 

to get needed answers, thereby making it easier to discover patterns, spot anomalies, 

test hypotheses, or check assumptions. 

The statistical index of the data points fed to the ML models is shown in Table 2, and 

a glimpse of the data distribution of all the related datasets used in this study is 

displayed. It was needed to identify apparent errors, better understand patterns 

within the data, detect outliers or anomalous events, and find exciting relationships 

among the variables. Additionally, the ultimate goal of this process is to provide data 

insights that would inspire subsequent feature engineering and the model-building 
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process. The dataset shows a total count of 2298 total data points from all the total 

seventeen wells with a count of 2121 data points for each of the possible input featutres 

from the sixteen wells and 177 datapoints (porosity values)  to be predictied for the 

seventeenth well (blind well). 
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Table 2. Statistics summary of the dataset 

 Count Mean Std Min 25% 50% 75% Max 

X(m) 2298.0 4.378611e+05 1008.117613 4.365942e+05 4.372722e+05 4.376660e+05 4.380313e+05 4.413985e+05 

Y (m) 2298.0 6.790351e+06 6749.581311 6.784272e+06 6.786963e+06 6.788268e+06 6.789538e+06 6.810335e+06 

Z(m) 2298.0 -2.534129e+03 172.149696 -3.140022e+03 -2.549638e+03 -2.484579e+03 -2.438230e+03 -2.365252e+03 

MD(m) 2298.0 3.154446e+03 497.598006 2.409824e+03 2.594252e+03 3.128345e+03 3.532996e+03 3.976121e+03 

CALI (in) 2298.0 1.043908e+01 1.851653 8.300000e+00 8.630000e+00 9.450000e+00 1.217000e+01 1.533000e+01 

GR (gAPI) 2298.0 5.793180e+01 25.853489 1.720000e+01 4.094250e+01 5.275000e+01 7.036750e+01 3.974400e+02 

DT(us/ft) 2298.0 1.038538e+02 8.799034 5.203000e+01 9.924250e+01 1.045750e+02 1.095600e+02 1.484100e+02 

RHOB (g/cm3) 2298.0 2.248350e+00 0.157137 1.491200e+00 2.124925e+00 2.228700e+00 2.394875e+00 2.809500e+00 

RT(ohm.m) 2298.0 1.952279e+02 481.651321 3.370000e-02 2.866700e+00 1.133460e+01 1.076579e+02 2.089300e+03 

Por (m3/m3) 2298.0 2.328809e-01 0.080203 0.000000e+00 1.556750e-01 2.470000e-01 2.984750e-01 6.443000e-01 

AI (kPa.s/m) 2298.0 6.677658e+03 1003.673426 3.168583e+03 5.950112e+03 6.529038e+03 7.293086e+03 1.627491e+04 

Facies 2298.0 2.558747e-01 0.436447 0.000000e+00 0.000000e+00 0.000000e+00 1.000000e+00 1.000000e+00 
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Figure 5.4 shows the multivariate relationships of the dataset. Before building a 

predictive model, it is good to understand the multivariate relationships between the 

variables. The multivariate analysis shown in Figure 5.4 examines the sand and 

shale facies and how they relate to several variables to see if one or more variables 

are predictive of a specific outcome. The predictive variables are independent, and 

the outcome is the dependent variable. Figure 5.4 was executed using the Seaborn 

pair plot in Python; by calculating matrix scatter plots to understand how the data 

parameters correlate.  

 

Figure 5.4. Multivariate relationships between the variables 
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5.5 Label Selection 

The label selection process describes selecting the variable that one is trying to predict 

or forecast. In this study, porosity was selected as the label.  

The porosity of a rock can be defined as the pore volume divided by the bulk volume 

of a rock. The porosity parameter measures how much fluid the rock can handle to 

hold in between the matrix grains. Porosity is dimensionless and therefore 

represented as a fraction between zero and one or in percentage. (Byberg, 2016) 

Porosity is calculated using the relationship: 

           
ɸ =  

Vp

Vb
=

Vb −  Vmatrix

Vb
=  

Vb − (
wdry

ρmatrix
⁄ )

Vb
 

 

(26) 

Where; 

ɸ = porosity, 

Vp = pore volume, 

Vbulk = bulk rock volume, 

Vmatrix = volume of solid particles composing the rock matrix, 

Wdry = total dry weight of the rock, 

ρmatrix = mean density of the matrix minerals. 

 

Glover (2016) infers that porosity does not give any information concerning pore sizes, 

distribution, and degree of connectivity. Thus, rocks of the same porosity can have 

widely different physical properties. In this study, the defined porosity type used is 

the total porosity. The total porosity (PHIT) describes the total void space, including 

isolated pores and the space occupied by clay-bound water. As in Eq. (27), the bulk 

density and the density fluid of rock are saturated to correspond to the porosity 
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defined as the total porosity. Byberg (2016) describes the theoretical values for bulk 

density and fluid density for a sedimentary rock to range from 2.65 g/cc to 2.96 g/cc 

and from 1.00 g/cc to 1.4 g/cc, respectively. PHIT is calculated: 

 

ɸ =  
ρb − ρma

ρf − ρma
 

 

(27) 

Where; 

ɸ = Porosity, 

ρb = mean density of the matrix minerals, 

ρmatrix = mean density of the matrix minerals, 

ρf = mean density of the matrix minerals. 

 

5.6 Features Extraction 

From the several predictor features available, it was essential to be selective with the 

input variables to have a good ML models.  In general, for the best prediction model, 

careful selection of the fewest features that provide the most amount of information 

is the best practice. Feature selection describes a primary process in machine learning: 

selecting input features for the machine learning model based on the relevance 

between features and model output. A good feature selection can increase the model 

performance with a lower error rate, and it can also enhance the model generalization 

and avoid overfitting problems simultaneously. The various well log features are; 

location (x, y, z), MD, CALI, RT, facies, GR, DT, RHOB and AI. The features are 

correlated with the porosity to observe its relationships and compare against each other. 
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Figure 5.5. Features extraction workflow 

 

There are two frequently used methods in feature selection; Pearson correlation and 

Distance correlation. The Pearson correlation was used for this study, and its concepts 

are discussed.  

In terms of Pearson correlation, 𝑝𝑗 represents a value in the range of +1 and -1 

considering with the given dataset {(𝑥1, 𝑦1), … , (𝑥𝑛𝑥𝑛)} by using Eq. (27). The equation 

shows the correlations between 𝑥 and 𝑦, where +1 refers to total positive correlation 

and -1 refers to total negative correlation. Therefore, when the absolute value of the 

correlation coefficient is closer to 1, it indicates a higher correlation relationship 

between variables. In Pearson correlation, the relationship is measured by the absolute 

values of 𝑝𝑗. This means a higher absolute value suggests a higher correlation between 

the dependent variable 𝑥 and 𝑦. The different sign of 𝑝𝑗 shows whether the dependent 

variable 𝑦 would follow the changes of the increase or decrease of 𝑥. This correlation 

coefficient was calculated and plotted using the seaborn library in Python. Table 8 

highlights the interpretation of the Pearson correlation coefficient value. The Pearson 

correlation coefficient is given by: 
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pj =

∑ (xj,i − x̅j)(yi−y̅)n
i=1

√∑ (xj,i − x̅j)
2n

i=1 ∑ (yi − y̅)2n
i=1

 , j = 1, … n 
(28) 

Where; 

pj  = correlation coefficient, 

xj,i = values of the x-variable in a sample, 

x̅j = mean of the values of the x-variable, 

yi = values of the y-variable in a sample, 

y̅ = mean of the values of the y-variable. 

 

Table 3. Interpretation of Correlation coefficient values 

Correlation coefficient value Interpretation 

±1 Perfect positive/negative relationship 

±0.8 Reasonably strong positive/negative relationship 

±0.6 Moderate, strong positive/negative relationship 

0 No relationship 

 

The various features are  loaded into the seven ML models in the following stages 

below; 

1. Location, MD, RHOB, CALI, RT, DT, Facies,  GR, AI 

2. Location, MD, RHOB, RT, DT, Facies,  GR, AI 

3. Location, MD, RHOB, DT, Facies,  GR, AI 

4. Location, MD, RHOB, Facies,  GR, AI 
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5. Location, MD, RHOB, GR, AI 

6. Location, MD, RHOB 

7. Location, MD, CALI, RT, DT, Facies,  GR, AI 

These input features are compared to see how they either enhanced or reduced the 

prediction accuracy for porosity. The computed porosity predictions and performance 

evaluation of the ML models are discussed in the next chapter.  

 

 

5.7 Feature transformation 

Features transformation is described as the process of modifying the dataset but 

keeping the information. Generally, due to the varying datasets used in this study, 

these modifications will make the various machine learning algorithms 

understanding easier, which will deliver a better result for this study. 

There are many reasons to perform features transformation for the dataset, and a few 

of them are: 

• They make the features consistent for visualization and comparison (Comparison 

between AI and porosity) 

• To avoid bias or impose feature weighting for methods (e.g., k nearest neighbour 

regression) that rely on distances calculated in predictor feature space. 

• The method requires the variables to have a specific range or distribution, such as 

1. Artificial neural networks may require all features to range from [-1,1] 

2. Partial correlation coefficients require a Gaussian distribution. 

3. Statistical tests require a specific distribution. 

4. A sequential geostatistical simulation to be performed requires an indicator or 

gaussian transform. 
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5.7.1 Normalization 

Normalization is a data preparation technique applied for machine learning and is the 

feature transformation carried out in this study. It changes the values of the dataset’s 

numeric columns to a standard scale without distorting differences in the ranges of 

values. Normalization transforms the feature distribution to a min of 0 and a max of 

1 (-1 to +1). This process is typically a shift, and stretch/squeeze of the original property 

distribution assumes no shape change. 

Motivations for normalization include:  

• Remove the effect of the scale of different type of data (i.e., the acoustic 

impedance varies between 3000~12500, but porosity only varies between 0 ~0.6)  

• Activation functions in neural networks have greater sensitivity when the 

value of nodes are closer to 0.0 (i.e., results in higher gradient and improves 

backpropagation in training)  

Normalization is done in Python through back transformation, keeping the min and 

max values. 

 

 

min (𝑥𝛼)     0                          𝑥𝑎̅̅ ̅                                    𝑚𝑎𝑥(𝑥𝑎)                    1          

Figure 5.6. Example of normalization of a feature distribution 
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𝑥𝑎
′ =  

𝑥𝑎 −  min (𝑥𝑎)

max (𝑥𝑎) − min (𝑥𝑎)
 

 

 

(29) 

5.8 Machine Learning Models Generation 

The training and testing process is a fundamental process that affects an ML model’s 

success. An effective training process significantly improves the quality of the 

developed system (Figure 5.7). In this study, the selected input features from sixteen 

wells penetrating the target reservoir interval were used to predict for the porosity in 

well 33/9-4 (blind well) in the field.  

 

 

 

Figure 5.7. Training and testing process workflow 
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The set of data that enables the training is called the “training set” and in this case, the 

input features from the sixteen wells in the field.  The same data set is processed in 

the training process many times as the connection weights are refined and then used 

to predict the “test set” which is the porosity of the blind well.  

The training and test process is as follows: 

• Load the normalized input feature dataset from the wells. 

• Train the models with these input features. 

• With the established models, run the test dataset of the blind well to evaluate 

the model performance. 

 

 

5.9 Performance Evaluation 

After the train and test of the various ML models, it was meaningful to evaluate 

several statistical measures of prediction accuracy. A few statistical prediction 

accuracy metrics are computed to observe the results of the porosity predictions from 

the compiled input features. The purpose of this process is to determine how much 

data is assimilated.  

Performance evaluation procedures are handled according to some specific criteria 

which vary according to the structure of the data. Equations 29 - 31 break down these 

well-established and widely used statistical measures of prediction accuracy 

(Hyndman and Koehler, 2006).  

1.          𝑅2 computes how much better the regression line fits the data than the mean 

line. It defines the percentage of the change in the total change that the regression 

model can explain Eq. (29). Conclusively, it indicates that the independent variable 

can explain the percentage of total changes in the dependent variable and is given as: 
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 𝑅2 = 1 −  
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅𝑖)2𝑛
𝑖=1

 (30) 

Where; 

𝑦𝑖 is the true value,  

𝑦̂𝑖 is the predicted value of the i-th sample, 

 𝑛 is the total number of samples. 

2. MAE is calculated by the sum of the square of prediction error, which is real 

output minus predicted output, and then divide by the number of data points. It gives 

an absolute number on how much the predicted results deviate from the actual 

number.  

The best value of MAE is 0, which indicates a perfect prediction result. MAE is 

expressed by; 

 𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 (31) 

 

3. RMSE is the square root of MSE. As MSE and RMSE approach zero, the error 

rate decreases Eq. (31). This is calculated as the standard deviation of the residuals 

(prediction errors). Residuals measure the distance of the regression line to the data 

points; RMSE measures how to spread out these residuals. It shows how concentrated 

the data is around the line of best fit. Often, the RMSE is preferred to the MSE as it is 

on the same scale as the data. Historically, the RMSE and MSE have been popularly 

used, mainly because of their theoretical relevance in statistical modeling (Hyndmana, 

2006). RMSE is expressed by: 

 𝑅𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

 (32) 
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6 Results  

6.1 Features Evaluation 

Generally, model performance is highly influenced by the input features used for 

training and validation, and it is essential to find out which features are the most 

relevant to predict porosity. Using the right features is essential as poor input features 

lead to redundancy and reduced model interpretability. In this study, the correlation 

between various features and porosity was measured by Pearson correlation 

coefficient (p), with higher p values ~ ≥ ±0.6 representing the features showing a 

moderately strong relationship to porosity. The features fed in stages into the ML 

models (as in chapter 5) are compared as they are gradually reduced one by one based 

on the value of their Pearson correlation. Therefore, the features with low correlation 

coefficient values are removed first. From the Pearson correlation in Eq. (28), four 

moderate to strong features are identified: RHOB, AI, facies, and GR logs; while those 

with less correlation with porosity are; CALI, RT and DT, as Figure 6.1 shows.  

RHOB and AI show the strongest correlation p ~ -0.98 and p ~ -0.8, respectively. Both 

the GR and facies correlation value shows a moderately strong correlation of p ~ -0.6. 

Although the facies is generated from classifying the GR log values,  it is observed 

that the facies showed a positive correlation p ~ 0.8 with the GR. The negative 

correlation between facies and GR to porosity indicates that high GR values indicate 

less porous rock space for shale, where the porosity is remarkably low. 

The CALI and RT, although significant when identifying hydrocarbon pay zones, 

shows to have a weak correlation with porosity, p ~ -0.1 and p ~ 0.4, respectively, as 

shown in Figure 6.1. These two features show the weakest correlation as they are 

below p ≥ (±0.6). 
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Figure 6.1. Pearson correlation matrix 

 

6.1.1 Prediction results  

This section visually shows the results of the blind well (33/9-4) predictions to 

compare and evaluate the prediction performance of the models using the various 

features. Figure 6.2 and Figure 6.3 are introduced to compare the results of the ML 

models visually. Similarly, Figure 6.4 and Figure 6.5 show the predicted porosity of 

the blind well in MD. Visually the BRR, LR and RF show the closest match between 

the predicted and actual porosity log and are identified as the best performing ML 
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models. The moderately performing ML models are the NN and DT, while the SVM 

and KNN ML models show the weakest predictions, with the predicted porosity 

values lagging behind the actual values in the reservoir interval of the well. 
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Figure 6.2. Predicted vs. actual porosity values using all input features for the NN, SVM, DT and KNN machine learning models 
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Figure 6.3. Predicted vs. actual porosity values using all input features for the BRR, LR and RF machine learning models 
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Figure 6.4. Predicted and actual porosity log in the blind well using all input features for NN, SVM, DT and KNN machine learning models 
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Figure 6.5. Predicted and actual porosity log in the blind well using all input features for LR, BRR and RF machine learning models 
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Table 4. R2 performance evaluation summary using different well log inputs 

ML 

Models 

RHOB, CALI, RT, 

DT, Facies,  GR, AI 

RHOB, RT, DT, 

Facies,  GR, AI 

RHOB, DT, 

Facies,  GR, AI 

RHOB, Facies,  

GR, AI 

RHOB, GR, 

AI 

RHOB, AI RHOB CALI, RT, DT, 

Facies,  GR, AI 

NN 0.765 
 

0.817 

 
 

0.791 0.625 0.823 
 

0.761 
 

-13.770 0.725 

SVM 0.114 0.089 0.125 0.115 0.124 0.146 0.217 

 

0.052 

 

DT 0.874 0.860 0.677 0.670 0.663 0.691 0.721 

 

0.597 

 

KNN 0.623 0.584 0.595 0.776 0.774 0.739 0.827 

 

-0.306 

 

BRR 0.935 0.931 0.931 0.933 0.933 0.933 0.934 

 

0.718 

 

LR 0.935 0.931 0.931 0.933 0.933 0.933 0.934 

 

0.719 

 

RF 0.907 0.910 0.872 0.873 0.873 0.872 0.875 

 

0.751 
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Table 5. RMSE performance evaluation summary using different well log inputs 

ML 

Models 

RHOB, CALI, RT, 

DT, Facies,  GR, AI 

RHOB, RT, DT, 

Facies,  GR, AI 

RHOB, DT, 

Facies,  GR, AI 

RHOB, Facies,  

GR, AI 

RHOB, GR, 

AI 

RHOB, AI RHOB CALI, RT, DT, 

Facies,  GR, AI 

NN 0.084 0.077 0.078 0.112 0.082 0.076 0.218 0.080 

SVM 0.052 0.053 0.052 0.052 0.052 0.051 0.049 0.054 

DT 0.021 0.020 0.033 0.033 0.032 0.032 0.031 0.033 

KNN 0.034 0.036 0.035 0.026 0.026 0.028 0.023 0.063 

BRR 0.014 0.015 0.014 0.014 0.014 0.014 0.014 0.029 

LR 0.014 0.015 0.014 0.014 0.014 0.014 0.014 0.029 

RF 0.017 0.017 0.020 0.020 0.020 0.020 0.020 0.028 
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Table 6. MAE performance evaluation summary using different well log inputs 

ML 

Models 

RHOB, CALI, RT, 

DT, Facies,  GR, AI 

RHOB, RT, DT, 

Facies,  GR, AI 

RHOB, DT, 

Facies,  GR, AI 

RHOB, Facies,  

GR, AI 

RHOB, GR, 

AI 

RHOB, AI RHOB CALI, RT, DT, 

Facies,  GR, AI 

NN 0.063 0.056 0.060 0.095 0.061 0.057 0.210 0.059 

SVM 0.043 0.044 0.043 0.043 0.042 0.041 0.036 0.045 

DT 0.016 0.016 0.026 0.026 0.026 0.025 0.024 0.025 

KNN 0.028 0.029 0.029 0.021 0.022 0.024 0.018 0.050 

BRR 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.019 

LR 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.019 

RF 0.014 0.014 0.016 0.016 0.016 0.016 0.016 0.021 
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6.1.2 Performance evaluation 

Table 4, 5, and 6 showing the performance evaluation highlight the ML model 

prediction performance summary using a varying number of input features. With 

increasing additional features into the ML models, a few models showed improved 

performance metrics, and for some of the others, there was a considerable drop in 

their performance.  

The tables show that the best performing ML models with changing input features 

remain the BRR, LR and RF. Both BRR and LR have the highest 𝑅2 ~ 0.933, lowest 

RMSE ~ 0.014, and MAE ~ 0.012 when the RHOB is an input feature in the model. 

However, when RHOB is not included as an input feature, the two ML model’s 

performances range the same  with  𝑅2 ~ 0.718 for BRR and 𝑅2 ~ 0.719 for LR with 

common values of RMSE and MAE to be ~ 0.029 and ~ 0.019 respectively. 

The RF also performed highly with  𝑅2 ~ 0. 907, RMSE ~ 0.017, and MAE ~ 0.014 when 

all the input features are used and also has the highest 𝑅2 ~ 0.751, lowest RMSE ~ 0.028, 

and MAE ~ 0.021 without the feature RHOB. The average performing models are the 

DT and the KNN with their R2, RMSE and MAE varying as the input features are 

reduced and perform poorly without the RHOB feature.  

Ostensibly, the values of the NN show a relationship not matching with other values, 

with varying inputs the model 𝑅2 value changes were performing inconsistently as to 

the other ML models. The NN also consistently showed the highest RMSE and MAE 

with the changing inputs, highlighting its somewhat poor performance in this study. 

At the very least in the performance metrics is the SVM, as seen in Table 4, Table 5, 

Table 6, having a high variance between the predicted and the actual values. When 

compared to other models, SVM shows poor performance; having the lowest 𝑅2 ~ 0. 

052, highest RMSE ~ 0. 052 and MAE  ~ 0.043 when all features are inputted into the 

models. 
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7 Discussions 

In order to interpret the various ML model results, the porosity estimation 

performances need to be analyzed. In this chapter, the results are discussed and 

interpreted based on the performance evaluation of the various ML models used in 

this study.   

The  BRR and LR were the best-performing models in this study. These algorithms 

had a range of R2 ~ 0.93, RMSE ~ 0.014 and MAE ~ 0.012  respectively. These ML 

models showed an improvement in the performance of the models when new features 

are involved, as the improved data range also impacted their performance, which led 

to its improved accuracy. The LR, although susceptible to overfitting, showed higher 

accuracy than other models as the algorithm learns to train from the understanding of 

the various linear relationships of the input features and hence, its strong prediction 

accuracy. The excellent BRR model performance can be attributed to the model 

viewing the porosity estimation as a problem of integrating prior information with 

information gained from the input features, formalized using probability distributions 

as it does not treat regression as an optimization problem. 

The study showed the RF also having good estimation results as it has the highest R2 

~ 0. 751, the lowest MSE ~ 0.028 and MAE ~ 0.021 compared to the other ML models 

without the RHOB feature. The RF achieved this performance due to its ensemble tree 

bagging of the multiple data inputs. The ensemble reduced the model variance as 

expected, and due to a large number of data points, its ensemble algorithm approach 

reduced the risk of overfitting. Also observed is that the RF could utilize the new 

information from the added features to improve the overall result of its prediction, 

unlike the SVM and KNN. 

However, The NN achieved a considerable moderate to high R2 with strongly 

correlated values, as shown in Table 4 with the NN model having a high R2  and a 
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corresponding higher RMSE. However, a drawback of R2 is it can only increase as 

more predictors are added to the regression model. This increase is artificial when 

predictors are not improving the model’s fit (Martin, 2020). Since this is a regression 

problem the R2 is what is given priority over the RSME when accessing the model 

performance. As the R2 is a relative measure of fit and the RMSE an absolute measure 

of fit.  

In this study, the DT results show a poor to average performance with the varying 

input features. In most studies, the DT shows to be less effective in predicting the 

outcome of the continuous variables, as in this case, porosity. Unlike the RF, which 

has the power to handle large data sets with higher dimensionality. The weak 

performance indicates that the DT tends to lose information and is entirely inadequate 

when applied to regression. However, another reason for its subpar performances may 

be attributed to the small continuous change in the data, which causes a significant 

shift in the DT structure, thereby causing instability. The performance metrics of the 

DT were significantly affected by the new feature and this can be attributed to 

overfitting as it has learned a meaningless pattern out of random noise created by the 

additional feature and hence, low information. Reducing the number of input features 

increased the prediction accuracy, as observed in Table 4. However, the model’s 

generalizability can be limited because the model performance would only rely on the 

data from few petrophysical logs. 

Conclusively, the BRR, LR and RF provide more accuracy and advantages over the 

other models in predicting porosity. This indicates that these ML models can be 

applied to more wells with an extensive data range but might slightly be less accurate. 

The advantages are but not limited to: 

• The models provide a more efficient and economical method to obtain reservoir 

porosity against conducting coring analysis, which is widely used to acquire 
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petrophysical properties from reservoir formations or intervals interest 

accurately. 

• Reduce the cost of well-logging services because some well logs used for 

porosity estimation would become unneeded in the future as exploration 

companies aim to reduce operating costs. 

As for the limitations experienced by the ML models, the generalizability of the 

various models are limited by the training and validation dataset. The porosity 

prediction accuracy of the blind well performs decently in a few and excellent in 

others, but it may not have the same performance for another well from fields close to 

each other with the same data in training and validation due to heterogeneity. The 

generalizability of applying the BRR, LR and RF models in other wells in the Statfjord 

field can be enhanced by increasing the number of wells used in training and 

validation. These three ML models can predict reservoir porosity in the North Sea by 

introducing more wells from various fields within the North Sea. 
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8 Conclusion 

In this study, several machine learning algorithms are applied for the porosity 

prediction in a blind well (33/9-4) penetrating the reservoir interval of the Brent Group 

to Top Cook located in the Statfjord field. The purpose was to compare the various 

ML models and find the best models for future porosity predictions as the oil and gas 

industry transforms to finding data-driven solutions in carrying out its operations.  

The Bayesian ridge regression (BRR), linear regression (LR) and the random forest 

(RF)  presented the best porosity estimation result. This result could be further 

improved if more datasets from more wells penetrating the reservoir target in the field 

were inputted into the model. Overall it shows a potential to provide an innovative 

method for petrophysical evaluation in the oil and gas industry 

The density (RHOB) ~ -0.98 and acoustic impedance (AI) ~ -0.8 are the highest 

correlating features to porosity, as shown in the Pearson correlation matrix. By feature 

engineering the GR logs, facies logs are generated by applying cut-off values of GR >= 

70 as shale and GR < 70 as sand. In this study, the facies showed a moderately strong 

correlation (~ -0.6); with its addition as an input feature, it improved the porosity 

estimation of some of the ML models. As sand facies can be related to higher porosity 

and shale facies to lower porosity, a relationship is established, significantly impacting 

generating more training data for the models leading to increased prediction accuracy. 

Conclusively, ML retrieves predictive patterns from data, and the quality and 

quantity of data are crucial for successful predictive accuracy. Predictive patterns have 

similar trends for different machine learning models, but they are still different in 

detail. This indicates that machine learning works differently and can be applied for 

predicting petrophysical properties in the broader North Sea. Adequate data with low 

noise are necessary for ML models to recall reliable predictive patterns. An adequate 
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dataset should be sufficiently representative as if the dataset is too small to be 

representative; ML models may learn only local predictive patterns. As in this study, 

2298 data points, which is not an adequate dataset, but representative enough for the 

Statfjord field. These 2298 samples from the selected wells represent the Brent Group 

of the Statfjord field, while other fields can be further explored and analyzed. ML 

studies with a larger dataset will ensure that the oil and gas industry’s routine core 

analysis and logging operations would be reduced and make exploration and 

production activities more cost-effective. 
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9 Future Work Recommendations 

Some work recommendations to be considered in future studies include: 

• Increasing the training and validation dataset by utilizing more well logs from 

wells penetrating potential reservoir targets of interest to build a more 

representative model to make porosity predictions for those targets. 

• Adding more valuable information from horizons into the model so that ML 

models can be built using data from the combination of well logs and horizons. 

• Using similar or advanced ML algorithms to predict for other important 

petrophysical properties and lithofacies. 

• Generate a 3D acoustic impedance model from seismic reflection amplitudes to 

serve as an input feature. 
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Appendix 1: Histogram of the Well log features 
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Appendix 2: Facies classification in Python 
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Appendix 3: Normalization in Python 
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Appendix 4: Porosity prediction using Neural 

Network (NN) in Python 
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Appendix 5: Porosity prediction using support 

vector machine (SVM) in Python 
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Appendix 6: Porosity prediction using Decision 

Tree (DT) in Python 
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Appendix 7: Porosity prediction using K Nearest 

Neighbour network (KNN) in Python 
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Appendix 8: Porosity prediction using Bayesian 

Ridge Regression (BRR) in Python 
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Appendix 9: Porosity prediction using Linear 

Regression (LR) in Python 
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Appendix 10: Porosity prediction using Random 

Forest (RF) in Python 

 


