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Abstract 

 

Obtaining the maximum rate of penetration (ROP) is one of many techniques to 

reduce cost and Non-Productive Time (NPT) in drilling wells. Many parameters affect 

ROP, including hole cleaning, tooth wear, etc. The study was developed in three parts. 

First, data was selected, pre-processed and cleaned. In the second part, four machine 

learning (ML) models (Random Forest (RF), K-Nearest Neighbors (KNN), Gradient 

Boosting (GB) and AdaBoost (AB) ) were implemented to create a ROP model and a 

Torque model and the section with the best performance was selected. Finally, two 

optimization algorithms were tested in selected data. In this case, Particle Swam 

Optimization (PSO) and Differential Evolution (DE) algorithms were chosen. Once the 

optimization was performed, a sensitivity analysis was held to check ML methods 

performance. 

In this study, two different parameters (ROP and Torque) were modelled and 

analysed. Both models use Bit depth, Weight on Bit (WOB), rotary speed (RPM) and 

pump flow rate (Q) as inputs to make a regression and predict Torque and ROP.  In the 

last part of the study, a new approach is implemented, and modelling is carrying on along 

with the optimization each 30 meters simulating well drilling with the different 

optimizers. Hydromechanical Specific Energy (HMSE) was calculated for each 30-meter 

section and compared with the optimal values in both models. Finally, a sensitivity 

analysis was performed to evaluate every model and optimizer performance since it was 

not possible to perform a field experiment.  Four ML models were implemented (RF, GB, 

AB and KNN) among the two algorithms of stochastic optimization and the best 

combination included GB and DE algorithms after calculating performance metrics and 

code running time. 
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1.1. Objective and motivation 

 

Drilling is a crucial and expensive process in oil and gas industry. Drilling wells 

can be classified in two categories depending the objective: exploration wells and 

development (or production) wells. While the goal of the first ones is to find hydrocarbons 

and gather data for development, the seconds goal is to produce. Pressure is typically 

uncertain during drilling exploration wells and therefore mud weight and casing design 

practices are conservative and the ROP is low, making impossible to optimize it. 

According to NPD, overall costs during oil and gas operation can be divided in 

different categories: Investments, Operating Costs, Exploration costs, Disposal and 

cessation and other costs [1]. Then, development wells are included in investments and 

exploration wells in Exploration costs. Development wells made up 27% of the overall 

costs last year, which prices could round from NOK 200 million to NOK 700 million per 

unit in case of mobile rigs [2], which more production wells are drilled by. Moreover, the 

dominant cost elements are the oil services and rig rent, which account 30% and 45% of 

the drilling expenses respectively. Therefore, it is necessary to optimize drilling to save 

drilling costs and reduce Non-Productive Time (NPT). 

According to Soares [3], drilling optimization is the “process of designing 

equipment and selecting operational parameters to minimize well drilling cost”. Thus, the 

rate of penetration (ROP), defined as the volume of rock removed expressed as depth per 

time unit, is a key metric to measure drilling performance. Although high ROP is 

considered a good metric to measure drilling efficiency and performance, drilling faster 

can affect cutting transport and lead to bore hole instability and poor hole cleaning [4]. 

ROP varies from the type is rock is being drilled and can give an idea of bit wear. 

Therefore, companies look for high ROP values while operating in recommend safety 

standards. 

Generally, ROP optimization depends on dynamic and static drilling parameters. 

Dynamic parameters can be controllable (weight on bit [WOB], rotary speed [RPM], flow 

rate [Q]) or uncontrollable whether the driller can alter it manually during operations or 

not. Static parameters include formation properties such as compressive strength and 

formation pressure among other things.  

In the industry exists two approaches to predict the ROP in a specific field: physics-

based and data driven. Physics based models are formulas, mathematical functions 
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obtained during lab experiments. On the other hand, data driven approach use machine 

learning to create a model or formula that predicts ROP. Traditional models are 

deterministic and easy for optimization while they present low accuracy in ROP 

prediction, have empirical coefficients based on lithology that varied continuously and 

require static parameters as inputs that is not always available [5]. According to Hedge 

[5], data driven models gives accurate ROP prediction than physic based, since it does 

not contain any empirical constant, bit specifications and is not linked to a specific BHA. 

However, these models are purely dependent on data and therefore designed for a specific 

field. Currently, there is no model that predicts and optimize ROP accurately in all fields 

due to variation of the different drilling and geological parameters. 

Hydromechanical Specific Energy (HMSE) is a new term introduced by Mohan [6] 

that “measures the energy to drill a unit volume of rock and remove it from underneath 

the bit”. It includes mechanical as well as hydraulic energy that will be explained with 

more detail later In this study, As MSE, it is a relevant parameter to describe drilling 

efficiency. Torque prediction can help to improve the HMSE as well as control vibration 

as it was performed in a recent study by Hedge [7]. Although for HMSE and MSE 

calculations Downhole Torque from MWD tools, it is possible to estimate TOB (Torque 

on Bit) with surface torque using a transformation matrix [8]. In his study Hedge showed 

that a reduce on Torque on Bit could lead to an ROP improvement and this test will be 

performed using surface Torque data. 

The motivation of this work is to implement a code that can automatically improve 

drilling efficiency each 30 meters (one drilling stand) either by maximizing ROP or 

minimizing surface Torque. This code will provide the dynamic controllable parameters 

to achieve the desirable ROP (or Torque) and therefore save drilling costs. With Torque 

minimization the aim is to minimize the HMSE since these variables are directly related. 

This thesis project is focused on drilling optimization and the goal is therefore 

maximize the Rate of Penetration and minimize Surface Torque. To achieve a good 

optimization, it is very important to have an accurate model to predict the metric is being 

optimized. This work is a first theoretical approach to optimize the parameters mentioned 

above in the same rock formation.  Further considerations will need to do to perform an 

experimental test and will be mentioned in the Chapter 8. 
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The goal of this study is to optimize the ROP and surface Torque in real time when 

varying surface controllable drilling parameters of a specific well section. Six wells from 

Johan Sverdrup field drilled last year were provided by Equinor and only one well section 

was chosen. The project can be summarized in the following tasks: 

• Clean and process all dataset. 

• Understand Machine Learning Models and how to Implement algorithms in the 

dataset 

• Implement Machine Learning Algorithms in the dataset  

• Evaluate Machine Learning Models Performance in different well sections 

• Select well section with accurate ROP and Torque Prediction 

• Implement new continuous learning modelling and optimization method 

• Evaluate ROP and Torque optimization including HMSE calculations 

• Sensitivity analysis of the different Machine Learning Models  

   

 

 

Figure 1: Historical figures for 2008-2019 and forecast for 2020-2025. Source: NPD [1]. 
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1.2. Methodology 

For the purpose of coding, Jupyter Notebook was used as it is a user-friendly 

application that handles and run Python code while describes data analysis. In this study, 

Python was used as a coding language due to its simplicity and versatility, making it very 

attractive for beginners. It is also free, open source and support huge libraries which can 

be imported by Python package manager (pip). All the libraries used in this study are 

explained in the Appendix.  

It is very relevant to have an appropriate and cleaned data set, having enough 

observation variables to run a Machine Learning Model. This is in fact the first and the 

most time-consuming part of the study, which consist on data selection, fill data gaps with 

interpolation, remove outliers and noises and correct faulty measurements. Moreover, a 

machine learning algorithm was used to evenly distribute data points in depth to easily 

implement a Regression using ML and therefore remove more noise that was impossible 

using filter.  Anyway, all this process will be explained deeply in next chapters. 

Second part of this study consists in the implementation of different ML techniques 

(Random Forest, Gradient Boosting, AdaBoost and k-Nearest Neighbors) and assess 

which algorithm provides the best ROP and Torque prediction. In this project, two 

parameters (ROP and Torque) were modelled using Machine Learning technique. All the 

models were evaluated using different evaluation metrics which will be explained later in 

Chapter 4. The result will be eight predictive models which will finally be used in the last 

part of this study. 

The last part of this study is modelling and optimization using the same ML models 

and two different stochastic optimization techniques: Differential Evolution (DE) and 

Particle Swarm Optimization (PSO). Since one of the goals of this project is to reduce 

drilling cost, it is very important to choose the best optimization algorithms and constrains 

in order to improve ROP, reduce Torque and HMSE and therefore save costs and mitigate 

drilling problems. Different physical boundaries were considered as constrains for the 

optimization algorithm based on the variables of the ML model previously chosen.  

Finally, a sensitivity analysis was executed for the different ROP and Torque models. 

 

 

 

 



6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Literature Review 
 

 

 

 

 

 

 

 

 

 

 

 

 

  



7 

 

2.1. ROP Traditional Models 

Many traditional models have been used for ROP modelling successfully. The goal 

of this section is to introduce the most popular ROP physics models in the industry. These 

models have been developed experimentally by regression methods and based on drilling 

knowledge and only the most widely used will be presented. These are outlined below: 

 

2.1.1. Bingham Model 

Bingham [9] is the oldest traditional ROP model. It is designed for any bit type and 

considers ROP as a function of WOB, RPM and bit diameter. Although it is a 

straightforward model, it is still a good starting point for ROP prediction: 

𝑅𝑂𝑃 =  𝑘 (
𝑊𝑂𝐵

𝑑𝑏
)

𝑎

 𝑅𝑃𝑀        (1) 

where ROP is the rate of penetration (ft/hr), WOB is the weight on bit (klb), RPM 

is the rotary speed (revolutions/min), db is the bit diameter (in), and ‘a’ and ‘k’ are rock 

formation constants obtained by linear regression. 

 

2.1.2. Bourgoyne and Young Model 

Bourgoyne and Young ROP model [10] was developed in 1974 after multiple 

regression analysis of drilling data obtained in short intervals. In those years, there was 

one model for ROP optimization, one for jet bit hydraulics optimization and one for 

detecting abnormal pressure from field data. This model combines these three processes 

into one single model, including effects of formation strength, formation depth, formation 

compaction, differential pressure, bit diameter and weight, bit wear, rotary speed and bit 

hydraulics and it is expressed as a function of eight components: 

𝑅𝑂𝑃 =  𝑓1 ∗  𝑓2 ∗  𝑓3 ∗  𝑓4 ∗  𝑓5 ∗  𝑓6 ∗  𝑓7 ∗  𝑓8         (2) 

𝑓1 =  𝑒𝑎1     (3) 

𝑓2 =  𝑒𝑎2(13000−𝑇𝑉𝐷)     (4) 

𝑓3 =  𝑒𝑎3𝑇𝑉𝐷0.69(𝑃𝑝𝑜𝑟𝑒−10.5)    (5) 

𝑓4 =  𝑒𝑎4𝑇𝑉𝐷(𝑃𝑝𝑜𝑟𝑒−𝐸𝐶𝐷)    (6) 

𝑓5 =  (

(
𝑤
𝑑𝑏

) − (
𝑤
𝑑𝑏

)
𝑡

4 − (
𝑤
𝑑𝑏

)
𝑡

)

𝑎5

    (7) 
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𝑓6 =  (
𝑅𝑃𝑀

100
)

𝑎6

     (8) 

𝑓7 =  𝑒−𝑎7ℎ    (9) 

𝑓8 =  𝑒
𝑎8

𝜌𝑞
350𝜇𝑑𝑛     (10) 

 

Where, fi includes drilling parameters and ai are the variable coefficients calculated 

using linear regression. Coefficients are described in the following way: 

• f1 represents the formation strength influence, where a1 is the formation strength 

parameter.  

• f2 represents the formation depth influence, where TVD is true vertical depth (ft) 

and a2 the exponent of normal compaction trend. 

• f3 represents pore pressure influence, where Ppore is the pore pressure gradient 

(ppg) and a3 the undercompaction exponent. 

• f4 represents the differential pressure effect, where ECD is the equivalent 

circulating density (ppg) and a4 the pressure differential exponent. 

• f5 represents the variation of WOB and bit diameter and changes for bit type, 

where 
𝑤

𝑑𝑏
 is the applied WOB per inch (1000 lb/in), db the bit diameter, (

𝑤

𝑑𝑏
)

𝑡
the 

threshold WOB per inch (1000 lb/in) at which the bit begins to drill and a5 the bit 

weight exponent. 

• f6 represents the influence of the RPM. In this case the author normalizes to 1 a 

rotary speed of 100 rpm, but this number can change in terms of the average rotary 

speed of the dataset. a6 is the rotary speed exponent. 

• f7 represents the drill bit wear, where h is the fractional tooth weight that has been 

worn away and a7 the tooth wear exponent. 

• f8 represents the hydraulic effects, where dn is the bit nozzle diameter (in), μ the 

apparent viscosity (cp) of the drilling fluid at 10000 sec-1 and a8 the hydraulic 

exponent.  
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2.1.3. Winters, Warren, and Onyia 

Winters Warren and Onyia [11] developed a new model for roller cone bit, taking 

into account bit design, operating conditions, and rock mechanics. It includes rock 

ductility and cone offset as new and important features for ROP modelling: 

1

𝑅𝑂𝑃
=  

𝜎𝐷2

𝑁 𝑊𝑂𝐵
(

𝑎 𝜎 𝐷 𝜖

𝑊𝑂𝐵
+ 

𝛷

𝑊𝑂𝐵
) +  

𝑏

𝑁 𝐷
+  

𝑐 𝜌 𝜇 𝜖

𝐼𝑚
    (11)  

Where σ is the rock compressive strength (psi), D the bit diameter (in), N the rotary 

speed (rpm), WOB the weight on bit (lb), Φ the cone offset (in), ϵ the rock ductility, ρ the 

mud density (ppg), μ the mud viscosity (cp), Im the modified jet impact force and a, b and 

c the bit design constants. The modified jet impact force is calculated as follows: 

Im = (1-Av
-0.122) Fj    (12) 

Where Av is the ratio of jet velocity to return velocity, Fj the jet impact force, and 

Av is calculated as follows assuming three jets:  

𝐴𝑣 =  
𝑣𝑛

𝑣𝑓
=  

0.15 𝐷2

3 𝑑𝑛
2     (13) 

Where Vn is the nozzle velocity and Vf the return fluid velocity. 

 

2.1.4. Motahhari  

Motahhari [12] developed in 2010 a new method for ROP prediction for 

polycrystalline diamond compacts (PDC) bits and positive displacement motors. 

According to Barros and Motahari [12] [13], this model is very useful for horizontal and 

directional drilling operations with motors. The model equation is the following: 

𝑅OP = Wf

G  WOB
α
  Nt

γ

db  CCS
    (14) 

Where db is the bit diameter (in), CCS the confined rock strength (psi), Nt the total 

rotary speed (rpm), WOB the weigh on bit (lb), G the coefficient determined by the bit 

geometry, cutter size and design,  Wf the bit wear function and α and γ the ROP model 

exponents. Bit wear function is calculated as follows: 

Wf= kwf (
WOB

nc

)
ρ

1

CCS
τ
 Aw

ρ-1
    (15) 

Where kwf is the wear function constant, ρ and τ the wear function exponents, nc the 

number of cutters and Aw is the wear flat area underneath of a single cutter, which 
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according to Motahhari [12]“is a function of wear depth on a cutter face and PDC layer 

thickness”.  

 

2.2. Data driven Techniques 

It is commonly said that ML is a subfield of artificial intelligence. Machine 

Learning (ML) means create mathematical models to understand data [14]. The program 

“learns” from the data when “giving to the models tunable parameters that can be 

adaptable to observe the data” [14]. Basically, it starts separating your dataset into training 

data and test data. The training data is used to generate the mathematical model while the 

test data is compared with the predicted data once the model fits with training data. Python 

has a powerful tool called Scikit learn that contains multiple machine learning models to 

implement in the code. 

There are two categories of Machine Learning, Supervised Learning and 

Unsupervised Learning, but the difference is not relevant for this study. It is important to 

mention that this study works with Machine Learning Regressors, one subdivision of 

Supervised Learning methods, since parameters are continuous quantities.  

 

2.2.1. Machine Learning Approaches 

Machine Learning has a lot of advantages if used properly for ROP or Surface 

Torque prediction. For instance, all the shortcomings from the traditional models can be 

solved since they do not contain empirical constants and they are independent of the bit 

type and bottom hole assembly (BHA). In a study developed by Hegde [5], three 

traditional models were compared with data driven models showing better performance, 

improving the R2 value from 0.12 to 0.84. Predictions of machine learning algorithms are 

purely based on input data and parameters; therefore, data quality is essential to 

implement these models. Four machine algorithms were implemented and each one has 

its advantages and disadvantages. First, a few concepts will be explained: 

 

Ensemble Learning 

According to Zhou [15], “Ensemble learning is a machine learning paradigm where 

multiple learners are trained to solve the same problem”. Usually, ordinary machine 

learning approaches learn one hypothesis from training data, while these methods learn 

from a set of hypotheses and combine them. An ensemble is constructed from base 
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learners, created from training data by a base learning algorithm (a decision tree, a neural 

network, etc). After this process, these learners are combined, and the most popular 

combination is selected.  

 

Gradient Boosting Regressor 

Gradient Boosting is part of Boosting algorithms family and is based on decision 

trees where the objective is to minimise the loss function of the model. It is a generic 

algorithm to find approximate solutions to the additive modelling problem and thus, it is 

more flexible than AdaBoost. Friedman firstly introduced it in 2001. As any boosting 

method, Gradient Boosting (GB) adds new models to the ensemble sequentially [16], and 

at each iteration a new base learner (in this case, a decision tree) is trained regarding the 

error of the whole ensemble.  

GB consists of three elements: a loss function, a weak learner and an additive 

model. It uses decision trees as weak learners due to its ability to handle mixed data types 

and model complex functions [16]. Figure 2 illustrates the process of approximation of 

Regression trees.  

The advantages include high accuracy, high flexibility, no need for data pre-

processing, and good manage of missing data. However, Gradient Boosting algorithms 

are very sensitive to small data changes, so it is mandatory to use cross-validation. 

 

Figure 2: Function approximation with regression trees. Source: [17] 
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Random Forest Regressor 

Random forests are ensemble learners that use a combination of decision trees that 

“grow in accordance to a random parameter”, according to Biau [18]. It was proposed by 

Leo Breiman in the 2000’s where each tree is built randomly, therefore the name “random 

forest”. Decision trees are, as VanderPlas says [14],  “intuitive ways to classify objects”: 

each tree is subdivided in nodes and these nodes, based on a cut-off value of one of the 

features, splits the data into two groups [14] . Random Forests are one of the most accurate 

ensemble learning techniques. Random Forests can be used in Classification and 

Regression problems depends if we have categorical or continuous variables.  

Advantages include excellent prediction, no need for data preparation, fast training, 

good handling of missing data and finally, it works with large datasets. On the other hand, 

it has its limitations with regressions and there is a risk of overfitting the model. Fig. 3 is 

an example of a tree taken from Yoo’s study [19]. This is an individual tree with two 

nodes that models Fertility based on Education, Agriculture and Examination of the 

specimen. 

 

Figure 3: Simple tree that model the fertility of the sample based on the different conditions. Source: [19] 

 

AdaBoost Regressor 

AdaBoost (Adaptive Boosting) is a machine learning algorithm formulated by Yoav 

Freund and Robert Schapire in 1997. According to Zhou [20]: “ boosting refers to a family 

of algorithms that are able to convert weak learners to strong learners”. As a boosting 

algorithm, it works with Decision Stumps (trees in a Random Forest, but not "fully 

grown") using a forest of that decision stumps. Each decision stump has one node and 

two leaves. AdaBoost Algorithm has many advantages: is fast, simple, easy to program 

and flexible to combine with other machine learning algorithms. On the other hand, it is 

also very sensitive to noises and outliers. 
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K-Nearest Neighbors Regressor 

According to Zhou [20]: KNN assumes that similar objects in input space are 

similar in the output space; thus similar data are near each other. This author also 

considers as a lazy learning approach due to not having an explicit training process. It has 

many advantages as its simplicity and versatility. However, it is susceptible to small 

changes in data and cannot handle missing values. Moreover, it does not work with 

datasets with many features. 

 

2.2.2. Review of Data driven ROP Models and Optimization  

As is mentioned by Alali [4], there is no reliable model that accurately predicts 

ROP. Many studies have been conducted to understand ROP behaviour and predict it 

based on data availability. For instance, Hedge [5] compared the performance of different 

ML algorithms with traditional models, showing an improvement on the R2 from 0.12 to 

0.84. Furthermore, Ahmed [21] developed a novel ROP model using artificial neural 

networks (ANN) with different input parameters and different data distributions and ANN 

structures with excellent precision (R2 of 0.996). Brenjkar [22] developed three ROP 

neural network models from four drilled wells in southwestern Iran and compared them 

with Bingham and B&Y models. As a result, he obtained a high-performance model with 

R2 and an average absolute percent relative error (AAPRE) of 0.948 and 5.531 

respectively. Al-Abduljabbar [23] also created a new empirical correlation based on an 

optimized ANN model to predict ROP in horizontal carbonate reservoirs, with remarkable 

results in unseen data such R2 and average absolute percentage error (AAPE) values of 

0.946 and 5.29% respectively. Similar work was performed by Manta [24], where he 

designed a new model based on statistical regression and ANNs, using data from 

horizontal wells from the North Sea. Furthermore, Noshi [25] and Singh [26] 

implemented five and eight different ML models for ROP prediction respectively and all 

algorithms were compared. In addition, Tunkiel [27] and Soares [3] introduced a novel 

continuous learning approach, where each Machine Learning model is updated every 

specific number of meters simulating drilling conditions. Finally, last year Encinas 

developed a data driven ROP model to identify the influence of drilling parameters based 

on data from Volve field. He introduced a novel downhole WOB correction based on 

surface data. However, many of these studies are not available to replicate due to data 
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availability. Therefore, Tunkiel [28] published a dataset for ROP benchmarking, which 

is analysed in the following subsection. 

 

On the other hand, other studies were conducted to optimize ROP. According to 

Gan [29] there are three different types of optimizations: robust based, moving horizon 

based and metaheuristic based. Wiktorski [30] understood the necessity of including the 

influence of wellbore trajectory, inclination, and azimuth in Burgoyne and Youngs model. 

Consequently, she developed an empirical model adding the dog leg severity (DLS) 

factor. Sui [31] designed a moving horizon method to predict ROP using a linear discrete-

time model. However, as will be mentioned in section 2.3., for Machine Learning model 

optimization a metaheuristic approach is needed. Hedge continued his studies [5] [32] 

and implemented and evaluated different optimizers [33] in the best ML model from the 

previous research. Then, he implemented a drilling optimization model using the best ML 

model and best optimizer [7]. Alternatively, Alali [4] used another approach to optimize 

ROP while using data driven models. Using data from 2500 wells from an offshore field, 

where 18 wells with the best performance were chosen, he managed to create a two-phase 

model optimization to modify drilling controllable variables in real time. During field 

trial showed an improvement of 25% to 45% of ROP, saving 15% costs per foot. 

 

2.2.3. Issues and Discussions 

Many investigations have been conducted using data driven models to predict ROP, 

most of them comparing with traditional models. In one of his studies [5], Hedge 

mentioned different disadvantages of the traditional models, which includes ROP low 

accuracy predictions, variation of empirical coefficients (since these are obtained from 

linear regression for each lithology facie) and in many cases the requirement of auxiliary 

data (bit design and properties, mud properties, etc). In his investigation, he compared the 

performance and accuracy of three different machine learning models with three ROP 

traditional models for different formations in a field and showed a big improvement in 

case of data driven models. 

As Tunkiel pointed in his study [28], both approaches require good data quality (in 

the case of traditional models to find accurate constants and for data driven approach to 

train the model). Therefore, a data driven model is only applicable for similar lithology, 
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drilling procedures and equipment and neighbour wells can be used as a reference starting 

point.  

 

Other aspects that are concerning regarding previous investigation in data driven 

ROP models. For instance, Tunkiel [28] mentioned incorrect data split and the possibility 

to reproduce the experiments. As far as the author knows, there are three different ways 

to split the data for ML training: random sampling, sequential sampling, and continuous 

learning. The first one breaks training and test data randomly, which does not represent 

well drilling conditions, and one can reach R2 levels of 0.95. This can be easily explained 

with fig. 4 that shows random and sequential sampling, where the depth grows from top 

to bottom. Assuming that test cells are the sample points that are “drilled”, it is clear that 

using sequential sampling is more advisable to simulate drilling process since it is illogic 

to predict a parameter from a depth you have already drilled and also impossible to 

“jump” through different depths without drilling. In this study, random sampling split is 

not considered due to the reasons mentioned above. 

 

Figure 4: Random train/test split (left) vs. Sequential train/test split (right). Each cell represents a row in the test matrix 

in depth growing order, where the blue ones are the training sample and white ones makes the test sample. 

 

Finally, data and source code are not available in most of these studies as Tunkiel 

[28] mentioned for experiment reproduction. For this study, data from Johan Sverdrup is 

confidential and will not be shared, but source code is available in the appendix and can 

be adapted to use in another field data. 
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2.3. Optimization 

Optimization consists of finding the maximum or minimum value in a real function, 

therefore find the optimal value from the space solution. The complexity of the equation 

or problem will define the optimization algorithm to be used.  

The interest in optimization has grown in the last few years. In fact, since the mid-

sixties, many algorithms that focus on global optimization of “black-box” problems (the 

problems where exact analytical methods do not work) have been proposed.  In his book, 

Boyd [34] defined a mathematical optimization for convex functions as a problem where 

the goal is to minimize the objective function within some constraints (boundaries). These 

are, however, not the functions used on this thesis. ML models are not mathematical 

equations, and therefore the need of metaheuristic to optimize this problem. 

Metaheuristic, as Luke [35] defined, is a “subfield of stochastic optimization”, 

which he describes as “a class of algorithms and techniques which employ some degree 

of randomness to find optimal solutions to hard problems”. These algorithms work very 

well when having problems with little information and the space is too large. 

In this study, two stochastic algorithms will be implemented: Differential Evolution 

and Particle Swarm. These algorithms are two different population methods, one of the 

subfields of stochastic optimization. Both have been used in the industry and much 

research have been conducted to evaluate its performance [33] [36], where the study of 

Hedge is the reference since it has been applied in the same field.  

 

2.3.1. Differential Evolution Algorithm 

Differential Evolution (DE) algorithm was introduced by Storn and Price in 1995. 

As an algorithm from the evolutionary family, it is based on Darwin's Natural Selection 

Theory, where the fittest individual survives. Fig. 5 describes the different terms used for 

this algorithm family, extracted from Luke’s book [35]. 

The process, according to Luke, is the following: 

1. First, it starts with the initialization of a combination of random solutions (Creates 

a population). 

2. Then, iterates three different procedures: 

2.1. It evaluates the fitness of all individuals. 

2.2. It uses these fitness values to breed a new children’s population. 
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2.3. Finally, it joins parents with children in the new generation, and cycle begins 

again. 

The cycle stops until a specific number of generations is reached or until it fulfils a 

particular criterion. There are two new innovations (twists) introduced in the DE 

algorithm. First, everyone of the population creates a child and this child competes against 

parents to be included in the population. Second, the child’s mutation size is determined 

based on the variance of the population, and therefore it is not fixed as in other algorithms 

in this family.  

 

 

 Figure 5: Common Terms Used in Evolutionary Computation. Source [35] 

 

DE employs vector operations on its different types of mutation. The easiest one to 

describe is the primary mutation operator. Here, for each member of the population, a 

new child is generated (offspring) by vector addition and subtraction from three different 

random individuals from the population. From fig. 6 from Luke’s book it is easier to see 

the general idea: to mutate from one random individual (a) by adding a vector, which is 

the difference between vectors b and c. Then, the child is crossover with i. Finally, after 

all parents created the new children (though different mutations, not necessarily the one 

mentioned), all children compete with their parents to survive (they replace parents in the 

population if they have higher fitness value). 
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Figure 6: DE primary mutation operator illustration. A copy of member A is mutated by the addition of the vector 

difference between B and C.  Source [35] 

 

2.3.2. Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a population technique similar to DE. It is 

not based on evolution theory but inspired in the flocking behaviour of birds. It was 

created in 1995 by James Kennedy and Russell Eberhart [36]. The main difference with 

other population methods is that PSO does not resample or replace populations (there are 

no generations). It maintains a population whose individuals are tweaked based on new 

discoveries about the environment, like bird’s behaviour. As Luke says [35], it is basically 

a form of mutation.  

In this context, DE terms are not used, and individuals' population transforms into 

a swarm of particles. Then, this direct mutation that was mentioned above does not 

replace the particle genes, it only moves the particles around the space. According to Luke 

[35], a particle consists of two parts, the particle’s location in space and the particle’s 

velocity at each timestep. Moreover, each particle has a small memory that stores its own 

position(x*), the best place that any of its informants (x+) has discovered and the fittest 

location discovered by anyone (x!). For each timestep, after evaluating the fitness score 

(location and how closed it is to the optimal point) of all particles, each particle could be 

added a velocity vector pointing to x*, x+ or x!. This is performed randomly and based on 

the different scores given to the parameters to run the code, which are summarized below 

(for more information, the source is Luke’s Book [35]): 

• α: proportion of the original velocity retained 

• β: ratio of the personal best (location) to be retained. The larger is β, the higher 

tendency the particle has to move to its own personal bests. 

• γ: proportion of the informants’ best location to be retained. 
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• δ: proportion of global best to be retained. The larger is δ, the higher tendency the 

particle has to move to global best. 

• ε: jump size of particle. Large ε makes the system move quickly to best regions. 

 

2.4. Drilling Engineering Models 

 

2.4.1. Downhole RPM Calculation 

It is a common practice in the NCS to drill the surface casing section using mud 

motor. Since all data was measured from surface in this study, it was necessary to 

calculate the downhole bit revolution to create an accurate model. 

The calculation is very simple: downhole RPM (or total bit revolutions DRPM) is 

calculated as the summation of drilling mud motor revolutions (RPMM), which is the 

RPM of the mud motor’s rotor, and surface RPM (RPMS): 

𝐷𝑅𝑃𝑀 =  𝑅𝑃𝑀𝑀 + 𝑅𝑃𝑀𝑆  (16)   

Mud motor’s revolutions are calculated using speed to flow ratio [37]. These 

specifications are available in the drilling motor’s Handbook. Below there is a screenshot 

of one of the Baker Hughes motors specifications [38]: 

   

Figure 7: Baker Hughes 6 ¾ in. Ultra XL/LS motor data and specifications, power performance section. Source [38]. 

 



20 

 

Then, RPMM is calculated for a specific flowrate as follows: 

 𝑅𝑃𝑀𝑀 = 𝑠𝑝𝑒𝑒𝑑 𝑡𝑜 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑖𝑜 ∗   𝑄    (17)  

 

2.4.2. Downhole Torque Model 

Torque (or torsion) occurs when a twisting moment is applied to the pipe [39]. High 

Torque and high drag usually happen together and have different causes, including 

differential sticking, sliding wellbore friction, tight hole conditions, keyseats, increase of 

cutting volume, and sloughing hole [40]. As Johansick says, torque and drag calculations 

are more relevant for directional wells and even critical in the case of highly deviated 

wells. Therefore, for planning these wells and ensure successful drilling operations it is 

vital to choose a good torque and drag criteria. First, it will be mentioned the theory for 

inclined wells and then for deviated wells from Johansick. 

Figure 8 shows a free body diagram of a mass drill pipe section of length ds in an 

inclined well. 

  

Figure 8: Free body pipe of a drill pipe unit of ds length (left). Source: [39]. Force acting in a curved drill string. 

Source: Johansick [40] 

 

Applying Newton second law the drag force at the bottom is obtained: 

𝐹𝑇 =  𝐹𝐵 + 𝛽𝑤∆𝑠(𝑐𝑜𝑠𝛼 ± 𝜇𝑑  𝑠𝑖𝑛𝛼)   (18) 

Where FB  and FT  are the forces at the bottom and top, w the unit weight of the drill 

string, Δs the length of the drill string, μd the friction coefficient, β the buoyancy factor 

and α the inclination (+ for hoisting and – for lowering pipe). Also, according to Belayneh 

[39], torque is calculated as the normal moment multiplied by friction factor and pipe tool 

joint radius as follows: 

𝑇 =  𝑟𝛽𝑤∆𝑠𝜇𝑑 𝑠𝑖𝑛𝛼    (19) 
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Where r is the pipe tool joint radius. For curved sections, the normal force is 

calculated from Johansick [40] equation: 

𝐹𝑛 =  √(𝐹𝑡 ∆𝛼 𝑠𝑖𝑛𝛼)2 + (𝐹𝑡  ∆𝜃 + 𝛽𝑤 𝑠𝑖𝑛𝜃)2    (20) 

 

Where θ is the azimuth angle and α the inclination. This leads to tension increment, 

which is: 

∆𝐹𝑡 = 𝛽𝑤 𝑐𝑜𝑠𝜃 + 𝜇𝑑  𝐹𝑛    (21) 

And torque increment: 

∆𝑀 = 𝜇𝑑  𝐹𝑛𝑟    (22) 

Bit torque can be measured by MWD tools or in the laboratory. Usually, torque is 

measured in the surface and sometimes it is not reliable. In addition, force values FT and 

FB from equation 17 are not always available. Then, Pessier [41] developed a model as 

function of WOB [lbf], bit diameter (db [in]), and coefficient of sliding friction (μP): 

𝑇 =  
𝜇𝑃 𝑑𝑏 𝑊𝑂𝐵 

36
    (23) 

This equation was later modified by Belayneh [42] considering rotation effect using 

the modified sliding friction factor, which is a function of axial velocity (Va), rotary speed 

(RPM), and bit radius (rb): 

𝑇 =  
𝜇𝑃 𝑐𝑜𝑠 (𝑡𝑎𝑛−1(

𝑉𝑎

𝑟𝑏 𝑅𝑃𝑀)) 𝑑𝑏 𝑊𝑂𝐵 

36
    (24) 

 

2.4.3. Downhole WOB Model 

As it was mentioned at the beginning of this study, rate of penetration is dependant 

of weight on bit. Thus, it is vital to have a good measure of downhole WOB. The 

introduction of measurement while drilling techniques has improved drilling performance 

in many wells. In fact, the availability of downhole sensors to accurate measure different 

drilling variables such as downhole WOB and Torque on bit help in decision making and 

decrease non-productive time (NPT). However, these tools are sometimes costly for some 

wells and consequently, this specific data is not handy. 

Hareland [43] developed in 2014 a DWOB theoretical calculation based on a torque 

and drag model. The same model was also calibrated using field data and compared with 

the Autodriller system from Baker Hughes with similar results. Encinas [44] also 
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implemented this correction successfully in his ROP machine learning model last year. 

For the Hareland model, three effects are considered to adjust hook load: 

1. Sheave effect: 

𝐻𝐿𝑎1 =  
𝐻𝐿𝑓  (1 − 𝜂𝑛) 

𝑛  (1 − 𝜂)
    (25) 

Where HLf is the field hook load, η is the sheave efficiency and n the number of 

lines. 

2. Static Hook effect: 

𝐻𝐿𝑎2 =  
𝐻𝐿𝑠  (1 − 𝜂𝑛) 

𝑛  (1 − 𝜂)
    (26) 

Where HLs is the field hook weight, η is the sheave efficiency and n the number of 

lines. 

3. Standpipe pressure effect: 

𝐻𝐿𝑎3 =  5.095𝑥105  𝑆𝑃𝑃  𝑂𝐷2    (27) 

Where SPP is the stand-pipe pressure and OD the outside diameter of the pipe. 

Finally, the Hook load correction is: 

𝐻𝐿𝑚𝑜𝑑 =  𝐻𝐿𝑎1 −  𝐻𝐿𝑎2 − 𝐻𝐿𝑎3    (28) 

Chen [45] also modelled downhole WOB using Aadnøy drag model [46] for curved 

sections, since WOB is not modified for straight sections. The equation is as follows: 

𝑊𝑂𝐵𝑏 = 𝑊𝑂𝐵 𝑒−𝜇∆𝛼    (29) 

Where WOB is one weight on bit at a given depth, μ the friction factor and Δα 

inclination difference between two adjacent sections. 

Wiktorski and Sui [47] proposed a finite element WOB model in the aim of 

modelling torsional and axial drill string vibrations. Figure 9 represents axial and 

torsional displacements acting in a drill string element.  

 

 

Figure 9: Drillstring element under influence of torsional and axial forces. Source: [30] 
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This problem is solved using a second-order differential equation as is shown 

below:  

𝑀𝑈̈(𝑡) + 𝐶𝑈̇(𝑡) + 𝐾𝑈(𝑡) = 𝐹𝑒𝑥𝑡(𝑡)   (30) 

Where M is the mass matrix, C is the damping matrix, K is the stiffness, and Fext is 

the total external force applied to the drill string. U is the displacement, 𝑈̇ is the velocity, 

and Ü the acceleration (the three variables could be torsional or axial depending if we 

calculate torsional or axial displacement). In this system, dampling is neglected and 

therefore C is equal to cero. Stiffness and mass matrix are represented in the following 

way:  

𝐾 = ⌈ 
𝑘𝑖 −𝑘𝑖

−𝑘𝑖 𝑘𝑖
⌉    (31) 

 

𝑀 = ⌈ 
𝑚𝑖 0
0 𝑚𝑖

⌉    (32) 

Where ki and mi are the stiffness and mass elements respectively from rotation or 

translation movements.  These are calculated as follows: 

𝑚𝑎 =  
𝜌𝑠𝐴𝑙

2⁄     (33) 

𝑚𝑡 =  𝜌𝑠𝐼𝑙    (34) 

𝑘𝑎 =  𝐸𝐴
𝑙⁄     (35) 

𝑘𝑡 =  𝐺 𝐼
𝑙⁄     (36) 

Where ma is the axial mass element, mt the mass torsional element, ka the stiffness 

axial element, kt the stiffness torsional element, ρs the drillstring density, A the cross 

sectional area of the drill string, l the drillstring length, E is the young’s modulus and G 

the shear modulus. I is the inertia moment, which is calculated using the inner (di) and 

outer (do) diameter of the pipe as follows: 

𝐼 =  
𝜋 (𝑑𝑜

4 −  𝑑𝑖
4)

32
    (37) 

 

Then, based on different assumptions (for more information, read the paper), 

Wiktorski [47] formulates the effective downhole WOB model: 

𝑊𝑂𝐵 = 𝑊𝑂𝐵𝑠𝑒𝑡 

𝑥̇𝑡𝑜𝑡𝑎𝑙

𝜃̇𝑡𝑜𝑡𝑎𝑙

 𝛿    (38) 
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Where WOBset is the downhole WOB during normal drilling, δ is a correction 

factor, and 𝑥̇𝑡𝑜𝑡𝑎𝑙 and 𝜃̇𝑡𝑜𝑡𝑎𝑙  are the total axial and torsional displacements. The last two 

parameters mentioned are calculated by the sum of the relative velocity (axial or 

torsional), obtained from eq. 29 and the surface velocity that is an input parameter. 

 

2.4.4. Density Model  

During drilling, drilling fluid temperature and pressure increase as depth increases. 

Mud density is affected by the variation of these parameters; for instance, higher pressure 

induces a raise in mud density while higher temperature causes the opposite. It is very 

important not to neglect these effects on mud density, especially on high pressure high 

temperature (HPHT) wells [48], when wrong density estimation can result in wildly 

inaccurate pressure prediction. Therefore, the density model is a function of pressure (P) 

and temperature (T), and it can be linearized as follows: 

𝜌𝑚 =  𝜌𝑟𝑒𝑓 +  
𝜌𝑟𝑒𝑓

𝛽
(𝑃 − 𝑃𝑟𝑒𝑓) +  𝜌𝑟𝑒𝑓 𝛼 (𝑇 − 𝑇𝑟𝑒𝑓)   (39) 

Where ρm is the mud density, ρref, Tref, Pref the density, temperature and pressure 

used as reference, β the isothermal bulk modulus of the liquid, and α the cubical expansion 

coefficient of the liquid. 

Usually, changes due to temperature and pressure for liquids are small and can be 

neglected. 

 

2.4.5. Mechanical Specific Energy 

In 1965, Teale [49] defined Mechanical Specific Energy (MSE) as “the energy 

required to excavate a unit volume of rock”. MSE has a variety of uses, including 

selection and optimization of drilling parameters and bit design. The old formula 

considers the axial and torsional energy involved when bit is removing a rock unit. MSE 

is calculated as follows: 

𝑀𝑆𝐸 =  
 4 𝑊𝑂𝐵 

𝜋 𝑑𝑏𝑖𝑡
2 +  

480 𝑅𝑃𝑀 𝑇 

 𝑑𝑏𝑖𝑡
2 𝑅𝑂𝑃

    (40) 

Where dbit is bit diameter, WOB is the weight on bit, RPM the rotary speed, ROP 

the rate of penetration, and T the Torque. Teale also introduced the concept of maximum 

mechanical efficiency, which is obtained when the MSE is closed to the uniaxial 

compressive strength of the rock (σ). 
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𝑀𝑆𝐸 = 𝑀𝑆𝐸𝑚𝑖𝑛   ≈  𝜎    (41) 

𝑀𝐸𝑓𝑓 =  
𝑀𝑆𝐸𝑚𝑖𝑛

𝑀𝑆𝐸
  100    (42) 

Where MEff is the mechanical efficiency. Then, Dupriest [50] introduces a 

correction factor in the newly modified MSE (MSEmod): 

𝑀𝑆𝐸𝑚𝑜𝑑 =  𝑀𝐸𝑓𝑓 (
 4 𝑊𝑂𝐵 

𝜋 𝑑𝑏𝑖𝑡
2 +  

480 𝑅𝑃𝑀 𝑇 

 𝑑𝑏𝑖𝑡
2 𝑅𝑂𝑃

)    (43) 

 

2.4.6. Hydromechanical Specific Energy 

In 2014, Mohan [6] modified Teale’s equation by adding a hydraulic term, which 

represents “the hydraulic force exerted by the impact of drilling fluid on the formation”. 

This impact force has a reaction force (pump off force) in accordance with Newton’s third 

law and thus, the effective WOB decreases. The impact force is calculated as follows: 

𝐹𝑗 =  0.000516 𝜌𝑚 𝑄 𝑉𝑛    (44) 

Where ρm is the mud density, Q is the flow rate, and Vn is the nozzle exit velocity. 

This study also says that only 25-40% of this hydraulic energy reaches formation and thus 

defines the ratio (Av) of nozzle jet velocity (Vn) to the return fluid velocity (Vf) 

considering that the available area of the total bit region is 15%. 

𝐴𝑣 =  
𝑉𝑛 

𝑉𝑓
=  

0.15 𝑑𝑏𝑖𝑡
2 

 𝑛 𝑑𝑛
2 

    (45) 

Where dn is the nozzle average diameter and n the number of nozzles.  

This publication also remarked how the energy available at the formation is affected 

by the distance to the nozzle. This energy is “inversely proportional to the square of the 

distance from the nozzle to formation”. Mohan presents a dimensionless variable (M) 

defined by Rabia that includes nozzle to formation distance (s), length of potential core 

(L), and the angle of axially symmetric jet (θ): 

𝑀 =  
𝑑𝑛 + 2 𝐿 𝑡𝑎𝑛(𝜃

2⁄ )

𝑑𝑛 + 𝑠 𝑡𝑎𝑛(𝜃
2⁄ )

    (46) 

With these variables, factor for reduction of energy is defined as follows: 

𝜂 =  
1 − 𝐴𝑣

−𝑘

𝑀2
    (47) 

Where k is different for each bit, and in this study is equal to 0.122 [6]. 
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Finally, HMSE is calculated using effective WOB (WOBe) as it was mentioned 

before and adding the hydraulic jet energy of the fluid to the formation (Eh) to the torsional 

(Et) and axial energy (Ea). 

𝐻𝑀𝑆𝐸 =  4 
 𝐸𝑎 + 𝐸𝑡 + 𝐸ℎ 

𝜋 𝑑𝑏𝑖𝑡
2 𝑅𝑂𝑃

    (48) 

𝐻𝑀𝑆𝐸 =  4 
 𝑊𝑂𝐵𝑒 𝑅𝑂𝑃 + 120 𝜋 𝑅𝑃𝑀 𝑇 +  𝜂 ∆𝑃𝑏 𝑄 

𝜋 𝑑𝑏𝑖𝑡
2 𝑅𝑂𝑃

    (49) 

Hydraulic energy is calculated as the multiplication of the factor for energy 

reduction (η), the pressure loss across the bit (ΔPb), and the flow rate (Q). According to 

this study [6], effective WOB is calculated as follows: 

𝑊𝑂𝐵𝑒 = 𝑊𝑂𝐵 −  𝜂 𝐹𝑗     (50)  

Bit pressure loss equation was taken from Aadnøy’s book [51]: 

∆𝑃𝑏 =  8 
𝜌𝑚 𝑄2

 𝜋2 𝑑𝑛
4  0.952 

    (51) 

Where ρm is the mud density. 
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3.Database Analysis 
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3.1. Johan Sverdrup Dataset 

In this work, a confidential dataset of six wells from Equinor’s Johan Sverdrup field 

was used. For confidentiality, wells will be named as follow: well 1, well 2, well 3, well 

4, well 5, and well 6. This field will be described briefly below.  

 

Johan Sverdrup Field 

Johan Sverdrup field started production in October 2019 with approximately 

435,000 barrels per day. It is the third largest field in the NCS and is powered with 

hydraulic energy from shore. According to Equinor [52], it is expected to produce 

535,000 barrels per day in mid-2021 and 720,000 barrels per day at plateau with a high 

recovery factor of 70% and low CO2 emissions.  

3.2. Data Import and Visualization 

The first step in database analysis is data import. It is vital to select the valid data 

for the model to save time in data processing. The database import was performed in each 

well, and each one has its own csv file and json file. For each well were selected 16 

features and since it is a time-based database, each physical parameter (any feature 

different than time) has its own sensor and therefore its own time feature. For a better 

understanding, a table is presented with the unit and data type of each parameter: 

Feature Units Data Type 

time_DB time units object 

Depth Bit meters float 

time_DH time units object 

Depth Hole meters float 

time_RPM time units object 

Rotary Speed rev/s float 

time_TOR time units object 

Torque N.m float 

time_WOB time units object 

Weight on Bit N float 

time_ROP time units object 

Rate of Penetration m/s float 

time_FR time units object 

Flow rate m3/s float 

time_SPP time units object 

Stand Pipe Pressure Pa float 

Table 1: Initial features from a representative well 
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Now, each parameter will be described. It is important to note that all the 

measurements were performed in the surface and during a time period since all 

information is time-based: 

• time_DB is the time measurement of the bit depth. It indicates the exact moment 

(day, hour, minute and second) at which the bit position (depth) was measured. 

• Depth Bit is the bit position. In this case the Measured Depth (MD). 

• time_DH is the time measurement of the hole depth (DH). It indicates the exact 

moment (day, hour, minute and second) at which the borehole depth was 

measured. 

• Depth Hole is the borehole position (depth), always higher than the bit depth. 

• time_RPM is the time measurement of the surface rotary speed (RPM). It indicates 

the exact moment (day, hour, minute and second) at which the RPM was 

measured. 

• Rotary Speed are the top drive revolutions measured from the surface.  

• time_TOR is the time measurement of the surface torque. It indicates the exact 

moment (day, hour, minute and second) at which the torque was measured. 

• Torque is the measurement of the surface torque. 

• time_WOB is the time measurement of the surface weight on bit (WOB). It 

indicates the exact moment (day, hour, minute and second) at which the WOB 

was measured. 

• Weight on Bit is the measurement of the surface weight on bit (WOB) 

• time_ROP is the time measurement of the rate of penetration (ROP). It indicates 

the exact moment (day, hour, minute and second) at which the ROP was measured. 

• Rate of Penetration is calculated over a time interval (usually 60 seconds), it 

measures the bit depth changes over time. 

• time_FR is the time measurement of the flow rate (Q). It indicates the exact 

moment (day, hour, minute and second) at which the flow rate was measured. 

• Flow Rate is measured from the mud pumps 

• time_SPP is the time measurement of the surface stand-pipe pressure (SPP). It 

indicates the exact moment (day, hour, minute and second) at which the SPP was 

measured. 

• Stand-Pipe Pressure is detected from a gauge located in the stan pipe. 
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3.3. Data Cleaning 

After selecting the necessary information, it is important to improve the quality of 

the data to implement Machine Learning models and perform Optimization. The cleaning 

is done in four different steps: handling missing values, handling faulty measurements, 

removing outliers and removing noise. Each of these steps will be explained in the 

following subsections.  

 

3.3.1. Handling Missing Values 

Since it is a time-based data, all parameters have its corresponding time column, 

which means the time where sensor measure certain parameter. All the data measurements 

were performed in the same timeframe (on each well), so for example the starting row 

and ending row in time_DB and time_DH columns are the same (could be one or two 

seconds of difference, but is neglectable). When watching data structure, it was clear that 

some values were missing in almost all columns and that these were located at the end of 

the data frame. This showed that the frequency of the measurements on the different 

features varies and therefore, some variables have higher number of measurements than 

others. Thus, a dataframe was created for each variable (8 different dataframes were 

created) and missing values were deleted. Fig. 10 illustrates data of well 3 after this 

process. 

 

Figure 10: Plot of the different variables vs. time for well 3. 

 

More pre-processing work was necessary prior to start removing outliers. Since it 

is very difficult to work with different time columns, it was necessary to merge all the 
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eight dataframes based on the time column with a higher number of measurements to 

avoid deleting relevant data. In all the wells time_DH was used as reference for merging 

except for the well number 2, where time_DB was used as reference.  

Consequently, some missing values appeared in the different variables and it was 

necessary to interpolate data to fill that information. Linear interpolation was used since 

the frequency of measurements is low (usually between 2 or 3 seconds). After removing 

all duplicates and missing values, the data structure changed and was ready to remove 

faulty measurements. Table 2 shows the new structure of the data. 

Feature Units Data Type 

time time units datetime 

Depth Bit meters float 

Depth Hole meters float 

Rotary Speed rev/min float 

Torque kN.m float 

Weight on Bit N float 

Rate of Penetration m/h float 

Flowrate l/min float 

Stand-Pipe Pressure kPa float 

Table 2: Initial features from a representative well after merging and interpolating. 

3.3.2. Handling Faulty Measurements 

Before removing outliers and noise it is necessary to delete some unnecessary data. 

Due to the frequency in sensors measurement (usually between 2 and 3 seconds) so many 

faulty measurements were recorded.  

The first step was to remove all non-drilling data and select only data where ROP 

was higher than 0. It is normal to have negative ROP values when tripping out (lift all the 

drill string due to bit change or another problem) since depth decreases.  

Secondly, negative WOB values were also deleted since this is not a realistic 

behaviour of drill string.  

 

3.3.3. Removing Outliers 

According to Sui [48], “an outlier is an observation point that is distant from other 

observations”. It also mentions that it can be due to an experimental error or variability 

in the measurement. The purpose of removing outliers in this study, was to narrow data 

in a realistic range [4]. Therefore, some outliers were removed manually after data 

observation and identifying some anomalies outside the range. In this case some 
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parameters were out of range, and flow rate lower than 2000 lt/min and Standpipe 

pressure lower than 5000 KPa were deleted. Also, in some wells ROP was out of the 

range and it was necessary to remove that noise that was not removed by the techniques 

explained below. After these steps, a more sophisticated technique is used to remove 

outliers, which is called the Interquartile Range (IQR). 

 

Interquartile Range (IQR) 

According to Hadi, “the interquartile range is the central 50% or the area between 

the 75th and the 25th percentile of a distribution” [53]. This is a solid method to remove 

points located far away from the range [44] and when the data is not normally distributed. 

However, relevant data could be incorrectly deleted, and it should be used carefully. This 

method uses the following formulas: 

𝐼𝑄𝑅 =  𝑃75 − 𝑃25    (52) 

Afterwards, the IQR technique uses the following upper and lower cut-offs: 

𝐿𝑜𝑤𝑒𝑟 𝐶𝑢𝑡𝑡 − 𝑜𝑓𝑓 =  𝑃25 − 1.5 𝐼𝑄𝑅    (53) 

𝑈𝑝𝑝𝑒𝑟 𝐶𝑢𝑡𝑡 − 𝑜𝑓𝑓 =  𝑃75 + 1.5 𝐼𝑄𝑅    (54) 

Consequently, a point that is not inside the range will be considered an outlier and 

removed. Results for applying the IQR method and removing outliers manually are 

presented below as an illustration in fig.11. 
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Figure 11: Variables vs. depth of well number 6 after removing outliers manually and using IPR method in well 1. 

 

3.3.4. Removing Noise 

To smooth data signals, filtering process was executed. In this study. a moving 

average filter was used, which formula is defined in the following way, as it is noted by 

Sui [48]: 

𝑦(𝑡) =
1

𝑛
(𝑥(𝑡−𝑛+1)  +  𝑥(𝑡−𝑛+2)  + ⋯ + 𝑥(𝑡))    (55) 

Applying Fourier transform: 

𝑥(𝑡 − 𝑘) ↔ 𝑋(𝑗𝑤)𝑒−𝑗𝑘𝑤    (56) 

𝑌(𝑗𝑤) =
1

𝑛
𝑋(𝑗𝑤)( 𝑒−𝑗𝑤(𝑛−1) + ⋯ + 𝑒−𝑗𝑤 + 1)    (57) 

Transfer function becomes: 

𝐻(𝑗𝑤) =
1 −  𝑒−𝑗𝑤𝑛

𝑛(1 − 𝑒−𝑗𝑤𝑛)
    (58) 

This filter was implemented in python using the syntax rolling, which is showed in 

the appendix. Results after applying median average filter in well 1 are shown in fig. 12. 

For more information, the code is available in the appendix. 
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Radius Neighbours Regressor  

Although filtering showed remarkable results in data quality, it is necessary to 

downsize data to removed noises that could not be removed by the moving average filter 

and for computational running. The data was initially time-based, but it is easy to handle 

and understand when it is depth-based. Besides, at this point it was required to separate 

data in different sections since each section will have a different machine learning model. 

Therefore, as the frequency of measurements is very low, many points share the same 

depth and the parameters were averaged and grouped by depth. Furthermore, it was 

necessary to evenly distribute the depths data points before ML modelling and Radius 

Neighbours Regressor were implemented. One example is shown in fig. 13. The data was 

reduced to 90%, but as it is seen, the pattern is the same and it has not been altered 

drastically. The code is written in the modelling part of the appendix, but it is considered 

a data cleaning technique, so it is described in this chapter. 

 

 

 

Figure 12: Variables vs. depth of well number 6 after removing noise using median average filter in well 1 
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Median Filter  

As Sui [48] mentions, median filter replaces data signals with the median of 

neighbours. This is done by providing the code a window size, which is the number of 

rows the filter takes when it is running. In this project, to remove the last outliers and 

smooth the signals, a median filter was applied at the end of the cleaning process. In order 

to perform this operation, the median_filter function from SciPy was adopted. The code 

implementation, along with all the cleaning process is attached in the appendix and is also 

written in the modelling part as it was executed after Radius Neighbors Regressor.  

 

Figure 13: Variables vs. depth of well number 6 after removing noise using median average filter and Radius Neighbors 

Regressor in well 1 section 26”. 

 

3.4. Data Selection 

Data selection was made based on the performance of the different ML models. 

Many well sections were tested, and only section26” from well 1 had good performance 

using Machine Learning with both ROP and Torque models. It is relevant to remark that 

this final selection was made after modelling all wells sections and not obtaining good 

results in both models. Considering this project uses ML data driven models, only relevant 
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data was selected where the ROP was in the same range in each well section. For both 

ROP and Torque models, Bit Depth (DB), Weight on Bit (WOB), top drive revolutions 

(RPM), and flow rate (Q) were selected as independent variables and ROP and Torque as 

dependent variables. 
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4.Machine Learning 

Implementation 
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In this chapter the implementation of distinctive Machine Learning algorithms will 

be explained. In this study, Python was used as coding language due to the reasons 

mentioned in Chapter 1 Section 2. Four ML algorithms were used and evaluated in all 

well sections, where each well section corresponds to a different casing size.  

To implement these ML models, Python library Skicit Learn was used. Random 

Forest (RF), Gradient Boosting (GB), AdaBoost (AB) and K-Nearest Neighbors (KNN) 

were evaluated in two different scenarios for ROP and Torque models that will be 

explained in the following section. Table 4.1 shows input features for all models. 

Feature Units Data Type 

Depth Bit meters float 

Rotary Speed rev/min float 

Weight on Bit kN float 

Flow rate L/min float 

Table 3: input features for ROP and Torque models. 

 

4.1. Data Split 

Most of the studies conducted in ROP modelling and/or optimization are not clear 

on how data was split. As Encinas [44] mentioned in his study, data must be separated 

into three parts to avoid model bias and overfitting: training set, validation set and test 

set. In this work, data was split into training and test set and was tested using sequential 

sampling and continuous learning sampling. 

As it was noted in Chapter 2 Section 2.3, there are three different types of data 

sampling: random sampling, sequential sampling, and continuous learning sampling. The 

first one is based on separate data randomly, for example selecting 70% percent of random 

data as training set and remaining 30% as test set. The problem with this approach has 

been described before and will not be extended. To the writer point of view, it is an 

unrealistic drilling scenario. 

Sequential sampling, however, represents a more realistic scenario. Here, data is 

split in the desired percentage but not randomized. Training data represents the section 

that has been drilled and the test data is compared with the predicted data, which is the 

section that is being drilled. For instance, 65% of initial data is selected as training set 

and the remaining as test set. Fig. 14 can easily explain the difference between the two 

types of data split.  
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Continuous training sampling is explained in the next chapter. For the purpose of 

modelling, this split technique was used to understand data and select sample data for 

optimization. Usually, when using this method, the performance metrics of the Machine 

Learning model improves while increasing the training set. Therefore, in the hypothetical 

case that the best metric performance is reached when 70% of data is selected as training 

data, 70% of data will be the sample. 

 

Figure 14: Sequential split (left) and continuous learning split (right). Blue cells represent the training set and white 

cells represent the test set. 

 

4.2. Performance metrics 

To evaluate the performance of each regression model, three different metrics have 

been chosen: Coefficient of Determination (R2), Mean Absolute Error (MAE), and 

standard deviation (std). Since in this study two models were implemented, for each 

model the same metrics were calculated. These three metrics are available in Python 

Scikit Library and therefore are very easy to implement in Jupyter Notebooks. These 

metrics are summarized below: 
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Coefficient of Determination (R2) 

According to many economists and statistics, R2 represents the percentage of   

variation in the dependent variable explained by variation in the independent variables 

[54]. This can be described by the following formula: 

𝑅2 =  1 − ∑
(𝑦𝑖 − 𝑦𝑝𝑖)

2

(𝑦𝑖 − 𝑦̅)2

𝑛

𝑖=1

    (59) 

Where yi is the real value of the variable that is being modelled (in this case ROP 

or Torque), 𝑦̅ is the mean value, and ypi is the predicted value. 

 

Mean Absolute Error (MAE) 

Mean Absolute Error is the measured error between predicted values and real values 

of a predeterminate variable. It is calculated as follows: 

𝑀𝐴𝐸 =  
∑ |𝑦𝑖 − 𝑦𝑝𝑖|

𝑛
𝑖=1

𝑛
    (60) 

 

Standard Deviation (std) 

According to [55], standard deviation measures the dispersion of a dataset relative 

to its mean. The formula is as follows: 

𝑠𝑡𝑑 =  √
∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1

𝑛 − 1
    (61) 

 

4.3. Regressors Implementation 

As was mentioned before, all the four ML models were implemented using Scikit 

Learn package. Although the ideal approach would be to perform hyperparameter tunning 

when creating all models, the technique was not applied due to run time consumption. A 

trial using GridSearchCV command from Scikit Learn was performed and it was 

discarded since this study’s goal is not focus on the model's accuracy but on ROP and 

Torque optimization. Moreover, this parameter tunning took much computer running time 

with meager improvements. Fig. 15 shows a schematic flow-chart of the process, 

obtaining the sample that will be used later for modelling. In this case, as it was explained, 

continuous learning approach is adopted. Both ROP and Torque models were 
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implemented at the same time, and the process was repeated four times, one for each 

Regressor. Heat maps of MAE are included in results chapter for a better understanding. 

 

Figure 15: Flow-chart of the continuous learning approach in ROP and Torque modelling. 

 

Once data was selected, it was necessary to create the ML models and evaluate their 

performance by calculating the metrics. In results chapter, some plots were printed to 

illustrate ML implementation. Fig. 16 shows a schematic flow-chart of the process, which 

is very similar to figure 15, but in this case using sequential split and thus, there is no 

model update since the process is not iterative. Here, ROP and Torque models are created 

simultaneously, and the process is repeated for each model. As it can be seen in fig. 11, 

in parts of the plot, RPM and flow rate are constant or there is little variation; thus ML 

models are not accurate. Only 26” sections are shown in the appendix in modelling 

results, as the other section models’ accuracy was very low. 

 

Figure 16: Flow-chart of the sequential split approach in ROP and Torque modelling. 

 

The regressors were implemented with no tunning and using the default parameters, 

and the most relevant are mentioned below: 

Random Forest: 

• n_estimators: number of trees in the forest. Default: 100 

• max_depth: maximum depth of the tree. Nodes are expanded until all leaves 

contain less than min_samples 

• max_depth_split: minimum number of samples to split a node. Default: 2. 
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Gradient Boosting: 

• loss: Loss function to be optimized. Default is Least square regression (‘ls’) 

• n_estimators: number of boosting stages to perform. Default is 100 

• min_samples_split: minimum number of samples required to split an internal 

node. Default: 2 

AdaBoost: 

• n_estimators: maximum number of estimators at which boosting is terminated. 

Default=50. 

• loss: loss function to update the weights after each boosting iteration. Default: 

’linear’. 

 

K-Nearest Neighbors: 

• n_neighbors: number of neighbours to use for k-neighbors queries. Default: 5 

• weights: weight function. Default: ’uniform’. 

• algorithm: Default: ’auto’. 
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5. Modelling and 
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Implementation 
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In this chapter, the optimization methodology will be explained. Once the 

modelling was implemented and all metrics were analysed, well number 1 section 26” 

was chosen due to being the only one with optimistic results in both models. From this 

section, only the top 60% was selected because of the rock lithology. At 900 m, the bit 

reached a different formation, so for this part of the study only a shale section of 500 m 

is considered.  

As said before, optimization was carried out along with modelling, where the model 

is updated each fixed-step and optimization is performed in the next step. As Tunkiel [28] 

says, continuous learning is a good approach since “it does not require information from 

reference wells” and “do not suffer problems like difference in equipment used between 

the wells and changes in logged attributes.”  

For a better understanding of this approach, the method's representation is shown 

in figure 14, where each blue cell represents the training sample and the white cell test 

sample. To start optimization, a small portion of the dataset for the first training set is 

needed. This work starts with 10% of the training data, which corresponds to 

approximately 80 meters of drilled rock. A drilling step of 30 meters is considered based 

on the length of a joint/stand [32]. Subsequently, new data is gathered and the ML model 

is updated. This process is iterated until step n-1, where n is the number of iterations the 

algorithm is run, where the bottom of the optimization selected data is reached. This loop 

is repeated for each ML technique and for each optimizer, having eight different results 

to compare. Optimization flow-chart is shown in fig. 17 and relevant part of the code is 

written in the appendix. 

 

Figure 17: Modelling and Optimization flow-chart 
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5.1. Optimization Algorithms and constrains 

Two optimization algorithms were used in this work: Differential Evolution (DE) 

and Particle Swarm Optimization (PSO). As described in chapter 2, both are part of 

metaheuristic optimization algorithms and population-based methods (for more 

information check Luke’s book, pages 54-58 [35]). The implementation of these 

optimizers is straightforward since both can be found on the internet. However, 

parameters tunning differs in both cases. 

On the one hand, the application is quite simple for DE algorithm as it is included 

in Scipy library. For the implementation, no parameter tuning was executed and, default 

values were used. The most relevant parameters are the following: 

• maxiter (maximum number of generations): 1000 

• popsize (population size): 15 

• tol (Relative tolerance for convergence): 0.01 

• mutation: 0.5 

• recombination (crossover): 0.7 

On the other hand, PSO algorithm was implemented using one of the optimizers 

included in PySwarms library. The optimizer chosen was the global-best Particle Swarm 

Optimizer, where every particle compares itself with the best-performing particle in the 

swarm (more details of the code are in the appendix).  Due to its nature, PSO needed two 

functions to be executed. The most relevant parameters are tunned as follows:  

• c1 (proportion of the original velocity retained): 0.5 

• c2 (proportion of the personal best (location) to be retained): 0.3 

• w (proportion of the informants’ best location to be retained): 0.9 

• n_particles (number of particles): 10 

• iters (maximum number of iterations): 100 

• dimensions (number of variables, in this case WOB, Q, RPM): 3 

In both cases, bounds are the constrain of the problem. It is vital to mention that in 

this study, hole cleaning and bit vibrations are not considered; therefore, the range of the 

constraints is wide. For the optimization, the bounds selected were the range of the three 

variables in the section (WOB, Q, RPM). The ML models used for optimization have four 

inputs (DB, WOB, RPM, Q) so, when optimizing, it was necessary to give a fix depth 

value to the function. Consequently, the depth centre of the predicted 30-meter section 
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was chosen for this purpose. The three controllable parameters bounds were defined as 

follows: 

𝑊𝑂𝐵 [𝑘𝑁] = [10, 200] 

𝑄 [𝐿/𝑚𝑖𝑛] = [3500, 5000] 

𝑅𝑃𝑀 [𝑟𝑒𝑣/𝑚𝑖𝑛] = [70, 180] 
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6. Results and Discussion  
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6.1. Modelling Results 

As mentioned in Chapter 4, the modelling was performed in two steps. First, a 

continuous learning split approach was completed to understand data. To illustrate this 

method, a heat map was chosen, where each Machine Learning performance was 

evaluated using MAE. From the author's point of view, MAE should decrease while the 

model gathers more data, and based on this hypothesis, the goal is to find the percentage 

of dataset that makes this possible. Figures 18 and 19 show ROP and Torque MAEs for 

each model. The x-axis represents the percentage of the dataset that is evaluated (training 

set + test set). The model starts with 10% of initial training data and 10% of test data. 

Then, the model is updated, and 20% of the dataset represents the training data, and the 

following 10% is the test data. This process is iterated until 90% of the data is trained. 

Only relevant part of the code is included in the appendix for more information. For heat 

map colour representation, maximum values in the scale are 10 m/h and 3 kN.m since 

they represent 15% of the maximum ROP and Torque values. 

 

 

Figure 18: ROP models’ MAEs using continuous learning approach 
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Figure 19: Torque models’ MAEs using continuous learning approach from one of the well sections 

 

Afterwards, 60% of the dataset was selected, and the same four ML algorithms were 

implemented using a sequential split approach in all wells (only plots from well 1 section 

26" are shared in this chapter since they are the ones with the best performance metrics). 

Tables 4 and 5 show the performance metrics evaluated in the different models, yielding 

some conclusions along with figures 20 and 21. Here it can be seen how good is the 

prediction using Gradient Boosting algorithm, where test data is compared with predicted 

data for ROP and Torque models. Since test data in the Torque model is not in the same 

range as training data (training data is between 1 and 13 kN.m and test data is between 1 

and 17 kN.m) the model performance is not quite good but still catch abrupt changes. 

 

Table 4 and Table 5: Performance metrics for Machine Learning models using60/40 split (Torque model on the left 

and ROP model on the right) from well1 section 26”. 
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Figure 20: Gradient Boosting algorithm plot ROP vs. depth using 60/40 split from well1 section 26”. Predicted data 

(blue) is evaluated against test data (green). 

 

 

Figure 21: Gradient Boosting algorithm plot Torque vs. depth using 60/40 split from well1 section 26”. Predicted data 

(blue) is evaluated against test data (green). 

 

In the case of the ROP model, on the other hand, training and test data are in the 

same range and have an acceptable prediction for optimization purposes. 
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6.2. Modelling and Optimization Results 

In this section, results from part 3 of the study will be exposed. As was mentioned in 

section 2.3, two optimization algorithms were implemented in this study using continuous 

learning split approach to simulate drilling conditions. With this technique, only a tiny 

part of the dataset is known (10%, which is approximately 80 meters), and the model is 

updated every 30 meters as it is the length of a drill string stand. Therefore, with the 

parameters mentioned in Chapter 5, the two optimizers were executed using the same four 

ML models. From left to right in figure 22, the code runtime is illustrated using Random 

Forest, Gradient Boosting, AdaBoost and K-Nearest Neighbors algorithms. 

 

Figure 22: Code Runtime (seconds) for the two optimizers (Differential Evolution in blue and Particle Swarm in red) 

and using RF, GB, AB, and KN with the same parameters. 

 

It is essential to mention that runtime corresponds to the total time of the process, 

which is modelling update and optimization of all the selected section. Furthermore, the 

number of iterations using the PSO algorithm is 100, while DE used 1000. This is not 

relevant since PSO converged to the solution before 100 iterations, but it was modified 

because using 1000 iterations with PSO was very time-consuming. The most pertinent 

analysis is that run time is considerably higher and is more affected by the ML model 

than optimizer, although DE is faster. As a result, only GB and KN show the most rapid 

optimization. 

Afterwards, Hydromechanical Specific Energy (HMSE) was implemented and 

calculated for all the section. HMSE and Torque were calculated for all ROP models, 

using the Torque model's prediction and HMSE equation from Chapter 2.4. Alternatively, 

the ROP and HMSE were calculated using ROP model's prediction and HMSE equation 
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for Torque models. It is important to mention that values of the potential core length (L), 

the distance between the nozzle to the formation (s), and the angle of axially symmetric 

jet were assumed as 156 in, 8 in, and 3 degrees, respectively, based on values used in 

Berg's study [56]. The constant k has the same value as in Mohan's paper [6] (k=0.122). 

First, to avoid confusion, the term growth rate as the percentage change of any variable 

in terms of the average of the optimized 30-meter section will be defined. The growth rate 

equation is as follows: 

𝐺𝑅 =
𝑥𝑜𝑝𝑡 − 𝑥𝑎𝑣 

𝑥𝑎𝑣
    (62) 

Where xopt is the optimal value of ROP, Torque or HMSE and xav the average value 

of same parameters in the 30-meter section. Eventually, growth rate was calculated for 

the three parameters in both models to evaluate the optimization. Figures 23 and 24 

highlight growth rates using Gradient Boosting Torque model and AdaBoost ROP model, 

respectively. Values were achieved by adopting Differential Evolution algorithm since it 

is faster. More plots are available in the appendix. 

 

Figure 23: ROP (blue), HMSE (red) and Torque (green) growth rate using GB Torque and ROP model and DE 

combination.  Growth rate is negative because the three parameters decrease. 

 

Finally, a bar chart was created to show the three variables' average growth rate 

using the four ML models and DE algorithm. Based on these plots, there is an average 

growth rate nearly 48% when maximizing ROP. However, this approach raises the HMSE 

closer than 50%, which is not desirable. On the other hand, when minimizing Torque, 

HMSE decreases on average 50% but ROP also drops but only 20%. 
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Figure 24: ROP (blue), HMSE (red) and Torque (green) growth rate using AB ROP and Torque ROP model and DE 

combination.  

 

Figure 25: ROP (blue), HMSE (red), and Torque (green) average growth for all ML models for ROP optimization 

(maximize ROP) using DE algorithm. 

 

 

Figure 26: ROP (blue), HMSE (red), and Torque (green) average growth for all ML models for Torque optimization 

(minimize Torque) using DE algorithm. 
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6.3. Sensitivity Analysis 

In the last part of this study, a sensitivity analysis was conducted to evaluate 

Machine Learning algorithms' performance. Since it was impossible to perform a field 

experiment for model evaluation, a sensitivity analysis is an alternative technique to 

evaluate how sensitive the ML models are to variations on its parameters. Two different 

techniques were used in this research. Consequently, the four ML models were 

implemented using default parameters described in Chapter 4 using a 60/40 data split 

approach and DE as optimizer. Modelling and optimization were performed once per 

model, and optimal parameters were obtained from the process (maximum ROP and 

optimal WOB, Q and RPM for the ROP model and minimum Torque and optimal WOB, 

Q and RPM for the Torque model). The bit depth was set at the centre of the test section. 

In the first case, each model is evaluated using the optimal parameters from the other 

models. For instance, when ROP is calculated using the optimal values from RF, ROP 

using GB model and RF optimal features is calculated. Also, the same process with ROP 

using AB model and KNN model is repeated. This process is then replicated for the three 

remaining algorithms. Figures 27 and 28 show a bar chart for Torque and ROP models 

where this analysis is executed. Here, 4 groups of 4 bars are represented. Each group 

corresponds to the sensitivity analysis of the ROP using the same optimal parameters 

from the model indicated in x-axis. For example, in Fig. 6.10 the first group conforms to 

the Torque values of the four ML models using optimal parameters from Random Forest. 

 

Figure 27: Sensitivity analysis case 1 for Torque models. The x-axis represents the model whose optimal parameters 

are implemented. 
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Figure 28: Sensitivity analysis case 1 for ROP models. The x-axis represents the model whose optimal parameters are 

implemented. 

 

From figures 27 and 28, KNN Torque model is very sensitive to any parameter 

variation, and RF is not affected by WOB, which is strange. GB and AB are very 

influenced by parameter changes, but they will be analysed with more detail doing the 

case 2 analysis. From ROP models, it is clear that WOB plays a relevant role. 

In the second case, each model was individually tested by a variation of 20% of its 

input parameters (Bit Depth, WOB, Q, and RPM), based on optimal values. For instance, 

GB Torque model was evaluated first by varying only Depth Bit in -20% and 20%. 

Therefore, it can be assessed how sensitive each model is to the variation of all input 

parameters. Figures 29 and 30 illustrate this analysis. 

From figures 29 and 30, it can be deduced that KNN model is susceptible to small 

fluctuations, both ROP and Torque model, which makes it no reliable. AB and GB ROP 

models are unaffected by WOB and bit position variations, which is not associated with 

the theory. RF ROP model is also unaffected by bit position variations. 

On the other hand, all Torque models are very receptive to bit position and rotary 

speed changes, while they are no responsive to WOB changes. 
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Figure 29: Sensitivity analysis case 2 for Torque models.  

 

 

Figure 30: Sensitivity analysis case 2 for ROP models.  

 

Lastly, it is crucial to indicate the nature of all ML models, summarized in Chapter 

2 Section 4. RF, GB, and AB are based on decision trees, and prediction could have the 

shape of figure 2 or figure 21, where the predicted variable is sometimes flat, so the input 

parameter variation does not change the expected value. Alternatively, KNN has no 

explicit training process, so it is unstable and changes by minor input variations.  
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6.4. Discussion 

The goal of this study is to maximize ROP and/or minimize Torque in real-time. 

Therefore, the most crucial part of the study is the optimizer performance and runtime, 

leaving the model development as a second priority. Consequently, this causes that ML 

models were not as accurate as in other studies. This discussion will focus on three 

different aspects that were not covered or not successfully achieved by this study.  

The first part is the use of deep learning. It is important to remark that the hardware 

availability (a personal computer with a simple GPU) limited the author in implementing 

deep learning models. The reason is that deep learning requires a lot of computation. 

Ahmed, Al-AbdulJabbar, Alali, Brenjkar, and Manta [21] [23] [4] [22] [24] obtained very 

accurate models using ANN, all with R2 values over 0.9, which shows how proficient are 

these ML algorithms for ROP modelling. Encinas and Tunkiel [44] [27] also achieved 

remarkable ROP prediction using RNN. Thus, using cloud computing, the model 

development should improve even knowing that it is necessary to update each model for 

every 30 meters during optimization. The solution proposed in this model is for a simple 

computer that is usually available in rig operations. 

Second part is regarding data quality. When using physics-based ROP models, it is 

essential to use downhole measurements or downhole corrections. Otherwise, it will 

produce wrong results. In fact, Encinas [44] showed on his model that the best approach 

is using a mix of surface and downhole WOB values as inputs for his long short-term 

memory (LSTM) model. For instance, setting downhole RPM as input in 26" sections 

instead of surface RPM improved the models. So, calculating downhole Torque and WOB 

would have undeniably improved ML model development. 

Finally, the last topic is regarding the constraints during ROP and Toque 

optimization. Hedge [7], for instance, included drilling vibrations as a constrain to "ensure 

that calculated optimal drilling parameters do not induce excessive vibrations." 

Therefore, additional analysis regarding drilling vibrations, hole cleaning, borehole 

stability, and pressure variation must be performed to achieve more realistic optimal 

drilling parameters. 
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7. Conclusions and Future 

Work 
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After completing this study, a real-time data driven and optimization model was 

achieved using Johan Sverdrup wells. The most important conclusions are summarized 

below:  

A dataset of 6 wells was analysed, with 16 different features. To select the 

appropriate section was necessary to clean and pre-processed all data.  

A continuous learning approach was successfully implemented to select data in the 

same range in all well sections during model development. Surface data such as 

controllable parameters like WOB, flow rate and rotary speed and also bit position were 

used as input in both ROP and Torque models. MAE was calculated and used as filter to 

measure model's performance. Random Forest (RF), Gradient Boosting (GB), K-Nearest 

Neighbours (KNN) and AdaBoost ML algorithms were tested.  

A sequential split approach was executed using 60/40 split to select the well 

sections to optimize. Good results were achieved only in well 1 section 26" using WOB, 

flow rate, RPM, and bit position as inputs for both models and testing RF, AB, GB, and 

KNN models. 

Modelling and optimization were auspiciously completed using the continuous 

learning approach, updating the model every 30 meters, and predicting and optimizing 

the next stand. The four ML models were implemented (RF, GB, AB, and KNN) among 

the two algorithms of stochastic optimization: Differential Evolution (DE) and Particle 

Swarm Optimizer (PSO). In total, 8 combinations were tested, and the mix of GB and DE 

was the best based on the metric features and code running time. During optimization, the 

centre of the predicted next stand was used as input, and the controllable drilling 

parameters constraints were chosen only to fit in the data range. 

Finally, a sensitivity analysis was performed to evaluate Machine Learning 

algorithms' performance to substitute a field experiment validation. Two scenarios were 

simulated, one considering each model using the optimal parameters from the other 

models and the other testing each model by a variation of 20% of its input parameters. 

Results showed strong dependence on WOB in ROP models and high sensitivity of 

Torque models in bit position and rotary speed. This analysis also demonstrates the four 

ML models limitations since three are based on trees (see Chapter 2 section 4, RF, AB 

and GB theory) and KNN has no explicit training process, therefore its sensitivity to all 

inputs variations.  
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This work aims to create a methodology for drilling optimization, either by 

maximizing ROP or minimizing HMSE (by minimizing Torque) in real-time using data 

driven models, modifying controllable surface parameters. As mentioned in the 

discussion, many limitations will be outlined below as future work: 

1. Previous studies [21] [23] [4] [22] [44] [27] revealed that Neural Networks achieve 

remarkable results when using in ROP prediction. The limitation in this model was 

the hardware used and this problem could be solved using cloud computing. Thus, a 

more accurate model will reach better predictions and consequently more realistic 

optimization. 

2. Data quality is of vital importance since this study is a data driven approach. Only 

rotary speed was corrected from surface, and with WOB and Torque corrections the 

model accuracy would definitively improve. 

3. No specific constraints were selected during optimization, which would make a more 

realistic and complete model. These bounds can be modified based on drilling 

vibrations, hole cleaning, borehole stability, and pressure variation among other 

drilling issues. 
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Results Modelling 

 

Table 6: Mean Absolute Error (MAE), coefficient of determination (R2) and standard deviation (std) for Torque models 

from well 1 section 16”. 

 

Table 7: Mean Absolute Error (MAE), coefficient of determination (R2) and standard deviation (std) for ROP models 

from well 1 section 16”. 

 

 

Figure 31: Gradient Boosting algorithm plot Torque vs. depth using 60/40 split from well 1 section 16”. Predicted data 

(blue) is evaluated against test data (green). 
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Figure 32: Gradient Boosting algorithm plot ROP vs. depth using 60/40 split from well 1 section 16”. Predicted data 

(blue) is evaluated against test data (green). 

 

 

Table 8: Mean Absolute Error (MAE), coefficient of determination (R2) and standard deviation (std) for Torque models 

from well 2 section 26”. 

 

 

Table 9: Mean Absolute Error (MAE), coefficient of determination (R2) and standard deviation (std) for ROP models 

from well 2 section 26”. 
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Figure 33: Gradient Boosting algorithm plot ROP vs. depth using 60/40 split from well 2 section 26”. Predicted data 

(blue) is evaluated against test data (green). 

 

 

Figure 34: Gradient Boosting algorithm plot Torque vs. depth using 60/40 split from well 2 section 26”. Predicted data 

(blue) is evaluated against test data (green). 
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Table 10: Mean Absolute Error (MAE), coefficient of determination (R2) and standard deviation (std) for Torque 

models from well 3 section 26”. 

 

Table 11: Mean Absolute Error (MAE), coefficient of determination (R2) and standard deviation (std) for ROP models 

from well 3 section 26”. 

 

 

Figure 35: Gradient Boosting algorithm plot ROP vs. depth using 60/40 split from well 3 section 26”. Predicted data 

(blue) is evaluated against test data (green). 
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Figure 36: Gradient Boosting algorithm plot Torque vs. depth using 60/40 split from well 3 section 26”. Predicted data 

(blue) is evaluated against test data (green). 

 

 

Table 12: Mean Absolute Error (MAE), coefficient of determination (R2) and standard deviation (std) for Torque 

models from well 4 section 26”. 

 

 

Table 13: Mean Absolute Error (MAE), coefficient of determination (R2) and standard deviation (std) for ROP models 

from well 4 section 26”. 
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Figure 37: Gradient Boosting algorithm plot ROP vs. depth using 60/40 split from well 4 section 26”. Predicted data 

(blue) is evaluated against test data (green). 

 

 

Figure 38: Gradient Boosting algorithm plot Torque vs. depth using 60/40 split from well 4 section 26”. Predicted data 

(blue) is evaluated against test data (green). 
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Table 14: Mean Absolute Error (MAE), coefficient of determination (R2) and standard deviation (std) for Torque 

models from well 5 section 26” 

 

Table 15: Mean Absolute Error (MAE), coefficient of determination (R2) and standard deviation (std) for ROP models 

from well 5 section 26” 

 

 

Figure 39: Gradient Boosting algorithm plot Torque vs. depth using 60/40 split from well 5 section 26”. Predicted data 

(blue) is evaluated against test data (green). 



75 

 

 

Figure 40: Gradient Boosting algorithm plot ROP vs. depth using 60/40 split from well 5 section 26”. Predicted data 

(blue) is evaluated against test data (green). 

 

Table 16: Mean Absolute Error (MAE), coefficient of determination (R2) and standard deviation (std) for Torque 

models from well 6 section 26”. 

 

 

Table 17: Mean Absolute Error (MAE), coefficient of determination (R2) and standard deviation (std) for ROP models 

from well 6 section 26”. 
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Figure 41: Gradient Boosting algorithm plot ROP vs. depth using 60/40 split from well 6 section 26”. Predicted data 

(blue) is evaluated against test data (green). 

 

 

Figure 42: Gradient Boosting algorithm plot Torque vs. depth using 60/40 split from well 6 section 26”. Predicted data 

(blue) is evaluated against test data (green). 
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Results Optimization PSO 

 

Figure 43: ROP (blue), HMSE (red) and Torque (green) growth rate using GB Torque model and PSO combination.  

Growth rate is negative because the three parameters decrease. 

 

 

 

Figure 44: ROP (blue), HMSE (red) and Torque (green) growth rate using GB ROP model and PSO combination.   
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 Figure 45: ROP (blue), HMSE (red) and Torque (green) average growth rate for all ML models for ROP optimization 

(maximize ROP) using PSO algorithm. 

 

 

 

Figure 46: ROP (blue), HMSE (red) and Torque (green) average growth rate for all ML models for ROP optimization 

(maximize ROP) using PSO algorithm. 

 

 

 

 

 

 

 

 

 



79 

 

Python Code 

 

Cleaning Part 

# Import all the libraries: 

import numpy as np 
import pandas as pd 
from sklearn.ensemble import GradientBoostingRegressor 
import matplotlib.pyplot as plt 
from scipy.optimize import differential_evolution, least_squares 
from sklearn.ensemble import RandomForestRegressor 
from sklearn.ensemble import AdaBoostRegressor 
from sklearn.neighbors import KNeighborsRegressor 
from sklearn.metrics import mean_absolute_error as MAE 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import r2_score 
import seaborn as sns 
from matplotlib.dates import DateFormatter 
from datetime import datetime, timedelta, date 
import plotly.express as px 
import plotly.graph_objects as go 
from plotly.subplots import make_subplots 
 

# Convert in datetime and to numeric 

df['time_DB'] = pd.to_datetime(df['time_DB']) 
df['time_DH'] = pd.to_datetime(df['time_DH']) 
df['time_RPM'] = pd.to_datetime(df['time_RPM']) 
df['time_TOR'] = pd.to_datetime(df['time_TOR']) 
df['time_WOB'] = pd.to_datetime(df['time_WOB']) 
df['time_ROP'] = pd.to_datetime(df['time_ROP']) 
df['time_FR'] = pd.to_datetime(df['time_FR']) 
df['time_SPP'] = pd.to_datetime(df['time_SPP']) 
 
df['Depth Bit[m]'] = pd.to_numeric(df['Depth Bit[m]']) 
df['Depth Hole[m]'] = pd.to_numeric(df['Depth Hole[m]']) 
df['RPM[rev/s]'] = pd.to_numeric(df['RPM[rev/s]']) 
df['Torque[N.m]'] = pd.to_numeric(df['Torque[N.m]']) 
df['WOB[N]'] = pd.to_numeric(df['WOB[N]']) 
df['ROP[m/s]'] = pd.to_numeric(df['ROP[m/s]']) 
df['Flow rate[m3/s]'] = pd.to_numeric(df['Flow rate[m3/s]']) 
df['Stand Pipe Pressure[Pa]'] = pd.to_numeric(df['Stand Pipe Pressure[Pa]']) 
 
# Create dataframe for each parameter: 
df_DB = pd.concat([df['time_DB'] , df['Depth Bit[m]'] ], join = 'outer', axis = 1)  
df_DH = pd.concat([df['time_DH'] , df['Depth Hole[m]'] ], join = 'outer', axis = 1) 
df_RPM = pd.concat([df['time_RPM'] , df['RPM[rev/s]'] ], join = 'outer', axis = 1) 
df_TOR = pd.concat([df['time_TOR'] , df['Torque[N.m]'] ], join = 'outer', axis = 1) 
df_WOB = pd.concat([df['time_WOB'] , df['WOB[N]'] ], join = 'outer', axis = 1) 
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df_ROP = pd.concat([df['time_ROP'] , df['ROP[m/s]'] ], join = 'outer', axis = 1) 
df_FR = pd.concat([df['time_FR'] , df['Flow rate[m3/s]'] ], join = 'outer', axis = 1) 
df_SPP = pd.concat([df['time_SPP'] , df['Stand Pipe Pressure[Pa]'] ], join = 'outer', axis = 1) 
 

# using Dropna, delete all rows with missing values: 
 
df_DB = df_DB.dropna() 
df_DH = df_DH.dropna()  
df_RPM = df_RPM.dropna() 
df_TOR = df_TOR.dropna() 
df_WOB = df_WOB.dropna() 
df_ROP = df_ROP.dropna() 
df_FR = df_FR.dropna() 
df_SPP = df_SPP.dropna() 
 
 
# Check duplicates: 
 
print('no. of duplicates DB', df_DB.duplicated().sum(axis=0)) 
print('no. of duplicates DH', df_DB.duplicated().sum(axis=0)) 
print('no. of duplicates RPM', df_RPM.duplicated().sum(axis=0)) 
print('no. of duplicates Torque', df_TOR.duplicated().sum(axis=0)) 
print('no. of duplicates WOB', df_WOB.duplicated().sum(axis=0)) 
print('no. of duplicates ROP', df_ROP.duplicated().sum(axis=0)) 
print('no. of duplicates FR', df_FR.duplicated().sum(axis=0)) 
print('no. of duplicates SPP', df_SPP.duplicated().sum(axis=0)) 
 

# Create function using plotly to plot variables vs. depth: 
 
from plotly.subplots import make_subplots 
def plotly_vars_depth(df_sample, section): 
    if section == "section 26": 
        Titles = ['ROP[m/h]', 'WOB[kN]', 'Torque[kN.m]', 'Flow rate[L/min]', 'Stand Pipe 
Pressure[kPa]', 'Downhole RPM[rev/min]'] 
    else: 
        Titles = ['ROP[m/h]', 'WOB[kN]', 'Torque[kN.m]', 'Flow rate[L/min]', 'Stand Pipe 
Pressure[kPa]', 'RPM[rev/min]'] 
    fig = make_subplots(rows=1, cols=6, subplot_titles=Titles, shared_yaxes = True) 
    for i in range(6):     
        fig.add_trace(go.Scatter(x=df_sample[Titles[i]], y=df_sample["Depth Hole[m]"]),row=1, 
col=i+1) 
    for i in fig['layout']['annotations']: 
        i['font']['size'] = 10 
         
    fig.update_yaxes(autorange="reversed") 
    fig.update_yaxes(title_text = 'Depth Hole[m]',title_font_size=10, row =1, col=1) 
    fig.update_layout(height=800, width=1000, showlegend=False, title="Variables vs. Hole 
Depth",) 
    fig.show() 
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# First, we change the name of column in all datasets: 
 
df_DB = df_DB.rename(columns={'time_DB':'time'}) 
df_DH = df_DH.rename(columns={'time_DH':'time'}) 
df_RPM = df_RPM.rename(columns={'time_RPM':'time'}) 
df_ROP = df_ROP.rename(columns={'time_ROP':'time'}) 
df_WOB = df_WOB.rename(columns={'time_WOB':'time'}) 
df_TOR = df_TOR.rename(columns={'time_TOR':'time'}) 
df_FR = df_FR.rename(columns={'time_FR':'time'}) 
df_SPP = df_SPP.rename(columns={'time_SPP':'time'}) 
 
# Then we merge the dataframes: 
 
df1 = pd.merge_asof(df_DH,df_DB,on='time', tolerance = pd.Timedelta('0.1s')) 
df2 = pd.merge_asof(df_ROP, df_RPM, on='time', tolerance = pd.Timedelta('0.1s')) 
df3 = pd.merge_asof(df_WOB, df_TOR, on='time', tolerance = pd.Timedelta('0.1s')) 
df4 = pd.merge_asof(df_FR, df_SPP, on='time', tolerance = pd.Timedelta('0.1s')) 
df5 = pd.merge_asof(df1, df2, on='time', tolerance = pd.Timedelta('0.1s')) 
df6 = pd.merge_asof(df3, df4, on='time', tolerance = pd.Timedelta('0.1s')) 
df_merged = pd.merge_asof(df5, df6, on='time', tolerance = pd.Timedelta('0.1s')) 
 
# Print all histograms: 
fig2 = plt.figure(figsize=(15, 8)) 
grid = plt.GridSpec(4, 2, hspace=0.5) 
ROP_hist = fig2.add_subplot(grid[0,0]) 
WOB_hist = fig2.add_subplot(grid[1, 0]) 
RPM_hist = fig2.add_subplot(grid[2, 0]) 
DB_hist = fig2.add_subplot(grid[0, 1]) 
DH_hist = fig2.add_subplot(grid[1, 1]) 
Tor_hist = fig2.add_subplot(grid[2, 1]) 
FR_hist = fig2.add_subplot(grid[3, 0]) 
SPP_hist = fig2.add_subplot(grid[3, 1]) 
 
ROP_hist.hist(df_ROP['ROP[m/s]']) 
ROP_hist.set(title="ROP[m/s]") 
WOB_hist.hist(df_WOB['WOB[N]']) 
WOB_hist.set(title="WOB[N]") 
RPM_hist.hist(df_RPM['RPM[rev/s]']) 
RPM_hist.set(title='RPM[rev/s]') 
DB_hist.hist(df_DB['Depth Bit[m]']) 
DB_hist.set(title="Depth Bit[m]") 
DH_hist.hist(df_DH['Depth Hole[m]']) 
DH_hist.set(title="Depth Hole[m]") 
Tor_hist.hist(df_TOR['Torque[N.m]']) 
Tor_hist.set(title="Torque[N.m]") 
FR_hist.hist(df_FR['Flow rate[m3/s]']) 
FR_hist.set(title="Flow rate[m3/s]") 
SPP_hist.hist(df_SPP['Stand Pipe Pressure[Pa]']) 
SPP_hist.set(title="Stand Pipe Pressure[Pa]") 
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plt.show() 
 
# Interpolation: 
 
df_test = df 
df_test['ROP[m/s]'] = df_test['ROP[m/s]'].interpolate() 
df_test['WOB[N]'] = df_test['WOB[N]'].interpolate() 
df_test['Torque[N.m]'] = df_test['Torque[N.m]'].interpolate() 
df_test['RPM[rev/s]'] = df_test['RPM[rev/s]'].interpolate() 
df_test['Depth Bit[m]'] = df_test['Depth Bit[m]'].interpolate() 
df_test['Flow rate[m3/s]'] = df_test['Flow rate[m3/s]'].interpolate() 
df_test['Stand Pipe Pressure[Pa]'] = df_test['Stand Pipe Pressure[Pa]'].interpolate() 
 
# Convert in desirable units 
 

df.columns = ['time','Depth Hole[m]', 'Depth Bit[m]', 'ROP[m/h]', 'RPM[rev/min]', 'WOB[kN]', 
'Torque[kN.m]', 'Flow rate[L/min]', 'Stand Pipe Pressure[kPa]'] 
df["ROP[m/h]"] = df["ROP[m/h]"]*3600 
df['RPM[rev/min]'] = df['RPM[rev/min]']*60 
df['WOB[kN]'] = df['WOB[kN]']*0.001 
df['Torque[kN.m]'] = df['Torque[kN.m]']*0.001 
df['Flow rate[L/min]'] = df['Flow rate[L/min]']*60000 
df['Stand Pipe Pressure[kPa]'] = df['Stand Pipe Pressure[kPa]']*0.001 
 
# Removing outliers 
 
Q1_ROP = df['ROP[m/h]'].quantile(0.25) 
Q3_ROP = df['ROP[m/h]'].quantile(0.75) 
IQR_ROP = Q3_ROP - Q1_ROP 
 
Q1_RPM = df['RPM[rev/min]'].quantile(0.25) 
Q3_RPM = df['RPM[rev/min]'].quantile(0.75) 
IQR_RPM = Q3_RPM - Q1_RPM 
 
Q1_TOR = df['Torque[kN.m]'].quantile(0.25) 
Q3_TOR= df['Torque[kN.m]'].quantile(0.75) 
IQR_TOR = Q3_TOR - Q1_TOR 
 
 
Q1_WOB = df['WOB[kN]'].quantile(0.25) 
Q3_WOB = df['WOB[kN]'].quantile(0.75) 
IQR_WOB = Q3_WOB - Q1_WOB 
 
Q1_SPP = df['Stand Pipe Pressure[kPa]'].quantile(0.25) 
Q3_SPP = df['Stand Pipe Pressure[kPa]'].quantile(0.75) 
IQR_SPP = Q3_SPP - Q1_SPP 
 
Q1_FR = df['Flow rate[L/min]'].quantile(0.25) 
Q3_FR= df['Flow rate[L/min]'].quantile(0.85) 
IQR_FR = Q3_FR - Q1_FR 
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print('ROP:', Q3_ROP+1.5*IQR_ROP, Q1_ROP-1.5*IQR_ROP) 
print('RPM:', Q3_RPM+1.5*IQR_RPM, Q1_RPM-1.5*IQR_RPM) 
print('Torque:', Q3_TOR+1.5*IQR_TOR, Q1_TOR-1.5*IQR_TOR) 
print('WOB:', Q3_WOB+1.5*IQR_WOB, Q1_WOB-1.5*IQR_WOB) 
print('SPP:', Q3_SPP+1.5*IQR_SPP, Q1_SPP-1.5*IQR_SPP) 
print('FR:', Q3_FR+1.5*IQR_FR, Q1_FR-1.5*IQR_FR) 
 
df_test_out = df[(Q1_ROP-1.5*IQR_ROP)<=df['ROP[m/h]']] 
df_test_out = df[df['ROP[m/h]']<=(Q3_ROP+1.5*IQR_ROP)] 
 
df_test_out = df[(Q1_RPM-1.5*IQR_RPM)<=df['RPM[rev/min]']] 
df_test_out = df[df['RPM[rev/min]']<=(Q3_RPM+1.5*IQR_RPM)] 
 
df_test_out = df[(Q1_TOR-1.5*IQR_TOR)<=df['Torque[kN.m]']] 
df_test_out = df[df['Torque[kN.m]']<=(Q3_TOR+1.5*IQR_TOR)] 
 
df_test_out = df[(Q1_WOB-1.5*IQR_WOB)<=df['WOB[kN]']] 
df_test_out = df[df['WOB[kN]']<=(Q3_WOB+1.5*IQR_WOB)] 
 
df_test_out = df[(Q1_SPP-1.5*IQR_SPP)<=df['Stand Pipe Pressure[kPa]']] 
df_test_out = df[df['Stand Pipe Pressure[kPa]']<=(Q3_SPP+1.5*IQR_SPP)] 
 
df_test_out = df[(Q1_FR-1.5*IQR_FR)<=df['Flow rate[L/min]']] 
df_test_out = df[df['Flow rate[L/min]']<=(Q3_FR+1.5*IQR_FR)] 
 
# Delete rows when ROP is 0 
df = df[df['ROP[m/s]']>0] 
df = df[df['ROP[m/s]'] < 0.02] 
 
# Remove outliers manually: 
df_test_out = df_test_out[df_test_out['WOB[kN]']>0] 
df_test_out = df_test_out[df_test_out['Flow rate[L/min]']> 2000] 
df_test_out = df_test_out[df_test_out['Stand Pipe Pressure[kPa]']> 5000] 
 
 
# Noise reduction (window = 30): 
df = df_test_out 
df_test2 = df 
df_test2['ROP[m/h]'] = df['ROP[m/h]'].rolling(window = 30, center=True).mean() 
df_test2['RPM[rev/min]'] = df['RPM[rev/min]'].rolling(window = 30, center=True).mean() 
df_test2['WOB[kN]'] = df['WOB[kN]'].rolling(window = 30, center=True).mean() 
df_test2['Torque[kN.m]'] = df['Torque[kN.m]'].rolling(window = 30, center=True).mean() 
df_test2['Flow rate[L/min]'] = df['Flow rate[L/min]'].rolling(window = 30, center=True).mean() 
df_test2['Stand Pipe Pressure[kPa]'] = df['Stand Pipe Pressure[kPa]'].rolling(window = 30, 
center=True).mean() 
df_test2.dropna(inplace = True) 
 
df = df_test2 
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df.to_csv (r'Cleaned wells/NO162D6-4.csv', index = False, header=True) 
 
 
 

Modelling Part 

# Import all the libraries: 

import numpy as np 
import pandas as pd 
from sklearn.ensemble import GradientBoostingRegressor 
import matplotlib.pyplot as plt 
from scipy.optimize import differential_evolution, least_squares 
from sklearn.ensemble import RandomForestRegressor 
from sklearn.ensemble import AdaBoostRegressor 
from sklearn.neighbors import KNeighborsRegressor 
from sklearn.metrics import mean_absolute_error as MAE 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import r2_score 
import seaborn as sns 
from matplotlib.dates import DateFormatter 
from datetime import datetime, timedelta, date 
from sklearn.model_selection import KFold 
from sklearn.model_selection import GridSearchCV 
import plotly.express as px 
import plotly.graph_objects as go 
from plotly.subplots import make_subplots 
from sklearn.preprocessing import MinMaxScaler 
 
# Conver to datetime 
df['time'] = pd.to_datetime(df['time']) 
 
# Create time difference column to get diferent sections 
df['timeDiff']=df['time'].diff().dt.total_seconds() 
 
# Plot time difference and time vs. depth to visually get sections: 
fig = make_subplots(rows=1, cols=2, subplot_titles=("time vs. Depth", "timeDiff vs. Depth")) 
fig.add_trace( 
    go.Scatter(x=df["time"], y=df["Depth Hole[m]"]), 
    row=1, col=1 
) 
fig.add_trace( 
    go.Scatter(x=df["timeDiff"], y=df["Depth Hole[m]"]), 
    row=1, col=2 
) 
fig.update_yaxes(autorange="reversed") 
fig.update_layout(height=600, width=800, title_text="Find sections", showlegend=False) 
fig.show() 
 
# Get sections (vary from each well since not all wells have the same sections) 
 
sections = df[df['timeDiff']>100000] 
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Index = sections.index.tolist() 
 
 
 
section_26 =df.iloc[:Index[0]] #section 26" 
section_16 = df.iloc[Index[0]:Index[1]] #section 16" 
section_12 = df.iloc[Index[1]:Index[2]]#section 12 1/4" 
section_8 = df.iloc[Index[2]:]# open hole section 8 1/2" 
Sections = [section_26,section_16,section_12,section_8] 
 
# Add column Downhole RPM for section 26" 
StF = 0.02 # speed to flow ratio [rev/l] 
section_26['Downhole RPM[rev/min]'] = StF* section_26["Flow rate[L/min]"] + 
section_26["RPM[rev/min]"] 
 
# Create list of columns of the table: 
 
ROP_list = [] 
MAE_list = [] 
std_list = [] 
params_list = [] 
R2_list = [] 
 
ROP_list_RANDOM = [] 
MAE_list_RANDOM = [] 
std_list_RANDOM = [] 
params_list_RANDOM = [] 
R2_list_RANDOM = [] 
 
# Create regressor list: 
regs = [ 
    RandomForestRegressor(), 
    GradientBoostingRegressor(), 
    AdaBoostRegressor(), 
    KNeighborsRegressor(), 
] 
reg_name = [ 
    "RandomForestRegressor", 
    "GradientBoostingRegressor", 
    "AdaBoostRegressor", 
    "KNeighborsRegressor" 
] 
 
# Drop timediff column 
df1 = Sections[0].drop(columns=['timeDiff']) 
df2 = Sections[1].drop(columns=['timeDiff']) 
df3 = Sections[2].drop(columns=['timeDiff']) 
df4 = Sections[3].drop(columns=['timeDiff']) 
 
# Density and viscosity values 
rho = 1.39 # g/cm3 
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mu = 28 # Mpa.s 
 
 
 
# Define different functions for plotting: 
 
def plotly_vars_depth(df_sample, section): 
    if section == "section 26": 
        Titles = ['ROP[m/h]', 'WOB[kN]', 'Torque[kN.m]', 'Flow rate[L/min]', 'Stand Pipe 
Pressure[kPa]', 'Downhole RPM[rev/min]'] 
    else: 
        Titles = ['ROP[m/h]', 'WOB[kN]', 'Torque[kN.m]', 'Flow rate[L/min]', 'Stand Pipe 
Pressure[kPa]', 'RPM[rev/min]'] 
    fig = make_subplots(rows=1, cols=6, subplot_titles=Titles, shared_yaxes = True) 
    for i in range(6):     
        fig.add_trace(go.Scatter(x=df_sample[Titles[i]], y=df_sample["Depth Hole[m]"]),row=1, 
col=i+1) 
    for i in fig['layout']['annotations']: 
        i['font']['size'] = 10 
         
    fig.update_yaxes(autorange="reversed") 
    fig.update_yaxes(title_text = 'Depth Hole[m]',title_font_size=10, row =1, col=1) 
    fig.update_layout(height=800, width=1000, showlegend=False, title="Variables vs. Hole 
Depth",) 
    fig.show() 
 
 
def plot_ROP_vs._depth_ML(train, test, pred):     
    fig = go.Figure() 
    fig.add_trace(go.Scatter(name = 'Training data',y= DH_train , x= train)) 
    fig.add_trace(go.Scatter(name = 'Test data',y= DH_test, x= test)) 
    fig.add_trace(go.Scatter(name = 'Predicted data',y= DH_test , x= pred)) 
     
    # Update axis 
    fig.update_xaxes(title_text="ROP[m/h]") 
    fig.update_yaxes(autorange="reversed") 
    fig.update_yaxes(title_text = 'Depth[m]') 
    fig.update_layout(height=600, width=800) 
    fig.show() 
         
def plot_ROP_vs._depth_ML_RN(train, test,pred, model_phase):     
     
    fig,axis =plt.subplots(figsize =(15,8))  
    sns.lineplot(DB_train , train, ax = axis, label ="Train data",color ='red', ci = None) 
    sns.lineplot(DB_test, test, ax = axis, label ="Test data", color ='green',ci = None) 
    sns.lineplot(DB_test, pred, ax = axis, label ="Predicted data",color ='blue', ci = None) 
         
    if model_phase==2: 
        axis.set(ylabel='ROP[m/h]', xlabel='Depth Hole[m]') 
    else: 
        axis.set(ylabel='Torque[kN.m]', xlabel='Depth Hole[m]') 
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    plt.show() 
 
 
 
# Filter using Radious Neighbors  
 
df1_test = df1.groupby(['Depth Hole[m]']).mean() 
df1_test = df1_test.reset_index() 
 
# Convert variable to numpy: 
sample = df1_test.copy() 
from sklearn.neighbors import RadiusNeighborsRegressor 
 
x = sample["Depth Hole[m]"].to_numpy().reshape(-1,1) 
Y = sample.iloc[:,1:].to_numpy() 
 
neigh = RadiusNeighborsRegressor(radius=0.2, weights= 'distance')  
neigh.fit(x,Y) 
 
X_test = np.arange(x[0,:],x[-1,:],0.2).reshape(-1,1) # can change the distance to reduce noise 
Y_pred = neigh.predict(X_test) 
values_data = np.concatenate((X_test,Y_pred),axis=1) 
 
df1_test2 = pd.DataFrame(values_data) 
df1_test2.dropna(inplace=True) 
 
df1_test2.columns = ['Depth Hole[m]', 'Depth Bit[m]', 'ROP[m/h]', 'RPM[rev/min]', 'WOB[kN]', 
'Torque[kN.m]', 'Flow rate[L/min]', 'Stand Pipe Pressure[kPa]', 'Downhole RPM[rev/min]'] 
 
# Median Filter 
 
df1_test3 = df1_test2.copy() 
columns_names = ['ROP[m/h]', 'RPM[rev/min]', 'WOB[kN]', 'Torque[kN.m]', 'Flow rate[L/min]', 
'Stand Pipe Pressure[kPa]'] 
for i in columns_names: 
    df1_test3[i] = ndimage.median_filter(df1_test3[i], size=5) 
 
 
# Continuous Learning modelling 
# First model: 
# Define independent and dependent variables(x_1 and y_1):       
y_1 = df1_test3["Torque[kN.m]"].to_numpy().reshape(-1,1) 
x_1 = df1_test3[['Depth Bit[m]','WOB[kN]','Flow rate[L/min]','Downhole RPM[rev/min]' 
]].to_numpy() 
 
 
# Second model: 
# Define independent and dependent variables(x_2 and y_2): 
y_2 = df1_test3["ROP[m/h]"].to_numpy().reshape(-1,1) 
x_2 = np.copy(x_1) 
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# Function for continuous learning modelling. This is implemented on each ML model: 
(Then, heatmap was plot for ROP and Torque models, which is not showed in this appendix, 
only relevant part of the code is included) 
def modelling_cont_learning_2phase(reg_num, num_rows): 
    reg = regs[reg_num] 
    end = num_rows 
    init = int(0.1*end) 
    step = init 
    MAE_2 = [] 
    std_2 = [] 
    R2_2 = [] 
    perc = [] 
    MAE_1 = [] 
    std_1 = [] 
    R2_1 = [] 
     
    for i in range(init, end ,step): 
        # First model: 
                 
        # Define train and test samples: 
        X_train_1 = x_1[:i] 
        y_train_1 = y_1[:i] 
        X_test_1 = x_1[i:i+step] 
        y_test_1 = y_1[i:i+step] 
                 
        # Fit model 
        reg.fit(X_train_1, y_train_1.ravel()) 
         
        # Prediction  
        y_pred_1 = reg.predict(X_test_1)  
        y_train_fit_1 = reg.predict(X_train_1) 
                   
        # Second model: 
        # Define train and test samples: 
        X_train_2 = x_2[:i] 
        y_train_2 = y_2[:i] 
        X_test_2 = x_2[i:i+step] 
        y_test_2 = y_2[i:i+step] 
         
        # Fit model 
        reg.fit(X_train_2, y_train_2.ravel()) 
         
        # Prediction  
        y_pred_2 = reg.predict(X_test_2)  
        y_train_fit_2 = reg.predict(X_train_2) 
         
        # variables from the first model: 
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        MAE_y_1 = MAE(y_test_1, y_pred_1) 
        R2_y_1 = r2_score(y_test_1, y_pred_1) 
        error_1 = np.abs(y_test_1 - y_pred_1) 
        std_y_1 = np.std(error_1) 
        perc.append((y_test_1.shape[0]+y_train_1.shape[0])/end*100) 
        # Update lists: 
        MAE_1.append(MAE_y_1) 
        std_1.append(std_y_1) 
        R2_1.append(R2_y_1) 
         
        # variables from the second model: 
        MAE_y_2 = MAE(y_test_2, y_pred_2) 
        R2_y_2 = r2_score(y_test_2, y_pred_2) 
        error_2 = np.abs(y_test_2 - y_pred_2) 
        std_y_2 = np.std(error_2) 
         
        # Update lists: 
        MAE_2.append(MAE_y_2) 
        std_2.append(std_y_2) 
        R2_2.append(R2_y_2) 
     
    # From the first model 
    MAE_1 = np.array(MAE_1) 
    R2_1 = np.array(R2_1) 
    perc = np.array(perc) 
    std_1 = np.array(std_1) 
     
    # From the second model 
    MAE_2 = np.array(MAE_2) 
    R2_2 = np.array(R2_2) 
    std_2 = np.array(std_2) 
     
    return R2_1, MAE_1, std_1, R2_2, MAE_2, std_2, perc 
     
# Barchart Plot function: 
def plot_bar_MAE(i,MAE_26, plot_title): 
    fig = plt.figure() 
    long_title = '{} for the {} model' 
     
    ax = fig.add_axes([0,0,1,1]) 
    ax.bar(perc,MAE_26, width =5) 
    ax.set_title(long_title.format(reg_name [i],plot_title)) 
    ax.set_xlabel('percentage(%)') 
    if plot_title =='First': 
        ax.set_ylabel('MAE(KN.m)') 
    else: 
        ax.set_ylabel('MAE(m/h)') 
    plt.show() 
 
# Sequential Spit 
n = int(0.6*df1_test3.shape[0]) 
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df_sample = df1_test3.head(n) 
df_sample.shape 
 
 
# First model: 
# Define independent and dependent variables(x_1 and y_1):       
y_1 = df_sample["Torque[kN.m]"].to_numpy().reshape(-1,1) 
x_1 = df_sample[['Depth Bit[m]','WOB[kN]','Flow rate[L/min]','Downhole RPM[rev/min]' 
]].to_numpy() 
 
 
# Second model: 
# Define independent and dependent variables(x_2 and y_2): 
y_2 = df_sample["ROP[m/h]"].to_numpy().reshape(-1,1) 
x_2 = x_1.copy() 
 
# Sequential Split function. Used only one with 60/40 split. Then models are plotted and 
performance metrics are calculated: 
 
def modelling_sequential(test_size): 
    MAE_2 = [] 
    std_2 = [] 
    R2_2 = [] 
    perc = [] 
    MAE_1 = [] 
    std_1 = [] 
    R2_1 = [] 
     
    for i in range(4): 
        # First model: 
        reg=regs[i] 
        # Define train and test samples: 
        
X_train_1,X_test_1,y_train_1,y_test_1=train_test_split(x_1,y_1,test_size=test_size,random_st
ate=0,shuffle=False) 
        # Fit model 
        reg.fit(X_train_1, y_train_1.ravel()) 
         
        # Prediction  
        y_pred_1 = reg.predict(X_test_1)  
        y_train_fit_1 = reg.predict(X_train_1) 
         
         
        # Second model: 
               
        # Define train and test samples: 
        
X_train_2,X_test_2,y_train_2,y_test_2=train_test_split(x_2,y_2,test_size=test_size,random_st
ate=0,shuffle=False) 
        # Fit model 
        reg.fit(X_train_2, y_train_2.ravel()) 
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        # Prediction  
        y_pred_2 = reg.predict(X_test_2)  
        y_train_fit_2 = reg.predict(X_train_2) 
         
         
        # variables from the first model: 
        MAE_y_1 = MAE(y_test_1, y_pred_1) 
        R2_y_1 = r2_score(y_test_1, y_pred_1) 
        error_1 = np.abs(y_test_1 - y_pred_1) 
        std_y_1 = np.std(error_1) 
         
 
        # Update lists: 
        MAE_1.append(MAE_y_1) 
        std_1.append(std_y_1) 
        R2_1.append(R2_y_1) 
         
         
        # variables from the second model: 
        MAE_y_2 = MAE(y_test_2, y_pred_2) 
        R2_y_2 = r2_score(y_test_2, y_pred_2) 
        error_2 = np.abs(y_test_2 - y_pred_2) 
        std_y_2 = np.std(error_2) 
         
 
        # Update lists: 
        MAE_2.append(MAE_y_2) 
        std_2.append(std_y_2) 
        R2_2.append(R2_y_2) 
         
        # Create marix for plotting 
        if i==0: 
            y_pred_1_matrix = y_pred_1.reshape(-1,1) 
            y_pred_2_matrix = y_pred_2.reshape(-1,1) 
        else: 
            y_pred_1_matrix = np.concatenate((y_pred_1_matrix,y_pred_1.reshape(-1,1)), axis = 1) 
            y_pred_2_matrix = np.concatenate((y_pred_2_matrix,y_pred_2.reshape(-1,1)), axis = 1) 
         
         
    # From the first model 
    MAE_1 = np.array(MAE_1) 
    R2_1 = np.array(R2_1) 
    perc = np.array(perc) 
    std_1 = np.array(std_1) 
     
     
    # From the second model 
    MAE_2 = np.array(MAE_2) 
    R2_2 = np.array(R2_2) 
    std_2 = np.array(std_2) 
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    return R2_1, MAE_1, std_1, R2_2, MAE_2, std_2, y_pred_1_matrix, y_pred_2_matrix, 
y_train_2,y_test_2,y_train_1,y_test_1, X_train_1, X_test_1 
 
# New file is created to use for optimization and make the optimization faster 
 
df1_test3.to_csv(‘file location’, index = False, header=True) 
 

Optimization part: 

 
# Density and viscosity values 
rho = 1.39 # g/cm3 
mu = 28 # mPa.s 
 
# Plotting and MSE function 
def plotly_vars_depth(df_sample, section): 
    if section == "section 26": 
        Titles = ['ROP[m/h]', 'WOB[kN]', 'Torque[kN.m]', 'Flow rate[L/min]', 'Stand Pipe 
Pressure[kPa]', 'Downhole RPM[rev/min]'] 
    else: 
        Titles = ['ROP[m/h]', 'WOB[kN]', 'Torque[kN.m]', 'Flow rate[L/min]', 'Stand Pipe 
Pressure[kPa]', 'RPM[rev/min]'] 
    fig = make_subplots(rows=1, cols=6, subplot_titles=Titles, shared_yaxes = True) 
    for i in range(6):     
        fig.add_trace(go.Scatter(x=df_sample[Titles[i]], y=df_sample["Depth Hole[m]"]),row=1, 
col=i+1) 
    for i in fig['layout']['annotations']: 
        i['font']['size'] = 10 
         
    fig.update_yaxes(autorange="reversed") 
    fig.update_yaxes(title_text = 'Depth Hole[m]',title_font_size=10, row =1, col=1) 
    fig.update_layout(height=800, width=1000, showlegend=False, title="Variables vs. Hole 
Depth",) 
    fig.show() 
 
def MSE(WOB,ROP,N, T, Dbit): 
     
    # The imputs are: 
    # ROP: rate of penetration [m/s]  
    # N: rotary speed [rev/s] 
    # Dbit: bit diameter [m] 
    # T: Torque [N.m]  
    # WOB: weight on bit [N]  
     
    # The result MSE is in [j/m3] 
         
    return (4*WOB*ROP+8*np.pi*N*T)/(np.pi*Dbit**2*ROP) 
 
# Calculate MSE 
Dbit = 26*0.0254 
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df['MSE [J/m3]'] = MSE(df['WOB[kN]']*1000,df['ROP[m/h]']/3600,df['Downhole 
RPM[rev/min]']/60, df['Torque[kN.m]']*1000, Dbit) 
 
 
 
# HMSE function:  
Dn = BHA_data.iloc[0, 3]*0.0254 # Nozzle diameter [m] 
Av = 0.15*Dbit**2/(4*Dn**2) # available fluid area[-]  
L = 6*Dbit # Length of potential core 
phi = 3 # angle of axiallly simetric jet [degrees] 
s = 8* 0.0254 # distance of nozzle to hole bottom [m] 
 
M = (Dn+2*L*np.tan(np.radians(phi/2)))/(Dn+s*np.tan(np.radians(phi/2))) # Loss correction 
factor[-] 
 
k = 0.122 
theta = (1-Av**(-k))/(M**2) # Dummy factor for energy reduction 
TFA = 1.362 # Total Flow Area [in2] 
 
 
def Fj(rho,Q): # impact force of nozzles to calculate effective WOB [lb] 
    # Q: flow rate[gallons/min] 
    # Vn: average nozzle velocity[ft/s] 
    # rho: mud density[lb-gal] 
    Vn = 0.75*0.3206*Q/(np.pi*0.625**2/4)+0.25*0.3206*Q/(np.pi*0.75**2/4) 
    return 0.000516*rho*Q*Vn 
 
 
Fjx = Fj(rho*8.33,df['Flow rate[L/min]']*0.26417) # Jet force [lb] 
WOBe = df['WOB[kN]']*1000*0.225-theta*Fjx # Efective WOB [lb] 
delta_Pn = rho*1000*(df['Flow rate[L/min]']/60000)**2/(2*(TFA*0.00064516)**2*0.95**2) # 
Nozzle pressure loss [Pa] 
 
def HMSE(WOB,ROP,N, T, Dbit,theta,delta_Pn,Q): # hydraulic Mechanic specific energy 
     
    # The imputs are: 
    # ROP: rate of penetration [m/h]  
    # N: rotary speed [rev/min] 
    # Dbit: bit diameter [m] 
    # T: Torque [lb-ft]  
    # WOB: weight on bit [N] 
    # theta: Dummy factor for energy reduction 
    # Delta_Pn: Pressure drop in the bit nozzles [psi]  
    # Q: flow rate [gallon/min] 
     
    # The result MSE is in [psi] 
         
    return 4*(WOB*ROP+2*60*np.pi*N*T+1155*theta*delta_Pn*Q)/(np.pi*Dbit**2*ROP) 
 
# We calculate HMSE in J/m3: 
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df['HMSE [J/m3]'] = 6894.76*HMSE(WOBe,df['ROP[m/h]']*3.28,df['Downhole RPM[rev/min]'], 
df['Torque[kN.m]']*1000*0.738, Dbit/0.0254,theta, delta_Pn/6894.76,df['Flow 
rate[L/min]']*0.24617) 
 
 
 
n = int(0.6*df.shape[0]) 
df_sample =df.head(n) 
 
# Plot MAE barchart function: 
 
def plot_bar_MAE(i,MAE_26, plot_title): 
    fig = plt.figure() 
    long_title = '{} for the {} model' 
     
    ax = fig.add_axes([0,0,1,1]) 
    if plot_title =='First': 
        if i ==0: 
            ax.bar(df_opt_TOR_RF['Depth Bit[m]'],MAE_26, width =5) 
        elif i ==1: 
            ax.bar(df_opt_TOR_GB['Depth Bit[m]'],MAE_26, width =5) 
        elif i ==2: 
            ax.bar(df_opt_TOR_AB['Depth Bit[m]'],MAE_26, width =5) 
        else: 
            ax.bar(df_opt_TOR_KN['Depth Bit[m]'],MAE_26, width =5) 
    else: 
        if i ==0: 
            ax.bar(df_opt_ROP_RF['Depth Bit[m]'],MAE_26, width =5) 
        elif i ==1: 
            ax.bar(df_opt_ROP_GB['Depth Bit[m]'],MAE_26, width =5) 
        elif i ==2: 
            ax.bar(df_opt_ROP_AB['Depth Bit[m]'],MAE_26, width =5) 
        else: 
            ax.bar(df_opt_ROP_KN['Depth Bit[m]'],MAE_26, width =5) 
    ax.set_title(long_title.format(reg_name [i],plot_title)) 
    ax.set_xlabel('Depth Bit[m]') 
    if plot_title =='First': 
        ax.set_ylabel('MAE(KN.m)') 
    else: 
        ax.set_ylabel('MAE(m/h)') 
    plt.show() 
     
 
# Modelling and Optimization variables: 
 
# First model: 
# Define independent and dependent variables(x_1 and y_1):       
y_1 = df_sample["Torque[kN.m]"].to_numpy().reshape(-1,1) 
x_1 = df_sample[['Depth Bit[m]','WOB[kN]','Flow rate[L/min]','Downhole RPM[rev/min]' 
]].to_numpy() 
 
# Second model: 
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# Define independent and dependent variables(x_2 and y_2): 
y_2 = df_sample["ROP[m/h]"].to_numpy().reshape(-1,1) 
x_2 = x_1 
 
y_HMSE = df_sample["HMSE [J/m3]"].to_numpy().reshape(-1,1) 

 

# Modelling and Optimization function using DE algorithm: 
def modelling_optimization(reg_num, num_rows): 
    # measure time consumed: 
    start_time = time.time() 
    # Choose regressor: 
    reg = regs[reg_num] 
     
    # Lists: 
    ROP_list = [] 
    TOR_list = [] 
    DB_list =[] 
    params_list_ROP = [] 
    params_list_TOR = [] 
    av_TOR_list = [] 
    av_ROP_list = [] 
    av_HMSE_list = [] 
     
    end = num_rows 
    init = int(0.1*end) 
    step = int(stop/0.2) 
    MAE_2 = [] 
    std_2 = [] 
    R2_2 = [] 
    perc = [] 
    MAE_1 = [] 
    std_1 = [] 
    R2_1 = [] 
     
    for i in range(init, end ,step): 
        # First model: 
                 
        # Define train and test samples: 
        X_train_1 = x_1[:i] 
        y_train_1 = y_1[:i] 
        X_test_1 = x_1[i:i+step] 
        y_test_1 = y_1[i:i+step] 
                 
        # Fit model 
        reg.fit(X_train_1, y_train_1.ravel()) 
         
        # Prediction  
        y_pred_1 = reg.predict(X_test_1)  
        y_train_fit_1 = reg.predict(X_train_1) 
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        # Optimization Torque (minimize): 
        DB = (X_test_1[0,0]+X_test_1[-1,0])/2 
         
        def minimize_me_TOR(my_vars): 
             
            WOB = my_vars[0] 
            Q = my_vars[1] 
            RPM = my_vars[2] 
             
            return reg.predict([[DB,WOB, Q, RPM]])[0] 
         
        bounds_TOR = [(10, 200), (3500,5000), (70,180)] 
        result = differential_evolution(minimize_me_TOR, bounds_TOR) 
         
        # variables from the optimization: 
        TOR_list.append(result.fun)  # TOR 
        params_list_TOR.append(result.x)  # WOB,Bit Depth,Torque 
         
               
        # Second model: 
         
        # Define train and test samples: 
        X_train_2 = x_2[:i] 
        y_train_2 = y_2[:i] 
        X_test_2 = x_2[i:i+step] 
        y_test_2 = y_2[i:i+step] 
         
         
        # Fit model 
        reg.fit(X_train_2, y_train_2.ravel()) 
         
        # Prediction  
        y_pred_2 = reg.predict(X_test_2)  
        y_train_fit_2 = reg.predict(X_train_2) 
         
              
        # variables from the first model: 
        MAE_y_1 = MAE(y_test_1, y_pred_1) 
        R2_y_1 = r2_score(y_test_1, y_pred_1) 
        error_1 = np.abs(y_test_1 - y_pred_1) 
        std_y_1 = np.std(error_1) 
        perc.append((y_test_1.shape[0]+y_train_1.shape[0])/end*100) 
         
        av_TOR = np.average(y_test_1) 
        av_HMSE = np.average(y_HMSE[i:i+step]) 
         
        # Update lists: 
        MAE_1.append(MAE_y_1) 
        std_1.append(std_y_1) 
        R2_1.append(R2_y_1) 
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        av_TOR_list.append(av_TOR) 
        av_HMSE_list.append(av_HMSE) 
         
        # variables from the second model: 
        MAE_y_2 = MAE(y_test_2, y_pred_2) 
        R2_y_2 = r2_score(y_test_2, y_pred_2) 
        error_2 = np.abs(y_test_2 - y_pred_2) 
        std_y_2 = np.std(error_2) 
         
        av_ROP = np.average(y_test_2) 
         
        # Update lists: 
        MAE_2.append(MAE_y_2) 
        std_2.append(std_y_2) 
        R2_2.append(R2_y_2) 
         
        av_ROP_list.append(av_ROP) 
         
        # Optimization 
        DB = (X_test_2[0,0]+X_test_2[-1,0])/2 
        def minimize_me_ROP(my_vars): 
             
            WOB = my_vars[0] 
            Q = my_vars[1] 
            RPM = my_vars[2] 
             
            return -reg.predict([[ DB,WOB, Q, RPM]])[0] 
         
        bounds_ROP = [(10, 200), (3500,5000), (70,180)] 
        result = differential_evolution(minimize_me_ROP, bounds_ROP) 
         
        # variables from the optimization: 
        ROP_list.append(result.fun)  # ROP 
        params_list_ROP.append(result.x)  # WOB,Bit Depth,Torque 
        DB_list.append(DB) 
             
    # From the first model 
    MAE_1 = np.array(MAE_1) 
    R2_1 = np.array(R2_1) 
    perc = np.array(perc) 
    std_1 = np.array(std_1) 
     
    av_TOR = np.array(av_TOR_list) 
    av_HMSE = np.array(av_HMSE_list) 
     
    # From the second model 
    MAE_2 = np.array(MAE_2) 
    R2_2 = np.array(R2_2) 
    std_2 = np.array(std_2) 
     
    av_ROP = np.array(av_ROP_list) 
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    # From optimization: 
    TORs = np.array(TOR_list)  
    ROPs = np.array(ROP_list) * (-1) 
    params_ROP = np.array(params_list_ROP) 
    params_TOR = np.array(params_list_TOR) 
    DB = np.array(DB_list) 
     
    end_time = time.time() 
    code_time = end_time - start_time 
     
    return R2_1, MAE_1, std_1, R2_2, MAE_2, std_2, perc, ROPs, TORs,params_ROP, 
params_TOR, DB, av_TOR, av_ROP,av_HMSE, code_time 
     
# Data frames were created with optimal values of Depth Bit, WOB, Q and RPM, 4 for different 
ML ROP model and other 4 for Torque models. Then HMSE was implemented. 
 
# Modelling and Optimization function using PSO algorithm: 
def modelling_optimization(reg_num, num_rows): 
    # measure time consumed: 
    start_time = time.time() 
    # Choose regressor: 
    reg = regs[reg_num] 
     
    # Lists: 
    ROP_list = [] 
    TOR_list = [] 
    DB_list =[] 
    params_list_ROP = [] 
    params_list_TOR = [] 
    av_TOR_list = [] 
    av_ROP_list = [] 
    av_HMSE_list = [] 
     
    end = num_rows 
    init = int(0.1*end) 
    step = int(stop/0.2) 
    MAE_2 = [] 
    std_2 = [] 
    R2_2 = [] 
    perc = [] 
    MAE_1 = [] 
    std_1 = [] 
    R2_1 = [] 
     
    for i in range(init, end ,step): 
        # First model: 
                 
        # Define train and test samples: 
        X_train_1 = x_1[:i] 
        y_train_1 = y_1[:i] 
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        X_test_1 = x_1[i:i+step] 
        y_test_1 = y_1[i:i+step] 
                 
        # Fit model 
        reg.fit(X_train_1, y_train_1.ravel()) 
         
        # Prediction  
        y_pred_1 = reg.predict(X_test_1)  
        y_train_fit_1 = reg.predict(X_train_1) 
         
               
        # Optimization Torque (minimize): 
        DB = (X_test_1[0,0]+X_test_1[-1,0])/2 
         
        def minimize_me_TOR(my_vars): 
             
            WOB = my_vars[0] 
            Q = my_vars[1] 
            RPM = my_vars[2] 
             
            return reg.predict([[DB,WOB, Q, RPM]])[0] 
         
        def minimize_me_TOR_helper(x): 
 
            results_TOR = [] 
 
            for rows in x: 
 
                results_TOR.append(minimize_me_TOR(rows)) 
 
            return results_TOR 
 
        # Create bounds 
        max_bound = np.array([200,5000,180]) 
        min_bound = np.array([10,3500,70]) 
        bounds_TOR = (min_bound, max_bound) 
        # Initialize swarm 
        options = {'c1': 0.5, 'c2': 0.3, 'w':0.9} 
 
        # Call instance of PSO with bounds argument 
        optimizer = ps.single.GlobalBestPSO(n_particles=10, dimensions=3, options=options, 
bounds=bounds_TOR) 
 
        # Perform optimization 
        cost_TOR, pos_TOR = optimizer.optimize(minimize_me_TOR_helper, iters=100, verbose = 
2) 
                 
        # variables from the optimization: 
        TOR_list.append(cost_TOR)  # TOR 
        params_list_TOR.append(pos_TOR)  # WOB,Bit Depth,Torque 
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        # Second model: 
         
        # Define train and test samples: 
        X_train_2 = x_2[:i] 
        y_train_2 = y_2[:i] 
        X_test_2 = x_2[i:i+step] 
        y_test_2 = y_2[i:i+step] 
         
         
        # Fit model 
        reg.fit(X_train_2, y_train_2.ravel()) 
         
        # Prediction  
        y_pred_2 = reg.predict(X_test_2)  
        y_train_fit_2 = reg.predict(X_train_2) 
         
              
        # variables from the first model: 
        MAE_y_1 = MAE(y_test_1, y_pred_1) 
        R2_y_1 = r2_score(y_test_1, y_pred_1) 
        error_1 = np.abs(y_test_1 - y_pred_1) 
        std_y_1 = np.std(error_1) 
        perc.append((y_test_1.shape[0]+y_train_1.shape[0])/end*100) 
         
        av_TOR = np.average(y_test_1) 
        av_HMSE = np.average(y_HMSE[i:i+step]) 
         
        # Update lists: 
        MAE_1.append(MAE_y_1) 
        std_1.append(std_y_1) 
        R2_1.append(R2_y_1) 
         
        av_TOR_list.append(av_TOR) 
        av_HMSE_list.append(av_HMSE) 
         
        # variables from the second model: 
        MAE_y_2 = MAE(y_test_2, y_pred_2) 
        R2_y_2 = r2_score(y_test_2, y_pred_2) 
        error_2 = np.abs(y_test_2 - y_pred_2) 
        std_y_2 = np.std(error_2) 
         
        av_ROP = np.average(y_test_2) 
         
        # Update lists: 
        MAE_2.append(MAE_y_2) 
        std_2.append(std_y_2) 
        R2_2.append(R2_y_2) 
         
        av_ROP_list.append(av_ROP) 
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        # Optimization 
        DB = (X_test_2[0,0]+X_test_2[-1,0])/2 
        def minimize_me_ROP(my_vars): 
             
            WOB = my_vars[0] 
            Q = my_vars[1] 
            RPM = my_vars[2] 
             
            return -reg.predict([[ DB,WOB, Q, RPM]])[0] 
         
        def minimize_me_ROP_helper(x): 
 
            results_ROP = [] 
 
            for rows in x: 
 
                results_ROP.append(minimize_me_ROP(rows)) 
 
            return results_ROP 
         
        # Create bounds 
        bounds_ROP = bounds_TOR 
        # Initialize swarm 
        options = {'c1': 0.5, 'c2': 0.3, 'w':0.9} 
 
        # Call instance of PSO with bounds argument 
        optimizer = ps.single.GlobalBestPSO(n_particles=10, dimensions=3, options=options, 
bounds=bounds_ROP) 
 
        # Perform optimization 
        cost_ROP, pos_ROP = optimizer.optimize(minimize_me_ROP_helper, iters=100, verbose = 
2) 
                 
        # variables from the optimization: 
        ROP_list.append(cost_ROP)  # ROP 
        params_list_ROP.append(pos_ROP)  # WOB,Bit Depth,Torque 
        DB_list.append(DB) 
             
    # From the first model 
    MAE_1 = np.array(MAE_1) 
    R2_1 = np.array(R2_1) 
    perc = np.array(perc) 
    std_1 = np.array(std_1) 
     
    av_TOR = np.array(av_TOR_list) 
    av_HMSE = np.array(av_HMSE_list) 
     
    # From the second model 
    MAE_2 = np.array(MAE_2) 
    R2_2 = np.array(R2_2) 
    std_2 = np.array(std_2) 
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    av_ROP = np.array(av_ROP_list) 
     
    # From optimization: 
    TORs = np.array(TOR_list)  
    ROPs = np.array(ROP_list) * (-1) 
    params_ROP = np.array(params_list_ROP) 
    params_TOR = np.array(params_list_TOR) 
    DB = np.array(DB_list) 
     
    end_time = time.time() 
    code_time = end_time - start_time 
     
    return R2_1, MAE_1, std_1, R2_2, MAE_2, std_2, perc, ROPs, TORs,params_ROP, 
params_TOR, DB, av_TOR, av_ROP,av_HMSE, code_time 
     
# HMSE implementation: 
 
def modelling_HMSE(test_size, i,data_TOR,data_ROP): 
     
    start_time = time.time() 
     
    MAE_2 = [] 
    std_2 = [] 
    R2_2 = [] 
    MAE_1 = [] 
    std_1 = [] 
    R2_1 = [] 
     
    # First modell (Torque): 
    reg=regs[i] 
    # Define train and test samples: 
    
X_train_1,X_test_1,y_train_1,y_test_1=train_test_split(x_1,y_1,test_size=test_size,random_st
ate=0,shuffle=False) 
    # Fit model 
    reg.fit(X_train_1, y_train_1.ravel()) 
 
    # Prediction (No prediction of Torque here) 
    y_pred_1 = reg.predict(X_test_1)  
    # y_train_fit_1 = reg.predict(X_train_1) 
 
    # HMSE and TOR value of Optimized values  
    data_TOR['Torque[kN.m]'] = reg.predict(data_TOR[['Depth Bit[m]','WOB[kN]','Flow 
rate[L/min]','Downhole RPM[rev/min]' ]].to_numpy())   
    Fji = Fj(rho*8.33,data_TOR['Flow rate[L/min]']*0.26417) # Jet force [lb] 
    WOBe = data_TOR['WOB[kN]']*1000*0.225-theta*Fji # Efective WOB [lb] 
 
    delta_Pn = rho*1000*(data_TOR['Flow 
rate[L/min]']/60000)**2/(2*(TFA*0.00064516)**2*0.95**2) # Nozzle pressure loss [Pa] 
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    data_TOR['HMSE [J/m3]'] = 6894.76*HMSE(WOBe,data_TOR['Optimal 
ROP[m/h]']*3.28,data_TOR['Downhole RPM[rev/min]'], 
data_TOR['Torque[kN.m]']*1000*0.738, Dbit/0.0254,theta, delta_Pn/6894.76,data_TOR['Flow 
rate[L/min]']*0.24617) 
    data_TOR['Average HMSE[J/m3]'] = av_HMSE 
    data_TOR['Average Torque[kN.m]'] = data_ROP['Average Torque[kN.m]'] 
    data_TOR['HMSE rate[%]'] = (data_TOR['HMSE [J/m3]']-data_TOR['Average 
HMSE[J/m3]'])/data_TOR['Average HMSE[J/m3]']*100 
    data_TOR['Torque rate[%]'] = (data_TOR['Torque[kN.m]']-data_TOR['Average 
Torque[kN.m]'])/data_TOR['Average Torque[kN.m]']*100 
     
    # Second model (ROP): 
 
    # Define train and test samples: 
    
X_train_2,X_test_2,y_train_2,y_test_2=train_test_split(x_2,y_2,test_size=test_size,random_st
ate=0,shuffle=False) 
    # Fit model 
    reg.fit(X_train_2, y_train_2.ravel()) 
 
    # Prediction (No prediction of Torque here) 
    y_pred_2 = reg.predict(X_test_2)  
    # y_train_fit_2 = reg.predict(X_train_2) 
 
    # HMSE and TOR value of Optimized values  
    data_ROP['ROP[m/h]'] = reg.predict(data_ROP[['Depth Bit[m]','WOB[kN]','Flow 
rate[L/min]','Downhole RPM[rev/min]' ]].to_numpy())   
    Fji = Fj(rho*8.33,data_ROP['Flow rate[L/min]']*0.26417) # Jet force [lb] 
    WOBe = data_ROP['WOB[kN]']*1000*0.225-theta*Fji # Efective WOB [lb] 
 
    delta_Pn = rho*1000*(data_ROP['Flow 
rate[L/min]']/60000)**2/(2*(TFA*0.00064516)**2*0.95**2) # Nozzle pressure loss [Pa] 
    data_ROP['HMSE [J/m3]'] = 
6894.76*HMSE(WOBe,data_ROP['ROP[m/h]']*3.28,data_ROP['Downhole RPM[rev/min]'], 
data_ROP['Optimal Torque[kN.m]']*1000*0.738, Dbit/0.0254,theta, 
delta_Pn/6894.76,data_ROP['Flow rate[L/min]']*0.24617) 
    data_ROP['Average HMSE[J/m3]'] = av_HMSE 
    data_ROP['Average ROP[m/h]'] = data_TOR['Average ROP[m/h]'] 
    data_ROP['HMSE rate[%]'] = (data_ROP['HMSE [J/m3]']-data_ROP['Average 
HMSE[J/m3]'])/data_ROP['Average HMSE[J/m3]']*100 
    data_ROP['ROP rate[%]'] = (data_ROP['ROP[m/h]']-data_ROP['Average 
ROP[m/h]'])/data_ROP['Average ROP[m/h]']*100 
 
    # variables from the first model: 
    MAE_y_1 = MAE(y_test_1, y_pred_1) 
    R2_y_1 = r2_score(y_test_1, y_pred_1) 
    error_1 = np.abs(y_test_1 - y_pred_1) 
    std_y_1 = np.std(error_1) 
 
 
    # Update lists: 
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    MAE_1.append(MAE_y_1) 
    std_1.append(std_y_1) 
    R2_1.append(R2_y_1) 
 
    # Variables from the second model: 
    MAE_y_2 = MAE(y_test_2, y_pred_2) 
    R2_y_2 = r2_score(y_test_2, y_pred_2) 
    error_2 = np.abs(y_test_2 - y_pred_2) 
    std_y_2 = np.std(error_2) 
 
 
    # Update lists: 
    MAE_2.append(MAE_y_2) 
    std_2.append(std_y_2) 
    R2_2.append(R2_y_2) 
 
    # From the first model 
    MAE_1 = np.array(MAE_1) 
    R2_1 = np.array(R2_1) 
    std_1 = np.array(std_1) 
     
    # From the second model 
    MAE_2 = np.array(MAE_2) 
    R2_2 = np.array(R2_2) 
    std_2 = np.array(std_2) 
     
         
    end_time = time.time() 
    code_time = end_time - start_time 
     
    return code_time 
 
# Then increments were plotted as it is showed in the results section. This part of the code is not 

available in this ap 


