

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER THESIS
Study program/Specialization:

MSc. in Petroleum Engineering /Drilling and

Wells

Spring semester, 2021

Confidential

Author:

Renán Gonzalo Ruiz Beviglia

………………………………………

…

(Author’s signature)

Programme coordinator:

Øystein Arild

Supervisors:

UiS - Prof. Dan Sui

Equinor – Åsmund Hjulstad

Title of master’s thesis:

REAL-TIME DATA DRIVEN ROP AND TORQUE MODELLING AND

OPTIMIZATION USING MACHINE LEARNING

Credits (ECTS): 30

Keywords:

Machine Learning, Torque, Optimization,

Modelling, Rate of Penetration, Torque,

Drilling

Number of pages: 66

+ supplemental material/other: 37

Stavanger, 27th June 2020

II

Acknowledgements

To my family, my parents and my brother, for their unconditional support and trust,

they were present even in the distance, encouraging and accompanying me in all my

projects.

To Dan Sui, for guiding me constantly and patiently in my work side by side in this

new challenge, for generously sharing her time and knowledge with me.

To Andrzej Tunkiel, for regularly sharing new ideas and his valuable experience

and knowledge with me.

To Åsmund Hjulstad, when I asked him more than once, he always gave me his

reflections, suggestions and new concerns to continue improving my work.

To my friends and colleagues who did not allow me to give up the goal, for

sustaining my motivation with the right words at the right time.

III

Abstract

Obtaining the maximum rate of penetration (ROP) is one of many techniques to

reduce cost and Non-Productive Time (NPT) in drilling wells. Many parameters affect

ROP, including hole cleaning, tooth wear, etc. The study was developed in three parts.

First, data was selected, pre-processed and cleaned. In the second part, four machine

learning (ML) models (Random Forest (RF), K-Nearest Neighbors (KNN), Gradient

Boosting (GB) and AdaBoost (AB)) were implemented to create a ROP model and a

Torque model and the section with the best performance was selected. Finally, two

optimization algorithms were tested in selected data. In this case, Particle Swam

Optimization (PSO) and Differential Evolution (DE) algorithms were chosen. Once the

optimization was performed, a sensitivity analysis was held to check ML methods

performance.

In this study, two different parameters (ROP and Torque) were modelled and

analysed. Both models use Bit depth, Weight on Bit (WOB), rotary speed (RPM) and

pump flow rate (Q) as inputs to make a regression and predict Torque and ROP. In the

last part of the study, a new approach is implemented, and modelling is carrying on along

with the optimization each 30 meters simulating well drilling with the different

optimizers. Hydromechanical Specific Energy (HMSE) was calculated for each 30-meter

section and compared with the optimal values in both models. Finally, a sensitivity

analysis was performed to evaluate every model and optimizer performance since it was

not possible to perform a field experiment. Four ML models were implemented (RF, GB,

AB and KNN) among the two algorithms of stochastic optimization and the best

combination included GB and DE algorithms after calculating performance metrics and

code running time.

IV

Table of Contents

Acknowledgements ... II

Abstract .. III

Table of Contents .. IV

List of Abbreviations.. VII

List of Figures ... VIII

1. Introduction .. 1

1.1. Objective and motivation .. 2

1.2. Methodology ... 5

2. Literature Review ... 6

2.1. ROP Traditional Models ... 7

2.1.1. Bingham Model ... 7

2.1.2. Bourgoyne and Young Model ... 7

2.1.3. Winters, Warren, and Onyia.. 9

2.1.4. Motahhari .. 9

2.2. Data driven Techniques .. 10

2.2.1. Machine Learning Approaches ... 10

Ensemble Learning .. 10

Gradient Boosting Regressor ... 11

Random Forest Regressor .. 12

AdaBoost Regressor .. 12

K-Nearest Neighbors Regressor .. 13

2.2.2. Review of Data driven ROP Models and Optimization 13

2.2.3. Issues and Discussions .. 14

2.3. Optimization ... 16

2.3.1. Differential Evolution Algorithm .. 16

V

2.3.2. Particle Swarm Optimization .. 18

2.4. Drilling Engineering Models .. 19

2.4.1. Downhole RPM Calculation ... 19

2.4.2. Downhole Torque Model .. 20

2.4.3. Downhole WOB Model .. 21

2.4.4. Density Model ... 24

2.4.5. Mechanical Specific Energy ... 24

2.4.6. Hydromechanical Specific Energy .. 25

3. Database Analysis .. 27

3.1. Johan Sverdrup Dataset .. 28

Johan Sverdrup Field ... 28

3.2. Data Import and Visualization .. 28

3.3. Data Cleaning ... 30

3.3.1. Handling Missing Values .. 30

3.3.2. Handling Faulty Measurements .. 31

3.3.3. Removing Outliers .. 31

Interquartile Range (IQR) .. 32

3.3.4. Removing Noise .. 33

Radius Neighbours Regressor .. 34

Median Filter ... 35

3.4. Data Selection ... 35

4. Machine Learning Implementation .. 37

4.1. Data Split .. 38

4.2. Performance metrics ... 39

Coefficient of Determination (R2) ... 40

Mean Absolute Error (MAE) ... 40

Standard Deviation (std) .. 40

VI

4.3. Regressors Implementation ... 40

5. Modelling and Optimization Implementation .. 43

5.1. Optimization Algorithms and constrains .. 45

6. Results and Discussion ... 47

6.1. Modelling Results ... 48

6.2. Modelling and Optimization Results .. 51

6.3. Sensitivity Analysis .. 54

6.4. Discussion ... 57

7. Conclusions and Future Work .. 58

8. References .. 61

9. Appendix .. 67

Results Modelling ... 68

Results Optimization PSO... 77

Python Code .. 79

VII

List of Abbreviations

AB AdaBoost

ANN Artificial Neural Networks

DE Differential Evolution

DRPM Downhole Revolutions per minute

DTOR Downhole Torque

DWOB Downhole Weight on Bit

GB Gradient Boosting

HMSE Hydromechanical Specific Energy

IQR Interquartile Range

KNN K-Nearest Neighbors

MAE Mean Absolute Error

ML Machine Learning

MSE Mechanic Specific Energy

MWD Measure while Drilling

NPT Non-Productive Time

PSO Particle Swarm Optimizer

Q Flow rate

RF Random Forest

RNN Recurrent Neural Network

ROP Rate of Penetration

RPM Revolutions per minute

TOR Surface Torque

WOB Weight on Bit

VIII

List of Figures

Figure 1: Historical figures for 2008-2019 and forecast for 2020-2025. Source:

NPD [1]. ... 4

Figure 2: Function approximation with regression trees. Source: [17] 11

Figure 3: Simple tree that model the fertility of the sample based on the different

conditions. Source: [19] .. 12

Figure 4: Random train/test split (left) vs. Sequential train/test split (right). Each

cell represents a row in the test matrix in depth growing order, where the blue ones are

the training sample and white ones makes the test sample... 15

Figure 5: Common Terms Used in Evolutionary Computation. Source [35] 17

Figure 6: DE primary mutation operator illustration. A copy of member A is

mutated by the addition of the vector difference between B and C. Source [35] 18

Figure 7: Baker Hughes 6 ¾ in. Ultra XL/LS motor data and specifications, power

performance section. Source [38]. .. 19

Figure 8: Free body pipe of a drill pipe unit of ds length (left). Source: [39]. Force

acting in a curved drill string. Source: Johansick [40] ... 20

Figure 9: Drillstring element under influence of torsional and axial forces. Source:

[30] ... 22

Figure 10: Plot of the different variables vs. time for well 3. 30

Figure 11: Variables vs. depth of well number 6 after removing outliers manually

and using IPR method in well 1. .. 33

Figure 12: Variables vs. depth of well number 6 after removing noise using median

average filter in well 1 .. 34

Figure 13: Variables vs. depth of well number 6 after removing noise using median

average filter and Radius Neighbors Regressor in well 1 section 26”. 35

Figure 14: Sequential split (left) and continuous learning split (right). Blue cells

represent the training set and white cells represent the test set. 39

Figure 15: Flow-chart of the continuous learning approach in ROP and Torque

modelling. ... 41

Figure 16: Flow-chart of the sequential split approach in ROP and Torque

modelling. ... 41

Figure 17: Modelling and Optimization flow-chart .. 44

Figure 18: ROP models’ MAEs using continuous learning approach 48

IX

Figure 19: Torque models’ MAEs using continuous learning approach from one of

the well sections ... 49

Figure 20: Gradient Boosting algorithm plot ROP vs. depth using 60/40 split from

well1 section 26”. Predicted data (blue) is evaluated against test data (green). 50

Figure 21: Gradient Boosting algorithm plot Torque vs. depth using 60/40 split from

well1 section 26”. Predicted data (blue) is evaluated against test data (green). 50

Figure 22: Code Runtime (seconds) for the two optimizers (Differential Evolution

in blue and Particle Swarm in red) and using RF, GB, AB, and KN with the same

parameters. .. 51

Figure 23: ROP (blue), HMSE (red) and Torque (green) growth rate using GB

Torque and ROP model and DE combination. Growth rate is negative because the three

parameters decrease. ... 52

Figure 24: ROP (blue), HMSE (red) and Torque (green) growth rate using AB ROP

and Torque ROP model and DE combination. ... 53

Figure 25: ROP (blue), HMSE (red), and Torque (green) average growth for all ML

models for ROP optimization (maximize ROP) using DE algorithm. 53

Figure 26: ROP (blue), HMSE (red), and Torque (green) average growth for all ML

models for Torque optimization (minimize Torque) using DE algorithm. 53

Figure 27: Sensitivity analysis case 1 for Torque models. The x-axis represents the

model whose optimal parameters are implemented. .. 54

Figure 28: Sensitivity analysis case 1 for ROP models. The x-axis represents the

model whose optimal parameters are implemented. .. 55

Figure 29: Sensitivity analysis case 2 for Torque models..................................... 56

Figure 30: Sensitivity analysis case 2 for ROP models. 56

Figure 31: Gradient Boosting algorithm plot Torque vs. depth using 60/40 split from

well 1 section 16”. Predicted data (blue) is evaluated against test data (green). 68

Figure 32: Gradient Boosting algorithm plot ROP vs. depth using 60/40 split from

well 1 section 16”. Predicted data (blue) is evaluated against test data (green). 69

Figure 33: Gradient Boosting algorithm plot ROP vs. depth using 60/40 split from

well 2 section 26”. Predicted data (blue) is evaluated against test data (green). 70

Figure 34: Gradient Boosting algorithm plot Torque vs. depth using 60/40 split from

well 2 section 26”. Predicted data (blue) is evaluated against test data (green). 70

X

Figure 35: Gradient Boosting algorithm plot ROP vs. depth using 60/40 split from

well 3 section 26”. Predicted data (blue) is evaluated against test data (green). 71

Figure 36: Gradient Boosting algorithm plot Torque vs. depth using 60/40 split from

well 3 section 26”. Predicted data (blue) is evaluated against test data (green). 72

Figure 37: Gradient Boosting algorithm plot ROP vs. depth using 60/40 split from

well 4 section 26”. Predicted data (blue) is evaluated against test data (green). 73

Figure 38: Gradient Boosting algorithm plot Torque vs. depth using 60/40 split from

well 4 section 26”. Predicted data (blue) is evaluated against test data (green). 73

Figure 39: Gradient Boosting algorithm plot Torque vs. depth using 60/40 split from

well 5 section 26”. Predicted data (blue) is evaluated against test data (green). 74

Figure 40: Gradient Boosting algorithm plot ROP vs. depth using 60/40 split from

well 5 section 26”. Predicted data (blue) is evaluated against test data (green). 75

Figure 41: Gradient Boosting algorithm plot ROP vs. depth using 60/40 split from

well 6 section 26”. Predicted data (blue) is evaluated against test data (green). 76

Figure 42: Gradient Boosting algorithm plot Torque vs. depth using 60/40 split from

well 6 section 26”. Predicted data (blue) is evaluated against test data (green). 76

Figure 43: ROP (blue), HMSE (red) and Torque (green) growth rate using GB

Torque model and PSO combination. Growth rate is negative because the three

parameters decrease. ... 77

Figure 44: ROP (blue), HMSE (red) and Torque (green) growth rate using GB ROP

model and PSO combination. ... 77

Figure 45: ROP (blue), HMSE (red) and Torque (green) average growth rate for all

ML models for ROP optimization (maximize ROP) using PSO algorithm. 78

Figure 46: ROP (blue), HMSE (red) and Torque (green) average growth rate for all

ML models for ROP optimization (maximize ROP) using PSO algorithm. 78

XI

List of Tables

Table 1: Initial features from a representative well .. 28

Table 2: Initial features from a representative well after merging and interpolating.

 .. 31

Table 3: input features for ROP and Torque models. ... 38

Table 4 and Table 5: Performance metrics for Machine Learning models using60/40

split (Torque model on the left and ROP model on the right) .. 49

Table 6: Mean Absolute Error (MAE), coefficient of determination (R2) and

standard deviation (std) for Torque models from well 1 section 16”. 68

Table 7: Mean Absolute Error (MAE), coefficient of determination (R2) and

standard deviation (std) for ROP models from well 1 section 16”. 68

Table 8: Mean Absolute Error (MAE), coefficient of determination (R2) and

standard deviation (std) for Torque models from well 2 section 26”. 69

Table 9: Mean Absolute Error (MAE), coefficient of determination (R2) and

standard deviation (std) for ROP models from well 2 section 26”. 69

Table 10: Mean Absolute Error (MAE), coefficient of determination (R2) and

standard deviation (std) for Torque models from well 3 section 26”. 71

Table 11: Mean Absolute Error (MAE), coefficient of determination (R2) and

standard deviation (std) for ROP models from well 3 section 26”. 71

Table 12: Mean Absolute Error (MAE), coefficient of determination (R2) and

standard deviation (std) for Torque models from well 4 section 26”. 72

Table 13: Mean Absolute Error (MAE), coefficient of determination (R2) and

standard deviation (std) for ROP models from well 4 section 26”. 72

Table 14: Mean Absolute Error (MAE), coefficient of determination (R2) and

standard deviation (std) for Torque models from well 5 section 26” 74

Table 15: Mean Absolute Error (MAE), coefficient of determination (R2) and

standard deviation (std) for ROP models from well 5 section 26” 74

Table 16: Mean Absolute Error (MAE), coefficient of determination (R2) and

standard deviation (std) for Torque models from well 6 section 26”. 75

Table 17: Mean Absolute Error (MAE), coefficient of determination (R2) and

standard deviation (std) for ROP models from well 6 section 26”. 75

1

1. Introduction

2

1.1. Objective and motivation

Drilling is a crucial and expensive process in oil and gas industry. Drilling wells

can be classified in two categories depending the objective: exploration wells and

development (or production) wells. While the goal of the first ones is to find hydrocarbons

and gather data for development, the seconds goal is to produce. Pressure is typically

uncertain during drilling exploration wells and therefore mud weight and casing design

practices are conservative and the ROP is low, making impossible to optimize it.

According to NPD, overall costs during oil and gas operation can be divided in

different categories: Investments, Operating Costs, Exploration costs, Disposal and

cessation and other costs [1]. Then, development wells are included in investments and

exploration wells in Exploration costs. Development wells made up 27% of the overall

costs last year, which prices could round from NOK 200 million to NOK 700 million per

unit in case of mobile rigs [2], which more production wells are drilled by. Moreover, the

dominant cost elements are the oil services and rig rent, which account 30% and 45% of

the drilling expenses respectively. Therefore, it is necessary to optimize drilling to save

drilling costs and reduce Non-Productive Time (NPT).

According to Soares [3], drilling optimization is the “process of designing

equipment and selecting operational parameters to minimize well drilling cost”. Thus, the

rate of penetration (ROP), defined as the volume of rock removed expressed as depth per

time unit, is a key metric to measure drilling performance. Although high ROP is

considered a good metric to measure drilling efficiency and performance, drilling faster

can affect cutting transport and lead to bore hole instability and poor hole cleaning [4].

ROP varies from the type is rock is being drilled and can give an idea of bit wear.

Therefore, companies look for high ROP values while operating in recommend safety

standards.

Generally, ROP optimization depends on dynamic and static drilling parameters.

Dynamic parameters can be controllable (weight on bit [WOB], rotary speed [RPM], flow

rate [Q]) or uncontrollable whether the driller can alter it manually during operations or

not. Static parameters include formation properties such as compressive strength and

formation pressure among other things.

In the industry exists two approaches to predict the ROP in a specific field: physics-

based and data driven. Physics based models are formulas, mathematical functions

3

obtained during lab experiments. On the other hand, data driven approach use machine

learning to create a model or formula that predicts ROP. Traditional models are

deterministic and easy for optimization while they present low accuracy in ROP

prediction, have empirical coefficients based on lithology that varied continuously and

require static parameters as inputs that is not always available [5]. According to Hedge

[5], data driven models gives accurate ROP prediction than physic based, since it does

not contain any empirical constant, bit specifications and is not linked to a specific BHA.

However, these models are purely dependent on data and therefore designed for a specific

field. Currently, there is no model that predicts and optimize ROP accurately in all fields

due to variation of the different drilling and geological parameters.

Hydromechanical Specific Energy (HMSE) is a new term introduced by Mohan [6]

that “measures the energy to drill a unit volume of rock and remove it from underneath

the bit”. It includes mechanical as well as hydraulic energy that will be explained with

more detail later In this study, As MSE, it is a relevant parameter to describe drilling

efficiency. Torque prediction can help to improve the HMSE as well as control vibration

as it was performed in a recent study by Hedge [7]. Although for HMSE and MSE

calculations Downhole Torque from MWD tools, it is possible to estimate TOB (Torque

on Bit) with surface torque using a transformation matrix [8]. In his study Hedge showed

that a reduce on Torque on Bit could lead to an ROP improvement and this test will be

performed using surface Torque data.

The motivation of this work is to implement a code that can automatically improve

drilling efficiency each 30 meters (one drilling stand) either by maximizing ROP or

minimizing surface Torque. This code will provide the dynamic controllable parameters

to achieve the desirable ROP (or Torque) and therefore save drilling costs. With Torque

minimization the aim is to minimize the HMSE since these variables are directly related.

This thesis project is focused on drilling optimization and the goal is therefore

maximize the Rate of Penetration and minimize Surface Torque. To achieve a good

optimization, it is very important to have an accurate model to predict the metric is being

optimized. This work is a first theoretical approach to optimize the parameters mentioned

above in the same rock formation. Further considerations will need to do to perform an

experimental test and will be mentioned in the Chapter 8.

4

The goal of this study is to optimize the ROP and surface Torque in real time when

varying surface controllable drilling parameters of a specific well section. Six wells from

Johan Sverdrup field drilled last year were provided by Equinor and only one well section

was chosen. The project can be summarized in the following tasks:

• Clean and process all dataset.

• Understand Machine Learning Models and how to Implement algorithms in the

dataset

• Implement Machine Learning Algorithms in the dataset

• Evaluate Machine Learning Models Performance in different well sections

• Select well section with accurate ROP and Torque Prediction

• Implement new continuous learning modelling and optimization method

• Evaluate ROP and Torque optimization including HMSE calculations

• Sensitivity analysis of the different Machine Learning Models

Figure 1: Historical figures for 2008-2019 and forecast for 2020-2025. Source: NPD [1].

5

1.2. Methodology

For the purpose of coding, Jupyter Notebook was used as it is a user-friendly

application that handles and run Python code while describes data analysis. In this study,

Python was used as a coding language due to its simplicity and versatility, making it very

attractive for beginners. It is also free, open source and support huge libraries which can

be imported by Python package manager (pip). All the libraries used in this study are

explained in the Appendix.

It is very relevant to have an appropriate and cleaned data set, having enough

observation variables to run a Machine Learning Model. This is in fact the first and the

most time-consuming part of the study, which consist on data selection, fill data gaps with

interpolation, remove outliers and noises and correct faulty measurements. Moreover, a

machine learning algorithm was used to evenly distribute data points in depth to easily

implement a Regression using ML and therefore remove more noise that was impossible

using filter. Anyway, all this process will be explained deeply in next chapters.

Second part of this study consists in the implementation of different ML techniques

(Random Forest, Gradient Boosting, AdaBoost and k-Nearest Neighbors) and assess

which algorithm provides the best ROP and Torque prediction. In this project, two

parameters (ROP and Torque) were modelled using Machine Learning technique. All the

models were evaluated using different evaluation metrics which will be explained later in

Chapter 4. The result will be eight predictive models which will finally be used in the last

part of this study.

The last part of this study is modelling and optimization using the same ML models

and two different stochastic optimization techniques: Differential Evolution (DE) and

Particle Swarm Optimization (PSO). Since one of the goals of this project is to reduce

drilling cost, it is very important to choose the best optimization algorithms and constrains

in order to improve ROP, reduce Torque and HMSE and therefore save costs and mitigate

drilling problems. Different physical boundaries were considered as constrains for the

optimization algorithm based on the variables of the ML model previously chosen.

Finally, a sensitivity analysis was executed for the different ROP and Torque models.

6

2. Literature Review

7

2.1. ROP Traditional Models

Many traditional models have been used for ROP modelling successfully. The goal

of this section is to introduce the most popular ROP physics models in the industry. These

models have been developed experimentally by regression methods and based on drilling

knowledge and only the most widely used will be presented. These are outlined below:

2.1.1. Bingham Model

Bingham [9] is the oldest traditional ROP model. It is designed for any bit type and

considers ROP as a function of WOB, RPM and bit diameter. Although it is a

straightforward model, it is still a good starting point for ROP prediction:

𝑅𝑂𝑃 = 𝑘 (
𝑊𝑂𝐵

𝑑𝑏
)

𝑎

 𝑅𝑃𝑀 (1)

where ROP is the rate of penetration (ft/hr), WOB is the weight on bit (klb), RPM

is the rotary speed (revolutions/min), db is the bit diameter (in), and ‘a’ and ‘k’ are rock

formation constants obtained by linear regression.

2.1.2. Bourgoyne and Young Model

Bourgoyne and Young ROP model [10] was developed in 1974 after multiple

regression analysis of drilling data obtained in short intervals. In those years, there was

one model for ROP optimization, one for jet bit hydraulics optimization and one for

detecting abnormal pressure from field data. This model combines these three processes

into one single model, including effects of formation strength, formation depth, formation

compaction, differential pressure, bit diameter and weight, bit wear, rotary speed and bit

hydraulics and it is expressed as a function of eight components:

𝑅𝑂𝑃 = 𝑓1 ∗ 𝑓2 ∗ 𝑓3 ∗ 𝑓4 ∗ 𝑓5 ∗ 𝑓6 ∗ 𝑓7 ∗ 𝑓8 (2)

𝑓1 = 𝑒𝑎1 (3)

𝑓2 = 𝑒𝑎2(13000−𝑇𝑉𝐷) (4)

𝑓3 = 𝑒𝑎3𝑇𝑉𝐷0.69(𝑃𝑝𝑜𝑟𝑒−10.5) (5)

𝑓4 = 𝑒𝑎4𝑇𝑉𝐷(𝑃𝑝𝑜𝑟𝑒−𝐸𝐶𝐷) (6)

𝑓5 = (

(
𝑤
𝑑𝑏

) − (
𝑤
𝑑𝑏

)
𝑡

4 − (
𝑤
𝑑𝑏

)
𝑡

)

𝑎5

 (7)

8

𝑓6 = (
𝑅𝑃𝑀

100
)

𝑎6

 (8)

𝑓7 = 𝑒−𝑎7ℎ (9)

𝑓8 = 𝑒
𝑎8

𝜌𝑞
350𝜇𝑑𝑛 (10)

Where, fi includes drilling parameters and ai are the variable coefficients calculated

using linear regression. Coefficients are described in the following way:

• f1 represents the formation strength influence, where a1 is the formation strength

parameter.

• f2 represents the formation depth influence, where TVD is true vertical depth (ft)

and a2 the exponent of normal compaction trend.

• f3 represents pore pressure influence, where Ppore is the pore pressure gradient

(ppg) and a3 the undercompaction exponent.

• f4 represents the differential pressure effect, where ECD is the equivalent

circulating density (ppg) and a4 the pressure differential exponent.

• f5 represents the variation of WOB and bit diameter and changes for bit type,

where
𝑤

𝑑𝑏
 is the applied WOB per inch (1000 lb/in), db the bit diameter, (

𝑤

𝑑𝑏
)

𝑡
the

threshold WOB per inch (1000 lb/in) at which the bit begins to drill and a5 the bit

weight exponent.

• f6 represents the influence of the RPM. In this case the author normalizes to 1 a

rotary speed of 100 rpm, but this number can change in terms of the average rotary

speed of the dataset. a6 is the rotary speed exponent.

• f7 represents the drill bit wear, where h is the fractional tooth weight that has been

worn away and a7 the tooth wear exponent.

• f8 represents the hydraulic effects, where dn is the bit nozzle diameter (in), μ the

apparent viscosity (cp) of the drilling fluid at 10000 sec-1 and a8 the hydraulic

exponent.

9

2.1.3. Winters, Warren, and Onyia

Winters Warren and Onyia [11] developed a new model for roller cone bit, taking

into account bit design, operating conditions, and rock mechanics. It includes rock

ductility and cone offset as new and important features for ROP modelling:

1

𝑅𝑂𝑃
=

𝜎𝐷2

𝑁 𝑊𝑂𝐵
(

𝑎 𝜎 𝐷 𝜖

𝑊𝑂𝐵
+

𝛷

𝑊𝑂𝐵
) +

𝑏

𝑁 𝐷
+

𝑐 𝜌 𝜇 𝜖

𝐼𝑚
 (11)

Where σ is the rock compressive strength (psi), D the bit diameter (in), N the rotary

speed (rpm), WOB the weight on bit (lb), Φ the cone offset (in), ϵ the rock ductility, ρ the

mud density (ppg), μ the mud viscosity (cp), Im the modified jet impact force and a, b and

c the bit design constants. The modified jet impact force is calculated as follows:

Im = (1-Av
-0.122) Fj (12)

Where Av is the ratio of jet velocity to return velocity, Fj the jet impact force, and

Av is calculated as follows assuming three jets:

𝐴𝑣 =
𝑣𝑛

𝑣𝑓
=

0.15 𝐷2

3 𝑑𝑛
2 (13)

Where Vn is the nozzle velocity and Vf the return fluid velocity.

2.1.4. Motahhari

Motahhari [12] developed in 2010 a new method for ROP prediction for

polycrystalline diamond compacts (PDC) bits and positive displacement motors.

According to Barros and Motahari [12] [13], this model is very useful for horizontal and

directional drilling operations with motors. The model equation is the following:

𝑅OP = Wf

G WOB
α
 Nt

γ

db CCS
 (14)

Where db is the bit diameter (in), CCS the confined rock strength (psi), Nt the total

rotary speed (rpm), WOB the weigh on bit (lb), G the coefficient determined by the bit

geometry, cutter size and design, Wf the bit wear function and α and γ the ROP model

exponents. Bit wear function is calculated as follows:

Wf= kwf (
WOB

nc

)
ρ

1

CCS
τ
 Aw

ρ-1
 (15)

Where kwf is the wear function constant, ρ and τ the wear function exponents, nc the

number of cutters and Aw is the wear flat area underneath of a single cutter, which

10

according to Motahhari [12]“is a function of wear depth on a cutter face and PDC layer

thickness”.

2.2. Data driven Techniques

It is commonly said that ML is a subfield of artificial intelligence. Machine

Learning (ML) means create mathematical models to understand data [14]. The program

“learns” from the data when “giving to the models tunable parameters that can be

adaptable to observe the data” [14]. Basically, it starts separating your dataset into training

data and test data. The training data is used to generate the mathematical model while the

test data is compared with the predicted data once the model fits with training data. Python

has a powerful tool called Scikit learn that contains multiple machine learning models to

implement in the code.

There are two categories of Machine Learning, Supervised Learning and

Unsupervised Learning, but the difference is not relevant for this study. It is important to

mention that this study works with Machine Learning Regressors, one subdivision of

Supervised Learning methods, since parameters are continuous quantities.

2.2.1. Machine Learning Approaches

Machine Learning has a lot of advantages if used properly for ROP or Surface

Torque prediction. For instance, all the shortcomings from the traditional models can be

solved since they do not contain empirical constants and they are independent of the bit

type and bottom hole assembly (BHA). In a study developed by Hegde [5], three

traditional models were compared with data driven models showing better performance,

improving the R2 value from 0.12 to 0.84. Predictions of machine learning algorithms are

purely based on input data and parameters; therefore, data quality is essential to

implement these models. Four machine algorithms were implemented and each one has

its advantages and disadvantages. First, a few concepts will be explained:

Ensemble Learning

According to Zhou [15], “Ensemble learning is a machine learning paradigm where

multiple learners are trained to solve the same problem”. Usually, ordinary machine

learning approaches learn one hypothesis from training data, while these methods learn

from a set of hypotheses and combine them. An ensemble is constructed from base

11

learners, created from training data by a base learning algorithm (a decision tree, a neural

network, etc). After this process, these learners are combined, and the most popular

combination is selected.

Gradient Boosting Regressor

Gradient Boosting is part of Boosting algorithms family and is based on decision

trees where the objective is to minimise the loss function of the model. It is a generic

algorithm to find approximate solutions to the additive modelling problem and thus, it is

more flexible than AdaBoost. Friedman firstly introduced it in 2001. As any boosting

method, Gradient Boosting (GB) adds new models to the ensemble sequentially [16], and

at each iteration a new base learner (in this case, a decision tree) is trained regarding the

error of the whole ensemble.

GB consists of three elements: a loss function, a weak learner and an additive

model. It uses decision trees as weak learners due to its ability to handle mixed data types

and model complex functions [16]. Figure 2 illustrates the process of approximation of

Regression trees.

The advantages include high accuracy, high flexibility, no need for data pre-

processing, and good manage of missing data. However, Gradient Boosting algorithms

are very sensitive to small data changes, so it is mandatory to use cross-validation.

Figure 2: Function approximation with regression trees. Source: [17]

12

Random Forest Regressor

Random forests are ensemble learners that use a combination of decision trees that

“grow in accordance to a random parameter”, according to Biau [18]. It was proposed by

Leo Breiman in the 2000’s where each tree is built randomly, therefore the name “random

forest”. Decision trees are, as VanderPlas says [14], “intuitive ways to classify objects”:

each tree is subdivided in nodes and these nodes, based on a cut-off value of one of the

features, splits the data into two groups [14] . Random Forests are one of the most accurate

ensemble learning techniques. Random Forests can be used in Classification and

Regression problems depends if we have categorical or continuous variables.

Advantages include excellent prediction, no need for data preparation, fast training,

good handling of missing data and finally, it works with large datasets. On the other hand,

it has its limitations with regressions and there is a risk of overfitting the model. Fig. 3 is

an example of a tree taken from Yoo’s study [19]. This is an individual tree with two

nodes that models Fertility based on Education, Agriculture and Examination of the

specimen.

Figure 3: Simple tree that model the fertility of the sample based on the different conditions. Source: [19]

AdaBoost Regressor

AdaBoost (Adaptive Boosting) is a machine learning algorithm formulated by Yoav

Freund and Robert Schapire in 1997. According to Zhou [20]: “ boosting refers to a family

of algorithms that are able to convert weak learners to strong learners”. As a boosting

algorithm, it works with Decision Stumps (trees in a Random Forest, but not "fully

grown") using a forest of that decision stumps. Each decision stump has one node and

two leaves. AdaBoost Algorithm has many advantages: is fast, simple, easy to program

and flexible to combine with other machine learning algorithms. On the other hand, it is

also very sensitive to noises and outliers.

13

K-Nearest Neighbors Regressor

According to Zhou [20]: KNN assumes that similar objects in input space are

similar in the output space; thus similar data are near each other. This author also

considers as a lazy learning approach due to not having an explicit training process. It has

many advantages as its simplicity and versatility. However, it is susceptible to small

changes in data and cannot handle missing values. Moreover, it does not work with

datasets with many features.

2.2.2. Review of Data driven ROP Models and Optimization

As is mentioned by Alali [4], there is no reliable model that accurately predicts

ROP. Many studies have been conducted to understand ROP behaviour and predict it

based on data availability. For instance, Hedge [5] compared the performance of different

ML algorithms with traditional models, showing an improvement on the R2 from 0.12 to

0.84. Furthermore, Ahmed [21] developed a novel ROP model using artificial neural

networks (ANN) with different input parameters and different data distributions and ANN

structures with excellent precision (R2 of 0.996). Brenjkar [22] developed three ROP

neural network models from four drilled wells in southwestern Iran and compared them

with Bingham and B&Y models. As a result, he obtained a high-performance model with

R2 and an average absolute percent relative error (AAPRE) of 0.948 and 5.531

respectively. Al-Abduljabbar [23] also created a new empirical correlation based on an

optimized ANN model to predict ROP in horizontal carbonate reservoirs, with remarkable

results in unseen data such R2 and average absolute percentage error (AAPE) values of

0.946 and 5.29% respectively. Similar work was performed by Manta [24], where he

designed a new model based on statistical regression and ANNs, using data from

horizontal wells from the North Sea. Furthermore, Noshi [25] and Singh [26]

implemented five and eight different ML models for ROP prediction respectively and all

algorithms were compared. In addition, Tunkiel [27] and Soares [3] introduced a novel

continuous learning approach, where each Machine Learning model is updated every

specific number of meters simulating drilling conditions. Finally, last year Encinas

developed a data driven ROP model to identify the influence of drilling parameters based

on data from Volve field. He introduced a novel downhole WOB correction based on

surface data. However, many of these studies are not available to replicate due to data

14

availability. Therefore, Tunkiel [28] published a dataset for ROP benchmarking, which

is analysed in the following subsection.

On the other hand, other studies were conducted to optimize ROP. According to

Gan [29] there are three different types of optimizations: robust based, moving horizon

based and metaheuristic based. Wiktorski [30] understood the necessity of including the

influence of wellbore trajectory, inclination, and azimuth in Burgoyne and Youngs model.

Consequently, she developed an empirical model adding the dog leg severity (DLS)

factor. Sui [31] designed a moving horizon method to predict ROP using a linear discrete-

time model. However, as will be mentioned in section 2.3., for Machine Learning model

optimization a metaheuristic approach is needed. Hedge continued his studies [5] [32]

and implemented and evaluated different optimizers [33] in the best ML model from the

previous research. Then, he implemented a drilling optimization model using the best ML

model and best optimizer [7]. Alternatively, Alali [4] used another approach to optimize

ROP while using data driven models. Using data from 2500 wells from an offshore field,

where 18 wells with the best performance were chosen, he managed to create a two-phase

model optimization to modify drilling controllable variables in real time. During field

trial showed an improvement of 25% to 45% of ROP, saving 15% costs per foot.

2.2.3. Issues and Discussions

Many investigations have been conducted using data driven models to predict ROP,

most of them comparing with traditional models. In one of his studies [5], Hedge

mentioned different disadvantages of the traditional models, which includes ROP low

accuracy predictions, variation of empirical coefficients (since these are obtained from

linear regression for each lithology facie) and in many cases the requirement of auxiliary

data (bit design and properties, mud properties, etc). In his investigation, he compared the

performance and accuracy of three different machine learning models with three ROP

traditional models for different formations in a field and showed a big improvement in

case of data driven models.

As Tunkiel pointed in his study [28], both approaches require good data quality (in

the case of traditional models to find accurate constants and for data driven approach to

train the model). Therefore, a data driven model is only applicable for similar lithology,

15

drilling procedures and equipment and neighbour wells can be used as a reference starting

point.

Other aspects that are concerning regarding previous investigation in data driven

ROP models. For instance, Tunkiel [28] mentioned incorrect data split and the possibility

to reproduce the experiments. As far as the author knows, there are three different ways

to split the data for ML training: random sampling, sequential sampling, and continuous

learning. The first one breaks training and test data randomly, which does not represent

well drilling conditions, and one can reach R2 levels of 0.95. This can be easily explained

with fig. 4 that shows random and sequential sampling, where the depth grows from top

to bottom. Assuming that test cells are the sample points that are “drilled”, it is clear that

using sequential sampling is more advisable to simulate drilling process since it is illogic

to predict a parameter from a depth you have already drilled and also impossible to

“jump” through different depths without drilling. In this study, random sampling split is

not considered due to the reasons mentioned above.

Figure 4: Random train/test split (left) vs. Sequential train/test split (right). Each cell represents a row in the test matrix

in depth growing order, where the blue ones are the training sample and white ones makes the test sample.

Finally, data and source code are not available in most of these studies as Tunkiel

[28] mentioned for experiment reproduction. For this study, data from Johan Sverdrup is

confidential and will not be shared, but source code is available in the appendix and can

be adapted to use in another field data.

16

2.3. Optimization

Optimization consists of finding the maximum or minimum value in a real function,

therefore find the optimal value from the space solution. The complexity of the equation

or problem will define the optimization algorithm to be used.

The interest in optimization has grown in the last few years. In fact, since the mid-

sixties, many algorithms that focus on global optimization of “black-box” problems (the

problems where exact analytical methods do not work) have been proposed. In his book,

Boyd [34] defined a mathematical optimization for convex functions as a problem where

the goal is to minimize the objective function within some constraints (boundaries). These

are, however, not the functions used on this thesis. ML models are not mathematical

equations, and therefore the need of metaheuristic to optimize this problem.

Metaheuristic, as Luke [35] defined, is a “subfield of stochastic optimization”,

which he describes as “a class of algorithms and techniques which employ some degree

of randomness to find optimal solutions to hard problems”. These algorithms work very

well when having problems with little information and the space is too large.

In this study, two stochastic algorithms will be implemented: Differential Evolution

and Particle Swarm. These algorithms are two different population methods, one of the

subfields of stochastic optimization. Both have been used in the industry and much

research have been conducted to evaluate its performance [33] [36], where the study of

Hedge is the reference since it has been applied in the same field.

2.3.1. Differential Evolution Algorithm

Differential Evolution (DE) algorithm was introduced by Storn and Price in 1995.

As an algorithm from the evolutionary family, it is based on Darwin's Natural Selection

Theory, where the fittest individual survives. Fig. 5 describes the different terms used for

this algorithm family, extracted from Luke’s book [35].

The process, according to Luke, is the following:

1. First, it starts with the initialization of a combination of random solutions (Creates

a population).

2. Then, iterates three different procedures:

2.1. It evaluates the fitness of all individuals.

2.2. It uses these fitness values to breed a new children’s population.

17

2.3. Finally, it joins parents with children in the new generation, and cycle begins

again.

The cycle stops until a specific number of generations is reached or until it fulfils a

particular criterion. There are two new innovations (twists) introduced in the DE

algorithm. First, everyone of the population creates a child and this child competes against

parents to be included in the population. Second, the child’s mutation size is determined

based on the variance of the population, and therefore it is not fixed as in other algorithms

in this family.

 Figure 5: Common Terms Used in Evolutionary Computation. Source [35]

DE employs vector operations on its different types of mutation. The easiest one to

describe is the primary mutation operator. Here, for each member of the population, a

new child is generated (offspring) by vector addition and subtraction from three different

random individuals from the population. From fig. 6 from Luke’s book it is easier to see

the general idea: to mutate from one random individual (a) by adding a vector, which is

the difference between vectors b and c. Then, the child is crossover with i. Finally, after

all parents created the new children (though different mutations, not necessarily the one

mentioned), all children compete with their parents to survive (they replace parents in the

population if they have higher fitness value).

18

Figure 6: DE primary mutation operator illustration. A copy of member A is mutated by the addition of the vector

difference between B and C. Source [35]

2.3.2. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population technique similar to DE. It is

not based on evolution theory but inspired in the flocking behaviour of birds. It was

created in 1995 by James Kennedy and Russell Eberhart [36]. The main difference with

other population methods is that PSO does not resample or replace populations (there are

no generations). It maintains a population whose individuals are tweaked based on new

discoveries about the environment, like bird’s behaviour. As Luke says [35], it is basically

a form of mutation.

In this context, DE terms are not used, and individuals' population transforms into

a swarm of particles. Then, this direct mutation that was mentioned above does not

replace the particle genes, it only moves the particles around the space. According to Luke

[35], a particle consists of two parts, the particle’s location in space and the particle’s

velocity at each timestep. Moreover, each particle has a small memory that stores its own

position(x*), the best place that any of its informants (x+) has discovered and the fittest

location discovered by anyone (x!). For each timestep, after evaluating the fitness score

(location and how closed it is to the optimal point) of all particles, each particle could be

added a velocity vector pointing to x*, x+ or x!. This is performed randomly and based on

the different scores given to the parameters to run the code, which are summarized below

(for more information, the source is Luke’s Book [35]):

• α: proportion of the original velocity retained

• β: ratio of the personal best (location) to be retained. The larger is β, the higher

tendency the particle has to move to its own personal bests.

• γ: proportion of the informants’ best location to be retained.

19

• δ: proportion of global best to be retained. The larger is δ, the higher tendency the

particle has to move to global best.

• ε: jump size of particle. Large ε makes the system move quickly to best regions.

2.4. Drilling Engineering Models

2.4.1. Downhole RPM Calculation

It is a common practice in the NCS to drill the surface casing section using mud

motor. Since all data was measured from surface in this study, it was necessary to

calculate the downhole bit revolution to create an accurate model.

The calculation is very simple: downhole RPM (or total bit revolutions DRPM) is

calculated as the summation of drilling mud motor revolutions (RPMM), which is the

RPM of the mud motor’s rotor, and surface RPM (RPMS):

𝐷𝑅𝑃𝑀 = 𝑅𝑃𝑀𝑀 + 𝑅𝑃𝑀𝑆 (16)

Mud motor’s revolutions are calculated using speed to flow ratio [37]. These

specifications are available in the drilling motor’s Handbook. Below there is a screenshot

of one of the Baker Hughes motors specifications [38]:

Figure 7: Baker Hughes 6 ¾ in. Ultra XL/LS motor data and specifications, power performance section. Source [38].

20

Then, RPMM is calculated for a specific flowrate as follows:

 𝑅𝑃𝑀𝑀 = 𝑠𝑝𝑒𝑒𝑑 𝑡𝑜 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑖𝑜 ∗ 𝑄 (17)

2.4.2. Downhole Torque Model

Torque (or torsion) occurs when a twisting moment is applied to the pipe [39]. High

Torque and high drag usually happen together and have different causes, including

differential sticking, sliding wellbore friction, tight hole conditions, keyseats, increase of

cutting volume, and sloughing hole [40]. As Johansick says, torque and drag calculations

are more relevant for directional wells and even critical in the case of highly deviated

wells. Therefore, for planning these wells and ensure successful drilling operations it is

vital to choose a good torque and drag criteria. First, it will be mentioned the theory for

inclined wells and then for deviated wells from Johansick.

Figure 8 shows a free body diagram of a mass drill pipe section of length ds in an

inclined well.

Figure 8: Free body pipe of a drill pipe unit of ds length (left). Source: [39]. Force acting in a curved drill string.

Source: Johansick [40]

Applying Newton second law the drag force at the bottom is obtained:

𝐹𝑇 = 𝐹𝐵 + 𝛽𝑤∆𝑠(𝑐𝑜𝑠𝛼 ± 𝜇𝑑 𝑠𝑖𝑛𝛼) (18)

Where FB and FT are the forces at the bottom and top, w the unit weight of the drill

string, Δs the length of the drill string, μd the friction coefficient, β the buoyancy factor

and α the inclination (+ for hoisting and – for lowering pipe). Also, according to Belayneh

[39], torque is calculated as the normal moment multiplied by friction factor and pipe tool

joint radius as follows:

𝑇 = 𝑟𝛽𝑤∆𝑠𝜇𝑑 𝑠𝑖𝑛𝛼 (19)

21

Where r is the pipe tool joint radius. For curved sections, the normal force is

calculated from Johansick [40] equation:

𝐹𝑛 = √(𝐹𝑡 ∆𝛼 𝑠𝑖𝑛𝛼)2 + (𝐹𝑡 ∆𝜃 + 𝛽𝑤 𝑠𝑖𝑛𝜃)2 (20)

Where θ is the azimuth angle and α the inclination. This leads to tension increment,

which is:

∆𝐹𝑡 = 𝛽𝑤 𝑐𝑜𝑠𝜃 + 𝜇𝑑 𝐹𝑛 (21)

And torque increment:

∆𝑀 = 𝜇𝑑 𝐹𝑛𝑟 (22)

Bit torque can be measured by MWD tools or in the laboratory. Usually, torque is

measured in the surface and sometimes it is not reliable. In addition, force values FT and

FB from equation 17 are not always available. Then, Pessier [41] developed a model as

function of WOB [lbf], bit diameter (db [in]), and coefficient of sliding friction (μP):

𝑇 =
𝜇𝑃 𝑑𝑏 𝑊𝑂𝐵

36
 (23)

This equation was later modified by Belayneh [42] considering rotation effect using

the modified sliding friction factor, which is a function of axial velocity (Va), rotary speed

(RPM), and bit radius (rb):

𝑇 =
𝜇𝑃 𝑐𝑜𝑠 (𝑡𝑎𝑛−1(

𝑉𝑎

𝑟𝑏 𝑅𝑃𝑀)) 𝑑𝑏 𝑊𝑂𝐵

36
 (24)

2.4.3. Downhole WOB Model

As it was mentioned at the beginning of this study, rate of penetration is dependant

of weight on bit. Thus, it is vital to have a good measure of downhole WOB. The

introduction of measurement while drilling techniques has improved drilling performance

in many wells. In fact, the availability of downhole sensors to accurate measure different

drilling variables such as downhole WOB and Torque on bit help in decision making and

decrease non-productive time (NPT). However, these tools are sometimes costly for some

wells and consequently, this specific data is not handy.

Hareland [43] developed in 2014 a DWOB theoretical calculation based on a torque

and drag model. The same model was also calibrated using field data and compared with

the Autodriller system from Baker Hughes with similar results. Encinas [44] also

22

implemented this correction successfully in his ROP machine learning model last year.

For the Hareland model, three effects are considered to adjust hook load:

1. Sheave effect:

𝐻𝐿𝑎1 =
𝐻𝐿𝑓 (1 − 𝜂𝑛)

𝑛 (1 − 𝜂)
 (25)

Where HLf is the field hook load, η is the sheave efficiency and n the number of

lines.

2. Static Hook effect:

𝐻𝐿𝑎2 =
𝐻𝐿𝑠 (1 − 𝜂𝑛)

𝑛 (1 − 𝜂)
 (26)

Where HLs is the field hook weight, η is the sheave efficiency and n the number of

lines.

3. Standpipe pressure effect:

𝐻𝐿𝑎3 = 5.095𝑥105 𝑆𝑃𝑃 𝑂𝐷2 (27)

Where SPP is the stand-pipe pressure and OD the outside diameter of the pipe.

Finally, the Hook load correction is:

𝐻𝐿𝑚𝑜𝑑 = 𝐻𝐿𝑎1 − 𝐻𝐿𝑎2 − 𝐻𝐿𝑎3 (28)

Chen [45] also modelled downhole WOB using Aadnøy drag model [46] for curved

sections, since WOB is not modified for straight sections. The equation is as follows:

𝑊𝑂𝐵𝑏 = 𝑊𝑂𝐵 𝑒−𝜇∆𝛼 (29)

Where WOB is one weight on bit at a given depth, μ the friction factor and Δα

inclination difference between two adjacent sections.

Wiktorski and Sui [47] proposed a finite element WOB model in the aim of

modelling torsional and axial drill string vibrations. Figure 9 represents axial and

torsional displacements acting in a drill string element.

Figure 9: Drillstring element under influence of torsional and axial forces. Source: [30]

23

This problem is solved using a second-order differential equation as is shown

below:

𝑀𝑈̈(𝑡) + 𝐶𝑈̇(𝑡) + 𝐾𝑈(𝑡) = 𝐹𝑒𝑥𝑡(𝑡) (30)

Where M is the mass matrix, C is the damping matrix, K is the stiffness, and Fext is

the total external force applied to the drill string. U is the displacement, 𝑈̇ is the velocity,

and Ü the acceleration (the three variables could be torsional or axial depending if we

calculate torsional or axial displacement). In this system, dampling is neglected and

therefore C is equal to cero. Stiffness and mass matrix are represented in the following

way:

𝐾 = ⌈
𝑘𝑖 −𝑘𝑖

−𝑘𝑖 𝑘𝑖
⌉ (31)

𝑀 = ⌈
𝑚𝑖 0
0 𝑚𝑖

⌉ (32)

Where ki and mi are the stiffness and mass elements respectively from rotation or

translation movements. These are calculated as follows:

𝑚𝑎 =
𝜌𝑠𝐴𝑙

2⁄ (33)

𝑚𝑡 = 𝜌𝑠𝐼𝑙 (34)

𝑘𝑎 = 𝐸𝐴
𝑙⁄ (35)

𝑘𝑡 = 𝐺 𝐼
𝑙⁄ (36)

Where ma is the axial mass element, mt the mass torsional element, ka the stiffness

axial element, kt the stiffness torsional element, ρs the drillstring density, A the cross

sectional area of the drill string, l the drillstring length, E is the young’s modulus and G

the shear modulus. I is the inertia moment, which is calculated using the inner (di) and

outer (do) diameter of the pipe as follows:

𝐼 =
𝜋 (𝑑𝑜

4 − 𝑑𝑖
4)

32
 (37)

Then, based on different assumptions (for more information, read the paper),

Wiktorski [47] formulates the effective downhole WOB model:

𝑊𝑂𝐵 = 𝑊𝑂𝐵𝑠𝑒𝑡

𝑥̇𝑡𝑜𝑡𝑎𝑙

𝜃̇𝑡𝑜𝑡𝑎𝑙

 𝛿 (38)

24

Where WOBset is the downhole WOB during normal drilling, δ is a correction

factor, and 𝑥̇𝑡𝑜𝑡𝑎𝑙 and 𝜃̇𝑡𝑜𝑡𝑎𝑙 are the total axial and torsional displacements. The last two

parameters mentioned are calculated by the sum of the relative velocity (axial or

torsional), obtained from eq. 29 and the surface velocity that is an input parameter.

2.4.4. Density Model

During drilling, drilling fluid temperature and pressure increase as depth increases.

Mud density is affected by the variation of these parameters; for instance, higher pressure

induces a raise in mud density while higher temperature causes the opposite. It is very

important not to neglect these effects on mud density, especially on high pressure high

temperature (HPHT) wells [48], when wrong density estimation can result in wildly

inaccurate pressure prediction. Therefore, the density model is a function of pressure (P)

and temperature (T), and it can be linearized as follows:

𝜌𝑚 = 𝜌𝑟𝑒𝑓 +
𝜌𝑟𝑒𝑓

𝛽
(𝑃 − 𝑃𝑟𝑒𝑓) + 𝜌𝑟𝑒𝑓 𝛼 (𝑇 − 𝑇𝑟𝑒𝑓) (39)

Where ρm is the mud density, ρref, Tref, Pref the density, temperature and pressure

used as reference, β the isothermal bulk modulus of the liquid, and α the cubical expansion

coefficient of the liquid.

Usually, changes due to temperature and pressure for liquids are small and can be

neglected.

2.4.5. Mechanical Specific Energy

In 1965, Teale [49] defined Mechanical Specific Energy (MSE) as “the energy

required to excavate a unit volume of rock”. MSE has a variety of uses, including

selection and optimization of drilling parameters and bit design. The old formula

considers the axial and torsional energy involved when bit is removing a rock unit. MSE

is calculated as follows:

𝑀𝑆𝐸 =
 4 𝑊𝑂𝐵

𝜋 𝑑𝑏𝑖𝑡
2 +

480 𝑅𝑃𝑀 𝑇

 𝑑𝑏𝑖𝑡
2 𝑅𝑂𝑃

 (40)

Where dbit is bit diameter, WOB is the weight on bit, RPM the rotary speed, ROP

the rate of penetration, and T the Torque. Teale also introduced the concept of maximum

mechanical efficiency, which is obtained when the MSE is closed to the uniaxial

compressive strength of the rock (σ).

25

𝑀𝑆𝐸 = 𝑀𝑆𝐸𝑚𝑖𝑛 ≈ 𝜎 (41)

𝑀𝐸𝑓𝑓 =
𝑀𝑆𝐸𝑚𝑖𝑛

𝑀𝑆𝐸
 100 (42)

Where MEff is the mechanical efficiency. Then, Dupriest [50] introduces a

correction factor in the newly modified MSE (MSEmod):

𝑀𝑆𝐸𝑚𝑜𝑑 = 𝑀𝐸𝑓𝑓 (
 4 𝑊𝑂𝐵

𝜋 𝑑𝑏𝑖𝑡
2 +

480 𝑅𝑃𝑀 𝑇

 𝑑𝑏𝑖𝑡
2 𝑅𝑂𝑃

) (43)

2.4.6. Hydromechanical Specific Energy

In 2014, Mohan [6] modified Teale’s equation by adding a hydraulic term, which

represents “the hydraulic force exerted by the impact of drilling fluid on the formation”.

This impact force has a reaction force (pump off force) in accordance with Newton’s third

law and thus, the effective WOB decreases. The impact force is calculated as follows:

𝐹𝑗 = 0.000516 𝜌𝑚 𝑄 𝑉𝑛 (44)

Where ρm is the mud density, Q is the flow rate, and Vn is the nozzle exit velocity.

This study also says that only 25-40% of this hydraulic energy reaches formation and thus

defines the ratio (Av) of nozzle jet velocity (Vn) to the return fluid velocity (Vf)

considering that the available area of the total bit region is 15%.

𝐴𝑣 =
𝑉𝑛

𝑉𝑓
=

0.15 𝑑𝑏𝑖𝑡
2

 𝑛 𝑑𝑛
2

 (45)

Where dn is the nozzle average diameter and n the number of nozzles.

This publication also remarked how the energy available at the formation is affected

by the distance to the nozzle. This energy is “inversely proportional to the square of the

distance from the nozzle to formation”. Mohan presents a dimensionless variable (M)

defined by Rabia that includes nozzle to formation distance (s), length of potential core

(L), and the angle of axially symmetric jet (θ):

𝑀 =
𝑑𝑛 + 2 𝐿 𝑡𝑎𝑛(𝜃

2⁄)

𝑑𝑛 + 𝑠 𝑡𝑎𝑛(𝜃
2⁄)

 (46)

With these variables, factor for reduction of energy is defined as follows:

𝜂 =
1 − 𝐴𝑣

−𝑘

𝑀2
 (47)

Where k is different for each bit, and in this study is equal to 0.122 [6].

26

Finally, HMSE is calculated using effective WOB (WOBe) as it was mentioned

before and adding the hydraulic jet energy of the fluid to the formation (Eh) to the torsional

(Et) and axial energy (Ea).

𝐻𝑀𝑆𝐸 = 4
 𝐸𝑎 + 𝐸𝑡 + 𝐸ℎ

𝜋 𝑑𝑏𝑖𝑡
2 𝑅𝑂𝑃

 (48)

𝐻𝑀𝑆𝐸 = 4
 𝑊𝑂𝐵𝑒 𝑅𝑂𝑃 + 120 𝜋 𝑅𝑃𝑀 𝑇 + 𝜂 ∆𝑃𝑏 𝑄

𝜋 𝑑𝑏𝑖𝑡
2 𝑅𝑂𝑃

 (49)

Hydraulic energy is calculated as the multiplication of the factor for energy

reduction (η), the pressure loss across the bit (ΔPb), and the flow rate (Q). According to

this study [6], effective WOB is calculated as follows:

𝑊𝑂𝐵𝑒 = 𝑊𝑂𝐵 − 𝜂 𝐹𝑗 (50)

Bit pressure loss equation was taken from Aadnøy’s book [51]:

∆𝑃𝑏 = 8
𝜌𝑚 𝑄2

 𝜋2 𝑑𝑛
4 0.952

 (51)

Where ρm is the mud density.

27

3.Database Analysis

28

3.1. Johan Sverdrup Dataset

In this work, a confidential dataset of six wells from Equinor’s Johan Sverdrup field

was used. For confidentiality, wells will be named as follow: well 1, well 2, well 3, well

4, well 5, and well 6. This field will be described briefly below.

Johan Sverdrup Field

Johan Sverdrup field started production in October 2019 with approximately

435,000 barrels per day. It is the third largest field in the NCS and is powered with

hydraulic energy from shore. According to Equinor [52], it is expected to produce

535,000 barrels per day in mid-2021 and 720,000 barrels per day at plateau with a high

recovery factor of 70% and low CO2 emissions.

3.2. Data Import and Visualization

The first step in database analysis is data import. It is vital to select the valid data

for the model to save time in data processing. The database import was performed in each

well, and each one has its own csv file and json file. For each well were selected 16

features and since it is a time-based database, each physical parameter (any feature

different than time) has its own sensor and therefore its own time feature. For a better

understanding, a table is presented with the unit and data type of each parameter:

Feature Units Data Type

time_DB time units object

Depth Bit meters float

time_DH time units object

Depth Hole meters float

time_RPM time units object

Rotary Speed rev/s float

time_TOR time units object

Torque N.m float

time_WOB time units object

Weight on Bit N float

time_ROP time units object

Rate of Penetration m/s float

time_FR time units object

Flow rate m3/s float

time_SPP time units object

Stand Pipe Pressure Pa float

Table 1: Initial features from a representative well

29

Now, each parameter will be described. It is important to note that all the

measurements were performed in the surface and during a time period since all

information is time-based:

• time_DB is the time measurement of the bit depth. It indicates the exact moment

(day, hour, minute and second) at which the bit position (depth) was measured.

• Depth Bit is the bit position. In this case the Measured Depth (MD).

• time_DH is the time measurement of the hole depth (DH). It indicates the exact

moment (day, hour, minute and second) at which the borehole depth was

measured.

• Depth Hole is the borehole position (depth), always higher than the bit depth.

• time_RPM is the time measurement of the surface rotary speed (RPM). It indicates

the exact moment (day, hour, minute and second) at which the RPM was

measured.

• Rotary Speed are the top drive revolutions measured from the surface.

• time_TOR is the time measurement of the surface torque. It indicates the exact

moment (day, hour, minute and second) at which the torque was measured.

• Torque is the measurement of the surface torque.

• time_WOB is the time measurement of the surface weight on bit (WOB). It

indicates the exact moment (day, hour, minute and second) at which the WOB

was measured.

• Weight on Bit is the measurement of the surface weight on bit (WOB)

• time_ROP is the time measurement of the rate of penetration (ROP). It indicates

the exact moment (day, hour, minute and second) at which the ROP was measured.

• Rate of Penetration is calculated over a time interval (usually 60 seconds), it

measures the bit depth changes over time.

• time_FR is the time measurement of the flow rate (Q). It indicates the exact

moment (day, hour, minute and second) at which the flow rate was measured.

• Flow Rate is measured from the mud pumps

• time_SPP is the time measurement of the surface stand-pipe pressure (SPP). It

indicates the exact moment (day, hour, minute and second) at which the SPP was

measured.

• Stand-Pipe Pressure is detected from a gauge located in the stan pipe.

30

3.3. Data Cleaning

After selecting the necessary information, it is important to improve the quality of

the data to implement Machine Learning models and perform Optimization. The cleaning

is done in four different steps: handling missing values, handling faulty measurements,

removing outliers and removing noise. Each of these steps will be explained in the

following subsections.

3.3.1. Handling Missing Values

Since it is a time-based data, all parameters have its corresponding time column,

which means the time where sensor measure certain parameter. All the data measurements

were performed in the same timeframe (on each well), so for example the starting row

and ending row in time_DB and time_DH columns are the same (could be one or two

seconds of difference, but is neglectable). When watching data structure, it was clear that

some values were missing in almost all columns and that these were located at the end of

the data frame. This showed that the frequency of the measurements on the different

features varies and therefore, some variables have higher number of measurements than

others. Thus, a dataframe was created for each variable (8 different dataframes were

created) and missing values were deleted. Fig. 10 illustrates data of well 3 after this

process.

Figure 10: Plot of the different variables vs. time for well 3.

More pre-processing work was necessary prior to start removing outliers. Since it

is very difficult to work with different time columns, it was necessary to merge all the

31

eight dataframes based on the time column with a higher number of measurements to

avoid deleting relevant data. In all the wells time_DH was used as reference for merging

except for the well number 2, where time_DB was used as reference.

Consequently, some missing values appeared in the different variables and it was

necessary to interpolate data to fill that information. Linear interpolation was used since

the frequency of measurements is low (usually between 2 or 3 seconds). After removing

all duplicates and missing values, the data structure changed and was ready to remove

faulty measurements. Table 2 shows the new structure of the data.

Feature Units Data Type

time time units datetime

Depth Bit meters float

Depth Hole meters float

Rotary Speed rev/min float

Torque kN.m float

Weight on Bit N float

Rate of Penetration m/h float

Flowrate l/min float

Stand-Pipe Pressure kPa float

Table 2: Initial features from a representative well after merging and interpolating.

3.3.2. Handling Faulty Measurements

Before removing outliers and noise it is necessary to delete some unnecessary data.

Due to the frequency in sensors measurement (usually between 2 and 3 seconds) so many

faulty measurements were recorded.

The first step was to remove all non-drilling data and select only data where ROP

was higher than 0. It is normal to have negative ROP values when tripping out (lift all the

drill string due to bit change or another problem) since depth decreases.

Secondly, negative WOB values were also deleted since this is not a realistic

behaviour of drill string.

3.3.3. Removing Outliers

According to Sui [48], “an outlier is an observation point that is distant from other

observations”. It also mentions that it can be due to an experimental error or variability

in the measurement. The purpose of removing outliers in this study, was to narrow data

in a realistic range [4]. Therefore, some outliers were removed manually after data

observation and identifying some anomalies outside the range. In this case some

32

parameters were out of range, and flow rate lower than 2000 lt/min and Standpipe

pressure lower than 5000 KPa were deleted. Also, in some wells ROP was out of the

range and it was necessary to remove that noise that was not removed by the techniques

explained below. After these steps, a more sophisticated technique is used to remove

outliers, which is called the Interquartile Range (IQR).

Interquartile Range (IQR)

According to Hadi, “the interquartile range is the central 50% or the area between

the 75th and the 25th percentile of a distribution” [53]. This is a solid method to remove

points located far away from the range [44] and when the data is not normally distributed.

However, relevant data could be incorrectly deleted, and it should be used carefully. This

method uses the following formulas:

𝐼𝑄𝑅 = 𝑃75 − 𝑃25 (52)

Afterwards, the IQR technique uses the following upper and lower cut-offs:

𝐿𝑜𝑤𝑒𝑟 𝐶𝑢𝑡𝑡 − 𝑜𝑓𝑓 = 𝑃25 − 1.5 𝐼𝑄𝑅 (53)

𝑈𝑝𝑝𝑒𝑟 𝐶𝑢𝑡𝑡 − 𝑜𝑓𝑓 = 𝑃75 + 1.5 𝐼𝑄𝑅 (54)

Consequently, a point that is not inside the range will be considered an outlier and

removed. Results for applying the IQR method and removing outliers manually are

presented below as an illustration in fig.11.

33

Figure 11: Variables vs. depth of well number 6 after removing outliers manually and using IPR method in well 1.

3.3.4. Removing Noise

To smooth data signals, filtering process was executed. In this study. a moving

average filter was used, which formula is defined in the following way, as it is noted by

Sui [48]:

𝑦(𝑡) =
1

𝑛
(𝑥(𝑡−𝑛+1) + 𝑥(𝑡−𝑛+2) + ⋯ + 𝑥(𝑡)) (55)

Applying Fourier transform:

𝑥(𝑡 − 𝑘) ↔ 𝑋(𝑗𝑤)𝑒−𝑗𝑘𝑤 (56)

𝑌(𝑗𝑤) =
1

𝑛
𝑋(𝑗𝑤)(𝑒−𝑗𝑤(𝑛−1) + ⋯ + 𝑒−𝑗𝑤 + 1) (57)

Transfer function becomes:

𝐻(𝑗𝑤) =
1 − 𝑒−𝑗𝑤𝑛

𝑛(1 − 𝑒−𝑗𝑤𝑛)
 (58)

This filter was implemented in python using the syntax rolling, which is showed in

the appendix. Results after applying median average filter in well 1 are shown in fig. 12.

For more information, the code is available in the appendix.

34

Radius Neighbours Regressor

Although filtering showed remarkable results in data quality, it is necessary to

downsize data to removed noises that could not be removed by the moving average filter

and for computational running. The data was initially time-based, but it is easy to handle

and understand when it is depth-based. Besides, at this point it was required to separate

data in different sections since each section will have a different machine learning model.

Therefore, as the frequency of measurements is very low, many points share the same

depth and the parameters were averaged and grouped by depth. Furthermore, it was

necessary to evenly distribute the depths data points before ML modelling and Radius

Neighbours Regressor were implemented. One example is shown in fig. 13. The data was

reduced to 90%, but as it is seen, the pattern is the same and it has not been altered

drastically. The code is written in the modelling part of the appendix, but it is considered

a data cleaning technique, so it is described in this chapter.

Figure 12: Variables vs. depth of well number 6 after removing noise using median average filter in well 1

35

Median Filter

As Sui [48] mentions, median filter replaces data signals with the median of

neighbours. This is done by providing the code a window size, which is the number of

rows the filter takes when it is running. In this project, to remove the last outliers and

smooth the signals, a median filter was applied at the end of the cleaning process. In order

to perform this operation, the median_filter function from SciPy was adopted. The code

implementation, along with all the cleaning process is attached in the appendix and is also

written in the modelling part as it was executed after Radius Neighbors Regressor.

Figure 13: Variables vs. depth of well number 6 after removing noise using median average filter and Radius Neighbors

Regressor in well 1 section 26”.

3.4. Data Selection

Data selection was made based on the performance of the different ML models.

Many well sections were tested, and only section26” from well 1 had good performance

using Machine Learning with both ROP and Torque models. It is relevant to remark that

this final selection was made after modelling all wells sections and not obtaining good

results in both models. Considering this project uses ML data driven models, only relevant

36

data was selected where the ROP was in the same range in each well section. For both

ROP and Torque models, Bit Depth (DB), Weight on Bit (WOB), top drive revolutions

(RPM), and flow rate (Q) were selected as independent variables and ROP and Torque as

dependent variables.

37

4.Machine Learning

Implementation

38

In this chapter the implementation of distinctive Machine Learning algorithms will

be explained. In this study, Python was used as coding language due to the reasons

mentioned in Chapter 1 Section 2. Four ML algorithms were used and evaluated in all

well sections, where each well section corresponds to a different casing size.

To implement these ML models, Python library Skicit Learn was used. Random

Forest (RF), Gradient Boosting (GB), AdaBoost (AB) and K-Nearest Neighbors (KNN)

were evaluated in two different scenarios for ROP and Torque models that will be

explained in the following section. Table 4.1 shows input features for all models.

Feature Units Data Type

Depth Bit meters float

Rotary Speed rev/min float

Weight on Bit kN float

Flow rate L/min float

Table 3: input features for ROP and Torque models.

4.1. Data Split

Most of the studies conducted in ROP modelling and/or optimization are not clear

on how data was split. As Encinas [44] mentioned in his study, data must be separated

into three parts to avoid model bias and overfitting: training set, validation set and test

set. In this work, data was split into training and test set and was tested using sequential

sampling and continuous learning sampling.

As it was noted in Chapter 2 Section 2.3, there are three different types of data

sampling: random sampling, sequential sampling, and continuous learning sampling. The

first one is based on separate data randomly, for example selecting 70% percent of random

data as training set and remaining 30% as test set. The problem with this approach has

been described before and will not be extended. To the writer point of view, it is an

unrealistic drilling scenario.

Sequential sampling, however, represents a more realistic scenario. Here, data is

split in the desired percentage but not randomized. Training data represents the section

that has been drilled and the test data is compared with the predicted data, which is the

section that is being drilled. For instance, 65% of initial data is selected as training set

and the remaining as test set. Fig. 14 can easily explain the difference between the two

types of data split.

39

Continuous training sampling is explained in the next chapter. For the purpose of

modelling, this split technique was used to understand data and select sample data for

optimization. Usually, when using this method, the performance metrics of the Machine

Learning model improves while increasing the training set. Therefore, in the hypothetical

case that the best metric performance is reached when 70% of data is selected as training

data, 70% of data will be the sample.

Figure 14: Sequential split (left) and continuous learning split (right). Blue cells represent the training set and white

cells represent the test set.

4.2. Performance metrics

To evaluate the performance of each regression model, three different metrics have

been chosen: Coefficient of Determination (R2), Mean Absolute Error (MAE), and

standard deviation (std). Since in this study two models were implemented, for each

model the same metrics were calculated. These three metrics are available in Python

Scikit Library and therefore are very easy to implement in Jupyter Notebooks. These

metrics are summarized below:

40

Coefficient of Determination (R2)

According to many economists and statistics, R2 represents the percentage of

variation in the dependent variable explained by variation in the independent variables

[54]. This can be described by the following formula:

𝑅2 = 1 − ∑
(𝑦𝑖 − 𝑦𝑝𝑖)

2

(𝑦𝑖 − 𝑦̅)2

𝑛

𝑖=1

 (59)

Where yi is the real value of the variable that is being modelled (in this case ROP

or Torque), 𝑦̅ is the mean value, and ypi is the predicted value.

Mean Absolute Error (MAE)

Mean Absolute Error is the measured error between predicted values and real values

of a predeterminate variable. It is calculated as follows:

𝑀𝐴𝐸 =
∑ |𝑦𝑖 − 𝑦𝑝𝑖|

𝑛
𝑖=1

𝑛
 (60)

Standard Deviation (std)

According to [55], standard deviation measures the dispersion of a dataset relative

to its mean. The formula is as follows:

𝑠𝑡𝑑 = √
∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1

𝑛 − 1
 (61)

4.3. Regressors Implementation

As was mentioned before, all the four ML models were implemented using Scikit

Learn package. Although the ideal approach would be to perform hyperparameter tunning

when creating all models, the technique was not applied due to run time consumption. A

trial using GridSearchCV command from Scikit Learn was performed and it was

discarded since this study’s goal is not focus on the model's accuracy but on ROP and

Torque optimization. Moreover, this parameter tunning took much computer running time

with meager improvements. Fig. 15 shows a schematic flow-chart of the process,

obtaining the sample that will be used later for modelling. In this case, as it was explained,

continuous learning approach is adopted. Both ROP and Torque models were

41

implemented at the same time, and the process was repeated four times, one for each

Regressor. Heat maps of MAE are included in results chapter for a better understanding.

Figure 15: Flow-chart of the continuous learning approach in ROP and Torque modelling.

Once data was selected, it was necessary to create the ML models and evaluate their

performance by calculating the metrics. In results chapter, some plots were printed to

illustrate ML implementation. Fig. 16 shows a schematic flow-chart of the process, which

is very similar to figure 15, but in this case using sequential split and thus, there is no

model update since the process is not iterative. Here, ROP and Torque models are created

simultaneously, and the process is repeated for each model. As it can be seen in fig. 11,

in parts of the plot, RPM and flow rate are constant or there is little variation; thus ML

models are not accurate. Only 26” sections are shown in the appendix in modelling

results, as the other section models’ accuracy was very low.

Figure 16: Flow-chart of the sequential split approach in ROP and Torque modelling.

The regressors were implemented with no tunning and using the default parameters,

and the most relevant are mentioned below:

Random Forest:

• n_estimators: number of trees in the forest. Default: 100

• max_depth: maximum depth of the tree. Nodes are expanded until all leaves

contain less than min_samples

• max_depth_split: minimum number of samples to split a node. Default: 2.

42

Gradient Boosting:

• loss: Loss function to be optimized. Default is Least square regression (‘ls’)

• n_estimators: number of boosting stages to perform. Default is 100

• min_samples_split: minimum number of samples required to split an internal

node. Default: 2

AdaBoost:

• n_estimators: maximum number of estimators at which boosting is terminated.

Default=50.

• loss: loss function to update the weights after each boosting iteration. Default:

’linear’.

K-Nearest Neighbors:

• n_neighbors: number of neighbours to use for k-neighbors queries. Default: 5

• weights: weight function. Default: ’uniform’.

• algorithm: Default: ’auto’.

43

5. Modelling and

Optimization

Implementation

44

In this chapter, the optimization methodology will be explained. Once the

modelling was implemented and all metrics were analysed, well number 1 section 26”

was chosen due to being the only one with optimistic results in both models. From this

section, only the top 60% was selected because of the rock lithology. At 900 m, the bit

reached a different formation, so for this part of the study only a shale section of 500 m

is considered.

As said before, optimization was carried out along with modelling, where the model

is updated each fixed-step and optimization is performed in the next step. As Tunkiel [28]

says, continuous learning is a good approach since “it does not require information from

reference wells” and “do not suffer problems like difference in equipment used between

the wells and changes in logged attributes.”

For a better understanding of this approach, the method's representation is shown

in figure 14, where each blue cell represents the training sample and the white cell test

sample. To start optimization, a small portion of the dataset for the first training set is

needed. This work starts with 10% of the training data, which corresponds to

approximately 80 meters of drilled rock. A drilling step of 30 meters is considered based

on the length of a joint/stand [32]. Subsequently, new data is gathered and the ML model

is updated. This process is iterated until step n-1, where n is the number of iterations the

algorithm is run, where the bottom of the optimization selected data is reached. This loop

is repeated for each ML technique and for each optimizer, having eight different results

to compare. Optimization flow-chart is shown in fig. 17 and relevant part of the code is

written in the appendix.

Figure 17: Modelling and Optimization flow-chart

45

5.1. Optimization Algorithms and constrains

Two optimization algorithms were used in this work: Differential Evolution (DE)

and Particle Swarm Optimization (PSO). As described in chapter 2, both are part of

metaheuristic optimization algorithms and population-based methods (for more

information check Luke’s book, pages 54-58 [35]). The implementation of these

optimizers is straightforward since both can be found on the internet. However,

parameters tunning differs in both cases.

On the one hand, the application is quite simple for DE algorithm as it is included

in Scipy library. For the implementation, no parameter tuning was executed and, default

values were used. The most relevant parameters are the following:

• maxiter (maximum number of generations): 1000

• popsize (population size): 15

• tol (Relative tolerance for convergence): 0.01

• mutation: 0.5

• recombination (crossover): 0.7

On the other hand, PSO algorithm was implemented using one of the optimizers

included in PySwarms library. The optimizer chosen was the global-best Particle Swarm

Optimizer, where every particle compares itself with the best-performing particle in the

swarm (more details of the code are in the appendix). Due to its nature, PSO needed two

functions to be executed. The most relevant parameters are tunned as follows:

• c1 (proportion of the original velocity retained): 0.5

• c2 (proportion of the personal best (location) to be retained): 0.3

• w (proportion of the informants’ best location to be retained): 0.9

• n_particles (number of particles): 10

• iters (maximum number of iterations): 100

• dimensions (number of variables, in this case WOB, Q, RPM): 3

In both cases, bounds are the constrain of the problem. It is vital to mention that in

this study, hole cleaning and bit vibrations are not considered; therefore, the range of the

constraints is wide. For the optimization, the bounds selected were the range of the three

variables in the section (WOB, Q, RPM). The ML models used for optimization have four

inputs (DB, WOB, RPM, Q) so, when optimizing, it was necessary to give a fix depth

value to the function. Consequently, the depth centre of the predicted 30-meter section

46

was chosen for this purpose. The three controllable parameters bounds were defined as

follows:

𝑊𝑂𝐵 [𝑘𝑁] = [10, 200]

𝑄 [𝐿/𝑚𝑖𝑛] = [3500, 5000]

𝑅𝑃𝑀 [𝑟𝑒𝑣/𝑚𝑖𝑛] = [70, 180]

47

6. Results and Discussion

48

6.1. Modelling Results

As mentioned in Chapter 4, the modelling was performed in two steps. First, a

continuous learning split approach was completed to understand data. To illustrate this

method, a heat map was chosen, where each Machine Learning performance was

evaluated using MAE. From the author's point of view, MAE should decrease while the

model gathers more data, and based on this hypothesis, the goal is to find the percentage

of dataset that makes this possible. Figures 18 and 19 show ROP and Torque MAEs for

each model. The x-axis represents the percentage of the dataset that is evaluated (training

set + test set). The model starts with 10% of initial training data and 10% of test data.

Then, the model is updated, and 20% of the dataset represents the training data, and the

following 10% is the test data. This process is iterated until 90% of the data is trained.

Only relevant part of the code is included in the appendix for more information. For heat

map colour representation, maximum values in the scale are 10 m/h and 3 kN.m since

they represent 15% of the maximum ROP and Torque values.

Figure 18: ROP models’ MAEs using continuous learning approach

49

Figure 19: Torque models’ MAEs using continuous learning approach from one of the well sections

Afterwards, 60% of the dataset was selected, and the same four ML algorithms were

implemented using a sequential split approach in all wells (only plots from well 1 section

26" are shared in this chapter since they are the ones with the best performance metrics).

Tables 4 and 5 show the performance metrics evaluated in the different models, yielding

some conclusions along with figures 20 and 21. Here it can be seen how good is the

prediction using Gradient Boosting algorithm, where test data is compared with predicted

data for ROP and Torque models. Since test data in the Torque model is not in the same

range as training data (training data is between 1 and 13 kN.m and test data is between 1

and 17 kN.m) the model performance is not quite good but still catch abrupt changes.

Table 4 and Table 5: Performance metrics for Machine Learning models using60/40 split (Torque model on the left

and ROP model on the right) from well1 section 26”.

50

Figure 20: Gradient Boosting algorithm plot ROP vs. depth using 60/40 split from well1 section 26”. Predicted data

(blue) is evaluated against test data (green).

Figure 21: Gradient Boosting algorithm plot Torque vs. depth using 60/40 split from well1 section 26”. Predicted data

(blue) is evaluated against test data (green).

In the case of the ROP model, on the other hand, training and test data are in the

same range and have an acceptable prediction for optimization purposes.

51

6.2. Modelling and Optimization Results

In this section, results from part 3 of the study will be exposed. As was mentioned in

section 2.3, two optimization algorithms were implemented in this study using continuous

learning split approach to simulate drilling conditions. With this technique, only a tiny

part of the dataset is known (10%, which is approximately 80 meters), and the model is

updated every 30 meters as it is the length of a drill string stand. Therefore, with the

parameters mentioned in Chapter 5, the two optimizers were executed using the same four

ML models. From left to right in figure 22, the code runtime is illustrated using Random

Forest, Gradient Boosting, AdaBoost and K-Nearest Neighbors algorithms.

Figure 22: Code Runtime (seconds) for the two optimizers (Differential Evolution in blue and Particle Swarm in red)

and using RF, GB, AB, and KN with the same parameters.

It is essential to mention that runtime corresponds to the total time of the process,

which is modelling update and optimization of all the selected section. Furthermore, the

number of iterations using the PSO algorithm is 100, while DE used 1000. This is not

relevant since PSO converged to the solution before 100 iterations, but it was modified

because using 1000 iterations with PSO was very time-consuming. The most pertinent

analysis is that run time is considerably higher and is more affected by the ML model

than optimizer, although DE is faster. As a result, only GB and KN show the most rapid

optimization.

Afterwards, Hydromechanical Specific Energy (HMSE) was implemented and

calculated for all the section. HMSE and Torque were calculated for all ROP models,

using the Torque model's prediction and HMSE equation from Chapter 2.4. Alternatively,

the ROP and HMSE were calculated using ROP model's prediction and HMSE equation

52

for Torque models. It is important to mention that values of the potential core length (L),

the distance between the nozzle to the formation (s), and the angle of axially symmetric

jet were assumed as 156 in, 8 in, and 3 degrees, respectively, based on values used in

Berg's study [56]. The constant k has the same value as in Mohan's paper [6] (k=0.122).

First, to avoid confusion, the term growth rate as the percentage change of any variable

in terms of the average of the optimized 30-meter section will be defined. The growth rate

equation is as follows:

𝐺𝑅 =
𝑥𝑜𝑝𝑡 − 𝑥𝑎𝑣

𝑥𝑎𝑣
 (62)

Where xopt is the optimal value of ROP, Torque or HMSE and xav the average value

of same parameters in the 30-meter section. Eventually, growth rate was calculated for

the three parameters in both models to evaluate the optimization. Figures 23 and 24

highlight growth rates using Gradient Boosting Torque model and AdaBoost ROP model,

respectively. Values were achieved by adopting Differential Evolution algorithm since it

is faster. More plots are available in the appendix.

Figure 23: ROP (blue), HMSE (red) and Torque (green) growth rate using GB Torque and ROP model and DE

combination. Growth rate is negative because the three parameters decrease.

Finally, a bar chart was created to show the three variables' average growth rate

using the four ML models and DE algorithm. Based on these plots, there is an average

growth rate nearly 48% when maximizing ROP. However, this approach raises the HMSE

closer than 50%, which is not desirable. On the other hand, when minimizing Torque,

HMSE decreases on average 50% but ROP also drops but only 20%.

53

Figure 24: ROP (blue), HMSE (red) and Torque (green) growth rate using AB ROP and Torque ROP model and DE

combination.

Figure 25: ROP (blue), HMSE (red), and Torque (green) average growth for all ML models for ROP optimization

(maximize ROP) using DE algorithm.

Figure 26: ROP (blue), HMSE (red), and Torque (green) average growth for all ML models for Torque optimization

(minimize Torque) using DE algorithm.

54

6.3. Sensitivity Analysis

In the last part of this study, a sensitivity analysis was conducted to evaluate

Machine Learning algorithms' performance. Since it was impossible to perform a field

experiment for model evaluation, a sensitivity analysis is an alternative technique to

evaluate how sensitive the ML models are to variations on its parameters. Two different

techniques were used in this research. Consequently, the four ML models were

implemented using default parameters described in Chapter 4 using a 60/40 data split

approach and DE as optimizer. Modelling and optimization were performed once per

model, and optimal parameters were obtained from the process (maximum ROP and

optimal WOB, Q and RPM for the ROP model and minimum Torque and optimal WOB,

Q and RPM for the Torque model). The bit depth was set at the centre of the test section.

In the first case, each model is evaluated using the optimal parameters from the other

models. For instance, when ROP is calculated using the optimal values from RF, ROP

using GB model and RF optimal features is calculated. Also, the same process with ROP

using AB model and KNN model is repeated. This process is then replicated for the three

remaining algorithms. Figures 27 and 28 show a bar chart for Torque and ROP models

where this analysis is executed. Here, 4 groups of 4 bars are represented. Each group

corresponds to the sensitivity analysis of the ROP using the same optimal parameters

from the model indicated in x-axis. For example, in Fig. 6.10 the first group conforms to

the Torque values of the four ML models using optimal parameters from Random Forest.

Figure 27: Sensitivity analysis case 1 for Torque models. The x-axis represents the model whose optimal parameters

are implemented.

55

Figure 28: Sensitivity analysis case 1 for ROP models. The x-axis represents the model whose optimal parameters are

implemented.

From figures 27 and 28, KNN Torque model is very sensitive to any parameter

variation, and RF is not affected by WOB, which is strange. GB and AB are very

influenced by parameter changes, but they will be analysed with more detail doing the

case 2 analysis. From ROP models, it is clear that WOB plays a relevant role.

In the second case, each model was individually tested by a variation of 20% of its

input parameters (Bit Depth, WOB, Q, and RPM), based on optimal values. For instance,

GB Torque model was evaluated first by varying only Depth Bit in -20% and 20%.

Therefore, it can be assessed how sensitive each model is to the variation of all input

parameters. Figures 29 and 30 illustrate this analysis.

From figures 29 and 30, it can be deduced that KNN model is susceptible to small

fluctuations, both ROP and Torque model, which makes it no reliable. AB and GB ROP

models are unaffected by WOB and bit position variations, which is not associated with

the theory. RF ROP model is also unaffected by bit position variations.

On the other hand, all Torque models are very receptive to bit position and rotary

speed changes, while they are no responsive to WOB changes.

56

Figure 29: Sensitivity analysis case 2 for Torque models.

Figure 30: Sensitivity analysis case 2 for ROP models.

Lastly, it is crucial to indicate the nature of all ML models, summarized in Chapter

2 Section 4. RF, GB, and AB are based on decision trees, and prediction could have the

shape of figure 2 or figure 21, where the predicted variable is sometimes flat, so the input

parameter variation does not change the expected value. Alternatively, KNN has no

explicit training process, so it is unstable and changes by minor input variations.

57

6.4. Discussion

The goal of this study is to maximize ROP and/or minimize Torque in real-time.

Therefore, the most crucial part of the study is the optimizer performance and runtime,

leaving the model development as a second priority. Consequently, this causes that ML

models were not as accurate as in other studies. This discussion will focus on three

different aspects that were not covered or not successfully achieved by this study.

The first part is the use of deep learning. It is important to remark that the hardware

availability (a personal computer with a simple GPU) limited the author in implementing

deep learning models. The reason is that deep learning requires a lot of computation.

Ahmed, Al-AbdulJabbar, Alali, Brenjkar, and Manta [21] [23] [4] [22] [24] obtained very

accurate models using ANN, all with R2 values over 0.9, which shows how proficient are

these ML algorithms for ROP modelling. Encinas and Tunkiel [44] [27] also achieved

remarkable ROP prediction using RNN. Thus, using cloud computing, the model

development should improve even knowing that it is necessary to update each model for

every 30 meters during optimization. The solution proposed in this model is for a simple

computer that is usually available in rig operations.

Second part is regarding data quality. When using physics-based ROP models, it is

essential to use downhole measurements or downhole corrections. Otherwise, it will

produce wrong results. In fact, Encinas [44] showed on his model that the best approach

is using a mix of surface and downhole WOB values as inputs for his long short-term

memory (LSTM) model. For instance, setting downhole RPM as input in 26" sections

instead of surface RPM improved the models. So, calculating downhole Torque and WOB

would have undeniably improved ML model development.

Finally, the last topic is regarding the constraints during ROP and Toque

optimization. Hedge [7], for instance, included drilling vibrations as a constrain to "ensure

that calculated optimal drilling parameters do not induce excessive vibrations."

Therefore, additional analysis regarding drilling vibrations, hole cleaning, borehole

stability, and pressure variation must be performed to achieve more realistic optimal

drilling parameters.

58

7. Conclusions and Future

Work

59

After completing this study, a real-time data driven and optimization model was

achieved using Johan Sverdrup wells. The most important conclusions are summarized

below:

A dataset of 6 wells was analysed, with 16 different features. To select the

appropriate section was necessary to clean and pre-processed all data.

A continuous learning approach was successfully implemented to select data in the

same range in all well sections during model development. Surface data such as

controllable parameters like WOB, flow rate and rotary speed and also bit position were

used as input in both ROP and Torque models. MAE was calculated and used as filter to

measure model's performance. Random Forest (RF), Gradient Boosting (GB), K-Nearest

Neighbours (KNN) and AdaBoost ML algorithms were tested.

A sequential split approach was executed using 60/40 split to select the well

sections to optimize. Good results were achieved only in well 1 section 26" using WOB,

flow rate, RPM, and bit position as inputs for both models and testing RF, AB, GB, and

KNN models.

Modelling and optimization were auspiciously completed using the continuous

learning approach, updating the model every 30 meters, and predicting and optimizing

the next stand. The four ML models were implemented (RF, GB, AB, and KNN) among

the two algorithms of stochastic optimization: Differential Evolution (DE) and Particle

Swarm Optimizer (PSO). In total, 8 combinations were tested, and the mix of GB and DE

was the best based on the metric features and code running time. During optimization, the

centre of the predicted next stand was used as input, and the controllable drilling

parameters constraints were chosen only to fit in the data range.

Finally, a sensitivity analysis was performed to evaluate Machine Learning

algorithms' performance to substitute a field experiment validation. Two scenarios were

simulated, one considering each model using the optimal parameters from the other

models and the other testing each model by a variation of 20% of its input parameters.

Results showed strong dependence on WOB in ROP models and high sensitivity of

Torque models in bit position and rotary speed. This analysis also demonstrates the four

ML models limitations since three are based on trees (see Chapter 2 section 4, RF, AB

and GB theory) and KNN has no explicit training process, therefore its sensitivity to all

inputs variations.

60

This work aims to create a methodology for drilling optimization, either by

maximizing ROP or minimizing HMSE (by minimizing Torque) in real-time using data

driven models, modifying controllable surface parameters. As mentioned in the

discussion, many limitations will be outlined below as future work:

1. Previous studies [21] [23] [4] [22] [44] [27] revealed that Neural Networks achieve

remarkable results when using in ROP prediction. The limitation in this model was

the hardware used and this problem could be solved using cloud computing. Thus, a

more accurate model will reach better predictions and consequently more realistic

optimization.

2. Data quality is of vital importance since this study is a data driven approach. Only

rotary speed was corrected from surface, and with WOB and Torque corrections the

model accuracy would definitively improve.

3. No specific constraints were selected during optimization, which would make a more

realistic and complete model. These bounds can be modified based on drilling

vibrations, hole cleaning, borehole stability, and pressure variation among other

drilling issues.

61

8. References

[1] "Investments and operating costs," 2021. [Online]. Available:

https://www.norskpetroleum.no/en/economy/investments-operating-costs/.

[2] "Drilling production wells," [Online]. Available:

https://www.npd.no/en/facts/publications/reports2/resource-report/resource-

report-2017/recovery/adopt-new-technology/drilling-production-wells/#.

[3] C. Soares, H. Daigle and K. Gray, "Evaluation of PDC bit ROP models

and the effect of rock strength on model coefficients," Journal of Natural Gas

Science and Engineering, vol. 3, pp. 1225-1236, 2016.

[4] A. M. Alali, M. F. Abughaban and B. M. Amanc, "Hybrid Data Driven

Drilling and Rate of Penetration Optimization," Journal of Petroleum Science

and Engineering, 2020.

[5] C. Hegde, H. Daigle, H. Millwater and K. Gray, "Analysis of rate of

penetration (ROP) prediction in drilling using physics-based and data-driven

models," Journal of Petroleum Science and Engineering, pp. 295-306, 2017.

[6] K. Mohan, F. Adil and R. Samuel, "Comprehensive Hydromechanical

Specific Energy Calculation for Drilling Efficiency," 2014.

[7] C. Hegde, M. Pyrcz, H. Daigle and K. Gray, "Fully coupled end-to-end

drilling optimization model using machine learning," Journal of Petroleum

Science and Engineering, 2019.

[8] D. Ertas, J. R. Bailey, L. Wang and P. E. Pastusek, "Drillstring

Mechanics Model for Surveillance, Root Cause Analysis and Mitigation of

Torsional Vibrations," SPE Drilling and Completions , 2014.

[9] G. Bingham, A new approach to interpreting rock drillability, Tulsa:

Petroleum Publishing Company, 1965.

[10] A. T. Bourgoyne, K. K. Millhein, M. E. Chenevert and F. S. Young Jr.,

Applied Drilling Engineering, Second Edition ed., vol. 2, Richardson, TX:

SPE texbook series, 1991.

62

[11] W. W. Winters and E. Onyia, "Roller Bit Model With Rock Ductility

and Cone Offset," in 62nd SPE Annual Technical Conference and Exhibition

, 1987.

[12] H. Motahhari, G. Hareland and J. James, "Improved Drilling Efficiency

Technique Using Integrated PDM and PDC Bit Parameters," Journal of

Canadian Petroleum Technology, 2010.

[13] L. M. Leao de Barros, "ROP Modeling Chronology, Sensitivity

Analyses, and Field Data Comparisons," 2015.

[14] J. VanderPlas, Python Data Science Handbook, O'Reilly Media, Inc,

2016.

[15] Z.-H. Zhou, "Ensemble Learning," in Encyclopedia of Biometrics,

Boston, Springer, 2009.

[16] N. Bagalkot, A. Keprate and R. Orderlø, "Combining Computational

Fluid Dynamics and Gradient Boosting Regressor for Predicting Force

Distribution on Horizontal Axis Wind Turbine," MDPI, vol. 4, pp. 248-262,

2021.

[17] P. Prettenhofer and G. Louppe, "Gradient Boosted Regression Trees".

[18] G. Biau, "Analysis of a Random Forests Model".

[19] M. Yoo, "Variable Importance Assessment in Regression: Linear

Regression versus Random Forest," The American Statistician, vol. 63, no. 4,

pp. 308-319, 2009.

[20] Z.-H. Zhou, Ensemble Methods, Taylor & Francis Group, 2012.

[21] A. Ahmed, A. Ali, S. Elkatatny and A. Abdulraheem, "New Artificial

Neural Networks Model for Predicting Rate of Penetration in Deep Shale

Formation," Sustainability, vol. 11, no. 6527, 2019.

[22] E. Brenjkar and E. K. K. Biniaz Delijani, "Prediction of penetration rate

in drilling operations: a comparative study of three neural network forecast

methods," J Petrol Explor Prod Technol, vol. 11, p. 805–818, 2021.

[23] A. Al-AbdulJabbar, S. Elkatatny, A. A. Mahmoud, T. Moussa, D. Al-

Shehri, M. Abughaban and A. Al-Yami, "Prediction of the Rate of Penetration

63

while Drilling Horizontal Carbonate Reservoirs Using the Self-Adaptive

Artificial Neural Networks Technique," 2020.

[24] B. Mantha and R. Samuel, "ROP Optimization Using Artificial

Intelligence Techniques with Statistical regression Coupling," in SPE Anual

Technical Conference and Exhibition, Dubai, UAE, 2016.

[25] C. I. Noshi, "Application of Data Science and Machine Learning

Algorithms for ROP Optimization in West Texas: Turning Data into

Knowledge," in Offshore Technology Conference, Houston, Texas, 2019.

[26] K. Singh, S. S. Yalamarty, M. Kamyab and C. Cheatham, "Cloud-Based

ROP Prediction and Optimization in Real Time Using Supervised Machine

Learning," in SPE/AAPG/SEG Unconventional Resources Technology

Conference, Denver, 2019.

[27] A. T. Tunkiel, D. Sui and T. Wiktorski, "Training-while-drilling

approach to inclination prediction in directional drilling utilizing recurrent

neural networks," Stavanger, 2020.

[28] A. T. Tunkiel, D. Sui and T. Wiktorski, "Reference Dataset for Rate of

Penetration Benchmarking," 2020.

[29] C. Gan, W. Cao, K.-Z. Liu, M. Wu, F.-W. Wang and S.-B. Zhang, "A

New Hybrid Bat Algorithm and its Application to the ROP Optimization in

Drilling Processes," IEEE Transactions on Industrial Informatics, 2019.

[30] E. Wiktorski, A. Kuznetcov and D. Sui, "ROP Optimization and

Modelling in Directional Drilling Process," in SPE Bergen Seminar, Bergen,

Norway, 2017.

[31] D. Sui and B. S. Aadnøy, "Rate of Penetration Optimization using

Moving Horizon Estimation," Modeling, Identification and Control, vol. 3,

no. 1890-1328, pp. 149-158, 2016.

[32] C. Hegde and K. Gray, "Evaluation of coupled machine learning models

for drilling optimization," Journal of Natural Gas Science and Engineering,

2018.

64

[33] C. Hegde, H. Daigle and K. Gray, "Performance Comparison of

Algorithms for Real-Time Rate-of-Penetration Optimization in Drilling

Using Data-Driven Models," SPE Journal, vol. 23, pp. 1706-1722.

[34] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge

University Press, 2004.

[35] S. Luke, Essentials of Metaheuristics, Lulu, 2016.

[36] "A Comparative Study of Differential Evolution, Particle Swarm

Optimization, and Evolutionary Algorithms on Numerical Benchmark

Problems," in Congress on Evolutionary Computation (IEEE Cat.

No.04TH8753), 2004.

[37] "Total Bit Revolution in When Running A Drilling Mud Motor and

Rotating At Surface," 2012. [Online]. Available:

https://www.drillingformulas.com/total-bit-revolution-in-when-running-a-

drilling-mud-motor-and-rotating-at-surface/.

[38] T. Jaeger and K. Doering, Baker-Hughes-Navi-Drill-motor-handbook-

15th-edition-2020, 2020.

[39] M. Belayneh, Advanced Drilling Engineering and Technology, 2021.

[40] C. Johancsik, D. Friesen and R. Dawson, "Torque and Drag in

Directional Wells-Prediction and Measurement," J Pet Technol, vol. 36, p.

987–992, 1984.

[41] R. Pessier and M. Fear, "Quantifying Common Drilling Problems With

Mechanical Specific Energy and a Bit-Specific Coefficient of Sliding

Friction," in SPE Annual Technical Conference and Exhibition, Washington,

D.C., 1992.

[42] M. Belayneh, "New alternative MSE based ROP Modelling and

Analysis with North Sea field Data," International Journal of Engineering

Research and Technology, vol. 12, no. 10, pp. 1696-1700, 2019.

[43] G. Hareland and A. Wu, "The Field Tests for Measurement of

Downhole Weight on Bit (DWOB) and the Calibration of a Real-time DWOB

Model," in International Petroleum Technology Conference, Doha, 2014.

65

[44] M. Encinas Quisbert, Data Driven ROP Modelling – Analysis and

Feasibility Study.

[45] X. Chen, J. Yang and D. Gao, "Drilling Performance Optimization

Based on Mechanical Specific Energy Technologies," Drilling, 2018.

[46] B. S. Aadnoy, M. Fazaelizadeh and G. Hareland, "3D analytical model

for wellbore friction," Journal of Canadian Petroleum Technology, vol. 49,

no. 10, pp. 25-36, 2010.

[47] E. Wiktorski and D. Sui, "Investigation of Stick-Slip Severity in a

Coupled Axial-Torsional Drillstring Dynamics Using a two DOF Finite

Element Model," in ASME 2020 39th International Conference on Ocean,

Offshore and Arctic Engineering OMAE 2020, Fort Lauderdale, Florida,

2020.

[48] D. Sui, Drilling Automation and Modeling Compendium, Springer,

2019.

[49] R. Teale, "The concept of specific energy in rock drilling,"

International Journal of Rock Mechanics and Mining Sciences &

Geomechanics Abstracts, vol. 2, no. 1, pp. 57-73, 1965.

[50] F. E. Dupriest and W. L. Koederitz, "Maximizing Drill Rates with Real-

Time Surveillance of Mechanical Specific Energy.," in SPE/IADC Drilling

Conference, Amsterdam, Netherlands, 2005.

[51] B. S. Aadnøy, Modern Well Design, London: Taylor and Francis

Group, 2010, pp. 25-26.

[52] "Equinor Johan Sverdrup Field," [Online]. Available:

https://www.equinor.com/en/what-we-do/johan-sverdrup.html. [Accessed 17

March 2021].

[53] S. A. Hadi, 19 January 2020. [Online]. Available: https://www.r-

bloggers.com/2020/01/how-to-remove-outliers-in-r/.

[54] D. Figueiredo, S. Júnior and E. Rocha, "What is R2 all about?,"

Leviathan, vol. 3, pp. 60-68, 2011.

[55] M. Hargrave, "Standard Deviation," 15 April 2021. [Online]. Available:

https://www.investopedia.com/terms/s/standarddeviation.asp.

66

[56] P. V. Berg and Ø. S. Tveit, "Model for evaluating drilling efficiency

based on the Concept of Mechanical Specific Energy," Norwegian University

of Science and Technology, 2016.

[57] M. Bataee and S. Mohseni, "Application of Artificial Systems in ROP

Optimization: a Case Study in Shadegan Oil Field," in SPE Middle Eats

Unconventional Gas Conference, Muscat, Oman, 2011.

[58] Y. Guo, S. Guan and Z. Liu, "ROP Optimization Technology for Poor

Drillability Formation in Western South China Sea," in SPE Middle East Oil

& Gas Show and Conference, Manama, Bahrain, 2017.

[59] Y. Luo, P. A. Bern and B. D. Chambers, "Flow-rate predictions for

Cleaning Deviated Wells," in SPE/IADC Drilling Conference, New Orleans,

Louisiana, 1992.

[60] E. E. Okoro, A. O. Alaba, S. E. Sanni and E. B. Ekeinde, "Development

of an automated drilling fluid selection tool using integral geometric

parameters for effective drilling operations," Heliyon, vol. 5, no. 5, pp. 1-10,

9 May 2019.

[61] C. Soares and G. Kenneth, "Real-time predictive capabilities of

analytical and machine learning rate of penetration (ROP) models," Journal

of Petroleum Science and Engineering, vol. 172, p. 934–959, 2019.

67

9. Appendix

68

Results Modelling

Table 6: Mean Absolute Error (MAE), coefficient of determination (R2) and standard deviation (std) for Torque models

from well 1 section 16”.

Table 7: Mean Absolute Error (MAE), coefficient of determination (R2) and standard deviation (std) for ROP models

from well 1 section 16”.

Figure 31: Gradient Boosting algorithm plot Torque vs. depth using 60/40 split from well 1 section 16”. Predicted data

(blue) is evaluated against test data (green).

69

Figure 32: Gradient Boosting algorithm plot ROP vs. depth using 60/40 split from well 1 section 16”. Predicted data

(blue) is evaluated against test data (green).

Table 8: Mean Absolute Error (MAE), coefficient of determination (R2) and standard deviation (std) for Torque models

from well 2 section 26”.

Table 9: Mean Absolute Error (MAE), coefficient of determination (R2) and standard deviation (std) for ROP models

from well 2 section 26”.

70

Figure 33: Gradient Boosting algorithm plot ROP vs. depth using 60/40 split from well 2 section 26”. Predicted data

(blue) is evaluated against test data (green).

Figure 34: Gradient Boosting algorithm plot Torque vs. depth using 60/40 split from well 2 section 26”. Predicted data

(blue) is evaluated against test data (green).

71

Table 10: Mean Absolute Error (MAE), coefficient of determination (R2) and standard deviation (std) for Torque

models from well 3 section 26”.

Table 11: Mean Absolute Error (MAE), coefficient of determination (R2) and standard deviation (std) for ROP models

from well 3 section 26”.

Figure 35: Gradient Boosting algorithm plot ROP vs. depth using 60/40 split from well 3 section 26”. Predicted data

(blue) is evaluated against test data (green).

72

Figure 36: Gradient Boosting algorithm plot Torque vs. depth using 60/40 split from well 3 section 26”. Predicted data

(blue) is evaluated against test data (green).

Table 12: Mean Absolute Error (MAE), coefficient of determination (R2) and standard deviation (std) for Torque

models from well 4 section 26”.

Table 13: Mean Absolute Error (MAE), coefficient of determination (R2) and standard deviation (std) for ROP models

from well 4 section 26”.

73

Figure 37: Gradient Boosting algorithm plot ROP vs. depth using 60/40 split from well 4 section 26”. Predicted data

(blue) is evaluated against test data (green).

Figure 38: Gradient Boosting algorithm plot Torque vs. depth using 60/40 split from well 4 section 26”. Predicted data

(blue) is evaluated against test data (green).

74

Table 14: Mean Absolute Error (MAE), coefficient of determination (R2) and standard deviation (std) for Torque

models from well 5 section 26”

Table 15: Mean Absolute Error (MAE), coefficient of determination (R2) and standard deviation (std) for ROP models

from well 5 section 26”

Figure 39: Gradient Boosting algorithm plot Torque vs. depth using 60/40 split from well 5 section 26”. Predicted data

(blue) is evaluated against test data (green).

75

Figure 40: Gradient Boosting algorithm plot ROP vs. depth using 60/40 split from well 5 section 26”. Predicted data

(blue) is evaluated against test data (green).

Table 16: Mean Absolute Error (MAE), coefficient of determination (R2) and standard deviation (std) for Torque

models from well 6 section 26”.

Table 17: Mean Absolute Error (MAE), coefficient of determination (R2) and standard deviation (std) for ROP models

from well 6 section 26”.

76

Figure 41: Gradient Boosting algorithm plot ROP vs. depth using 60/40 split from well 6 section 26”. Predicted data

(blue) is evaluated against test data (green).

Figure 42: Gradient Boosting algorithm plot Torque vs. depth using 60/40 split from well 6 section 26”. Predicted data

(blue) is evaluated against test data (green).

77

Results Optimization PSO

Figure 43: ROP (blue), HMSE (red) and Torque (green) growth rate using GB Torque model and PSO combination.

Growth rate is negative because the three parameters decrease.

Figure 44: ROP (blue), HMSE (red) and Torque (green) growth rate using GB ROP model and PSO combination.

78

 Figure 45: ROP (blue), HMSE (red) and Torque (green) average growth rate for all ML models for ROP optimization

(maximize ROP) using PSO algorithm.

Figure 46: ROP (blue), HMSE (red) and Torque (green) average growth rate for all ML models for ROP optimization

(maximize ROP) using PSO algorithm.

79

Python Code

Cleaning Part

Import all the libraries:

import numpy as np
import pandas as pd
from sklearn.ensemble import GradientBoostingRegressor
import matplotlib.pyplot as plt
from scipy.optimize import differential_evolution, least_squares
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import AdaBoostRegressor
from sklearn.neighbors import KNeighborsRegressor
from sklearn.metrics import mean_absolute_error as MAE
from sklearn.model_selection import train_test_split
from sklearn.metrics import r2_score
import seaborn as sns
from matplotlib.dates import DateFormatter
from datetime import datetime, timedelta, date
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots

Convert in datetime and to numeric

df['time_DB'] = pd.to_datetime(df['time_DB'])
df['time_DH'] = pd.to_datetime(df['time_DH'])
df['time_RPM'] = pd.to_datetime(df['time_RPM'])
df['time_TOR'] = pd.to_datetime(df['time_TOR'])
df['time_WOB'] = pd.to_datetime(df['time_WOB'])
df['time_ROP'] = pd.to_datetime(df['time_ROP'])
df['time_FR'] = pd.to_datetime(df['time_FR'])
df['time_SPP'] = pd.to_datetime(df['time_SPP'])

df['Depth Bit[m]'] = pd.to_numeric(df['Depth Bit[m]'])
df['Depth Hole[m]'] = pd.to_numeric(df['Depth Hole[m]'])
df['RPM[rev/s]'] = pd.to_numeric(df['RPM[rev/s]'])
df['Torque[N.m]'] = pd.to_numeric(df['Torque[N.m]'])
df['WOB[N]'] = pd.to_numeric(df['WOB[N]'])
df['ROP[m/s]'] = pd.to_numeric(df['ROP[m/s]'])
df['Flow rate[m3/s]'] = pd.to_numeric(df['Flow rate[m3/s]'])
df['Stand Pipe Pressure[Pa]'] = pd.to_numeric(df['Stand Pipe Pressure[Pa]'])

Create dataframe for each parameter:
df_DB = pd.concat([df['time_DB'] , df['Depth Bit[m]']], join = 'outer', axis = 1)
df_DH = pd.concat([df['time_DH'] , df['Depth Hole[m]']], join = 'outer', axis = 1)
df_RPM = pd.concat([df['time_RPM'] , df['RPM[rev/s]']], join = 'outer', axis = 1)
df_TOR = pd.concat([df['time_TOR'] , df['Torque[N.m]']], join = 'outer', axis = 1)
df_WOB = pd.concat([df['time_WOB'] , df['WOB[N]']], join = 'outer', axis = 1)

80

df_ROP = pd.concat([df['time_ROP'] , df['ROP[m/s]']], join = 'outer', axis = 1)
df_FR = pd.concat([df['time_FR'] , df['Flow rate[m3/s]']], join = 'outer', axis = 1)
df_SPP = pd.concat([df['time_SPP'] , df['Stand Pipe Pressure[Pa]']], join = 'outer', axis = 1)

using Dropna, delete all rows with missing values:

df_DB = df_DB.dropna()
df_DH = df_DH.dropna()
df_RPM = df_RPM.dropna()
df_TOR = df_TOR.dropna()
df_WOB = df_WOB.dropna()
df_ROP = df_ROP.dropna()
df_FR = df_FR.dropna()
df_SPP = df_SPP.dropna()

Check duplicates:

print('no. of duplicates DB', df_DB.duplicated().sum(axis=0))
print('no. of duplicates DH', df_DB.duplicated().sum(axis=0))
print('no. of duplicates RPM', df_RPM.duplicated().sum(axis=0))
print('no. of duplicates Torque', df_TOR.duplicated().sum(axis=0))
print('no. of duplicates WOB', df_WOB.duplicated().sum(axis=0))
print('no. of duplicates ROP', df_ROP.duplicated().sum(axis=0))
print('no. of duplicates FR', df_FR.duplicated().sum(axis=0))
print('no. of duplicates SPP', df_SPP.duplicated().sum(axis=0))

Create function using plotly to plot variables vs. depth:

from plotly.subplots import make_subplots
def plotly_vars_depth(df_sample, section):
 if section == "section 26":
 Titles = ['ROP[m/h]', 'WOB[kN]', 'Torque[kN.m]', 'Flow rate[L/min]', 'Stand Pipe
Pressure[kPa]', 'Downhole RPM[rev/min]']
 else:
 Titles = ['ROP[m/h]', 'WOB[kN]', 'Torque[kN.m]', 'Flow rate[L/min]', 'Stand Pipe
Pressure[kPa]', 'RPM[rev/min]']
 fig = make_subplots(rows=1, cols=6, subplot_titles=Titles, shared_yaxes = True)
 for i in range(6):
 fig.add_trace(go.Scatter(x=df_sample[Titles[i]], y=df_sample["Depth Hole[m]"]),row=1,
col=i+1)
 for i in fig['layout']['annotations']:
 i['font']['size'] = 10

 fig.update_yaxes(autorange="reversed")
 fig.update_yaxes(title_text = 'Depth Hole[m]',title_font_size=10, row =1, col=1)
 fig.update_layout(height=800, width=1000, showlegend=False, title="Variables vs. Hole
Depth",)
 fig.show()

81

First, we change the name of column in all datasets:

df_DB = df_DB.rename(columns={'time_DB':'time'})
df_DH = df_DH.rename(columns={'time_DH':'time'})
df_RPM = df_RPM.rename(columns={'time_RPM':'time'})
df_ROP = df_ROP.rename(columns={'time_ROP':'time'})
df_WOB = df_WOB.rename(columns={'time_WOB':'time'})
df_TOR = df_TOR.rename(columns={'time_TOR':'time'})
df_FR = df_FR.rename(columns={'time_FR':'time'})
df_SPP = df_SPP.rename(columns={'time_SPP':'time'})

Then we merge the dataframes:

df1 = pd.merge_asof(df_DH,df_DB,on='time', tolerance = pd.Timedelta('0.1s'))
df2 = pd.merge_asof(df_ROP, df_RPM, on='time', tolerance = pd.Timedelta('0.1s'))
df3 = pd.merge_asof(df_WOB, df_TOR, on='time', tolerance = pd.Timedelta('0.1s'))
df4 = pd.merge_asof(df_FR, df_SPP, on='time', tolerance = pd.Timedelta('0.1s'))
df5 = pd.merge_asof(df1, df2, on='time', tolerance = pd.Timedelta('0.1s'))
df6 = pd.merge_asof(df3, df4, on='time', tolerance = pd.Timedelta('0.1s'))
df_merged = pd.merge_asof(df5, df6, on='time', tolerance = pd.Timedelta('0.1s'))

Print all histograms:
fig2 = plt.figure(figsize=(15, 8))
grid = plt.GridSpec(4, 2, hspace=0.5)
ROP_hist = fig2.add_subplot(grid[0,0])
WOB_hist = fig2.add_subplot(grid[1, 0])
RPM_hist = fig2.add_subplot(grid[2, 0])
DB_hist = fig2.add_subplot(grid[0, 1])
DH_hist = fig2.add_subplot(grid[1, 1])
Tor_hist = fig2.add_subplot(grid[2, 1])
FR_hist = fig2.add_subplot(grid[3, 0])
SPP_hist = fig2.add_subplot(grid[3, 1])

ROP_hist.hist(df_ROP['ROP[m/s]'])
ROP_hist.set(title="ROP[m/s]")
WOB_hist.hist(df_WOB['WOB[N]'])
WOB_hist.set(title="WOB[N]")
RPM_hist.hist(df_RPM['RPM[rev/s]'])
RPM_hist.set(title='RPM[rev/s]')
DB_hist.hist(df_DB['Depth Bit[m]'])
DB_hist.set(title="Depth Bit[m]")
DH_hist.hist(df_DH['Depth Hole[m]'])
DH_hist.set(title="Depth Hole[m]")
Tor_hist.hist(df_TOR['Torque[N.m]'])
Tor_hist.set(title="Torque[N.m]")
FR_hist.hist(df_FR['Flow rate[m3/s]'])
FR_hist.set(title="Flow rate[m3/s]")
SPP_hist.hist(df_SPP['Stand Pipe Pressure[Pa]'])
SPP_hist.set(title="Stand Pipe Pressure[Pa]")

82

plt.show()

Interpolation:

df_test = df
df_test['ROP[m/s]'] = df_test['ROP[m/s]'].interpolate()
df_test['WOB[N]'] = df_test['WOB[N]'].interpolate()
df_test['Torque[N.m]'] = df_test['Torque[N.m]'].interpolate()
df_test['RPM[rev/s]'] = df_test['RPM[rev/s]'].interpolate()
df_test['Depth Bit[m]'] = df_test['Depth Bit[m]'].interpolate()
df_test['Flow rate[m3/s]'] = df_test['Flow rate[m3/s]'].interpolate()
df_test['Stand Pipe Pressure[Pa]'] = df_test['Stand Pipe Pressure[Pa]'].interpolate()

Convert in desirable units

df.columns = ['time','Depth Hole[m]', 'Depth Bit[m]', 'ROP[m/h]', 'RPM[rev/min]', 'WOB[kN]',
'Torque[kN.m]', 'Flow rate[L/min]', 'Stand Pipe Pressure[kPa]']
df["ROP[m/h]"] = df["ROP[m/h]"]*3600
df['RPM[rev/min]'] = df['RPM[rev/min]']*60
df['WOB[kN]'] = df['WOB[kN]']*0.001
df['Torque[kN.m]'] = df['Torque[kN.m]']*0.001
df['Flow rate[L/min]'] = df['Flow rate[L/min]']*60000
df['Stand Pipe Pressure[kPa]'] = df['Stand Pipe Pressure[kPa]']*0.001

Removing outliers

Q1_ROP = df['ROP[m/h]'].quantile(0.25)
Q3_ROP = df['ROP[m/h]'].quantile(0.75)
IQR_ROP = Q3_ROP - Q1_ROP

Q1_RPM = df['RPM[rev/min]'].quantile(0.25)
Q3_RPM = df['RPM[rev/min]'].quantile(0.75)
IQR_RPM = Q3_RPM - Q1_RPM

Q1_TOR = df['Torque[kN.m]'].quantile(0.25)
Q3_TOR= df['Torque[kN.m]'].quantile(0.75)
IQR_TOR = Q3_TOR - Q1_TOR

Q1_WOB = df['WOB[kN]'].quantile(0.25)
Q3_WOB = df['WOB[kN]'].quantile(0.75)
IQR_WOB = Q3_WOB - Q1_WOB

Q1_SPP = df['Stand Pipe Pressure[kPa]'].quantile(0.25)
Q3_SPP = df['Stand Pipe Pressure[kPa]'].quantile(0.75)
IQR_SPP = Q3_SPP - Q1_SPP

Q1_FR = df['Flow rate[L/min]'].quantile(0.25)
Q3_FR= df['Flow rate[L/min]'].quantile(0.85)
IQR_FR = Q3_FR - Q1_FR

83

print('ROP:', Q3_ROP+1.5*IQR_ROP, Q1_ROP-1.5*IQR_ROP)
print('RPM:', Q3_RPM+1.5*IQR_RPM, Q1_RPM-1.5*IQR_RPM)
print('Torque:', Q3_TOR+1.5*IQR_TOR, Q1_TOR-1.5*IQR_TOR)
print('WOB:', Q3_WOB+1.5*IQR_WOB, Q1_WOB-1.5*IQR_WOB)
print('SPP:', Q3_SPP+1.5*IQR_SPP, Q1_SPP-1.5*IQR_SPP)
print('FR:', Q3_FR+1.5*IQR_FR, Q1_FR-1.5*IQR_FR)

df_test_out = df[(Q1_ROP-1.5*IQR_ROP)<=df['ROP[m/h]']]
df_test_out = df[df['ROP[m/h]']<=(Q3_ROP+1.5*IQR_ROP)]

df_test_out = df[(Q1_RPM-1.5*IQR_RPM)<=df['RPM[rev/min]']]
df_test_out = df[df['RPM[rev/min]']<=(Q3_RPM+1.5*IQR_RPM)]

df_test_out = df[(Q1_TOR-1.5*IQR_TOR)<=df['Torque[kN.m]']]
df_test_out = df[df['Torque[kN.m]']<=(Q3_TOR+1.5*IQR_TOR)]

df_test_out = df[(Q1_WOB-1.5*IQR_WOB)<=df['WOB[kN]']]
df_test_out = df[df['WOB[kN]']<=(Q3_WOB+1.5*IQR_WOB)]

df_test_out = df[(Q1_SPP-1.5*IQR_SPP)<=df['Stand Pipe Pressure[kPa]']]
df_test_out = df[df['Stand Pipe Pressure[kPa]']<=(Q3_SPP+1.5*IQR_SPP)]

df_test_out = df[(Q1_FR-1.5*IQR_FR)<=df['Flow rate[L/min]']]
df_test_out = df[df['Flow rate[L/min]']<=(Q3_FR+1.5*IQR_FR)]

Delete rows when ROP is 0
df = df[df['ROP[m/s]']>0]
df = df[df['ROP[m/s]'] < 0.02]

Remove outliers manually:
df_test_out = df_test_out[df_test_out['WOB[kN]']>0]
df_test_out = df_test_out[df_test_out['Flow rate[L/min]']> 2000]
df_test_out = df_test_out[df_test_out['Stand Pipe Pressure[kPa]']> 5000]

Noise reduction (window = 30):
df = df_test_out
df_test2 = df
df_test2['ROP[m/h]'] = df['ROP[m/h]'].rolling(window = 30, center=True).mean()
df_test2['RPM[rev/min]'] = df['RPM[rev/min]'].rolling(window = 30, center=True).mean()
df_test2['WOB[kN]'] = df['WOB[kN]'].rolling(window = 30, center=True).mean()
df_test2['Torque[kN.m]'] = df['Torque[kN.m]'].rolling(window = 30, center=True).mean()
df_test2['Flow rate[L/min]'] = df['Flow rate[L/min]'].rolling(window = 30, center=True).mean()
df_test2['Stand Pipe Pressure[kPa]'] = df['Stand Pipe Pressure[kPa]'].rolling(window = 30,
center=True).mean()
df_test2.dropna(inplace = True)

df = df_test2

84

df.to_csv (r'Cleaned wells/NO162D6-4.csv', index = False, header=True)

Modelling Part

Import all the libraries:

import numpy as np
import pandas as pd
from sklearn.ensemble import GradientBoostingRegressor
import matplotlib.pyplot as plt
from scipy.optimize import differential_evolution, least_squares
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import AdaBoostRegressor
from sklearn.neighbors import KNeighborsRegressor
from sklearn.metrics import mean_absolute_error as MAE
from sklearn.model_selection import train_test_split
from sklearn.metrics import r2_score
import seaborn as sns
from matplotlib.dates import DateFormatter
from datetime import datetime, timedelta, date
from sklearn.model_selection import KFold
from sklearn.model_selection import GridSearchCV
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from sklearn.preprocessing import MinMaxScaler

Conver to datetime
df['time'] = pd.to_datetime(df['time'])

Create time difference column to get diferent sections
df['timeDiff']=df['time'].diff().dt.total_seconds()

Plot time difference and time vs. depth to visually get sections:
fig = make_subplots(rows=1, cols=2, subplot_titles=("time vs. Depth", "timeDiff vs. Depth"))
fig.add_trace(
 go.Scatter(x=df["time"], y=df["Depth Hole[m]"]),
 row=1, col=1
)
fig.add_trace(
 go.Scatter(x=df["timeDiff"], y=df["Depth Hole[m]"]),
 row=1, col=2
)
fig.update_yaxes(autorange="reversed")
fig.update_layout(height=600, width=800, title_text="Find sections", showlegend=False)
fig.show()

Get sections (vary from each well since not all wells have the same sections)

sections = df[df['timeDiff']>100000]

85

Index = sections.index.tolist()

section_26 =df.iloc[:Index[0]] #section 26"
section_16 = df.iloc[Index[0]:Index[1]] #section 16"
section_12 = df.iloc[Index[1]:Index[2]]#section 12 1/4"
section_8 = df.iloc[Index[2]:]# open hole section 8 1/2"
Sections = [section_26,section_16,section_12,section_8]

Add column Downhole RPM for section 26"
StF = 0.02 # speed to flow ratio [rev/l]
section_26['Downhole RPM[rev/min]'] = StF* section_26["Flow rate[L/min]"] +
section_26["RPM[rev/min]"]

Create list of columns of the table:

ROP_list = []
MAE_list = []
std_list = []
params_list = []
R2_list = []

ROP_list_RANDOM = []
MAE_list_RANDOM = []
std_list_RANDOM = []
params_list_RANDOM = []
R2_list_RANDOM = []

Create regressor list:
regs = [
 RandomForestRegressor(),
 GradientBoostingRegressor(),
 AdaBoostRegressor(),
 KNeighborsRegressor(),
]
reg_name = [
 "RandomForestRegressor",
 "GradientBoostingRegressor",
 "AdaBoostRegressor",
 "KNeighborsRegressor"
]

Drop timediff column
df1 = Sections[0].drop(columns=['timeDiff'])
df2 = Sections[1].drop(columns=['timeDiff'])
df3 = Sections[2].drop(columns=['timeDiff'])
df4 = Sections[3].drop(columns=['timeDiff'])

Density and viscosity values
rho = 1.39 # g/cm3

86

mu = 28 # Mpa.s

Define different functions for plotting:

def plotly_vars_depth(df_sample, section):
 if section == "section 26":
 Titles = ['ROP[m/h]', 'WOB[kN]', 'Torque[kN.m]', 'Flow rate[L/min]', 'Stand Pipe
Pressure[kPa]', 'Downhole RPM[rev/min]']
 else:
 Titles = ['ROP[m/h]', 'WOB[kN]', 'Torque[kN.m]', 'Flow rate[L/min]', 'Stand Pipe
Pressure[kPa]', 'RPM[rev/min]']
 fig = make_subplots(rows=1, cols=6, subplot_titles=Titles, shared_yaxes = True)
 for i in range(6):
 fig.add_trace(go.Scatter(x=df_sample[Titles[i]], y=df_sample["Depth Hole[m]"]),row=1,
col=i+1)
 for i in fig['layout']['annotations']:
 i['font']['size'] = 10

 fig.update_yaxes(autorange="reversed")
 fig.update_yaxes(title_text = 'Depth Hole[m]',title_font_size=10, row =1, col=1)
 fig.update_layout(height=800, width=1000, showlegend=False, title="Variables vs. Hole
Depth",)
 fig.show()

def plot_ROP_vs._depth_ML(train, test, pred):
 fig = go.Figure()
 fig.add_trace(go.Scatter(name = 'Training data',y= DH_train , x= train))
 fig.add_trace(go.Scatter(name = 'Test data',y= DH_test, x= test))
 fig.add_trace(go.Scatter(name = 'Predicted data',y= DH_test , x= pred))

 # Update axis
 fig.update_xaxes(title_text="ROP[m/h]")
 fig.update_yaxes(autorange="reversed")
 fig.update_yaxes(title_text = 'Depth[m]')
 fig.update_layout(height=600, width=800)
 fig.show()

def plot_ROP_vs._depth_ML_RN(train, test,pred, model_phase):

 fig,axis =plt.subplots(figsize =(15,8))
 sns.lineplot(DB_train , train, ax = axis, label ="Train data",color ='red', ci = None)
 sns.lineplot(DB_test, test, ax = axis, label ="Test data", color ='green',ci = None)
 sns.lineplot(DB_test, pred, ax = axis, label ="Predicted data",color ='blue', ci = None)

 if model_phase==2:
 axis.set(ylabel='ROP[m/h]', xlabel='Depth Hole[m]')
 else:
 axis.set(ylabel='Torque[kN.m]', xlabel='Depth Hole[m]')

87

 plt.show()

Filter using Radious Neighbors

df1_test = df1.groupby(['Depth Hole[m]']).mean()
df1_test = df1_test.reset_index()

Convert variable to numpy:
sample = df1_test.copy()
from sklearn.neighbors import RadiusNeighborsRegressor

x = sample["Depth Hole[m]"].to_numpy().reshape(-1,1)
Y = sample.iloc[:,1:].to_numpy()

neigh = RadiusNeighborsRegressor(radius=0.2, weights= 'distance')
neigh.fit(x,Y)

X_test = np.arange(x[0,:],x[-1,:],0.2).reshape(-1,1) # can change the distance to reduce noise
Y_pred = neigh.predict(X_test)
values_data = np.concatenate((X_test,Y_pred),axis=1)

df1_test2 = pd.DataFrame(values_data)
df1_test2.dropna(inplace=True)

df1_test2.columns = ['Depth Hole[m]', 'Depth Bit[m]', 'ROP[m/h]', 'RPM[rev/min]', 'WOB[kN]',
'Torque[kN.m]', 'Flow rate[L/min]', 'Stand Pipe Pressure[kPa]', 'Downhole RPM[rev/min]']

Median Filter

df1_test3 = df1_test2.copy()
columns_names = ['ROP[m/h]', 'RPM[rev/min]', 'WOB[kN]', 'Torque[kN.m]', 'Flow rate[L/min]',
'Stand Pipe Pressure[kPa]']
for i in columns_names:
 df1_test3[i] = ndimage.median_filter(df1_test3[i], size=5)

Continuous Learning modelling
First model:
Define independent and dependent variables(x_1 and y_1):
y_1 = df1_test3["Torque[kN.m]"].to_numpy().reshape(-1,1)
x_1 = df1_test3[['Depth Bit[m]','WOB[kN]','Flow rate[L/min]','Downhole RPM[rev/min]'
]].to_numpy()

Second model:
Define independent and dependent variables(x_2 and y_2):
y_2 = df1_test3["ROP[m/h]"].to_numpy().reshape(-1,1)
x_2 = np.copy(x_1)

88

Function for continuous learning modelling. This is implemented on each ML model:
(Then, heatmap was plot for ROP and Torque models, which is not showed in this appendix,
only relevant part of the code is included)
def modelling_cont_learning_2phase(reg_num, num_rows):
 reg = regs[reg_num]
 end = num_rows
 init = int(0.1*end)
 step = init
 MAE_2 = []
 std_2 = []
 R2_2 = []
 perc = []
 MAE_1 = []
 std_1 = []
 R2_1 = []

 for i in range(init, end ,step):
 # First model:

 # Define train and test samples:
 X_train_1 = x_1[:i]
 y_train_1 = y_1[:i]
 X_test_1 = x_1[i:i+step]
 y_test_1 = y_1[i:i+step]

 # Fit model
 reg.fit(X_train_1, y_train_1.ravel())

 # Prediction
 y_pred_1 = reg.predict(X_test_1)
 y_train_fit_1 = reg.predict(X_train_1)

 # Second model:
 # Define train and test samples:
 X_train_2 = x_2[:i]
 y_train_2 = y_2[:i]
 X_test_2 = x_2[i:i+step]
 y_test_2 = y_2[i:i+step]

 # Fit model
 reg.fit(X_train_2, y_train_2.ravel())

 # Prediction
 y_pred_2 = reg.predict(X_test_2)
 y_train_fit_2 = reg.predict(X_train_2)

 # variables from the first model:

89

 MAE_y_1 = MAE(y_test_1, y_pred_1)
 R2_y_1 = r2_score(y_test_1, y_pred_1)
 error_1 = np.abs(y_test_1 - y_pred_1)
 std_y_1 = np.std(error_1)
 perc.append((y_test_1.shape[0]+y_train_1.shape[0])/end*100)
 # Update lists:
 MAE_1.append(MAE_y_1)
 std_1.append(std_y_1)
 R2_1.append(R2_y_1)

 # variables from the second model:
 MAE_y_2 = MAE(y_test_2, y_pred_2)
 R2_y_2 = r2_score(y_test_2, y_pred_2)
 error_2 = np.abs(y_test_2 - y_pred_2)
 std_y_2 = np.std(error_2)

 # Update lists:
 MAE_2.append(MAE_y_2)
 std_2.append(std_y_2)
 R2_2.append(R2_y_2)

 # From the first model
 MAE_1 = np.array(MAE_1)
 R2_1 = np.array(R2_1)
 perc = np.array(perc)
 std_1 = np.array(std_1)

 # From the second model
 MAE_2 = np.array(MAE_2)
 R2_2 = np.array(R2_2)
 std_2 = np.array(std_2)

 return R2_1, MAE_1, std_1, R2_2, MAE_2, std_2, perc

Barchart Plot function:
def plot_bar_MAE(i,MAE_26, plot_title):
 fig = plt.figure()
 long_title = '{} for the {} model'

 ax = fig.add_axes([0,0,1,1])
 ax.bar(perc,MAE_26, width =5)
 ax.set_title(long_title.format(reg_name [i],plot_title))
 ax.set_xlabel('percentage(%)')
 if plot_title =='First':
 ax.set_ylabel('MAE(KN.m)')
 else:
 ax.set_ylabel('MAE(m/h)')
 plt.show()

Sequential Spit
n = int(0.6*df1_test3.shape[0])

90

df_sample = df1_test3.head(n)
df_sample.shape

First model:
Define independent and dependent variables(x_1 and y_1):
y_1 = df_sample["Torque[kN.m]"].to_numpy().reshape(-1,1)
x_1 = df_sample[['Depth Bit[m]','WOB[kN]','Flow rate[L/min]','Downhole RPM[rev/min]'
]].to_numpy()

Second model:
Define independent and dependent variables(x_2 and y_2):
y_2 = df_sample["ROP[m/h]"].to_numpy().reshape(-1,1)
x_2 = x_1.copy()

Sequential Split function. Used only one with 60/40 split. Then models are plotted and
performance metrics are calculated:

def modelling_sequential(test_size):
 MAE_2 = []
 std_2 = []
 R2_2 = []
 perc = []
 MAE_1 = []
 std_1 = []
 R2_1 = []

 for i in range(4):
 # First model:
 reg=regs[i]
 # Define train and test samples:

X_train_1,X_test_1,y_train_1,y_test_1=train_test_split(x_1,y_1,test_size=test_size,random_st
ate=0,shuffle=False)
 # Fit model
 reg.fit(X_train_1, y_train_1.ravel())

 # Prediction
 y_pred_1 = reg.predict(X_test_1)
 y_train_fit_1 = reg.predict(X_train_1)

 # Second model:

 # Define train and test samples:

X_train_2,X_test_2,y_train_2,y_test_2=train_test_split(x_2,y_2,test_size=test_size,random_st
ate=0,shuffle=False)
 # Fit model
 reg.fit(X_train_2, y_train_2.ravel())

91

 # Prediction
 y_pred_2 = reg.predict(X_test_2)
 y_train_fit_2 = reg.predict(X_train_2)

 # variables from the first model:
 MAE_y_1 = MAE(y_test_1, y_pred_1)
 R2_y_1 = r2_score(y_test_1, y_pred_1)
 error_1 = np.abs(y_test_1 - y_pred_1)
 std_y_1 = np.std(error_1)

 # Update lists:
 MAE_1.append(MAE_y_1)
 std_1.append(std_y_1)
 R2_1.append(R2_y_1)

 # variables from the second model:
 MAE_y_2 = MAE(y_test_2, y_pred_2)
 R2_y_2 = r2_score(y_test_2, y_pred_2)
 error_2 = np.abs(y_test_2 - y_pred_2)
 std_y_2 = np.std(error_2)

 # Update lists:
 MAE_2.append(MAE_y_2)
 std_2.append(std_y_2)
 R2_2.append(R2_y_2)

 # Create marix for plotting
 if i==0:
 y_pred_1_matrix = y_pred_1.reshape(-1,1)
 y_pred_2_matrix = y_pred_2.reshape(-1,1)
 else:
 y_pred_1_matrix = np.concatenate((y_pred_1_matrix,y_pred_1.reshape(-1,1)), axis = 1)
 y_pred_2_matrix = np.concatenate((y_pred_2_matrix,y_pred_2.reshape(-1,1)), axis = 1)

 # From the first model
 MAE_1 = np.array(MAE_1)
 R2_1 = np.array(R2_1)
 perc = np.array(perc)
 std_1 = np.array(std_1)

 # From the second model
 MAE_2 = np.array(MAE_2)
 R2_2 = np.array(R2_2)
 std_2 = np.array(std_2)

92

 return R2_1, MAE_1, std_1, R2_2, MAE_2, std_2, y_pred_1_matrix, y_pred_2_matrix,
y_train_2,y_test_2,y_train_1,y_test_1, X_train_1, X_test_1

New file is created to use for optimization and make the optimization faster

df1_test3.to_csv(‘file location’, index = False, header=True)

Optimization part:

Density and viscosity values
rho = 1.39 # g/cm3
mu = 28 # mPa.s

Plotting and MSE function
def plotly_vars_depth(df_sample, section):
 if section == "section 26":
 Titles = ['ROP[m/h]', 'WOB[kN]', 'Torque[kN.m]', 'Flow rate[L/min]', 'Stand Pipe
Pressure[kPa]', 'Downhole RPM[rev/min]']
 else:
 Titles = ['ROP[m/h]', 'WOB[kN]', 'Torque[kN.m]', 'Flow rate[L/min]', 'Stand Pipe
Pressure[kPa]', 'RPM[rev/min]']
 fig = make_subplots(rows=1, cols=6, subplot_titles=Titles, shared_yaxes = True)
 for i in range(6):
 fig.add_trace(go.Scatter(x=df_sample[Titles[i]], y=df_sample["Depth Hole[m]"]),row=1,
col=i+1)
 for i in fig['layout']['annotations']:
 i['font']['size'] = 10

 fig.update_yaxes(autorange="reversed")
 fig.update_yaxes(title_text = 'Depth Hole[m]',title_font_size=10, row =1, col=1)
 fig.update_layout(height=800, width=1000, showlegend=False, title="Variables vs. Hole
Depth",)
 fig.show()

def MSE(WOB,ROP,N, T, Dbit):

 # The imputs are:
 # ROP: rate of penetration [m/s]
 # N: rotary speed [rev/s]
 # Dbit: bit diameter [m]
 # T: Torque [N.m]
 # WOB: weight on bit [N]

 # The result MSE is in [j/m3]

 return (4*WOB*ROP+8*np.pi*N*T)/(np.pi*Dbit**2*ROP)

Calculate MSE
Dbit = 26*0.0254

93

df['MSE [J/m3]'] = MSE(df['WOB[kN]']*1000,df['ROP[m/h]']/3600,df['Downhole
RPM[rev/min]']/60, df['Torque[kN.m]']*1000, Dbit)

HMSE function:
Dn = BHA_data.iloc[0, 3]*0.0254 # Nozzle diameter [m]
Av = 0.15*Dbit**2/(4*Dn**2) # available fluid area[-]
L = 6*Dbit # Length of potential core
phi = 3 # angle of axiallly simetric jet [degrees]
s = 8* 0.0254 # distance of nozzle to hole bottom [m]

M = (Dn+2*L*np.tan(np.radians(phi/2)))/(Dn+s*np.tan(np.radians(phi/2))) # Loss correction
factor[-]

k = 0.122
theta = (1-Av**(-k))/(M**2) # Dummy factor for energy reduction
TFA = 1.362 # Total Flow Area [in2]

def Fj(rho,Q): # impact force of nozzles to calculate effective WOB [lb]
 # Q: flow rate[gallons/min]
 # Vn: average nozzle velocity[ft/s]
 # rho: mud density[lb-gal]
 Vn = 0.75*0.3206*Q/(np.pi*0.625**2/4)+0.25*0.3206*Q/(np.pi*0.75**2/4)
 return 0.000516*rho*Q*Vn

Fjx = Fj(rho*8.33,df['Flow rate[L/min]']*0.26417) # Jet force [lb]
WOBe = df['WOB[kN]']*1000*0.225-theta*Fjx # Efective WOB [lb]
delta_Pn = rho*1000*(df['Flow rate[L/min]']/60000)**2/(2*(TFA*0.00064516)**2*0.95**2) #
Nozzle pressure loss [Pa]

def HMSE(WOB,ROP,N, T, Dbit,theta,delta_Pn,Q): # hydraulic Mechanic specific energy

 # The imputs are:
 # ROP: rate of penetration [m/h]
 # N: rotary speed [rev/min]
 # Dbit: bit diameter [m]
 # T: Torque [lb-ft]
 # WOB: weight on bit [N]
 # theta: Dummy factor for energy reduction
 # Delta_Pn: Pressure drop in the bit nozzles [psi]
 # Q: flow rate [gallon/min]

 # The result MSE is in [psi]

 return 4*(WOB*ROP+2*60*np.pi*N*T+1155*theta*delta_Pn*Q)/(np.pi*Dbit**2*ROP)

We calculate HMSE in J/m3:

94

df['HMSE [J/m3]'] = 6894.76*HMSE(WOBe,df['ROP[m/h]']*3.28,df['Downhole RPM[rev/min]'],
df['Torque[kN.m]']*1000*0.738, Dbit/0.0254,theta, delta_Pn/6894.76,df['Flow
rate[L/min]']*0.24617)

n = int(0.6*df.shape[0])
df_sample =df.head(n)

Plot MAE barchart function:

def plot_bar_MAE(i,MAE_26, plot_title):
 fig = plt.figure()
 long_title = '{} for the {} model'

 ax = fig.add_axes([0,0,1,1])
 if plot_title =='First':
 if i ==0:
 ax.bar(df_opt_TOR_RF['Depth Bit[m]'],MAE_26, width =5)
 elif i ==1:
 ax.bar(df_opt_TOR_GB['Depth Bit[m]'],MAE_26, width =5)
 elif i ==2:
 ax.bar(df_opt_TOR_AB['Depth Bit[m]'],MAE_26, width =5)
 else:
 ax.bar(df_opt_TOR_KN['Depth Bit[m]'],MAE_26, width =5)
 else:
 if i ==0:
 ax.bar(df_opt_ROP_RF['Depth Bit[m]'],MAE_26, width =5)
 elif i ==1:
 ax.bar(df_opt_ROP_GB['Depth Bit[m]'],MAE_26, width =5)
 elif i ==2:
 ax.bar(df_opt_ROP_AB['Depth Bit[m]'],MAE_26, width =5)
 else:
 ax.bar(df_opt_ROP_KN['Depth Bit[m]'],MAE_26, width =5)
 ax.set_title(long_title.format(reg_name [i],plot_title))
 ax.set_xlabel('Depth Bit[m]')
 if plot_title =='First':
 ax.set_ylabel('MAE(KN.m)')
 else:
 ax.set_ylabel('MAE(m/h)')
 plt.show()

Modelling and Optimization variables:

First model:
Define independent and dependent variables(x_1 and y_1):
y_1 = df_sample["Torque[kN.m]"].to_numpy().reshape(-1,1)
x_1 = df_sample[['Depth Bit[m]','WOB[kN]','Flow rate[L/min]','Downhole RPM[rev/min]'
]].to_numpy()

Second model:

95

Define independent and dependent variables(x_2 and y_2):
y_2 = df_sample["ROP[m/h]"].to_numpy().reshape(-1,1)
x_2 = x_1

y_HMSE = df_sample["HMSE [J/m3]"].to_numpy().reshape(-1,1)

Modelling and Optimization function using DE algorithm:
def modelling_optimization(reg_num, num_rows):
 # measure time consumed:
 start_time = time.time()
 # Choose regressor:
 reg = regs[reg_num]

 # Lists:
 ROP_list = []
 TOR_list = []
 DB_list =[]
 params_list_ROP = []
 params_list_TOR = []
 av_TOR_list = []
 av_ROP_list = []
 av_HMSE_list = []

 end = num_rows
 init = int(0.1*end)
 step = int(stop/0.2)
 MAE_2 = []
 std_2 = []
 R2_2 = []
 perc = []
 MAE_1 = []
 std_1 = []
 R2_1 = []

 for i in range(init, end ,step):
 # First model:

 # Define train and test samples:
 X_train_1 = x_1[:i]
 y_train_1 = y_1[:i]
 X_test_1 = x_1[i:i+step]
 y_test_1 = y_1[i:i+step]

 # Fit model
 reg.fit(X_train_1, y_train_1.ravel())

 # Prediction
 y_pred_1 = reg.predict(X_test_1)
 y_train_fit_1 = reg.predict(X_train_1)

96

 # Optimization Torque (minimize):
 DB = (X_test_1[0,0]+X_test_1[-1,0])/2

 def minimize_me_TOR(my_vars):

 WOB = my_vars[0]
 Q = my_vars[1]
 RPM = my_vars[2]

 return reg.predict([[DB,WOB, Q, RPM]])[0]

 bounds_TOR = [(10, 200), (3500,5000), (70,180)]
 result = differential_evolution(minimize_me_TOR, bounds_TOR)

 # variables from the optimization:
 TOR_list.append(result.fun) # TOR
 params_list_TOR.append(result.x) # WOB,Bit Depth,Torque

 # Second model:

 # Define train and test samples:
 X_train_2 = x_2[:i]
 y_train_2 = y_2[:i]
 X_test_2 = x_2[i:i+step]
 y_test_2 = y_2[i:i+step]

 # Fit model
 reg.fit(X_train_2, y_train_2.ravel())

 # Prediction
 y_pred_2 = reg.predict(X_test_2)
 y_train_fit_2 = reg.predict(X_train_2)

 # variables from the first model:
 MAE_y_1 = MAE(y_test_1, y_pred_1)
 R2_y_1 = r2_score(y_test_1, y_pred_1)
 error_1 = np.abs(y_test_1 - y_pred_1)
 std_y_1 = np.std(error_1)
 perc.append((y_test_1.shape[0]+y_train_1.shape[0])/end*100)

 av_TOR = np.average(y_test_1)
 av_HMSE = np.average(y_HMSE[i:i+step])

 # Update lists:
 MAE_1.append(MAE_y_1)
 std_1.append(std_y_1)
 R2_1.append(R2_y_1)

97

 av_TOR_list.append(av_TOR)
 av_HMSE_list.append(av_HMSE)

 # variables from the second model:
 MAE_y_2 = MAE(y_test_2, y_pred_2)
 R2_y_2 = r2_score(y_test_2, y_pred_2)
 error_2 = np.abs(y_test_2 - y_pred_2)
 std_y_2 = np.std(error_2)

 av_ROP = np.average(y_test_2)

 # Update lists:
 MAE_2.append(MAE_y_2)
 std_2.append(std_y_2)
 R2_2.append(R2_y_2)

 av_ROP_list.append(av_ROP)

 # Optimization
 DB = (X_test_2[0,0]+X_test_2[-1,0])/2
 def minimize_me_ROP(my_vars):

 WOB = my_vars[0]
 Q = my_vars[1]
 RPM = my_vars[2]

 return -reg.predict([[DB,WOB, Q, RPM]])[0]

 bounds_ROP = [(10, 200), (3500,5000), (70,180)]
 result = differential_evolution(minimize_me_ROP, bounds_ROP)

 # variables from the optimization:
 ROP_list.append(result.fun) # ROP
 params_list_ROP.append(result.x) # WOB,Bit Depth,Torque
 DB_list.append(DB)

 # From the first model
 MAE_1 = np.array(MAE_1)
 R2_1 = np.array(R2_1)
 perc = np.array(perc)
 std_1 = np.array(std_1)

 av_TOR = np.array(av_TOR_list)
 av_HMSE = np.array(av_HMSE_list)

 # From the second model
 MAE_2 = np.array(MAE_2)
 R2_2 = np.array(R2_2)
 std_2 = np.array(std_2)

 av_ROP = np.array(av_ROP_list)

98

 # From optimization:
 TORs = np.array(TOR_list)
 ROPs = np.array(ROP_list) * (-1)
 params_ROP = np.array(params_list_ROP)
 params_TOR = np.array(params_list_TOR)
 DB = np.array(DB_list)

 end_time = time.time()
 code_time = end_time - start_time

 return R2_1, MAE_1, std_1, R2_2, MAE_2, std_2, perc, ROPs, TORs,params_ROP,
params_TOR, DB, av_TOR, av_ROP,av_HMSE, code_time

Data frames were created with optimal values of Depth Bit, WOB, Q and RPM, 4 for different
ML ROP model and other 4 for Torque models. Then HMSE was implemented.

Modelling and Optimization function using PSO algorithm:
def modelling_optimization(reg_num, num_rows):
 # measure time consumed:
 start_time = time.time()
 # Choose regressor:
 reg = regs[reg_num]

 # Lists:
 ROP_list = []
 TOR_list = []
 DB_list =[]
 params_list_ROP = []
 params_list_TOR = []
 av_TOR_list = []
 av_ROP_list = []
 av_HMSE_list = []

 end = num_rows
 init = int(0.1*end)
 step = int(stop/0.2)
 MAE_2 = []
 std_2 = []
 R2_2 = []
 perc = []
 MAE_1 = []
 std_1 = []
 R2_1 = []

 for i in range(init, end ,step):
 # First model:

 # Define train and test samples:
 X_train_1 = x_1[:i]
 y_train_1 = y_1[:i]

99

 X_test_1 = x_1[i:i+step]
 y_test_1 = y_1[i:i+step]

 # Fit model
 reg.fit(X_train_1, y_train_1.ravel())

 # Prediction
 y_pred_1 = reg.predict(X_test_1)
 y_train_fit_1 = reg.predict(X_train_1)

 # Optimization Torque (minimize):
 DB = (X_test_1[0,0]+X_test_1[-1,0])/2

 def minimize_me_TOR(my_vars):

 WOB = my_vars[0]
 Q = my_vars[1]
 RPM = my_vars[2]

 return reg.predict([[DB,WOB, Q, RPM]])[0]

 def minimize_me_TOR_helper(x):

 results_TOR = []

 for rows in x:

 results_TOR.append(minimize_me_TOR(rows))

 return results_TOR

 # Create bounds
 max_bound = np.array([200,5000,180])
 min_bound = np.array([10,3500,70])
 bounds_TOR = (min_bound, max_bound)
 # Initialize swarm
 options = {'c1': 0.5, 'c2': 0.3, 'w':0.9}

 # Call instance of PSO with bounds argument
 optimizer = ps.single.GlobalBestPSO(n_particles=10, dimensions=3, options=options,
bounds=bounds_TOR)

 # Perform optimization
 cost_TOR, pos_TOR = optimizer.optimize(minimize_me_TOR_helper, iters=100, verbose =
2)

 # variables from the optimization:
 TOR_list.append(cost_TOR) # TOR
 params_list_TOR.append(pos_TOR) # WOB,Bit Depth,Torque

100

 # Second model:

 # Define train and test samples:
 X_train_2 = x_2[:i]
 y_train_2 = y_2[:i]
 X_test_2 = x_2[i:i+step]
 y_test_2 = y_2[i:i+step]

 # Fit model
 reg.fit(X_train_2, y_train_2.ravel())

 # Prediction
 y_pred_2 = reg.predict(X_test_2)
 y_train_fit_2 = reg.predict(X_train_2)

 # variables from the first model:
 MAE_y_1 = MAE(y_test_1, y_pred_1)
 R2_y_1 = r2_score(y_test_1, y_pred_1)
 error_1 = np.abs(y_test_1 - y_pred_1)
 std_y_1 = np.std(error_1)
 perc.append((y_test_1.shape[0]+y_train_1.shape[0])/end*100)

 av_TOR = np.average(y_test_1)
 av_HMSE = np.average(y_HMSE[i:i+step])

 # Update lists:
 MAE_1.append(MAE_y_1)
 std_1.append(std_y_1)
 R2_1.append(R2_y_1)

 av_TOR_list.append(av_TOR)
 av_HMSE_list.append(av_HMSE)

 # variables from the second model:
 MAE_y_2 = MAE(y_test_2, y_pred_2)
 R2_y_2 = r2_score(y_test_2, y_pred_2)
 error_2 = np.abs(y_test_2 - y_pred_2)
 std_y_2 = np.std(error_2)

 av_ROP = np.average(y_test_2)

 # Update lists:
 MAE_2.append(MAE_y_2)
 std_2.append(std_y_2)
 R2_2.append(R2_y_2)

 av_ROP_list.append(av_ROP)

101

 # Optimization
 DB = (X_test_2[0,0]+X_test_2[-1,0])/2
 def minimize_me_ROP(my_vars):

 WOB = my_vars[0]
 Q = my_vars[1]
 RPM = my_vars[2]

 return -reg.predict([[DB,WOB, Q, RPM]])[0]

 def minimize_me_ROP_helper(x):

 results_ROP = []

 for rows in x:

 results_ROP.append(minimize_me_ROP(rows))

 return results_ROP

 # Create bounds
 bounds_ROP = bounds_TOR
 # Initialize swarm
 options = {'c1': 0.5, 'c2': 0.3, 'w':0.9}

 # Call instance of PSO with bounds argument
 optimizer = ps.single.GlobalBestPSO(n_particles=10, dimensions=3, options=options,
bounds=bounds_ROP)

 # Perform optimization
 cost_ROP, pos_ROP = optimizer.optimize(minimize_me_ROP_helper, iters=100, verbose =
2)

 # variables from the optimization:
 ROP_list.append(cost_ROP) # ROP
 params_list_ROP.append(pos_ROP) # WOB,Bit Depth,Torque
 DB_list.append(DB)

 # From the first model
 MAE_1 = np.array(MAE_1)
 R2_1 = np.array(R2_1)
 perc = np.array(perc)
 std_1 = np.array(std_1)

 av_TOR = np.array(av_TOR_list)
 av_HMSE = np.array(av_HMSE_list)

 # From the second model
 MAE_2 = np.array(MAE_2)
 R2_2 = np.array(R2_2)
 std_2 = np.array(std_2)

102

 av_ROP = np.array(av_ROP_list)

 # From optimization:
 TORs = np.array(TOR_list)
 ROPs = np.array(ROP_list) * (-1)
 params_ROP = np.array(params_list_ROP)
 params_TOR = np.array(params_list_TOR)
 DB = np.array(DB_list)

 end_time = time.time()
 code_time = end_time - start_time

 return R2_1, MAE_1, std_1, R2_2, MAE_2, std_2, perc, ROPs, TORs,params_ROP,
params_TOR, DB, av_TOR, av_ROP,av_HMSE, code_time

HMSE implementation:

def modelling_HMSE(test_size, i,data_TOR,data_ROP):

 start_time = time.time()

 MAE_2 = []
 std_2 = []
 R2_2 = []
 MAE_1 = []
 std_1 = []
 R2_1 = []

 # First modell (Torque):
 reg=regs[i]
 # Define train and test samples:

X_train_1,X_test_1,y_train_1,y_test_1=train_test_split(x_1,y_1,test_size=test_size,random_st
ate=0,shuffle=False)
 # Fit model
 reg.fit(X_train_1, y_train_1.ravel())

 # Prediction (No prediction of Torque here)
 y_pred_1 = reg.predict(X_test_1)
 # y_train_fit_1 = reg.predict(X_train_1)

 # HMSE and TOR value of Optimized values
 data_TOR['Torque[kN.m]'] = reg.predict(data_TOR[['Depth Bit[m]','WOB[kN]','Flow
rate[L/min]','Downhole RPM[rev/min]']].to_numpy())
 Fji = Fj(rho*8.33,data_TOR['Flow rate[L/min]']*0.26417) # Jet force [lb]
 WOBe = data_TOR['WOB[kN]']*1000*0.225-theta*Fji # Efective WOB [lb]

 delta_Pn = rho*1000*(data_TOR['Flow
rate[L/min]']/60000)**2/(2*(TFA*0.00064516)**2*0.95**2) # Nozzle pressure loss [Pa]

103

 data_TOR['HMSE [J/m3]'] = 6894.76*HMSE(WOBe,data_TOR['Optimal
ROP[m/h]']*3.28,data_TOR['Downhole RPM[rev/min]'],
data_TOR['Torque[kN.m]']*1000*0.738, Dbit/0.0254,theta, delta_Pn/6894.76,data_TOR['Flow
rate[L/min]']*0.24617)
 data_TOR['Average HMSE[J/m3]'] = av_HMSE
 data_TOR['Average Torque[kN.m]'] = data_ROP['Average Torque[kN.m]']
 data_TOR['HMSE rate[%]'] = (data_TOR['HMSE [J/m3]']-data_TOR['Average
HMSE[J/m3]'])/data_TOR['Average HMSE[J/m3]']*100
 data_TOR['Torque rate[%]'] = (data_TOR['Torque[kN.m]']-data_TOR['Average
Torque[kN.m]'])/data_TOR['Average Torque[kN.m]']*100

 # Second model (ROP):

 # Define train and test samples:

X_train_2,X_test_2,y_train_2,y_test_2=train_test_split(x_2,y_2,test_size=test_size,random_st
ate=0,shuffle=False)
 # Fit model
 reg.fit(X_train_2, y_train_2.ravel())

 # Prediction (No prediction of Torque here)
 y_pred_2 = reg.predict(X_test_2)
 # y_train_fit_2 = reg.predict(X_train_2)

 # HMSE and TOR value of Optimized values
 data_ROP['ROP[m/h]'] = reg.predict(data_ROP[['Depth Bit[m]','WOB[kN]','Flow
rate[L/min]','Downhole RPM[rev/min]']].to_numpy())
 Fji = Fj(rho*8.33,data_ROP['Flow rate[L/min]']*0.26417) # Jet force [lb]
 WOBe = data_ROP['WOB[kN]']*1000*0.225-theta*Fji # Efective WOB [lb]

 delta_Pn = rho*1000*(data_ROP['Flow
rate[L/min]']/60000)**2/(2*(TFA*0.00064516)**2*0.95**2) # Nozzle pressure loss [Pa]
 data_ROP['HMSE [J/m3]'] =
6894.76*HMSE(WOBe,data_ROP['ROP[m/h]']*3.28,data_ROP['Downhole RPM[rev/min]'],
data_ROP['Optimal Torque[kN.m]']*1000*0.738, Dbit/0.0254,theta,
delta_Pn/6894.76,data_ROP['Flow rate[L/min]']*0.24617)
 data_ROP['Average HMSE[J/m3]'] = av_HMSE
 data_ROP['Average ROP[m/h]'] = data_TOR['Average ROP[m/h]']
 data_ROP['HMSE rate[%]'] = (data_ROP['HMSE [J/m3]']-data_ROP['Average
HMSE[J/m3]'])/data_ROP['Average HMSE[J/m3]']*100
 data_ROP['ROP rate[%]'] = (data_ROP['ROP[m/h]']-data_ROP['Average
ROP[m/h]'])/data_ROP['Average ROP[m/h]']*100

 # variables from the first model:
 MAE_y_1 = MAE(y_test_1, y_pred_1)
 R2_y_1 = r2_score(y_test_1, y_pred_1)
 error_1 = np.abs(y_test_1 - y_pred_1)
 std_y_1 = np.std(error_1)

 # Update lists:

104

 MAE_1.append(MAE_y_1)
 std_1.append(std_y_1)
 R2_1.append(R2_y_1)

 # Variables from the second model:
 MAE_y_2 = MAE(y_test_2, y_pred_2)
 R2_y_2 = r2_score(y_test_2, y_pred_2)
 error_2 = np.abs(y_test_2 - y_pred_2)
 std_y_2 = np.std(error_2)

 # Update lists:
 MAE_2.append(MAE_y_2)
 std_2.append(std_y_2)
 R2_2.append(R2_y_2)

 # From the first model
 MAE_1 = np.array(MAE_1)
 R2_1 = np.array(R2_1)
 std_1 = np.array(std_1)

 # From the second model
 MAE_2 = np.array(MAE_2)
 R2_2 = np.array(R2_2)
 std_2 = np.array(std_2)

 end_time = time.time()
 code_time = end_time - start_time

 return code_time

Then increments were plotted as it is showed in the results section. This part of the code is not

available in this ap

