LI

%

University of
Stavanger

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER'’S THESIS

Study programme/specialization:

Applied Data Science

Spring semester, 2021
Open/Confidential

Author:

Maalidefaa Moses Tantuoyir

(Signature of author)

Programme coordinator:

Supervisor(s): Associate Professor Il @yvind Meinich-Bache & Professor Kjersti Engan

Title of master’s thesis:

Sound event detection from AED in team training situations using DNNs

Credits: 30

Keywords:

Automated External Defibrillator, Sound
Event Detection, Deep Neural Network,
Convolutional Neural Network, Binary
Classification, Multiclass Classification,

ResNet

Number of pages: 110

+ Supplemental material /other: 26

Date/year:
Stavanger, 15-06-2021

Title Page for Master’s Thesis

Faculty of Science and Technology

University
of Stavanger

Faculty of Science and Technology
Department of Electrical Engineering and Computer Science

Sound event detection from AED in

team training situations using DNNs

Master’s Thesis in Applied Data Science
by

MAALIDEFAA MOSES TANTUOYIR

Supervisor |

Oyvind Meinich-Bache

Supervisor 11

Kjersti Engan

June 15, 2021

"Talent is universal; opportunity is not’

- Rye Barcott

Abstract

Cardiovascular diseases are the second most common cause of deaths in Norway in 2019.
An increase in out-of hospital cardiac arrests cases due to an increase in reported cases in
Norway between 2013 and 2018 has also been reported. The need for training health care
professionals in delivering cardiopulmonary resuscitation(CPR) contributes significantly
to safe care. The coordination of actions and skills during CPR impacts the survival of
patients. Currently, mannequins developed by Leerdal Medical AS and used for team

training events cannot detect sound events that originate from external sources.

The primary objective of this thesis is to use machine learning and deep neural net-
works(DNN) to automatically detect specific causes of different pauses during team
training to support debrief. The automated external defibrillator(AED) audio clips
are provided by Leerdal Medical AS. Background noise(audio clips) are overlaid on the
AED audio clips to form close to realistic audio from team training scenario. Audio
clips are converted to log-scaled mel spectrograms to form the final datasets. Four
DNN architectures have been used; two convolutional neural networks, one convolutional
recurrent neural network(CRNN) and pretrained ResNet18. In addition, two binary
classification methods and a multiclass classification is experimented on six distinct AED

audio classes.

Binary classification of AED audio using ResNet18 gave the best overall accuracy of 86,7
percent and an F1 score of 0.85. This model is further proposed in a final system for

further development and implementation in the real world.

Acknowledgements

I would like to genuinely thank both my supervisors, Kjersti Engan and @yvind Meinich-
Bache for their support and guidance throughout the period of this thesis work.

I would also like to express my sincere gratitude to all colleagues and friends especially
Kobina A. Quansah and Luca Tomasetti, who constantly supported me all time during
the realization of this thesis. I do appreciate all the help and kind words especially in
this COVID-19.

I dedicate it to my aunt, Grace Warisa, who was eagerly waiting to see me finish this
work and visit home, but she unfortunately could not live to see the end of this work.
Finally, a special mention goes to all members of my family, who supported me through
out my life decisions.This thesis was realized just for you, to show all my love and my
appreciation that I could not demonstrate in the last 4 years 10 months, far away from

home.

Ni barka yaga za!

viii

Contents

Abstract vi
Acknowledgements viii
Abbreviations xiii
List of Figures Xv
List of Tables xix
1 Introduction 1
1.1 Motivation 1
1.2 Problem Definition oo o 2
1.3 Outline 3

2 Background 5
2.1 Medical Background L 5
2.1.1 Cardiac Arrest 5

2.1.2 AED in Team Training 6

2.2 Audio Signal Processing 7
2.2.1 Audio Signal Properties and Characteristics 7

2.2.2 Audio Signal Representations, 10

2.2.2.1 Fourier Transform 10

2.2.2.2 Spectrogramo 12

2223 MelScale 12

2.2.3 Audio Features for Classification 13

2.2.3.1 Log-scaled Mel Spectrogram 13

2.2.3.2 Mel-Frequency Cepstral Coefficients (MFCC) 13

2.2.4 Sound Event Detection and Related Works 14

2.3 Technical Background and Deep Neural Networks 16
2.3.1 Machine Learning 16

2.3.2 Neural Networks(NNs) 16

2.3.3 Deep Learning Lo oo 20

2.34 Deep Neural Networks(DNNs) 21

2.3.5 Convolutional Neural Network(CNN) 21

2.3.6 Recurrent Neural Network(RNN) 23

ix

Contents CONTENTS
2.3.7 Pretrained Models and Transfer Learning 24
2.3.8 Hyperparameter Tuning 24
2.3.9 Statistical Information and Metrics 25

3 Dataset 27

3.1 Overview of Dataset 28
3.1.1 AED Audio Dataset 28
3.1.2 Background Noise Dataset 29
3.1.3 Selection of AED audio Classes 29
3.1.4 Polyphonic Audio Mixing 30

3.1.4.1 Creation of Final Dataset 31

3.2 Feature Extraction oo 32
321 MFCC e 32
3.2.2 Log-scaled Mel Spectrogram 33

3.3 Train, Validation and Testing Set 34

3.4 Contribution to Dataset and Preprocessing 35

4 Methodology 37

4.1 Introduction 38
4.1.1 Initial Proposed System 38
4.1.2 Model Baseline Approach 39

4.2 Proposed Architectures 39
4.2.1 Architecture A 39
4.2.2 Architecture B 42
4.2.3 Architecture C 44

4.3 Transfer Learning Models 45
4.3.1 ResNetl8 e 46

4.4 Binary Classification Methods 46

4.5 Multiclass Classification Methods 48

5 Experiments and Results 49

5.1 Introduction L 50
5.1.1 Experimental Setup 50
5.1.2 Choice of Hyperparameters 51

5.1.2.1 Learning Rate, 52
5.1.2.2 Dropout 52

5.2 Trial Experiment for Superior Features 52

5.3 Presentation of Results oo 53
5.3.1 Experiment 1: Binary Classification (1-versus-others) 53

5.3.1.1 Architecture A: Binary (1-versus-others) 53
5.3.1.2 Architecture B: Binary (1-versus-others) 55
5.3.1.3 Architecture C: Binary (1-versus-others) 58
5.3.1.4 ResNetl8: Binary (1-versus-others) 61
5.3.2 Experiment 2: Binary Classification (1-versus-1) 63
5.3.2.1 Architecture A: Binary Classification (1-versus-1) 64
5.3.2.2 Architecture B: Binary Classification (1-versus-1) 64
5.3.2.3 Architecture C: Binary Classification (1-versus-1) 65

Contents xi
5.3.2.4 ResNetl8: Binary Classification (1-versus-1) 65

5.3.3 Experiment 3: Multiclass Classification 66

5.3.3.1 Architecture A: Multiclass Classification 66

5.3.3.2 Architecture B: Multiclass Classification 68

5.3.3.3 Architecture C: Multiclass Classification 69

5.3.3.4 ResNetl8: Multiclass Classification 71

54 Analysisof Results o 72
5.4.1 Experiment 1: Binary Classification (1-versus-others) 72

5.4.2 Experiment 2: Binary Classification (1-versus-1) 75

5.4.3 Experiment 3: Multiclass Classification 75

6 Discussion and Future Works 77
6.1 Model Performance 78
6.1.1 Experiment 1: Binary Classification (1-versus-others) 78

6.1.2 Experiment 2: Binary Classification (1-versus-1) 79

6.1.3 Experiment 3: Multiclass Classification 79

6.2 Proposed System L 79
6.3 Limitations L 30
6.3.1 Volume Reduction 81

6.4 Future Work 81
6.4.1 Network Architectures 81

6.4.2 Realistic Data Material 81

6.4.3 More Dataset per Class 81

7 Conclusion 83
A Appended Codes 85
A.1 Generating Audio Chunks L oL 85
A.2 Reduce Volume of AED Audio 85
A.3 Create Polyphonic Audio Mix 86
A4 Create Features 86
A5 Tmport Dataset 86
A.6 Architectures 86

B Plots for Binary Classification(1-versus-others) 87
B.1 Plots for Architecture A 87
B.2 Plots for Architecture B 89
B.3 Plots for Architecture C 91
B.4 Plots for ResNetl8 93

C Sample Spectrograms 97
C.1 Log-scaled mel spectrogram samples 97
C.2 MFCC spectrogram samples 98
Bibliography 101

ACC
Adam
AED
ANN
AUC
BN
CCE
CCF
CD
CNN
CPR
CRNN
dB
dBF'S
DCT
DFT
DNN
ESC
FFNN
FFT
FN
FP
FPR
GRU
Hz

Abbreviations

ACCuracy

Adaptive Moment Estimation
Automatic External Defibrillator
Artificial Neural Network

Area Uder the Curve

Batch Normalization
Categorical Cross Entropy
Chest Compression Fraction
Compact Disk

Convolutional Neural Disk
Cardio Pulmonary Resuscitation
Convolutional Recurrent Neural Network
deciBel

deciBel Full Scale

Discrete Cosine Transform
Discrete Fourier Transform
Deep Neural Network
Environmental Sound Classification
Feed Foward Neural Network
Fast Fourier Transform

False Negative

False Positive

False Positive Rate

Gated Recurrent Unit

Hertz

xiii

Maalidefaa M. Tantuoyir

ABBREVIATIONS

ICD
ICU
kB
kHz
LSTM
MFCC
Nadam
NN
PPV
ReLU
ResNet
RGB
RNN
ROC
ROSC
S

SED
SGD
STFT
TN

TP
TPR
WCD

Implantable Cardioverter Defibrillator
Intensive Care Unit

kilo Byte

kilo Hertz

Long Short Term Memory

Mel Frequency Cepstral Coefficient
Nesterov Momentum into adam
Neural Network

Positive Precision Value

Rectified Linear Unit

Residual Network

Red Green Blue

Recurrent Neural Network
Receiver Operating Characteristic
Return to Spontaneous Circulation
Seconds

Sound Event Detection

Stochastic Gradient Descent

Short- Term Fourier Transform
True Negative

True Positive

True Positive Rate

Wearable Cardioverter Defibrillator

1.1

2.1

2.2
2.3
24
2.5

2.6

2.7
2.8
2.9
2.10
2.11
2.12
2.13

2.14
2.15
2.16

3.1
3.2
3.3
3.4

4.1
4.2

4.3
4.4
4.5

List of Figures

An illustration of the approach used for the thesis 1

AED device from Leerdal Medical. Reprinted with permission from Laerdal
Medical AS. e 6
Team training scenario. Reprinted with permission from Laerdal Medical AS 7

Figures of some properties of sound. Reprinted with permission from [1] . 8
Waveform plot of 'No Shock Advised” 10
Graphical explanation of Fourier Transform. Reprinted with permission

from [2] . .. 11
Spectrum for 'no shock advised’, sample__rate = 44100, number_of FFT

= 69418 . . . e 11
Ilustration of how spectrograms are formed and an example of a spectrogram. 12
Mel versus Log-scaled Mel Spectrograms 13
Mustration of MFCC generation 14
Examples of MFCCs from AED audio clips 15
Representation of NNs with different layers 16
Example of a CNN architecture. Reprinted with permission from [3] . . . 21

Illustration of Max Pooling and Average Pooling.The figure shows an
example of max pooling operation and average pooling with a 2x2 pixel
filter size from 4x4 pixel input. At max pooling, each filter is taken the
maximum value, then arranged into a new output with a size of 2x2 pixels.
While the average pooling value taken is the average value of the filter
size.The figure is reprinted in unaltered form from: “Using convolutional

neural networks for image recognition” [4] L. 22
Iustration of a RNN structure. 24
Confusion Matrix L 25
Iustration of ROC curve and AUC 26
An illustration of the approach used for the thesis 27
MFCC examples o 33
Log-scaled Mel Spectrogram examples 34
Illustration of how the folders are arranged. For each labels folder, the

training, validation and tests sets are stored in separate sub-folders. . . . 34
An illustration of the approach used for the thesis 37
Initial system proposed for AED sound event detection in team training

SCENATIO . « « v v v v e e e e e e e e e e e e 38
AlexNet style of CNN model architecture A 40
AlexNet style of CRNN model architecture B 42
AlexNet style of CNN model architecture C 44

XV

Maalidefaa M. Tantuoyir LIST OF FIGURES

4.6
4.7
4.8

5.1
5.2
5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

Summary of ResNet18 architecture 46
Iustration of binary classification methods 47
Iustration of multiclass classification method using 6 classes 48
An illustration of the approach used for the thesis 49
Flow diagram of experimental setup 51

Epochs versus Accuracy Graphs. The graphs show two features used for
training and validation of P17 class 52
Epochs versus Accuracy and Loss Graphs. The graphs show the epochs
versus accuracy(left hand side) and epochs versus loss(right hand side)
of the training and validation of P03, P17 and background10db. Early
stopping can be applied after 40 epochs to avoid overfitting for all the
classes.o 54
Epochs versus Accuracy and Loss Graphs. The graphs show the epochs
versus accuracy(left hand side) and epochs versus loss(right hand side)
of the training and validation of P03, P17 and background15db. Using
Reduced15db, the model runs for longer epochs before overfitting starts
to show. Early stopping after 65 epochs can be applied. 55
Epochs versus Accuracy and Loss Graphs. The graphs show the epochs
versus accuracy (left hand side) and epochs versus loss(right hand side) of
the training and validation of P03, P17 and background10db 57
Epochs versus Accuracy and Loss Graphs. The graphs show the epochs
versus accuracy(right hand side) and epochs versus loss(left hand side) of
the training and validation of P03, P17 and background15db 58
Epochs versus Accuracy and Loss Graphs. The graphs show the epochs
versus accuracy (left hand side) and epochs versus loss(right hand side) of
the training and validation of P03, P17 and background10db 59
Epochs versus Accuracy and Loss Graphs. The graphs show the epochs
versus accuracy (left hand side) and epochs versus loss(right hand side) of
the training and validation of P03, P17 and background1bdb 60
Epochs versus Accuracy and Loss Graphs. The graphs show the epochs
versus accuracy (left hand side) and epochs versus loss(right hand side) of
the training and validation of P03, P17 and background10db 62
Epochs versus Accuracy and Loss Graphs. The graphs show the epochs
versus accuracy (left hand side) and epochs versus loss(right hand side) of
the training and validation of P03, P17 and background15db 63
Comparison of binary classification of P13 and P17 using architecture A.
The graphs display epochs versus accuracy and loss graphs for Reduced15db 64
Comparison of binary classification of P13 and P17 using architecture B.
The graphs display epochs versus accuracy and loss graphs for Reduced15db 65
Comparison of binary classification of P13 and P17 using architecture C.
The graphs display epochs versus accuracy and loss graphs 65
Comparison of binary classification of P13 and P17 using ResNet18. The
graphs display epochs versus accuracy and loss graphs 66
Architecture A training and validation plots for multiclass classification.
The graphs display epochs versus accuracy and loss graphs 67
Architecture B training and validation plots for multiclass classification.
The graphs display epochs versus accuracy and loss graphs 69

Maalidefaa M. Tantuoyir xvii

5.18 Architecture C training and validation plots for multiclass classification.

The graphs display epochs versus accuracy and loss graphs 70
5.19 ResNet18 training and validation plots for multiclass classification. The

graphs display epochs versus accuracy and loss graphs 71
5.20 Analysis of mean test and F1 Scores for experiment 1 73
5.21 Analysis of Mean Test and F1 Scores for all architectures used in experi-

ment 1 oL 74
6.1 An illustration of the approach used for this chapter of the thesis 77

6.2 Model versus average time per epoch graph. The average training time
for Reduced10db is higher than in Reduced15db. Architecture C trains
the fastest while ResNet18 is the slowest training model. 78
6.3 Diagram of the proposed system for sound event detection in team training.
The system takes in real time audio from the team training event and
divide the audio into chunks as a function of time(t). The audio chucks
pass through a preprocessing stage where they are converted into log-scaled
mel spectrograms. The spectrograms are then serve as an input into the
model. The final predictions are interpreted as a function of time. 80

B.1 Epochs versus Accuracy and Loss Graphs. The graphs show the epochs

versus accuracy(left hand side) and epochs versus loss(right hand side) of

the training and validation of P09, P13 and P25 88
B.2 Epochs versus Accuracy and Loss Graphs. The graphs show the epochs

versus accuracy(left hand side) and epochs versus loss(right hand side) of

the training and validation of P09, P13 and P25 89
B.3 Epochs versus Accuracy and Loss Graphs. The graphs show the epochs

versus accuracy(left hand side) and epochs versus loss(right hand side) of

the training and validation of P09, P13 and P25 90
B.4 Epochs versus Accuracy and Loss Graphs. The graphs show the epochs

versus accuracy(left hand side) and epochs versus loss(right hand side) of

the training and validation of P09, P13 and P25 91
B.5 Epochs versus Accuracy and Loss Graphs. The graphs show the epochs

versus accuracy(left hand side) and epochs versus loss(right hand side) of

the training and validation of P09, P13 and P25 92
B.6 Epochs versus Accuracy and Loss Graphs. The graphs show the epochs

versus accuracy (left hand side) and epochs versus loss(right hand side) of

the training and validation of P09, P13 and P25 93
B.7 Epochs versus Accuracy and Loss Graphs. The graphs show the epochs

versus accuracy(left hand side) and epochs versus loss(right hand side) of

the training and validation of P09, P13 and P25 94
B.8 Epochs versus Accuracy and Loss Graphs. The graphs show the epochs

versus accuracy (left hand side) and epochs versus loss(right hand side) of

the training and validation of P09, P13 and P25 95

C.1 Log-scaled mel spectrograms. These are examples of log-scaled mel spec-
trograms used for the experimentation00 L. 98
C.2 MFCC spectrograms. These are examples of MFCC spectrograms used
for the experimentation L Lo Lo oo 99

3.1
3.2
3.3
3.4

4.1
4.2
4.3

5.1
5.2
5.3
5.4
9.5

5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14

5.15

List of Tables

AED Audio Event Properties 28
Distribution of background noise dataset 29
Reduced10db outlook oo 31
Reduced15db outlooko 32
Summary of layers of architecture A 41
Summary of layers of architecture B 43
Summary of layers of architecture C 45
Binary classification results for architecture A 53
Binary classification results for architecture B 56
Binary classification results for architecture C 60
Binary classification results for ResNet18 61

Model performance results for architectures A, B, C and ResNet18. The
table shows the results obtained by binary classification of two similar

classes using Reduced15db dataset 66
Multi-class classification metrics for architecture A 67
Multi-class Classification Report: Architecture A 68
Multiclass classification metrics for architecture B 68
Multiclass Classification Report: Architecture B 68
Multiclass classification metrics for architecture C 69
Multiclass Classification Report: Architecture C 70
Multiclass classification metrics for ResNet18 71
Multi-class Classification Report: ResNet18 72
Mean Test Accuracy and F1 Score Results. The results compare the mean

test accuracy and fl score between the classes used in experiment 1. . . . 72

Mean Test Accuracy and F1 Score Results. The results compare the mean
test accuracy and F1 score between the architectures used in experiment 1 74

Xix

Introduction

MODEL AND RESULTS |
| DATASET | PREPROCESSING | EXPERIMENTATION |
—*| Feature Generation Transter Learning
Binary Clagsification
AED i MECC) Multiclass Classification
Audio
@ "Audio mix | 216 Deap Neural Experiments and Post Final Results and
Metworks(DNNs) Results Experimentation Conclusion
Nolse
Log-scaled Mel CNN and CRNN Models
Spectrogram
Binary Clagsification
128
Multiclass Classification
\ 216 J

.

Figure 1.1: An illustration of the approach used for the thesis

1.1 Motivation

Cardiac arrest is the abrupt loss of heart function in a person who may or may not

have been diagnosed with heart disease [5]. This is caused by different factors which

Maalidefaa M. Tantuoyir Chapter 1 Introduction

include; heart attack, overdose, cardiomyopathy, electrocution etc. The resultant effect of
a cardiac arrest inadvertently leads to problems with memory, permanent brain damage,
death and in many cases high healthcare cost to the patient and society. Cardiopulmonary
resuscitation (CPR) is needed to keep blood and oxygen circulating to the brain and
through the body when there is a cardiac arrest. A defibrillator will deliver a controlled
electric shock , as an attempt to get the heart beating normally again. For defibrillation
to be effective, the heart needs to be oxygenated and CPR is usually crucial prior to
shock. The coordination of actions and skills during CPR are huge factors that impact
survival, as the chest compression fraction(CCF) (time you spend compressing) is directly
connected with the probability of return to spontaneous circulation (ROSC) of cardiac
arrest.The ability to resuscitate is also directly related to the time, type and sequence of

therapy provided to the patient [6].

An increase in out-of-hospital cardiac arrests cases have been reported between 2013
and 2018 in Norway. The number of cases jumped from 1101 to 3400 per year [7] due
to the fact, there is an increase in reporting of cardiac arrests. In 2019, cardiovascular
diseases(of which cardiac arrest falls under) was the second most common cause of deaths

in Norway. 31.8% of global deaths in 2017 was caused by heart related diseases[8].

Training of health care professionals in delivering CPR helps to increase their awareness
of various clinical practices, motivates learning and most importantly contributes to
safe care [9]. Abella et al.[10] further empathised on the need for effective and quality

training for healthcare professionals.

1.2 Problem Definition

In order to effectively train high performance CPR to improve CCF, it is important
to detect actions around the most common pauses, which are usually related to the
use of a defibrillator. During a cardiac arrest event, healthcare providers may use an
Automated External Defibrillator (AED) or a manual defibrillator. In both cases, there
are pauses associated to the use of the device that can be identified by the sounds of
it. Events like ’analyzing’, ’charging’ and ’shock’ have specific sounds or voice prompts.
The current mannequins developed by Leerdal Medical AS cannot detect these events as
they are directly coming from external devices, thus the use of machine learning in a
form of sound event detection(SED), to identify specific causes of different pauses during
team training would better support debrief. This also creates an opportunity to support

therapy cases in the near future.

Maalidefaa M. Tantuoyir 3

In the literature, various solutions have been proposed to solve SED problems [11]
[12] [13] [14]. This thesis explores the use of convolutional neural networks(CNNs)and
convolutional recurrent neural networks(CRNNs) to detect AED sound events in noisy
background environments that mimic a realistic case in medical team-training scenarios.
A CNN and CRNN architectures are proposed for both binary and multiclass classifi-
cation of some chosen AED sound events. Firstly, the AED audio clips are overlaid on
sourced background noises and then, the resultant audio mixture is converted to log-mel
spectograms and mel-frequency cepstral coefficients(MFCCs). These image features
are then used as the dataset for model training, validation and testing. Also, some
pre-trained models available are explored by transfer learning to solve the proposed

problem.

1.3 Outline

Figure 1.1, presents a general overview of how the thesis work is structured and actualised.
With the exception of this chapter which provides a brief introduction of the thesis, there

are 6 chapters. The following is a short description of each chapter:

Chapter 2, introduces a general background of polyphonic SED,the methods that have
been used to solve similar tasks, technical background of deep neural networks and a

description of the transfer learning methods explored in this work.

Chapter 3, contains the description of the dataset used for the thesis work. It de-
scribes the AED audio clips obtained from Laerdal Medical AS, background noise data

gathered,polyphonic sound mixture and my contribution to the data gathering process.

Chapter 4, outlines binary and multiclass classification methods and a detailed algorithmic

flow of the CNN and CRNN models, pretrained models and outline of model architectures.

Chapter 5, presents the experiments conducted and the results achieved from these

experiments and analysis of the results.

Chapter 6, discusses the results and possible future works. Also, a final system is proposed

in this chapter.

Chapter 7, concludes the thesis and contains the reflections of the overall results obtained.

Background

This chapter gives a brief explanation of AED team training, audio signal processing,
SED and related works, and technical background of DNNs; they are useful to understand
the reasons why the proposed methods are chosen and how they might be necessary for
future applications in mannequins. More detailed information of the arguments covered

in this chapter can be found in the bibliography 6.

2.1 Medical Background

This section explains briefly the medical background of the thesis work.

2.1.1 Cardiac Arrest

Cardiac arrests occurs when the heart is not able to pump blood to the body. This could
be caused by chaotic electrical activity that does not make the heart pump blood, referred
to as ventricular fibrillation. An electrical shock might be able to get the heart beat back
in a pulse-giving rhythm again. If ventricular fibrillation is untreated, it can result into
asystoly(no electrical activity) and the consequence is death [15][16]. A defibrillator is

needed for immediate treatment in situations when the heart does not spontaneously

Maalidefaa M. Tantuoyir Chapter 2 Background

return to pulse rhythm. This device is used to send electric shocks to the heart which
in-turn, could bring the heart to a normal heartbeat. The main types of defilibrators that
are used are; AED, Implantable Cardioverter Defibrillator (ICD), Wearable Cardioverter
Defibrillator (WCD). The picture below(Figure 2.1) is an example of an AED device.

Figure 2.1: AED device from Leerdal Medical. Reprinted with permission from Leerdal
Medical AS.

2.1.2 AED in Team Training

The development of mannequin simulators for education, training and research purposes,
is of immense importance to the medical sector[17]. Team training significantly improves
healthcare processes and patient outcomes[18][19].Timely access to AEDs at training,
sporting competitions, military etc. permits effective management of sudden cardiac

arrests and the prevention of sudden cardiac death[20][21]]22].

Research has also shown that, training medical professionals, emergency response teams
etc., has the potential to increase survival rates from out-of-hospital cardiac arrest[23].
Woollard et. al [23] and Bircken et. al [24] went further on to recommend routine
training of care providers after they detected a decline in their basic skill competences
after 4-6 months of initial training. Facilitating or guiding a reflection in the cycle of
an experimental learning is known as debriefing. Fanning et. al [25] generalised that,
debriefing is the fundamental essence of simulation experience. There is also an increasing

body of work exploring the role and effectiveness of debriefing in an objective manner

Maalidefaa M. Tantuoyir 7

in the learning process. This thesis work proposes a way to make a debriefing process
efficient detecting sound events from an AED device from a phone while recording in a
team-training simulation. The advantage is that, it can improve insights into strategies
and processes that lead to good results and also to clarify learning points. Figure 2.2

shows an example of a team training simulation with an AED device.

Figure 2.2: Team training scenario. Reprinted with permission from Leerdal Medical

AS

2.2 Audio Signal Processing

Audio is the reproduction of sound. Sound is a variation of a quantity in air pressure over
time. Audio signal is sound measured as an electrical signal in volt or milli-amperes/mA].
A digital audio signal is a sampled and quantified version of audio signal represented by
bits per sample. Human sense of hearing provides rich information about the environment
with respect to the characteristics and locations of the source of the sound[26].There is the
need for segregation and classification of this information whether by humans(auditory

scene analysis) or by machines.

There are three main technological application areas in digital audio signal processing.
They include: audio data compression, audio effects synthesis and audio classification.
In the following subsections, we will review some methods for signal processing of audio

in relation to audio classification.

2.2.1 Audio Signal Properties and Characteristics

Audio signal properties(Figure 2.3) include:

Maalidefaa M. Tantuoyir Chapter 2 Background

Wayvelength

Amplitude

Frequency

Period

- Speed

Wavelength is the distance between repeating units of a wave pattern.

Amplitude is the strength or power of a wave signal. It can be seen as the "height’ of a
wave when visualised as a graph. Higher amplitudes are normally interpreted as a higher

volume.

Frequency is the number of times a wavelength occurs in one second. It is measured in
Hertz(Hz)/ cycles per second. The faster the vibration from the source of sound, the

higher the frequency and the higher the pitch.
Speed is the product of the frequency and wavelength.

Wavelength Amplitude Frequency

\ f f n
\ nnh N

\ A AT |
\ |
Vol |

(a) Wavelength (b) Amplitude (¢) Frequency

Figure 2.3: Figures of some properties of sound. Reprinted with permission from [1]

Our auditory system response to frequencies from the range of 20 [Hz| to 20 [kHz] which
represents the number of sound vibrations in one second. The more amplitude a sound
has, the louder it is. The lowest sound one can hear is of 0 [dB] and above a sound
intensity of 120 [dB], it is inaudible for a human being to comprehend. In real life
comparison, it could translate to hearing the crushing sound of a leaf on the ground to

the high intensity sound of jet fighter flying just above a person.

Sound is recorded by sampling and quantisation of electrical outputs of the microphone.
Most recorded sounds have a sample rate of 44,1 [kHz|, which makes it possible to
synchronize the audio with video data. Sampling at a frequency above 40 [kHz]| is
adequate to capture the full range of audible frequencies because according to the
sampling theorem, we can reproduce frequencies up to half of the sampling frequency.

Therefore, since we can hear 20 [kHz], we need to sample at 2*20 =40 [27].The following

Maalidefaa M. Tantuoyir 9

are some parameters to consider for recorded sound and also, to understand the audio

clips which would be used in this thesis.

Volume: is the intensity of sound waves, or how loud a sound is. It is measured in
decibels[dB]. dB indicates a logarithmic ratio of a physical quantity. This can be intensity,
pressure on the air, power etc. Since we are using recorded audio, the volume referred to
in this thesis work is in decibel full scale[dBFS|.dBFS is used in digital signals to indicate
the limit before the sound waves get smashed due to clipping. 0 [dBFS] is the limit
where a sound wave can be fully reproduced before it is being distorted due to clipping.
The lowest point is when when the volume is so low that, there is no difference with
the noise produced by every device. This level is called 'noise floor’ and it is dependant
on the bitrate of the audio. For example, the AED audio clips have 16 bits per sample.
Therefore they will have 'noise floor’ at -96 [dBFS], meaning that from -96[dBFS] to
0[dBFS] you will manage to get clear audio, and the 96 [dB] are called the dynamic
range. Below -96 [dBFS], there will be noise, while above 0 [dBFS] will lead to distorted
audio due to clipping.

Sample rate: This is the number of sample points per second, in the unit of Hertz [Hz].
A higher sample rate indicate better sound quality, but the storage space is also bigger.

Commonly used sample rates are listed next:

- 8 [kHz]: Voice quality for phones and toys.

- 16 [kHz]: Commonly used for speech recognition.

- 44.1 [kHz]: CD quality
Bit resolution: The number of bits used to represent each sample point of audio signals.
Commonly used bit resolutions are:

- 8-bit: The corresponding range is 0 255 or -128 127.

- 16-bit: The corresponding range is -32768 32767.

Channels: We have mono for single channel and stereo for double channels.

In this thesis, the AED audio samples used have a sample rate of 44100 [Hz|, a bit
resolution of 16 bits(2 bytes) and mono(single) channel. The average time duration is 1.5
seconds]s]. For example, 'no shock advised’ audio has a sample rate of 44100 [Hz], 16 bits
of bit resolution and sample points of 69440. Therefore the time duration is 69440,/16000
= 1.574 [s]. The file size is 694402 = 138880 bytes which is equivalent to 139 kilobytes

Maalidefaa M. Tantuoyir Chapter 2 Background

[KB]. Figure 2.4 shows the amplitude versus time plot of the above mentioned audio

signal.

Time

Figure 2.4: Waveform plot of ’No Shock Advised’

2.2.2 Audio Signal Representations

The digital signal in Figure 2.4 can be interpreted, modified and analyzed further for
machine-based interpretation and audio classification. For the purpose of this thesis,
we will focus on the how the signals are transformed from the time domain into the

frequency domain through the Fourier Transform.

2.2.2.1 Fourier Transform

The Fourier transform is a mathematical formula that decomposes a signal from the time
domain into individual frequencies and the frequency’s amplitude(frequency domain)
[28]. This is possible because every signal can be decomposed into a set of sine and
cosine waves that add up to the original signal. The result is called a frequency spectrum.

Figure 2.5 shows a graphical explanation of the Fourier transform.

Maalidefaa M. Tantuoyir 11

Time Domain

Frequency Domain
s(t) S(w)

Figure 2.5: Graphical explanation of Fourier Transform. Reprinted with permission
from [2]

In signal processing, there is an efficient way to compute the Fourier transform of an audio.
This is referred to as fast-Fourier Transform(FFT) [29]. Given a discrete signal z/n/
where N is the size of the domain, we can first find the discrete Fourier Transform(DFT)
by multiplying each of its value by an exponent(e) raised to some function n. The result

is the sum for a given n. This is illustrated in the formula below:

FFT is an algorithm that determines the DFT of an input significantly faster than
computing it directly. FFT reduces the number of computations needed for a problem
of size N from O(N?) to O(NlogN). Further details of DFT and FFT can be referred
to in [29][30][31]. Figure 2.6 shows a spectrum for 'mo shock advised.wav’ file with
number_of FFT(n_fft= 69418, sample_rate = 44100).

Spectrum-No Shock Advised.wav

500

400

300

Amplitude

o 5000 10000 15000 20000 25000 30000 35000
Freguency Bin

Figure 2.6: Spectrum for 'no shock advised’, sample_rate = 44100, number_of FFT
= 69418

Maalidefaa M. Tantuoyir Chapter 2 Background

2.2.2.2 Spectrogram

Spectrograms can be computed by calculating the FFT of a signal over overlapping
windowed segments of the signal. This method is called the short-term Fourier trans-
form(STFT) [32]. A spectrogram can be seen as a lot of FFTs stacked on top of each
other. It is a methods to visually represent as signal’s loudness or amplitude as it varies
over time at different frequencies. Graphically, the y-axis is converted to a log scale
and the color dimension is converted to decibels. Figure 2.7 shows an example of a

spectrogram.

4l i | .“ |
Signa fu”'eﬂ'ﬂ‘ﬂa&W‘ﬂﬂ‘l#‘ﬁ"w*lw‘a‘)ﬁwll\'l«‘m WM
Window Length
vy L e e T e

—
Hop Overlap
Length Length

oo

Windowed W‘ |
segments «'Mwl "W‘m\‘m\y\..
Spectrogram-No schock advised.wav
I +0 dB
T 16384
-10d8
Analysis 8192
4096 20dB
FFT Output 1 2048 3048
| [0l
Ui o N
LR oupu2 g 1024 _40 dB
FFT Length ‘ 512 o
T -
TV - ouputs 26
-60 dB
128
& -70d8
0 v -80 dB
0 05 1 15
Time
(a) Illustration to show how a spectrogram is formed. (b) ~Spectrogram: 'No Shock Advised’,
Reprinted with permission from [33] sample_rate = 44100, hop__length = 512

Figure 2.7: Illustration of how spectrograms are formed and an example of a spectro-
gram.

2.2.2.3 Mel Scale

Mel scale is a proposed unit of pitch by Stevens, Volkmann and Newman [34]. They
performed a mathematical operation on frequencies such that equal distances in pitch
sounded equally distant to the listener. This stems from the fact that, humans are better
at detecting differences in lower frequencies than higher frequencies. To give an example,
one can easily detect the difference between 500 and 900 [Hz], but hardly will be able
to tell apart 10,000 [Hz] and 10,400 [Hz|, even though the distance between the two
pairs are the same. This is used to construct the mel spectrogram and subsequently, the
log-mel spectrogram, which would be used as a feature for the classification problems in

Chapter 5.

Maalidefaa M. Tantuoyir 13

2.2.3 Audio Features for Classification

This subsection deals with two main audio features used in audio classification in deep
learning [35][36]. They are:

- Log-scaled Mel Spectrogram

- Mel-Frequency Cepstral Coefficients(MFCCs)

These are the two main feature sets generated for the thesis and details of these features

would be found in Chapter 3.

2.2.3.1 Log-scaled Mel Spectrogram

Mel spectrogram is a spectrogram where the frequencies are converted to the mel
scale. The the raw mel spectrogram is displays power in color. To get a log-scaled
mel spectrogram which gives superior results in deep learning experiments[37][38], the
decibels are log-scaled to give a brighter color indication in the resultant ’image’. The
following diagrams show a comparison of the mel spectrogram and the log-scaled mel

spectrogram of the same audio file('no shock advised’).

8192 8192
4096
2048 2048 8
r r [
1024 1024 148

512 512 |

0 15 3 45 3 75 9
Time

(a) Mel Spectrogram: 'No Shock Advised’ (b) Log-scaled Mel Spectrogram: 'No Shock Advised’

Figure 2.8: Mel versus Log-scaled Mel Spectrograms

2.2.3.2 Mel-Frequency Cepstral Coefficients (MFCC)

MFCC mimics the logarithmic perception of loudness and pitch of human auditory system
and tries to eliminate speaker dependent characteristics by excluding the fundamental
frequency and their harmonics[39]. A frequency measured in Hertz[Hz|, can be converted

to the mel scale using the following formula:

Maalidefaa M. Tantuoyir Chapter 2 Background

Mel (f) = 2595log (1 + ,7J;0>

MFCC are coefficients that make up the mel-frequency cepstrum and they accurately
represent the envelope of time power spectrum of the speech signal which is generated from
our vocal tract. To get the MFCCs, an audio signal is first split into short-time frames.
Then windowing is applied to counteract the assumption by Fast Fourier Transform(FFT)
that, the data is infinite and reduce leakage. Thirdly, Discrete Fourier Transform(DCT)
is applied to calculate the number of FFT and then the power spectrum is computed. The
next step is to apply the mel filter banks and take the log of these spectrograms values
to get the log mel filter bank energies. To decorrelate the mel filter bank coefficients, the
Discrete Cosine Transform(DCT) is applied. The result is a list of coefficients that is
termed as MFCCs. To get the mathematical details of how MFCC is generated, refer to

[40]. Figure 2.9 shows a schematic explanation of how MFCC is generated.

¥ L ¥

il
Audio Signal
p Framing and
reprocessing windowing FFT/DFT

h J

—_— 7 Mel filter bank and
L e o TEE
| _ wrapping

w " _ L ¥

MFCC

-

Figure 2.9: Illustration of MFCC generation

Figure 2.10 shows the MFCC representation of the sample audio 'No Shock Advised’.

2.2.4 Sound Event Detection and Related Works

Sound event detection is the identification of separate or individual sound events in an
audio which may require the estimation of onset and offset for the identified instances in

the sound event. There are several application areas of SED. They range from healthcare

Maalidefaa M. Tantuoyir 15

T
o 05 1
Time Time

(a) MFCC ’"no shock advised’ (b) MFCC ’do not touch patient’

Figure 2.10: Examples of MFCCs from AED audio clips

and wildlife monitoring, surveillance to audio and video content-based indexing and
retrieval [41][42][43].

SED can be a supervised learning approach where sound events are labelled as classes.
This classification approach could be monophonic or polyphonic sound event detection.
The former deals with the detection of of the most prominent sound events at each time
of an output sequence while the later is the detection of overlapping sounds[44]. DCASE
2013 [44] and TUT 2016 [14] established benchmark datasets for experimentation on

polyphonic sound event detection.

Studies on polyphonic sound event detection has gained much attention within deep
learning[45] [14] [46]. The ability of CNN to learn features from an image and make
predictions based on the input data has attracted recent studies within this area. CNNs
are widely used for polyphonic sound event detection [11][47][48] on various public
available datasets. The use of CNNs with recurrent neural networks(RNNs) also referred
to as convolutional recurrent neural networks(CRNNs), has been proposed and studied
on both DCASE 2016 and TUT 2016 dataset[11] [13]. Transfer learning has also been
explored in the field of sound event detection [49]. The most recent application is in
cough detection in COVID-19 patients [50].

In all these methodologies and applications, there have been varying results in relation
to the kind of dataset and data prepossessing steps applied in drawing to a conclusion.
The most used feature extraction methods are MFCC and log-scaled mel spectograms
with the later achieving superior results than the former [11] [51]. On the basis of this,
these features would be studied in Chapter 5.

Maalidefaa M. Tantuoyir Chapter 2 Background

2.3 Technical Background and Deep Neural Networks

This section gives a general overview of machine learning, CNNs,RNNs,DNNs and the

theory behind them; transfer learning and the statistical metrics used in this thesis.

2.3.1 Machine Learning

Machine learning is a branch of artificial intelligence based on the idea that systems can
learn from data, identify patterns and make decisions with minimal human intervention.
In the past decade, machine learning has given us self-driving cars, practical speech
recognition, facial recognition among others[52]. In machine learning, algorithms are
‘trained’ to find patterns and features in data in order to make decisions and predictions
based on the results obtained. The better the algorithm, the more accurate the decisions
and predictions will become as it processes more data.The need for better algorithms
has let to the development of neural networks[53], which will be discussed in the next

subsections.

2.3.2 Neural Networks(NNs)

Neural networks or artificial neural networks(ANNs) are mathematical structures that
when given input can map to a desired output. They were developed to mimic the
biological operation of human brain cell called neurons. The building block of neural
networks is the perceptron which is similar to biological building blocks of lipids, nucleic
acid, carbohydrates and proteins [54]. Figure 2.11 represents an outlook of a single and

a multi-layer perceptron.

n input layer hidden layer 1 hidden layer 2 output layer

(a) Illustration of a Single Perceptron (b) Ilustration of a Multi-layer Perceptron

Figure 2.11: Representation of NNs with different layers

The output of a single neuron is given by the formula:

Maalidefaa M. Tantuoyir 17

where ¢ is the activation function, b is the bias,w; is the weight and a; is the input value.
Figure 2.11(a) shows a visual representation of a simple NN. Three different input a; are
feeding the artificial neuron with three different weight values w;. The artificial neuron
has one layer. Figure 2.11(b) shows a Feed Forward Neural Network (FFNN). The FFNN
contains two hidden layers and an output layer. The input layer consists of three artificial
neurons, and the output layer has one artificial neuron. No calculation is required during
the load of the input layer; thus building the FFNN would consist of implementing two
computational layers. The inputs in the hidden layer are fully connected to the artificial
neurons in the input layer. Moreover, a full connection is presented between the artificial

neurons of the hidden layer and the artificial neurons in the output layer.

An activation function determines how much of a neuron’s value is used in a calculation.
There are several possible activation functions. Selecting the activation function has a
great effect on the training dynamics and performance of the neural network[55] and
different activation functions might be chosen depending on the layer network. Three

activation functions that were used in this thesis are:

- Rectified Linear Unit (ReLU)[56]
- Sigmoid function[57]

- Softmax[58]

ReLU provides a straightforward nonlinear transformation. The function is defined as
the maximum between 0 and a given element x.This activation function will be used in

the CNN architectures in the preceding chapters.

RelU

max(0,z) 4

Maalidefaa M. Tantuoyir

Chapter 2 Background
Sigmoid function takes a range real number and returns the output value which falls in

the range of 0 to 1. It produces the curve which will be in the Shape S. This function is
used for binary classification in this thesis.

Softmax behaves similarly to the sigmoid function.The difference is that it outputs

probabilities range. The range for each output node is from 0 to 1, and the sum of all
the probabilities will be equal to one.

_Zleex"
fori=1 K and x = (

The softmax function computes the exponential power of the given input value z and

the sum of exponential values of all the values in the inputs. Then the ratio of the

exponential of the input value and the sum of exponential values is the output. It will
be used in multiclass classification.
Loss Functions

To measure the error between the predicted and real outputs in a neural network, the

loss function is used. Two main loss functions were used in this work. These are:

- Binary cross-entropy[59]

- Categorical cross-entropy [60]

below:

Binary cross entropy or log-loss is used for binary classification. The formula is given

Maalidefaa M. Tantuoyir 19

Hy(6) = — - 5 dogp(u) — (1 -) dog(1 — p(u)
N

where, N = number of samples, y = true label, p(y) = predicted probability of label

Reading this formula, it explains that, for each true label point (y = 1), it adds log(p(y))
to the loss, that is, the log probability of it being the true label. Conversely, it adds
log(1 — p(y)), that is, the log probability of it being the false label, for each point (y=0).
The picture below shows an example of how the log-loss function behaves. As the predicted

probability of the true class gets closer to zero, the loss increases exponentially[59]:

Log Loss

4
==
=
=
o 2
Lo

1

0

0.0 0.2 0.4 0.6 0.8 1.0
p(x)

Categorical cross-entropy function is used for multi-class classification to output a proba-
bility for a specific number of classes greater than two. It measures the probability error
for a classification tasks where the classes are mutually exclusive. It is also called softmax

loss because it can be described as a softmax activation plus a cross-entropy loss[60].

CCE = Zgl)i(log(y:))

where g; is the ground truth, y; is the score for each class i in N and o(x); is the softmax

function.
Optimization Algorithms

Optimization algorithms help the model to minimize the loss function in a neural network.
An optimization function works by finding the weight and bias terms of a given data
and the corresponding target values that are associated to each data point. It then

approximates a new target value with a minimum error approximation [61]. One type of

Maalidefaa M. Tantuoyir Chapter 2 Background

optimization algorithm is backpropagation. The optimization algorithms implemented in
this thesis work are the stochastic gradient descent (SGD) function and the adaptive

moment estimation (Adam).
Backpropagation

Backpropagation is a mechanism to calculate the gradient of the loss function.lt is
important in the calculation of the weights involved in the network. Backpropagation
is used to adjust the weights during the training of the model in order to minimize the

error of the output[62].
Stochastic Gradient Descent

SGD is an iterative method for optimizing a differential objective function, a stochastic
approximation of gradient descent optimization. SGD is famous for large scale opti-
mization but has slow convergence asymptotically due to the inherent variance[63]. The

equation of SGD is used to minimize an objective function is given in the form of a sum:
1 =1
Qw) = - > Qi(w)
n

where,the parameter w that minimizes Q(w) is to be estimated. Each function @Q; is

associated with the i** observation in the dataset.
Adaptive Moment Estimation Adaptive Moment Estimation

Adam is an algorithm for first-order gradient-based optimization of stochastic objective
functions, based on adaptive estimates of lower-order moments[64]. Empirical results
demonstrate that Adam works well in practice and compares favorably to other stochastic

optimization methods[65].

2.3.3 Deep Learning

Deep learning is a type of machine learning where algorithmic representation learning
methods are used with multiple levels of representation. Non-linear modules are composed
to transform the representation of an image at one level, to a higher and slightly abstract
level. The layers in the algorithm manipulate the output from previous layers, the input
layers. There are two main learning approaches; supervised learning approach(example,

classification and regression) and unsupervised learning approach(example, clustering).

Maalidefaa M. Tantuoyir 21

Supervised Learning In supervised learning, labelled datasets are used to train algorithms
to predict outcomes or classify data. This work will use a form of supervised learning

called classification. Details can be found in Chapters 4 and 5.

Unsupervised Learning In unsupervised learning, unlabelled datasets are used. The
algorithm does not know the true labels of the input data. Thus, the model gets to learn
by itself by modeling the probability density of input data. This learning approach is

not used in this work.

2.3.4 Deep Neural Networks(DNNs)

A deep neural network is a NN with two or more hidden layers between the input
and output layer. Many different architectures of DNNs has been used and created in

literature [66][67], including transfer learning [68].

2.3.5 Convolutional Neural Network(CNN)

The organization of the animal visual cortex and the ability of humans to recognise
different features of an object, inspired the development of convolutional neural networks.
The visual cortex contains a vast number of cells responsible for identifying light in
overlapping sub-regions of the visual field, the receptive fields. These cells behave as
filters over the input; the more complex cells have larger receptive fields[69]. CNNs
have the ability to learn hierarchical representation of raw input data without relying
on handcrafted features. They are therefore widely used in image recognition, image
classification,object detection, facial recognition etc. CNN consists of an input layer plus
an output layer linked by a non-fixed number of hidden layers. Figure 2.12 shows an

example of a typical CNN architecture.

— AR
— TRUCK
— VaN

[—sicvee

SOFTMAX

FuLLY
" iNpuT \(ONVOLUVIDN +RELU POOLING CONVOLUTION + RELU POOLING HATEN P

FEATURE LEARNING CLASSIFICATION

Figure 2.12: Example of a CNN architecture. Reprinted with permission from [3]

Convolutional Layer

Convolutional layer is the first layer to extract features from an input image. This layer

is made of a set of small filters which has the ability to learn. The convolutional layer

Maalidefaa M. Tantuoyir Chapter 2 Background

operation is by convolving each filter over the entire input and computing a dot product

between the input at any given position [3].
m n
glz,y) =w flz,y) = D * > w(s,O)f(@—s.y—1)
s=—m t=—n

The above equation defines a convolution operation whereby g(x,y) is the filtered image,
f(x,y) represents the original image and w is the filter kernel. Each element of the filter

kernel is examined within the ranges of —m <s<mand —n<t<n
Pooling Layers

A pooling layer calculates the output for each element in a fixed-shape window of input
data. The pooling layer decreases the resolution of the window to prevent misleading
noise and distortion of pixels[70]. Figure 2.13 shows an example of how the pooling layer

works. The three types of pooling layers are:

- Max pooling
- Average pooling

- Sum pooling

max pooling
20|30
112 37
12120 30| 0
8 (121 2|0
34|70) 37 4_ average pooling
1121100 25 | 12 ol
7920

Figure 2.13: Illustration of Max Pooling and Average Pooling.The figure shows an

example of max pooling operation and average pooling with a 2x2 pixel filter size from

4x4 pixel input. At max pooling, each filter is taken the maximum value, then arranged

into a new output with a size of 2x2 pixels. While the average pooling value taken is the

average value of the filter size.The figure is reprinted in unaltered form from: “Using
convolutional neural networks for image recognition” [4]

Normalization Layer

The normalization layer calculates the mean and variance from the distribution of the

summed input to a neuron, and then normalize this summed data to the next neuron each

Maalidefaa M. Tantuoyir 23

time in a neural network. This process significantly reduces the training time of a neural
network. This also enables each layer to learn a bit more independently as compared to
other layers in the network[71]. The different types of normalization layers are: batch
normalization(BN),weight normalization,layer normalization,group normalization and
weight standardization. Batch normalization layer is used in Chapters 4 and 5. BN
standardizes the inputs to any particular layer. This means that, the inputs to any layer

in the neural network should have approximately zero mean and a unit variance[72].
Dropout Layer

A dropout layer periodically removes random nodes from the network, forcing the network
to adjust to learn with different internal structures and become better equipped to handle
any input. This process reduces overfitting in a NN by preventing complex co-adaptations

on input data[73].

Permute Layer Permute layer changes the order or arrangement of the dimensions of

the input data according to a given pattern[74].

Flatten Layer A Flatten layer reshapes the dimensions of the input data to have a
shape that is equal to the number of elements contained in the input data. This layer

removes all the dimensions except for one[75].

2.3.6 Recurrent Neural Network(RNN)

FFNNs propagate data forward and between connection units. To solve sequential
data better, recurrent neural networks contain cyclic connections that make them a
more powerful tool to model this data. RNNs propagate data forward and backwards
from late processing stages to earlier stages. These kind of networks have an internal
memory which helps them to process sequential data(Figure 2.14). Some examples of
RNNs include; Long-Short Term Memory(LSTM)[76], Gated Recurrent Unit(GRU)[77]
and the bidirectional forms of LSTM and GRU. RNNs have been used in handwriting
recognition, speech recognition, time series forecasting etc[78][79]. In recent works by [11],
convolutional recurrent neural networks(CRNN) have been used in polyphonic sound
event detection which showed some promising results. Later in Chapter 4, a CRNN

model is proposed for both binary and multiclass classification task in this thesis.

Maalidefaa M. Tantuoyir Chapter 2 Background

Input layer Hidden layer Output layer

o — @ O

Figure 2.14: Tllustration of a RNN structure.

2.3.7 Pretrained Models and Transfer Learning

A pretrained model is a saved neural network that was previously trained on a large
dataset, typically on a large-scale image-classification task [68]. The pretrained model

can be used as it is or use transfer learning to customize the model to fit a given tasks.

In computer vision, the lower layers of transfer learning models have been used as
feature extractors such as detecting edges of a picture, while the final layers work
toward task specific features [80]. Some popular models often used for transfer learning
include Xception [81],VGG16 and 19[82],Inception-v4,Inception-ResNet [83],Residual
Networks(ResNet) [84] etc. Some of these models would be use in Chapter 5.

2.3.8 Hyperparameter Tuning

A hyperparameter is a criterion whose value is set before the learning process of a neural
network begins. It refers to the task of testing different values for the hyperparameters,
and finding the best. The process significantly helps in finding a configuration which
produces good performance for a model, even though it can be computationally expensive.
Some of the hyperparameters tuned in this thesis include: learning rate,batch size,input

dimension,optimizers,loss function,filter size etc.

Learning rate is a tuning parameter in an optimization algorithm that determines the
step size at each iteration while moving toward a minimum of a loss function. Batch
size refers to the number of training examples utilized in one iteration. Input dimension
refers to the dimension of the input data. Filter size the dimensions of the filter kernel

in the neural network.

Maalidefaa M. Tantuoyir 25

2.3.9 Statistical Information and Metrics

Statistical information and analysis is an important part of this thesis. In order train,
validate and test the proposed models and choose a pre-trained model, various statistical
information was used. Based on this information, a confusion matrix for both binary and

multiclass classification of the present/absent labelling of the AED sound event drawn.

A confusion matrix is table that indicates the number of false positives(FP), false
negatives(FN), true positives(TP) and true negative(TN) predictions of the classification
model. On the basis of these indicators, the actual performance of the models can be

evaluated. Figure 2.15 shows an example of a confusion matrix for binary classification.

Confusion Matrix

Actual Value

Yes (1) No (0)
predicted [JIREEIHN] ™ FP
Value No (0) FN TN
TP=True Positive
FP=False Positive

FN=False Negative
TN=True Negative

Figure 2.15: Confusion Matrix

The statistical information on which these models were evaluated are:

Accuracy is a description of systematic errors, a measure of statistical bias; it is

calculated as:
TP+TN

A =
ce TN+TP+ FP+FN

Recall measures the proportion of actual positives that are correctly identified, also

called True Positive Rate (TPR). The equation to calculate it is:

TP
TPR= ———
I TP+ FN
Precision is the fraction of relevant instances among all instances. It is also called
Positive Precision Value (PPV) and it’s defined as:

TP

PPV = 45 FP

Maalidefaa M. Tantuoyir Chapter 2 Background

F'1 Score takes into consideration both the precision and the recall of the test to compute

the final score; it is a measure of a test’s accuracy. It is calculated as:

PPV «TPR

F1 _gi iV ol
Seore = 2 5 T TPR

ROC and AUC

Receiver Operating Characteristic(ROC) curve is graph that shows the performance of
a classification model at all classification thresholds. The ROC plots the true positive
rate(TPR) against the false positive rate(FPR). When the classification threshold is

lower, the classifier classifies mote items as positive, thus increasing both FP and TP.

FP

FPR= ——
& TN+ FP

Area Under the Curve(AUC) measures the are area underneath the whole ROC curve. It
gives the an aggregate measure of performance across all possible classification thresholds.
AUC provides the probability that a random positive item is classified as a random
negative item. It ranges in value from 0 to 1. A model whose predictions are 100 percent
wrong has an AUC value of 0 while an AUC value of 1 means that, all predictions are

100 percent correct. Figure 2.16 shows a diagram of ROC curve and AUC.

ROC Curve

1.0

0.8

0.6

True positive rate

0.2

0.0

1 1 1 T T T
0.0 0.2 0.4 06 0.8 1.0

False positive rate

Figure 2.16: Illustration of ROC curve and AUC

Dataset

This chapter explains how the datasets used for the thesis work was created and prepro-
cessed. This is an essential part of the thesis and it would further help to understand the
feature extraction processes used to solve the proposed problem. Figure(3.1) illustrates

the section of the thesis which is approached in the rest of the chapter.

DATASET PREPROCESSING

MODEL AND RESULTS
EXPERIMENTATION

Feature Generation Transfer Learning

Binary Classification

Multiclass Classification

MFCC

Audio mix 216 Deep Neural Experiments and Post inal Results and
Metworks({DMNs) Results Experimentation Conclusion
Log-scaled Mel CNM and CRNN Models
Spectrogram

Binary Classification

Multiclass Classification

Figure 3.1: An illustration of the approach used for the thesis

27

Maalidefaa M. Tantuoyir Chapter 3 Dataset

3.1 Overview of Dataset

The audio dataset used in this thesis is in two parts: monophonic AED audio data and
a mix of monophonic and polyphonic background audio data. The monophonic AED
audio data is made of 10 labelled, 1.5 to 2 [s] audio files. Each of the 10 files contain a

unique audio event/command from the AED device.

In order to make a final dataset that mimics a real recorded polyphonic audio in a team
training environment, audio data from already available datasets [85] and polyphonic
audio on the internet [86] is collected to form background audio/noise data. A description

of these datasets is presented in the next subsections.

3.1.1 AED Audio Dataset

The table(3.1) below shows properties of the AED audio event samples used for further

preprocessing and experimentation. Some of the common properties are:

- WAV audio file

Monophonic(1 audio channel)

Sample rate of 44100 [Hz]

16 bits per sample

Table 3.1: AED Audio Event Properties

Audio Event ‘ Label ‘ Duration[seconds] ‘ Loudness[dBFS] ‘ Size[KB] ‘
Apply Pads P03 | 1.30 23.1 250
Analysing Heart Rhythm | P08 1.43 -22.6 127
Do Not Touch the Patient | P09 1.75 -24.0 156
Analysing Interrupted P10 1.58 -22.9 143
No Shock Advised P13 1.55 -23.3 139
Shock Advised P17 1.30 -23.3 119
Charging P18 | 0.65 22.6 415
Stay Clear of Patient P19 1.79 -22.8 160
Shock Delivered P23 1.16 -23.2 106
No Shock Delivered P25 1.30 -23.1 250

Maalidefaa M. Tantuoyir 29

3.1.2 Background Noise Dataset

The background noise dataset is made of 7685 audio clips, each of length 5[s] and varying
[dBFS]. The first 2000 audio clips are sourced from the popular ESC-50 dataset [85],
3000 audio clips from polyphonic noise in a drinking bar setting and 2865 audio clips
from intensive care unit(ICU) audio recording. The last two variant are sourced from

YouTube [86].

The ESC-50 dataset is a collection of short environmental recordings available in a
unified format (5-second-long clips, 44.1 [kHz], single channel,compressed at 192 [kbit per
s]).The dataset is organized into 50 semantical classes (with 40 examples per class) loosely
arranged into 5 major categories. These categories are: animals,natural soundscapes
water sounds, human, non-speech sounds,interior or domestic sounds and exterior or

urban noises.

The dataset from the bar and ICU setting are 8 hours and 1 hour long respectively. The
original audios are divided into 5-second-long clips using the python library PyDub [87].
These samples are recorded at 44.1 [kHz], single channel and compressed at 164 [kbit per
s]. Table (3.2) below shows a a distribution of the samples that make up the background

dataset.

Table 3.2: Distribution of background noise dataset

Source of Audio | Number of Audio Clips
ESC-50 2000
ICU 2685
Bar 3000
Total 7685

3.1.3 Selection of AED audio Classes

Five AED audio labels were randomly chosen for further studies. The five AED labels

used for the classification tasks are:

Shock advised

No shock advised

Apply pads

Shock delivered

Maalidefaa M. Tantuoyir Chapter 3 Dataset

- Do not touch the patient

Five other AED audio labels are used to create a 'backgrounds noise folder’. This
backgrounds noise folder is categorised as a label on it’s own. The aim is to provide
a ’difficult’ label to compare robustness of the models in the binary and multiclass

classification tasks. These labels are:

Analysing heart rhythm

Stay clear of patient

No shock delivered

Charging

Analysing interrupted

3.1.4 Polyphonic Audio Mixing

Mixtures were created by randomly overlaying AED audio event instances on a background
audio segment of length 1-4 seconds. In this way, the whole length of the AED audio
clip is present on the 5 second background audio clip. Both AED audio clips and the
background noise are sampled at the same sample rate of 44.1 [kHz]. This is done with
PyDub[87] and the code for creating these mixtures can be found in Appendix A.3. The

following are three different methods and the reasons to why these datasets were created:

1. Firstly, the AED audio samples are overlaid on the background noise clips at their
original volume in dBFS(Appendix A.3), assuming that, the volume recorded is
the highest for any recording device in a team training setting. This creates a
polyphonic audio mixture of 7685 audio clips for each class of AED audio event.

This dataset is referred to as dataset 1.

2. Secondly, the volume in dBFS of the AED audio samples is reduced by 10
[dBFS](Appendix A.2) and then overlaid on the background noise clips. This
is to create a scenario where by the background noise is louder than the AED
audio. In team training scenario, the movement of the recording device from the
AED device would reduce the volume at which the AED command will be recorded.
Also, the varying volume of the background environments makes this close to a

realistic team training case scenario. This dataset is referred to as dataset 2.

Maalidefaa M. Tantuoyir 31

3. Finally, to determine how good the model would work in detecting lower AED
audio in varying noisy background, the volume of the AED audio clips is reduced
by 15 [dBFS]|(Appendix A.2) and then overlaid on the background noise clips. In
some cases when the background noise is very high, it is almost impossible for a
human to detect the AED audio event in the samples created. This dataset is

referred to as dataset 3.

The above three stages, forms the basis for creating the final datasets that are used in

the following Chapters(4 and 5).

3.1.4.1 Creation of Final Dataset

Two datasets are created for work in this thesis. They are referred to as Reduced10db
and Reduced15db.

Reduced10db is a combination of datasets 1 and 2 (Table 3.3). It has 15370 samples
per AED audio class of polyphonic audio mixture. In essence, the audio clips in this

dataset has AED audio with their original volume and a reduced volume of 10 [dBFS].

Background10db ’class’ under Reduced10db dataset.It contains 15370 audio clips.
7685 audio clips are the original background noise and another 7685 audio slips are
from the ’five other” AED audio classes(1537 samples per class). The 1537 samples are

randomly selected from each of the five classes using the shutil module in Python [88].

Table 3.3: Reduced10db outlook

Label Number of Sample Images

P03 15370

P09 15370

P13 15370

P17 15370

P23 15370

Background10db | 15370(7685 background noise + 7685 of P08,P10,P18,P19 and P25

Reduced15db is a combination of datasets 1,2 and 3 (Table 3.4). This dataset has
23050 audio clips per AED audio class of polyphonic audio mixture. In simple terms, the

audio clips in this dataset has AED audio with their original volume, a reduced volume

of 10 [dBFS] and even a lower reduced volume of 15 [dBFS].

Background15db ’class’ under Reduced15db dataset. It contains 23050 audio clips.

7685 audio clips are the original background noise while 15365 audio clips are from the

Maalidefaa M. Tantuoyir Chapter 3 Dataset

'five other’” AED audio classes(3073 audio clips per class). The 3073 audio clips are

randomly selected from each of the ’five other’ classes.

Table 3.4: Reduced15db outlook

Label Number of Sample Images

P03 23050

P09 23050

P13 23050

P17 23050

P23 23050

Background15db | 23050(7685 background noise + 15365 of P08,P10,P18,P19 and P25

3.2 Feature Extraction

Numerous feature extraction methods have been used in polyphonic sound event detection
studies. The most used features are the log-scaled mel spectrogram and MFCC[11][89][90].
To determine the best features for this dataset, both MFCC and log-scaled mel spectro-
grams have been generated and tested(Code is in Appendix A.4). The python library

used in this section is called Librosa [91].

3.2.1 MFCC

The MFCC features are mostly used in speech recognition tasks. MFCCs generated are

as a results of the following process:

1. Sample the audio datasets at a fixed sample rate of 22050 [kHz]. A small sample

rate for a 16 bitrate audio gives better results [92].

2. Take the STFT of the audio signal and divide it according to the mel-scale. The

mel-scale has a fixed size of 266 [Hz| frequency bins.

3. Perform DCT on the frequency bins and obtain a resultant coefficient of 40.

Thus, 40 MFCCs are calculated for each time window with 50 percent overlap. The same
parameters are used to generate a 2-dimensional spectrogram of size 40*218. Samples
of some of the images generated for both Reduced10db and Reduced15db datasets are
shown in Appendix C. Figure (3.2) shows three examples of MFCC features generated

Maalidefaa M. Tantuoyir 33

from Reduced10db. The python file create_ mfcc.py in Appendix A.4 generates these

spectrograms.

Figure 3.2: MFCC examples

3.2.2 Log-scaled Mel Spectrogram

The log-scaled features are generated with using the following process [91]:

1. Sample the audio datasets at a fixed sample rate of 22050 [kHz]. A small sample

rate for a 16 bitrate audio gives better results [92].
2. Perform windowing with a hop length of 512.

3. Take the STFT of the audio signal and divide it according to the Mel-scale. The
Mel-scale has a fixed size of 266 [Hz| frequency bins.

4. Calculate the number of FFT for the audio samples. The number of FFT is fixed
at 2048.

5. Generate number of mel bands. In this case 128 mel bands.

6. Take the log of the generated spectrogram.

The resultant images are 2-dimensional of sizes 128%218. The python file create__logscaledmelspec.py
in Appendix A.4 generates these spectrograms. Figure (3.3) shows some examples of the

images generated. More examples are attached in Appendix C.

Maalidefaa M. Tantuoyir Chapter 3 Dataset

(a) (b)

Figure 3.3: Log-scaled Mel Spectrogram examples

3.3 Train, Validation and Testing Set

The final datasets are randomly selected and separated into train, test and validation
sets. This is to further make sure that, the models developed are robust enough. 70
percent of the data is used for training the model, 20 percent is used to validate the
model and 10 percent is used to test the model. Below(Figure 3.4) is an illustration of

how the folders are arranged and stored for further work.

Datasets Directory

\— Labels Folder

— Training Set

— Validation Set

—— Test Set

Figure 3.4: Illustration of how the folders are arranged. For each labels folder, the
training, validation and tests sets are stored in separate sub-folders.

Maalidefaa M. Tantuoyir 35

3.4 Contribution to Dataset and Preprocessing

The main contribution to the dataset is the collection of background noise and creation
of polyphonic audio mixtures that mimic team training environments. In essence, the
final datasets generated for further studies in this thesis can be regenerated using the
codes in Appendix A and if one has access to the AED audio data samples. Furthermore,
the preprocessing steps and feature extraction for this work can be done using the python

codes attached in Appendix A.

Methodology

This chapter elaborates on a proposed system, methods and architectures used for
the binary and multiclass classification task in this thesis. Furthermore, the different
methodologies used in the classification of the AED audio clips explained. Figure(4.1)

illustrates the section of the thesis which is approached in this chapter.

| MODEL AND | | RESULTS

| DATASET |

PREPROCESSING EXPERIMENTATION
—*| Feature Generation Transter Learning
AED MFCC \

Audio

216 Deep Neural Experiments and Post Final Results anu]
Metworks({DNNs) Results E: 1 Ci

Log-scaled Mel CNN and CRNN Modals
Spectrogram

I
216
T

Figure 4.1: An illustration of the approach used for the thesis

< _,(m}‘

Noise

s

37

Maalidefaa M. Tantuoyir Chapter 4 Methodology

4.1 Introduction

This section explores an initial proposal for a final system to detect sound events in
team training scenarios, and the DNN architectures used for classifying the presence or
absence of a AED audio clip in a background noise. Two CNN models and an CRNN
model are presented as the proposed models for both binary and multiclass classification.

The main difference in both architecture is detailed in the next sections.

Transfer learning model architectures are also used for both classification scenarios. The
models with the best statistical information considered in this thesis are also presented.
This helps to have an overview of methods that could be exploited to solve the polyphonic
sound event detection problem. Additionally, visual structures of these architectures are
presented to show the differences in their outlook and to help the reader understand the

various models used in Chapter 5 for experimentation.

4.1.1 |Initial Proposed System

A proposal for a system to detect sound events in team training events is shown be-
low(Figure 4.2). The idea behind this system is that, sound is recorded with a device in
a team training initially. This recorded sound is divided into chunks as a function of time
and the audio chunks are preprocessed into spectrograms. The spectrograms could be
in the form of MFCC or log-scaled mel spectrograms using the procedures described in
Chapter 3. These spectrograms will form the input data into the DNN model for either

binary or multiclass classification.

7 Audio N 7 = Model Classification
Chunks INPUT Features ; .
Class 1
[clss2
—>

Figure 4.2: Initial system proposed for AED sound event detection in team training
scenario

Maalidefaa M. Tantuoyir 39

4.1.2 Model Baseline Approach

There have been studies to detect the presence or absence of sound in our everyday
life events. These authors explored various methods for solving problems of this kind
[93-97]. However, the approaches in this work is similar to [98], where they successful
used a transfer learning for COVID-19 detection in the form of binary classification. All
previous studies used either MFCC or log-scaled mel spectrograms as input images. The

proposed architectures in this work are built from scratch.

4.2 Proposed Architectures

The proposed architectures explore the idea of using CNN and CRNN to perform both
binary and multiclass classification tasks. For the binary classification, the loss function
implemented is the binary cross-entropy while the categorical cross-entropy was used
for the multiclass classification. Under each classification task, the models are each run
on the same number of epochs. The optimizers used include: Adam,SGD and Nesterov

Momentum into Adam(Nadam).

4.2.1 Architecture A

Architecture A is a CNN model made up of 21 convolutional layers(Figure 4.3). The
first convolutional layer is the input layer and the last convolutional layer is the output
layer. The input layer has 32 neurons and a filter kernel size of 7*7. This layer takes in a
2-dimensional(2D) image of size 224*224 and gets convoluted with a ReLU activation
function, batch normalization and a 2D maximum pooling operation. Architecture A is
constructed in a way that, there is a batch normalization and maximum pooling operation
after every two convolutional layers in the the hidden layer section of the model. This

draws similarity with ResNet18 architecture [99].

Maalidefaa M. Tantuoyir Chapter 4 Methodology

(a) Binary classification model

(b) Multiclass classification model

Figure 4.3: AlexNet style of CNN model architecture A

The output of the hidden layers is operated with a 2D global average pooling before it
is flattened and fully connected o the first dense layer. Two dropout layers are used to
avoid overfitting the model before the prediction layer. For the binary prediction(4.3a), a
sigmoid activation function is used to while a softmax activation is used for the multiclass
classification(4.3b). In all, the total parameters in this model is 13,460,545, of which
the trainable parameters are 13,455,553 while the non-trainable parameters are 4,992.
Details of architecture A can be found in Table 4.1. The code for architecture A can be

found in Appendix A.6.

Maalidefaa M. Tantuoyir

41

Table 4.1: Summary of layers of architecture A

Layer (type) Output Shape Param
conv2d (Conv2D) (None, 119, 119, 32) 4736
max_ pooling2d (MaxPooling2D) (None, 59, 59, 32) 0
conv2d_1 (Conv2D) (None, 30, 30, 32) 9248
conv2d_ 2 (Conv2D) (None, 14, 14, 32) 9248
max_ pooling2d 1 (MaxPooling2D) (None, 5, 5, 32) 0
batch_normalization (BatchNorm) (None, 5, 5, 32) 128
conv2d_3 (Conv2D) (None, 2, 2, 32) 9248
conv2d_ 4 (Conv2D) (None, 1, 1, 32) 9248
max_ pooling2d_ 2 (MaxPooling2D) (None, 1, 1, 32) 0
batch_normalization_ 1(BatchNorm) (None, 1, 1, 32) 128
conv2d_5 (Conv2D) (None, 1, 1, 64) 18496
conv2d_ 6 (Conv2D) (None, 1, 1, 64) 36928
max_ pooling2d_3(MaxPooling2D) (None, 1, 1, 64) 0
batch_normalization 2(BatchNorm) (None, 1, 1, 64) 256
conv2d_7 (Conv2D) (None, 1, 1, 64) 36928
conv2d_ 8 (Conv2D) (None, 1, 1, 64) 36928
max_ pooling2d_ 4 (MaxPooling2D) (None, 1, 1, 64) 0
batch_normalization 3(BatchNorm) (None, 1, 1, 64) 256
conv2d_9 (Conv2D) (None, 1, 1, 128) 73856
conv2d__10 (Conv2D) (None, 1, 1, 128) 147584
max_ pooling2d_5 (MaxPooling2D) (None, 1, 1, 128) 0
batch_normalization_4(BatchNorm) (None, 1, 1, 128) 512
conv2d_11 (Conv2D) (None, 1, 1, 128) 147584
conv2d_ 12 (Conv2D) (None, 1, 1, 128) 147584
max_pooling2d 6 (MaxPooling2D) (None, 1, 1, 128) 0
batch normalization 5(BatchNorm) (None, 1, 1, 128) 512
conv2d_ 13 (Conv2D) (None, 1, 1, 256) 295168
conv2d__ 14 (Conv2D) (None, 1, 1, 256) 590080
max_ pooling2d_ 7 (MaxPooling2D) (None, 1, 1, 256) 0
batch_normalization 6(BatchNorm) (None, 1, 1, 256) 1024
conv2d_ 15 (Conv2D) (None, 1, 1, 256) 590080
conv2d_ 16 (Conv2D) (None, 1, 1, 256) 590080
max_ pooling2d_ 8 (MaxPooling2D) (None, 1, 1, 256) 0
batch_normalization 7 (BatchNorm) (None, 1, 1, 256) 1024
conv2d_ 17 (Conv2D) (None, 1, 1, 512) 1180160
conv2d_ 18 (Conv2D) (None, 1, 1, 512) 2359808
max_ pooling2d_ 9 (MaxPooling2D) (None, 1, 1, 512) 0
batch_normalization 8 (BatchNorm) (None, 1, 1, 512) 2048
conv2d_ 19 (Conv2D) (None, 1, 1, 512) 2359808
conv2d_ 20 (Conv2D) (None, 1, 1, 512) 2359808
max_ pooling2d_ 10 (MaxPooling2D) (None, 1, 1, 512) 0
batch normalization 9 (BatchNorm) (None, 1, 1, 512) 2048
conv2d_ 21 (Conv2D) (None, 1, 1, 512) 2359808
max_ pooling2d 11 (MaxPooling2D) (None, 1, 1, 512)
batch_normalization_ 10 (BatchNorm) (None, 1, 1, 512) 2048
global__average_ pooling2d (None, 512) 0
flatten (Flatten) (None, 512) 0
dense (Dense) (None, 128) 65664
dropout (Dropout) (None, 128) 0
dense 1 (Dense) (None, 64) 8256
dropout_ 1 (Dropout) (None, 64) 0
dense_ 2 (Dense) (None, 64) 4160
dense_ 3 (Dense) (None, 1) 65

Maalidefaa M. Tantuoyir Chapter 4 Methodology

4.2.2 Architecture B

Architecture B is a CRNN model made up of 16 convolutional layers(Figure 4.4). The
main difference between architecture A and B is the introduction of 3 bidirectional
LSTM layers. After the first 16 layers, the model parameters are reshaped from 2D
to 1D through the reshape layer. The parameters are then permuted and fed into the
bidirectional LSTM layers.

Bidirectional LSTM
Layers

(a) Binary classification model

Bidirectional LSTM Layers

(b) Multiclass classification model

Figure 4.4: AlexNet style of CRNN model architecture B

The output of the CRNN hidden layers is normalized before it is flattened and fully
connected to the first dense layer. Two dropout layers are used to avoid overfitting the
model before the prediction layer. For the binary prediction(Figure 4.4a), a sigmoid
activation function is used to while a softmax activation is used for the multi-class
classification(Figure 4.4b). In all, architecture B has a total parameters of 9,232,961 of
which the trainable parameters are 9,230,529,while the non-trainable parameters are
2,432. Details of architecture A can be found in Table 4.2.The code for architecture B
can be found in Appendix A.6.

Maalidefaa M. Tantuoyir

43

Table 4.2: Summary of layers of architecture B

Layer (type) Output Shape Param
conv2d (Conv2D) (None, 119, 119, 32) 4736
max_ pooling2d (MaxPooling2D) (None, 59, 59, 32) 0
conv2d 1 (Conv2D) (None, 30, 30, 32) 9248
conv2d_2 (Conv2D) (None, 14, 14, 32) 9248
max__pooling2d_ 1 (MaxPooling2D) (None, 5, 5, 32) 0
batch_normalization (BatchNorm) (None, 5, 5, 32) 128
conv2d_3 (Conv2D) (None, 2, 2, 32) 9248
conv2d_4 (Conv2D) (None, 1, 1, 32) 9248
max_ pooling2d 2 (MaxPooling2D) (None, 1, 1, 32) 0
batch normalization 1(BatchNorm) (None, 1, 1, 32) 128
conv2d_5 (Conv2D) (None, 1, 1, 64) 18496
conv2d_6 (Conv2D) (None, 1, 1, 64) 36928
max_ pooling2d_3(MaxPooling2D) (None, 1, 1, 64) 0
batch_normalization 2(BatchNorm) (None, 1, 1, 64) 256
conv2d_7 (Conv2D) (None, 1, 1, 64) 36928
conv2d 8 (Conv2D) (None, 1, 1, 64) 36928
max_ pooling2d_ 4 (MaxPooling2D) (None, 1, 1, 64) 0
batch_normalization_3(BatchNorm) (None, 1, 1, 64) 256
conv2d_9 (Conv2D) (None, 1, 1, 128) 73856
conv2d_10 (Conv2D) (None, 1, 1, 128) 147584
max_pooling2d_ 5 (MaxPooling2D) (None, 1, 1, 128) 0
batch normalization 4(BatchNorm) (None, 1, 1, 128) 512
conv2d_11 (Conv2D) (None, 1, 1, 128) 147584
conv2d_ 12 (Conv2D) (None, 1, 1, 128) 147584
max_ pooling2d_ 6 (MaxPooling2D) (None, 1, 1, 128) 0
batch_normalization_5(BatchNorm) (None, 1, 1, 128) 512
conv2d 13 (Conv2D) (None, 1, 1, 256) 295168
conv2d 14 (Conv2D) (None, 1, 1, 256) 590080
max__pooling2d_ 7 (MaxPooling2D) (None, 1, 1, 256) 0
batch_normalization_ 6(BatchNorm) (None, 1, 1, 256) 1024
conv2d_15 (Conv2D) (None, 1, 1, 256) 590080
conv2d_16 (Conv2D) (None, 1, 1, 256) 590080
max__pooling2d_ 8 (MaxPooling2D) (None, 1, 1, 256) 0
batch normalization 7 (BatchNorm) (None, 1, 1, 256) 1024
reshape (Reshape) (None, 256, None) 0
permute (Permute) (None, None, 256) 0
bidirectional (Bidirectional) (None, None, 1024) 3149824
bidirectional 1 (Bidirectional) (None, None, 512) 2623488
bidirectional 2 (Bidirectional) (None, 256) 656384
batch_normalization 8 (BatchNorm) (None, 256) 1024
flatten (Flatten) (None, 256) 0
dense (Dense) (None, 128) 32896
dropout (Dropout) (None, 128) 0
dense_1 (Dense) (None, 64) 8256
dropout__1 (Dropout) (None, 64) 0
dense_ 2 (Dense) (None, 64) 4160
dense 3 (Dense) (None, 1) 65

Maalidefaa M. Tantuoyir Chapter 4 Methodology

4.2.3 Architecture C

Architecture C is a CNN model of 6 convolutional layers(Figure 4.5).The input layer has
32 neurons and a filter kernel size of 7*7. This layer takes in a 2-dimensional(2D) image
of size 224*224 and gets convoluted with a ReLU activation function, batch normalization
and a 2D maximum pooling operation. The first two hidden layers have 64 and 128
neurons respectively and a filter kernel size of 3*3. Both layers are normalized with
a batch normalization layer before they are inputted into the third, fourth and fifth
convolutional layers. The output of these layers are further normalized and inputted into

the output convolutional layer.

(a) Binary classification model

(b) Multiclass classification model

Figure 4.5: AlexNet style of CNN model architecture C

The fully connected part of this model is similar to architecture A. The main difference
is that, it has one more dense and dropout layer. For the binary prediction(4.5a), a

sigmoid activation function is used to while a softmax activation is used for the multi-class

Maalidefaa M. Tantuoyir 45

classification(4.5b). In all, the total parameters in this model is 8,524,358 of which the
trainable parameters are 8,521,030 while the non-trainable parameters are 3,328. Details
of architecture C can be found in Table 4.3.The code for architecture C can be found in

Appendix A.6.

Table 4.3: Summary of layers of architecture C

Layer (type) Output Shape Param
conv2d (Conv2D) (None, 119, 119, 32) 4736
max_ pooling2d (MaxPooling2D) (None, 59, 59, 32) 0
conv2d 1 (Conv2D) (None, 30, 30, 64) 18496
conv2d_2 (Conv2D) (None, 14, 14, 128) 73856
max_ pooling2d_ 1 (MaxPooling2D) (None, 5, 5, 128) 0
batch_ normalization (BatchNorm) (None, 5, 5, 128) 512
conv2d 3 (Conv2D) (None, 2, 2, 128) 147584
conv2d_4 (Conv2D) (None, 1, 1, 512) 590336
conv2d 5 (Conv2D) (None, 1, 1, 512) 2359808
max_pooling2d 2 (MaxPooling2D) (None, 1, 1, 512) 0
batch_normalization_1(BatchNorm) (None, 1, 1, 512) 2048
conv2d_6 (Conv2D) (None, 1, 1, 1024) 4719616
max_ pooling2d 3(MaxPooling2D) (None, 1, 1, 1024) 0
batch_normalization 2(BatchNorm) (None, 1, 1, 1024) 4096
global _average pooling2d (GloAvgPool2D) (None, 1024) 0
flatten (Flatten) (None, 1024) 0
dense (Dense) (None, 512) 524800
dropout (Dropout) (None, 512) 0
dense 1 (Dense) (None, 128) 65664
dropout__1 (Dropout) (None, 128) 0
dense_ 2 (Dense) (None, 64) 4160
dropout_ 2 (Dropout) (None, 64) 0
dense_ 3 (Dense) (None, 64) 4160
dense_ 3 (Dense) (None, 1) 65

4.3 Transfer Learning Models

Pretrained models are trained on large and and more general datasets. Therefore, they
serve as generic and robust models that have the potential to classify our data effectively.
Since our datasets are different from the original datasets(ImageNet [100]) on which
these pretrained models were used, the pretrained models are fine-tuned by freezing the
top layers and using their last layers in addition to a newly-added classifier. This allows
effective and faster training while minimizing overfitting. It also gives helps in training
these models to learn the most relevant features for the specific classification tasks we

have. The models studied during this work include:

» Xception [81]

e VGG16 and VGG19 [101]

Maalidefaa M. Tantuoyir Chapter 4 Methodology

o ResNet50 and ResNet18 [99]
o NASNetMobile [102]

Based on the training and validation results of the above models, ResNet18 showed the

best results for our datasets and the architecture is presented in the following subsections.

4.3.1 ResNetl8

ResNet18 is a smaller(18 layer) residual network. It is computationally less expensive
and trains on less amount of parameters as compared to ResNet50. ImageNet weights
are used for the transfer learning process while using this model. It is fine-tuned to fit

data. Figure 4.6 shows a summary of the model architecture.

Lﬂ',"EI' Name ResNetl8
convl (7x7,64),
stride 2
Pooling Operation (3x3), maximum
pooling 2D
conv2 X 3x3,64
- 3x3.64) % 2
conv3d x 3x3,1287
- 3x3,128) % 2
convd_x 3x3,256]
3x3,256|* 2
conv5s_x 3x3,512]
3x3,512|%
Pooling Operation global average
pooling 2D

Figure 4.6: Summary of ResNet18 architecture

4.4 Binary Classification Methods

Classifying the presence or absence of AED clips which have similar commands could be

difficult for humans at a lower volume. Bearing this in mind, we performed two binary

Maalidefaa M. Tantuoyir 47

classification methods. The first method involves one-versus-one(1l-versus-1) binary
classification in which two classes serve as the input data. A comparison is made to
determine if the model will be able to correctly classify two similar AED audio clips in a
noisy environment. In this method, the AED command of interest is labelled ’1’, while the
other is labelled '0’. For example, the commands 'no shock advised’ and ’shock advised’
are very similar. The same can be said of ’shock delivered’ and 'no shock delivered’.

Below (Figure 4.7a) is a diagram to illustrate the 1-versus-1 binary classification.

Input
Labels

0

(a) Illustration of 1-versus-1 binary classification method

Input
Labels

0
Model Predicted
1

(b) Ilustration of 1-versus-others binary classification method

Figure 4.7: Tllustration of binary classification methods

The second binary classification method in this work is referred to as one-versus-others(1-
versus-others) method. In this method, the AED command of interest "1’ is labelled "1’
while the rest of the AED commands are labelled ’0’. The data is then inputted into the
models mentioned above and then classified appropriately. The diagram below(Figure
4.7b) shows how the 1-versus-others binary classification method is implemented. This is

the main method used for the major part of binary classification tasks in this work.

Maalidefaa M. Tantuoyir Chapter 4 Methodology

4.5 Multiclass Classification Methods

The multiclass classification method uses the classic 1-hot-encoding whereby the input
datasets are labelled from 0,1 to N. N is the highest number of classes that are to be
determined. In experimenting with the models in Chapter 5, N = 4 for multiclass classifi-
cation of only the AED audio classes(5 classes) and N = 5 for multiclass classification of
AED audio classes including the background noise class(6 classes). Figure 4.8 illustrates

the multiclass classification method used for N = 5 labels.

Input Predicted
Labels Labels

Model

Figure 4.8: Illustration of multiclass classification method using 6 classes

Experiments and Results

This chapter presents explanation to the experiments carried out in this thesis. The

results of the experiments are presented to demonstrate the performance of the models.

Figure(5.1) illustrates the section of the thesis which is approached in the rest of the

chapter.
MODEL AND RESULTS
| DATASET | PREPROCESSING | EXPERIMENTATION | |
—*| Feature Generation Transfer Learning
AED MFCC \

Audio

@ _>| Audio mix }» 216

Background
Noise
Log-scaled Mel
Spectrogram
216)

g

Deep Neural Experiments and Fost Final Results
Networks(DNNs) Results Experimentation Jand Conclusion

CHNN and CRNN Models

Figure 5.1: An illustration of the approach used for the thesis

49

Maalidefaa M. Tantuoyir Chapter 5 Experiments and Results

5.1 Introduction

Various experiments have been carried out to determine the best performing models in
this work. This chapter gives a detailed explanation of the procedures explored while
using the models and methods elaborated in Chapter 4 to come to the final results and
conclusion. The later sections of this chapter also presents some experimental results,
statistical analysis for both binary and multiclass classification. The experimentation
process follows the same procedure for all the architectures and transfer learning models

described in the previous chapter. Figure 5.2 shows an illustration of the steps involved.

5.1.1 Experimental Setup

The flow of the experiments starts with the initialization of the image shapes. Archi-
tectures A to C are experimented with the original 'image’ sizes generated through the
feature extraction. Also varying image heights and width are used as input shapes for
experimentation purposes to find the optimal input image shape. The best image size
was 224%224 for both MFCC and log-scaled mel spectrogram images. Then preceded
with loading the datasets and normalizing them. Since the images are in 'RGB’ form,
each image is divided by 255. The normalized images are then resized and labelled(from

0 to N) according to which class they belong.

An optimizer is then chosen for each experiment followed by hyperparameter tuning.
The model is then trained on a fixed number of epochs.The resultant model is saved and
loaded to evaluate it with the validation dataset and the results of the validation loss,
validation accuracy, training loss and training accuracy are compared to verify model
performance(overfitting and underfitting). In case the model is overfitting, underfitting
or of low accuracy,new hyperparameters are used until the best results are achieved for
each experiment. A final evaluation of the best model with the test dataset and the
calculation of a confusion matrix and performance matrix is performed. Figure 5.2 shows

a flow diagram of the experimental setup.

The setups for the experiments are divided into three. Experiment 1 will stand for
binary classification using the 1-versus-others method. Experiment 2 is performed to
compare the the how two similar classes perform in the models in a binary classification
setting. The 1-versus-1 method is used here. The final experiment, experiment 3, is an

experiment for multiclass classification.

Maalidefaa M. Tantuoyir 51

Initialize Image Sizes

Load Dataset

MNormalize

Choose Optimizer

Hyperparameter
Selection

Save Model

Create Confusion

Evaluate Model on Matrices and

Validation Dataset

Performance Metrics

Nao Yies Evaluate Model on

Test Dataset

Figure 5.2: Flow diagram of experimental setup

5.1.2 Choice of Hyperparameters

Tuning of the hyperparameters has been achieved by training multiple models with
different combinations of optimizers,learning rates, batch sizes, loss functions and dropout.

The ultimate combination of hyperparameters was evaluated with the validation datasets.

Maalidefaa M. Tantuoyir Chapter 5 Experiments and Results

Grid search is the strategy used for hyperparameter optimization in the experiment for

both binary and multiclass classification.

5.1.2.1 Learning Rate

The momentum was set to 0.9 with the use of SGD. The learning rates were set in the
initial grid search, and further adjustments of the learning rates were performed based
on the observed results. The best learning rate with SGD is 0.0001 while that for Adam
is 0.001.

5.1.2.2 Dropout

Dropout was implemented implemented to solve overfitting problems. The dropout rate
for architecture A was 0.25, for architecture B and C was 0.3, and for the transfer learning

models was 0.1.

5.2 Trial Experiment for Superior Features

The aim of this experiment was to determine if MFCC or log-scaled mel spectrograms
were the best set of features with high model performance for our particular case using
Reduced10db dataset. Binary classification of P17 using 1-versus-others method described
above was used for this experimentation. By using architecture A, it was concluded that
based on the epoch versus accuracy graphs(Figure 5.3), the log-scaled mel spectrogram
features are better for model training. This feature is henceforth used for the rest of the

experimentation process.

Architecture A: P17 Architecture A: P17

— acc T —
0.88 4 val_acc il 0.83 4
. P
7
A

0.86 4 4 0.82

/

0.84 4 / 0.81

>y

0.78 4 — acc
val_acc

o 20 40 60 80 100 o 20 40 60 80 100
epoch epoch

(a) Log-scaled Mel Spectrogram (b) MFCC

Figure 5.3: Epochs versus Accuracy Graphs. The graphs show two features used for
training and validation of P17 class

Maalidefaa M. Tantuoyir 53

5.3 Presentation of Results

Following the experimentation of the models presented above, this section shows the
results based on using Reduced10db and Reduced15db datasets. For each model, a
comparison of the epochs versus accuracy, validation accuracy, loss and validation is
plotted to make conclusions on model performance and stability. The results and some
plots will be shown in the next subsections. The plots for classes P09,P13 and P23 can
be found in Appendix B.

5.3.1 Experiment 1: Binary Classification (1-versus-others)

Experiment 1 involves the use of architectures A, B and C, as well as ResNet18 to
perform binary classification using the second binary classification method(Figure 4.7b).

The results of these experiments are shown in the following subsections.

5.3.1.1 Architecture A: Binary (1-versus-others)

This experiment relates to the use of architecture A in binary classification of the datasets.
Architecture A is run for 100 epochs and with SGD optimiser of learning rate 0.0001.

The results for the validation and test datasets are shown in table(5.1).

Table 5.1: Binary classification results for architecture A

Metrics
Class Validation Set Test Set
Accuracy ‘ AUC ‘ Precision ‘ Recall ‘ F1 Score | Accuracy ‘ AUC ‘ Precision ‘ Recall ‘ F1 Score
Reduced10db
P03 0.9090 0.8471 0.9100 0.9100 0.89 0.9080 0.8369 0.9029 0.9010 0.89
P09 0.9034 0.7932 0.9168 0.9057 0.89 0.9022 0.7868 0.9116 0.9005 0.89
P13 0.8664 0.7017 0.8892 0.8649 0.86 0.8642 0.6964 0.8792 0.8629 0.86
P17 0.8907 0.7629 0.9000 0.8988 0.87 0.8836 0.7437 0.8900 0.8800 0.86
P23 0.8333 0.6447 0.6687 0.8235 0.78 0.8333 0.6367 0.6589 0.8211 0.78
Background10db 0.8385 0.6883 0.6998 0.8385 0.79 0.8340 0.6813 0.6997 0.8350 0.79
Reduced15db
P03 0.8849 0.7377 0.9270 0.8865 0.88 0.8851 0.7298 0.9242 0.8800 0.88
P09 0.8968 0.7456 0.9188 0.9076 0.89 0.8941 0.7377 0.9168 0.9043 0.89
P13 0.8599 0.6622 0.8819 0.8658 0.81 0.8589 0.6556 0.8763 0.8622 0.81
P17 0.8710 0.6804 0.8900 0.8700 0.84 0.8714 0.6814 0.8900 0.8700 0.87
P23 0.8333 0.6356 0.6942 0.8350 0.79 0.8333 0.6339 0.6882 0.8330 0.79
Background15db 0.8405 0.6558 0.8577 0.8100 0.84 0.8403 0.6501 0.8554 0.8049 0.84

Figures(5.4) show the model performance(accuracy and loss) with increasing number of
epochs. The classes shown are P03,P17 and background10db using Reduced10db dataset.
The plots for the rest of the classes can be found in Appendix B.

Maalidefaa M. Tantuoyir

Chapter 5 Experiments and Results

Architecture A: P03

1T— acc
val_acc /’_’_/__,_/f'“"""‘_’ﬁ
0.90

0.82
0.80
0.78
0 20 a0 50 80 100
epoch
(a) P03
Architecture A: P17
— acc oY
088 | val_acc oI
A
A
0.86 //
0.84 4 /
0.82
0.80
0.78
0.76 ~— T r T T T
0 20 40 60 80 100
epoch
(c) P17

Architecture A: Background10db

0.83 r

0.79 4 — acc
val_acc

o 20 40 60 80 100
epoch

(e) Background10db

0.50 -

Architecture A:P03

— loss
\ val_loss

Ao
v
\\N‘\
0 20 4‘0 Sb Bb 160
epoch
(b) P03

Architecture A:P17

— loss
val_loss.
(v}
\
\
\
\\
\\‘
‘\"M__
0 20 40 60 80 100
epoch
(d) P17
Architecture A: Background10db
— loss
val_loss
A
\\\’\—\,\‘_\\‘—
0 20 0 60 80 100
epoch

(f) Background10db

Figure 5.4: Epochs versus Accuracy and Loss Graphs. The graphs show the epochs

versus accuracy (left hand side) and epochs versus loss(right hand side) of the training

and validation of P03, P17 and background10db. Early stopping can be applied after
40 epochs to avoid overfitting for all the classes.

Figure 5.5 shows the model performance(accuracy and loss) with increasing number of
epochs. The classes shown are P03,P17 and background10db using Reduced15db dataset.
The plots for the rest of the classes can be found in Appendix B.

Maalidefaa M. Tantuoyir 55

Architecture A: P03(Reduced15db) Architecture A: PO3(Reducedl5db)
0.525
— acc e — loss
0.88 - val_acc S AATTRA | 0500 4 val_loss.
/r/ 0.475 4
0.86 - f
0.450 \
0.84 4 0.425 \
\\
0.400)
0.82 : \
N
0.375 4 e
0.80 4 "o
03301 s M\\\‘w
078 - — T r - T - 03151, r T T T T
0 20 40 60 80 100 0 20 40 60 80 100
epoch epoch
(a) P03 (b) P03
Architecture A: P17(Reduced15db) Architecture A: P17(Reduced15db)
0.874 — acc i RPN 050 — loss
val_acc W e val_loss.
//J
0.86 - //) 0.48 4
0.85 4 / 0.46 \
\\
0.84 1 0.44 4 N
N
0.83 4) 0.42 \
N
0.40 \
0.82 AL
S
0.38 AL
o8t \nw""\wm
T T T T T T 0.36 T T T T T T
0 20 40 60 80 100 [20 40 60 80 100
epoch epoch
(c) P17 (d) P17
Architecture A: Background15db Architecture A: Background15db
0.840 4 —— acc — loss
val_acc U,_.J/‘""“ val_loss
T
0.835 A oA 0.50
0.830 F
0.48
0.825
0.820 4 0.6 | \
0.815 4 \
"~
~
0.44
0.810 >,)
e \UY
0.805 - \"\N
0.42 M
0.800 |
0 20 40 60 80 100 o 20 40 60 80 100
epoch epoch
(e) Background15db (f) Background15db

Figure 5.5: Epochs versus Accuracy and Loss Graphs. The graphs show the epochs

versus accuracy (left hand side) and epochs versus loss(right hand side) of the training

and validation of P03, P17 and background15db. Using Reduced15db, the model runs

for longer epochs before overfitting starts to show. Early stopping after 65 epochs can
be applied.

5.3.1.2 Architecture B: Binary (1-versus-others)

This architecture is experimented with Adam and at a learning rate of 0.001. This

optimizer gave the best results for the above stated architecture. The results obtained

Maalidefaa M. Tantuoyir Chapter 5 Experiments and Results

Table 5.2: Binary classification results for architecture B

Metrics
Class Validation Set ‘ Test Set
Accuracy ‘ AUC ‘ Precision ‘ Recall ‘ F1 Score ‘ Accuracy ‘ AUC ‘ Precision ‘ Recall ‘ F1 Score
Reduced10db
P03 0.9254 0.8618 0.9345 0.9140 0.93 0.9246 0.8449 0.9450 0.9117 0.93
P09 0.9127 0.8094 0.9192 0.9174 0.91 0.9111 0.7978 0.9172 0.9170 0.91
P13 0.8831 0.7508 0.9093 0.8866 0.87 0.8801 0.7475 0.8995 0.8865 0.87
P17 0.8948 0.7695 0.9533 0.8993 0.89 0.8900 0.7557 0.9489 0.8948 0.89
P23 0.8333 0.7186 0.8263 0.6068 0.65 0.8333 0.7119 0.8260 0.6063 0.65
Background10db 0.8461 0.7139 0.7708 0.7879 0.78 0.8447 0.7128 0.7717 0.7869 0.78
Reduced15db
P03 0.9010 0.7770 0.9325 0.8964 0.89 0.9001 0.7736 0.9259 0.8944 0.88
P09 0.8878 0.7294 0.8889 0.8867 0.86 0.8859 0.7358 0.8887 0.8864 0.86
P13 0.8668 0.6857 0.7856 0.6262 0.67 0.8658 0.6837 0.7756 0.6260 0.67
P17 0.8736 0.7005 0.9489 0.8762 0.87 0.8740 0.7054 0.9487 0.8760 0.87
P23 0.8333 0.7016 0.7958 0.6564 0.65 0.8333 0.6980 0.7946 0.6563 0.65
Background15db 0.8333 0.6217 0.7556 0.8054 0.77 0.8323 0.6238 0.7557 0.8051 0.77

are shown below in table 5.2 for both datasets.

Figure 5.6 and 5.7 shows a comparison of the loss and accuracy measurements for
Reduced10db and Reduced15db respectively. For both datasets, the validation accuracy

and loss curves do not smooth out as compared to the plots in architecture A.

Maalidefaa M. Tantuoyir

o7

Architecture B:P03

Architecture B:P03

— loss
1.75 4 —— val_loss
0.9
1.50
081 1259
1.00
0.7
0.75 1
0.6 0.50 4
— acc 0.25
054 — val_acc
0 20 40 60 80 100 0 20 40 60 80 100
epoch epoch
(a) P03 (b) P03
Architecture B:P17 Architecture B:P17
0.90 §
0.55 4 — loss
—— val_loss
0.89 1
0.50 4
0.88 4
0.45 4
0.87 4
0.86 4 0.40 4
0.85 4 0.35 4
0.84 4
acc 0.30 1
—— val_acc
0 20 40 60 80 100 0 20 40 60 80 100
epoch epoch
(c) P17 (d) P17
Architecture B: Background10db Architecture B: Background10db
0.850 {
— acc — loss
—— val_acc 0.65 - —— val_loss
0.845 4
0.60 4
0.840 4 0557
0.50 4
0.835 4
0.45 m
0830 - 0.40
T T T T T T 0351 T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
epoch epoch

(e) Background10db

(f) Background10db

Figure 5.6: Epochs versus Accuracy and Loss Graphs. The graphs show the epochs
versus accuracy (left hand side) and epochs versus loss(right hand side) of the training
and validation of P03, P17 and background10db

Maalidefaa M. Tantuoyir Chapter 5 Experiments and Results

Architecture B: PO3(Reduced15db) Architecture B: PO3(Reducedl5db)
0.9 4 T T [TV A TV —— loss
7~ . 101 val_loss
0.8 1 0.9
0.8 1
0.7
0.7
0.6 1
0.6 4
0.5 4 05
0.4 0419 \\- H
ANy
. 034 e A VUV VT
03] val_acc
0 20 40 60 80 100 0 20 40 60 80 100
epoch epoch
(a) P03 (b) P03
Architecture B: P17(Reduced15db) Architecture B: P17(Reduced15db)
0.9
AT T —TT" v T — loss
A 08 val_loss
0.8 1
0.7 074
0.6 7 064
0.5
051
0.4 \
4 N
—— 41 Nl
0.3 val_acc Lt B AN M WAL LY A
0 20 2 50 80 100 o 20 % 50 80 100
epoch epoch
(c) P17 (d) P17
Architecture B: Background15db Architecture B: Background15db
y— — loss
0.49 4 val_loss
0.8332
0.48
0.8330 0.47
0.46
0.8328 {
0.45
0.8326 1 ‘\f\f\f\\/\,,_./v\/\\
0.44 XA
A
0.8324 043 4
— AL AL
val_acc 0.42
0 20 20 50 80 100 o 20 2 50 80 100
epoch epoch
(e) Background15db (f) Background15db

Figure 5.7: Epochs versus Accuracy and Loss Graphs. The graphs show the epochs
versus accuracy (right hand side) and epochs versus loss(left hand side) of the training
and validation of P03, P17 and background15db

5.3.1.3 Architecture C: Binary (1-versus-others)

Architecture C is optimized with SGD with a learning rate of 0.0001 just like in archi-
tecture A. Due to the smaller number of convolutional layers in this architecture, the

experimentation is faster as compared to both architectures A and B. The results are

Maalidefaa M. Tantuoyir 59

shown in table (5.3). Figures(5.8) and (5.9) show the model performance(accuracy and
loss) with increasing number of epochs. The classes shown are P03,P17 and background
noise class for both datasets. The plots for the rest of the classes can be found in
Appendix B. In these plots, it can be deduced that, architecture C begins to over fit
after 30 epochs for Reduced10db dataset and after 50 epochs for Reduced15db dataset.

Architecture C:P03 Architecture C:P03
0.95
//——’—‘—"—' 124 — o=z
val_loss
0.90 4 -1 d
0.80 4
0.8 1
0.75 4
0.70 067
0.65 1 04 \
N
0601 _ 4ec e _
val_acc 0.2 q
0.55 1 — T r T r T T T r T r T
0 20 40 60 80 100] 20 40 60 80 100
epoch epoch
(a) P03 (b) P03
Architecture C:P17 Architecture C:P17
0.90
— acc W— — loss
valacc val_loss
0.88 4 // 020
7
0.86 045 \
0.84 \
0.40
A
\\
0.82 1
0.35)
\‘\.
o0 \'_&M
0.30
0 20 2 50 80 100 o 20 % 50 80 100
epoch epoch
(c) P17 (d) P17
Architecture C: Background10db Architecture C: Background10db
0.60
0.84 e — loss
’,k — val_loss
0.82 4 055
0.80 1
0.50
0.78 4
0.76 045
0.74 4 At
0.40
0.72 4 — acc
val_acc
0 20 20 50 80 100 o 20 2 50 80 100
epoch epoch
(e) Background10db (f) Background10db

Figure 5.8: Epochs versus Accuracy and Loss Graphs. The graphs show the epochs
versus accuracy (left hand side) and epochs versus loss(right hand side) of the training
and validation of P03, P17 and background10db

Maalidefaa M. Tantuoyir Chapter 5 Experiments and Results

Table 5.3: Binary classification results for architecture C

Metrics
Class Validation Set ‘ Test Set
Accuracy ‘ AUC ‘ Precision ‘ Recall ‘ F1 Score ‘ Accuracy ‘ AUC ‘ Precision ‘ Recall ‘ F1 Score
Reduced10db
P03 0.9170 0.8720 0.9273 0.9226 0.92 0.9153 0.8562 0.9251 0.9225 0.92
Po9 0.9041 0.7922 0.9194 0.9173 0.90 0.9023 0.7922 0.9173 0.9147 0.90
P13 0.8758 0.7155 0.8992 0.8762 0.85 0.8715 0.6997 0.8891 0.8756 0.85
P17 0.8879 0.7546 0.9080 0.8945 0.89 0.8844 0.7366 0.9213 0.8951 0.89
P23 0.8333 0.6804 0.6921 0.8344 0.76 0.8333 0.6697 0.6858 0.8336 0.76
Background10db 0.8384 0.6865 0.8675 0.8454 0.84 0.8363 0.6825 0.8539 0.8342 0.83
Reduced15db
Po3 0.8690 0.7417 0.8761 0.8844 0.87 0.8673 0.7433 0.8860 0.8845 0.87
Po9 0.8861 0.7243 0.8697 0.8678 0.86 0.8842 0.7010 0.8619 0.8642 0.86
P13 0.8576 0.6604 0.8685 0.8680 0.84 0.8559 0.6576 0.8648 0.8660 0.84
P17 0.8714 0.6799 0.9497 0.8724 0.87 0.8728 0.6836 0.9459 0.8728 0.87
P23 0.8333 0.6348 0.6942 0.8350 0.76 0.8333 0.6278 0.6856 0.8311 0.76
Background15db 0.8365 0.6698 0.8622 0.8319 0.83 0.8392 0.6819 0.8650 0.8350 0.83
Architecture C: PO3(Reduced15db) Architecture C: PO3(Reduced15db)

0.90

— acc — loss
val_acc val_loss
0.89
0.50 1
-

0.88 A7V
087 / 0.45 1
0.86 \

0.40 4 \
0.85 \

0.84 - 0.35 ~

0.83 4 \
0.30 4

0 20 %0 60 80 100 0 20 40 60 80 100

epoch epoch
(a) P03 (b) P03
Architecture C: P17(Reduced15db) Architecture C: P17(Reduced15db)
— acc e — loss
0.87 4 val_ace T | val_loss
//r" 0.48 \

/] 0464 |
0.86 \
0.44 1
0.85
0.42 4 \

0.84 4 0.40 4 \\
AN
0.38 4 W
0.83 4
0.36 4
0 20 a0 60 80 100 o 2 a0 50 80 100
epoch epoch
(c) P17 (d) P17
Architecture C: Background15db Architecture C: Background15db
— acc — loss
0835 val_acc _,_,_-J/d 0.50 val_loss.
0.830 4 0.48 1
0.825 4
0.46 -
0.820 4
0.815 1 o441 A\
\M
|~ 0
0810 0.42 \\\
0.805
T u u u u T 0.40 T u u u u T
0 20 40 60 80 100 0 20 40 60 80 100
epoch epoch
(e) Background15db (f) Background15db

Figure 5.9: Epochs versus Accuracy and Loss Graphs. The graphs show the epochs
versus accuracy (left hand side) and epochs versus loss(right hand side) of the training
and validation of P03, P17 and background15db

Maalidefaa M. Tantuoyir

61

5.3.1.4 ResNetl18: Binary (1-versus-others)

The ResNet18 model is optimized with SGD optimizer and a learning rate of 0.0001.

This model is run for a fewer epochs of 20 as compared to the rest of the models. The

results for binary classification using pre-trained and fine-tuned ResNet18 are shown in

table(5.4). Figures (5.10 and 5.11) show the epochs versus accuracy and loss plots for
both datasets.

Table 5.4: Binary classification results for ResNet18

Metrics
Class Validation Set Test Set
Accuracy ‘ AUC ‘ Precision ‘ Recall ‘ F1 Score | Accuracy ‘ AUC ‘ Precision ‘ Recall ‘ F1 Score
Reduced10db
P03 0.9251 0.8887 0.9446 0.9276 0.92 0.9253 0.8751 0.9441 0.9266 0.92
P09 0.9104 0.8151 0.9295 0.9172 0.91 0.9099 0.8132 0.9153 0.9147 0.91
P13 0.8816 0.7352 0.8992 0.8864 0.86 0.8803 0.7457 0.8988 0.8854 0.86
P17 0.8904 0.7639 0.8856 0.9070 0.88 0.8832 0.7495 0.8793 0.8966 0.87
P23 0.8333 0.7192 0.7000 0.8400 0.74 0.8333 0.7027 0.6967 0.8388 0.74
Background10db 0.8405 0.7023 0.7195 0.8454 0.84 0.8390 0.6872 0.7097 0.8350 0.83
Reduced15db
P03 0.8984 | 0.7683 | 0.9319 0.8968 0.89 0.8984 | 0.7633 | 0.9019 0.8917 0.89
P09 0.8848 0.7097 0.9094 0.8865 0.86 0.8835 0.7097 0.9068 0.8842 0.86
P13 0.8667 0.6666 0.8891 0.8659 0.83 0.8635 0.6620 0.8847 0.8621 0.83
P17 0.8738 0.6812 0.8687 0.8879 0.83 0.8723 0.6818 0.8687 0.8776 0.85
P23 0.8333 0.6187 0.6947 0.8331 0.74 0.8333 0.6148 0.6921 0.8299 0.74
Background15db 0.8515 0.7376 0.7076 0.8556 0.85 0.8488 0.7305 0.8676 0.8546 0.85

Maalidefaa M. Tantuoyir

Chapter 5 Experiments and Results

0.92 4

0.8525 4

0.8500 -

0.8475

0.8450

0.8425

0.8400

0.8375

0.8350

0.8325 4

ResNet18:P03

— acc

val_acc
0 5 1o 15 20 2
epoch
(a) P03
ResNet18:P17
— acc //__——"
val_acc —
0.0 2.‘5 5.'0 7.‘5 16.0 12‘.5 15.0 17‘.5
epoch
(c) P17
ResNet18: Background10db
— acc
val_acc
— _,/
0 5 10 15 20
epoch

(e) Background10db

0.42 4

ResNet18:P03

— loss
val_loss
6 1‘0 1‘5 2‘0 25
epoch
(b) P03
ResNet18:P17
— loss
val_loss.
O.‘(J 2.‘5 5.'0 7.‘5 ld.O 12l.5 15.0 17‘.5
epoch
(d) P17
ResNet18: Background10db
— loss
\ val_loss
o 5 10 15 20
epoch

(f) Background10db

Figure 5.10: Epochs versus Accuracy and Loss Graphs. The graphs show the epochs
versus accuracy (left hand side) and epochs versus loss(right hand side) of the training
and validation of P03, P17 and background10db

Maalidefaa M. Tantuoyir

63

0.875
0.870 1
0.865 §
0.860 1
0.855
0.850 4
0.845
0.840 1

0.835 4

0.860
0.855
0.850 1
0.845 4
0.840 4
0.835 4

0.830 4

Figure 5.11: Epochs versus Accuracy and Loss Graphs. The graphs show the epochs
versus accuracy (left hand side) and epochs versus loss(right hand side) of the training

ResNet18:P03(Reducedl15db)

4 — acc

val_acc

4

10 15 20
epoch

(a) P03

ResNet18:P17(Reduced15db)

— acc /__,_,——
val_acc

[

0.0 2.5 5.0 75 10.0 12.5 15.0 17.5 20.0
epoch

(c) P17

ResNet18: Background15db

— acc
val_acc

o 10 20 30 40 50
epoch

(e) Background15db

ResNet18:P03(Reducedl15db)

— loss

val_loss
0 5 10 15 20
epoch
(b) P03
ResNet18:P17(Reduced15db)
— loss
\ val_loss.

0.0 2.5 5.0 75 10.0 125 15.0 17.5 20.0
epoch

(d) P17

ResNet18: Background15db

— loss
‘\ val_loss

o 10 20 30 40 50
epoch

(f) Background15db

and validation of P03, P17 and background15db

5.3.2 Experiment 2: Binary Classification (1-versus-1)

Experiment 2 is a binary classification experiment which is conducted to test how similar

classes can be classified by model architectures A, B and C, as well as ResNet18, as

explained in chapter 4. In this experiment, the '1-versus-1’ binary model(Figure 4.7a)

Maalidefaa M. Tantuoyir Chapter 5 Experiments and Results

is used to test the models on two similar classes. The classes are P13 and P17 which
correspond to the AED commands 'no shock advised’ and ’shock advised’ respectively.
This is because the AED command that makes the difference in these two classes is 'no’.
P17 is labelled "1’ and P13 is labelled 0’ and a 0.5 threshold is applied for evaluation
and prediction. The results for the experiments for Reduced15db are therefore shown in

the following subsections.

5.3.2.1 Architecture A: Binary Classification (1-versus-1)

Since fewer data is used for this experiment, there is a reduction in model accuracy for
both datasets in comparison to experiment 1. Table 5.5 shows the results obtained for
Reduced15db.

Figure 5.12 shows the training and validation accuracy and loss of this experiment.

Architecture A: P17 VRS P13 Architecture A: P17 VRS P13

104 — loss
] «A/\,MMWM’\/W\/‘\/\J\[J . valloss

0.9 4
0.58

0.561 0.8 1
0.54 4
\
0.52 4 Ty
I N\

— acc 0.6 =

0.48 val_acc —‘M'_

epoch epoch

(a) (b)

Figure 5.12: Comparison of binary classification of P13 and P17 using architecture A.
The graphs display epochs versus accuracy and loss graphs for Reduced15db

5.3.2.2 Architecture B: Binary Classification (1-versus-1)

The plots in figure 5.13 show the accuracy and loss function plots for 100 epochs of
training and validation. Subsequently, table 5.5 shows the model performance results for
Reduced15db.

Maalidefaa M. Tantuoyir

65

Architecture B: P17 VRS P13

Pl '\J-W

— acc
0.50 val_acc

epoch

(a)

Figure 5.13: Comparison of binary classification of P13 and P17 using architecture B.

Architecture B: P17 VRS P13

— loss

val_loss

100

The graphs display epochs versus accuracy and loss graphs for Reduced15db

5.3.2.3 Architecture C: Binary Classification (1-versus-1)

The plots in figure 5.14 show the accuracy and loss plots for 100 epochs of training and

validation. Subsequently, table 5.5 shows the model performance results for Reduced15db.

Architecture C: P17 VRS P13

0.64{ — acc
val_acc
0.62
]
0.60

epoch

(a)

Figure 5.14: Comparison of binary classification of P13 and P17 using architecture C.

Architecture C: P17 VRS P13

— loss

val_loss

The graphs display epochs versus accuracy and loss graphs

5.3.2.4 ResNetl18: Binary Classification (1-versus-1)

The ResNet18 model was run for 30 epochs. This is because of the overfitting due to small

dataset that was used. Table 5.5 shows the results obtained for this experiment. The

plots in figure 5.15 show the training and validation accuracy and loss of this experiment.

Maalidefaa M. Tantuoyir Chapter 5 Experiments and Results

ResNet18: P17 VRS P13 ResNet18: P17 VRS P13

0725 — acc — loss
val_acc 0.70 val_loss
0.700 4
0.65 4

0.675 /
0.60 -
0.650 4
0.55 1
0.625 1
\
0.600 - 0501
0.575 4 0.45

epoch epoch

(a) (b)

Figure 5.15: Comparison of binary classification of P13 and P17 using ResNet18. The
graphs display epochs versus accuracy and loss graphs

Table 5.5: Model performance results for architectures A, B, C and ResNet18. The
table shows the results obtained by binary classification of two similar classes using
Reduced15db dataset

Metrics
Architecture Validation Set Test Set
Accuracy ‘ AUC ‘ Precision ‘ Recall | F1 Score | Accuracy ‘ AUC ‘ Precision ‘ Recall | F1 Score
A 0.6260 [07220 | 05860 | 08738 | 0.63 0.6252 [0.7037] 05837 | 08575 | 0.63
B 0.6286 | 0.7186 | 0.8420 | 0.3167 0.63 0.6237 [07037 | 08425 | 03042 0.62

| |
| | | | | |
| | | | | |
\ c | 06007 [o06834 | 07086 | 03419 | o060 | 0.6002 [06788] 07044 |03452 | o0.60 |
| | | | | |

ResNet18 0.6065 | 0.6953 | 0.5726 | 0.8409 0.6020 | 0.6915| 05626 | 0.8399

5.3.3 Experiment 3: Multiclass Classification

In this experiment, multiclass classification is performed on the datasets. The classes
are categorically labelled from zero to five and then experiments are conducted with
architectures A, B,C and ResNet18, as described in Chapter 4, and as used for the binary
classification tasks. The prediction layer uses a softmax activation function and the
loss function used is ’categorical-crossentropy’. Furthermore, multiclass classification is
performed in the 5 AED audio classes without the background15db class in the first
part of this experiment, and then all the 5 classes plus the background15db class are
used for the experimentation in the second part of this experiment. The results for each

architecture is shown using Reduced15db dataset in the following subsections.

5.3.3.1 Architecture A: Multiclass Classification

The model is trained for 30 epochs for both 5 and 6 class multiclass classification tasks.

On the top two figures of Figure 5.16, the 5-class multi classification plots a shown while

Maalidefaa M. Tantuoyir

67

Architecture A:5 Class Multiclassification

— loss
val_loss

1.45 \
140 \\\\\
135 S
1301 T T T T T T
0 5 10 15 20 25 30
epoch
(a)

Architecture A:6 Class Multiclassification

— loss
val_loss.

epoch

(c)

30

Architecture A:5 Class Multiclassification

0.400 4

0.375

0.350 4

0.325

0.300 4

0.275

0.250 4

0.225

0.200 4

— acc _
val_acc /,
e
)
0 5 10 15 20 25 30
epoch

(b)

Architecture A:6 Class Multiclassification

4 — acc f_/'
val_acc ’/__/-f
o 5 10 15 20 25 30
epoch

Figure 5.16: Architecture A training and validation plots for multiclass classification.
The graphs display epochs versus accuracy and loss graphs

the bottom plots represent the 6-class multi classification plots. Table 5.6 shows the

results for this model architecture.

Table 5.6: Multi-class classification metrics for architecture A

Metrics
Dataset Number of Classes Validation Set Test Set
Accuracy | AUC | Precision | Recall | F1 Score | Accuracy | AUC | Precision | Recall | F1 Score
5 0.4050 0.7171 | 0.9410 0.2000 0.41 0.4001 0.7118 | 0.9437 0.1897 | 0.41
Reduced15db
6 0.3350 0.6908 | 0.9486 0.1522 0.33 0.3321 0.6861 | 0.9424 0.1492 0.33

Furthermore, the classification report for all six classes is shown in Table 5.7. The report

shows the precision,recall and F1 score for each individual class. For this architecture,

class P23 is the most difficult to train. It has the lowest precision of 18 percent and a

recall of 2 percent. The effect of this low scores for P23, affects the overall results seen in

table 5.6 above. Also, the effect of the background15db class is evident has it has a very

low precision score of 0.21.

Maalidefaa M. Tantuoyir

Chapter 5 Experiments and Results

Table 5.7: Multi-class Classification Report: Architecture A

Class Precision | Recall | F1 Score | Number of Test Samples
P03 0.68 0.36 0.37 2305
P09 0.86 0.30 0.44 2305
P13 0.61 0.19 0.28 2305
P17 0.59 0.27 0.37 2305
P23 0.18 0.02 0.04 2305
Background15db 0.21 0.88 0.33 2305
Macro Average 0.52 0.33 0.32 13830
Weighted Average 0.52 0.33 0.32 13830

5.3.3.2 Architecture B: Multiclass Classification

The model is also trained for 30 epochs for both 5- and 6-class multi classification tasks.

On the top two figures of Figure 5.17, the 5-class multi classification plots a shown while

the bottom plots represent the 6-class multi classification plots. Table 5.8 shows the

results for this model architecture.

Table 5.8: Multiclass classification metrics for architecture B

Dataset Number of Classes

Metrics

Validation Set

Test Set

Accuracy ‘ AUC ‘ Precision ‘ Recall ‘ F1 Score

Accuracy ‘ AUC ‘ Precision ‘ Recall ‘ F1 Score

5
Reduced15db

0.3738 0.6981

0.8525 0.2363 0.37 0.3689 0.6923 | 0.8361 0.2293 0.37

6

0.3783 0.7271

0.9847 0.2001

0.38 0.3847 0.7237 | 0.9802 0.1945 0.37

Architecture B is better at classifying P23 than architecture A. In general, the classification

report(Table 5.9) for individual classes using architecture B is better than the previous

architecture. It can also be observed that, this architecture gives almost the same results

even when the background15db class is removed.

Table 5.9: Multiclass Classification Report: Architecture B

Class Precision | Recall | F1 Score | Number of Test Samples
Po3 0.95 0.40 0.56 2305
P09 0.87 0.33 0.48 2305
P13 0.86 0.23 0.37 2305
P17 0.82 0.26 0.40 2305
P23 0.21 0.96 0.35 2305
Background15db 0.83 0.09 0.16 2305
Macro Average 0.76 0.38 0.38 13830
Weighted Average 0.76 0.38 0.38 13830

Maalidefaa M. Tantuoyir

69

Architecture B:5 Class Multiclassification

— loss
val_loss

~~

SN WA

5 10 15 20 25 30
epoch

(a)

Architecture B:6 Class Multiclassification

— loss
val_loss.

epoch

(c)

Architecture B:5 Class Multiclassification

0.425 4

0.400 4

0.375 4

0.350 4

0.325 4

0.300 1

0.275

— acc
val_acc /\,_//\/—/.
0 5 1o 15 20 5 30
epoch
(b)

Architecture B:6 Class Multiclassification

4 = acc
val_acc

Pa—

o

epoch

(d)

Figure 5.17: Architecture B training and validation plots for multiclass classification.
The graphs display epochs versus accuracy and loss graphs

5.3.3.3 Architecture C: Multiclass Classification

This model is the shallowest of all the models and it trains faster than the rest of the

models. It is trained for 30 epochs just like the previous models on multiclass classification.

On the top two figures on figure 5.18, the 5-class multi classification plots a shown while

the bottom plots represent the 6-class multi classification plots. Table 5.10 shows the

results for this model architecture.

Table 5.10: Multiclass classification metrics for architecture C

Metrics
Dataset Number of Classes Validation Set Test Set
Accuracy | AUC | Precision | Recall | F1 Score | Accuracy | AUC | Precision | Recall | F1 Score
5 0.5266 0.8156 | 0.9179 0.3215 | 0.53 0.5226 0.7994 | 0.8959 0.3198 | 0.53
Reduced15db
6 0.4576 0.7966 | 0.9158 0.2841 0.46 0.4556 0.7921 | 0.8987 0.2811 0.46

This architecture outperforms the rest of the proposed models and the transfer learning

models in multiclass classification task. The individual classification report(Table 5.11)

shows that, the model is able to classify P23 and background15db classes with better

Maalidefaa M. Tantuoyir Chapter 5 Experiments and Results

Architecture C:5 Class Multiclassification Architecture C:5 Class Multiclassification

0.55 1 acc
val_acc
161 -
050 /
151 fl
0.45
144 \
\ 0.40
13 \
\ 0.35
12 N
L 030
~
114 —— loss e
val_loss T
T T T 0251 T
0 10 20 30 40 0 10 20 30 40
epoch epoch
(a) (b)

Architecture C:6 Class Multiclassification

Architecture C:6 Class Multiclassification

— loss — acc
2.0 val_loss 04 val_acc F___»,.,—/——’_f—wﬂ
ot
1 L~
19 %
0.40 4 v
181 | /
174 \ 0.35 |
1.6 4 |
030
1.5
N
144 \ 0.25
4
13 Vo
__ 020
0 10 20 30 40 50 60 0 10 20 30 40 50 60
epoch epoch
(c) (d)

Figure 5.18: Architecture C training and validation plots for multiclass classification.
The graphs display epochs versus accuracy and loss graphs

precision and recall. This results in the overall higher macro and weighted average scores

for the statistical measurements used in this work.

Table 5.11: Multiclass Classification Report: Architecture C

Class Precision | Recall | F1 Score | Number of Test Samples
Po3 0.76 0.60 0.67 2305
P09 0.73 0.49 0.59 2305
P13 0.69 0.36 0.47 2305
P17 0.82 0.34 0.49 2305
P23 0.25 0.78 0.38 2305
Background15db 0.35 0.17 0.23 2305
Macro Average 0.60 0.46 0.47 13830
Weighted Average 0.60 0.46 0.47 13830

Maalidefaa M. Tantuoyir

71

5.3.3.4 ResNetl18: Multiclass Classification

The results for multiclass classification tasks using ResNet18 is shown below.The top

two figures on figure 5.19, the 5-class multi classification plots a shown while the bottom

plots represent the 6-class multi classification plots. Table 5.12 shows the results for this

model architecture.

ResNet18:5 Class Multiclassification

— loss

val_loss

ResNet18:6 Class Multiclassification

— loss

val_loss

ResNet18:5 Class Multiclassification

— acc

val_acc

ResNet18:6 Class Multiclassification

— acc

val_acc

Figure 5.19: ResNet18 training and validation plots for multiclass classification. The
graphs display epochs versus accuracy and loss graphs

Table 5.12: Multiclass classification metrics for ResNet18

Metrics
Dataset Number of Classes Validation Set Test Set
Accuracy | AUC | Precision | Recall | F1 Score | Accuracy | AUC | Precision | Recall | F1 Score
5 0.4296 0.7370 | 0.9490 0.2439 | 0.43 0.4221 0.7298 | 0.9331 0.2393 | 0.43
Reduced15db
6 0.3885 0.7301 | 0.9551 0.2200 | 0.39 0.3818 0.7257 | 0.9506 0.2150 | 0.38

Background15db class affects the overall macro and weighted scores for the 6-class

multi-class classification results using ResNet18. This is evident from Table 5.13. The

overall performance report is very similar to that of architecture A and it goes to confirm

Maalidefaa M. Tantuoyir

Chapter 5 Experiments and Results

that, P23 and background15db are the hardest classes to classify. That also explains the

low scores obtained in experiment 3.

Table 5.13: Multi-class Classification Report: ResNet18

Class Precision | Recall | F1 Score | Number of Test Samples
P03 0.79 0.47 0.59 2305
P09 0.68 0.36 0.47 2305
P13 0.64 0.26 0.37 2305
P17 0.68 0.27 0.39 2305
P23 0.22 0.73 0.34 2305
Background15db 0.34 0.23 0.28 2305
Macro Average 0.56 0.39 0.40 13830
Weighted Average 0.56 0.39 0.40 13830

5.4 Analysis of Results

This section presents some analysis of the results obtained so far in the experiments.

5.4.1 Experiment 1: Binary Classification (1-versus-others)

To analyse how the models performed in this experiment, the mean test accuracy and F1

score are calculated for each class(Table 5.14).

Table 5.14: Mean Test Accuracy and F1 Score Results. The results compare the mean
test accuracy and fl score between the classes used in experiment 1

Class Mean Test Accuracy Mean F1 Score
Reduced10db | Reduced15db | Reduced10db | Reduced15db
P03 0.9183 0.8877 0.92 0.88
P09 0.9064 0.8869 0.90 0.87
P13 0.8740 0.8610 0.86 0.79
P17 0.8853 0.8726 0.88 0.87
P23 0.8333 0.8333 0.73 0.74
Background 0.8384 0.8401 0.83 0.82

The test accuracy for all classes in the Reduced15db dataset is 4.65 percent lower for

class P03. While for P09, it is 2.2 percent less. Generally, the percentage loss in the mean

test accuracy for Reduced15db dataset is 0 to 4.65 percent lower across all the classes

except for the background noise class which rather had 0.01 percent better accuracy

Maalidefaa M. Tantuoyir 73

for the Reduced15db dataset as compared to the Reduced10db dataset(Figure 5.20). A
similar behaviour is observed in the mean fl score across all the classes. For each class,

the Reduced15db dataset has 0 to 4.5 percent lower mean F'1 score.

Mean Test Accuracy per Class Results

0,92

09

0,88

0,86
—e—Reduced10db

—e—Reduced15db

Mean Test Accuracy [%}

0,82

0,8

0,78

P03 P09 P13 P17 P23 Background
Class

(a) Class versus Mean Test Accuracy

Mean Test F1 Score per Class Results

—e—Reduced10db

o
'S

—e—Reduced15db

Mean Test F1 Score [%}
o
0

e e o
= N w

)

P03 P09 P13 P17 P23 Background
Class

(b) Class versus Mean Test F1 Score

Figure 5.20: Analysis of mean test and F1 Scores for experiment 1

Furthermore, the mean test accuracy and F1 score for each model architecture is analysed
to observe how each of the models performed in experiment 1. The mean of the test

accuracy and F1 score for all classes in each model is calculated and presented in Table
5.15).

Maalidefaa M. Tantuoyir Chapter 5 Experiments and Results

Table 5.15: Mean Test Accuracy and F1 Score Results. The results compare the mean
test accuracy and F1 score between the architectures used in experiment 1

Mean Test Accuracy Mean F1 Score
Architecture
Reduced10db | Reduced15db | Reduced10db | Reduced15db
A 0.8709 0.8639 0.85 0.85
B 0.8806 0.8652 0.84 0.78
C 0.8739 0.8588 0.86 0.84
ResNetl18 0.8785 0.8666 0.86 0.84

The models obtained less test accuracy and F1 scores for Reduced15db dataset but
within a smaller percentage difference of 0 to 0.15. Model architecture A has the same
F1 score for both dataset while architecture has the lowest F'1 score for Reduced15db
dataset. The plots for the mean test accuracy and F1 scores are shown in Figure 5.21.

Mean Test Accuracy per Model Architecture

0,885

0,88
0,875

°
®
S

—e—Reduced10db
—e—Reduced15db

Mean Test Accuracy [%]
s B
o a
S a

o
%
el
@

°
%
a

0,845
A B c ResNet18
Architecture

(a) Class versus Mean Test Accuracy

Mean F1 Score per Model Architecture

o
%
53

o
®
o

°
%
IS

°
)
[

—e—Reduced10db
*—Reduced15db

Mean F1 Score [%]
o
N 54
® w

o
N
)

o
N
s

A B C ResNet18
Architecture

(b) Class versus Mean Test F1 Score

Figure 5.21: Analysis of Mean Test and F1 Scores for all architectures used in experiment
1

Maalidefaa M. Tantuoyir 75

5.4.2 Experiment 2: Binary Classification (1-versus-1)

The average test accuracy and F1 score for this experiment is 0.6110 and 0.6 respectively

and for all the models. The experiment was conducted for only 2 similar classes, using
Reduced15db dataset.

5.4.3 Experiment 3: Multiclass Classification

In architecture A and ResNet18, there is a 20 percent increase in test accuracy when the
experiment is conducted without the background noise class. The F1 score is improved

slightly by 9 percent.

In architecture B, there is a slight decrease in model test accuracy when all 6 classes are
used. This is different as compared to architecture A and C which had an increase in
test accuracy when 5 classes are used. The F1 score is the same for both 5- and 6-class

multi experiments.

In architecture C, the 5-class multi classification resulted in a 14.7 percent increase in
test accuracy. This is a lower increase as compared to architecture A and ResNet18. The

F1 score also increases by 15.3 percent in as compared to the 6-class multi classification.

Discussion and Future Works

This chapter discusses the experimental results achieved using the stated models in
Chapter 5. Achieved results, encountered limitations, and possible improvements will be
discussed. Furthermore, a final system is proposed and suggestions for future work will

also be presented.

PREPROCESSING

MODEL AND | RESULTS
EXPERIMENTATION

—*| Feature Generation Transfer Learning

Binary Classification

AED i MFCC) Multiclass Classification

Audio
216

Audio mix Deep Neural Experiments and Post
S |» Networks(DNNs) Resuits Experimentation Conclugion

Background
Noise
Log-scaled Mel CNN and CRNN Models
Spectrogram

Binary Classification
128

Multiclass Classification
\ 216)

Figure 6.1: An illustration of the approach used for this chapter of the thesis

| DATASET |

7

Maalidefaa M. Tantuoyir Chapter 6 Discussion and Future Works

6.1 Model Performance

The datasets are balanced in this work, therefore, the main performance matrix considered
for these models is the accuracy. Also, models’ robustness is evaluated by using the F1
score. Furthermore, the cost of miss-classification in case of the implementation of these
models is discussed by considering the precision and recall scores from each experiment.
The following subsections discusses the results and observations under each experiment.
Figure 6.2 shows a diagrammatic overview of the average training time per epoch of each
model stated in Chapter 4. Each architecture was trained on GPU Tesla V100-PCIE
(32GB).

Model versus Average Time per Epoch Graph
250

™ Reduced10db
I I m Reduced15db
0 I
Archi eA Archi eB Archi eC

ResNet18

= = ~
1) @ =3
S o =3

Average Time per Epoch[s]

w
©

Model

Figure 6.2: Model versus average time per epoch graph. The average training time for
Reduced10db is higher than in Reduced15db. Architecture C trains the fastest while
ResNet18 is the slowest training model.

6.1.1 Experiment 1: Binary Classification (1-versus-others)

The results from this experiment indicate that, for both datasets, ResNet18 is slightly
better by 0.01 points in accuracy when compared with architecture C and 0.02 points
higher when compared with architecture A. ResNet18 however gives almost the same
accuracy result as architecture B. Also, in trying to maximize the precision and recall
of all the predictions, ResNet18 is more more superior for all the classes including the
most difficult class, the background noise class. Architecture B is the least robust when
it comes to calculating the harmonic mean of the precision and recall of the background

noise class.

From the mean test accuracy results for all classes considered, architecture B is the
most accurate model for Reduced10db dataset. It however, has a moderate F1 score
as compared to the rest of the architectures for the same dataset. For Reduced15db

dataset, ResNet18 is the most accurate model and it has very good mean F1 score. The

Maalidefaa M. Tantuoyir 79

less accurate model for Reduced10db is architecture C and that of Reduced15db, is

architecture B.

6.1.2 Experiment 2: Binary Classification (1-versus-1)

The objective of this experiment is to determine if models can easily differentiate between
two similar classes. It can be observed from the test set results that, architecture C and
ResNet18 have lower F1 scores of approximately 0.60 as compared to 0.63 and 0.62 for
architectures A and B respectively. These are much lower than the values obtained in

experiment 1.

Even-though the F1 score for architectures A and B is the same for the test set, archi-
tecture A is better if the precision of the binary classification is prioritized. Similarly,
architecture B is better for higher recall. Both models could therefore be said to be of

similar relevance when used to compare similar classes or audio commands from the
AED device.

6.1.3 Experiment 3: Multiclass Classification

The multiclass classification had the least test accuracy scores in all the experiments.
When the background folder is discarded, there is 10 percent increase in validation and
test accuracy for ResNet18 and architectures A and C. Architecture B does not gain any

significant increase in accuracy in this scenario.

The best performing model for both five and six labelled multiclass classification is
architecture C. The best test accuracy is 52 percent for the five labelled AED audio
clips. It is 0.7 points higher than the 6-class multi classification experiment. This model

architecture also has the best F1 score when compared with the rest of the models.

6.2 Proposed System

Following the experiments conducted in this work, a final proposed system for the

detection of sound events during team training is shown below(Figure 6.3).

Maalidefaa M. Tantuoyir Chapter 6 Discussion and Future Works

Binary
7 Audio N 7" Audio Log-scaled / Model Classil'lcalioN
Chunks Mel Spectrogram -
INPUT Class 1

—>

m]

Figure 6.3: Diagram of the proposed system for sound event detection in team training.

The system takes in real time audio from the team training event and divide the audio

into chunks as a function of time(t). The audio chucks pass through a preprocessing

stage where they are converted into log-scaled mel spectrograms. The spectrograms

are then serve as an input into the model. The final predictions are interpreted as a
function of time.

The proposed system takes in real time audio and the audio is split into equal chunks as
a function of time(t). The audio chunks go through a preprocessing stage. This process
converts the audio chunks into log-scaled mel spectrograms as described in Chapter 3.

These spectrograms serve as input data to the model.

Based on the results and analysis in this thesis work, the proposed system uses binary
classification using the 1-versus-others method. ResNet18 is the best performing architec-
ture and it is more robust in classifying the AED audio events used for experimentation
work in Chapter 5. The proposed system uses ResNet18 for feature extraction and a
classifier for binary classification(1-versus-others) of the AED audio events. The AED
audio events are predicted one by one and interpreted as a function of time(t) as shown

in Figure 6.3.

6.3 Limitations

This work starts with the generation of audio mixtures with background noise. The
background noise gathered are mix of recorded audio in a controlled environment [85] and
polyphonic sound from the hospital and restaurant settings. This provides a wide range
of background noise for model training. However, the main limitation is that, realistic
audio from team training environments is needed to test the efficiency and robustness of

the proposed system.

Maalidefaa M. Tantuoyir 81

6.3.1 Volume Reduction

The experiments conducted indicate a reduction in test accuracy for all classifications
and architectures when there is a reduction in loudness, measured in dBFS. Therefore,
recording AED audio sound below -40 dBFS(approximately), will result in a further

reduction in test accuracy.

6.4 Future Work

This section will provide some suggestions for further work and development in relation

to this work.

6.4.1 Network Architectures

The use and testing of more pre-trained models could help increase the results. Apart
from the pre-trained models used here, there are some more models that could be tested
on this work. Also, fine-tuning the proposed models with a variety of feature learning

layers could help improve the results achieved so far.

6.4.2 Realistic Data Material

The use of recorded polyphonic sound from team training events in training, validating
and testing these models would be the surest way. This could help in easier expansion

and implementation of this work to real world devices.

6.4.3 More Dataset per Class

In experiment 2, the accuracy for all architectures used could be improved by using more
datasets per class of AED audio event. Also, data augmentation methods could help

improve the results of this experiment.

Conclusion

The objective of this thesis was to explore classification methods for automatic sound
event detection from AED devices during medical team training. Two CNN based, one
CRNN and pretrained ResNet18 architectures are implemented to classify these the AED
sound events. A final system is also proposed based on the the best model and method

studied in this thesis.

The data was created by overlaying monophonic AED audio on monophonic and poly-
phonic background noise(audio) to create polyphonic audio clips. The polyphonic
audio clips are then converted to log-scaled mel spectrograms and the resultant spec-
trograms(’images’), are used as input data for the aforementioned DNN models. Two
datasets are created to study the effect of reduced volume in classifying AED audio
events. Each dataset is divided into training,validation and testing sets. Reduced10db

dataset has 15370 spectrograms while Reduced15db consist of 23050 spectrograms.

The best classification methodology was the binary classification, using the 1-versus-
other method. ResNet18 obtained the highest overall accuracy of 86.7 percent and F1
score of 0.84, for Reduced15db dataset and across all the 6 classes. The final proposed
system,records audio chunks as a function of time and converts them into log-scaled
mel spectrograms. The spectrograms are then used as input data into the ResNet18

model and the classified AED sound events are obtained(as output), as a function of

83

Maalidefaa M. Tantuoyir Chapter 7 Conclusion

time. In the evaluation of the obtained results in this thesis, it is considered that the use
of log-scaled mel spectrograms and DNNs for binary classification of AED sound event

detection is an optimistic method worth exploring further.

Appended Codes

This section gives a short description of the codes used for the thesis. The required

libraries are in each python file. The codes are accessible through GitHub [103].

A.1 Generating Audio Chunks

This code generates audio into 5 second chunks.

create__audioChunks.py is a function that generates automatically audio into 5 second

chunks or clips. The file part for the audio needs to be inserted in the input path

A.2 Reduce Volume of AED Audio

This code generates AED audio of different volume in dBFS. The volume has to be set
at the desired level.

reduceVolume.py generates lower volume audio samples using PyDub library from
Python.

85

Maalidefaa M. Tantuoyir Appendix A Appended Codes

A.3 Create Polyphonic Audio Mix

Polyphonic audio is generated by overlaying the AED audio clips on the background
noise/audio clips. This is done using the PyDub library on Python.

create__Audiomix.py This code is creates the polyphonic audio mix. The audio

directories have to be indicated.

A.4 Create Features

Spectrograms are generated as features for the model. First MFCC and log-scaled mel

spectrograms.
create__mfcc.py This file generates MFCC spectrograms using Librosa from Python.

create_ logscaledmelspec.py This file generates log-scaled mel spectrograms using

Librosa from Python.

A.5 Import Dataset

import__dataset.py imports the training, validation and testing data from their re-

spective folders.

A.6 Architectures

These are the codes for the proposed models.

architectureA.py this is a code for architecture A. The code includes evaluation and

prediction sections for both binary and multiclass classification.

architectureB.py this is a code for architecture B. The code includes evaluation and

prediction sections for both binary and multiclass classification.

architectureC.py this is a code for architecture C. The code includes evaluation and

prediction sections for both binary and multiclass classification.

ResNet18 the source code for this model can be found on [104].

Plots for Binary Classification(1-versus-others)

B.1 Plots for Architecture A

The plots show the epochs versus accuracy and loss graphs for classes P09,P13 and P25.
Figure B.1 shows the plots using Reduced10db while Figure B.2 shows the results for
Reducelbdb.

87

Maalidefaa M. Tantuoyir Appendix B Plots for Binary Classification(1-versus-others)

Architecture A: P25 Architecture A:P25
0.600
083 — loss
(0575 4 —— val_loss
0.82
0.550
0.81 4
0.525 4
0.80
0.500
0.79 4
0.475 4
0.78 4
0.450
0.77 4
0.425 1
0.76 4 JE——
—— val_acc 0.400 1
0.75 T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
epoch epoch
(a) (b)
Architecture A: P13 Architecture A:P13
— loss
0.85 m 081 —— val_loss
0.80
0.7 4
0.75 4
0.6
0.70 4
0.65 - 0.5
0.60
0.4
— acc
0.55 1 —— val_acc
o 20 40 60 80 100 o 20 40 60 80 100
epoch epoch
() (d)
Architecture A: P09 Architecture A:P09
0.70 p
0.90 4 e — loss
0.65 —— val_loss
0.85 4
0.60 4
0.80 0.55 4
0.75 4 0.50 -
0.45 1
0.70 4
0.40 4
0.65
0.35 1
0.60 1 ace 0304
—— val_acc
0 20 40 60 80 100 o 20 40 60 80 100
epoch epoch

Figure B.1: Epochs versus Accuracy and Loss Graphs. The graphs show the epochs
versus accuracy (left hand side) and epochs versus loss(right hand side) of the training
and validation of P09, P13 and P25

Maalidefaa M. Tantuoyir 89

Architecture A: P25 Architecture A:P25
0.600
083] — — loss
r 0575 4 val_loss
0.82 4
0.550 1
0.81 4
0.525 4
0.80 4
0.500
0.79 4
0.475 4
0.78 4
0.450 4
0.77 4
0.425 4 ~
0.76 1 — acc = \
val_acc 0.400 1
0.75 +— T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
epoch epoch
(a) (b)
Architecture A: P13 Architecture A:P13
e — loss
0.85 4 T T T 0.8 val_loss
. KT |
0.80 4 f
0.7 4
0.75 4
0.6 1
0.70 4
0.65 1 0.5 \
Y
0.60
0.4 \’\ SAvAY
— acc —Lan
0.55 val_acc = 7
0 20 w0 50 80 100 o 20 w0 50 80 100
epoch epoch
(c) (d)
Architecture A: P0O9(Reduced15db) Architecture A: P09(Reduced15db)
0.88 - T TN T 0.55 - — loss
" val_loss
™

J—— A,
val_acc 0.35 e o
0 20 40 60 80 100 0 20 40 60 80 100
epoch epoch

(e) (f)

Figure B.2: Epochs versus Accuracy and Loss Graphs. The graphs show the epochs
versus accuracy (left hand side) and epochs versus loss(right hand side) of the training
and validation of P09, P13 and P25

B.2 Plots for Architecture B

The plots show the epochs versus accuracy and loss graphs for classes P09,P13 and P25.
Figure B.3 shows the plots using Reduced10db while Figure B.4 shows the results for
Reducel5db.

Maalidefaa M. Tantuoyir Appendix B Plots for Binary Classification(1-versus-others)

Architecture B: P09 Architecture B: PO9
_— 4 —
092 | acc 0.50 oss
—— val_acc —— val_loss
0.91 0.45
0.90 0.40
0.89
0.35
0.88 1
0.30
0.87 4
0.25
0.86 1 T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
epoch epoch
(a) (b)
Architecture B: P13 Architecture B: P13
097 16 — loss
S VA vASS
—— val_loss
08 1 14
124
0.7 4
101
0.6 -
0.8
0.5+
0.6 q
0.4 — acc 0ad \J
—— val_acc
o 20 40 60 80 100 o 20 40 60 80 100
epoch epoch
() (d)
Architecture B: P25 Architecture B: P25
0.65 1 — loss
—— val_loss
0.8332 0.60
0.8330 4 0359
0.50
0.8328 4
0.45
0.8326 -
— acc
0.40
—— val_acc
0 20 40 60 80 100 o 20 40 60 80 100
epoch epoch

Figure B.3: Epochs versus Accuracy and Loss Graphs. The graphs show the epochs
versus accuracy (left hand side) and epochs versus loss(right hand side) of the training
and validation of P09, P13 and P25

Maalidefaa M. Tantuoyir 91

Architecture B: PO9(Reduced15db) Architecture B: P09(Reducedl5db)
094 — loss
104 — val_loss
0.8 0.9
0.8 4
0.7
0.7 4
0.6
0.6 4
0.5 4 05
0.4 0.4 4
— acc 03 [\
ozl — val_acc -
0 20 40 60 80 100 0 20 40 60 80 100
epoch epoch
(a) (b)
Architecture B: P13(Reduced15db) Architecture B: P13(Reduced15db)
S r 2.254 — loss
T — val loss
081 2.00
0.7 175
150
0.6
125
0.5 1.00 4
044 0.75
— acc 0.50 U
0.3 —— val_acc
0 20 40 60 80 100 0 20 40 60 80 100
epoch epoch
() (d)
Architecture B: P25(Reduced15db) Architecture B: P25(Reduced15db)
0.835 056
— loss
0.830 —— val_loss
) 0.54 1
0.825 4 052
0.820 0.50
0.815 4 0.48
0.8109 0.46
0.8059 0.44
— acc
0.800 —— val_acc 0.42 4
0 20 40 60 80 100 0 20 40 60 80 100
epoch epoch

(e) (f)

Figure B.4: Epochs versus Accuracy and Loss Graphs. The graphs show the epochs
versus accuracy (left hand side) and epochs versus loss(right hand side) of the training
and validation of P09, P13 and P25

B.3 Plots for Architecture C

The plots show the epochs versus accuracy and loss graphs for classes P09,P13 and P25.
Figure B.5 shows the plots using Reduced10db while Figure B.6 shows the results for
Reducelbdb.

Maalidefaa M. Tantuoyir Appendix B Plots for Binary Classification(1-versus-others)

Architecture C: P09 Architecture C: PO9
— loss
4 0.65 4
0.90 —~ V] (_‘V”‘UWV“’“ —— val_loss
0.60 4
0.85
0.55 1
0.80
0.50 -
0.75 4
0.45 4
0.70 4 0.40 4
0.65 4 0.35 1
0.30 4
0.60 4 — acc
—— val_acc
0.25 4
0 20 40 60 80 100 0 20 40 60 80 100
epoch epoch
(a) (b)
Architecture C:P13 Architecture C: P13
0.90 0.70 4
— loss
—— val_loss
ves] W m 065
0.60 -
0.80 1
0.55 1
0.75 4 0.50 4
0.70 4 0.45 4
0.40 4
0.65
acc 0.35 1
0.60 { —— val_acc
T T T T T T 0.30 +— T T T T T
o 20 40 60 80 100 o 20 40 60 80 100
epoch epoch
() (d)
Architecture C: P25 Architecture C: P25
— loss
0.833 4 —— val_loss
0.46 -
0.832
0.44 4
0.831
0.42 4
0.830
0.40 1
0.829
— acc
— val_acc 038
0 20 40 60 80 100 o 20 40 60 80 100
epoch epoch

Figure B.5: Epochs versus Accuracy and Loss Graphs. The graphs show the epochs
versus accuracy (left hand side) and epochs versus loss(right hand side) of the training
and validation of P09, P13 and P25

Maalidefaa M. Tantuoyir 93

Architecture C: PO9(Reduced15db) Architecture C: P09(Reduced15db)
0.500
— acc — loss
val_acc W val_loss
0.88 4 ™ 0.475 4
0.87 4 0.450 4
0.86 - 0425 1
0.400 4
0.85 4
0.375 4
0.84 4
A
0.350 4
0.83 4
0.325 4
0 20 40 60 80 100 0 20 40 60 80 100
epoch epoch
(a) (b)
Architecture C: P13(Reduced15db) Architecture C: P13(Reduced15db)
/_,7’____,____————————* — loss
0.85 4 T 0.525 4 val_loss
—
0.80 4 0.500 4
0.475 4
0.75 4
04501 W
\
0.70 4 AN
0.425 | g
N
0651 0.400
0.60{ — acc 0375 4
val_acc
0 20 2 50 80 100 o 20 % 50 80 100
epoch epoch
(c) (d)
Architecture C: P25(Reduced15db) Architecture C: P25(Reduced15db)
0.834
— 0.49 — loss
val_loss
0.832 4 0.48 1
0.830 4 0.47 4
0.828 4 046
0.45
0.826 -
\
0.44 4 N
0.824 4 \
043 ~
0.822 4
0.42
— acc
0.820 4 val_acc 0.41
0 20 20 50 80 100 o 20 2 50 80 100
epoch epoch

(e) (f)

Figure B.6: Epochs versus Accuracy and Loss Graphs. The graphs show the epochs
versus accuracy (left hand side) and epochs versus loss(right hand side) of the training
and validation of P09, P13 and P25

B.4 Plots for ResNetl8

The plots show the epochs versus accuracy and loss graphs for classes P09,P13 and P25.
Figure B.7 shows the plots using Reduced10db while Figure B.8 shows the results for
Reducel5db.

Maalidefaa M. Tantuoyir Appendix B Plots for Binary Classification(1-versus-others)

ResNet18: P09

ResNet18: P09

— acc — loss
val_acc // 036 val loss
0.91 4
0.34
0.90 1 0324
0.30
0.89 4
0.28 +
0.88 1
0.26
0.87 4 0.24 4
0 10 15 20 0 10 15 20
epoch epoch
(a) (b)
ResNetl18: P13 ResNet18: P13
0.44
— acc — loss
0.89 -
val_acc val_loss.
0.42
0.88 1
0.40
0871 0.38
0.86 - 0.36
0.85 4 0341
0.32
0.84 1
0.30
0.83
0 10 15 20 [10 15 20
epoch epoch
(c) (d)
ResNet18: P25 ResNet18: P25
0.8334
— — loss
0.8332 0.42 4 val_loss
0.8330
0.41
0.8328 |
0.8326 1 0.40 1
0.8324
0.39
0.8322
0.8320 0.38 |
0.8318 - e
val_acc 0374
0.0 2.5 5.0 75 100 125 150 175 0.0 2.5 5.0 75 100 125 150 175

epoch

(f)

Figure B.7: Epochs versus Accuracy and Loss Graphs. The graphs show the epochs
versus accuracy (left hand side) and epochs versus loss(right hand side) of the training
and validation of P09, P13 and P25

Maalidefaa M. Tantuoyir

95

ResNet18: PO9(Reducedl5db)

ResNet18: PO9(Reducedl5db)

0890 1 — acc — loss
val_acc val_loss
0.885 4 038
0.880
0.36 -
0.875
0.870 4 0.34 4
0.865
0.32 4
0.860
0 5 10 15 20 25 0 10 15 20 25
epoch epoch
(a) (b)
ResNet18: P13(Reduced15db) ResNet18: P13(Reducedl5db)
— acc 0.44 1 — loss
0.870 1 val_acc val_loss
0.865 - 0.42 |
0.860
0.855 0401
0.850
0.38 4
0.845
0.840 0.36 4
0.835
o 5 10 15 20 o 5 10 15 20
epoch epoch
(c) (d)
ResNet18: P25(Reducedl5db) ResNet18: P25(Reducedl5db)
0.8334 0.440
— loss
4 val_loss
0.8332 0.435 \ —
0.430
0.8330 1
0.425 4
0.8328 4
0.420 1
0.8326 -
0.415 4
0.8324 4
0.410
0.8322 0.405 4
— acc
0.8320 1 val_acc 0.400
0.0 2.5 5.0 15 10.0 125 15.0 175 20.0 0.0 25 5.0 75 10.0 125 15.0 175 20.0

epoch

(e)

Figure B.8: Epochs versus Accuracy and Loss Graphs. The graphs show the epochs
versus accuracy (left hand side) and epochs versus loss(right hand side) of the training
and validation of P09, P13 and P25

Sample Spectrograms

C.1 Log-scaled mel spectrogram samples

These are random samples of log-scaled mel spectrograms used for in this thesis.

97

Maalidefaa M. Tantuoyir Appendix C Sample Spectrograms

Figure C.1: Log-scaled mel spectrograms. These are examples of log-scaled mel
spectrograms used for the experimentation

C.2 MFCC spectrogram samples

These are random samples of MFCC spectrograms used for in this thesis.

Maalidefaa M. Tantuoyir

99

Figure C.2: MFCC spectrograms. These are examples of MFCC spectrograms used for
the experimentation

Bibliography

[1] Mandy Kubik. What is sound?, 2010. URL https://blogs.jwpepper.com/
what-is-sound/. [Online; accessed 26-April-2021].

[2] Aavos International. Fourier transform, 2017. URL https://aavos.eu/glossary/

fourier-transform/. [Online; accessed 26-April-2021].

[3] Prabhu. Understanding of convolutional neural network (cnn) —
deep learning, 2018. URL https://medium.com/@RaghavPrabhu/
understanding-of-convolutional-neural-network-cnn-deep-learning-99760835£148.
[Online; accessed 28-April-2021].

[4] Kolmakov Maksim. Using convolutional neural networks for image recognition.
2017.

[5] Benjamin S Abella, Jason P Alvarado, Helge Myklebust, Dana P Edelson, Anne
Barry, Nicholas O’Hearn, Terry L. Vanden Hoek, and Lance B Becker. Quality
of cardiopulmonary resuscitation during in-hospital cardiac arrest. Jama, 293(3):
305-310, 2005.

[6] Mickey S Eisenberg, Bruce T Horwood, Richard O Cummins, Robin Reynolds-
Haertle, and Thomas R Hearne. Cardiac arrest and resuscitation: a tale of 29
cities. Annals of emergency medicine, 19(2):179-186, 1990.

[7] Ingvild Beathe Myrhaugen Tjelmeland, Kristin Alm-Kruse, Lars-Jgran Andersson,
Stale Bratland, Arne-Ketil Hafstad, Bjgrn Haug, Jorund Langgrgen, Alf Inge Larsen,
Thomas Werner Lindner, Jan Erik Nilsen, et al. Cardiac arrest as a reportable
condition: a cohort study of the first 6 years of the norwegian out-of-hospital
cardiac arrest registry. BM.J open, 10(7):038133, 2020.

[8] Norway: number of deaths, by cause of death 2019 the leading cause
of death in norway in 2019 was cancer, which led to around 11 thou-
sand deaths that year. https://www.statista.com/statistics/942953/
number-of-deaths-in-norway-by-cause-of-death/. Accessed: 2021-04-20
17:35:26.

101

https://blogs.jwpepper.com/what-is-sound/
https://blogs.jwpepper.com/what-is-sound/
https://aavos.eu/glossary/fourier-transform/
https://aavos.eu/glossary/fourier-transform/
https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148
https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148
https://www.statista.com/statistics/942953/number-of-deaths-in-norway-by-cause-of-death/
https://www.statista.com/statistics/942953/number-of-deaths-in-norway-by-cause-of-death/

Bibliography BIBLIOGRAPHY

[9]

[11]

[13]

[15]

18]

[19]

Randi Ballangrud, Marie Louise Hall-Lord, Mona Persenius, and Birgitta Hedelin.
Intensive care nurses’ perceptions of simulation-based team training for building
patient safety in intensive care: a descriptive qualitative study. Intensive and
Critical Care Nursing, 30(4):179-187, 2014.

Benjamin S Abella, Dana P Edelson, Salem Kim, Elizabeth Retzer, Helge Myk-
lebust, Anne M Barry, Nicholas O’Hearn, Terry L. Vanden Hoek, and Lance B
Becker. Cpr quality improvement during in-hospital cardiac arrest using a real-time
audiovisual feedback system. Resuscitation, 73(1):54-61, 2007.

Emre Cakir, Giambattista Parascandolo, Toni Heittola, Heikki Huttunen, and Tuo-
mas Virtanen. Convolutional recurrent neural networks for polyphonic sound event
detection. IEEE/ACM Transactions on Audio, Speech, and Language Processing,
25(6):1291-1303, 2017.

Toni Heittola, Annamaria Mesaros, Antti Eronen, and Tuomas Virtanen. Context-
dependent sound event detection. EURASIP Journal on Audio, Speech, and Music
Processing, 2013(1):1-13, 2013.

Giambattista Parascandolo, Heikki Huttunen, and Tuomas Virtanen. Recurrent
neural networks for polyphonic sound event detection in real life recordings. In
2016 IEFEE international conference on acoustics, speech and signal processing

(ICASSP), pages 6440-6444. IEEE, 2016.

Annamaria Mesaros, Toni Heittola, and Tuomas Virtanen. Tut database for
acoustic scene classification and sound event detection. In 2016 24th Furopean
Signal Processing Conference (EUSIPCO), pages 1128-1132. IEEE, 2016.

Heikki V Huikuri, Agustin Castellanos, and Robert J Myerburg. Sudden death
due to cardiac arrhythmias. New England Journal of Medicine, 345(20):1473-1482,
2001.

Geoffrey Arthur Rose, Henry Blackburn, RF Gillum, RJ Prineas, et al. Cardiovas-

cular survey methods., volume 56. Geneva, Switzerland; WHO, 1982.

JB Cooper and VR2004 Taqueti. A brief history of the development of mannequin
simulators for clinical education and training. Postgraduate medical journal, 84
(997):563-570, 2008.

Sallie J Weaver, Sydney M Dy, and Michael A Rosen. Team-training in healthcare:
a narrative synthesis of the literature. BMJ quality & safety, 23(5):359-372, 2014.

Ashley M Hughes, Megan E Gregory, Dana L Joseph, Shirley C Sonesh, Shannon L
Marlow, Christina N Lacerenza, Lauren E Benishek, Heidi B King, and Eduardo

Bibliography 103

[20]

22]

[24]

[30]

[31]

Salas. Saving lives: A meta-analysis of team training in healthcare. Journal of
Applied Psychology, 101(9):1266, 2016.

JA Drezner. Preparing for sudden cardiac arrest—the essential role of automated
external defibrillators in athletic medicine: a critical review. British Journal of
Sports Medicine, 43(9):702-707, 2009.

Anouk P van Alem, Rob H Vrenken, Rien de Vos, Jan GP Tijssen, and Rudolph W
Koster. Use of automated external defibrillator by first responders in out of hospital

cardiac arrest: prospective controlled trial. Bmyj, 327(7427):1312, 2003.

Sherry L Caffrey, Paula J Willoughby, Paul E Pepe, and Lance B Becker. Public
use of automated external defibrillators. New England journal of medicine, 347
(16):1242-1247, 2002.

Malcolm Woollard, Richard Whitfield, Anna Smith, Michael Colquhoun, Robert G
Newcombe, Norman Vetter, and Douglas Chamberlain. Skill acquisition and
retention in automated external defibrillator (aed) use and cpr by lay responders:

a prospective study. Resuscitation, 60(1):17-28, 2004.

Karen Birckelbaw Kopacek, Anna Legreid Dopp, John M Dopp, Orly Vardeny,
and J Jason Sims. Pharmacy students’ retention of knowledge and skills following
training in automated external defibrillator use. American journal of pharmaceutical
education, 74(6), 2010.

Ruth M Fanning and David M Gaba. The role of debriefing in simulation-based
learning. Simulation in healthcare, 2(2):115-125, 2007.

Bhanu Prasad and SR Mahadeva Prasanna. Speech, audio, image and biomedical

signal processing using neural networks, volume 83. Springer, 2007.

Ben Gold, Nelson Morgan, and Dan Ellis. Speech and audio signal processing:
processing and perception of speech and music. John Wiley & Sons, 2011.

Ronald Newbold Bracewell and Ronald N Bracewell. The Fourier transform and
its applications, volume 31999. McGraw-Hill New York, 1986.

E Oran Brigham. The fast Fourier transform and its applications. Prentice-Hall,
Inc., 1988.

GD Bergland. A guided tour of the fast fourier transform. IEEE spectrum, 6(7):
41-52, 1969.

William T Cochran, James W Cooley, David L Favin, Howard D Helms, Reginald A
Kaenel, William W Lang, George C Maling, David E Nelson, Charles M Rader,

Bibliography BIBLIOGRAPHY

32]

[37]

[41]

and Peter D Welch. What is the fast fourier transform? Proceedings of the IEEE,
55(10):1664-1674, 1967.

Jonathan Allen. Short term spectral analysis, synthesis, and modification by
discrete fourier transform. IEEE Transactions on Acoustics, Speech, and Signal
Processing, 25(3):235-238, 1977.

Jont B Allen and Lawrence R Rabiner. A unified approach to short-time fourier
analysis and synthesis. Proceedings of the IEEFE, 65(11):1558-1564, 1977.

Stanley S Stevens and John Volkmann. The relation of pitch to frequency: A
revised scale. The American Journal of Psychology, 53(3):329-353, 1940.

Pavel Matéjka, Ondiej Glembek, Ondrej Novotny, Oldrich Plchot, Frantisek Grézl,
Lukéas Burget, and Jan Honza Cernocky. Analysis of dnn approaches to speaker
identification. In 2016 IFEFE international conference on acoustics, speech and
signal processing (ICASSP), pages 5100-5104. IEEE, 2016.

Arun Narayanan and DeLiang Wang. Ideal ratio mask estimation using deep neural
networks for robust speech recognition. In 2013 IEEE International Conference on
Acoustics, Speech and Signal Processing, pages 7092-7096. IEEE, 2013.

Jianfeng Zhao, Xia Mao, and Lijiang Chen. Speech emotion recognition using deep
1d & 2d cnn Istm networks. Biomedical Signal Processing and Control, 47:312—-323,
2019.

Shawn Hershey, Sourish Chaudhuri, Daniel PW Ellis, Jort F Gemmeke, Aren
Jansen, R Channing Moore, Manoj Plakal, Devin Platt, Rif A Saurous, Bryan
Seybold, et al. Cnn architectures for large-scale audio classification. In 2017 ieee

international conference on acoustics, speech and signal processing (icassp), pages

131-135. IEEE, 2017.

Lindasalwa Muda, Mumtaj Begam, and Irraivan Elamvazuthi. Voice recognition
algorithms using mel frequency cepstral coefficient (mfcc) and dynamic time warping
(dtw) techniques. arXiv preprint arXiv:1003.4083, 2010.

Steven Davis and Paul Mermelstein. Comparison of parametric representations for
monosyllabic word recognition in continuously spoken sentences. IEEFE transactions

on acoustics, speech, and signal processing, 28(4):357-366, 1980.

Ya-Ti Peng, Ching-Yung Lin, Ming-Ting Sun, and Kun-Cheng Tsai. Healthcare
audio event classification using hidden markov models and hierarchical hidden
markov models. In 2009 IEEE International conference on multimedia and expo,

pages 1218-1221. TEEE, 2009.

Bibliography 105

[42]

[44]

[47]

[48]

[49]

Patrice Guyot, Julien Pinquier, Xavier Valero, and Francesc Alias. Two-step
detection of water sound events for the diagnostic and monitoring of dementia. In
2013 IEEFE International Conference on Multimedia and Expo (ICME), pages 1-6.
IEEE, 2013.

Rui Cai, Lie Lu, Alan Hanjalic, Hong-Jiang Zhang, and Lian-Hong Cai. A flexible
framework for key audio effects detection and auditory context inference. IEEE

Transactions on audio, speech, and language processing, 14(3):1026-1039, 2006.

Dimitrios Giannoulis, Emmanouil Benetos, Dan Stowell, Mathias Rossignol, Math-
ieu Lagrange, and Mark D Plumbley. Detection and classification of acoustic scenes
and events: An ieee aasp challenge. In 2018 IEEE Workshop on Applications of
Signal Processing to Audio and Acoustics, pages 1-4. IEEE, 2013.

Antti J Eronen, Vesa T Peltonen, Juha T Tuomi, Anssi P Klapuri, Seppo Fagerlund,
Timo Sorsa, Gaétan Lorho, and Jyri Huopaniemi. Audio-based context recognition.
IEEE Transactions on Audio, Speech, and Language Processing, 14(1):321-329,
2005.

Emre Cakir, Toni Heittola, Heikki Huttunen, and Tuomas Virtanen. Polyphonic
sound event detection using multi label deep neural networks. In 2015 international
joint conference on neural networks (IJCNN), pages 1-7. IEEE, 2015.

Donmoon Lee, Subin Lee, Yoonchang Han, and Kyogu Lee. Ensemble of convolu-
tional neural networks for weakly-supervised sound event detection using multiple
scale input. Detection and Classification of Acoustic Scenes and Events (DCASE),
2017.

Arseniy Gorin, Nurtas Makhazhanov, and Nickolay Shmyrev. Dcase 2016 sound
event detection system based on convolutional neural network. IEEFE AASP

Challenge: Detection and Classification of Acoustic Scenes and Events, 2016.

Anurag Kumar, Maksim Khadkevich, and Christian Fiigen. Knowledge transfer
from weakly labeled audio using convolutional neural network for sound events and
scenes. In 2018 IEEFE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 326-330. IEEE, 2018.

Ali Imran, Iryna Posokhova, Haneya N Qureshi, Usama Masood, Muhammad Sajid
Riaz, Kamran Ali, Charles N John, MD Iftikhar Hussain, and Muhammad Nabeel.
Aidcovid-19: Ai enabled preliminary diagnosis for covid-19 from cough samples via
an app. Informatics in Medicine Unlocked, 20:100378, 2020.

Ting-Wei Su, Jen-Yu Liu, and Yi-Hsuan Yang. Weakly-supervised audio event

detection using event-specific gaussian filters and fully convolutional networks.

Bibliography BIBLIOGRAPHY

[52]

[53]

[54]

[56]

[57]

[60]

In 2017 IEEFE international conference on acoustics, speech and signal processing

(ICASSP), pages 791-795. IEEE, 2017.

Michael I Jordan and Tom M Mitchell. Machine learning: Trends, perspectives,
and prospects. Science, 349(6245):255-260, 2015.

Martin Anthony and Peter L Bartlett. Neural network learning: Theoretical

foundations. cambridge university press, 2009.

Frank Rosenblatt. The perceptron: a probabilistic model for information storage

and organization in the brain. Psychological review, 65(6):386, 1958.

Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. Multilayer
feedforward networks with a nonpolynomial activation function can approximate

any function. Neural networks, 6(6):861-867, 1993.

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified

activations in convolutional network. arXiv preprint arXiv:1505.00853, 2015.

Jun Han and Claudio Moraga. The influence of the sigmoid function parameters
on the speed of backpropagation learning. In International Workshop on Artificial

Neural Networks, pages 195-201. Springer, 1995.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with

gumbel-softmax. arXiv preprint arXiw:1611.01144, 2016.

Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and Reuven Y Rubinstein. A
tutorial on the cross-entropy method. Annals of operations research, 134(1):19-67,

2005.

Reuven Y Rubinstein and Dirk P Kroese. The cross-entropy method: a unified
approach to combinatorial optimization, Monte-Carlo simulation and machine

learning. Springer Science & Business Media, 2013.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for
large-scale machine learning. Siam Review, 60(2):223-311, 2018.

Josiah Collier Hoskins and DM Himmelblau. Artificial neural network models
of knowledge representation in chemical engineering. Computers & Chemical
Engineering, 12(9-10):881-890, 1988.

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In
Proceedings of COMPSTAT 2010, pages 177-186. Springer, 2010.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

Bibliography 107

[65]

[66]

[73]

[75]

[76]

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747, 2016.

Christian Szegedy, Alexander Toshev, and Dumitru Erhan. Deep neural networks

for object detection. 2013.

Ronan Collobert and Jason Weston. A unified architecture for natural language
processing: Deep neural networks with multitask learning. In Proceedings of the

25th international conference on Machine learning, pages 160-167, 2008.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions
on knowledge and data engineering, 22(10):1345-1359, 20009.

Steve Lawrence, C Lee Giles, Ah Chung Tsoi, and Andrew D Back. Face recognition:
A convolutional neural-network approach. IEEE transactions on neural networks,

8(1):98-113, 1997.

Alessandro Giusti, Dan C Ciregan, Jonathan Masci, Luca M Gambardella, and
Jurgen Schmidhuber. Fast image scanning with deep max-pooling convolutional
neural networks. In 2018 IEEFE International Conference on Image Processing,

pages 4034-4038. IEEE, 2013.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International conference on machine
learning, pages 448-456. PMLR, 2015.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
The journal of machine learning research, 15(1):1929-1958, 2014.

Elliot Meyerson and Risto Miikkulainen. Beyond shared hierarchies: Deep multitask
learning through soft layer ordering. arXiv preprint arXiv:1711.00108, 2017.

Jonghoon Jin, Aysegul Dundar, and Eugenio Culurciello. Flattened convolutional

neural networks for feedforward acceleration. arXiv preprint arXiv:1412.547/, 2014.

Klaus Greff, Rupesh K Srivastava, Jan Koutnik, Bas R Steunebrink, and Jiirgen
Schmidhuber. Lstm: A search space odyssey. IEEFE transactions on neural networks
and learning systems, 28(10):2222-2232, 2016.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical
evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint
arXiw:1412.3555, 2014.

Bibliography BIBLIOGRAPHY

78]

[79]

[80]

[81]

[82]

[84]

[90]

Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks.
IEEE transactions on Signal Processing, 45(11):2673-2681, 1997.

Toméas Mikolov, Martin Karafidt, Luk4s Burget, Jan Cernocky, and Sanjeev
Khudanpur. Recurrent neural network based language model. In FEleventh annual

conference of the international speech communication association, 2010.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are

features in deep neural networks? arXiv preprint arXiv:1411.1792, 2014.

Francgois Chollet. Xception: Deep learning with depthwise separable convolutions.
In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 1251-1258, 2017.

Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep convo-
lutional encoder-decoder architecture for image segmentation. IEEFE transactions

on pattern analysis and machine intelligence, 39(12):2481-2495, 2017.

Christian Szegedy, Sergey loffe, Vincent Vanhoucke, and Alexander Alemi.
Inception-v4, inception-resnet and the impact of residual connections on learning.

In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31, 2017.

Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, and Kaiming He. Aggregated
residual transformations for deep neural networks. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 1492-1500, 2017.

Karol J. Piczak. ESC: Dataset for Environmental Sound Classification. In Pro-
ceedings of the 23rd Annual ACM Conference on Multimedia, pages 1015-1018.
ACM Press. ISBN 978-1-4503-3459-4. doi: 10.1145/2733373.2806390. URL
http://dl.acm.org/citation.cfm?doid=2733373.2806390.

Jean E Burgess. Youtube. Ozford Bibliographies Online, 2011.
James Robert, Marc Webbie, et al. Pydub. Github, 2011.
Guido Van Rossum and Fred L Drake. Python library reference, 1995.

Hyungui Lim, Jeongsoo Park, and Yoonchang Han. Rare sound event detection
using 1d convolutional recurrent neural networks. In Proceedings of the Detection
and Classification of Acoustic Scenes and Events 2017 Workshop (DCASE2017),
pages 80-84, 2017.

Emre Cakir and Tuomas Virtanen. End-to-end polyphonic sound event detection
using convolutional recurrent neural networks with learned time-frequency rep-
resentation input. In 2018 International Joint Conference on Neural Networks
(IJCNN), pages 1-7. IEEE, 2018.

http://dl.acm.org/citation.cfm?doid=2733373.2806390

Bibliography 109

[91]

[94]

[97]

[98]

[99]

[100]

[101]

Brian McFee, Colin Raffel, Dawen Liang, Daniel PW Ellis, Matt McVicar, Eric
Battenberg, and Oriol Nieto. librosa: Audio and music signal analysis in python.
In Proceedings of the 14th python in science conference, volume 8, pages 18-25.
Citeseer, 2015.

Vibha Tiwari. Mfcc and its applications in speaker recognition. International

journal on emerging technologies, 1(1):19-22, 2010.

Ivan Himawan, Michael Towsey, and Paul Roe. 3d convolution recurrent neural
networks for bird sound detection. In Proceedings of the 3rd Workshop on Detec-
tion and Classification of Acoustic Scenes and Events, pages 1-4. Detection and

Classification of Acoustic Scenes and Events, 2018.

Christopher T Lovelace, Barry E Stein, and Mark T Wallace. An irrelevant light
enhances auditory detection in humans: a psychophysical analysis of multisensory

integration in stimulus detection. Cognitive brain research, 17(2):447-453, 2003.

Michael Lippert, Nikos K Logothetis, and Christoph Kayser. Improvement of visual

contrast detection by a simultaneous sound. Brain research, 1173:102-109, 2007.

Jack LeBien, Ming Zhong, Marconi Campos-Cerqueira, Julian P Velev, Rahul
Dodhia, Juan Lavista Ferres, and T Mitchell Aide. A pipeline for identification
of bird and frog species in tropical soundscape recordings using a convolutional
neural network. Fcological Informatics, 59:101113, 2020.

Sharath Adavanne, Giambattista Parascandolo, Pasi Pertild, Toni Heittola, and
Tuomas Virtanen. Sound event detection in multichannel audio using spatial and

harmonic features. arXiv preprint arXiw:1706.02293, 2017.

Jordi Laguarta, Ferran Hueto, and Brian Subirana. Covid-19 artificial intelligence
diagnosis using only cough recordings. IEEE Open Journal of Engineering in
Medicine and Biology, 1:275-281, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770-778, 2016.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In 2009 IEEFE conference on computer

viston and pattern recognition, pages 248-255. leee, 2009.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

Bibliography BIBLIOGRAPHY

[102] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning
transferable architectures for scalable image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 8697-8710,

2018.

[103] Maalidefaa Moses Tantuoyir. Thesis code, 2021. URL https://github.com/
Maalde/ThesisCodes. [Online; accessed 15-June-2021].

[104] Pavel Yakubovskiy,Ganesh Anand et al. Image classifier library, 2019. URL
https://github.com/qubvel/classification_models. [Online; accessed 28-
April-2021].

https://github.com/Maalde/ThesisCodes
https://github.com/Maalde/ThesisCodes
https://github.com/qubvel/classification_models

	Abstract
	Acknowledgements
	Abbreviations
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Problem Definition
	1.3 Outline

	2 Background
	2.1 Medical Background
	2.1.1 Cardiac Arrest
	2.1.2 AED in Team Training

	2.2 Audio Signal Processing
	2.2.1 Audio Signal Properties and Characteristics
	2.2.2 Audio Signal Representations
	2.2.2.1 Fourier Transform
	2.2.2.2 Spectrogram
	2.2.2.3 Mel Scale

	2.2.3 Audio Features for Classification
	2.2.3.1 Log-scaled Mel Spectrogram
	2.2.3.2 Mel-Frequency Cepstral Coefficients (MFCC)

	2.2.4 Sound Event Detection and Related Works

	2.3 Technical Background and Deep Neural Networks
	2.3.1 Machine Learning
	2.3.2 Neural Networks(NNs)
	2.3.3 Deep Learning
	2.3.4 Deep Neural Networks(DNNs)
	2.3.5 Convolutional Neural Network(CNN)
	2.3.6 Recurrent Neural Network(RNN)
	2.3.7 Pretrained Models and Transfer Learning
	2.3.8 Hyperparameter Tuning
	2.3.9 Statistical Information and Metrics

	3 Dataset
	3.1 Overview of Dataset
	3.1.1 AED Audio Dataset
	3.1.2 Background Noise Dataset
	3.1.3 Selection of AED audio Classes
	3.1.4 Polyphonic Audio Mixing
	3.1.4.1 Creation of Final Dataset

	3.2 Feature Extraction
	3.2.1 MFCC
	3.2.2 Log-scaled Mel Spectrogram

	3.3 Train, Validation and Testing Set
	3.4 Contribution to Dataset and Preprocessing

	4 Methodology
	4.1 Introduction
	4.1.1 Initial Proposed System
	4.1.2 Model Baseline Approach

	4.2 Proposed Architectures
	4.2.1 Architecture A
	4.2.2 Architecture B
	4.2.3 Architecture C

	4.3 Transfer Learning Models
	4.3.1 ResNet18

	4.4 Binary Classification Methods
	4.5 Multiclass Classification Methods

	5 Experiments and Results
	5.1 Introduction
	5.1.1 Experimental Setup
	5.1.2 Choice of Hyperparameters
	5.1.2.1 Learning Rate
	5.1.2.2 Dropout

	5.2 Trial Experiment for Superior Features
	5.3 Presentation of Results
	5.3.1 Experiment 1: Binary Classification (1-versus-others)
	5.3.1.1 Architecture A: Binary (1-versus-others)
	5.3.1.2 Architecture B: Binary (1-versus-others)
	5.3.1.3 Architecture C: Binary (1-versus-others)
	5.3.1.4 ResNet18: Binary (1-versus-others)

	5.3.2 Experiment 2: Binary Classification (1-versus-1)
	5.3.2.1 Architecture A: Binary Classification (1-versus-1)
	5.3.2.2 Architecture B: Binary Classification (1-versus-1)
	5.3.2.3 Architecture C: Binary Classification (1-versus-1)
	5.3.2.4 ResNet18: Binary Classification (1-versus-1)

	5.3.3 Experiment 3: Multiclass Classification
	5.3.3.1 Architecture A: Multiclass Classification
	5.3.3.2 Architecture B: Multiclass Classification
	5.3.3.3 Architecture C: Multiclass Classification
	5.3.3.4 ResNet18: Multiclass Classification

	5.4 Analysis of Results
	5.4.1 Experiment 1: Binary Classification (1-versus-others)
	5.4.2 Experiment 2: Binary Classification (1-versus-1)
	5.4.3 Experiment 3: Multiclass Classification

	6 Discussion and Future Works
	6.1 Model Performance
	6.1.1 Experiment 1: Binary Classification (1-versus-others)
	6.1.2 Experiment 2: Binary Classification (1-versus-1)
	6.1.3 Experiment 3: Multiclass Classification

	6.2 Proposed System
	6.3 Limitations
	6.3.1 Volume Reduction

	6.4 Future Work
	6.4.1 Network Architectures
	6.4.2 Realistic Data Material
	6.4.3 More Dataset per Class

	7 Conclusion
	A Appended Codes
	A.1 Generating Audio Chunks
	A.2 Reduce Volume of AED Audio
	A.3 Create Polyphonic Audio Mix
	A.4 Create Features
	A.5 Import Dataset
	A.6 Architectures

	B Plots for Binary Classification(1-versus-others)
	B.1 Plots for Architecture A
	B.2 Plots for Architecture B
	B.3 Plots for Architecture C
	B.4 Plots for ResNet18

	C Sample Spectrograms
	C.1 Log-scaled mel spectrogram samples
	C.2 MFCC spectrogram samples

	Bibliography

