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Abstract  

Portfolio analysis and optimization has for the past several decades been applied in the oil & gas 

industry for asset allocation with the goal of maximizing corporate value creation. More recently, 

the traditional task of deciding between competing petroleum assets has evolved to include CCS 

(Carbon Capture and Storage) and renewable energy resource assets due to the change in the 

energy landscape. Although oil & gas companies realize that the energy transition is inevitable, 

what fossil fuel assets to divest and when to divest them is still open to question as (i) the pace of 

the energy transition remains undetermined and (ii) even if oil & gas demand and prices were 

predictable, the asset value consequences could vary as acting too slowly could lead to losses 

further down the road in addition to reputational problems and acting too quickly could destroy 

value for shareholders without contributing to emission reductions.  

In this work, we have implemented a multi-objective, time-dependent portfolio model to inform 

and support an oil & gas company’s strategic decisions for successfully managing the energy 

transition. These decisions include several strategies such as reducing the fraction of the overall 

revenues stemming from fossil fuels and increasing ownership in carbon reduction technologies. 

The model can easily be extended to include renewable geothermal and solar assets, investments 

in blue or green hydrogen or negative emission technologies. Given the high uncertainty in future 

supply and demand for both fossil and renewable energy, the optimal portfolio at any point in time 

is highly uncertain and must be flexible enough to change over time whilst still meeting the 

specified objectives. 

The main contribution of the work is a decision framework and model to aid oil & gas companies 

in their energy transition efforts. The portfolio optimization and management model has been 

developed in Python. It identifies optimal portfolios from a pool of potential petroleum and carbon 

reduction projects. These projects include traditional oil & gas producing assets, wind farms and 

CCS (Carbon Capture and Storage) assets. Although upstream oil & gas portfolio optimization 

methods have been presented in the literature, none of these addresses the carbon reduction 

objective and the ability to compare petroleum and non-petroleum assets in a portfolio context. 

Hence, the main advantage of this work is that it provides a unified and comprehensive framework 

for inclusion of multiple energy related assets in a time-varying and multi-objective portfolio 
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assessment model, with a focus on energy transition and meeting the net-zero carbon emission 

ambition of oil & gas companies.  
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1. Introduction  

The energy transition consists of a global shift in the energy sector from carbon-intensive energy 

production, such as coal, oil, and natural gas, to renewable and clean energy sources, including 

wind, solar, and water. The ultimate objective for a company embarking on the energy transition 

is to minimize greenhouse gas (GHG) effects by reducing carbon emission intensities from fossil-

based producing systems.  

Supported by a prevalent social and environmental push towards sustainability, the energy 

transition is primarily driven by electrification and renewables growth (McKinsey, 2021). The fast 

penetration rate of renewables into the energy mix will result in structural changes in the energy 

supply and demand, fluctuations in the oil and gas prices, and increased operation and production 

costs once more sustainable processes have been adopted. Given that the oil and gas (O&G) 

industry is held responsible for significant carbon emission intensities from both its upstream and 

downstream operations, bold visions and integrated balanced portfolio adoption have become the 

center of attention of many O&G companies.  

In addition to oil production reduction, minimizing emission from the O&G sector requires the 

development of green energy alternatives, such as wind power, solar, geothermal, etc., and/or 

technologies allowing better use of traditional fossil-based energy sources, such as Carbon Capture 

and Storage (CCS).  

As O&G companies face increasing pressure to respond to the energy transition, they must 

consider various options. Choosing which petroleum assets to invest in, which carbon reduction 

technologies are the most feasible, and when to embark on the energy transition journey are 

questions yet to be determined for some companies. Although the direction of change of the energy 

landscape is given, there are still unsolved challenges ahead, for which price expectations, oil and 

gas demand predictions, technology innovations and developments, and energy transition pace are 

key determinants. The implications of this for investment decisions and the company's 

performance and reputation remain open to question. Moving too slowly or refusing to change 

could lead to losses in shareholders' trust, as more investors seek confidence and transparency in 

accounting for climate change exposure in the long term. On the other hand, moving too quickly 
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could result in stranded assets, especially since green technologies' technical and economic 

feasibilities remain uncertain.  

Managing and succeeding in the energy transition requires a relevant and flexible decision 

framework and model that allows O&G companies to evaluate and compare alternate strategies. 

As those strategies are based on possible asset combinations that will vary over time, a time-

dependent multi-objective portfolio model is proposed in this thesis. Although upstream O&G 

portfolio optimization methods have been presented in the literature, none of these addresses the 

carbon reduction objective and the ability to compare petroleum and non-petroleum assets in a 

portfolio context. Hence, the main goal of this thesis is to provide a unified and comprehensive 

framework for inclusion of multiple energy-related assets in a time-dependent multi-objective 

portfolio assessment model, with a focus on energy transition and net-zero carbon emission 

ambition of O&G companies. 

For the realization of this objective, the remaining chapters will cover the following topics:  

 In Chapter 2, key aspects of the decision-making problem are covered. The proposed 

framework includes an overview of the portfolio objectives, decision variables, and 

performance goals. Moreover, the uncertain nature of the problem and the project's 

dependencies in the portfolio analysis context are discussed.  

 Chapter 3 introduces the traditional "rank and cut" method of asset selection and provides 

an overview of the Modern Portfolio Theory, also known as Markowitz's Theory, widely 

used in the financial market. In addition, the multi-objective portfolio analysis problem is 

formulated, and the concept of Pareto optimality is introduced. Then the chapter gives a 

brief review of several techniques to solve the multi-objective portfolio problem, such as 

the weighted-sum method and the multi-attribute utility theory. This thesis's proposed time-

dependent goal-seeking approach is also described in detail, emphasizing the critical 

interactions between business investments and corporation strategies.  

 Chapter 4 is divided into three major parts, each covering one type of asset considered in 

this work. O&G project attributes are calculated in the first part, including annual 

production, carbon emission intensities, and economic metrics. Then the second part covers 

wind farm assets evaluation using operational and financial attributes. Finally, an overview 
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of the CCS technology is introduced, as well as an assessment of its technical and economic 

potential. All three evaluation models were developed in Python. 

 In Chapter 5, the proposed portfolio analysis approach is applied to a set of hypothetical 

assets, including both petroleum and non-petroleum projects. Different corporate strategies 

are evaluated and compared to one another. A discussion about the degree of operational 

and economic trade-offs imposed on O&G companies in the energy transition context is 

also presented.   

 Chapter 6 gives an overview of this thesis and concludes the work presented. Some 

recommendations and possible research areas are proposed.  
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2. Overview of the Project Portfolio Optimization Problem  

Project portfolio optimization refers to a wide range of optimization tasks since the term "project" 

is extensive and used in several contexts across different industries. In this study, a project is 

described as a plan that requires money, time, and other resources, with a primary objective to 

create value and returns for the shareholders. A portfolio consists of several projects. Portfolio 

optimization aims to find the optimal combination of projects expected to generate the best 

outcomes given the decision maker's objectives.  

The literature on portfolio optimization is quite rich, which is not surprising given the generality 

of the concept. While much work has been presented and discussed for portfolios of traded shares 

and financial markets, the literature discussing portfolio analysis for real projects, including 

applications in the O&G industry, has grown over the past several decades. Articles related to this 

topic are reviewed and discussed later in this thesis.  

This section will focus on portfolio theory relevant and useful in the O&G sector, reviewing 

different aspects of the portfolio decision-making problem. First, the objectives of the portfolio are 

defined, covering both single and multi-objective optimization problems. Then, an overview of the 

decision variables and performance goals is presented to determine the type of optimization 

problem needed to assess. The fact that many of the key inputs to the problem are uncertain 

requires an understanding of uncertainty quantification to evaluate the impact of these 

uncertainties on future portfolio performance.  

 

2.1. Objectives  

In any organization, the executed projects must all together meet the management team's objectives 

to achieve the organization's goals and targets. This could be increasing net present value (NPV), 

reducing carbon emission, cutting costs, enhancing safety measures, etc. However, in such 

contexts, companies face two main challenges. First, the corporation has access to limited capital 

supply, where budgetary constraints are imposed either on the whole organization or individual 

units. Luenberger (1998) states that the assumption suggesting unlimited capital supply does not 

hold in the O&G sector. Unlike what's commonly assumed in financial theory, not every project 
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with a positive NPV can be funded. Second, some of the goals suggested can conflict with each 

other. For example, the oil production increase objective might be restricted by the company's goal 

of reducing carbon emission. Bratvold & Begg (2010) addressed this difficulty by first classifying 

the objectives into two categories, using natural divisions based on the required tradeoffs. Then, a 

weighted score for each class is calculated. One example could be the use of cost and benefits as 

division categories. Next, the decision-maker needs to cross-plot the weighted benefit/cost pairs 

for each alternative. This plot illustrates the dominance of one alternative over the others. It helps 

the decision-maker assess his willingness to trade off the variation in benefit for the variation in 

cost. A fuller discussion about dealing with conflicting objectives can be found in Bratvold & 

Begg (2010).  

Therefore, an optimal portfolio should balance particular objectives while maximizing the overall 

value to prevent the overperformance of one unit of the corporation at the expense of other 

departments. In addition, even if the optimal portfolio doesn't meet individual objectives at a given 

time, it should always align with the company's long-term strategic direction (Cooper et al., 1997).  

The selection of objectives in terms of their nature and number constitutes the multi-dimensional 

aspect of the optimization problem. Several attributes are discussed in the literature for O&G 

portfolios, suggesting the presence of both economic and operational metrics (DuBois, 2001). 

Financial performance metrics include undiscounted cash flow, earnings before interest tax 

depreciation and amortization (EBITDA), net present value (NPV), profitability index 

(PI=NPV/Capex), etc. Some common non-financial metrics used in the literature are annual O&G 

production and reserves volumes.  

Given the current change in the energy landscape, the transition to cleaner energy solutions is now 

inevitable. Investors are looking for investments that minimize their climate change exposure and 

reduce the possibility of stranded assets (McKinsey, 2021). This has motivated O&G companies 

to set net-zero emission targets and diversify their portfolios, focusing on a mix of petroleum and 

non-petroleum assets. This is illustrated by these facts about a few of the O&G players: 

 ExxonMobil (2020) introduced its carbon emission reduction plan, targeting a 15-20% 

drop in upstream operations emission intensity by 2030 by investing in low emission 

technologies and supporting local and international policies on carbon pricing.  
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 Shell (2020) presented a carbon management approach to reach a 20% reduction in carbon 

intensity by 2030 and 100% by 2050. In addition, the company seeks to deliver this goal 

by rebalancing its portfolio, where $2-3 billion are expected to be invested annually in 

Renewables and Energy Solutions.  

 Equinor (2020) announced its Climate Roadmap that includes accelerated decarbonization 

by CCUS (Carbon Capture, Utilization, and Storage), profitable renewables growth, and 

integrated carbon-efficient O&G production. It aims to reach a 40% emission reduction by 

2030 and 100% by 2050.  

 Vår Energi (2020) discussed ways of reducing greenhouse gas emissions to reach a 40% 

emission cut by 2030 and 100% by 2050. The company aims to increase platform 

electrification, implement low emission technologies, invest in carbon capture and storage, 

and use renewable energy.  

From these examples, we can conclude that the companies consider carbon reduction an essential 

means of maximizing shareholder value.  

Typically, the objective performance is assessed for both individual years and over the whole 

period of the portfolio planning horizon. Objectives may be set as the "primary objective" or as an 

"objective function," while other objectives are formulated as constraints. In some cases, authors 

assign different weights to several objectives and monitor the portfolio's performance on the 

objective function. In a highly constrained optimization problem, the algorithm might fail to find 

an optimal solution; therefore, a penalty function must be introduced. The penalty function is 

added to the objective function and uses a penalty multiplier to measure the violation of each 

constraint (Anescu, 2017). More details about problem formulation (mathematical program) are 

presented in section 3.  

 

2.2. Structuring  

The purpose of this section is to frame the optimization problem and identify the decision variables. 

Information going beyond the scope of this thesis will be omitted from the portfolio analysis to 
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avoid problem complexity. Bratvold & Begg (2010) suggest that decisions can be divided into 

three categories: policy, strategic and operational.  

Policy decisions are assumed to be defined prior to the portfolio analysis; hence, they will not be 

included in the optimization problem. Such decisions include:  

 Geographical diversification: decisions regarding the location (region/country) of the 

assets. All projects are assumed to be in Norway, covering both onshore and offshore areas.  

 Resource diversification: for petroleum assets, only conventional O&G projects are 

studied. Shale extraction and liquefied natural gas assets are not included in this work.  

 Renewable energy and carbon reduction technologies: wind farms (onshore and offshore) 

and carbon capture and storage (CCS) are the only two non-petroleum projects considered 

in this thesis.  

Strategic decisions are taken in the context of the portfolio analysis are completely in the decision-

maker's control. In general, portfolio optimization problems utilize binary strategic decisions for 

each asset to choose whether the decision-maker should invest or not in a specific project. 

However, in the O&G context, decision variables go beyond the "invest/don't invest" scheme, 

allowing the decision-maker to find the optimal working interest needed for each asset. In addition, 

given that projects, in general, will have different starting periods, the optimal time to invest is 

added as a decision variable. This approach is expected to be critical when working with the carbon 

reduction objective, as companies have solid targets for emission intensities in a given period. The 

following decisions must be considered (Walls, 2004; Wood, 2001):  

 Working interest: which assets should the company invest in to maximize value? And what 

fraction of the overall project should be considered?  

 Time to invest: when should the company invest in each of the chosen projects?  

Typically, operational decisions are addressed after the portfolio selection process and focus on 

the "how-to-do-it" question rather than the "what-should-we-be-doing" decision (Bratvold & 

Begg, 2010). Examples of operational decisions include:  
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 Application of secondary or enhanced oil recovery technologies to boost hydrocarbon 

production.  

 Partnerships possibilities at a portfolio or individual assets level, through joint ventures 

(JVs), acquisitions, collaboration with niche technology firms or R&D institutions, etc.  

 Electrification of operating hydrocarbon assets.  

Other elements of the portfolio optimization problem include the company's goals and constraints. 

Decision-makers set the goals to assess the performance of individual assets, as well as the overall 

portfolio. As mentioned earlier in the objectives section of this report, the goals can be set on a 

cumulative basis (over the entire project) or an annual basis. It's important to distinguish between 

what is considered a goal for the objective function and what constitutes a constraint. Wood (2016) 

states that goals are aspirations that the portfolio can either achieve or not, while constraints are 

limits that cannot be ignored. An optimal portfolio should therefore satisfy all the constraints.  

Some common constraints found in the literature include capital investment limit, minimum 

working interest applied to a specific asset, minimum hydrocarbon production, reserves volumes 

limit, maximum carbon emission, and human and technology constraints associated with the 

availability of qualified employees or relevant technology.   

As the number of constraints applied increases, fewer asset combinations are expected. In some 

cases, the optimization algorithm might fail to find an optimal solution that satisfies the constraints 

involved. Therefore, the decision-makers must restate the company's goals and adjust their strategy 

on an iterative basis to potentially find a feasible solution.  

 

2.3. Uncertainties  

In the optimization problem of O&G portfolios, not all information is deterministic. Some 

information used might be from unknown sources or based on estimations and judgments. Often, 

the estimation of one parameter might have a significant impact not only on the net present value 

but on the overall portfolio's performance. Rose (2004) showed that most O&G companies 

delivered less than half of their reserves estimates during the last few years of the 20th century. 
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Therefore, understanding and quantifying uncertainties are essential in a portfolio optimization 

context.  

Two types of uncertainties are reported in the O&G industry: underground and aboveground 

uncertainties (Brashear et al., 1999). Underground uncertainties include reservoir and fluid 

properties and are dominant in estimating the oil initially in place (OIIP). Aboveground 

uncertainties represent estimations of cash flow variables, hydrocarbon price forecast, carbon 

emission intensities, etc. In this work, the OIIP calculation was omitted, where reserve volumes 

were considered input parameters (modeled later as distributions) for each asset.  

Monte Carlo simulation (MCS) was used in this thesis to integrate uncertainty analysis into both 

asset and portfolio evaluation. MCS is a very popular and robust application in the petroleum field 

and was initially introduced by Hess & Quigly in 1963 and Hertz in 1964 to generate NPV 

distributions. It represents the uncertainty propagation from input variables that can be evaluated 

to variables needed in the decision-making analysis (Bratvold & Begg, 2010). A literature review 

shows various applications of the MCS in the O&G sector, including exploration and production 

real options analysis (Willigers & Bratvold, 2008), reservoir simulation modeling (Cremon et al., 

2020), and portfolio optimization problems (Bulai & Horobet, 2018; DuBois, 2001; Orman & 

Duggan, 1999; Wood, 2001; Wood, 2016; Xue et al., 2014).  

An MCS requires a choice of a probability distribution for each uncertain parameter and will 

generate a distribution for individual output variables (such as NPV, carbon emission, etc.). 

Various studies have been performed on specific variables such as costs, prices, and other well 

performance attributes, and the corresponding distributions have been established. Examples 

include triangular distributions for well unit costs estimation and uniform distributions for 

production time-variables assessment. In this thesis, when no information could be found on the 

probability density function of the uncertain parameter, a PERT distribution was used. The PERT 

distribution, a version of the Beta distribution, is a continuous probability distribution that takes 

as input the mode and the upper and lower bounds of a variable. The advantage of using the PERT 

distribution, rather than the triangular, is that the former generates a smoother curve by 

emphasizing values around the mode rather than the bounds (edges). This implies a higher trust in 

the most likely value while considering the deviations towards the edges (Salling, 2007). Since the 
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PERT distribution is not part of the statistical functions (scipy.stats) library in Python, it has been 

derived using a transformed four parameters Beta distribution.   

Some studies have been conducted to analyze the impact of uncertainty quantification (for 

example, using MCS) on the portfolio selection process of an O&G company. Wood (2001) stated 

that the accuracy of uncertainty measures derived from MCS results depends on the number of 

iterations used and how representative and comprehensive the model is. Begg & Bratvold (2008) 

investigated the impact of prediction errors on portfolio selection in the petroleum field. They 

concluded that even though biases are present in the analysis, they are not considered significant, 

particularly compared to other prediction errors. In addition, their results showed that a higher 

number of projects selected in the portfolio would lead to an increase in the expected 

disappointment. McVay & Dossary (2014) suggested that all biases present in an O&G portfolio 

analysis model can be divided into two main categories: overconfidence and directional biases. 

They showed that a moderate degree of overconfidence would result in a 30-35% expected 

disappointment and 1-5% decision error of estimated NPV. However, at significant 

overconfidence levels, the disappointment might reach 100% of estimated NPV.    

 

2.4. Correlations 

In this work, dependencies have not been discussed so far. The assumption of independent 

probability distributions of the variables doesn't hold in reality.  In an MCS model, dependencies 

can often be captured by correlations.  

Usually, correlations can be classified into two categories: inter-project and intra-project. Inter-

project correlations represent dependencies between different projects at a portfolio level. O&G 

prices are considered the primary source of inter-project correlations as all assets are evaluated 

using the same hydrocarbon price in portfolio analysis. Since our work includes non-petroleum 

assets, energy price and carbon pricing policies can also act as sources of inter-project correlations. 

In addition, geological similarities, shared infrastructures, and similar political and fiscal regimes 

might increase the degree of correlations between two separate assets, impacting the overall 

portfolio's volatility.  
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On the other hand, correlations between input variables to individual projects are classified as 

intra-project correlations. Examples include the relationship between reserves volumes and capital 

expenditure (Capex), water saturation and permeability, reservoir thickness and area, etc. When 

building the projects' production and economic models, the decision-maker tries to include those 

correlations using functional relationships into the model's equations. For example, in this work, 

the Capex structure presented was based on reserve volume estimates. However, given the 

complexity of the petroleum assets structures, it's hard to include all intra-project correlations into 

the model's equations.  

Correlations between input parameters in the petroleum sector have received some attention in the 

literature. Costa Lima et al. (2012) presented a method for estimating linear correlations between 

O&G projects. They concluded that fixed and variable costs and oil quality are the most significant 

determinants of the correlation. They also investigated the impact of correlations between two 

projects on the efficient frontier and risk reduction1 by diversification, based on Markowitz's 

portfolio theory (section 3). The authors suggested that by diversifying (allocating different 

fractions of the budget to various projects), the portfolio risk is reduced. And as the correlation 

between the projects decreases, the possibility of risk reduction by diversification is improved. 

However, it's important to note that only linear correlations were assumed in their study, and only 

two assets were considered.  

Jafarizadeh (2010) introduced a financial factor model to estimate the covariance between 

variables in a risk-neutral valuation study. He concluded that changes in economic forces (such as 

O&G prices, steel prices, carbon prices, etc.) would change all micro-variables used in the project 

simulation. However, the author stated that the final investment decision wouldn't change by 

including correlations in the analysis in some cases. Xue et al. (2014) suggested that the production 

profiles of individual projects are independent of each other. Only the following economic 

parameters dependencies on the yearly bench prices were included in their model: yearly sales 

prices, yearly Capex, and yearly Opex.  

                                                 

 

1 In financial portfolio optimization, the standard deviation is the most common measure of risk 
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In reality, dependencies in the petroleum field are very diverse. Hence, it's interesting to assess the 

added value of integrating all correlations in large-sized portfolios. Further research needs to be 

done to understand whether the higher degree of complexity in the problem is compensated by 

improved results quality. However, this analysis is out of the scope of this thesis. Only a limited 

number of correlations are used in this work, following what's common in the literature. 
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3. Portfolio Optimization Methods in the O&G Industry  

3.1. Rank and Cut Approach   

The rank and cut method, also known as the capital rationing approach, is widely used in the O&G 

industry because of its simplicity in generating "good enough" rankings and portfolios. It's a single-

objective optimization method using a single portfolio constraint that allows the decision-maker 

to evaluate various portfolios while addressing budget limitations. Since companies don't have the 

required capital to invest in all feasible (positive NPV) projects, a capital allocation method is 

required to select the portfolio, optimizing the objective function given the capital constraint.  

In this approach, the performance metric is first established, which is the objective function that 

the decision-maker needs to optimize. Examples include maximizing overall NPV, minimizing 

total Capex, minimizing overall carbon emission, etc. Second, the assets are ranked and ordered 

according to their respective contributions to the objective function. Then the constraint is selected, 

and the projects are accumulated to be funded until reaching the constraint limit. Therefore, a 

100% working interest is assigned to all selected projects, except the last one, which might receive 

partial funding (Wood, 2016).   

We will now illustrate the rank and cut method through an example using a hypothetical portfolio 

of 10 projects (Table 3.1 andTable 3.2). 

In Table 3.1, the objective function was to maximize the profitability index (PI), derived from the 

ratio of E[NPV]/Capex. Assets ranked #1 to #6 were fully funded (100% working interest), and 

they accumulated for a total Capex of $3672 million. The remaining $328 million were allocated 

to project #5 (ranked #7), which had a working interest of 21.2%. The remaining assets were thus 

excluded from the portfolio. As the budget constraint becomes more severe, less projects will be 

selected.  
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Table 3.1: Rank and Cut Optimization for NPV Maximization 

Objective Function:        PI maximization 

Asset Ranking Criteria:  PI (=NPV/Capex) 

Capex Constraint:           $4000 million 

Project Ranking E[NPV] 

($ million) 

E[emission] 

(million t CO2) 

Capex 

($ million) 

Profitability 

Index (PI) 

Portfolio 

weight (%) 

P1 10 420.00 0.68 742.00 0.56 0.00 

P2 3 650.00 0.51 324.00 2.00 100.00 

P3 2 885.00 0.46 381.00 2.32 100.00 

P4 8 1025.00 1.22 862.00 1.19 0.00 

P5 7 2312.00 3.19 1547.00 1.49 21.20 

P6 4 1784.00 0.98 994.00 1.79 100.00 

P7 6 367.00 0.23 225.00 1.63 100.00 

P8 1 1546.00 1.05 607.00 2.55 100.00 

P9 9 557.00 0.65 696.00 0.80 0.00 

P10 5 1896.00 2.48 1141.00 1.66 100.00 

 

In Table 3.2, a different objective function was chosen to illustrate the variation of the portfolio's 

selection with the optimization parameter. In this case, the objective was to minimize the CO2 

emission, and the ranking criteria chosen was the expected carbon emission (E[emission]) from 

individual assets. As shown in Table 3.2, only four projects were fully funded, while project #1 

was allocated a share of 22.07%. Some of the assets selected for PI maximization were excluded 

when the objective function changed. This result was expected as different ranking criteria metrics 

would result in different ranking orders of the projects, reflecting the limitation of the rank and cut 

method in complex scenarios (Wood, 2016).  

In addition to the inability of the rank and cut method to account for multiple objectives and 

multiple constraints on a portfolio level, this approach ignores correlations between projects and 

the "time to invest" decision parameter. However, given its simplicity and ease of use and 

application, this method provides a good starting point for future optimizers.  
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Table 3.2: Rank and Cut Optimization for Emission Minimization 

Objective Function: Carbon Emission minimization 

Asset Ranking Criteria:  E[emission] 

Emission Constraint: 2 million tons CO2 

Project Ranking E[NPV] 

($ million) 

E[emission] 

(million t CO2) 

Capex 

($ million) 

Portfolio 

weight (%) 

P1 5 420.00 0.68 742.00 22.07 

P2 3 650.00 0.51 324.00 100.00 

P3 2 885.00 0.46 381.00 100.00 

P4 8 1025.00 1.22 862.00 0.00 

P5 10 2312.00 3.19 1547.00 0.00 

P6 6 1784.00 0.98 994.00 0.00 

P7 1 367.00 0.23 225.00 100.00 

P8 7 1546.00 1.05 607.00 0.00 

P9 4 557.00 0.65 696.00 100.00 

P10 9 1896.00 2.48 1141.00 0.00 

 

 

3.2. Mean-Variance Approach 

The mean-variance approach is based on Markowitz's Nobel Prize winning work, also known as 

Markowitz's Portfolio Theory or Modern Portfolio Theory (MPT), published in 1952 (Markowitz, 

1952). MPT is a risk versus return consideration that allows the decision-maker to consider how 

much expected NPV he/she is willing to give up in return for reduced risk (standard deviation) or 

how much risk he/she is willing to take on for a given increase in expected NPV.  

Markowitz (1952) states that its proposed optimization theory can either minimize the risk of an 

expected return or maximize the expected return of a given risk by carefully selecting the working 

interests of several assets.  
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Markowitz presented the theory in the context of financial markets. Later, the MPT has been 

applied on real projects that were not traded in the financial market, such as aerospace and 

electricity generation assets. Literature shows significant applications of the MPT to the petroleum 

industry, given the high degree of risk associated with investments in this sector (Xue et al., 2014). 

Several authors illustrated the advantages of adapting the mean-variance approach in assets' 

selection of an O&G portfolio, given its simplicity and effectiveness (Ball & Savage, 1999; 

Bratvold et al., 2003; Jafarizadeh, 2010; Zhen & Wang, 2008).  However, differences between the 

stock market and the oil industry raise some concerns related to MV optimization in non-financial 

assets. Key distinctions between the two application areas can be summarized in the following five 

categories: risk indicators, periods, type of uncertainties, market characteristics, and impact of 

budget constraints (Ball & Savage, 1999; Walls, 2004; Xue et al., 2014). In addition to the return 

target and budget constraint, some petroleum companies consider other goals and objectives, such 

as reserve volumes and annual production. In such situations, the multi-objective feature of the 

optimization problem can result in the absence of a feasible solution (Bulai & Horobet, 2018).  

MPT defines risk as the standard deviation of the portfolio NPV distribution. It seeks to lower the 

variance of the portfolio return that is modeled as the weighted combination of individual asset's 

returns. Markowitz presented the concept of "efficient frontier," illustrated in Figure 3.1. The 

efficient frontier is a combination of all risky investments that maximize the investor's returns for 

a given degree of risk or alternatively lower the level of risk for a given value of return. As the 

standard deviation is increasing, the increase in return diminishes and approaches zero. The 

feasible portfolios lying below the efficient frontier can have the same risk as those of the efficient 

frontier; however, their overall returns will be lower. Hence, even though they are feasible, they 

are no longer considered efficient (Mutavdzic & Maybee, 2015).  
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Figure 3.1: Efficient Frontier and CML (adapted from Mutavdzic & Maybee (2015)) 

 

Markowitz based his theory on the assumption that investors are risk-averse. If two investments 

have the same expected value of return, investors will select the investment with the lowest level 

of risk. However, the degree of risk aversion differs between companies and is often driven by 

various factors, such as the availability of wealth/risk capital (Mutavdzic & Maybee, 2015). To 

secure a certain amount of cash in hand, the investor in a risky asset would be ready to divest 

himself at a price equal to the certain equivalent. Using an exponential utility function to represent 

the decision maker's risk attitude, the certain equivalent (𝐶𝑥) of each asset is given by:  

 
𝐶𝑥 = −𝑅𝑇 𝑙𝑛 {∑𝑝𝑖𝑒

−
𝑥𝑖
𝑅𝑇

𝑛

𝑖=0

} (3.1) 

where:  

𝐶𝑥: certain equivalent 

𝑅𝑇: risk tolerance  

𝑝𝑖: probability of outcome 𝑖 

𝑥𝑖: value of outcome 𝑖 

𝑛: total number of possible outcomes 
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Considering 𝑛 assets and a period 𝐽, the mean and variance of returns of each asset can be 

calculated using historical data as follows:  

𝜇1 =
1

𝐽
∑ 𝑅1𝑗
𝐽
𝑗=1 ,   𝜇2 =

1

𝐽
∑ 𝑅2𝑗
𝐽
𝑗=1 ,   …   𝜇𝑛 =

1

𝐽
∑ 𝑅𝑛𝑗
𝐽
𝑗=1  (3.2) 

𝜎1
2 =

1

𝐽
∑ (𝑅1𝑗 − 𝜇1)

2𝐽
𝑗=1 ,  𝜎2

2 =
1

𝐽
∑ (𝑅2𝑗 − 𝜇2)

2𝐽
𝑗=1 ,  …  𝜎𝑛

2 =
1

𝐽
∑ (𝑅𝑛𝑗 − 𝜇𝑛)

2𝐽
𝑗=1  (3.3) 

 

where:  

𝑖: project number; 𝑖 = 1,…, n 

𝑗: time along the period 𝐽 (year, month, day, etc.); 𝑗 = 1,…, 𝐽 

𝜇𝑖: mean of project 𝑖 

𝜎𝑖
2: variance of project 𝑖 

𝑅𝑖𝑗: return value of project 𝑖 at time 𝑗 

  

The expected value (𝐸[𝑃]) and variance (𝑉𝑎𝑟[𝑃]) of portfolio return are calculated as follows:  

𝐸[𝑃] =  ∑(𝑥𝑖𝑅𝑖)

𝑛

𝑖=1

  (3.4) 

𝑉𝑎𝑟[𝑃] =  ∑(𝑥𝑖 ∙ 𝜎𝑖
2)

𝑛

𝑖=1

+ 2 ∑ (𝑥𝑖 ∙ 𝑥𝑘 ∙ 𝑐𝑜𝑣(𝑅𝑖, 𝑅𝑘))

𝑛

𝑖=1,𝑘=1

 
(3.5) 

where:  

𝑥𝑖 is the participation of asset 𝑖 in the portfolio  

𝑐𝑜𝑣(𝑅𝑖, 𝑅𝑘): covariance of 𝑅𝑖 and 𝑅𝑘, given by the following formula:  

 

𝑐𝑜𝑣(𝑅𝑖, 𝑅𝑘) = 𝐸[(𝑅𝑖 − 𝜇𝑖)(𝑅𝑘 − 𝜇𝑘)] (3.6) 

 

Presenting the results in vector form, the participation (𝑥), expected return (𝜇) and covariance 

matrix (S) can be written as follows:  
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𝜇 =  (

𝜇1
𝜇2
⋮
𝜇𝑛

)  ,  𝑋 = (

𝑥1
𝑥2
⋮
𝑥𝑛

)  ,  𝑆 =  

(

 
 

𝜎11 𝜎12 𝜎13 ⋯ 𝜎1𝑛
𝜎21 𝜎22 𝜎23 ⋯ 𝜎2𝑛
𝜎31 𝜎32 𝜎33 ⋯ 𝜎3𝑛
⋮ ⋮ ⋮ ⋱ ⋮
𝜎𝑛1 𝜎𝑛2 𝜎𝑛3 ⋯ 𝜎𝑛𝑛)

 
 

 (3.7) 

 

Hence the portfolio variance can be written as:  

 𝑉𝑎𝑟[𝑃] = 𝑋𝑇𝑆𝑋 (3.8) 

 

The portfolio optimization problem can have four main classifications: 

 Portfolio risk minimization subject to a target expected return:  

 

 min
𝑋
𝑋𝑇𝑆𝑋 (3.9) 

subject to:    

 𝑋𝑇𝜇 =  𝜇𝑡𝑎𝑟𝑔𝑒𝑡 (3.10) 

 

 Portfolio risk minimization subject to a specific target of various attributes: 

 

 min
𝑋
𝑋𝑇𝑆𝑋 (3.11) 

subject to:    

 𝑋𝑇𝐺 = 𝐺𝑡𝑎𝑟𝑔𝑒𝑡 (3.12) 

where: 𝐺 =  (

𝑔1
𝑔2
⋮
𝑔𝑛

) = 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑣𝑒𝑐𝑡𝑜𝑟    

 

 Portfolio return maximization subject to a target degree of risk:  
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 max
𝑋
𝑋𝑇𝜇 (3.13) 

subject to:    

 𝑋𝑇𝑆𝑋 =  𝜎𝑡𝑎𝑟𝑔𝑒𝑡
2  (3.14) 

 

 Portfolio optimization of the ratio between risk and return, subject to a given risk tolerance 

factor (𝜆):  

 min
𝑋
𝑋𝑇𝑆𝑋 − 𝜆𝑋𝑇𝜇 (3.15) 

where:  𝜆 ∈ [0,∞)  

 

MPT promotes asset diversification to protect investors from both market risks and risks associated 

with the specific company. A more consistent and smoother return on investment is expected by 

diversification over the medium to long term. Markowitz suggests that understanding the 

relationship between various stocks can reduce risk exposure. If the assets (or stocks) are positively 

correlated, less risk reduction by diversification is expected. In contrast, negatively correlated 

assets increase the risk reduction effect of diversification. Therefore, assets should not be picked 

individually, but rather it's important to account for an asset's variations with prices relative to 

changes with prices of all other assets in the investment portfolio (Omisore et al., 2012).  

As opposed to the rank and cut method, the mean-variance approach allows for correlations 

between assets. And as the correlation decreases, the possibility of risk reduction by diversification 

is improved. However, the MPT does not consider the "when to invest" decision variable and 

requires quadratic programming algorithms that might increase adaptation complexity. Yu et al. 

(2009) suggested that to build an optimal portfolio, it's recommended to first select good quality 

assets using multi-attribute analysis (section 3) and then use the mean-variance model to optimize 

asset allocations. They based their approach on the fact that Markowitz's theory doesn't account 

for the assets' characteristics and hence doesn't allow the investor to assess the quality of the pre-

determined assets.  
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Given the limitations of the MPT, extended models have been developed, such as the mean target 

model (Fishburn, 1977), mean absolute-deviation model (Simaan, 1997), mean semi-variance 

model (Mao, 1970), mean variance-skewness model (Yu et al., 2008), etc.  

 

3.3. Multi-Objective Optimization  

Portfolio optimization problems in the O&G industry often involve multiple objectives and 

multiple constraints; hence, multi-objective portfolio optimization is needed, going beyond the 

traditional single-objective or bi-objective approaches.  

The multi-objective optimization concept was first introduced by the French-Italian economist 

Pareto. His theory combines all objectives into one objective function, and a standard solution 

method of minimizing the total objective is applied:  

 

 min𝐹(𝑥) = [𝑓1(𝑥), 𝑓2(𝑥),… , 𝑓𝑚(𝑥)] (3.16) 

subject to:    

 𝐺(𝑥) = [𝑔1(𝑥), 𝑔2(𝑥),… , 𝑔𝑘(𝑥)] < 0 (3.17) 

 𝐻(𝑥) = [ℎ1(𝑥), ℎ2(𝑥),… , ℎ𝑙(𝑥)] = 0 (3.18) 

 

where:  

𝐹(𝑥): vector of 𝑚 objective functions 

𝑓𝑖(𝑥): objective function 𝑖 for 𝑖 = 1,… ,𝑚 

𝐺(𝑥): vector of 𝑘 inequality constraints  

𝑔𝑖(𝑥): inequality constraint 𝑖 for 𝑖 = 1,… , 𝑘 

𝐻(𝑥): vector of 𝑙 equality constraints  

ℎ𝑖(𝑥): equality constraint 𝑖 for 𝑖 = 1,… , 𝑙 

𝑥: vector of decision variables with  𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛]  ∈ 𝑋 (feasible set) 

 

An optimal solution minimizing the objective function is represented by 𝑥∗, such as 𝑥∗ ∈ 𝑋 and 

satisfies inequality and equality constraints. The optimal vector 𝑥∗ is considered Pareto optimal if 

all other 𝑥 vectors, satisfying the problem's constraints, have higher result values for a minimum 
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of one objective function 𝑓𝑖, or have the exact same value for all objective functions. The following 

two definitions are applied (Deb & Gupta, 2005): (where 𝑆 = {𝑥 ∈ 𝑋: 𝐺(𝑥) ≤ 0, 𝐻(𝑥) = 0}) 

 Weak efficient solution: Point 𝑥∗ is considered weak Pareto optimum for the multi-

objective optimization if and only if there isn't any other 𝑥 ∈ 𝑆 such that 𝑓𝑖(𝑥) < 𝑓𝑖(𝑥
∗) for 

all 𝑖 = 1,… ,𝑚.  

 Strict efficient solution: Point  𝑥∗ is considered strict Pareto optimum for the multi-

objective optimization if and only if there isn't any other 𝑥 ∈ 𝑆 such that 𝑓𝑖(𝑥) ≤ 𝑓𝑖(𝑥
∗) for 

all 𝑖 = 1,… ,𝑚, with at least one strict inequality.  

Figure 3.2a illustrates an example of a Pareto curve. A Pareto curve or Pareto front is a 

representation of the efficient set or all efficient solutions. The shape of the Pareto curve (surface) 

describes the trade-off between the objective functions of the multi-objective problem. The non-

dominated (or non-inferior) points are represented by the Pareto front, which is the line between 

points (𝑓2(�̂�), 𝑓1(�̂�)) and (𝑓2(�̃�), 𝑓1(�̃�)).  

 

Figure 3.2: Pareto Optimality (adapted from Multi-objective Optimization (2008)) 

 

Figure 3.2b gives an example of strict and weak Pareto optima. Points 𝑝1 and 𝑝5 are weak Pareto 

optima while points 𝑝2, 𝑝3 and 𝑝4 are strict Pareto optima.  
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Several techniques are presented in the literature for solving multi-objective optimization 

problems, such as the weighted-sum, ɛ-constraint, multi-attribute utility theory, goal programming, 

multi-level programming, etc. As for programming and search techniques, genetic/evolutionary 

algorithms have been recently widely used, and some other methods such as tabu search, AI 

techniques using artificial neutral networks, particle swarm optimization, etc.  

The main purpose of this section is to introduce some of these methods only briefly. A detailed 

systematic literature review on portfolio optimization approaches can be found in the paper written 

by (Milhomem & Dantas, 2020).   

 

3.3.1. Ɛ-Constraint Method  

This method was introduced in 1983 by Chankong & Haimes. In this approach, the decision-maker 

must select only one objective function 𝑓𝑖(𝑥) to optimize, while the remaining are formulated as 

constraints, bounded by an upper target value 𝜀𝑖. The optimization problem:  

 

                 min 𝑓𝑠(𝑥) (3.19) 

subject to:    

 𝑓𝑖(𝑥) ≤ 𝜀𝑖 ,        𝑖 = 1,… ,𝑚, 𝑖 ≠ 𝑠 (3.20) 

                𝑥 ∈ 𝑆  

 

An optimal solution 𝑥∗ is a weak Pareto optimum if it satisfies the problem represented by 

equations (3.19) and (3.20), with 𝜀 = (𝜀1, … , 𝜀𝑠−1, 𝜀𝑠+1, … , 𝜀𝑚) ∈ 𝑅
𝑚−1 (Multi-objectives 

Optimization, 2008) 

𝑥∗ is a strict Pareto optimum if and only if for each objective 𝑠, with 𝑠 = 1, … ,𝑚, there exists a 

vector 𝜀 = (𝜀1, … , 𝜀𝑠−1, 𝜀𝑠+1, … , 𝜀𝑚) ∈ 𝑅
𝑚−1 such that one unique objective vector 𝑓(𝑥∗) 

corresponds to the optimal solution of the problem represented by equations (3.19) and (3.20).  

The ɛ-constraint approach has many advantages such as:  
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 In this method, non-extreme efficient solutions can be produced since the ɛ-constraint 

process alters the feasible region suggested at the beginning of the problem. This will create 

a richer and more diverse representation of the efficient set, given that every run can be 

exploited to generate a different efficient solution (Mavrotas, 2009).  

 Considering the constraints applied in the optimization problem, if the ɛ-constraint method 

finds an optimal solution, then it's guaranteed that this solution is Pareto optimal.  

 This method is able to produce efficient points on a non-convex Pareto curve (Deb & 

Gupta, 2005).  

Despite its major advantages, the ɛ-constraint method requires longer solution times when solving 

problems with several objective functions (more than two). It is often not considered efficient in 

such scenarios. Another drawback of this method is that the decision-maker should select the 

appropriate upper bound values, which might become a heavy task when an increased number of 

objectives is considered. Hence several modifications of the ɛ-constraint method have been 

developed in the literature to minimize its computational difficulties.  

 

3.3.2. Weighted Sum Method  

The weighted sum approach extends the ɛ-constraint method by combining several objective 

functions into one main function to optimize. It assigns an individually weighted coefficient (𝑎𝑖) 

for each objective function, and minimizes the positively-weighted convex sum of all the 

objectives as follows:  

 
                     min∑𝑎𝑖 ∙ 𝑓𝑖(𝑥)

𝑚

𝑖=1

 (3.21) 

 
          ∑𝑎𝑖 = 1

𝑚

𝑖=1

 (3.22) 

                                   𝑎𝑖 > 0, 𝑖 = 1,… ,𝑚  

 𝑥 ∈ 𝑆  
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Deb & Gupta (2005) state that the minimization of the weighted-sum problem described above is 

an efficient solution of the multi-objective optimization problem, suggesting that its image fits on 

the Pareto curve. When the weighted coefficients (𝑎𝑖) are all strictly greater than zero, the solution 

is a strict Pareto optimum. Contrastingly, if at least one of the coefficients is equal to zero, then 

the solution becomes a weak Pareto optimum.  

Note that the weighted coefficients don't necessarily reflect the relative importance or impact of 

the objective functions. The decision-maker must choose the appropriate vector of weights, while 

there's no inferred theoretical correspondence between the optimization solution and weight 

vector. Therefore, the decision-maker does not know which weights coefficients are able to 

produce the optimal solution; hence a long iterative process is expected using the weighted-sum 

method.  

Besides the significant computation time, the weighted-sum method requires scaling the objective 

functions before the minimization since the solution is highly influenced by the scaling of 

individual objective functions (Mavrotas, 2009). In addition, the minimization of convex 

combinations of all the objective functions cannot produce non-convex parts of the Pareto set (Deb 

& Gupta, 2005).  

 

3.3.3. Multi-Attribute Utility Theory   

The investor's attitudes and perceptions towards risk and uncertainty can influence its preferences 

and investment decisions. When adopting a risk attitude causes nonlinearity of the value function, 

the value function becomes a utility function (Bratvold & Begg, 2010). Utility theory was 

introduced by von Neuman and Morgenstern in 1944 and is based on the individual's preferences, 

accounting for risk attitudes and values simultaneously. In the presence of various attributes, it is 

known as a multi-attribute utility theory (MAUT).  

The application of risk preferences and utility theory in the O&G sector has been studied, mainly 

for exploration and production projects. While some authors focused on risk analysis 

quantification, others discussed decision making under uncertainty by incorporating concepts of 

utility theory and risk attitudes (Bickel & Bratvold, 2008; Bratvold & Begg, 2008; Henrion et al., 
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2015; Wood & Khosravanian, 2015).  One particular application of utility theory for O&G 

portfolio assets selection is discussed by Xue et al. (2014).  

Assuming 𝑛 uncertainty attributes (𝑎1, 𝑎2, … , 𝑎𝑛) characterizing various alternatives, and a scalar 

utility function 𝑈(𝑥1, 𝑥2, … , 𝑥𝑛), the multi-attribute utility function becomes (Henrion et al., 2015:  

 
𝑈(𝑎1, 𝑎2, … , 𝑎𝑛) =  ∑𝑤𝑖𝑢𝑖(𝑎𝑖)

𝑛

𝑖=1

 (3.23) 

 0 ≤ 𝑈(𝑎1, 𝑎2, … , 𝑎𝑛) ≤ 1,       0 ≤ 𝑢𝑖(𝑎𝑖) ≤ 1  

 
∑𝑤𝑖 = 1 

𝑛

𝑖=1

 (3.24) 

 

where:  

𝑎𝑖 alternative/uncertainty attribute 𝑖 for 𝑖 = 1, … , 𝑛 

𝑢𝑖(𝑎𝑖): single attribute utility function  

𝑤𝑖: normalized weight corresponding to attribute 𝑖 

 

The multi-attribute utility function modeled by equation (3.26) is based on the assumption of 

additive independence, which means that the level of one attribute does not affect the preferences 

over the values of any other attribute. Henrion et al. (2015) stated that this assumption is often 

reasonable when limited uncertainties are present; however, in the O&G context including multiple 

objectives (NPV, Capex, reserves and production), the NPV objective is a function of the others 

and hence the additive independence assumption does not hold. The same may be the case for 

NPV and "risk" as companies are often adding a risk factor to the discount rate. When this is the 

case, using both NPV and risk as objectives means the company is double dipping in risk.  

Using the multi-attribute utility function, the multi-objective optimization problem can be modeled 

as a single objective problem as follows:  

  

 max𝑈(𝑎1, 𝑎2, … , 𝑎𝑛) (3.25) 

subject to:    
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         𝑔𝑘(𝑎) ≤ 0,      𝑘 = 1,… , 𝐾,    𝑎 = (𝑎1, … , 𝑎𝑛) (3.26) 

 

Several programming techniques are presented in the literature to solve multi-attribute utility 

problems, such as dynamic programming and goal programming. Given some of the drawbacks 

associated with those techniques, Yu et al. (2009) proposed using genetic algorithms to solve two-

stage multi-attribute portfolio optimization problems. The authors concluded that genetic 

algorithms could be effectively used to create optimal portfolios; however, a limit must be set on 

the total number of assets evaluated to improve the portfolio's performance.  

 

3.3.4. Time-dependent Goal-Seeking Approach 

The portfolio analysis presented in this section is based on the work of Howell & Tyler (2001). 

Their proposed method considers the critical relationship between business investments and 

corporate strategies in the portfolio analysis context, resulting in higher chances of meeting 

corporate goals.  

Using this approach, the annual performances of individual asset's attributes (such as NPV, carbon 

emission, etc.) are first compared to the annual corporate goals, then the overall portfolio's 

performance with respect to the same attributes is evaluated. This method allows the decision-

maker to assess the impact of individual investments on the company's ability to reach its strategy. 

This portfolio analysis is considered a powerful tool to develop and compare various strategies 

that the corporation might pursue, given a certain pool of assets. It also evaluates the economic 

and operational trade-offs following the selection of one strategy over the other. Moreover, 

questions such as: "what asset combination is needed, when is the best time to invest in individual 

projects, which constraints are realistic and achievable, and which strategy is the best to pursue?" 

are addresses in this context Howell & Tyler (2001). 

The time-dependent goal-seeking process (Figure 3.3) starts by setting annual corporate goals that 

might include economic and non-economic performance metrics (blue bars). Then an asset 

combination (initial portfolio) is selected by the decision-maker as a "starting point", and the 

expected values of the performance metrics representing this portfolio are calculated following 
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either a probabilistic or a deterministic evaluation of individual assets (red bars). Using the 

probabilistic case, the probability density function of the parameter must be evaluated first, then 

its corresponding expected value is calculated. Often, the portfolio selected reflects the company's 

strategy; for instance, if two oil producing assets are available in the pool, the company might 

choose a higher working interest associated with the asset resulting in a higher production if its 

strategy relies on accelerated oil production. Moreover, the portfolio should account for corporate 

constraints, which as opposed to corporate goals, are metrics that the portfolio should satisfy in all 

assets' combinations. Finally, the probability of meeting annual corporate goals (black line) is 

calculated to fully estimate the likelihood of satisfying the targets.  

Often, no feasible solution can be found using the initial portfolio, which suggests that either the 

asset combination is not feasible or the corporate constraints are not achievable given the available 

asset's pool and constraints. Also, the presence of conflicting performance targets might lead to 

the portfolio's infeasibility. The decision-maker should then re-evaluate its working interests and 

corporate targets and redo the same analysis mentioned above until he/she is satisfied with the 

results. This will eventually give an idea about the possible business implications associated with 

changing corporate goals.  

 

Figure 3.3: Portfolio Annual Oil Production Example 
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3.3.5. Evolutionary Algorithm Solver 

An evolutionary or genetic algorithm is a type of heuristic technique used to solve multi-objective 

optimization problems. Two main categories of optimization problems generating Pareto-optimal 

solutions are frequently discussed in the literature: exact and heuristic multi-objective approaches. 

Using the "exact" technique, the decision-maker often starts the optimization from either 

Markowitz's theory (MPT) model or from an extension of the MPT, which includes variations in 

the mean-variance parameters. Although several new techniques (heuristic/stochastic) have 

significantly evolved during the past few years, many investors, especially conservative ones, still 

prefer using exact methods, given they will always provide the optimal solution. Regardless of the 

required computational spending and expected degree of modeling difficulty, the exact techniques 

return solutions always belonging to the set of Pareto-optimal.  

As for heuristic techniques, they can address single or multi-objective problems with single or 

multi-period characteristics. They include several methods such as genetic algorithm (GA), fuzzy 

programming (Fuzzy), or particle swarm optimization (PSO), with variations and extensions of 

each one of them. The main goal of a heuristic method is to find a solution that is as close as 

possible to the exact one within a reasonable amount of time. Hence, lower computational 

expenses are expected using the heuristic technique compared to the exact methods. In addition, 

solving multi-objective problems with several constraints favors the use of heuristic methods as 

some of these allow the decision-maker to find several points of the Pareto optimal set during a 

single run. However, note that a heuristic model might not be able to find the exact Pareto set, but 

rather it gives an approximation of it that might be considered feasible.  

One particular method used in multi-objective optimization is the evolutionary algorithm (EA), 

based on Darwin's evolution theory. All potential solutions form the population, while the decision 

variables representing these solutions can be perceived as the corresponding genes of each 

solution. Based on this theory, parents are initially selected from the population and used to 

produce, through a crossover step, a new generation of offspring. A random alteration of offspring 

takes place at the mutation stage. Over several generations, only the fittest generation will survive 
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by genetic operations. A predetermined number of generations is often set as termination criteria 

(Zitzler et al., 2014).  

When modeling a multi-objective EA, two main goals have to be considered. First, in the presence 

of multiple objectives, the search should be constantly guided towards the Pareto set by assigning 

appropriate scalar fitness values in the mating selection stage. Second, the algorithm must keep a 

very diverse set of non-dominated solutions to reduce the possibility of having several populations 

containing identical solutions (Deb & Gupta, 2005).   
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4. Individual Asset Model  

4.1. O&G Assets Evaluation  

For the scope of this thesis, a simplified evaluation model of upstream O&G assets is performed 

and divided into four steps: reserves estimation, production forecasting, carbon emission 

estimation, and economic evaluation. An additional section is added to forecast the O&G prices 

for the given time period.  

A list of 15 hypothetical O&G projects was developed and evaluated probabilistically using Monte 

Carlo simulation with 10,000 iterations over a period of 30 years. The projects are assumed to 

produce O&G from geologically independent reservoirs.  

A Python class "Petroleum_asset" was developed, where each O&G project was represented as an 

object of this class. Table 4.1 shows the input parameters of each O&G project in the 

"Petroleum_asset" class.  

 

Table 4.1: Input Parameters of O&G Asset 

Parameter [Python Argument] Unit/Possible Outcomes 

Project Location [location] “onshore”, “offshore” 

Hydrocarbon Type [hc_type] “oil”, “gas” 

Project Phase [phase] “exploration”, “development” 

Estimated Recoverable Reserves [res_est] Mstb; Bscf  

Average Maximum Well Rate [well_max_rate] Kbpd; Mscfpd  

Initial Year to Start the project [init_year] years  

Time Period [period] years  

Number of Iterations [n] -  
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4.1.1.  Reserves Module  

A detailed calculation of the volume of original oil in place goes far beyond the scope of this thesis. 

Lund (1997) argues that a detailed description of the asset's reserves and production profiles is 

unlikely to provide more precise insights about the future performance, compared to a coarser 

model, in the scope of portfolio optimization. And due to the presence of many uncertainties in the 

early stages of development, more time and effort is needed to quantify each one of them and 

assign their individual distributions and parameters. Hence, a less detailed calculation approach 

was used in this thesis with reasonable simulation time.  

The reserves were estimated using an average mode value ("res_est"), as an input to the asset class. 

Then the function "fac_model" was used to estimate the distribution of the reserves, given the 

input uncertainties. The function "fac_model" has eight input uncertainties, as shown in Table 4.2. 

The reserves (Mstb or Bscf) were estimated as random variables, following a PERT distribution.  

 

Table 4.2: Uncertainty Factors of "fac_model" Function 

Uncertainty factors as a 

function of the project phase 

Exploration Development 

Min Max Min Max 

0.2 2.0 0.85 1.45 

Uncertainty factors as a 

function of project location  

Onshore Offshore 

Min Max Min Max 

0.8 1.2 0.7 1.5 

 

Monte Carlo simulation with 10,000 (n=10,000) iterations generated the reserves distribution of a 

given asset shown in Figure 4.1.  
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Figure 4.1: Reserves Distribution 

 

Figure 4.1 illustrates a positively skewed distribution of the reserves. This result is expected as the 

possible oil initially in place (OIIP) values often are log-normally distributed (Kosova et al., 2016). 

Although the reserves estimates in this thesis were not calculated using the OIIP parameters, it was 

essential to check that the results we got are reasonable. 

 

4.1.2.  Production Module 

This module calculates the annual hydrocarbon production from each asset and is divided into two 

functions: "years_phase" and "production."  

The function "years_phase" estimates the length of the exploration and development phases and 

returns the expected years to start exploration, development, and production. These outputs will 

be used in the production function and the economic evaluation section. The input parameters of 

this function are shown in Table 4.3.  
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Table 4.3: Input Parameters of O&G Production Model 

Parameter [Python Argument] Possible Outcome Distribution  

Length of exploration period [expl_len] 2, 3, 4 or 5  multinomial 

Length of development period [dev_len] 1, 2 or 3 multinomial 

Chance of exploration success [expl_succ] 0 or 1  bernoulli 

Exploration factor [expl_fac]2 0 or 1  -  

 

The production forecast was performed using the exponential decline curve model, given by the 

decline curve formula presented by Arps (1944):   

 

 𝑞𝑡(𝑡) =
𝑞𝑖

(1 + 𝑏𝐷𝑖𝑡)1/𝑏
 (4.1) 

 

 

where:  

𝑞𝑡(𝑡): production rate at time 𝑡 

𝑞𝑖: initial rate 

𝐷𝑖: decline rate 

𝑏: hyperbolic exponent 

 

A strong correlation exists between the reservoir and reservoir fluids' physical properties and the 

decline rate. This correlation is expressed by the hyperbolic exponent that can have values between 

0 and 1, depending on the formation type, fluid type, and drive mechanism. The exponential 

decline (b=0) is used in this thesis because of its simplicity when dealing with constant bottom 

hole pressure (Höök et al., 2009). In addition, Arps (1945) noted that most of the reservoirs have 

values of b less than 0.5.  

                                                 

 

2 2 Exploration factor equals to 1 when exploration takes place, and 0 otherwise 
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When keeping the production running requires higher energy or more money than it yields, 

production should be stopped. This cut-off point is expressed by the economic production limit of 

the facility, used to calculate the decline rate constant (𝐷𝑖). 𝐷𝑖 indicates how steep the production 

decrease will be and is found by equating reserves volumes to the ultimate production volume of 

the field (which is a function of the economic limit and the total maximum processing capacity). 

Table 4.4 provides additional information used in the calculations.   

An idealized theoretical production profile is illustrated in Figure 4.2. It depends on four time-

variables: the development, build-up, plateau and decline period. The last part of the production 

profile, the decline phase, is already covered by the decline curve analysis mentioned earlier in 

this section.  

 

 

Figure 4.2: Theoretical Production Curve (adapted from Höök et al. (2009)) 

 

The delay period indicates the length of the period between the expected start of the production 

phase (derived from the "years_phase" function) and the actual start of production. This delay can 

be caused by several factors such as poor site management, shortage of equipment or material, 

weather effects, etc. The ramp-up period reflects the production increase from 0 to 𝑞𝑖, while the 

plateau period represents a constant production at a level of 𝑞𝑖.  
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All three time-variables were estimated by uniform distributions (Table 4.4). The corresponding 

min and max values were evaluated according to the accelerated production profile type.  

The following equation gives the cumulative oil production at time 𝑡:  

 

𝑄𝑡 = ∑𝑞𝑡

𝑡

𝑡=0

 (4.2) 

 

 

 

Table 4.4: Input Paramters of Production time-variables 

Parameter [Python Argument] Unit Distribution  

Delay period [t_delay] years  uniform  

Ramp-up period [t_to_plateau] years uniform  

Plateau period [t_plateau] years  uniform    

Decline rate parameter [a_factor] fraction  uniform  

Total maximum processing capacity 

[total_max_cap] 
Mstb; Bscf -  

Start of production year [start_year] years -  

Reserves [reserves] Mstb; Bscf -  

 

An example of a Monte Carlo simulation with 10 (n=10) iterations produced the following 

production profiles for a period of 30 years (period=30): 
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Figure 4.3: Simulated Production Profile 

 

4.1.3. Economic Evaluation Module  

In this module, the annual cash flows were calculated for each asset, using both the production and 

oil price modules. Then the net present value (NPV) was derived. A typical O&G project cash 

flow is shown below:  

 

 

Figure 4.4: O&G Project Phases 
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The cash flows consist of annual capital expenditures (Capex), operating expenditures (Opex), and 

sales revenues. Three significant time periods were considered to calculate the cash inflows and 

outflows: exploration, development, and production. The decommissioning (abandonment) costs 

were ignored in this thesis since, for most long term projects, decommissioning costs are very far 

out in time and discounting means they have very little impact on the NPV-based development 

decision. 

First, the capital expenditures were divided into five different parts, invested at different time 

periods along the project's lifetime. Then a Capex structure was developed based on the number 

of wells needed for each stage of the project: exploration, appraisal, injection, and production. The 

number of production and injection wells was defined as a function of initial reserves. One 

exploration and one appraisal well were considered for all projects. The capital expenditures were 

then depreciated using the straight-line depreciation method, over 20 years. Table 4.5 and Table 4.6 

show the development plan and Capex structure used in this thesis. The offshore multiplier was 

used to calculate the Capex for offshore platforms.  

 

Table 4.5: Input Paramters of O&G Development Plan 

Reserves (million Boe) # Prod. Wells per year # Inj. Wells per year 

100 1 1 

200 2 2 

500 4 3 

1000 8 4 

2000 14 7 

5000 25 15 
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Table 4.6: Input Parameters of O&G Capex Structure 

Triangular Distributions  

Min  Mode Max Offshore Multiplier 

Seismic and Data Acquisition Cost ($ million) 

8 10 15 2.50 

Exploration Well Unit Cost ($ million/well) 

90 100 130 5.00 

Injection Well Unit Cost ($ million/well) 

90 100 130 5.00 

Appraisal Well Unit Cost ($million/well) 

90 120 140 2.50 

Production Well Unit Cost ($million/well) 

90 120 140 3.00 

 

The operating expenditures were divided into two parts: fixed and variable Opex. The fixed Opex 

depends on the number of production wells needed, while the variable Opex varies with the 

production rate. Both Opex structures were modeled as triangular distributions (Table 4.7). As for 

the annual revenues, they were calculated by simply multiplying the yearly production with the 

corresponding oil or gas price of that year, derived from the O&G price module.  

 

Table 4.7: Input Parameters of O&G Opex Structure 

  Onshore  Offshore  

  min mode max min mode max 

Exploration: Fixed Opex ($million/well)  1.30 1.50 1.80 1.50 1.70 2.10 

Variable Opex ($/bbl) – Oil  5.00 10.00 15.00 15.00 20.00 25.00 

Variable Opex ($/bbl) – Gas  8.00 12.00 22.00 21.00 25.00 33.00 

Development: Fixed Opex ($million/well)  1.30 1.80 2.40 1.80 2.30 2.70 

Variable Opex ($/bbl)   7.50 10.00 12.50 18.00 20.00 27.00 
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Following the Norwegian Petroleum Taxation Act, the after-tax cash flows were calculated. 

Figure 4.5 shows the mean values of a cash flow generated from a Monte Carlo simulation of 

10000 iterations (n=10000) over 30 years (n=30). The mean, 10th, and 90th percentiles of the cash 

flow are also illustrated in Figure 4.6.  

 

Figure 4.5: NCF Distribution of an O&G asset (Mean) 

 

Figure 4.6: NCF Distribution of an O&G asset (P10-Mean-P90) 
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Since the NPV was chosen to represent the monetary objective of the portfolio, it was calculated 

for each asset using the following equation:  

 

𝑁𝑃𝑉 =  ∑
𝑁𝐶𝐹𝑛
(1 + 𝑖)𝑛

𝑁

𝑛=1

 (4.3) 

 

where:  

𝑁𝐶𝐹𝑛: net cash flow of year 𝑛 

𝑖: discount rate 

𝑁: project's lifetime 

 

The NPV distribution of the same Monte Carlo simulation is illustrated:  

 

 

Figure 4.7: NPV Distribution of an O&G asset 

 

4.1.4.  Carbon Emission Module  

In this section we will first look into the carbon emission levels from O&G extraction of operating 

fields, and then we'll incorporate this analysis into our model.  
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The CO2 emission intensity from O&G extraction varies from one region to the other. One reason 

for that variation could be the difference in governmental regulations and carbon pricing between 

several countries. To reduce greenhouse gas (GHG) emission, carbon pricing is applied as a cost 

the polluter has to pay and can take two different forms: carbon tax and carbon emission trading 

(also known as "allowances" or "cap and trade" system). The European Union's Emissions Trading 

System (EU ETS) is considered to be one of the most extensive carbon pricing schemes. All 

producing facilities participating in this trading system will have a limit (cap) for their total GHG 

emission. Emission allowances are allocated or auctioned off by the EU ETS and can then be 

traded between participating companies under the "cap and trade" concept. In Norway, for 

example, the petroleum industry pays both the EU ETS price and the national CO2 tax, which 

might be the reason for the low emission intensity in Norway compared to the rest of the world 

(Gavenas et al., 2015). For instance, in 2021, the Norwegian Ministry of climate and environment 

announced a gradual increase of the CO2 tax rate from NOK 590 to NOK 2000 per ton of CO2e in 

2030 (Norskpetroleum, 2021).  

In addition to the carbon pricing policy and the oil price, there are other drivers behind the emission 

intensity. To better understand the factors affecting the emission levels in upstream activities, it's 

crucial first to examine the origin of the emission. According to the Norwegian Petroleum 

Directorate (2020), gas turbines generating electricity account for 85% of total CO2 emissions from 

Norwegian petroleum activities. Other sources of emission are boilers, engines, flaring of natural 

gas, and well testing. 

To investigate the effect of several drivers on the carbon emission on the Norwegian continental 

shelf (NCS), we relied on a similar study done by Gavenas et al. (2015). Annual CO2-emission 

data and annual production data from five different fields on the NCS were used. The dataset was 

taken from the Norwegian Environment Agency (2020) and Norskpetroleum (2021). In addition, 

data for crude oil Brent Price was extracted from the EIA (2020), while the Norwegian carbon-tax 

price and the EU-ETS price were accessible from The World Bank (2020). 
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Figure 4.8: Norwegian Total Production and Carbon Emission per unit 

 

Variations of CO2-emission intensity over the last 20 years on the NCS are shown in Figure 4.8.   

Despite all the national and international efforts to reduce GHG emission, the Figure shows an 

increase in the emission intensity by more than 53% during the period from 1997 to 2019. One of 

the reasons could be that the rise of both the CO2-tax and the CO2-price in the EU ETS during that 

period was relatively low compared to the increase of the region's O&G extraction activities. 

Figure 4.9 below supports this hypothesis. As seen in the Figure, there seems to be two regions 

with clear correlations: from 2001 to 2014 and again from 2017 to 2018. However, the correlation 

is the opposite of what we would expect to see if the taxation mechanism was effective in reducing 

emissions. A better understanding of the CO2 price effect could be drawn from comparing a "no 

carbon price" to a "carbon price" system. Based on a study done by McKinsey (2021), only a 

quarter of all oil projects are expected to breakeven at a zero-carbon price (with a commodity price 

of $30 per barrel), while this number decreases to less than 20% at a carbon price of $100/tCO2e, 

resulting in reduced oil extraction and emission intensity (McKinsey, 2021 ).   
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Figure 4.9: Carbon Emission Variation with respect to Regulatory Frameworks 

 

Another reason for the increase in the emission intensity could be related to oil price variations. In 

the period 1997-2019, the oil price has almost doubled in real-term value, resulting in increasing 

petroleum activities. Also, the oil price increase motivated O&G companies to extract O&G in 

more expensive and energy-demanding areas, often delaying the termination of producing fields 

by implementing enhanced oil recovery projects, which implies higher levels of emissions per unit 

extracted (Gavenas et al., 2015). However, the sharp drop in oil price in 2014 resulted in only a 

slight reduction in emission intensities, initiated by a reduction in exploration activities in the area. 

Since most of the NCS, in general, is in a mature state, implementation of modern technology and 

EOR remains crucial for future development of the fields, hence resulting in more carbon emission 

than the one expected by oil price reduction.  

Lastly, as O&G production decreases, the emission intensity tends to increase since lower 

hydrocarbon extraction is linked to more water production. Often, the increased water production 

leads to an increase in the CO2/toe ratio, as the energy requirement remains the same and oil 

production is reduced. Also, with a constant amount of energy used, production will decrease as 

the natural reservoir pressure gradually drops, resulting in a higher emission per unit extraction 
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(Gavenas et al., 2015). Examples of this effect are shown in Figure 4.10 andFigure 4.11, 

representing the development of Brage and Heidrun fields, respectively.  

 

Figure 4.10: Total Production and Emission per unit at Brage Field 
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Figure 4.11: Total Production and Emission per unit at Heidrun Field 

 

An illustration (Figure 4.12) of emission intensity change with the production level (as a 

percentage of peak production) was adapted from Gavenas et al. (2015). On the vertical axis, the 

point equals to 1 corresponds to the emission intensity factor when the production is at its peak 

value. For example, if the emission intensity at peak production is equal to 30 kg CO2/toe, this 

point corresponds to 1 on the vertical axis. When the share of peak production decreases to 0.4, 

the emission intensity level becomes two times higher than it was at peak production, hence it 

becomes equal to 60 kg CO2/toe.  
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, 

 

Figure 4.12: Emission Intensity change with the Production Level (share of peak production) (adapted 

from Gavenas et al. (2015)) 

 

As production declines, the emission intensity increases gradually, while a sharper rise of the 

emission level is observed when production is reduced to more than half of its peak value.  

This correlation was used in this thesis to estimate the carbon emission levels from O&G operating 

assets. Applying it to one hypothetical O&G asset of our portfolio, the following results were 

obtained:  
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Figure 4.13: Total Production and Emission per unit Results 
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4.2. O&G Price Module  

An economic evaluation of O&G investments requires a detailed description of the oil price 

variations. Given the uncertainties in the future oil price, it's useful to create a stochastic model 

that captures the characteristics of oil price fluctuations with time.   

The study of oil price modeling is well documented in finance and economic literature. The two 

most common approaches for continuous time modeling are the geometric Brownian Motion 

(GBM) and mean-reverting models (Meade, 2010)).  

The geometric Brownian motion (GBM) was first introduced by Black and Scholes (1973) and 

Merton (1973), who modeled the stock prices traded on exchanges. In an attempt to manage a 

natural resource investment, Brennan and Schwartz (1985) used the geometric Brownian motion 

to model the oil price as a component of this investment. In their work, the authors described the 

future prices using a single stochastic factor. The geometric Brownian motion consists of 

deterministic trend for the mean price, in addition to a probabilistic component modeled around 

that trend (Begg et al., 2007).  

Schwartz (1997) suggested modeling commodity prices behavior using one, two or three stochastic 

factors, which are spot price, interest rate and convenience yield. The author later concluded that 

the interest rate, used in a three-factors model, provided only limited additional insights, 

suggesting that empirical data is better described using a two-variable mean-reverting model 

(Schwartz, 1997).   

Schwartz and Smith (2000) proposed oil price modeling through two combined stochastic 

processes: short term and long term. The short term process is based on a mean-reversion model, 

while the long term process follows the geometric Brownian motion.  

While there are several opinions regarding the different price models, many studies have shown 

that the oil price tends to fluctuate on the short term before settling into a long-term equilibrium 

(Ozorio et al., 2013; Schwartz and Smith, 2000).  

In this thesis, the mean reverting process was used to model the O&G prices, to account for the 

dependencies in the price changes, not covered in the geometric Brownian motion model (Begg et 

al., 2007).  Mean reversion implies that both the periods of high and low oil price volatility will 
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die off with time, and the oil price will gradually return to its long-term equilibrium level (Kuhe 

et al., 2019). Hence, the changes in the O&G prices follow a mean reversion rate to converge to 

their equilibrium levels. The motivation behind the mean reversion behavior of the oil price is 

related the market impact on the price volatility. As the oil price increases above its long-term 

equilibrium level, the oil supply will decrease, driven by market forces.   

The following stochastic equation is used to model the O&G prices for a mean reverting process 

(Begg et al., 2007): 

 

 𝑑𝑃

𝑃
= η(P − P∗)dt +  σϵ√𝑑𝑡 (4.4) 

where:  

𝑃: price at time 𝑡 

𝑃∗: long-term equilibrium price 

η: mean reversion rate  

σ: volatility 

ϵ: standard normal random variable 

dt: time increment   

 

In order to use the mean reverting price model, the model's parameters had to be determined first, 

through a process known as calibration. A detailed explanation about the calibration process goes 

beyond the scope of this thesis. However, a comprehensive review can be found in Thomas & 

Bratvold (2015) paper. The parameters used in this thesis are found in Table 4.8.  

Brown & Yucel (2008) proved that historically, O&G prices have been related. Hence, a 

correlation between the O&G prices was performed, using the correlation matrix (Table 4.9) 

presented by Thomas & Bratvold (2015).  

The function "og_price" was created on Python for the mean reverting price model. A Monte Carlo 

simulation of 10000 iterations (n=10000) over a period of 30 years (period=30) was performed.  
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Table 4.8: Input Parameters for O&G Price 

Parameter [Python Argument] Unit  Value for Oil  Value for Gas  

Time increment [dt] years  1 1 

Volatility [oil_sd; gas_sd] $/bbl; $/Mscf  3 0.7 

Price floor [oil_floor; gas_floor] $/bbl; $/Mscf 8 0.8 

Long term mean price 

[oil_mean_price; 

gas_mean_price] 

$/bbl; $/Mscf 70 5 

Initial price at t=0 [oil_ini_price; 

gas_ini_price] 
$/bbl; $/Mscf 40 2.3 

Half-life [oil_half; gas_half]  years  4 8 

 

Table 4.9: O&G Prices Correlation 

 Oil Price Gas Price 

Oil Price 1 0.63 

Gas Price 0.63 1 
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Figure 4.14: Oil Price 

 

 

Figure 4.15: Gas Price 
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4.3. Wind Farms Assets Evaluation  

In this section, wind farm projects are evaluated to assess the feasibility of incorporating them in 

the portfolio of an O&G company. The main outputs of those evaluations are annual energy 

production and net present value (with annual cash flows). In the scope of this thesis, the wind 

farm projects are assumed to be independent of the O&G operating assets, as the energy produced 

from wind farms is not used to power O&G platforms, but rather sold as electricity in the market. 

The reason behind that approach is related to the fact that the location of the O&G assets is not 

determined at early stages of the portfolio evaluation, hence the decision maker won't be able to 

assess how close the wind farms are to the operating hydrocarbon assets, increasing the 

uncertainties in the development cost of the infrastructure needed to power the platforms from 

wind farms energy. Also, assessing and comparing the feasibility of various power electrification 

options such as power from shore, new gas turbines and platform connected wind turbines, goes 

beyond the scope of this thesis.  

Five different hypothetical wind farm assets were developed and their corresponding probabilistic 

evaluation was performed using a Monte Carlo simulation of 10,000 iterations over a time period 

of 30 years.  

Each of those assets was represented as an object to the Python class "Wind_farm_asset". 

Table 4.10 shows the input parameters for each project.  

 

Table 4.10: Input Parameters of Wind Farm Asset 

Parameter [Python Argument] Unit/Possible Outcomes 

Project location [location] "onshore", "offshore" 

Number of turbines [n_turbine] 30 or 60  

Capex structure [const_sc] "10/80/10" or "30/60/10" 

Subsidies percentage [perc_subs] %  

Time Period [period] years  

Number of Iterations [n] -  
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The Capex structure represents how the Capex is divided during the development period of the 

project. All wind farm assets have three years of development period before starting production. 

Hence, the total capital expenditure needed is calculated and the investment is divided into three 

settlements, one for each development year. For instance, a "10/80/10" Capex structure suggests 

that 10% of the total Capex is paid during the first year of development, 80% the second year and 

10% the last year. More details about the impact of the Capex structure on the cash flow of wind 

turbines are shown later in this section.  

 

4.3.1. Useful Life Evaluation  

A wind farm project’s lifetime can be divided in two phases, of 15 years each (Figure 4.16). The 

first three years of the first phase are used for project development, including feasibility studies, 

design with environmental impact assessment and final agreements and building application. 

Operation and production start at the beginning of year four, when the wind farms start producing 

electricity, hence generating annual cash inflows.  

 

Figure 4.16: Wind Farm Project Phases 

 

One important factor to consider in the evaluation of wind farm projects is the turbine's useful life, 

which depends on the annual energy production, the level of maintenance during the operational 

period and the type of wind turbines used. Given that typically wind turbines have a useful life 

between 15 and 25 years, we assumed in this project that the turbines will last for 15 years with 

adequate maintenance, keeping the risk of operational failure at its lowest possible level (Deloitte, 

2014). At the end of its operational life, a wind farm project have three different exit options: 
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decommissioning, partial and full repowering (Luengo & Kolios, 2015). In the scope of this thesis, 

only partial repowering was considered, allowing key components of the turbines to be replaced, 

such as blades, rotors and drivetrains, while maintaining the existing tower and foundation 

(Topham & McMillan, 2017). The partial repowering cost is represented by "Repowering" in 

Figure 4.16, and accounted for as an additional expenditure at year 15 in the cash flow calculation.   

 

4.3.2. Production Module 

The expected power production from wind farms depends on various factors, such as wind speed, 

wind direction, temperature, humidity and air density. In addition, both the turbine model and the 

rotor blades of a turbine play an important role in the wind energy transformation into power 

(Deloitte, 2014). In this thesis, 2.3 MW turbines were considered for all the assets.  

Based on a study done by Deloitte Analysis (2014) on wind power investments, a theoretical 

annual energy production of 8,000 MWh is expected. This theoretical production was derived by 

taking into account the wind speed distribution and 2.3 MW turbines power curves. Due to 

potential losses in the production, resulting from electric inefficiencies or wake effects, the 

modified annual production was calculated:  

 

 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑡 = 𝑁 ∗ 𝑝𝑟𝑜𝑑 ∗ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∗ (1 − 𝑥)
t (4.5) 

   

where:  

𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑡: modified energy production at year 𝑡 (in MWh) 

𝑁: number of turbines 

𝑝𝑟𝑜𝑑: theoretical annual production (in MWh) 

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦: energy production capacity of the turbine (%); 

𝑥: yearly production degradation (%).  

 

To account for time-dependent degradation of the turbine efficiency, a yearly degradation factor 

of 0.5% was used in the equation above. It represents the blades degradation resulting from dust 

and wind tearing of the blade surface (IRENA, 2012).  
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Both the theoretical production and energy production capacity were modeled as PERT 

distributions, to account for uncertainties. More details are shown in Table 4.11.  

 

4.3.3. Electricity Prices  

Assessing the power prices is an important part of the economic evaluation of the wind farm 

projects. Many studies on short term power price forecast are available. However, analyzing long 

term prices seems more challenging as prices tend to reflect the expectations in the inflation rate, 

rather than the market price's expected development (Deloitte, 2014). Hence, an analysis on the 

supply and demand is needed to forecast the power price in the long term. Altman et al. (2018) 

stated that power prices change significantly across countries, so the analysis used in this report 

will only reflect the power prices in the EU 28* zone, including Norway and Switzerland. The 

historical power prices shown in Figure 4.17 were extracted from Nord Pool (2020), while the 

forecast prices were taken from Energy Brainpool (2019). The red arrows show the deviations 

from the mean forecast price, based on Energy Brainpool (2019) analysis, and will be modeled as 

uncertainties in this work.  

 

Figure 4.17: Power Price EU 28* (including Norway and Switzerland) 
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4.3.4. Subsidies  

A significant part of wind farm revenues come from subsidies. Hence, an understanding of the 

degree of governmental support is essential, at early stages of the project development. The main 

challenges here lay in the assessment of the size of the subsidy, the terms needed to receive it in 

the first place and the period over which the project is eligible to subsidies. Those factors vary 

significantly from one country to the other, given that each country follows its own incentive 

scheme structure. Hence, in our analysis, we'll be focusing on the Norwegian subsidy scheme, 

administrated by Enova, a state-owned company, responsible of the reduction of greenhouse gas 

emissions and the development of climate and alternative energy technologies (NordVind, 2011).  

In 2019, a total support of NOK 2.9 billion was awarded by Enova for projects contributing to the 

development of the energy system only (Enova, 2019). While the factors identifying the decision 

support by Enova in a certain project are not published, Enova (2019) states that once the decision 

is taken to award financial support for projects, the money is earmarked as commitments in the 

Climate and Energy Fund. Then, based on the project costs, the relevant amount is distributed in 

arrears. The project will have to pass several decision points before disbursement starts from 

Enova.  At the moment, these decision points are still unclear, and the total amount granted varies 

from one project to the other, meaning that the subsidy percentage granted doesn't depend on the 

project's cost only, but also on other factors that are still to be determined.  

Given the high ambiguity level in the subsidy granted for each project, we decided to base our 

analysis on Equinor's Hywind Tamper offshore wind project. This project consists of 11 wind 

turbines of 8 MW each, used to supply power to Gullfaks A and Snorre A oil platforms in the 

North Sea. Equinor (2018) estimated the total capital expenditure in this project to NOK 5 billion, 

and secured a NOK 2.3 billion subsidy from Enova in 2019. Hence, a 46% subsidy of initial Capex 

will be assumed based on this example.  

However, note that the 46% subsidy is still highly uncertain for the following reasons. First, the 

underlying conditions behind Enova's significant support in the Hywind Tamper project are 

unclear, as the NOK 2.3 billion reflects around 80% of the total support awarded by Enova that 

year for all projects in the development of the energy system. Second, Equinor was granted an 

additional NOK 566 million in support from the Norwegian Nox-fund for the same project 
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(Equinor, 2018). Lastly, the initial Capex estimated by Equinor (NOK 57 million per MW) ranges 

above most wind farm commercial Capex estimations published in the industry.  

 

4.3.5. Cost Evaluation Module 

First, the Capex was estimated for both onshore and offshore wind farms. It consists of the cost of 

turbines, grid connections, construction, installation and other platform costs. It can be divided 

into two main categories. The first category covers the cost of turbines, cables, towers and 

foundations and accounts for 73% of the total Capex. While the second category consists of 

infrastructure, licenses and station transformer costs and accounts for 27% of the total Capex 

(Morthorst and Kitzing, 2016).  

Many studies have been conducted on the cost estimation of wind farms, such as The European 

Wind Energy Association (2012), DNV (2011) and Deloitte (2014). Those estimates depend on 

various factors such as the stage of development of the project, which can be classified as 

prototype, commercial or pre-commercial project. Only commercial projects are considered in this 

thesis. Other factors affecting the capital cost include the technology used, the availability of 

infrastructure in the area of development and the bargaining power of the turbine suppliers based 

on the project's profitability (Deloitte, 2014). Note that offshore projects have greater initial capital 

cost, as the cost of foundation, construction and grid connections tend to be higher offshore 

compared to onshore wind farms. Deloitte (2014) shows a positive correlation between the site 

water depth and Capex for offshore turbines. More details about the Capex structure used in this 

thesis are available in Table 4.11.  

Second, the operating expenses (Opex) were estimated. They consist typically of insurance, 

maintenance and management costs and vary with annual production levels. As has been shown 

in the Capex estimation, the literature has used different Opex estimates. Different consultancy 

institution reports were analyzed in our work such as Roland Berger (2013), Douglas-Westwood 

(2010) and Deloitte (2014) and the resulting Opex structure implemented in this thesis is described 

in Table 4.11.  
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Krohn et al. (2009) claimed that the operating expenses of wind farm projects increases over the 

project's lifetime due to the worn out effect and damage of the components. This factor was taken 

into account in our analysis, with a 1.5% yearly cost increase of the Opex.  

Bolinger et al. (2019) suggested that the increase in global wind capacity will result in an Opex 

reduction over time. Their conclusion was based on a detailed study of historical Opex variations. 

Also, we believe that rapid technology evolutions in the field consolidates this hypothesis. Hence, 

a 9% Opex decrease is considered in the second phase of the project (after partial repowering of 

the plant).  

Finally, capital expenditures were depreciated over 15 years, using the straight line depreciation 

method. The after tax cash flow and net present value were calculated following the same method 

used for the O&G assets.  
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Table 4.11: Input Parameters of Wind Farm Cost and Production Structures 

Parameter [Python Argument]  Unit  Min  Mode Max  

Offshore Project 

Opex [opex] $/kWh 0.015 0.03 0.048 

Total Capital Variable Cost 

[capex_var] 
million$/MW 2.29 3.5 5.42 

Total Capital Fixed Cost 

[capex_fix] 
million $ 43.2 72.12 90 

Partial Repowering Investment 

[repower] 
million$/MW -  1.056 -  

Onshore Project 

Opex [opex] $/kWh 0.01 0.015 0.035 

Total Capital Variable Cost 

[capex_var] 
million$/MW 1.2 1.8 2.29 

Total Capital Fixed Cost 

[capex_fix] 
million $ 36.03 60.4 75.51 

Partial Repowering Investment 

[repower] 
million$/MW -  0.88 -  

Common Parameters for all Projects 

Annual Theoretical Production 

[energy_prod_theo] 
MWh 6500 8000 10000 

Energy Production Capacity 

[energy_cap] 
% 50 65 85 

Note: All parameters in Table 4.11 follow a PERT distribution.  

 

Figure 4.18 shows the NPV distribution of two different wind farm projects, illustrating the 

difference between onshore and offshore operations.  
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Figure 4.18: NPV Distribution of  a Wind Farm asset (overlapped) (onshore vs offshore) 

 

Also, the difference between using a "10/80/10" and "30/60/10" Capex structures was assessed 

(Figure 4.19). The highest NPV obtained with a "10/80/10" structure is due to the fact that 10% of 

the initial capex was invested at the end of year 0, compared to a 30% in the other structure, while 

one third of the total subsidy was received the same year in both cases. Taking into account the 

time value of money, a higher NPV is thus expected using the first Capex structure. However, the 

main drawback of using this approach is that it requires the availability of the adequate Capex 

budget at the end of year 1 to cover not only the cost of wind farm development, but also other 

operating assets within the portfolio. This budgetary constraint is analyzed more in details later in 

this report.  
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Figure 4.19: NPV Distribution of a Wind Farm asset (overlapped) (different Capex Structures) 
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4.4. Carbon Capture and Storage (CCS) Evaluation  

4.4.1. Background Overview 

The development of low-carbon and non-carbon energy solutions (such as solar, wind, nuclear, 

natural gas, etc.) and the implementation of high efficiency energy systems will decrease the CO2 

emission and accumulation in the atmosphere. To remain below the 1.5 °C temperature increase 

target, IEA suggested that no new exploration for fossil fuels should be done after 2021 (IEA, 

2021). However, the use of green technologies alone won’t be sufficient to reach the GHG 

emission targets by 2030, in line with the Paris Agreement (McKinsey, 2008). Moreover, high 

carbon fuels (such as gas, oil and coal) are forecasted to remain the dominant source of energy 

needed to meet the global demand in the near future. The reason behind this assumption is based 

on the fact that high carbon fuels present various advantages over alternative low-carbon energy 

sources including the ease of storage and transportation, competitive cost and availability (Aydin 

et al., 2010). Hence, it’s required to sustain the utilization of fossil fuels, while implementing new 

technologies to reduce CO2 emissions.  

One of the solutions presented and discussed is Carbon Capture and Storage (CCS). The 

Intergovernmental Panel on Climate Change (IPCC), the International Energy Agency (IEA, 2012) 

and the World Energy Council (WEC, 2007) all identified CCS as a key tool for GHG emission 

reduction. A CCS plant includes the capture and extraction of the CO2 emitted from industrial sites 

and power plants, followed by CO2 compression, transport and storage in a suitable geological 

sink (Feron & Hendriks, 2005).   

For the past few years, a considerable amount of research have been conducted on the CCS 

technology, addressing its economical, technical and environmental aspects. Feron & Hendriks 

(2005) analyzed the cost and emission reduction potentials of CCS, using an integrated eight steps 

system-chain approach. Their paper evaluated and compared various electricity production 

technologies in two scenarios: with and without CCS integration. They concluded that the 

electricity production cost is expected to increase by 0.015-0.03 euro/kWh when CO2 capture and 

storage is applied, while the carbon avoidance cost is expected to increase substantially, especially 

for coal-based systems. Adu et al. (2018) examined some current CCS projects performances and 

suggested various ways to improve their economic value, including the use of the hub and cluster 
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approach and/or CO2-EOR (enhanced oil recovery) for O&G reservoirs. They stated that injecting 

the captured CO2 to improve the well’s oil recovery can achieve up to 60% carbon sequestration 

(capture). Consoli et al. (2017) analyzed the importance of CCS in the O&G industry and 

concluded that this sector have a solid technological advantage for expansion and upscaling of 

CCS. In addition to the opportunity of reducing its own carbon emission, an O&G company can 

build a separate global business out of the CCS plant, allowing other companies to use it, and 

hence creating additional revenue streams (tax credits scheme). However, to meet international 

emission targets, CCS must be backed and supported by strong emission reduction policies, legal 

frameworks and sustainable governmental incentives (Adu et al., 2018; Consoli et al., 2017; Feron 

& Hendriks, 2005; Singh, 2013; Yan & Zhang, 2019). 

 

4.4.2. Overview of Process Model  

Often, the general CCS process involves three major steps, as seen in Figure 4.20 (Equinor, 2021):  

 CO2 Capture: CO2 is emitted from industrial plants or alternative combustion sources as a 

flue gas, containing both nitrogen and CO2. In order to simplify transport and storage 

activities, an additional compression step is required, to ensure an adequate CO2 pressure 

of 100 bars. Three principle CO2 capture processes are available: post-combustion, pre-

combustion and oxy-fuel combustion method (Feron & Hendriks, 2005). Additional details 

about advantages and drawbacks of each capture method can be found in Leung et al. 

(2014) paper.  

 CO2 Transport: since different locations are often used for CO2 capture and storage, a 

transport system is needed to link the emission sources to the adequate storage sinks. Often, 

CO2 is transported in a gas, liquid or solid state, using pipelines, tanks or ships, depending 

on the component physical state (Aydin et al., 2010).  

 CO2 Storage: CO2 should be stored in areas where it can stay isolated from the atmosphere 

for a long period of time. Such areas include depleted O&G fields, deep saline aquifers and 

coal beds. In addition to safety and low migration risk within the formation, several criteria 
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must be considered when choosing the geological storage such as capacity, cost, 

applicability and carbon release to the surface (Aydin et al., 2010).  

In the scope of this thesis, little details about the technical aspects of the CCS asset used are 

discussed. The focus will be mainly on the economic performance and carbon capture potential of 

the CCS plant, in line with the portfolio’s objectives and thesis topic.  

 

 

 

Figure 4.20: CCS Operating Steps (adapted from Equinor (2021)) 
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4.4.3. Innovations & Applications  

In this section, some examples of major O&G companies’ investments in CCS are presented: 

 The Northern Lights project is part of the full-scale CCS initiative “Langskip”, supported 

by the Norwegian government. The full-scale project initially captures CO2 from industrial 

capture sources. Then the Northern Lights project aims to transport liquefied CO2 via ships 

for permanent storage in an offshore subsea location in the North Sea. The first phase of 

the project included a total transport, injection and storage capacity of 1.5 million tons of 

CO2 annually, accounting for around 11% of the total emission on the NCS. Operations are 

scheduled to start in 2024. The Northern Lights project is governed by a collaboration 

agreement between three O&G companies: Equinor, Shell and Total (Equinor, 2021).  

 The Quest project, one of the largest CCS projects in the world, is a fully-integrated carbon 

capture and storage plant, compromising of CO2 capture, transport and storage of more 

than one million tons of CO2 per year. The project captures around one third of the total 

emissions from Shell’s Scotford oil sands Upgrader and stored the captured CO2 in the 

impermeable rock formation of the Cambrian Basal Sand. Quest is supported by the 

Canadian and Alberta governments and is a partnership between Shell, Canada Energy 

and Chevron (Shell, 2021).  

 The HyNet North West project includes hydrogen production from natural gas and a fully-

integrated CCS infrastructure model. The project, supported by the UK government, is 

being led by a group of regional industrial companies in the UK, in addition to ENI, who 

will play a major role in the CO2 transportation and storage. One of ENI’s depleted O&G 

reservoirs will be used to store the CO2 captured. The project is expected to reduce CO2 

emission in the UK by up to 10 million tons annually by 2030, significantly contributing 

to government’s the net-zero emission target at 2050 (ENI, 2021).  

 The Gorgon project injects and stores CO2 into deep sandstone formation next to the 

Gorgon gas fields (Western Australia). The CO2 is separated at the liquefied natural gas 

(LNG) plant and transported using pipelines to nine different directional injection wells, 

used to store the CO2 in trapped formations. A 40% GHG emission reduction over the 
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project’s lifetime is expected. Shell and ExxonMobil are partners in this project, led by 

Chevron (Chevron, 2021).  

 

4.4.4. Economic & Capture Potential Evaluation Module 

In this section, the cost of a CCS project is estimated and used in the economic evaluation of the 

asset for portfolio analysis. As for wind farms and hydrocarbon assets, a hypothetical CCS project 

is modeled in Python using the class “CCS_asset”, and a probabilistic evaluation was performed 

using Monte Carlo simulation of 10000 iterations for a period of 30 years.  

The input parameters for the CCS project are listed in Table 4.12.   

 

Table 4.12: Input Parameters of CCS Asset 

Parameter [Python Argument] Unit/Possible Outcomes 

CCS Utilization percentage [util] % 

Subsidies percentage [perc_subs] %  

Time Period [period] Years  

Number of Iterations [n] -  

 

The subsidies percentage represents the amount of governmental support the company is expected 

to receive for this investment, as a fraction of the total Capex required. The CCS utilization 

percentage illustrates the percentage of the total CCS capacity that is being used for carbon capture 

and storage. This parameter varies depending on the project’s phase. A project in the 

demonstration (sub-commercial) phase is assumed to have a utilization percentage of not more 

than 80%. For early commercial and mature commercial phases, this percentage is expected to 

increase to up to 86% (McKinsey, 2008).  

In this thesis, the CCS project is divided into two stages (Figure 4.21). First, in the demonstration 

phase, the CCS technology is still not very mature; however, a fair amount of carbon emission is 

expected to be captured. At this stage, governmental policies and carbon trading market potential 
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are still unclear. A 15-year economic life is considered for this phase. Once the CCS project has 

been evaluated and developed, a commercial operation phase begins, where significant CO2 

capture is expected. In addition, a CCS project in a mature commercial phase can generate 

additional commercial utility income by tax credits trading and/or carbon utilization (such as 

EOR).  Typically, a commercial scale CCS asset have a lifetime of 40 years (McKinsey, 2008); 

however, in this thesis, since all hydrocarbon and wind farms assets are evaluated for a total period 

of 30 years, the CCS project’s evaluation stops at 30 years for consistency in the analysis. 

 

 

Figure 4.21: CCS Project Phases 

 

The cost evaluation of a CCS project depends on various parameters such as the type of CO2 

capture technology, the facility’s capacity, the distance from emission sources to the storage 

location and the geological CO2 storage area (Adu et al., 2018). Publicly available data shows 

significant cost differences between various CCS operating projects. For example, the Quest 

project has an estimated investment cost of around $40 per tons of CO2 captured over the project’s 

lifetime, while for the Gorgon project it’s around $20 per tons (Consoli et al., 2017). In addition 

to the uncertainties associated with actual cost estimations, there is also significant uncertainties 

in the prediction of cost development over time (McKinsey, 2008).  

In this thesis, the cost structure of a CCS project was divided in three parts: initial unit investment 

cost (Capex), operation and maintenance running cost (O&M) and cost per tons of CO2 abated. 

The initial unit investment cost represents only the total capital cost required to design, buy and 

install the equipment. Since the CCS project is divided in two phases, two separate capital costs 
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are considered, reflecting the investments at each stage of the project. Installations are depreciated 

using the straight-line depreciation method over the project’s lifetime (Feron & Hendriks, 2005). 

As for the cost per tons of CO2 abated, it consists of the sum of the costs of CO2 capture, 

transportation and storage. Often, the capture cost represents around two-third of the total abated 

cost (Adu et al., 2018). Another component of the cost structure is the operation and maintenance 

(O&M) running cost which compromises the cost of planned and unplanned maintenance, 

assurance, spare parts, labor, etc. (Franki et al., 2019). O&M costs are considered equal to 5% of 

the total initial investment. Another key factor affecting the overall cost structure is the project’s 

location, where offshore projects have higher estimated costs compared to the onshore costs 

(Aydin et al., 2010).  

Given the variations in cost estimations with several parameters, the following assumptions were 

considered with regards to the CCS unit’s characteristics:  

 Capture using post-combustion capture absorption technology.  

 Compression at the capture site and injection using directional wells 

 Transportation through a pipeline network of 200-300 km, keeping the component in 

supercritical state.  

 Storage in a depleted hydrocarbon field at a depth of 1000-3000m.   

The applicability of these assumptions depends on the project’s location, company’s level of 

expertise and availability of storage capacity and adequate geographic formation, among many 

other factors.  

The CCS unit presented in this work have capture and storage efficiencies of around 90% (Adu et 

al., 2018; McKinsey, 2008), and a total unit capacity of 1.5 and 5 million tons of CO2 per year, for 

the first and second project phases respectively.  

Information on costs presented in this section (Table 4.13) is obtained from Adu et al. (2018), 

Aydin et al. (2010), Consoli et al. (2017), Feron & Hendriks (2005) and Franki et al. (2019). 
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Table 4.13: Input Parameters of CCS Cost Structure 

Parameter [Python Argument]  Unit  Min  Mode Max  

Unit Investment of 1st Stage [capex1] $ million 300 332 350 

Unit Investment of 2nd Stage [capex2] $ million 120 150 170 

Capture Cost [capt_cost] $/t CO2 30 37 39 

Transportation Cost [trans_cost] $/t CO2 4 4.9 7.3 

Storage Cost [stor_cost] $/t CO2 4.9 12 14.5 

Note: All parameters in Table 4.13 follow a PERT distribution.  

 

4.4.5. Drivers for CCS development  

Even though individual parts of the CCS unit can be considered mature, this technology still faces 

various development challenges, due to its high cost of operation and uncertainties about its 

profitability and technical feasibility in the future (Consoli et al., 2017). However, technological 

uncertainties and capital requirements are expected to be reduced by implementing additional 

demonstration projects and improving and/or making current CCS methods more cost effective 

(Franki et al., 2019).  

In order to offset the high perceived cost of CCS, strong and stable regulatory frameworks must 

exist. McKinsey (2020) states that from an economical point of view, a CCS cannot create value 

of itself unless particular economic conditions are present. These include governmental support 

through incentives, subsidies and carbon tax schemes, in addition to a strict cap and trade system. 

For example, in Norway, both Snøhvit and Sleipner projects (operating carbon storage projects) 

were feasible because of governmental support and CO2 tax. Another example is the Quest CCS 

project in Canada that received significant financial support from the government and benefited 

from the emission reduction incentives (Consoli et al., 2017). As mentioned earlier, under the 

European Emission Trading Scheme, CO2 emitting companies are freely-assigned emission 

allowances every year. In case those companies exceed their GHG emission limits, they are 

required to purchase additional emission allowances on the open markets, under the “cap and 

trade” scheme. Therefore, a CCS project can benefit from this trading system to first reduce its 

spending on open market allowances due to carbon emission reduction from its operating assets. 
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Second, a CCS asset can generate additional revenues by selling emission allowances to other 

companies. Even though O&G companies’ spending on emission allowances are often not publicly 

shared and change significantly over time, a good estimation is based on ENI’s example. In 2019, 

ENI purchased allowances on the open market corresponding to 11.6 million tons of CO2 emission, 

estimated for a cash cost of  €290 million (ENI, 2020). Stricter regulations on the free-assignment 

of allowances are expected in the foreseen future.  

In addition to regulatory frameworks, CO2 utilization can significantly affect the overall project’s 

economics. Industrial captured CO2 can be used across various industries such as plastics, 

chemicals, biological conversion, food, etc. One area of current interest is CO2-EOR with CCS, 

where the captured CO2 is injected in a depleted O&G reservoir to increase downhole pressure and 

enhance the oil recovery from the well. Then the injected CO2 is stored there permanently. Adu et 

al. (2018) suggest that the goal of CO2-EOR application with CCS is not only to maximize oil 

recovery but also increase the amount of CO2 stored during operation. Therefore, one limitation of 

this process that must be taken into consideration is the high mobility of CO2 during injection, 

resulting in higher CO2 fingering and channeling and lower storage efficiency. Foam flooding and 

water alternating gas (WAG) flooding are two common techniques used in the industry to mitigate 

the CO2 mobility limitation, but as expected, they come with additional operating costs. Other 

limitations include the risk associated with CO2 leakage in geological storage after EOR. CO2-

EOR sale prices are estimated around $20 per tons, based on the Boundary Dam public report 

(Consoli et al., 2017); however, this price significantly depends on O&G prices, resulting in higher 

uncertainties in the forecast of the CO2-EOR CCS economics potential. In addition, the 

applicability of EOR depends on the reservoir’s characteristics, and most experts agree that EOR 

have very limited economics potential in Europe (McKinsey, 2008). Some examples of successful 

CO2-EOR with CCS projects include Weyburn Project in Canada, Abu Dhabi CCS Project in 

UAE, Sinopec CCS Projects in China, among many others (Adu et al., 2018).  

In this thesis, CO2-EOR is not considered in the asset evaluation analysis; hence, the hypothetical 

company evaluated should carefully target governmental support and penalties associated with 

CO2 emissions, as it was the case for both Norwegian Sleipner and Snøhvit projects (where no 

EOR revenues were generated).   
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5. Portfolio Case Study  

In this section, the executive management team must select the optimal asset combination from a 

pool of petroleum and non-petroleum projects. The decision criteria include expected NPV, carbon 

emission and O&G production, while the primary constraint is the annual expected Capex. The 

decision-maker’s objectives are evaluated annually, and the probabilities of meeting the annual 

targets are calculated. Various corporate strategies with a focus on energy transition and net-zero 

carbon emission ambition are evaluated, then time-dependent portfolios in line with those 

strategies are identified.  

We considered a hypothetical portfolio of 16 assets. Stochastic aggregation including time-

dependent goals and constraints is used for multi-objective portfolio optimization.  

The portfolio includes the following asset types: ten hydrocarbon, five wind farms and one carbon 

capture and storage (CCS). Individual project characteristics are presented in Table 5.1. The choice 

of the year to start the project depends on the decision-maker’s preference, in addition to the 

project’s technical feasibility in the chosen year. It’s assumed that only non-petroleum assets are 

expected to receive support from the government or other organizations in the form of subsidies.  

Project evaluations described in Section 4 were conducted using a Monte Carlo simulation of 

10,000 iterations and a period of 30 years. Simulation results are summarized in Table 5.2 below.  
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Table 5.1: Portfolio Pool 

Project Asset Type Location Phase 
Govt. Subsidy 

% 

Mode of Reserves 

Mstb/Bscf 

Start-up 

Year 

P1 Petroleum - Gas Onshore  Exp. - 800.00 0 

P2 Petroleum - Oil Onshore  Dev. - 300.00 0 

P3 Petroleum - Oil Onshore  Dev. - 520.00 0 

P4 Petroleum - Gas Onshore  Dev. - 1060.00 0 

P5 Petroleum - Oil Onshore  Exp. - 250.00 1 

P6 Petroleum - Oil Offshore Exp. - 680.00 4 

P7 Petroleum - Oil Offshore Dev. 45 140.00 0 

P8 Petroleum - Gas Offshore Dev. 45 1520.00 0 

P9 Petroleum - Gas Offshore Exp. 45 970.00 3 

P10 Petroleum - Gas Offshore Exp. 45 2040.00 1 

P11 Wind Farm Onshore  - 45 0.00 0 

P12 Wind Farm Onshore  - 45 0.00 0 

P13 Wind Farm Onshore  - 45 0.00 0 

P14 Wind Farm Offshore - 45 0.00 0 

P15 Wind Farm Offshore - 45 0.00 0 

P16 CCS Offshore - 45 0.00 0 

Year 0 indicates that the project is expected to start right way (the same year that the portfolio 

analysis is performed).  
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Table 5.2: Portfolio Simulation Results 

Project 

 

E[Oil 

Res] 

E[Gas 

Res] 
E[NPV] 

Sum over the project’s lifetime 

Start-

up 

Year 

E[Oil 

Prod] 

E[Gas 

Prod] 

E[CO2 

Emission] 
E[Capex] 

year Mstb Bscf $ million  Mstb Bscf 
million t 

CO2 
$ million  

P1 0 - 823.19 -690.51 - 286.03 1.77 2122.92 

P2 0 316.11 - 714.74 139.42 - 0.81 745.42 

P3 0 549.64 - 1231.43 342.20 - 1.41 1308.73 

P4 0 - 1120.08 -416.23 - 893.58 2.87 1981.75 

P5 1 260.21 - 21.93 81.73 - 0.52 1218.46 

P6 4 1388.52 - 278.98 917.20 - 2.26 4568.44 

P7 0 294.58 - 512.14 130.16 - 0.76 1033.74 

P8 0 - 3213.29 1001.11 - 1402.73 8.18 4902.64 

P9 3 - 2015.89 -1550.68 - 1502.60 3.48 5795.19 

P10 1 - 4195.16 572.95 - 3327.81 0.52 6632.24 

P11 0 - - 179.42 - - - 301.29 

P12 0 - - 90.37 - - - 150.94 

P13 0 - - 82.28 - - - 150.54 

P14 0 - - 90.19 - - - 486.77 

P15 0 - - 61.50 - - - 243.35 

P16 0 - - -574.65 - - -56.10 3 678.18 

 

 

5.1. Time-dependent Portfolio Analysis   

Many O&G companies increasingly focus on the energy transition from fossils to renewables and 

portfolio management and optimization can be an important contributing factor to plan, decide and 

implement this transition which includes actions to reduce their carbon emissions and targeting a 

net-zero emission by 2050. Their approaches are often two-folded as several factors such as the 

                                                 

 

3 The negative CO2 emission amount reflects the amount of CO2 captured by the CCS asset 
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company’s regional presence and size, infrastructure availability, social acceptance and degree of 

public sector intervention, are key determinants of the company’s action plans.  

First, companies must reduce their emission by increasing the percentage of renewables in their 

portfolios. Due to budgetary constraints and investors’ pressure towards a less risky and low-

emission future, a gradual phasing out of O&G production in favor of renewables assets is 

necessary. However, process optimization, cheaper reserves and infrastructure availability might 

become key motivations for further hydrocarbon production in the future. Moreover, the ability of 

renewable energy to satisfy the world’s growing energy needs in a timely manner is still open to 

question. Hence, high carbon fuels are forecasted to remain the dominant source of energy in the 

near future.  

Second, companies need to offset their carbon emissions from operating hydrocarbon assets by 

investing in net-negative emission technologies, such as CCS. Even though this technology has 

significant potential in emission reduction and is highly compatible with the current hydrocarbon 

infrastructure, its economic feasibility requires the presence of a clear, predictable and sustainable 

regulatory framework that actively help and support companies seeking to achieve net-negative 

emission. In addition, CCS is a means to continue producing fossil fuels and, hence, hinders, or at 

least slows down, the energy transition to renewables.  

Therefore, the energy transition’s plan of an O&G company is often a double-edged sword. 

Moving too quickly into renewable and CCS implementation might result in stranded assets, while 

refusing to change by increasing or maintaining oil production at its current level might cause 

losses in shareholders’ trust and investors’ willingness to make “more risky” investments. 

In this section, two separate case studies are presented. In the first scenario, O&G production 

targets are kept the same over the portfolio’s lifetime, while CCS and wind farms assets are 

incorporated into the portfolio. Given more production will result in higher emission intensities, a 

working interest of 100% in the CCS asset is considered to reach the emission target set by the 

corporate team. The second scenario includes a major shift from oil to wind energy production, 

where the company will have partial ownership of the CCS asset, as less emission is expected in 

this case.  
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Both scenarios are evaluated using time-dependent stochastic aggregations of cash flows and 

carbon emissions, where the probabilities of delivering on the annual portfolio targets, determined 

by the executive management team, are calculated. The analysis also includes changes in the 

assets’ working interests or annual targets in each scenario in order to create an optimal portfolio.  

 

5.1.1. Scenario 1 

Initially, a portfolio including 100% of all assets is considered. This analysis helps to understand 

whether the annual goals are realistic and achievable. The decision-maker might decide to lower 

the targets or change the working interests of the assets after this analysis, depending on how 

flexible the targets are. However, with fixed budgetary constraints, and limited access to capital, 

the Capex target is unchangeable. Table 5.3 shows the initial corporate performance goals set by 

the executive management team.  

Again, O&G productions are assumed to be kept at their current levels, i.e. no reduction in 

hydrocarbon production over the portfolio’s lifetime. Corporate targets on electricity production 

were not considered in this analysis. The feasibility of a wind farm project is hence assessed only 

based on its emission reduction potential, compared to hydrocarbon assets, and on its economic 

contribution to the overall portfolio.   

The projects were all evaluated over 30 years. Usually, executive management teams don’t make 

plans that far into the future. However, a shorter time horizon, of 10 years for example, is too short 

for the energy transition portfolio. Many O&G companies have set net-zero carbon emission 

targets for 2050; hence, we believe that a long horizon is needed to show that even if the company 

reaches 30% or 50% of its objectives during the first 10 years, it is still on its way to become net-

zero (or negative) by 2050.  
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Table 5.3: Corporate Targets (Scenario 1) 

Year 

Time-Dependent Corporate Targets 

Capex NCF CO2 Emission Oil Prod Gas Prod 

$ million  $ million million t CO2 Mstb Bscf 

0 -1000 100 1 10 400 

1 -4000 100 1 15 400 

2 -3500 100 0.95 18 400 

3 -3000 100 0.95 20 400 

4 -3000 100 0.7 21 400 

5…10 -2000 100 0.6 28 400 

11…20 -2000 100 0.3 35 400 

21…30 -2000 100 0.05 18 200 

 

After defining the annual corporate targets and constraints, a probabilistic aggregation of the 

various objectives (NPV, carbon emission and O&G production) is performed. Then the expected 

values of the portfolio’s objectives are calculated based on the weights attributed to each asset. An 

example is illustrated in Figure 5.1. The corporation can choose any working interest in assets 1 

through N. The mean, P10 and P90 of the assets’ cash flows are shown on the left. The annual 

NPV expected values of the portfolio resulting from the combination of those assets is represented 

by red bars and the annual NPV corporate targets by blue bars. The black line, which requires the 

run of the Monte Carlo simulation sampling from the assets (using the chosen working interest), 

shows the probability of delivering on the portfolio target for each year.  
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Figure 5.1: Time-dependent Probabilistic Aggregation of Cash Flows Example 

 

The probabilities of meeting corporate goals using a full portfolio are shown in Figure 5.2 

(portfolio value represents the expected values of the portfolio).   

Clearly, the probability of meeting the majority of corporate goals over the entire time horizon is 

quite low. Beyond year 20, when hydrocarbon production decreases, the probability of meeting 

annual NCF targets decreases significantly, as CCS operating expenses exceed annual revenues 

from wind farms and petroleum assets. However, the carbon emission target is fully met from year 

15 onwards suggesting that the CCS unit have additional capacity to capture more emission. This 

might introduce some opportunities for the company to balance its cash flow by either selling 

emission allowances or utilizing its additional CCS capacity to capture CO2 emitted from nearby 

operating assets.  However, assessing the annual probabilities of meeting the emission goals, it can 

be seen that a full portfolio will produce more emission than the target, even in the presence of a 

full CCS project operating. Hence, some petroleum assets must be reconsidered.  
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Figure 5.2: Time-dependent Portfolio Analysis Results (100% WI Portfolio) 
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In addition, the company will fail to meet its production goals when all O&G projects are expected 

to start early in the portfolio’s lifetime. This notion is also seen in the Capex targets, where between 

years 0 and 10, the annual Capex goals are met between 35% and 60% of the time only. With the 

target budgetary limits, the full portfolio cannot be implemented.   

Three alternative portfolios are proposed and their individual overall performances are 

summarized in Table 5.4. Portfolio A is the full portfolio analyzed earlier, consisting of 100% of 

all assets. It’s included in the table as a reference case. Portfolio B includes petroleum assets only, 

whilst portfolios C and D focus on O&G reserves maximization, respectively. In this part of the 

analysis, NPV is considered the main objective, since carbon emission targets are met through the 

full ownership of the CCS operation. The shaded values represent the performance metrics that 

breach the corporate targets.  

Note that in the portfolio analysis and optimization proposed in this thesis, no computerized 

portfolio optimization algorithms (such as quadratic or evolutionary algorithms) were used. 

Working with multiple time series, each with its own objectives, there will be hundreds of 

weighting factors to determine, and even if the decision-maker is willing, and able, to do this, the 

resulting optimization problem cannot be solved by a computerized algorithm in a reasonable time 

(if at all). Therefore, the analysis proposed is “manual”, where the assets’ working interests are 

manually adjusted to meet corporate goals. Hence, there might exist a “more optimal” asset 

combination maximizing the objectives given the corporate constraints. However, the goal here is 

to assess the impact of implementing the CCS technology and wind farms on the portfolio’s 

performance, rather than finding the optimal asset combination. Moreover, a second, but perhaps 

just as important, objective is to facilitate good conversations in the executive management team 

leading to a thorough understanding of decision alternatives and their uncertain consequences. 
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Table 5.4: Portfolios Performance Metrics (Scenario 1) 

Project Asset Type Portfolio: A B C D 

P1 Gas  Asset 

Combination 

1.00 0.00 0.00 0.00 

P2 Oil 1.00 0.80 1.00 1.00 

P3 Oil  1.00 1.00 1.00 1.00 

P4 Gas  1.00 0.00 0.00 0.60 

P5 Oil  1.00 0.30 1.00 0.00 

P6 Oil  1.00 0.60 1.00 0.10 

P7 Oil  1.00 0.70 1.00 0.70 

P8 Gas  1.00 1.00 1.00 1.00 

P9 Gas  1.00 0.00 0.00 0.00 

P10 Gas  1.00 1.00 0.33 1.00 

P11 Wind  1.00 0.00 1.00 1.00 

P12 Wind  1.00 0.00 1.00 1.00 

P13 Wind   1.00 0.00 1.00 1.00 

P14 Wind   1.00 0.00 1.00 1.00 

P15 Wind   1.00 0.00 1.00 1.00 

P16 CCS  1.00 1.00 1.00 1.00 

Performance 

Metrics 
Total Targets4 

 

   

Capex (million $) ≤18000 32320.31 17948.35 17977.15 17969.62 

NPV (million $) ≥ 3500 1604.98 3335.11 3878.53 3586.01 

Carbon Emission 

(million t CO2) 

≤ 1 
-25.52 -35.29 -39.34 -34.69 

Oil Reserves (Mstb) ≥ 2000 6768.21 1919.90 2809.05 1882.85 

Gas Reserves (Bscf) ≥ 8000 11367.60 7408.44 4597.69 8080.49 

 

 

                                                 

 

4 Total targets, over the entire time period 
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The results in Table 5.4 show significant improvements in the portfolio performance in terms of 

NPV and Capex, compared to those obtained in Portfolio A. The highest NPV value is met using 

Portfolio C, focusing on maximizing oil production and reserves (probabilities of meeting annual 

targets using this portfolio are shown in Figure 5.3). While this portfolio doesn’t breach the 

majority of the performance metrics targets, it results in very low gas reserves and also a decrease 

in annual gas production as well. Since three of the gas producing assets have the lowest NPVs 

among all other projects, excluding them from the portfolio resulted in a noticeable increase in the 

expected portfolio’s NPV. However, this had a negative impact on the probability of meeting the 

annual gas production constraints (Figure 5.3). Thus, the company should reconsider its 

performance targets, and overall strategy with respect to its natural gas business.   

Even tough Portfolio D meets as many corporate targets as Portfolio C, it has a higher overall 

emission intensity. In the presence of a full CCS project, this doesn’t create any limitation on the 

portfolio’s performance in terms of emission. However, the extraction of more emission intensive 

assets by CCS exploitation is subject to social and economic issues related to technical 

uncertainties and degree of social and environmental acceptance.   

In Portfolio B, only the Capex constraint (that was manually monitored) and the carbon emission 

target were met. While some optimization can be done on petroleum assets combinations to 

increase the performance metrics of this portfolio, excluding wind farm projects seems to decrease 

the portfolio’s value. This is because wind farm assets have the lowest Capex and emission 

intensities among all other projects, with positive expected NPV values. However, based on the 

projects evaluated in this thesis, it’s highly unlikely for companies to meet their NPV targets 

relying on wind farm projects only.  

Another possible challenge for wind farm energy is to be trapped in a bubble of extreme optimism. 

A technical failure of this technology and/or a saturation of the electricity market could result in 

stranded assets. While Norway has a large potential of offshore wind power expansion due to its 

windy coastline, the Norwegian Ministry of Petroleum and Energy (2021) states that, in 2020, 

Norway produced more electricity than its consumption. However, since only 6.4% of the total 

electricity production came from wind power, an expansion of this sector is expected, driven by 

the public electricity certificate scheme, increasing electrification of the offshore O&G fields and 
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the possibility of reducing the domestic production of hydropower (which is dispatchable and 

hence can be traded in the international market) in favor of wind power.  
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Figure 5.3: Time-dependent Portfolio Analysis Results (Portfolio C) 
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5.1.2. Scenario 2  

In this section, a different corporate strategy is adapted, where O&G production levels decrease 

significantly over the portfolio’s lifetime. A lower working interest in the CCS asset is also 

considered, given that less emission is wanted. In addition, more severe constraints are applied on 

the Capex goal. This is because the company wants a lower fractional ownership in the CCS whilst 

still being able to deal with all its CO2 needs.  

The asset combinations given by Table 5.5 were evaluated with various Capex constraints. Since 

projects P1, P4 and P9 have negative NPVs, they were excluded from the portfolio. The working 

interest of the CCS project was gradually decreased from Portfolio E to G to assess the impact of 

this technology on the performance metrics. As for wind farm assets, a 100% participation was 

assumed throughout all cases, since the company’s strategy here involves a reduction in the 

hydrocarbon production in favor of renewables.  

In the first two portfolios (E and F), the results performed well against the majority of the 

performance metrics, especially the NPV targets. This is because although the Capex constraint 

was decreased (became more severe) compared to scenario 1, the lower participation in the CCS 

asset increased the overall NPV of the portfolio. However, a tradeoff between NPV maximization 

and carbon emission minimization must be considered. Table 5.5 shows that a 10% working 

interest in CCS fails to meet the emission performance target, even for a low Capex constraint. 

Increasing the Capex constraint from $10,000 to $15,000 million would give the company the 

opportunity to add more petroleum assets to its portfolio, hence increasing its carbon emission 

even more. Since Portfolio E has the highest NPV and met the majority of the performance metrics, 

it was considered for further detailed analysis (Figure 5.4).  
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Table 5.5: Portfolios Performance Metrics (Scenario 2) 

Project Asset Type Portfolio: E F G 

P1 Gas  Asset 

Combination 

0.00 0.00 0.00 

P2 Oil 1.00 1.00 1.00 

P3 Oil  1.00 1.00 1.00 

P4 Gas  0.00 0.00 0.00 

P5 Oil  0.30 0.20 0.00 

P6 Oil  0.12 0.12 0.30 

P7 Oil  0.78 1.00 1.00 

P8 Gas  1.00 0.50 0.16 

P9 Gas  0.00 0.00 0.00 

P10 Gas  0.70 0.61 0.50 

P11 Wind  1.00 1.00 1.00 

P12 Wind  1.00 1.00 1.00 

P13 Wind   1.00 1.00 1.00 

P14 Wind   1.00 1.00 1.00 

P15 Wind   1.00 1.00 1.00 

P16 CCS  0.50 0.35 0.10 

Capex Constraint:    15000 12000 10000 

Performance Metrics Total Targets    

Capex (million $) ≤15000 14991.41 11947.04 9959.68 

NPV (million $) ≥ 3500 4004.32 3648.87 3434.96 

Carbon Emission 

(million t CO2) 

≤ 1 
-10.66 -6.99 3.62 

Oil Reserves (Mstb) ≥ 1500 1340.20 1379.99 1576.88 

Gas Reserves (Bscf) ≥ 5000 6149.90 4165.69 2611.70 
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Figure 5.4: Time-dependent Portfolio Analysis Results (Portfolio E) 
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Comparing portfolios C and E, with 100% and 50% ownership of the CCS asset respectively, it 

can be seen that higher probabilities of meeting the NCF targets are met using Portfolio E. This 

result was expected since this portfolio have a higher NPV and lower working interest in the CCS 

asset. However, the increase in the expected NPV came at the expense of the emission targets that 

were breached regularly during the first 15 years of the portfolio’s lifetime. The reason why the 

overall emission target of 1 million t of CO2 is met (Table 5.5), is because the CCS unit’s capacity 

increases after year 15, in the second phase of development. By that time, petroleum production 

from all hydrocarbon projects would be significantly lower, since all those projects started early 

in the portfolio’s lifetime.  

It’s apparent that if the company has full ownership of the CCS asset, it will meet the majority of 

its annual corporate targets in terms of emission reduction and annual oil production. However, 

the NPV is expected to be lower in that case. On the other hand, a 50% working interest in the 

CCS project combined with a lower hydrocarbon production strategy and a lower required Capex 

are expected to generate higher NPV values. However, the company may want to reconsider this 

strategy given that the emission constraints are not fully met in the time period considered.  

Even though there might be a percentage between 50% and 100% CCS ownership resulting in 

NPV maximization and emission reduction, the choice of the company’s degree of ownership in 

the CCS technology goes beyond the NPV and emission parameters.  

At this point, the CCS solution seems unprofitable. If it fails to gain governmental support and 

additional revenue streams in the near future, it could become a stranded asset. Given that a 

technical failure of this technology might lead to significant losses, the executive management 

team might find it “safer” to limit ownership in the CCS asset so that it only captures its own 

carbon emissions.  
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5.2. Overall Portfolio Performance Evaluation 

In section 5.1, we showed that portfolios C, D and E meet the highest number of corporate goals. 

We also illustrated and compared the probabilities of meeting annual targets for the three 

portfolios.  

To support portfolio decision and address the multi-objective nature of the problem, the portfolio 

alternatives (portfolios C, D and E), the objectives sets and the decision-maker’s preferences are 

modeled and evaluated in this phase. The goal of this section is to reach a final decision on the 

optimal portfolio by accounting for the relative importance of individual objectives for the 

decision-maker. This approach is based on the work presented by Bratvold & Begg (2010).  

The first step includes assessing the portfolios against the objectives. The expected values of the 

performance metrics (objectives) calculated in section 5.1 are used in this part. Table 5.6 illustrates 

the expected payoffs of the three portfolios for each objective metric. Payoffs represent the extent 

to which the objective is met once the decision has been taken. To combine the performance of 

one portfolio on multiple objectives, a transformation, using a value unction, from attribute scores 

to attribute values on a common scale is needed. For example, a carbon emission score of -20 

million t CO2 transforms to a value of 50, while an NPV score of $3,700 million transforms to a 

value of 30. In this work, all the transformation value functions were assumed linear and defined 

using the minimum and maximum score of various portfolios. Some examples are shown in 

Figure 5.5. 

 

Table 5.6: Expected Payoffs Scores 

Objectives  
Portfolio Payoffs (𝒗𝒊𝒋) 

C D E 

NPV (million $) 3878.53 3586.01 4004.32 

Carbon Emission (million t CO2) -39.34 -34.69 -10.66 

Oil Reserves (Mstb) 2809.05 1882.85 1340.20 

Gas Reserves (Bscf) 4597.69 8080.49 6149.90 
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Figure 5.5: Value Functions 

 

The next step is applying weights to the objectives. The weights represent the decision-maker’s 

preference for fulfilling one objective over another.  The direct-weighting method is illustrated: 

 

Table 5.7: Direct Weight Approach 

Objectives  Rank Weight  Normalized Weight 

NPV (million $) 1 100 0.4 

Carbon Emission (million t CO2) 2 90 0.36 

Oil Reserves (Mstb) 3 30 0.12 

Gas Reserves (Bscf) 3 30 0.12 

 

In the last step, a weighted overall value is calculated for each portfolio:  

 𝑉𝑗 = ∑𝑤𝑖𝑣𝑖𝑗

𝑁𝑖

𝑖=1

 (5.1) 

 

where:  

𝑉𝑗: normalized weighted overall value of 𝑗𝑡ℎ portfolio  

𝑤𝑖: normalized weight of the 𝑖𝑡ℎ objective  

𝑣𝑖𝑗: payoff of the 𝑗𝑡ℎ portfolio for the 𝑖𝑡ℎ objetive  



91 

 

 

 

Table 5.8 illustrates the application of this approach to portfolios C, D and E.  

 

Table 5.8: Portfolio Evaluation using the decision-maker's preferences 

Objective  
Norm. Weight 

(𝒘𝒊) 

Portfolio Value (𝒗𝒊𝒋) 

C D E 

NPV (million $) 0.4 70.10 0.00 100.00 

Carbon Emission 

(million t CO2) 
0.36 100.00 83.79 0.00 

Oil Reserves (Mstb) 0.12 100.00 36.98 0.00 

Gas Reserves (Bscf) 0.12 0.00 100.00 44.49 

Portfolio Weighted Value (𝑽𝒋) 76.04 46.60 45.34 

 

As mentioned earlier, Portfolio C’s strategy includes oil production maximization with 100% 

working interest in the CCS asset. The results of Table 5.8 shows that this portfolio results in the 

highest weighted value. The main drivers of the overall value of this portfolio are the carbon 

emission and NPV metrics, both of which are weighted highly given the decision-maker’s 

preference.   

The sensitivity analysis (Figure 5.6) on the normalized weights of the carbon emission and oil 

reserves objectives shows the dominance of Portfolio C in most cases. The normalized weights of 

the NPV objective shows a dominance of Portfolio E only when the weight is above 0.8. Note that 

the strategy implemented in Portfolio E includes a 50% ownership of the CCS asset and, as 

discussed earlier, this leads to a decrease in the portfolio’s ability to meet the carbon reduction 

objective. However, violating the emission target is compensated by an increase in expected NPV.  

The change in the gas production objective’s normalized weight has the largest influence on the 

optimal portfolio. For weights less than 0.3, Portfolio C is the dominant option as it results in the 

lowest expected gas production. As the weight increases, the decision-maker is more likely to 

select Portfolio D, as his preference for gas production increases. However, a normalized weight 
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larger than 0.3 for the gas production objective is highly inconceivable, because it will impose less 

normalized weights on the carbon emission and NPV objectives. In an energy transition 

environment, most O&G companies focus on meeting their net-zero emission targets whilst 

maximizing their NPV. The oil and gas production objectives become less dominant.  

We concluded the following insights: Portfolio C dominates irrespective of the emission and oil 

production weights. Portfolio D becomes dominant as the gas weight increases and Portfolio E 

dominates when the NPV weight is high enough. Therefore, all of the portfolios are optimal 

depending on the decision-maker’s preferences. 

 

 

 

 

Figure 5.6: Sensitivity Analysis on the decision-maker objectives’ weights 
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6. Conclusion  

For successfully managing the energy transition, O&G companies must consider various strategies 

to meet their net-zero carbon emission targets, whilst improving their long-term profitability. In 

this work, we have developed, illustrated and discussed a time-dependent multi-objective portfolio 

optimization methodology and model to support and inform energy transition decisions in an O&G 

company. This methodology is a powerful tool to develop and compare various strategies that the 

corporation might pursue, given a certain pool of assets. It also evaluates the economic and 

operational trade-offs following the selection of one strategy over the other, and allows the 

decision maker to select the optimal portfolio based on its preference for each performance 

objective.   

The following strategies were presented and discussed: reducing the fraction of the overall 

revenues stemming from fossil fuels, increasing ownership in carbon reduction technologies and 

switching from a gas production to an oil production dominated portfolio.  

The portfolio optimization and management model was developed in Python. It identified optimal 

portfolios from a pool of potential petroleum and carbon reduction projects. These projects include 

traditional oil & gas producing assets, wind farms and CCS (Carbon Capture and Storage) assets. 

Before being included in the portfolio analysis, each asset type was evaluated individually. 

Financial and operational objectives contributing to shareholder value maximization, such as NPV, 

oil and gas production volumes, and carbon emission intensities, were included. Due to limited 

annual capital supply and imposed annual performance targets, the portfolio selection problem 

considered multiple goals, distributed across the same future energy transition timeline. Given the 

high uncertainty in future supply and demand for both fossil and renewable energy, the optimal 

portfolio at any point in time is highly uncertain and must be flexible enough to change over time 

whilst still meeting the specified objectives. 

We have argued that despite their significant long-term abatement potential, low carbon 

technologies such as CCS must be backed and supported by strong emission reduction policies 

and sustainable governmental incentives to offset their high operating costs. Moreover, we 

demonstrated that integrating wind farm assets into the company’s portfolio offers a good 

combination of low carbon emission intensity and high NPV. The diversification offered by wind 
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energy can reduce the company’s exposure to O&G related products and retain shareholder’s trust. 

However, it’s highly unlikely for companies to meet their NPV targets relying on wind power 

only. Finally, we concluded that reducing the fraction of the overall revenues stemming from fossil 

fuels will require using an optimal working interest in the CCS unit for a successful energy 

transition.   

Some areas that would benefit from further research include understanding whether CO2-EOR can 

offset the CCS cost while meeting emission reduction and NPV targets. Moreover, we believe the 

reduction in oil and gas companies’ spending on emission allowances through CCS projects is an 

area where further research could be conducted. Another recommendation is testing the portfolio 

optimization approach used in this thesis using a corporate dataset with real-world assets.  

 

 

  



95 

 

 

References  

 

Adu, E., Zhang, Y., & Liu, D. (2018). Current Situation of Carbon Dioxide Capture, Storage, and 

Enhanced Oil Recovery in the O&G Industry. The Canadian Journal of Chemical 

Engineering, 97. https://doi.org/10.1002/cjce.23393 

Affairs, C. P., Government and Public. (n.d.). Gorgon Project Business Overview [Chevron]. 

Chevron. Retrieved May 24, 2021, from https://www.chevron.com/projects/gorgon 

Anescu, G. (2017). An Adaptive Penalty Function Method for Constrained Continuous 

Optimization in Population-Based Meta-Heuristic Optimization Methods. 2017 19th 

International Symposium on Symbolic and Numeric Algorithms for Scientific Computing 

(SYNASC), 434–441. https://doi.org/10.1109/SYNASC.2017.00078 

Arps, J. J. (1945). Analysis of Decline Curves. Transactions of the AIME, 160(01), 228–247. 

https://doi.org/10.2118/945228-G 

Aydin, G., Karakurt, I., & Aydiner, K. (2010). Evaluation of geologic storage options of CO2: 

Applicability, cost, storage capacity and safety. Energy Policy, 38(9), 5072–5080. 

https://doi.org/10.1016/j.enpol.2010.04.035 

Ball, B., & Savage, S. (1999). Notes on Exploration and Production Portfolio Optimization. 

Begg, S., & Bratvold, R. (2008). Systematic Prediction Errors in O&G Project and Portfolio 

Selection. Proceedings - SPE Annual Technical Conference and Exhibition, 6. 

https://doi.org/10.2118/116525-MS 

Bickel, J., & Bratvold, R. (2008). From Uncertainty Quantification to Decision Making in the 

O&G Industry. Energy Exploration & Exploitation, 26, 311–325. 

https://doi.org/10.1260/014459808787945344 

Blaufelder, C., Levy, C., Mannion, P., & Pinner, D. (2021). A blueprint for scaling voluntary 

carbon markets. McKinsey. https://www.mckinsey.com/business-

functions/sustainability/our-insights/a-blueprint-for-scaling-voluntary-carbon-markets-to-

meet-the-climate-challenge 

Bratvold, R. B., & Begg, S. H. (2008). I would rather be vaguely right than precisely wrong: A 

new approach to decision making in the petroleum exploration and production industry. 

AAPG Bulletin, 92, 1373–1392. https://doi.org/10.1306/06040808070 

Bratvold, R. B., & Begg, S. H. (2018). Making Good Decisions. Society of Petroleum Engineers 

Bratvold, R. B., Begg, S. H., & Campbell, J. M. (2003). Even Optimists Should Optimize. SPE 

Annual Technical Conference and Exhibition. https://doi.org/10.2118/84329-MS 

https://doi.org/10.1002/cjce.23393
https://www.chevron.com/projects/gorgon
https://doi.org/10.1109/SYNASC.2017.00078
https://doi.org/10.2118/945228-G
https://doi.org/10.1016/j.enpol.2010.04.035
https://doi.org/10.2118/116525-MS
https://doi.org/10.1260/014459808787945344
https://www.mckinsey.com/business-functions/sustainability/our-insights/a-blueprint-for-scaling-voluntary-carbon-markets-to-meet-the-climate-challenge
https://www.mckinsey.com/business-functions/sustainability/our-insights/a-blueprint-for-scaling-voluntary-carbon-markets-to-meet-the-climate-challenge
https://www.mckinsey.com/business-functions/sustainability/our-insights/a-blueprint-for-scaling-voluntary-carbon-markets-to-meet-the-climate-challenge
https://doi.org/10.1306/06040808070
https://doi.org/10.2118/84329-MS


96 

 

 

Brennan, M., & Schwartz, E. (1985). Evaluating Natural Resource Investments. The Journal of 

Business, 58(2), 135-157. Retrieved April 8, 2021, from 

http://www.jstor.org/stable/2352967 

Brown, S., & Yücel, M. (2008). What Drives Natural Gas Prices? The Energy Journal, 29(2), 45-

60. Retrieved March 3, 2021, from http://www.jstor.org/stable/41323156 

Bulai, V.-C., & Horobet, A. (2018). A portfolio optimization model for a large number of 

hydrocarbon exploration projects. Proceedings of the International Conference on Business 

Excellence, 12, 171–181. https://doi.org/10.2478/picbe-2018-0017 

Carbon Capture & Storage: Assessing the Economics. (2008). McKinsey. 

http://www.indiaenvironmentportal.org.in/files/CCS_Assessing_the_Economics.pdf 

Carbon Pricing Dashboard | Up-to-date overview of carbon pricing initiatives. (n.d.). The World 

Bank. Retrieved March 13, 2021, from 

https://carbonpricingdashboard.worldbank.org/map_data 

Carpio, L., & Margueron, M. (2007). Decision-Making Process Under Uncertainty in 

International Investments in Petroleum Exploration and Production: Multicriteria Approach. 

Energy Exploration & Exploitation - ENERG EXPLOR EXPLOIT, 25, 339–356. 

https://doi.org/10.1260/014459807783528892 

Chen, G., Yang, S., Lv, C., Zhong, J., Wang, Z., Zhang, Z., Fang, X., Li, S., Yang, W., & Xue, L. 

(2017). An improved method for estimating GHG emissions from onshore O&G exploration 

and development in China. Science of The Total Environment, 574, 707–715. 

https://doi.org/10.1016/j.scitotenv.2016.09.051 

Consoli, C., Zapantis, A., Grubnic, P., & Irlam, L. (2017). Carbon capture and storage in the 

O&G industry: 40 years on. The APPEA Journal, 57, 413. https://doi.org/10.1071/AJ16259 

Cooper, R., Edgett, S., & Kleinschmidt, E. (2002). Portfolio Management—Fundamental to New 

Product Success. The PDMA Toolbook for New Product Development. 

Costa Lima, G., Ravagnani, A., & Schiozer, D. (2012). How to Measure the Correlation between 

Return of Oil Production Projects Realistically? https://doi.org/10.2118/150909-MS 

Cremon, M. A., Christie, M. A., & Gerritsen, M. G. (2020). Monte Carlo simulation for 

uncertainty quantification in reservoir simulation: A convergence study. Journal of 

Petroleum Science and Engineering, 190, 107094. 

https://doi.org/10.1016/j.petrol.2020.107094 

Deb, K., & Gupta, H. (2005). Searching for Robust Pareto-Optimal Solutions in Multi-objective 

Optimization. In C. A. Coello Coello, A. Hernández Aguirre, & E. Zitzler (Eds.), 

Evolutionary Multi-Criterion Optimization, 150–164. Springer. https://doi.org/10.1007/978-

3-540-31880-4_11 

Diwakar, R. (n.d.). An Evaluation of Normal Versus Lognormal Distribution in Data Description 

and Empirical Analysis. 22(13), 15. 

http://www.jstor.org/stable/2352967
http://www.jstor.org/stable/41323156
https://doi.org/10.2478/picbe-2018-0017
http://www.indiaenvironmentportal.org.in/files/CCS_Assessing_the_Economics.pdf
https://carbonpricingdashboard.worldbank.org/map_data
https://doi.org/10.1260/014459807783528892
https://doi.org/10.1016/j.scitotenv.2016.09.051
https://doi.org/10.1071/AJ16259
https://doi.org/10.2118/150909-MS
https://doi.org/10.1016/j.petrol.2020.107094
https://doi.org/10.1007/978-3-540-31880-4_11
https://doi.org/10.1007/978-3-540-31880-4_11


97 

 

 

Drivenes, A., Eirum, T., Johnson, N. H., Mindeberg, S. K., Lunde, S., Undem, L. S., & 

Veggeland, K. (2010). Havvind—Forslag til utredningsområder. regjeringen.no. 

https://www.regjeringen.no/no/dokumenter/havvind---forslag-til-

utredningsomrader/id620670/ 

DuBois, J. R. (2001). An Investigation of Risk and Probability in a Portfolio Management 

Context. SPE Annual Technical Conference and Exhibition. https://doi.org/10.2118/71421-

MS 

Electricity production. (n.d.). Energifakta Norge. Retrieved June 7, 2021, from 

https://energifaktanorge.no/en/norsk-energiforsyning/kraftproduksjon/ 

Elias S. W. Shiu A S.A, Ph. D. (1999). Luenberger, David G., 1997, Investment Science. North 

American Actuarial Journal, 3(2), 150–150. 

https://doi.org/10.1080/10920277.1999.10595815 

Emissions to air. (n.d.). Norskpetroleum. Retrieved March 13, 2021, from 

https://www.norskpetroleum.no/en/environment-and-technology/emissions-to-air/ 

Eni SpA CDP Climate Change Questionnaire 2020. (2020). CDP. 

https://www.eni.com/assets/documents/eng/just-transition/2020/EniSpA-CDP-Climate-

Change-Questionnaire-2020-submitted.pdf 

Eni: A major step forward with the development of the HyNet North West project in UK. (n.d.). 

Eni. Retrieved May 22, 2021, from https://www.eni.com/en-IT/media/press-

release/2021/03/cs-eni-hynet.html 

ENOVA Annual Report 2019. (2019). Enova. 

https://www.enova.no/download?objectPath=/upload_images/CE63635DD03C4B04A8429

7FBE8C62DF4.pdf 

Establishing the investment case—Wind power. (2014). Deloitte. 

https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Energy-and-

Resources/gx-er-deloitte-establishing-the-wind-investment-case-2014.pdf 

EU Energy Outlook 2050 – How will Europe evolve over the next 30 years? (2019). Energy 

BrainBlog. https://blog.energybrainpool.com/en/eu-energy-outlook-2050-how-will-europe-

evolve-over-the-next-30-years/ 

Europe Brent Spot Price FOB (Dollars per Barrel). (n.d.). Eia.Gov. Retrieved March 22, 2021, 

from https://www.eia.gov/dnav/pet/hist/rbrteA.htm 

ExxonMobil announces emission reduction plans; expects to meet 2020 goals. (n.d.). 

ExxonMobil. Retrieved June 2, 2021, from 

https://corporate.exxonmobil.com:443/News/Newsroom/News-

releases/2020/1214_ExxonMobil-announces-2025-emissions-reductions_expects-to-meet-

2020-plan 

https://www.regjeringen.no/no/dokumenter/havvind---forslag-til-utredningsomrader/id620670/
https://www.regjeringen.no/no/dokumenter/havvind---forslag-til-utredningsomrader/id620670/
https://doi.org/10.2118/71421-MS
https://doi.org/10.2118/71421-MS
https://energifaktanorge.no/en/norsk-energiforsyning/kraftproduksjon/
https://doi.org/10.1080/10920277.1999.10595815
https://www.norskpetroleum.no/en/environment-and-technology/emissions-to-air/
https://www.eni.com/assets/documents/eng/just-transition/2020/EniSpA-CDP-Climate-Change-Questionnaire-2020-submitted.pdf
https://www.eni.com/assets/documents/eng/just-transition/2020/EniSpA-CDP-Climate-Change-Questionnaire-2020-submitted.pdf
https://www.eni.com/en-IT/media/press-release/2021/03/cs-eni-hynet.html
https://www.eni.com/en-IT/media/press-release/2021/03/cs-eni-hynet.html
https://www.enova.no/download?objectPath=/upload_images/CE63635DD03C4B04A84297FBE8C62DF4.pdf
https://www.enova.no/download?objectPath=/upload_images/CE63635DD03C4B04A84297FBE8C62DF4.pdf
https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Energy-and-Resources/gx-er-deloitte-establishing-the-wind-investment-case-2014.pdf
https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Energy-and-Resources/gx-er-deloitte-establishing-the-wind-investment-case-2014.pdf
https://blog.energybrainpool.com/en/eu-energy-outlook-2050-how-will-europe-evolve-over-the-next-30-years/
https://blog.energybrainpool.com/en/eu-energy-outlook-2050-how-will-europe-evolve-over-the-next-30-years/
https://www.eia.gov/dnav/pet/hist/rbrteA.htm
https://corporate.exxonmobil.com/News/Newsroom/News-releases/2020/1214_ExxonMobil-announces-2025-emissions-reductions_expects-to-meet-2020-plan
https://corporate.exxonmobil.com/News/Newsroom/News-releases/2020/1214_ExxonMobil-announces-2025-emissions-reductions_expects-to-meet-2020-plan
https://corporate.exxonmobil.com/News/Newsroom/News-releases/2020/1214_ExxonMobil-announces-2025-emissions-reductions_expects-to-meet-2020-plan


98 

 

 

Fan, J., Rehm, W., & Siccardo, G. (2021). The state of internal carbon pricing. McKinsey. 

https://www.mckinsey.com/business-functions/strategy-and-corporate-finance/our-

insights/the-state-of-internal-carbon-pricing 

Feron, P. H. M., & Hendriks, C. A. (2005). CO2 Capture Process Principles and Costs. O&G 

Science and Technology, 60(3), 451–459. https://doi.org/10.2516/ogst:2005027 

Fields on the Norwegian continental shelf. (n.d.). Norskpetroleum. Retrieved March 13, 2021, 

from https://www.norskpetroleum.no/en/facts/field/ 

Fishburn, P. C. (1977). Mean-Risk Analysis with Risk Associated with Below-Target Returns. 

The American Economic Review, 67(2), 116–126. 

Franki, V., Višković, A., & Šapić, A. (2019). Carbon capture and storage retrofit: Case study for 

Croatia. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 0(0), 1–

13. https://doi.org/10.1080/15567036.2019.1587077 

Gabriel, S. A., Kumar, S., Ordóñez, J., & Nasserian, A. (2006). A multiobjective optimization 

model for project selection with probabilistic considerations. Socio-Economic Planning 

Sciences, 40(4), 297–313. https://doi.org/10.1016/j.seps.2005.02.002 

Gargett, P., Hall, S., & Kar, J. (2019). Toward a net-zero future—Decarbonizing upstream O&G 

operations. McKinsey. 

https://www.mckinsey.com/~/media/McKinsey/Industries/Oil%20and%20Gas/Our%20Insig

hts/Toward%20a%20net%20zero%20future%20Decarbonizing%20upstream%20oil%20and

%20gas%20operations/Toward-a-net-zero-future-Decarbonizing-upstream-oil-and-gas-

operations-vF.pdf 

Gavenas, E., Rosendahl, K. E., & Skjerpen, T. (2015). CO2-emissions from Norwegian O&G 

extraction. Energy, 90, 1956–1966. https://doi.org/10.1016/j.energy.2015.07.025 

Henrion, M., Bernstein, B., & Swamy, S. (2015). A multi-attribute decision analysis for 

decommissioning offshore O&G platforms. Integrated Environmental Assessment and 

Management, 11(4), 594–609. https://doi.org/10.1002/ieam.1693 

Historical Market Data. (n.d.). Nord Pool. Retrieved March 12, 2021, from 

https://www.nordpoolgroup.com/historical-market-data/ 

Höök, M., Söderbergh, B., Jakobsson, K., & Aleklett, K. (2009). The Evolution of Giant Oil 

Field Production Behavior. Natural Resources Research, 18(1), 39–56. 

https://doi.org/10.1007/s11053-009-9087-z 

How O&G is navigating the energy transition. (2021). McKinsey. 

https://www.mckinsey.com/industries/oil-and-gas/our-insights/the-big-choices-for-oil-and-

gas-in-navigating-the-energy-transition 

Howell, J. I., & Tyler, P. A. (2001). Using Portfolio Analysis to Develop Corporate Strategy. All 

Days, SPE-68576-MS. https://doi.org/10.2118/68576-MS 

https://www.mckinsey.com/business-functions/strategy-and-corporate-finance/our-insights/the-state-of-internal-carbon-pricing
https://www.mckinsey.com/business-functions/strategy-and-corporate-finance/our-insights/the-state-of-internal-carbon-pricing
https://doi.org/10.2516/ogst:2005027
https://www.norskpetroleum.no/en/facts/field/
https://doi.org/10.1080/15567036.2019.1587077
https://doi.org/10.1016/j.seps.2005.02.002
https://www.mckinsey.com/~/media/McKinsey/Industries/Oil%20and%20Gas/Our%20Insights/Toward%20a%20net%20zero%20future%20Decarbonizing%20upstream%20oil%20and%20gas%20operations/Toward-a-net-zero-future-Decarbonizing-upstream-oil-and-gas-operations-vF.pdf
https://www.mckinsey.com/~/media/McKinsey/Industries/Oil%20and%20Gas/Our%20Insights/Toward%20a%20net%20zero%20future%20Decarbonizing%20upstream%20oil%20and%20gas%20operations/Toward-a-net-zero-future-Decarbonizing-upstream-oil-and-gas-operations-vF.pdf
https://www.mckinsey.com/~/media/McKinsey/Industries/Oil%20and%20Gas/Our%20Insights/Toward%20a%20net%20zero%20future%20Decarbonizing%20upstream%20oil%20and%20gas%20operations/Toward-a-net-zero-future-Decarbonizing-upstream-oil-and-gas-operations-vF.pdf
https://www.mckinsey.com/~/media/McKinsey/Industries/Oil%20and%20Gas/Our%20Insights/Toward%20a%20net%20zero%20future%20Decarbonizing%20upstream%20oil%20and%20gas%20operations/Toward-a-net-zero-future-Decarbonizing-upstream-oil-and-gas-operations-vF.pdf
https://doi.org/10.1016/j.energy.2015.07.025
https://doi.org/10.1002/ieam.1693
https://www.nordpoolgroup.com/historical-market-data/
https://doi.org/10.1007/s11053-009-9087-z
https://www.mckinsey.com/industries/oil-and-gas/our-insights/the-big-choices-for-oil-and-gas-in-navigating-the-energy-transition
https://www.mckinsey.com/industries/oil-and-gas/our-insights/the-big-choices-for-oil-and-gas-in-navigating-the-energy-transition
https://doi.org/10.2118/68576-MS


99 

 

 

Jafarizadeh, B. (2010). Financial factor models for correlated inputs in the simulation of project 

cash flows. Journal of Petroleum Science and Engineering - J PET SCI ENGINEERING, 

75, 54–57. https://doi.org/10.1016/j.petrol.2010.10.012 

Kosova, R., Naço, A., & Prifti, I. (2016). Deterministic and stochastic methods of oilfield 

reserves estimation: a case study from KA. Oilfield.  

Krohn, S., Morthorst, P.-E., & Awerbuch, S. (2009). The Economics of Wind Energy. European 

Wind Energy Association. 

https://www.ewea.org/fileadmin/files/library/publications/reports/Economics_of_Wind_Ene

rgy.pdf 

Leung, D. Y. C., Caramanna, G., & Maroto-Valer, M. M. (2014). An overview of current status 

of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy 

Reviews, 39, 426–443. https://doi.org/10.1016/j.rser.2014.07.093 

Luengo, M. M., & Kolios, A. (2015). Failure Mode Identification and End of Life Scenarios of 

Offshore Wind Turbines: A Review. Energies, 8(8), 8339–8354. 

https://doi.org/10.3390/en8088339 

Lund, M. (1997). The value of flexibility in offshore oil field development projects. /paper/THE-

VALUE-OF-FLEXIBILITY-IN-OFFSHORE-OIL-FIELD-

Lund/ef4e92e2c3bad376c47566c80a142e12435c6827 

Mao, J. C. T. (1970). Models of Capital Budgeting, E-V Vs E-S. The Journal of Financial and 

Quantitative Analysis, 4(5), 657–675. https://doi.org/10.2307/2330119 

Markowitz, Harry (1952). “Portfolio Selection”. In: The Journal of Finance 7(1). issn: 00221082. 

Mavrotas, G. (2009). Effective implementation of the ε-constraint method in Multi-Objective 

Mathematical Programming problems. Applied Mathematics and Computation, 213(2), 

455–465. https://doi.org/10.1016/j.amc.2009.03.037 

McVay, D. A., & Dossary, M. N. (2014). The Value of Assessing Uncertainty. SPE Economics 

& Management, 6(02), 100–110. https://doi.org/10.2118/160189-PA 

Meade, N. (2010). Oil prices — Brownian motion or mean reversion? A study using a one year 

ahead density forecast criterion. Energy Economics, 32(6), 1485–1498. 

https://doi.org/10.1016/j.eneco.2010.07.010 

Milhomem, D. A., & Dantas, M. J. P. (2020). Analysis of new approaches used in portfolio 

optimization: A systematic literature review. Production, 30. https://doi.org/10.1590/0103-

6513.20190144 

Morthorst, P. E., & Kitzing, L. (2016). Economics of building and operating offshore wind 

farms. In Offshore Wind Farms, 9–27. Elsevier. https://doi.org/10.1016/B978-0-08-100779-

2.00002-7 

Multi-objective Optimization. (2008). In Multi-objective Management in Freight Logistics 11–

36. Springer London. https://doi.org/10.1007/978-1-84800-382-8_2 

https://doi.org/10.1016/j.petrol.2010.10.012
https://www.ewea.org/fileadmin/files/library/publications/reports/Economics_of_Wind_Energy.pdf
https://www.ewea.org/fileadmin/files/library/publications/reports/Economics_of_Wind_Energy.pdf
https://doi.org/10.1016/j.rser.2014.07.093
https://doi.org/10.3390/en8088339
https://doi.org/paper/THE-VALUE-OF-FLEXIBILITY-IN-OFFSHORE-OIL-FIELD-Lund/ef4e92e2c3bad376c47566c80a142e12435c6827
https://doi.org/paper/THE-VALUE-OF-FLEXIBILITY-IN-OFFSHORE-OIL-FIELD-Lund/ef4e92e2c3bad376c47566c80a142e12435c6827
https://doi.org/paper/THE-VALUE-OF-FLEXIBILITY-IN-OFFSHORE-OIL-FIELD-Lund/ef4e92e2c3bad376c47566c80a142e12435c6827
https://doi.org/10.2307/2330119
https://doi.org/10.1016/j.amc.2009.03.037
https://doi.org/10.2118/160189-PA
https://doi.org/10.1016/j.eneco.2010.07.010
https://doi.org/10.1590/0103-6513.20190144
https://doi.org/10.1590/0103-6513.20190144
https://doi.org/10.1016/B978-0-08-100779-2.00002-7
https://doi.org/10.1016/B978-0-08-100779-2.00002-7
https://doi.org/10.1007/978-1-84800-382-8_2


100 

 

 

Mutavdzic, M., & Maybee, B. (2015). An extension of portfolio theory in selecting projects to 

construct a preferred portfolio of petroleum assets. Journal of Petroleum Science and 

Engineering, 133, 518–528. https://doi.org/10.1016/j.petrol.2015.06.018 

Next step for Hywind Tampen—Equinor.com. (n.d.). Equinor. Retrieved February 16, 2021, from 

https://www.equinor.com/en/news/20210422-next-step-hywind-tampen.html 

Northern Lights CCS - CO2 transport and storage. (n.d.). Equinor. Retrieved May 27, 2021, 

from https://www.equinor.com/en/what-we-do/northern-lights.html 

Offshore wind towards 2020—on the pathway to cost competitiveness. (2013). Roland Berger 

Strategy Consultants. 

https://www.rolandberger.com/publications/publication_pdf/roland_berger_offshore_wind_

study_20130506_1_.pdf 

Orman, M. M., & Duggan, T. E. (1999). Applying Modern Portfolio Theory to Upstream 

Investment Decision Making. Journal of Petroleum Technology, 51(03), 50–53. 

https://doi.org/10.2118/54774-JPT 

Our climate ambitions – net-zero by 2050. (n.d.). Equinor. Retrieved June 2, 2021, from 

https://www.equinor.com/en/sustainability/climate.html 

Ozorio, L. de M., Bastian-Pinto, C. de L., & Brandão, L. E. T. (n.d.). The Choice of Stochastic 

Process in Real Option Valuation. Retrieved May 23, 2021, from 

http://realoptions.org/openconf2012/data/papers/49.pdf 

Pimenta de Miranda, W., Trulsson, O., Eklöf, E.-B., & Niemenen, K. (2010). Offshore wind 

market outlook in Northern Europe. Nordic Energy. http://www.nordicenergy.org/wp-

content/uploads/2012/01/nordvind_finalreport_16_11_2010.pdf 

Quest Carbon Capture And Storage. (n.d.). Shell. Retrieved May 22, 2021, from 

https://www.shell.ca/en_ca/about-us/projects-and-sites/quest-carbon-capture-and-storage-

project.html 

Renewable Energy Cost Analysis—Wind Power (Renewable Energy Technologies: Cost Analysis 

Series). (2012). IRENA. https://www.irena.org/publications/2012/Jun/Renewable-Energy-

Cost-Analysis---Wind-Power 

Renewables and Energy Solutions (formerly New Energies). (n.d.). Shell. Retrieved June 2, 2021, 

from https://www.shell.com/energy-and-innovation/new-energies.html 

Salling, K. B. (2007). Risk Analysis and Monte Carlo Simulation within Transport Appraisal. 

/paper/Risk-Analysis-and-Monte-Carlo-Simulation-within-

Salling/20e6caa3c045403c0d5b0336757959205b3398c0 

Schwartz, E. S. (1997). The Stochastic Behavior of Commodity Prices: Implications for 

Valuation and Hedging. The Journal of Finance, 52(3), 923–973. 

https://doi.org/10.1111/j.1540-6261.1997.tb02721.x 

https://doi.org/10.1016/j.petrol.2015.06.018
https://www.equinor.com/en/news/20210422-next-step-hywind-tampen.html
https://www.equinor.com/en/what-we-do/northern-lights.html
https://www.rolandberger.com/publications/publication_pdf/roland_berger_offshore_wind_study_20130506_1_.pdf
https://www.rolandberger.com/publications/publication_pdf/roland_berger_offshore_wind_study_20130506_1_.pdf
https://doi.org/10.2118/54774-JPT
https://www.equinor.com/en/sustainability/climate.html
http://realoptions.org/openconf2012/data/papers/49.pdf
http://www.nordicenergy.org/wp-content/uploads/2012/01/nordvind_finalreport_16_11_2010.pdf
http://www.nordicenergy.org/wp-content/uploads/2012/01/nordvind_finalreport_16_11_2010.pdf
https://www.shell.ca/en_ca/about-us/projects-and-sites/quest-carbon-capture-and-storage-project.html
https://www.shell.ca/en_ca/about-us/projects-and-sites/quest-carbon-capture-and-storage-project.html
https://www.irena.org/publications/2012/Jun/Renewable-Energy-Cost-Analysis---Wind-Power
https://www.irena.org/publications/2012/Jun/Renewable-Energy-Cost-Analysis---Wind-Power
https://www.shell.com/energy-and-innovation/new-energies.html
https://doi.org/paper/Risk-Analysis-and-Monte-Carlo-Simulation-within-Salling/20e6caa3c045403c0d5b0336757959205b3398c0
https://doi.org/paper/Risk-Analysis-and-Monte-Carlo-Simulation-within-Salling/20e6caa3c045403c0d5b0336757959205b3398c0
https://doi.org/10.1111/j.1540-6261.1997.tb02721.x


101 

 

 

Schwartz, E., & Smith, J. (2000). Short-Term Variations and Long-Term Dynamics in 

Commodity Prices. Management Science, 46(7), 893-911. Retrieved February 26, 2021, 

from http://www.jstor.org/stable/2661607 

Shell accelerates drive for net-zero emissions with customer-first strategy. (n.d.). Shell. Retrieved 

May 22, 2021, from https://www.shell.com/media/news-and-media-releases/2021/shell-

accelerates-drive-for-net-zero-emissions-with-customer-first-strategy.html 

Simaan, Y. (1997). Estimation Risk in Portfolio Selection: The Mean Variance Model versus the 

Mean Absolute Deviation Model. Management Science, 43(10), 1437–1446. 

Singh, U. (2013). Carbon capture and storage: An effective way to mitigate global warming. 

Current Science, 105, 914–922. 

Study on Energy Prices, Costs and Subsidies and their Impact on Industry and Households. 

(2018). Trinomics. 

https://ec.europa.eu/energy/sites/ener/files/documents/energy_prices_and_costs_-

final_report-v12.3.pdf 

Suslick, S., & Furtado, R. (2001). Quantifying the value of technological, environmental and 

financial gain in decision models for offshore oil exploration. Journal of Petroleum Science 

and Engineering, 32, 115–125. https://doi.org/10.1016/S0920-4105(01)00154-1 

Sustainability Report 2019. (2019). Vår Energi. https://varenergi.no/wp-

content/uploads/2020/06/V%C3%A5r-Energi-Sustainability-Report-2019.pdf 

The Norwegian PRTR - Pollutants to air and water and generated transfers of waste. (n.d.). 

Norskeutslipp.No. Retrieved March 15, 2021, from 

https://www.norskeutslipp.no/en/Offshore-industry/?SectorID=700 

Thomas, P., & Bratvold, R. (2015). A Real Options Approach to the Gas Blowdown Decision. 

https://doi.org/10.2118/174868-MS 

Topham, E., & McMillan, D. (2017). Sustainable decommissioning of an offshore wind farm. 

Renewable Energy, 102, 470–480. https://doi.org/10.1016/j.renene.2016.10.066 

Walls, M. (2004). Combining decision analysis and portfolio management to improve project 

selection in the exploration and production firm. Journal of Petroleum Science and 

Engineering, 44, 55–65. https://doi.org/10.1016/j.petrol.2004.02.005 

Willigers, B., & Bratvold, R. (2008). Valuing O&G Options by Least Squares Monte Carlo 

Simulation. SPE Projects, Facilities & Construction, 4. https://doi.org/10.2118/116026-MS 

Wind farm being considered at Snorre and Gullfaks. (2018, August). Equinor. 

https://www.equinor.com/en/news/27aug2018-hywind-tampen.html 

Wind Power in the Nordic Region—Conditions for the expansion of wind power in the Nordic 

countries. (2011). NordVind. https://www.nordicenergy.org/wordpress/wp-

content/uploads/2012/02/Vilk%C3%A5rsnotat_english.pdf 

http://www.jstor.org/stable/2661607
https://www.shell.com/media/news-and-media-releases/2021/shell-accelerates-drive-for-net-zero-emissions-with-customer-first-strategy.html
https://www.shell.com/media/news-and-media-releases/2021/shell-accelerates-drive-for-net-zero-emissions-with-customer-first-strategy.html
https://ec.europa.eu/energy/sites/ener/files/documents/energy_prices_and_costs_-final_report-v12.3.pdf
https://ec.europa.eu/energy/sites/ener/files/documents/energy_prices_and_costs_-final_report-v12.3.pdf
https://doi.org/10.1016/S0920-4105(01)00154-1
https://varenergi.no/wp-content/uploads/2020/06/V%C3%A5r-Energi-Sustainability-Report-2019.pdf
https://varenergi.no/wp-content/uploads/2020/06/V%C3%A5r-Energi-Sustainability-Report-2019.pdf
https://www.norskeutslipp.no/en/Offshore-industry/?SectorID=700
https://doi.org/10.2118/174868-MS
https://doi.org/10.1016/j.renene.2016.10.066
https://doi.org/10.1016/j.petrol.2004.02.005
https://doi.org/10.2118/116026-MS
https://www.equinor.com/en/news/27aug2018-hywind-tampen.html
https://www.nordicenergy.org/wordpress/wp-content/uploads/2012/02/Vilk%C3%A5rsnotat_english.pdf
https://www.nordicenergy.org/wordpress/wp-content/uploads/2012/02/Vilk%C3%A5rsnotat_english.pdf


102 

 

 

Wiser, R., Bolinger, M., & Lantz, E. J. (ORCID:0000000189016620). (2019). Assessing wind 

power operating costs in the United States: Results from a survey of wind industry experts. 

Renewable Energy Focus, 30(C), Article NREL/JA-5000-74017. 

https://doi.org/10.1016/j.ref.2019.05.003 

Wood, D. A. (2001). A Systematic Approach Integrating Risk and Strategy Management to 

Optimize Portfolios of Industrial Assets. Risk Management, 3, 7–21. 

https://doi.org/10.1057/palgrave.rm.8240090 

Wood, D. A. (2016). Asset Portfolio Multi-objective Optimization Tools Provide Insight to 

Value, Risk and Strategy for Gas and Oil Decision Makers. Journal of Natural Gas Science 

and Engineering, 33. https://doi.org/10.1016/j.jngse.2016.03.103 

Wood, D. A. (2016). Characterization of gas and oil portfolios of exploration and production 

assets using a methodology that integrates value, risk and time. Journal of Natural Gas 

Science and Engineering, 30, 305–321. https://doi.org/10.1016/j.jngse.2016.02.030 

Wood, D. A., & Khosravanian, R. (2015). Exponential utility functions aid upstream decision 

making. Journal of Natural Gas Science and Engineering, 27, 1482–1494. 

https://doi.org/10.1016/j.jngse.2015.10.012 

Xue, Q., Wang, Z., Liu, S., & Zhao, D. (2014). An improved portfolio optimization model for 

O&G investment selection. Petroleum Science, 11(1), 181–188. 

https://doi.org/10.1007/s12182-014-0331-8 

Yan, J., & Zhang, Z. (2019). Carbon Capture, Utilization and Storage (CCUS). Applied Energy, 

235, 1289–1299. https://doi.org/10.1016/j.apenergy.2018.11.019 

Yu, L., Wang, S., & Lai, K. K. (2008). Neural network-based mean–variance–skewness model 

for portfolio selection. Computers & Operations Research, 35(1), 34–46. 

https://doi.org/10.1016/j.cor.2006.02.012 

Yu, L., Wang, S., & Lai, K. K. (2009). Multi-Attribute Portfolio Selection with Genetic 

Optimization Algorithms. Infor, 47, 23–30. https://doi.org/10.3138/infor.47.1.23 

Zhen, W., & Wang, K. (2008). Investment decision of O&G exploration and development based 

on Markowitz’s portfolio selection theory. 32, 152–155. 

Zitzler, E., Laumanns, M., & Bleuler, S. (2004). A Tutorial on Evolutionary Multiobjective 

Optimization. In X. Gandibleux, M. Sevaux, K. Sörensen, & V. T’kindt (Eds.), 

Metaheuristics for Multiobjective Optimisation, 3–37. Springer. https://doi.org/10.1007/978-

3-642-17144-4_1 

 

https://doi.org/10.1016/j.ref.2019.05.003
https://doi.org/10.1057/palgrave.rm.8240090
https://doi.org/10.1016/j.jngse.2016.03.103
https://doi.org/10.1016/j.jngse.2016.02.030
https://doi.org/10.1016/j.jngse.2015.10.012
https://doi.org/10.1007/s12182-014-0331-8
https://doi.org/10.1016/j.apenergy.2018.11.019
https://doi.org/10.1016/j.cor.2006.02.012
https://doi.org/10.3138/infor.47.1.23
https://doi.org/10.1007/978-3-642-17144-4_1
https://doi.org/10.1007/978-3-642-17144-4_1

