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Abstract

In 2020 there were 1 414 259 new incidences and 375 304 deaths worldwide caused
by prostate cancer. The number of cases could increase even further in the future
due to higher life expectancy and population growth. Prostate cancer diagnosis
consists of several examination steps that are time-consuming, expensive and can
involve risk factors. Magnetic resonance imaging can help locate and classify
prostate cancer at an early stage, but it suffers from inter-observer variability.
Utilizing a single, relative, automated object detector for prostate diagnosing can
produce a more comfortable, efficient and less expensive examination process.

This thesis explores the paradigm of supervised learning, and more specifically
supervised object detection, on apparent diffusion coefficient images for prostate
lesion, with one-stage and two-stage convolutional neural networks architectures.
Image pre-processing techniques to increase bounding box area size and data
augmentation to alleviate the shortage of data are investigated to improve net-
work performance. Evaluation of detection performance relative to the prostate
anatomical zone is conducted. Different lesion classification approaches were con-
ducted to explore the networks ability to classify lesions. The data set used in
this thesis consists of 1109 images with 1281 labelled ground truths that have an
uneven distribution of examples between the lesion classes. There are instances of
lesion ground truth errors, which could diminish the object detector performance.

An average precision of 0.424 was achieved for clinically significant lesions and
0.156 for insignificant lesions, where the network detector produced the most
promising results for lesions located in the prostate transition zone. However, the
inefficient data set size and possible lesion ground truth errors limit the network
to obtain optimal performance results. Data augmentation improved network
performance by artificially increasing the data set size. Experiments conducted
showed that convolutional neural network architectures have a problem detecting
small objects. Cropping and resizing images increased the bounding box dimen-
sions, which improved detection performance. Object detection shows a great
potential to be used in hospitals for prostate cancer diagnosis, which could be an
influential tool for reducing over-diagnosing.






Acknowledgements

This thesis marks the end of my Master’s Degree in Robotics and Signal Process-
ing at the Department of Electrical Engineering and Computer Science at the
University of Stavanger.

I want to thank my supervisors Ketil Oppedal and Alvaro Fernandez Quilez, for
their advice and strong guidance during my last semester. Providing both in-
sights on machine learning and motivation for this thesis. I also want to thank
Rune Wetteland for guidance and an excellent lecture on using the UNIX sys-
tem. Renato Cuocolo also deserves recognition for providing the prostate lesion
mask and valuable feedback. Without his work, this thesis would not have been
possible.

I would like to give special thanks to my fellow students for two tremendous and
memorable years at the Micro-lab and the ISI room. Finally, I want to thank the
student organization ISI and my fellow ISI board members for giving me a fun
and meaningful time at the University of Stavanger.

ii






Contents

Abstract
Acknowledgements
Contents
Abbreviations

1 Introduction
1.1 Motivation . . . . . . . . ..

1.2 Problem Definition . . . . .

1.2.1 Proposed Method Overview . . . . . . ... ... ... ..

1.3 Thesis Structure. . . . . . .

2 Medical Background
2.1 Prostate Cancer . . . . . ..

2.2  Examination Methods . . .

2.2.1 Prostate Specific Antigen Test . . . . . . . . ... ... ..

2.2.2  Digital Rectal Exam

2.2.3 Prostate Biopsy . . .

2.2.4 Magnetic Resonance Imaging . . . . ... ... ... ...

2.2.5 Gleason Grade Group

iii

ii

ii

- N

© oo N N o o ot



CONTENTS

3 Technical Background Theory 11
3.1 Magnetic Resonance Imaging . . . . ... ... ... ... .... 11
3.1.1 Apparent Diffusion Coefficient . . . . . . . .. .. .. ... 11

3.2 Neural Networks . . . . . .. ... ... o 12
3.3 Convolutional Neural Networks . . . . . ... ... .. ... ... 13
3.4 Supervised, Unsupervised and Semi-supervised Learning . . . . . 14
3.5 Object Detection Networks . . . . . . . .. ... .. ... ..... 14
3.5.1 Object Detection . . . . .. .. ... .. ... .. ..... 15
3.5.2 Network Models . . . . . . ... ... ... 15
3.5.3 Backbones . . . ... ..o 19
3.5.4 Post-Processing . . . . .. ... ... . 22
3.5.5 Anchors . . . . ... 23

3.6 Metrics. . . . . . 24
3.7 Software . . . . .. .. 27
3. 71 Tensorflow . . . . . . .. ..o 27

3.72 Numpy . . . . . ..o 27
3.73 Pandas. . . . ... ... 28
3.74 SimpleITK . . . . .. .. oo 28

4 Material and Methods 29
4.1 Description . . . . .. .o 29
4.2 Image Pre-Processing . . . . . . ... ... ... . 32
4.2.1 Organizing Data Sets . . . . . . . .. ... ... ... ... 32
4.2.2 Data Filtering . . . . . .. .. ... 0oL 32

iv



CONTENTS

423 DataResizing . . . . . .. .. Lo
4.2.4 Image Cropping . . . . . . . . . . .
4.2.5 Save Data Information . . . . . ... ... ... ... ...
4.2.6 Data Labeling . . . . .. . ... ... o0
4277 Mask DataIssues . . . . . .. .. ... oL
4.3 Data Augmentation . . . . . . . ... ...
4.4 Metric Evaluation . . . . .. .. ..o
4.4.1 Common Objects in Context Metrics . . . . . .. ... ..
4.4.2 Pascal Visual Object Classes Metrics . . . . . .. ... ..

5 Configuration

5.1 Backbone Networks . . . . . . ... ... ... 0L
5.2 Hyperparameters . . . . . . . .. . ... oL
5.3 Anchors . . . . ...
5.4 Data Augmentation . . . . . .. ...

6 Experimental Results

6.1 Cropping . . . . . . . .
6.2 Models and Backbones . . . . . .. ... o000
6.3 Data Augmentation . . . . . .. .. ...
6.4 Anatomical Zone . . . . ... ...
6.5 Classification . . . . . . .. ... o

7 Discussion

7.1 Image Pre-Processing . . . . . . ... . ... ... ... ...



CONTENTS

7.2 Models . . . . . .
7.3 Augmentation . . . . ...
7.4 Anatomical Zones . . . . . ...
7.5 Classification . . . . . .. ...
7.6 Limitation . . . . . . ... Lo

7.6.1 Data Set Size . . . . . . . ...

7.6.2 Data Set Error . . . ... ..o

8 Conclusion and future work

81 Conclusion . . . . . . . .

8.2 Future Directions . . . . . . . . . ..

List of Figures

List of Tables

Bibliografi

Appendix

A Results - Cropping

B Results - Models/Backbones
C Results - Augmentation

D Results - Classification

vi

66
66
67

68

71

83

83

84

87

92

95



CONTENTS

E Prediction Results - Classification 98

F Repertory 102

vii






Abbreviations

ADC Apparent Diffusion Coeflicient

AFS Anterior Fibromuscular Stroma

AP Average Precision

AR Average Recall

BB Bounding Box

CNN Convolutional Neural Networks

DRE Digital Rectal Examination

GGG Gleason Grade Group

IoU Intersection over Union

MRI Magnetic Resonance Imaging

mAP Mean Average Precision

mAR Mean Average Recall

NN Neural Networks

NIfTI Neuroimaging Informatics Technology Initiative
PCa Prostate Cancer

PSA Prostate-Specific Antigen

PZ Peripheral Zone

R-FCN Region based Fully Convolutional Networks
SSD Single Shot Detector

T7Z Transition Zone

viii






Chapter 1

Introduction

1.1 Motivation

Prostate cancer (PCa) is the second most frequently occurring cancer among men
and the fourth most commonly occurring cancer overall [1]. In 2020 alone, there
were 1 414 259 new incidences and 375 304 deaths worldwide caused by PCa [1].

PCa diagnosing consists of several examination methods that are both time-
consuming and expensive [2|. A general practitioner performs first-stage testing
with a constraint accessibility to proper medical tools. These tests are unreliable
that can fail to detect PCas or even lead to PCa overdiagnosis, that again can
result in an over-treatment. Inaccurate test results can engender the patient for
unnecessary apprehension or a false sense of safeness. Determining PCa aggres-
siveness through biopsy involves risk factors, including hemorrhage and infection
[3]. Today, magnetic resonance imaging (MRI) assessment is unreliable because
of inter-observer variability, where PCa diagnosing might vary depending on the
reader. Moreover, patients with underlying health problems are in some cases
not recommended undergoing PCa screening if the risk following examination
transcend the benefits [4, 5].

Utilizing computer vision in MRI for PCa diagnosing can help improve lesion
localization and classification. The outcome can eliminate further diagnosing for
patients with insignificant PCa and allow specialists to mainly focus on patients
with clinically significant PCa, reducing PCa overdiagnosis. An advanced object
detector can potentially classify the PCa relative to the Gleason Grade Group
(GGG), terminate prostate biopsy test and the following risk associated with it,
thus making biopsies an unnecessary practice or just transforming them into a
support test in cases where it is necessary to confirm the diagnostic. Depending
on a single, relative, automated MRI screening test would make the examination
process more efficient, less expensive and less stressful for the patient.
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1.2 Problem Definition

This thesis aims to detect and predict the clinical significance of prostate lesions
found in apparent diffusion coefficient (ADC) MRIs. Today, there exist a variety
of object detection Convolutional Neural Network (CNN) architectures, where
this thesis will explore some of the meta-architecture and backbone networks.
This thesis proposes methods to increase CNN performance for lesion detection
in ADC images. The available data material consists of 200 patients containing
ground truth data for 299 individual lesion objects, distributed on a total of 1109
two-dimensional ADC images. This approach of using labeled data when training
CNN is known as supervised learning, later discussed in Section 3.4.

1.2.1 Proposed Method Overview

There are numerous methods and approaches for lesion detection. Some focus on
performance, others focus more on detection speed, but most applications focus
on optimizing both. The primary objective of this thesis is to explore different
supervised CNN architecture, with one-stage and two-stage object detectors. Ar-
chitecture, image pre-procession implementation and hyperparameters need to
be adjusted based on the data set. This thesis will investigate different image
pre-processing techniques and methods to alleviate the shortage of data, such
as data augmentation, to incease CNN performance. Evaluation of CNN perfor-
mance relative to prostate anatomical zone will be conducted since anatomical
zone seems to be a relevant parameter for lesion location in PCa [6, 7]. Finally,
this thesis will examine model performance utilizing different lesion classification
approaches. Figure 1.1 shows an outline of the proposed method for this thesis.
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Figure 1.1: Overview of the thesis methodology.
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1.3 Thesis Structure

1.3 Thesis Structure

The thesis is structured into nine chapters, where the outline is presented in the
following description.

e Chapter 1: Introduction
- Motivation, problem definition, objectives and previous work.

e Chapter 2: Medical Background Theory
- Medical background necessary to understand the biological point of view
of this thesis.

e Chapter 3: Technical Background Theory
-Technically background necessary to understand the various methods uti-
lized in this thesis.

e Chapter 4: Material and Methods
- Presentation of the data set used in this thesis. Also, explaining different
methods and image pre-processing used to improve detection performance.

e Chapter 5: Configuration
- Goes through proposed hyperparameters for improving CNN architecture
performance.

e Chapter 6: Experimental Results
- Presents experiment results for different implementations and methods.

e Chapter 7: Discussion
- Discuss results from the proposed methods and the constraints for this
thesis.

e Chapter 8: Conclusion and Future Directions
- Presents conclusion and discuss future directions for this thesis.



Chapter 2

Medical Background

2.1 Prostate Cancer

Prostate cancer (PCa) is the second most frequently occurring cancer among men
and the fourth most commonly occurring cancer overall [1]. In 2020 alone, there
were 1 414 259 new incidence and 375 304 deaths worldwide [1]. That is 7.3% of
all incidence and 3.8% of all mortality related to cancer.

Usually, human cells grow and divide, producing new cells to replace dying cells.
Cancer results from normal cells that become abnormal, where damaged cells
still live even though they should die and new cells form even though they are
not needed. This can lead to a growth called cancerous tumor which can expand
into different parts of the human body. The most common type of PCa is the
adenocacinomas, which develop from the gland cells. Small cell carcinomas, neu-
roendocrine tumors, transitional cell carcinomas and sarcomas are other, rare,
types of cancer that also develop in the prostate [8].

There are four fundamental anatomical zones of the prostate, which are relevant
for PCa, see figure 2.1 [9]. These are the peripheral zone (PZ), the transition
zone (TZ), the anterior fibromuscular stroma (AFS) and the central zone (CZ).
The most common zone in which PCa is commonly developed from is the PZ
(70-75%) and the second most common zone is the TZ (25%) [7]. The AFS and
the CZ are both unusual, but not improbable, zones for PCa to originate from.
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Figure 2.1: Figure shows anatomical zones of the prostate [9].

2.2 Examination Methods

This section discusses existing examination methods used to determine whether
a patient have PCa and how the PCa aggressiveness is graded. Benefits and risk
associated with PCa screening needs to be discussed between the doctor and the
patient before going through possible tests and treatments [5].

2.2.1 Prostate Specific Antigen Test

Prostate specific antigen (PSA) is a substance that is excreted in small amounts
from the prostate gland and released into the semen and the bloodstream, that
is measured in nanograms per milliliter (ng/mL) units [10]. Higher levels of PSA
can indicate PCa, benign prostate enlargement, infections or urinary tract.

The PSA level will normally increase as men get older. A commen PSA cutoff
point of 4 ng/mL is often used when deciding if a patient needs further testing.
Today, PSA test is an unreliable test for both early detection and for ruling out
PCa, where it is one of the main causes of PCa overdiagnosis |11, 12]. However,
the PSA test can be practical to monitor PCa development and to follow the
effect of a possible treatment [10].
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2.2.2 Digital Rectal Exam

Another early stage PCa screening test is the digital rectal exam (DRE), most
commonly done after a PSA test. DRE can in some cases detect PCa in men
with normal PSA blood level, thus it is worth including in the PCa examination
procedure. During a DRE the doctor inserts a gloved lubricated finger into the
patient rectum and examine the size, shape and texture of the prostate gland. If
there is any sign to abnormalities the patient will be referred to a hospital, or an
urologist, for further testing [13].

Bladder

Figure 2.2: Illustration of a digital rectal exam (DRE) performed on a patient [14].

2.2.3 Prostate Biopsy

If the doctor is suspicious from DRE or PSA testing, or the patients have any
warning symptoms, the patient is referred to an urologists to take image exam-
ination and biopsy from the prostate gland. This procedure is known as the
transrectal ultrasound (TRUS) guided biopsy [15]. A thin, hollow needle is in-
serted into the prostate gland eight to ten times in order to obtain a composite
examination [10]. The needle pulls out a small tissue sample which is later exam-
ined under a microscope. An ultrasound transducer is inserted together with the
needle, to help localize the prostate by sending sound waves and computing the
resulting echos into digital images [15]. Preventive antibiotics are given before the
examination to prevent serious infection that can occur after a prostate biopsy
procedure [3].
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Figure 2.3: Illustration of how a prostate biopsy is performed through the rectum [16].

2.2.4 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) can help locate abnormal areas in the prostate
gland and indicate where tissue samples should be collected from when perform-
ing biopsy. From the MRI images, the radiologist can decide whether further
examination, such as biopsy, needs to be taken at the given time. The radiolo-
gist predicts the probability of a lesion to be clinically significant based on the
findings from multiparametric magnetic resonance imaging (mpMRI) [7]. The
scoring is based on the T2-weighted (T2W), diffusion weighted imaging/appar-
ent diffusion Coefficient (DWI/ADC), and the dynamic contrast enhancement
(DCE) sequences. Each detected lesion is classified using the Prostate Imaging
Reporting and Data System (PI-RADS) scoring system. PI-RADS v2.1 (2019)
is the latest updated version [17]. The PI-RADS score depends on whether the
lesion is located in the peripheral zone (PZ) or transition zone (TZ). Lesions lo-
cated in the PZ are mainly determined by the DWI/ADC, and lesions located
in the TZ are mainly determined by the T2W, to designate PI-RADS category
scores [7].
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2.2.5 Gleason Grade Group

In 1966 pathologist Donald Floyd Gleason introduced the first pathologically
based scoring system for PCa [18], with a score ranging from 1 to 5 deepening on
the cell pattern. In 2014 International Society of Urological Pathology (ISUP)
introduced an updated grading system [19], with five Gleason grade group (GGG)
scores, to simplify the PCa grading prognosis. Table 2.1 shows the Gleason score
grading system and which scores are classified as clinically significant.

GGG Gleason Score Clinically Significant
Grade Group 1 Gleason Score < 6 False
Grade Group 2 Gleason Score 7 (3+4) True
Grade Group 3 Gleason Score 7 (4+3)  True
Grade Group 4 Gleason Score 8 True
Grade Group 5 Gleason Score 9 and 10 True

Table 2.1: Gleason score and ISUP-Grading [7]

Tissue samples collected from the prostate biopsy are separately studied under
a microscope for a deeper understanding of the aggressiveness of the PCa [20].
Cancer cells are assigned a Gleason score depending on its pattern. Figure 2.4
illustrates how grading score are assigned to different pattern appearances. The
GGG consist of the two most prevalent patterns, the primary and the secondary
pattern, and are summed to yield the GGG class score, see table 2.1 [7]. GGG 1
have features similar to normal tissue samples. Both GGG 4 and 5 have pattern
features indicating presence of aggressive cancer cells. Intermediate grading score,
GGG 2 and 3, falls in between the highest and the lowest ranking score.
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Figure 2.4: Tllustration of GGG score for different cancer cell patterns [20]
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Chapter 3

Technical Background Theory

This chapter takes a look at the technical background of methods used in this
thesis. Object detection architectures and backbones modules are introduced and
explained.

3.1 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a medical image technology used to form
detailed three-dimensional anatomical images [21]. The MRI utilizes a strong
magnetic field, magnetic field gradients, and radio waves to capture visualized
images of organs in the body. During an MRI, a person lies on a table placed
inside the MRI scan machine that generates a strong magnetic field. The mag-
netic field will align protons inside the body, and when additionally applying a
radiofrequency pulse through the body will pull the protons against the magnetic
field. However, turning off the radiofrequency currency will realign protons with
the magnetic field, which in the process releases energy that the MRI sensor can
pick up [21].

3.1.1 Apparent Diffusion Coefficient

Diffusion MR images measure the magnitude of diffusion of water molecules in
biological tissues that come in both diffusion-weighted images (DWTI) and appar-
ent diffusion coefficient (ADC) forms [22| [23]. These MRI images are often used
for acute cerebral stroke and tumours diagnosis [24]. ADC consists of multiple
conventional DWI images of different weighted gradient amplitudes, which pro-
duce diffusion equivalent to the signal diversity [23]. B-value projects diffusion
weighting applied to ADC mapping, thereby indicating the intensity and time

11



3.2 Neural Networks

of applied gradients. Choice of b-value parameters depends on the organ and
its matter structure [23|. Figure 3.1 displays both DWI and ADC images of
the prostate gland. The ADC image has a more detailed representation of the
prostate gland relative to the DWI image.

Figure 3.1: Illustration of the ADC and DWI MRI forms that measure diffusion of
water molecules in tissues [23]

3.2 Neural Networks

Neural Networks (NN) dates back to 1943, when Warren Sturgis McCulloch and
Walter Pitts developed an elementary NN model using electrical circuits [25]. NN
is inspired by the human brain nervous system, thus are named neural. A NN
contains a large composition of simple neurons, also referred to as nodes or units,
that react to an input signal before transmitting an output signal [26]. Figure 3.2
illustrates a feedfoward NN with an input layer, two hidden layers and an output
layer.

12
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Hidden layers

Input layer

Output layers

Figure 3.2: Illustration of NN with an input layer, two hidden layers and an output
layer.

3.3 Convolutional Neural Networks

Convolutional neural networks (CNN) is a class of deep NN that are popular
within the image processing field, with a purpose to derive meaningful patterns
from digital images [26].

Convolutional Layer outputs a feature map vector, which is proceeded on to the
next layer. The first convolutional layer often detects basic feature shapes, and
as the convolutional layer gets deeper in the networks it focuses on extracting
more specific complex feature details [26]. Pooling Layer is commonly applied
after a convolutional layer to reduce feature maps dimension, thus reducing com-
putational consumption. Fully connected layer connects every activation from
the previous layer to produce the final classification output, see Figure 3.2. CNN
looks for patterns in regions of the image instead of each pixel, which reduce com-
putational expenses. Also, CNN is translation invariant in such that the object
location does not matter [27].

13
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3.4 Supervised, Unsupervised and Semi-supervised
Learning

Supervised learning is the process of algorithm learning with labelled data. CNN
learns the mapping function from the known input to the known output. The
CNN mapping function improves the accuracy by predicting the output of the
training data and then learn through backpropagation based on the corrections
from labelled data [28]. Supervised learning can be grouped into two types of
problems; classification and regression. Classification is a method that assigns
data into a category. For example, classifying lesion tumours to be either clin-
ically significant or insignificant. Regression uses an algorithm to predict nu-
merical values by modelling the relationship between dependent and independent
variables [29]. CNN performance is measured based on the predicted outcome of
a data set that has not been used in training, often termed as test data.

Unlike supervised learning, unsupervised learning trains CNN on unlabeled data,
where correct answer are not assigned to the data set. The aspiration for this al-
gorithm learning technique is to discover patterns in the data, and it is associated
with tackling two main problems; clustering for grouping data and association to
seek relationships between variables in the data [28].

Semi-supervised learning is categorized somewhere between supervised and semi-
supervised learning. The CNN is training with both labelled and unlabeled data,
often with more unlabeled than labelled data. One of the most critical problems
with machine learning is to have enough training data. Labelling data is time-
consuming and in many cases impractical, considering the rough rule of thumb in
supervised learning is to have more than 10 million labelled examples to exceed
human performance [30].

3.5 Object Detection Networks

This section takes a deeper look at three different state-of-art object detection
architectures and backbone networks used to detect prostate lesions in this thesis.
Before going further into details about the models, this section will explain the
essential tasks of an object detector.

14
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3.5.1 Object Detection

Object detection, also referred to as object recognition, describes a collection of
computer vision techniques that aims to locate and classify objects in a digital
image [31]. Today, object detection is used in a variety of real applications, such
as autonomous driving, video surveillance, mobile application, and robot vision
[32]. The task of object detection can be divided into two main functions:

e Object localization locate objects by drawing a rectangular bounding box
(BB) around its predicted boundaries.

e Image classification refers to the task of assigning a class label to an
object. One of the most common ways to display the classification in object
detection is to print the class label together with the BB in the digital image.

Object segmentation is a computer vision extension in object detection, see figure
3.3. Instead of drawing a BB based on the object outer edges, object segmentation
points out every pixel in an image that contains an object [33]. Object detection
architectures that implement object segmentation, such as MASK-RCNN, has
not been utilized in this thesis [34].

Object Localization
Object Recognition Object Detection >{ Object Segmentation
Image Classification . .

Figure 3.3: Flowchart of computer vision functions associated with object detection
[33]

3.5.2 Network Models

This section introduces the meta object detection and backbone networks utilized
in this project. The Tensorflow Object Detection API 1x repertory [35| provide
an open-source code for the following architectures.

15



3.5 Object Detection Networks

Single Shot Detector

Wei Liu et al. introduced the Single Shot Detector (SSD) architecture in 2016
that contains a single deep sub-network for object localization and classification
[36]. SDD increases prediction speed by eliminating a second stage BB proposal
and compress all computation into a single network. VGG-16 is initially used as
a backbone network in the SSD: Single Shot Multibox Detector paper but it is
also applicable for other backbones such as the ResNet-50 network [36].

SSD utilizes predefined default boxes for different sizes and aspect ratios for
multi-scale feature maps, similar to the anchor boxes utilized in Faster R-CNN.
The CNN network applies multiple scales of convolutions feature layers that al-
low detection at different scales, where initial convolutional layers cover smaller
fields that exploit small object areas and the deeper layers cover wider areas that
benefit large object areas. Figure 3.4 illustrates the SSD architecture. Feature
layers produce a collection of BB predictions, where a Non-Maximum Suppres-
sion (NMS) step (Section 3.5.4) filters the overlapping BB to produce the final
output. A weighted sum of the smooth localization loss and softmax confidence
loss generate the overall model loss [36].

Exira Feature layers
ResNet-50 L

/—
>
ﬂfb
# @ £
4 1 .-'/
;
Detections
NS

Figure 3.4: Illustration of the SSD architecture [36]

Faster R-CNN

The Faster R-CNN model architecture, developed by Shaoqing Ren et al. is an
improved version of the earlier networks R-CNN and Fast R-CNN [37, 38, 39].

16
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Faster R-CNN composes two independent trainable sub-networks; a detection
network (Fast R-CNN ) and a Region Proposal Network (RPN). A two-stage
network obtains higher performance accuracy than a straightforward one-stage
network (such as SSD) but has a higher detection latency.

Faster R-CNN produces a convolutional feature map using a backbone network
that passes to the RPN, that indicates where the Fast R-CNN network should
look for objects in the given image. RPN produce a n x n spatial window slide
over the feature map that predicts region proposal at every spatial location by
utilizing predefined anchor boxes of three scales and three ratios. Each sliding
window has a total of 9 predefined anchors that is possible region of interests. The
NMS step filters the overlapping predictions from the RPN, further explained in
Section 3.5.4. The ROI polling layer takes the output from the NMS along with
a fully connected layer and extracts a feature vector of length 256 for each of the
n x n proposed region [40]. Two fully connected layers generate an objectness
score based on the classifier and a regression score based on the BB coordinates.
Figure 3.5 illustrates the Faster R-CNN architecture.

Region Proposal Network (RPN)

Anchors
Boxes h 4
Jv CNNs
Region
h Proposal Layer

Proposed ROl Pooling
Regions

Layer

[ Classifier ] [F{egression]
Objeciness
[ score ] [ BB ]

Figure 3.5: Faster R-CNN architecture [41]
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3.5 Object Detection Networks

Region-based Fully Convolutional Networks

Jifeng Dai et al. introduced the efficient Region-based Fully Convolutional Net-
works (R-FCN) architecture object detection in 2016 [42]. RFCN consists of
region proposal and classification sub-networks, similar to the R-CNN networks,
obtaining competitive performance with less latency relative to the Faster R-CNN
architecture. The R-FCN: Object Detection via Region-based Fully Convolutional
Networks paper discuss that object detection networks rely on localization rep-
resentation that is translation-variant. R-FCN implement a position-sensitive
cropping mechanism before the region of interests (ROI) to generate score maps,
which decrease per-region computation [42, 35].

R-FCN executes a final ROI layer that uses selective pooling on the score maps
to produce a spatial grid score of each ROI. The position-sensitive score maps
obtained from the last convolutional layer is expressed as k?(C+1), see Figure 3.6
[42]. Where k? represent the spatial grid relative to the positions, C the object
categories and 1 the background category. NMS filters prediction proposals to
produce the final output, see Section 3.5.4. The R-FCN process helps tackle the
location variance problem in the region proposal, producing faster detection with
minor performance reduction.

top-left  top-center ba ttom-right

K(C+ l)d

conv

feature
maps v
('+1 C+1

pmir ensi
(1‘ 1) score maps

Figure 3.6: R-FCN architecture with a spatial grid (k x k) equal to 3 x 3 [42]
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3.5 Object Detection Networks

3.5.3 Backbones

Bacbone network, also know as convolutional feature extractor, is applied to the
CNN object detection architecture to obtain highlevel features from the input
image [35]. This section present and explain the implemented bacbone networks
for this thesis.

MobileNets

MobileNets module were proposed by Andrew Howard et al. and focus on re-
ducing network parameters, computational complexity and achieving high-speed
inference suitable for mobile applications [43]. MobilNets achieved VGG-16 lever
performance on ImageNet harnessing only 3.33% of the VGG-16 computational
and network complexity [44, 35].

MobilNets builds on depthwise separable convolutions that divide filter depth
and spatial dimension. The depthwise separable convolution splits a layer into
a layer that filter (depthwise convolution) and a layer that combines (pointwise
convolution). Depthwise convolution places a single kernel on each of the input
channels. A 1z1 pointwise convolution combines output from depthwise convo-
lutions and generate new features. Depthhwise separable convolutions produce a
computational operation cost of:

Dg DM -Dp-Dp+M-N-Dp-DF (3.1)

Function 3.1 expresses the number of input channels (M), number of output
channels (N), kernel size (Dg) and feature map size (Dp). Depthwise separable
convolutions reduce model size, latency and computational cost. However, the
negative repercussion to this application is a minor performance reduction [43].
Figure 3.7 illustrates a five input channel depthwise separable convolution.
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Depthwise Convolution
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Figure 3.7: Five input channel depthwise separable convolution [45].

Residual Network

The deep residual learning framework Residual Network (ResNet), proposed by
Kaming He et al. in 2016, aims to add more network layers to achieve higher
performance [46]. ResNet produced a top-5 error rate of 3.57% on the ImageNet
test set that gave it first place on the ILSVRC 2015 classification competition [44].
The Deep Residual Learning for Image Recognition paper discussed that deeper
networks struggles with vanishing gradients, accuracy saturation and degradation
because of optimization problems, which culminate in a performance reduction
[46]. This led to the introduction of the deep residual learning framework that
utilizes feedforward CNN, see Figure 3.8.

ResNet exploits a new mapping function H(z) = F(z)+x, where F'(z) represents
the mapping of non-linear layers and x the identity function. This is different from
the direct mapping F'(x) formally used in networks modules. ResNet focus on an
easier way of realizing identity mapping H(z) = x. Pushing the residual F'(z) to
zero is more accessible than fitting identity mapping. The Residual connection
allows for a better optimization process that will reduce the degradation problem,
vanishing gradient problem and allow training of really deep networks with high
performance results. There are a variety of ResNet framework versions with
different depths and procedures. ResNet-18/34 use feedforward for two layers,
whereas ResNet-50/101 /152 feedforward three layers that allow for an even deeper
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3.5 Object Detection Networks

still trainable CNN [46]. Figure 3.8 illustrates the residual connection for three
layers. This thesis utilizes both ResNet-50/101 as backbones when training object
detection models.

Figure 3.8: Deep residual learning building block for ResNet-50/101/152 [46]

Inception

The Inception network was introduced in 2015 by Christian Szegedy et al. and
proposed sparsely connected architecture to reduces the network parameters and
computational cost without the expense on the network’s performance [47|. In-
ception module integrating several filter sizes that allows the layer to choose the
most relevant filter for optimal learning. This provides an architecture with wider
layers, as well as a deeper network without unreasonable computation, illustrated
in Figure 3.9. The first Inception network (v1) contained nine Inception units
and was 22 layers deep [47]- Figure 3.9 illustrates an Inception unit layer. As
many other deep CNN and Inception network experience vanishing gradient in
the backpropagation. Two auxiliary classifiers were appended to intermediate
layers to provide additional regulation and reduce the vanishing gradient in the
network. A weighted combination of auxiliary loss and the real loss construct the
total loss during training.

In 2016 Christian Szegedy et al. proposed Inception v2 and v3 to improve net-
work computation from its predecessor [48]. These networks focus on optimizing
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3.5 Object Detection Networks

computation by factorizing convolution and conducting regularization. The mo-
tivation behind this updated Inception module versions was that CNN performs
worse when convolution alters the input dimension drastically, resulting in infor-
mation loss known as a representational bottleneck. The solution was to compress
input layers dimension to reduce the computational cost and additionally increase
the network’s accuracy. Filter banks were constructed to be broader instead of
deeper to avoid representational bottleneck [48]. Figure 3.9 illustrates factoriza-
tion implementation in the Inception v2 version.

Inception v1

Previous Layer

) ' }

E 3x3 Max Pooling 1x1 conv 1x1 conv

1x1 conv ¢ ¢ ¢

1x1 conv 3x3 conv

Inception V2

5x5 conv

[ ™~

]

Filter Concatenation

Figure 3.9: Illustration of the Inception module (v1 and v2 versions) [47]

3.5.4 Post-Processing

Non-Maximum Suppression

Non-Maximum Suppression (NMS) is a post-processing technique used in com-
puter vision algorithms to designate a final BB out of multiple overlapping en-
tities. NMS is similar to the mathematical optimization technique; hill-climbing
search [49]. Object detection networks often generate multiple proposals of dif-
ferent size and aspect ratios for a single object, creating overlapping BB, where
neighbouring proposals often share similar objectness scores. The NMS filter
compares BB prediction to their neighbouring proposal to sort out and find the
best BB representation, such that there is only one BB representation for each
object.
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3.5 Object Detection Networks

All proposed BBs in a given image are composed in an initial proposal list. The
NSM algorithm takes the proposal with the highest objectness score, removes it
from the initial list and adds it to a final proposal list. This proposal is compared
to the rest of the proposal, calculating the Intersection over Union (IoU) between
them. If IoU exceeds a fixed threshold the proposal from the initial list is removed.
A typical first stage NMS IoU threshold value of 0.7 has been utilized throughout
this thesis. Then again, the proposal with the highest objectness score is removed
from the initial list and appended to the final proposal list and compared to the
rest of the proposals. This procedure replicates until the initial list is empty.

Repercussion from applying the NMS algorithm is that networks will have a
problem detecting multiple similar objects nearby each other, such as a crowd
full of people. The network will most likely draw a single BB around the crowd
and classify it as a single person.

3.5.5 Anchors

Most state-of-the-art detectors rely on anchors to better locate target objects.
Therefore, optimizing anchor parameters can have a significant impact on CNN
performance [50].

CNN model configuration files define pre-default anchors for bounding box pro-
posals. Adjusting the anchors will help indicate what size and shape to look for
when detecting an object. The anchor aspect ratio derives from the height to
width ratio. For example, if the height of the bounding box is two times longer
than the width, it would result in an aspect ratio value of 2.0. Opposite, with
a width two times longer than the height, the resulting aspect ratio value would
be 0.5. The width to height ratio also needs to be considered, especially when
applying data augmentation techniques such as rotation.
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3.6 Metrics

This section explains the metrics used in this thesis to evaluate network perfor-
mances.

Intersection over Union

Intersection over Union (IoU), based on Jaccard Index [51], is the most commonly
known evaluation metric in object detection [52]. It compares the similarity and
diversity between the predicted BB (P,) and ground truth BB (G;). Equation
3.2 shows that the area of the intersection divided by the area of union defines
the IoU. Figure 3.10 illustrates the overlap between P, and Gj.

Area of Intersection [P, N G|

IoU = =
© Area of Union | P, U G|

(3.2)

Figure 3.10: Illustrates of how IoU is found from predicted BB (F;) and ground truth
BB (Gp) overlap.

Confusion matrix

The confusion matrix is a popular method used to describe the performance of
the localization and classification based on the predicted and the actual values of
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the data. Table 3.1 represents a confusion matrix with n=2 classes, used in CNN
evaluation. A detection is classified as True Positive, correct positive prediction
when IoU>threshold. The threshold is normally set to 50%, but can be adjusted
based on the object type, user scenario or other preferences. Detection with
IoU<threshold classifies as False Positive, incorrect positive prediction. When the
ground truth is not detected, the prediction classifies as False Negative, incorrect
negative prediction. True Negative is not applicable in this context due to its
representation of all possible detection that is correctly not detected [53]

Positive Negative
True Positive | False Negative
False Positive | True Negative

Predicted Predicted

Actual Positive
Actual Negative

Table 3.1: Confusion matrix with n—2 classes.

Precision

Precision estimates the percentage of correct prediction, per class, based on all
detection [54]. The average precision (AP) measures the prediction performance
for an individual class and is an useful metric to output to measure if the model
struggles to detect any of the data classes. The formula for precision is illustrated
in Equation 3.3

Precisi True Positive (3.3)
recision = .
True Positive + False Positive

Mean Average Precision

Mean average precision (mAP) is the average AP, as shown in Equation 3.4,
and measures the model performance for all classes. The AP is usually evenly
distributed when calculating the mAP but can also be weighted based on the
number of cases in a given class.
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N
1
AP = — AP, 3.4
m N; (3.4)

Recall

Recall measure correct prediction based on all ground truth and Equation 3.5
shows the recall formula [55]. This is relevant for cases with an imbalanced data
set, where the recall indicates how accurate the model is at correctly classifying
relevant predictions.

Recall True Positive (3.5)
ecall = .
True Positive | False Negative

Mean Average Recall

Equation 3.6 shows the mean average recall (mAR) function, which measures
the average AR for all classes. Like mAP, classes can be weighted based on the
number of examples.

N
1
AR = ) AR 3.6
m N2 R; (36)

Loss

Loss is in most cases printed after every step, or epoch, during model training.
There is negligible information about the network performance to gather from the
loss value. However, the rate of change can reveal whether the model is learning
or not, which again can prevent the CNN from overfitting [30].
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3.7 Software

This thesis uses the programming language Python for CNN training, techni-
cal implementation, image pre-procession, data collection and data analysis [56].
Repertory structure is illustrated in Appendix F and the code is available at
GitHub . The open source Jupyter notebook environment, Google Colab, are
used for image-preprocession and data analysis, providing easy access to popular
libraries and a free (limited time) GPU. This thesis trains the complex deep CNN
experiments on a Tesla V100-PCIE-32GB GPU [57]. This section introduces and
explains some of the important python libraries implementation for this thesis.

3.7.1 Tensorflow

TensorFlow is a machine learning library developed by Google Brain Teams that
utilize data flow graph [58|. The name originate from the operation that CNN
execute on tensors, otherwise known as multidimensional data arrays. A wide
variety of deep CNN algorithms, such as training and presumption, can be ap-
plied using TensorFlow. TensorFlow also provides an useful toolkit known as
Tensorboard that can easily tracks and visualizes metric performance.

This thesis utilize Tensorflow Object Detection API 1x 2 to train, evaluate and
deploy object detection models [35].

3.7.2 Numpy

Numpy is a fundamental Python library that provides multidimensional array
objects, array matrices, numerical computing and an accumulation of mathemat-
ical functions [59]. This library has been used throughout this thesis for data
analysis and in the image pre-processing stage for generating arrays, integers and
executing mathematical operations.

Thttps://github.com/enlidenl/Master PCa_ Detection
Zhttps://github.com /tensorflow /models/tree /master /research /object _detection
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3.7.3 Pandas

Pandas is a Python programming language library tool built on Numpy packages,
practical for data structures and data analysis [60]. This library is used to both
read and collect vital data about the patients that is provide in multiple csv files.
Pandas is also adopted to construct annotation files for ground truth data, later
discussed in Section 4.2.6.

3.7.4 SimplelITK

SimplelTK is an open source simplified programming interface of the Insight Seg-
mentation and Registration Toolkit (ITK), supported by multiple programming
languages [61]. This library provides a wide variety of image analysis filter and
supports several types of image file formats. This thesis make use of this toolkit
in the image pre-processing step for image normalization and image filtering.
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Chapter 4

Material and Methods

4.1 Description

The data set used in this thesis consists of 200 individual patients from the
PROSTATEx Challenge SPIE-AAPM-NCI Prostate MR Classification Challenge
associated with the 2017 SPIE Medical Imaging Symposium held in Orlando, USA
[62]. The PROSTATEx Challenge focuses on predicting the clinical significance of
the lesions found in MRI images. Acquisition of the prostate MR was performed
under the supervision of prof. Dr.Jelle Barentsz, at Radboud University Medical
Centre (Radboudumc) in the Prostate MR Reference Center [63]. The data set
was accumulated and systematized under the supervision of Dr. Huisman, at
Radboudumec. Both Siemens 3T MRI scanners MAGNETOM Trio and Skyra
gathered the MRI images for the PROSTATEx Challenge dataset |64, 65]. Three
b-values of 50 s/mm?, 400 s/mm?, and 800 s/mm? were procure for the ADC
map.

The lesion mask has been reviewed and performed by Renato Cuocolo et al. and
is available on GitHub '[66, 67]. The mask data assemble the first 204 MRI
scans from the PROSTATEx challenge data set, which consists of a total of 345
individual prostate MRI scans [62]. There is missing information about lesion
mask data from four MRI scans (ProstateX-0052, Prostate-0056, ProstateX-0080,
ProstateX-0138), which result in a data set containing 200 individual Patients
with lesions findings. MRIs consist of a collection of two-dimensional images that
combined represent a three-dimensional image.

The mask data set contains 299 lesion findings distributed on 200 patients. Table
4.1 shows a detailed description of lesion examples, anatomic zone location, and
the classification distribution of the data set. Chapter 2.1 explains the anatomic

Thttps://github.com/rcuocolo/ PROSTATEx masks
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zone location and PCa classification in greater details. The classification between
lesions is unevenly distributed, where insignificant represent 74.58% and clinically
significant represent 25.42% of all the lesions. The same applies to the GGG score
distribution, see Table 4.1. Lesion findings that did not undergo a prostate biopsy
test, see Section 2.2.3, are graded as insignificant along with GGG 1, see Section
2.2.5 and Table 4.1.

Insignificant  Clinically Total
Significant
Lesion 223 76 299
Lesion (%) 74.58% 25.42% 100%
TZ 67 9 76
PZ 134 36 170
AFS 22 31 33
Ground truth 914 367 1281
Ground truth (%) 71.35% 98.65% 100%
No Biopsy GGG 1 GGG 2 GGG3 GGG4 GGG5 Total
Lesion 187 36 41 20 8 7 299
Lesion (%) 62.54% 12.04% 13.711% 6.69% 2.68% 2.34% 100%
TZ 59 8 ) 3 1 0 76
PZ 122 14 20 8 3 3 170
AFS 8 14 15 8 4 4 53
Ground truth 748 166 190 100 42 35 1281
Ground truth (%) 58.39% 12.96% 14.83% 7.81% 3.28% 2.73% 100%

Table 4.1: Number distribution of lesion findings, anatomical zone location, classifi-
cation with respect to the significant and GGG score, number of images represented in
the prostate data set.

Studying the PCa anatomic zone location shows that 56.86% of the lesion findings
is allocated in the PZ, 25.42% in the TZ and 17.72% in the AFS zone. Usually,
PCa has a higher chance to be located in PZ [7]|. Lesions classified as clinically
significant have an unequal probability between the three zones for this thesis
data set. AFS has the highest possibility (58.49%), PZ has the second highest
(21.18%) and TZ has the lowest probability (13.43%) to be classified as clinically
significant, see Table 4.1.

One alluring ratio value from the Table 4.1, regarding the GGG classification,
is the GGG 2 class which has a higher number representation than the GGG
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1 classification. Otherwise the number of examples proportion decrease as the
GGG score increase.

1109 unique two-dimensional slices contain at least one lesion finding. Ground
truth shows the lesion classification distribution for all the objects obtained in the
1109 ADC images, see Table 4.1. Figure 4.1 shows that some patients have more
than one lesion finding obtained, which means some image slices have multiple
objects represented in them.

Lesion findings distribution per patient

120 E Patients
mmm Clinically Significant

100 4

Number of cases
=

20 4

1 2 3 4 5
Number of lesion findings per patient

Figure 4.1: Histogram plot shows distribution of lesion findings per patient for the
prostate data set, additionally to the distribution of how many of these patients have
at least one PCa classified as clinically significant. Number of findings range from 0 to
4.

Figure 4.1 shows the number of cases and the percentage of each number of
lesion findings per patient. One to two findings per patient are the most common
occurrence, while three to four lesion findings are infrequent and are only present
in 8% of the data set. A larger quantity of lesion findings for an individual
patient can give the impression of a higher probability that at least one of them
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is classified as clinically significant, but that is not the case. For one finding,
there is 54.6% chance for it to be classified as clinically significant. For two, three
and four findings there is 43.1%, 42.9% and 50% chance for at least one of the
findings to be classified as clinically significant.

4.2 Image Pre-Processing

This section presents image pre-processing implementation used to prepare im-
ages for training and evaluation. Different techniques such as reshaping data,
saving organized data and data filtering are inspired by Steinar Valle Larsen
work on the PROMISE12 challenge [68].

4.2.1 Organizing Data Sets

The complete data set is divided into training, validation and test set with a
distribution of 70%, 10% and 20%, respectively. The training set fits the CNN
model for training, whereas the validation data set is held back from training to
give an unbiased evaluation of the model’s performance while training, to improve
hyperparameters tuning. Finally, the final trained CNN utilizes the test data set
to provide an unbiased evaluation [69].

The data set is split based on the patient and not the image, which means image
slices from one patient only belong to one of the three data sets. Evaluation has
to be proceeded with no prior recollection to the patient to avoid biased evalua-
tion. In addition, the data split procedure obtains stratification to distribute the
number of classes equally and to mimic the original data distribution to reproduce
a real-world scenario case.

4.2.2 Data Filtering

DICOM 16-bit images has pixel values ranging from [-32768,32768]. Normaliza-
tion is applied with pixel value ranging from [0,255] to obtain 8-bit JPEG images
(required by Tensorflow Object Detection API), in which equation 4.1 specifies
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how to apply linear normalization |70, 35]. The values [Min,Max| represent the
input image (/) and the [newMax,newMin| represent the desired pixel value lim-
itations for the output image (/). 0 corresponds to black and 255 to white pixel
value for a grayscale image

Max — M
Iy = (I — Min) newMax Z;w m + newMin (4.1)
ar — Min

Outlier removal filter is a data filtering technique used to remove possible image
noise. Applying percentile upper-limit and lower-limit, 99" and 1" respectively,
proceeds to replace the darkest and the brightest 1% pixels value to its surround-
ing neighbour values [71].

4.2.3 Data Resizing

The original images are resized to have height and width equal to 512x336. This
shape size is found by simply multiplying the most common original shape size
(128x84) with three, see Table 4.2. The outcome is to use fixed input image shape
and maintain the original aspect ratio for 94.5% of the image representations in
the data set.

Height x Width | 128 x 120 | 106 x 128 | 128 x 84
Number of cases 6 5 189

Table 4.2: Table shows number of cases with different image size from the ADC data
set, where each case represent an individual patient

4.2.4 Image Cropping

Bounding box (BB) size is an essential factor for a CNN object detector. Relative
to the image size, the lesions are often small. The CNN can have problems
detecting them if the area size is limited, especially if the area size is < 302 or
does not correspond to the predefined anchor boxes. COCO metrics provides
metric techniques that evaluate CNN performance relative to the object size
(small, medium and large), further explained in Section 4.4.1.
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Category Boundaries Original Original (%) Cropped Cropped (%)

Small BB area < 322 835 65.44% 5) 0.39%
Medium BB 322 < area < 96> 441 34.56% 831 65.13%

Large BB  area > 962 0 0.00% 440 34.48%

Table 4.3: Number of objects, in the data set, that classifies as either small, medium
or large BB area size category, accordingly to the coco metrics explained in section 3.6.
Both original images(512x336) and cropped image (600x600) are represented.

Insignificant Clinically Total

Significant
Mean BB area (Original) 913 1092 964
Mean BB area (Cropped) 8335 10012 8816

Table 4.4: Table shows the mean BB area size of the original and cropped data sets.

Using the original image with a shape size equal to 512x336 shows that the
majority of BB classifies as small BB (65.43%), with a mean BB area value
of 964 (<32%/1024). Table 4.3 illustrates distribution of BB size category and
Table 4.4 shows the mean BB area size for original and cropped data sets. Note
that increasing the image size will correspondingly increase computational cost,
which again will increase training time for fixed CNN architecture. Cropping
implementation will remove unnecessary image information and increase the BB
size without the great cost of the computation. Without losing any lesion objects
in the prostate data set, the image is cropped to have an outer edge range of
[156:356] for height and [68:268| for width, that produce an image dimension of
200x200. The image shape size is again multiplied by three to increase the overall
BB area size, producing a cropped image with a size equal to 600x600, see Figure
4.4. Implementing these image pre-processing techniques produce a total mean
BB area value of 8816, close to the COCO metrics defined large BB area value
(<96%/9216) [72].
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Figure 4.2: Original image (512x336) Figure 4.3: Cropped image (600x600)

Figure 4.4: Illustrates of cropping [156:356,68:268| implementation on ADC image
with shape size equal to 512x336, before resizing it to 600x600.

4.2.5 Save Data Information

Information from each patient is stored in compressed files (.npz) provided by
Numpy, which makes detailed analysis more accessible and makes reproducibility
easier [73]. Storing patients information provides easy access to a complete patient
overview, where Table 4.5 illustrates the array layout. ADC images are read as
a Digital Imaging and Communications in Medicine (DICOM) image format and
are stored as a three-dimensional array in the zipped archive files [74]. The two
first indexes correspond to the [height,width] and the third index corresponds to
the number of two-dimensional images slices. Lesion masks data are provided
in Neuroimaging Informatics Technology Initiative (NIfTI) file format. Given
that each lesion findings represent a single NIfTT file, the mask array is saved
as a four-dimensional array. The first index corresponds to the number of lesion
findings, and the other three indexes represent the same as for the ADC MRI
array (DICOM). PCa GGG and significant classification are stored in separate
arrays.
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Array number Description Shape
arr|0] DICOM (Height, Width,Slices)
arr|1] NIFIT (Findings,Height, Width,Slices)
arr|2] ID Prostate-XXXX
arr|3] GGG 1-5
arr|4] Clinically Significant True/False

Table 4.5: Npz file construction of the patient information.

4.2.6 Data Labeling

Train, validation and test data sets are prepared by saving two-dimensional slices
as individual JPEG images and creating csv file for BB ground truth. Detected
lesions in mask data represent the white pixels (255), and the background rep-
resents the black pixels (0), as seen in Figure 4.5. Producing PCa ground truth
label consists of locating BB coordination in the relevant mask images and then
applying it to the MRI images. The mask BB is obtained by simply finding
maximum and minimum white pixel values, where maximum and minimum co-
ordinate values are added and subtracted by one to ensure that the whole object
is inside the produced BB. However, the approach of finding the minimum and
maximum white pixel value works poorly for mask images with errors, such as
a random white pixels that appear unrelated to the lesion object. Most of these
errors are revealed by seeking out abnormal BB sizes or aspect ratios, which is
further explain in Section 5.3. BB errors are corrected by manually adjusting the
BB coordinates to ignore the random white pixel occurrences. Each mask image
represents a single object, meaning some MRIs slices have multiple mask images.
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Figure 4.5: Mask image slice align proportional with the respective ADC MRI image
slice, with a drawn BB around the corresponding lesion object.

The annotation files contain lesion information about the image filename, image
shape size and BB outer edge coordinates, illustrated in Table 4.5. Each anno-
tation line represents a single object, such that the number of annotation lines
equals the number of lesions in a given image. Annotation files contain only in-
formation about MRI slice with lesion objects, where MRIs without lesions will
not contribute during training nor evaluation.

Filename Width Height Class Tmin Ymin LTmaz Ymaz
ProstateX-0002-5.jpg 336 512 Clinically Significant 125 261 166 290

Table 4.6: Structure of how the ground truth is presented in the annotation csv file.

4.2.7 Mask Data Issues

ADC mask data has a representation issue due to format conversion, in such that
the mask images are rotated 90 degrees relative to the MRI images. Thus mask
images is transposed to get a proportional representation as to the corresponding
MRI image. Additionally, patients mask image slice order is inverted (except for
PROSTATEX-0199 - PROSTATEX-0203) to get a proper mask-data alignment.
Both these interpretations to correctly represent the mask slice relative to the
respective ADC slice are only a proposed solution. When gathering the mask
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data, these issues were unknown to the author or me. To the best of my knowl-
edge, these are the only mask data complications, but it should be considered
that there could be other mask data issues.

4.3 Data Augmentation

One of the most crucial aspects to focus on when working with deep CNN is
the size of the data set. From lan Goodfellows book Deep Learning, a general
guideline is to use around 5000 labeled examples per class too achieve acceptable
performance, and 10 million labeled examples per class to exceed human perfor-
mance in supervised learning [30]. If the model performance is under-performing
it is often because of an insufficient data set. Increasing the data set will improve
the CNN ability to generalize and also prevent from overfitting at a relatively
early stage [30]. Image data augmentation expands the training data set artifi-
cially, by modifying the input images. Methods must be selected according to
the data set. It is worth mentioning that some image augmentation methods
could deteriorate the models performance, for example by applying vertical flip
to images of cars is maybe not the best augmentation implementation, since the
probability of the trained CNN to receive an input image of a upside down car is
low [33]. This of course depends on the given scenario.

This thesis makes us of the build in data augmentation techniques in Tensorflow
Object Detection APT [35], where the augmentation techniques will additionally
impact bounding box annotation. Implementations used in this thesis is illus-
trated in Figure 4.6 and listed below:
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Horizontal flip: Reversing each row of the matrix.
e Vertical flip: Reversing each column of the matrix.

e Rotation: Rotates the images in different degrees. Rotation augmentation
applied with a, default, fixed number of 90 degrees in this thesis.

e Crop image: Removes parts of the image, by adjusting image outside edge
coordinates.

e Brightness: Adjust the overall pixel value in the image.

e Contrast: Adjust the luminance difference between dark and bright pixels
values [75].

Horizontal flip

Vertical flip

Figure 4.6: Illustration of data augmentation techniques used in this thesis.
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4.4 Metric Evaluation

This section introduce the evaluation metric sets used to evaluate networks per-
formance for all the test experiments in Chapter 6. Section 3.6 explain metric
background theory.

4.4.1 Common Objects in Context Metrics

Common Objects in Context (COCO) detection evaluation metrics is used to
evaluate an object detector performance on Microsoft COCO (MS COCO) data
set [72, 76]. The MS COCO data set is a large-scale object detection, annotation
and caption data set, consisting of 1,5 million object instances and 80 object
categories [77]. Table 4.7 explains the 12 different metrics provided by COCO
metrics, used to measure model performance in this thesis.

mAP
mAP|0.50:0.05:0.95]| IoU=0.50:0.05:0.95
mAP[0.50] IoU=0.50
mAP[0.75] oU—0.75
mAP Across Scales
MAP, a1 mAP for small objects (32 > area)
MAP, cdivm mAP for medium objects (322 < area < 962)
MAPiarge mAP for large objects (area > 96%)
mAR[0.50:0.05:0.95]
mAR(max = 1) mAR given 1 detection per image
mAR(max = 10) mAR given 10 detection per image
mAR(max = 100) mAR given 100 detection per image
mAR|0.50:0.05:0.95] Across Scales
MAPspan(maz = 100) mAR for small objects (32° > area)
MAP,edivm(max = 100) mAR for medium objects (322 < area < 96%)
MAP4rge(maz = 100) mAR for large objects (area > 962)

Table 4.7: COCO 12 metrics used to measure object detection model performances

[72]

The COCO detection evaluation metrics is one of the methods used to evaluate
the models performance in this thesis. Both COCO AP and AR represent the

40



4.4 Metric Evaluation

average over all categories (mAP and mAR), not the AP or the AR for a single
class. To avoid any deception, COCO AP and AR will be consider as mAP and
mAR throughout this thesis.

4.4.2 Pascal Visual Object Classes Metrics

Pascal Visual Object Classes (PASCAL VOC) challenge is another popular stan-
dard large-scale data set of images and annotations that also provide an evalua-
tion metric method [78]. The open-source data set consist of 20 class categories.
As demonstrate in figure 4.7 the COCO metrics compute mAPV=50 utilizing
PASCAL VOC metrics. However, for measuring the AP of every individual class
an additional evaluation metric method need to applied; the standalone PAS-
CAL VOC metric system. Being able to look at the AP performance for each
individually class is a crucial aspect for this thesis.
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Chapter 5

Configuration

5.1 Backbone Networks

Table 5.1 compares the number of deep layers and parameters for this thesis im-
plemented backbones networks [48, 43, 46]. Number of parameters range from
3.5M (MobileNet v2) to 44.5M (ResNet-100). CNN latency time is heavily af-
fected by the number of parameters, where a high number of parameters also
makes it difficult for performance optimization during training.

Network Layers Parameters
Inception v2 47 11.2M
MobileNet v2 53 3.50M

ResNet-50 50 25.6M

ResNet-100 100 44.5M

Table 5.1: Number of layers and parameters for the respective backbone networks.

5.2 Hyperparameters

Image Size

The Tensorflow Object Detection API resizes images by either using a fixed shape
or by allowing padding to keep the original aspect ratio. Padding will add unnec-
essary information to images, which is undesirable. This project utilizes a fixed
image input size of 336x512 for the original data set and 600x600 for the cropped
data set.
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Learning Rate

The two-stage detectors Faster R-CNN and R-FCN learn much faster than the
one-stage detector SSD. Faster R-CNN and R-FCN start with a learning rate
of 0.0002, while SSD begins with a learning rate set of 0.002, which gradually
decreases while training. These are the default learning rate for each of the
architecture. Each experiment learns at different rates, and therefore the learning
rate adjustment is set at different time steps, which is illustrated in the Appendix
for the respective test results.

Batch Size

Faster R-CNN and R-FCN utilize a batch size equal to 1, while SSD uses a batch
size equal to 24. These values are selected from the default values set in the
respective model configuration files.

Optimization

Faster R-CNN, R-FCN and SSD utilize momentum optimization (for gradient
descent), with a default parameter value of 0.9 [79].

5.3 Anchors

Anchor Aspect Ratio

Taking a deeper look at the distribution for BB aspect ratio of this thesis data set,
see Figure 5.1, shows that most height to width ratio is around 1:1. The minimum
value is 0.30, the maximum value is 3.68, and the mean value is 0.96. Since data
augmentation, such as rotation, is applied to the data set at a certain point, the
width to height ratio also needs to be considered. Dividing the minimum and
maximum height to width ratio value to one will output minimum and maximum
value for the width to height ratio, which produces a new minimum value of
0.27. The highest anchor ratio value is still 3.68 because 3.68>3.33. The model
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5.3 Anchors

will have problems detecting the objects, with a ratio close to 1:4 and 4:1, if the
anchor aspect ratio is not defined based on the minimum and maximum value.
Setting the aspect ratio too high or low relative to the data set could negatively
impact the CNN performance.

Distribution for bounding box aspect ratio (height/width)

250 4

200

150 4

Count

100 4

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
Height to width ratic

Figure 5.1: Height to width aspect ratio distribution for every ground truth BB
annotation in the data set.

Anchor Size

Figure 5.2 shows the overall BB size distribution, relative to the image shape size,
both before and after implementing the cropping image pre-processing technique
(Section 4.2.4). The original image presentation ranges from [0.013, 0.121] and
the cropped image depiction ranges from [0.041,0.350]. Choosing too small anchor
sizes could damage the CNN performance because of a possible increase in false
predictions. This thesis utilizes a minimum anchor size of 0.075 and a maximum
size of 0.9 for the SSD models, which obtain 95.9% of all the ground truth BB
sizes. Faster R-CNN utilizes anchors scales of size [0.25, 0.5, 1.0, 2.0]. From
trial and error, these parameter values work best for the SSD and Faster R-
CNN models. Decreasing these parameter values to exactly fit the minimum
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and maximum values damage the CNN performances because of the increase in
inaccurate predictions.

Distribution for bounding box size (with the respect to image shape)
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Figure 5.2: BB size distribution, with the respect to image shape size, for both the
data set with original representation and the data set utilizing the cropped image pre-
processing technique.

5.4 Data Augmentation

All applied data augmentation methods during training utilizes the default pa-
rameters value, set by Tensorflow Object Detection API [35].

Horizontal flip, Vertically flip and rotation (90 degrees) has a probability of 50%
for being implemented during training. These techniques have a fixed result rep-
resentation and are either fully applied or not applied to a given image. Crop,
contrast and brightness adjustments values randomly range from a given mini-
mum to a given maximum value. These augmentation methods are applied for all
given image, with ranging inference impact. Cropping has an aspect ratio rang-
ing from [0.75, 1.33] and an area ranging from [0.1, 1.0], where 1.0 is the original
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5.4 Data Augmentation

image area and 0.1 is 10% of the original image area. The cropping augmenta-
tion always makes sure that there is at least one object present in the cropped
image. Contrast adjustment has a delta ranging from [0.8,1.25], and brightness
adjustment has a delta value ranging from [0,0.2].
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Chapter 6

Experimental Results

In this chapter, the performed experiments and the corresponding result are pre-
sented. Figure 6.1 illustrates an overview of the conducted experiments.

Frostate Data

Image Pre-Processing
(Cropping)

Y

Models/Backbones } > Evaluation

*

h 4

Data Augmentation }7

—» Anatomical Zones

Y

‘ Classification }

Figure 6.1: Overview of the conducted experiments
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6.1 Cropping

Early on, there was an indication that CNN models struggled to detect PCa
because the average BB representation was negligible compared to the rest of the
image. Therefore the first experiment establishes a better image representation
before further testing different models, backbones and training methods.

This section utilizes the Faster R-CNN with the MobileNets v2 backbone to
compare test result from training on original images, with shape size 512x336,
and cropped images with shape size equal to 600x600. Section 4.2.4 explains
the cropping implementation in greater detail. Faster R-CNN Mobilenet v2 is
used in this experiment because it was utilized in the early-stage tuning of the
hyperparameters. It is worth mention that both the original and cropped data
sets consist of the same patient examples for the split training, validation and
test data sets.

Table 6.1 shows the best performance result from test data evaluation, and vali-
dation computed while training is illustrated in Appendix A.

Test APsignificant[0.5] APrnsignificant[0.5] mAP[0.5] mAP[0.75] mAR[0.5 : 0.95]
Original  0.182 0.056 0.120 0.004 0.158
Cropped 0.299 0.169 0.237 0.034 0.349
mAPg[0.5: 0.95] mAPy[0.5:0.95] mAPL[0.5:0.95] mAP[0.5: 0.95]
Original  0.013 0.013 NA 0.032
Cropped 0 0.035 0.197 0.088

Table 6.1: Final performances evaluation of the original and cropped image data set
are given in this table.

First, the original image data set was trained, with an image shape size equal to
512x336, then the cropped image data set was trained, with an image size equal
to 600x600, and improvement was observed across all metrics parameters. The
most interesting metric parameters comparison between these two data sets is the
mAP regarding the BB area size. Table 4.3 reveals the BB area size distribution
for both data sets. By cropping images, additionally to increasing the image size,
close to all lesion objects shifts to a higher BB size classification (Table 4.3).
The cropped mAP,; outperforms the original mAPs by almost three times the
performance value. However, the biggest improvement was seen between BB area
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6.1 Cropping

size classification m APy, (original) and mAP;, (cropped), where the performance
value increased more than 15 times, see Table 6.1. These improvements are
not entirely affected by the average BB expansion since removing unimportant
information from images also enhances CNN performances. Original image data
set have no representation of large area size objects, thus the mAP;, score is
not available (NA). The test data set for the cropped images contain only two
small-sized objects. However, the mAPs outputs value 0 because of no correct
predictions (Fy) of the two-small sized objects.

Figure 6.2 and 6.3 shows how the CNN performance evolves while training. Orig-
inal validation data set has no example of large-sized BB, and cropped validation
set has no instance of small-sized BB and is therefore not illustrated in the Figure
6.2.

Color Blue Orange
Test Original Cropped

Table 6.2: Color representation.

maP (small) mAP (large)
tag: DetectionBoxes_Precision/mAP (small) tag: DetectionBoxes_Precision/maP (large)

(a) MAPs. (b) MAPy.

Figure 6.2: MAP[0.5:0.95] for small and large sized objects.

Both data sets have images containing medium-sized BB, in which cropped data
set has a higher number of instances, see Table 4.3. Figure 6.3 shows the m AP,
performance for both original and cropped data sets while training. The cropped
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6.1 Cropping

data set also exceeds mAP performance for medium-sized objects. However, the
median BB area size for the original validation data set has an area size of 1721
and 4740 for the cropped validation data set, which substantially impacts the
performance results. Graphs from Figure 6.2 and 6.3 interpret how objects area
size affect the CNN models performance. Cropped mAP,; and mAP;, outperform
original mAPs and mAP,;, respectively.

maAP (medium)
tag: DetectionBoxes_Precision/maP {mediurm)

Figure 6.3: MAP|[0.5:0.95] of medium (962<area<322) sized BB, evaluated on valida-
tion data set while training. Table 6.2 states color representation

Figure 6.4 and 6.5 illustrates prediction carried out by the trained Faster R-CNN
models. Every image showcase the predicted box (Pg) to the left and the ground
truth box (Gp) to the right.

The model fails to predict any lesion objects in the original image in Figure
6.4a. However, the cropped image in Figure 6.4b correctly classifies the lesion
as insignificant, with an objectness score of 100%, but fails to predict (Pg) the
ground truth (Gp). However, the Pp in Figure 6.4b draw a BB around a dark
area in the ADC image, which is how most of the lesions is fabricate in ADC
images.
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(a) Original images. (b) Cropped images.

Figure 6.4: Figure displays Pp (left) and Gp (right) for both an original and a cropped
image. Both example are of the same patient slice.

For the original image in Figure 6.5a the CNN does not carry out any predictions.
However, the cropped image in Figure 6.5b achieve a correct prediction with an
objectness score of 97% relative to the ground truth locations but fails to classify
the lesion as clinically significant.

(a) Original images (b) Cropped images.

Figure 6.5: Figure displays Pp (left) and G'p (right) for both an original and a cropped
image. Both example are of the same patient slice.
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6.2 Models and Backbones

This section explores different object detection architectures and backbone mod-
ules. The cropped data set was used because it gave a better performance result
than the original image data set, as seen in Section 6.1. Three CNN models
and four backbones were explored, where each of the CNN models has a limited
number of backbones available in the Tensorflow Object Detection API [35].

Faster R-CNN and R-FCN models were trained for 300 000 steps, with a starting
learning rate of 0.0002, that gradually decreased down to 0.00002 (Apendix B),
except for the Faster R-CNN Inception v2 model (gather from Section 6.1) that
trained for 350 000 step with a learning rate of 0.000002 for the last 50 000 steps.
The last 50 000 steps gave no performance improvements and were therefore
omitted from the model/backbone experiments. Table 6.3 shows that Faster R-
CNN outperforms SSD and R-FCN, with every tested backbone. A limitation to
these comparisons is that the ResNet-100 is the only backbone available for all
the architectures.

Backbone  APsignificant[0-5] APrpsignificant|0.5] mAP[0.5] mAP[0.75] mAR[0.5 : 0.95]
Faster R-CNN
Inception v2  0.299 0.169 0.237 0.034 0.349
ResNet-50 0.348 0.127 0.240 0.044 0.341
ResNet-100  0.324 0.114 0.221 0.025 0.282
R-FCN
ResNet-100  0.199 0.138 0.172 0.034 0.361
SSD
Inception v2  0.164 0.090 0.130 0.035 0.163
MobileNet v2 0.177 0.057 0.120 0.045 0.131
ResNet100 v2  0.238 0.137 0.189 0.034 0.298

Table 6.3: Performances parameters from the final evaluation, on different CNN ar-
chitectures and backbones.

Input image size of 300x300 was used when training SSD Inception v2 and Mo-
bileNet v2, since it is the default input size in these models configure files. There
were conducted experiment with increasing input image size of the SSD model
where performance result did not improve and training time increased dramat-
ically. However, the SSD ResNet-100 model has a default input image size of
640x640, which also was utilized in this experiment. The performance for the
SSD ResNet-100 improved compared to the other SSD tests, but the difference
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between the SSD Inception v2 and ResNet-100 experiments indicates that it is
because of the backbone rather than the configured input image size, since the
Faster R-CNN model also improved substantially when training with the ResNet-
100 compared with the Inception v2 backbone.

6.3 Data Augmentation

The previous experiments have utilized the default data augmentation implemen-
tation horizontal flip. This section explores more augmentation technique to help
improve CNN performance, using the most promising architecture and backbone
from Section 6.2; Faster R-CNN ResNet-50. Table 6.5 shows the performance
result and Table 6.4 explains the augmentation technique implementation for its
respective test number. Appendix C shows evaluation performance while train-
ing.

The most promising augmentation methods for the prostate data set was the
combination of horizontal flip, vertical flip, rotation and crop, which produced
APsignificant[0.5] of 0.424 and APpygnificant[0.5] of 0.156 (Test 5). Test 5 used
augmentation techniques from both Test 3 and 4, which improved the network
performance. Brightness and contrast adjustment augmentations produced a neg-
ative impact on CNN performance, as seen for Test 2 in Table 6.4. These pixel
augmentations methods were also applied in Test 6 to see if they could positively
impact CNN performance when combined with horizontal flip, vertical flip, ro-
tation, and crop implementations. Comparing Test 5 and 6 reveals that pixel
augmentation also decreases performance result combined with other promising
augmentation techniques.

Test 1 2 3 4 5 6
Augmentation | Horizontal flip | Horizontal flip | Horizontal flip | Horizontal flip | Horizontal flip | Horizontal flip
Implementations Brightness Vertical flip Crop Vertical flip Vertical flip
Contrast Rotation Rotation Rotation
Crop Crop
Brightness
Contrast

Table 6.4: Test number explanation of the different augmentation experiments.
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APSignificant[0-5] APInsignificant[O's] mAP[0.5] mAP[O.75] mAR[O.5 : 0-95]

Test 1 0.348 0.127 0.240 0.044 0.341
Test 2 0.274 0.091 0.184 0.040 0.328
Test 3 0.414 0.138 0.276 0.056 0.424
Test 4 0.396 0.119 0.260 0.084 0.391
Test 5 0.424 0.156 0.291 0.132 0.457
Test 6 0.371 0.155 0.263 0.031 0.410

Table 6.5: Performances parameters from final evaluation. Table 6.4 explain the
augmentation implementation for the experiments.

6.4 Anatomical Zone

This section evaluates the best performing Faster R-CNN ResNet-50 from Table
6.5 (Test 4), relative to the PCa anatomical zone. The cropped test data set
(used in Section 6.1, 6.2 and 6.3) is split into three data set for the respective
anatomical zone, to evaluate (the already trained) CNN performance of lesions
located in different prostate zones.

Anatomical Zone APg;gnificant[0-5] APrnsignificant(0.5] mAP[0.5] mAP[0.75] mAR[0.5: 0.95]

PZ 0.096 0.089 0.093 0.007 0.372
TZ 0.764 0.302 0.534 0.267 0.548
AFS 0.529 0.077 0.303 0.094 0.437

Table 6.6: Final performance evaluation relative to the anatomical zones.

Table 6.6 shows that CNN performs worst on PCa located in PZ, even though
ADC is the dominant MRI technique to detect PCa in PZ. Because the perfor-
mance result is so different from each other, it is essential to look at BB area
size of the three (split) test data sets. Table 6.7 reveals that the median area
size of the clinically significant lesion is exceptionally low and explains why the
CNN model struggles to detect these lesions. TZ provides the most promising
performance values, obtaining APg;gn;ficant[0.5] of 0.764 and APrnignificant|0-5] of
0.302. The Median BB area size for clinically significant BB is 15484, which is
considerably higher than for the other prostate zones. However, APpy;gmificant|0-5]
for TZ also outperform APp,ignificant[0.5] for PZ, although both have the same
median BB area size. This experiment is an unfair comparison considering the
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number of labelled data, classes and BB area size is unevenly distributed between
the three zones is, as seen in Table 6.7.

Anatomical Zone Insignificant Clinically

Significant
PZ 90 29
Median BB area 6600 5632
TZ 59 15
Median BB area 6600 15484
AFS 43 25
Median BB area 5632 11563

Table 6.7: Number of ground truth labels for the three prostate anatomical zone and
median BB area size, relative to the PCa significance.

Figure 6.6 (PZ), 6.7 (TZ) and 6.8 (AFS) illustrates predictions carried out by the
Faster R-CNN ResNet-50 model, relative to the prostate anatomical zones. Each
sub-figures shows the prediction BB (Pg) to the left and ground truth BB (Gp)
to the right.
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PZ

(c) (d)

Figure 6.6: Prediction from the prostate PZ. Each sub-figures illustrates prediction
to the left and ground truth to the right. Class color: cyan=Clinically Significant,
green—=Insignificant.
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TZ

(c) (d)

Figure 6.7: Prediction from the prostate TZ. Each sub-figures illustrates prediction
to the left and ground truth to the right. Class color: cyan=Clinically Significant,
green=Insignificant.
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AFS

(c) (d)

Figure 6.8: Prediction from the prostate AFS. Each sub-figures illustrates prediction
to the left and ground truth to the right. Class color: cyan=Clinically Significant,
green=Insignificant.

6.5 Classification

Previously, the experiment has classified the prostate data relative to the lesions
significance, producing a two-class classification. The following experiments look
at the CNN performance for data sets that utilize GGG classification, with six
classes, and lesion classification, with a single class. The subsequent classifica-
tion experiments use the Faster R-CNN ResNet-50 model, with the best data
augmentation from Table 6.5 (Test 4), on the cropped data set. Table 6.8 shows
the performance results for the different classification experiments. Appendix D
shows evaluation performance while training and Appendix E illustrates some
predictions carried out from the final evaluation, from the different classification
experiments.
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Significant Classification
APSignificant[0'5] APInsignificant [0.5] mAP[0.5] mAP[0.75] mAR[0.5 : 0.95]
0.424 0.156 0.291 0.132 0.457

Lesion Classification
APpeion[0.5]  mAP[0.5] mAP[0.75] mAR[0.5: 0.95]
0.398 0.398 0.144 0.441

GGG Classification

APNoBiopsy [0.5] APGGGl [0.5] APGGG2 [0.5] Apgggg [0.5] APGGG4 [0.5]
0.102 0.064 0.157 0.193 0.013
APggas[0.5] mAP[0.5] mAP[0.75] mAR[0.5 : 0.95]
0.005 0.090 0.016 0.403

Table 6.8: Final performance evaluation using PCa Significant, lesion and GGG clas-
sification on the Faster R-CNN ResNet-50 model.

Significant Classification

Significant classification has two depending classes, whether the lesion is clinically
significant or insignificant, producing mAP[0.5] equal to 0.291. However, if the
mean average metrics parameters was weighed relative to the number of exam-
ples, the map[0.5] performance value would diminish. Table 6.8 shows that the
insignificant class perform worse than the significant class, even though insignifi-
cant lesions has far more representations in the prostate data set than clinically
significant lesions (Table 4.1).

Lesion Classification

Lesion classification classifies all lesion findings under one single class. CNN
model only has to focus on locating the lesion and can ignore the process of
classifying the lesions aggressiveness. AP0, and mAP[0.5] (both represent
the same performance value in this case) achieve a value of 0.398, see Table
6.5. By combining clinically significant and insignificant lesion data, the number
of training data for one class increases and the model does not need to assign
different classes to the objects, which positively impacts the CNN performance.
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GGG Classification

One interesting experiment is to see how the CNN perform detecting PCa rel-
ative to different GGG classes. Table 4.1 reveals the GGG class distribution.
APgcas[0.5] provides the best AP score (0.193) of all the six classes, and A Pggas[0.5]
achieve the second-best AP (0.157). We already knew that the CNN perform
better with higher precision on clinically significant lesion than insignificant le-
sion, thus it was expected one of the GGG 2-5 produced the best AP. How-
ever, the most surprising findings from GGG classification experiments is that
the APgca4[0.5] and APgges]0.5] produce performance value of 0.013 and 0.005.
Both APnoBiopsy[0.5] and APgce1[0.5] (Insignificant lesions) outperform the two
most aggressive PCa classes (relative to the GGG score). In the total data set of
1281 ground truth labels, GGG 4 and GGG 5 represent 42 and 35 ground truth
labels, which is considerably less than any other GGG classes. Lesions that did
not undergo a biopsy test have the most ground truth examples (784) and out-
perform the two highest-ranking GGG classes, even though the lesion is smaller
(Table 4.4).

60



Chapter 7

Discussion

7.1 Image Pre-Processing

Test result from comparing original and cropped images (6.1) highlights the im-
portance of BB area size for a model to detect objects. Other papers also affirm
the predicament object detection models has on small-sized objects [80, 32].

The cropping implementation removes as much unnecessary image information
as possible and still attaining all lesion in the data set. Removing irrelevant im-
age information allows increasing BB area size by image resizing and procuring a
reasonable computational cost. Expanding the BB area size provides better con-
ditions for the CNN to improve detection performance. Cropping and resizing
parameters is only a proposed solution in such that CNN performance could in-
crease even further by optimizing these parameters. Especially regarding the data
set image size. Because of time limitations, there was not produced experiments
using any larger image size than 600x600.

7.2 Models

The most promising object detection architecture to use on the PCa data set
is the Fast R-CNN model. This model outperforms both the SSD and R-FCN
architectures on the overall performances, especially regarding the clinically sig-
nificant AP. However, there is some information to take into consideration before
comparing these different models. SSD default input image size is default set
to 300x300, and training SSD using bigger input image sizes does not affect the
model performance, while the training time increases dramatically. However,
Tenserflow Object Detection API provide an SSD model using ResNet-100 back-
bone with a default input size set to 640x640, and produce a higher performance
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relative to the MobileNet V2 and Inception V2 modules. The result from different
backbone networks implementations on the Faster R-CNN model indicates that
the SSD ResNet-100 performance improvements are because of the ResNet-100
network rather than the increased input image dimension. The SSD models have
less computational cost and latency than Faster R-CNN and R-FCN, but this
is somewhat irrelevant relative to the user scenario of PCa detection. Detecting
PCa is to be used in hospitals, where computational cost should not be a prob-
lem. Also, the data is to be used on images, not on real-time video. Therefore
the beneficial aspect of using SSD models is not relevant to PCa detection on
MRI images.

Relative to the backbone networks, the ResNet networks produce the best perfor-
mance. ResNet-50 outperform ResNet-100, which could be because of information
loss due to the deeper network ResNet-100 provide. There are limitations when
comparing the backbone modules because there is a limited number of available
examples for the different CNN architectures in the Tensorflow Object Detection
APT [35].

7.3 Augmentation

Applying data augmentation with a random probability improves CNN perfor-
mance by artificially increasing the data set. One of the biggest problem in
machine learning, and for this thesis, is the small amount examples data set.
As mention in section 4.3, to achieve acceptable performance, there should be
around 5000 labelled examples per class. The prostate data set utilizes 1279
labelled object, distributed on 1109 images.

Both contrast and brightness augmentation methods harm CNN performance.
Section 5.4 presents the default augmentation parameters used for training, where
image brightness continuously decreases, and contrast either decrease or increase
when utilized. The results from pixel augmentation on the Prostate data indi-
cate that these hyperparameter values are not the best implementations for a
CNN that already has a problem locating the lesion objects because it minimizes
its appearance relative to its surroundings. Due to time limitations, brightness
and contrast augmentation implementations was discharged after showing inaus-
picious results, but could positively impact CNN performance utilizing different
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delta parameter values. Applying pixel augmentation to decreasing the image
brightness and contrast is probably better used to optimize performance for an
already promising CNN model.

7.4 Anatomical Zones

Study shows DWI/ADC is the optimal technique to detect PCa in PZ, but ADC
also shows promising results detecting PCa in TZ [6, 7|. Section 6.4 reproduce the
final evaluation (from Section 6.3) of the CNN relative to the anatomical zones,
where TZ outperform both PZ and AFS. The classes median BB area size varies
among the three zones, which significantly affects the CNN performance. Both
TZ and AFS has promising performance result for clinically significant lesions.
However, the most promising anatomical zone, PZ, has unfavourable performance
results due to small BB area sizes. In addition, experimentation between the zones
produces a biased comparison due to the uneven distribution of data examples,
class proportion and median BB area size, as seen in Table 6.7.

7.5 Classification

The result from the classification experiments, in Section 6.5, highlights the im-
portance of data examples for each class. It is not easy to pinpoint the optimal
data set magnitude to culminate the best CNN performance for PCa detection.
[an Goodwill book Deep Learning states that there should be at least 5000 ground
truth examples for achieving acceptable performance [30], which significant, le-
sion and GGG classification fails to reach for any of the classes. Utilizing more
classes when training a CNN increases the computational cost, which contributes
to reducing CNN performance. The data set is too small to produce any fair com-
parison or promising results for the carried out experiments, especially regarding

the GGG classification.

One future approach could be first to classify lesion based on significance. If the
CNN model classifies the lesion as clinically significant, a new detection could be
applied for predicting the GGG score.
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7.6 Limitation

This section will discuss some of this thesis limitations.

7.6.1 Data Set Size

The data set contains ground truth for 200 individual patients, with 299 lesion
objects distributed on 1109 two-dimensional slices. There should be at least
5000 labelled ground truth per class to achieve acceptable CNN performance
[30]. However, the data set contains ground truth for 914 insignificant and 367
clinically significant prostate lesions, producing 1281 labelled examples. For su-
pervised learning, this is an insufficient number of instance that limits optimal
CNN performance. This is especially the case for GGG classification, with even
fewer data examples per class, see Table 4.1. Evaluating CNN on the validation
and test data set produces different performance result as a product of a small
imbalanced data set. To improve the networks ability to generalize, the number
of patient and unique lesion objects needs to increase dramatically. However, col-
lecting a substantial volume of biomedical data and labelling the lesion location
and classification is challenging, requiring approval from patients and supervision
from specialists.

The data set also have an unequal classification distribution, culminating in an
inadequate predictive performance representation, especially for the clinically sig-
nificant class that represent only 28.65% of all the labelled examples in contrast
to the insignificant class that obtains 71.35% (Table 4.1).

7.6.2 Data Set Error

This project started using T2W images with a Yolov3 architecture, where the
trained CNN performance result was unsatisfactory, achieving an mAP[0.5] of
under 0.001 [81]. With no prior experience with PCa locations or medical MRI
images, the first impression was that there was something wrong with the ob-
ject detection model rather than the data set. Image pre-processing techniques
such as histogram equalizer, cropping and resizing was implemented with minor
performance improvements.
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In search of better detection performanc