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Abstract 

A Michelson interferometer is a victim to lots of displacement noise that changes over time and 

distorts the measurement making them less accurate. There are some types of estimators for these 

distortions, but they usually claim a lot of computer power and it is therefore a need for investigating 

methods using less computationally dependent filters for these estimates. In this paper an estimation 

method for estimating the unknown parameters of a Homodyne Michelson interferometer system 

using the Extended Kalman filter is suggested.  

A good mathematical model of an interferometer based off Jones calculus is implemented into 

Simulink to design and verify the results of the filter and compared with data obtained with a 

Michelson interferometer learning kit from ThorLabs. 

The designed state space model doesn’t estimate the amplitude and the quadrature error but shows 

good results when taking the final estimated movement of the measured object.  

The mathematical model used in Simulink is well described as well as the state space model used for 

in the Extended Kalman Filter. This paper shows only one approach on how to use the EKF for this 

purpose and there are still improvements to be done on this approach. 

Parallel with this project a bachelor thesis have been written with a more practical approach on how 

to use the interferometer (Nesjø & Kvamme, 2021). 
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1 Introduction 
A Homodyne Michelson interferometer is a measurement device using a polarized laser beam to 

measure changes in distance with extremely high precision. By having a stationary mirror as 

reference and a moving mirror as the changing distance the laser beam is split towards the two 

mirrors that reflect the laser beams back, creating an interference signal. By using a wave plate, we 

can obtain a quadrature signal to get direction of the movement. Change in the interference signal is 

dependent on the movement of the moving mirror and the wavelength of the laser. We know that 

from constructive interference (high amplitude) to destructive interference (low amplitude) the 

moving mirror have moved π radians of the laser’s wavelength. With a known wavelength we can 

therefore calculate the movement of the mirror down to nano meter precision. A typical laser used in 

interferometry is a He-Ne laser with a wavelength at 632.8 nm. In this thesis a laser with a 

wavelength at about 532 nm is used due to expenses. 

Laser interferometry is a widely used measurement method mainly used to measure displacement in 

length. The best-known measurement device using laser interferometry is the LIGO facilities in the 

US. This is used to measure gravitational waves from space by having 4 km long tunnels in each 

direction (LIGO's Interferometer). Laser interferometry is also used in a quite smaller scale such as in 

CNC machines for better precision. 

 

Figure 1: The LIGO facilities LIGO Hanford and LIGO Livingston located in Washington and Louisiana (USA) respectably (LIGO 
Caltech, n.d.) 

One of the bigger issues with an interferometer is the displacement occurring by misalignments and 

natural error in its components. This will cause an output signal that differentiate over time and the 

interferometer needs to be calibrated for keeping its high precision. The commonly used method for 

calibrating an interferometer is the Heydemann method (Heydemann, 1981). Using the least square 

of a data set, the output signal can be batch calibrated, but this will quickly drift and cause problems 

for later measurements and measurements over longer periods. Then a new calibration is needed. It 

is therefore some ongoing research for methods in calibrating the interferometer while doing 

measurements without using a lot of computer power. 

The goal in this thesis is to learn how to us a Michelson interferometer, make a realistic 

mathematical model in Matlab/Simulink and use the simulation model to make an algorithm to 

estimate the displacement issues we can experience using an interferometer. The proposed method 

is using the Extended Kalman Filter. This thesis have been working parallel with a bachelor thesis that 

have a more practical approach to the use of the interferometer (Nesjø & Kvamme, 2021) 

 

 

  



 

9 
 

2 The interferometer 
 

 

Figure 2: A simple block diagram of a Michelson interferometer (Eielsen A. A., 2021). 

The interferometer is built by putting together components with different optical properties to do 

one job. It starts with a laser that sends out a vertically polarised light (x direction) into an isolator 

that rotates the polarisation 45° or  
𝜋

2
  radians. Then the beam is split in two directions with a beam 

splitter (BS). One beam reflects of a reference mirror (stationary) and back to the beam splitter. The 

other beam goes through a waveplate, reflects of a target mirror (movable) and through the 

waveplate again on its way back to the beam splitter. The two beams then combine in the beam 

splitter and this creates interference. The interference signal is then split in a polarized beam splitter 

(PBS) and sent to two separate photo detectors, one measuring the interference signal polarized 

vertically, and the other horizontally. The waveplate is there to create a quadrature interference 

signal to be able to determine direction. 

By splitting the beam and not using two lasers we are sure that the wavelength of the two laser 

beams creating the interference are the same. This is important in creating good interference. 

2.1 Isolator 
The isolator has two main functions, rotating the light 

𝜋

4
 radians and preventing the laser beam to go 

back into the laser to prevent noise. The 
𝜋

4
 rotation of the light is not necessary since the laser itself 

can just be rotated, but it is necessary for an easy set-up of the polarizing filters and waveplate later. 

An optical isolator consists of three parts, an input polarizing filter, a faraday rotator and an output 

polarizing filter. The light is polarized in a vertical orientation, rotated 
𝜋

4
 radians and goes through the 

output polarizing filter oriented in 
𝜋

4
 radians. When some light reflects back at the isolator, the light 
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going the opposite direction will be rotated the same direction and therefore blocked by the input 

polarizing filter since it has now a total rotation of 
𝜋

2
 radians. 

JI(θ)  =
1

2
[

1 −1
−1 1

] [
𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜃)

−𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃)
] [

1 0
0 0

]   ⇒  𝐽𝐼 (−
𝜋

4
) =  

1

2
[√

2 0

√2 0
] 

Equation 1: The Jones matrix for −𝜋/4 rotation of light (right hand), with polarizing filters on input and output 

2.2 Mirrors and Beam splitters 
A mirror is simply a reflecting surface that ideally reflects 100% of the light, and it will at the same 

time mirror the signal. In a Michelson interferometer two mirrors are used, a stationary reference 

mirror and a movable target mirror. The movement of the target mirror will give a phase shift 

relative to the target mirror when the two beams later interfere. 

JRM  = [
−1 0
0 −1

]                   JTM  =  [−𝑒𝑖 𝜃 0
0 −𝑒𝑖 𝜃

] 

Equation 2: Jones matrices for mirrors with and without displacement 

As the name says, the beam splitter splits the beams in two directions. An ideal beam splitter splits 

half of the light in one direction, and the other half in the other direction. The beam splitter is also 

used to create interference when the light beams reflected off the mirrors comes back to the beam 

splitter. The interference signal will also leave in two directions, so the interference signal will ideally 

have half its energy.  

The polarizing beam splitter is a normal beam splitter with polarizing filters, one vertical and one 

horizontal, on its output. This is used to measure the light in the x-axis and y-axis independently. 

JHP  = [
1 0
0 0

]                   JVP  =  [
0 0
0 1

]                  JθP  =  [
𝑐𝑜𝑠2(𝜃) 𝑐𝑜𝑠(𝜃)𝑠𝑖𝑛(𝜃)

𝑐𝑜𝑠(𝜃)𝑠𝑖𝑛(𝜃) 𝑠𝑖𝑛2(𝜃)
] 

Equation 3: Jones matrices for polarizing filter 

2.3 Waveplate 
The waveplate is crucial in determining the direction and length from one measurement to another. 

What the waveplate does is to slow the light (retards) in one axis and fastens it in the perpendicular 

axis. To generate a quadrature signal the waveplate has to have a phase shift of  
λ

8
  since the light will 

pass through the waveplate twice. When light has a quadrature signal from x- to y-axis it is called 

circular polarized light. This gives a total of  
𝜆

4
  phase shift between x- and y-axis. In this case a 

waveplate with vertical fast axis is used (y-axis). 

The WP used in this project operates in the range of 550-750 nm and is therefore not the right fit for 

the 532 nm laser. This will by default not give a circular polarized output signal, but a more elliptical 

output. For this thesis it’s good enough. 
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Equation 4: Representation of 45° polarized light going through a 𝜆 /4 WP giving a right hand circular polarization 
(Loughridge & Abramovitch, 2013) 

 

 

𝐽𝑅
𝑉 (

𝜆

8
) = [𝑒

𝑖
𝜋
8 0

0 𝑒− 𝑖
𝜋
8

] = 𝑒𝑖
𝜋
8 [

1 0

0 𝑒−𝑖 
𝜋
4
] 

Equation 5: The Jones matrix used for a waveplate of λ/8 (Hecht, 2001). 

 

 

2.4 Photo detectors 
A photodetector (PD) is a light receiving diode that transfer the light received into current. The signal 

received is called irradiance and are given by the light intensity over an area (
𝑊

𝑚2). Irradiance is 

mathematically explained in Equation 17 in Model and simulation 4 below.  

The PD are of the type SM1PD1B from ThorLabs and are connected to a transimpedance amplifier 

circuit to convert the current produced into voltage, this circuit will also work as a low pass filter if 

the operational amplifier used isn’t faster than the PD. More about the transimpedance amplifier 

circuit can be read in the bachelor thesis (Nesjø & Kvamme, 2021). 

 

2.5 Interference and fringes 
Interference is a phenomenon occurring when two waves of the same wavelength collide (interfere). 

Depending on the relative phase of the two waves the interference will create constructive 

interference, destructive interference or something in between. Constructive interference happens 

when the two waves are in phase and the amplitude will then double. Destructive interference 

happens when the two waves has a relative phase shift of π radians, and the two waves will zero out 

each other. 
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Figure 3: Constructive and destructive interference 

The interference in an interferometer happens when the two light beams hits the BS and therefore 

the alignments of the beams are crucial for creating a good interference signal. The alignment of the 

beams can be adjusted on the reference mirror. 

Equation 6 gives a mathematical approach to an interference signal in a Michelson interferometer. 

𝐸𝑡𝑜𝑡(𝑡) =
𝐴

4
[𝑐𝑜𝑠(𝑘𝐿𝑟𝑒𝑓 − 𝜔𝑡 + 𝜑) + 𝑐𝑜𝑠(𝑘𝐿𝑚𝑒𝑎𝑠 − 𝜔𝑡 + 𝜑)] 

Equation 6: Interference equation according to Loughridge and Abramovitch (Loughridge & Abramovitch, 2013). A is 

amplitude, 𝜔 is the frequenzy, 𝑘 =
2𝜋

𝜆
, 𝐿𝑟𝑒𝑓  is the length to the reference mirror and back, and 𝐿𝑚𝑒𝑎𝑠 is the same for the 

moving mirror.  
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2.6 The setup 

 

Figure 4: The Michelson Interferometer educational kit and its components from Thorlabs (Thorlabs, n.d.) 

For this thesis an educational kit from Thorlabs (Thorlabs, n.d.) have been used. With it comes all the 

components needed for this setup except an extra photo detector (PD) and the waveplate (WP). The 

waveplate were bought from Union Optic. 

On the output a transimpedance amplifier circuit were connected to convert the current from the 

PD’s to voltage (Nesjø & Kvamme, 2021). 

Since an isolator is too expensive for a simple setup like this, the laser first goes through a polarizing 

filter tilted 45°. The rest of the interferometer is given a little misalignment so that the laser beam 

doesn’t reflect into the laser, which might have given a disturbance or damage the laser. These 

misalignments make the interference harder to align and will be easier misaligned by movement in 

the TM. 

To get test results the TM were fitted on an aluminium rod. The rod was heated up and would then 

expand, causing the TM to move towards the WP. There is also an option to use a TM moved 

manually. This mirror can be seen on the top left in Figure 4. 
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Figure 5: Test results from heating the aluminium rod 

As shown in Figure 5, the output signal from this setup has some displacement from the start and 

this is changing over time. This displacement issue is explained in chapter 4 Model and simulation. 
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3 Methods 
3.1 Jones calculus 
When dealing with polarized light in mathematics Jones calculus is a way of describing it. The 

electromagnetic wave can be described as 

 E⃗⃗   = E0
⃗⃗⃗⃗ ei(k⃗⃗ ⋅r⃗ −wt)    ⇒     [

E0xe
iϕx

E0ye
iϕy

0

] ei(k⃗⃗ ⋅z−wt) 

Equation 7: Electromagnetic wave of light described with Jones vector (Hecht, 2001) 

The last exponential part of Equation 7 describe the direction of the light going in z-direction, and 

we can therefore look at just the x- and y-axis in an simulation given the frequency don’t change. 

For simplification, the frame of reference will change when the direction of the light change 

Then we have the Jones vector as following 

[
𝐸0𝑥𝑒

𝑖𝜙𝑥

𝐸0𝑦𝑒𝑖𝜙𝑦] 

Equation 8: Jones vector 

The E0x is the amplitude in the x-axis (horizontal) and the eiϕx is the phase shift of the x-axis. The 

same goes for y-axis. 

By using Jones vector and matrices a mathematical model can be made in Simulink by multiplying the 

different matrices for the optical component with each other. The Jones matrices for the optical 

components used is given in chapter 2 The interferometer. 

 

3.2 The Heydemann Method 
In an ideal world with no noise or misalignments the two signals detected by the photodetectors will 

make a perfect quadrature signal. Plotting them against each other will then make a perfect circle 

around origin, and taking the arctangent of signal 2 divided by signal 1 will give us the displacement 

angle on the target mirror used in Equation 2. Knowing the wavelength, we can easily calculate the 

movement. 

The world is not ideal, and a Michelson interferometer is a victim for a lot of different noise. This 

noise is typically a not perfect wave plate, laser wave drift, amplitude drift/differences, movement of 

air particles etc. Combined these disturbances will make the circle moves away from the origin and 

become an ellipse, which makes trouble for calculating the movement of the target mirror. 

The Heydemann method (Heydemann, 1981) is a widely used method to calibrate the output signal 

from the interferometer to make a circle around origin. By moving the target mirror and collecting 

data, the least square method can then be used to calibrate the noise, as shown in (Heydemann, 

1981). 
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Figure 6: Measurements taken and then corrected with Heudemann method (Heydemann, 1981). The amplitude and offset 

of the uncorrected data are corrected in this figure for a better presentation 

The Heydemann method uses 4 variables to describe the distorted ellipse. α as the reference signal 

quadrature error, r as the channel gain ratio and for the offset in the two channels, p and q is used 

for 𝑢1 and 𝑢2 respectably. 

Heydemann uses Equation 9 to describe the distorted ellipse  

𝐴𝑢1
𝑑 2 + 𝐵𝑢2

𝑑 2 + 𝐶𝑢1
𝑑𝑢2

𝑑 + 𝐷𝑢1
𝑑 + 𝐸𝑢2

𝑑 = 1 

Equation 9: Least square equation for the distorted ellipse (Heydemann, 1981) 

Using linear algebra, we can find the parameters with Equation 10 

[
 
 
 
 
𝐴
𝐵
𝐶
𝐷
𝐸]

 
 
 
 

= (𝑌𝑇𝑌)−1𝑌𝑇[11 12 ⋯ 1𝑁],     𝑌 = [𝑢1
𝑑 2 𝑢2

𝑑 2 𝑢1
𝑑𝑢2

𝑑 𝑢1
𝑑 𝑢2

𝑑] 

Equation 10: Equation for calculating parameters A-E (Ersbo, 2018) 

The parameters are described in Equation 11 

𝐴 = (𝑅2𝑐𝑜𝑠2𝛼 − 𝑝2 − 𝑟2𝑞2 − 2𝑟𝑝𝑞 𝑠𝑖𝑛𝛼)−1 

𝐵 = 𝐴𝑟2 

𝐶 = 2𝐴𝑟 𝑠𝑖𝑛𝛼 

𝐷 = −2𝐴(𝑝 + 𝑟𝑞 𝑠𝑖𝑛𝛼) 

𝐸 = −2𝐴𝑟(𝑟𝑞 + 𝑝 𝑠𝑖𝑛𝛼) 

Equation 11: Parameters A-E equations (Ersbo, 2018) 

This then gives the parameters r, p, q and α  
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𝑟 = (
𝐵

𝐴
)

1
2

 

𝑝 =
2𝐵𝐷 − 𝐸𝐶

𝐶2 − 4𝐴𝐵
 

𝑞 =
2𝐴𝐸 − 𝐷𝐶

𝐶2 − 4𝐴𝐵
 

𝛼 = 𝑠𝑖𝑛−1 (
−𝐶

√4𝐴𝐵
) 

Equation 12: Parameters r, p, q and α for a distorted ellipse 

With the parameters form Equation 12, the corrected ellipse can be found with 

𝑢1 = 𝑢1
𝑑 − 𝑝 

𝑢2 =
1

𝑐𝑜𝑠𝛼
(𝑢1

𝑑 − 𝑝)𝑠𝑖𝑛𝛼 + 𝑟𝑢2
𝑑 − 𝑞 

 

3.3 Extended Kalman Filter  
Without going too much into detail on how the Extended Kalman filter (EKF) works since this can be 

easily obtained on the web, here is a brief explanation and how Simulink use it. 

As the name indicate the Extended Kalman filter is an extended version of the Kalman Filter (KM). 

The problem with the KM is that it only works on linear systems and linear systems don’t exist in the 

real world (Simon, 2006). The output of the interferometer is highly nonlinear and will change over 

time, therefore it will be difficult to linearise the system and a KM can’t be used. That’s why the EKF 

is more appropriated for this task. 

The EKF works mostly in the same way as the KF. In the linear KF the Jacobian of the state equations 

are in use as the transition function, but in an EKF the transition function is changing and dependent 

on what state the system is in. Therefore, a transition function needs to be specified and a Jacobian 

of this transition function needs to be calculated. 

In Simulink there is an Extended Kalman Filter block that will be used. This uses the discrete-time EKF 

and has the possibility to calculate the Jacobian matrices numerically. In Figure 7 the Extended 

Kalman loop used in Simulink is represented with it’s predict and update equations. 

 

𝑥𝑘+1 = 𝑓𝑘(𝑥𝑘 , 𝑢𝑘, 𝑤𝑘) 

𝑦𝑘 = ℎ𝑘(𝑥𝑘, 𝑣𝑘) 

𝑤𝑘 ~ (0, 𝑄𝑘) 

𝑣𝑘  ~ (0, 𝑅𝑘) 

Equation 13: The system and measurement equations 
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Figure 7: The Extemded Kalman Loop (MathWorks, 2021) 
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4 Model and simulation 
The simulation for this paper is done in Simulink. The mathematics is realised with Jones calculus 

explained in chapter 3.1. The model uses Jones vector to create two cosine waves going the speed of 

light and has a wavelength of 532 nm. Then all the Jones matrices for the components are added as 

Simulink blocks.  

The first essential part is to make a quadrature signal and interference. This is done by multiplying 

the matrices for the components (2) in the right order, from right to left.  

[
𝑣𝑥

𝑣𝑦
] =

1

2
[
−1 0

0 −1
]
1

2
[√

2 0

√2 0
] [

𝐸0𝑥𝑒
𝑖𝜙𝑥

𝐸0𝑦𝑒
𝑖𝜙𝑦] 𝑒𝑖(𝑘 ⋅𝑧−𝑤𝑡)

+
1

2
[𝑒

𝑖
𝜋

8 0

0 𝑒
− 𝑖

𝜋

8

] [−𝑒𝑖 𝜃 0

0 −𝑒𝑖 𝜃] [𝑒
𝑖
𝜋

8 0

0 𝑒
− 𝑖

𝜋

8

]
1

2
[√

2 0

√2 0
] [

𝐸0𝑥𝑒
𝑖𝜙𝑥

𝐸0𝑦𝑒
𝑖𝜙𝑦] 𝑒𝑖(𝑘 ⋅𝑧−𝑤𝑡) 

Equation 14: Interference and quadrature signal realised with Jones calculus. 

The jones vector in Equation 14 will give two components, one in the x-axis and one in the y-axis. The 

z-axis is always the direction the light is going. 

[
𝐸0𝑥𝑒

𝑖𝜙𝑥

𝐸0𝑦𝑒𝑖𝜙𝑦] = [𝑒
𝑖𝜑

0
] = [

1
0
]
𝜑=0

 

Equation 15: Jones vector for polarized light in x direction 

[
𝑣𝑥

𝑣𝑦
] = −

√2

4
∙ ([

1

1
] + [ 𝑒

𝑖(𝜃+
𝜋

4
)

𝑒
𝑖(𝜃 − 

𝜋

4
)
]) 𝑒𝑖(𝑘 ⋅𝑧−𝑤𝑡) 

Equation 16: Interference signal with polarized light as input. This is calculated with Equation 14 and Equation 15. 

The photodetectors are not quick enough to integrate the frequency of the light waves and therefore 

detect the light intensity over a given area. This is called irradiance (
𝑊

𝑚2) and is given by the following 

equation 

𝐼 =
𝑐𝜀0

2
𝐸𝑛𝑒𝑡

2 =
𝑐𝜀0

2
(|�⃗� 1|

2 + |�⃗� 2|
2 + 2�⃗� 1 ∙ �⃗� 2) 

Equation 17: Irradiance with two light components (Nesjø & Kvamme, 2021). Where c = the speed of light and 𝜀0 = vacuum 
permittivity 

Where �⃗� 1 and �⃗� 2 are the electromagnetic field of the light given by Equation 7 

The photodetectors are working as lowpass filters and will keep the DC component. The output 

signal we are left with is 

[
𝑣𝑥

𝑣𝑦
] = −

√2

4
∙ ([

1

1
] + [ 𝑒

𝑖(𝜃+
𝜋

4
)

𝑒
𝑖(𝜃 − 

𝜋

4
)
]) 

Equation 18: Output signal with polarized light as input and no noise.  
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The output signal in Equation 18 has two components, one in the x axis and one in the y axis. The y 

axis lags behind the x axis with 
𝜋

2
  and this gives a quadrature signal on the output with 𝜃 as input. If 

we only look at the real values, the output signal can be written as in Equation 19.  

[
𝑣𝑥

𝑣𝑦
] = [

𝑐𝑜𝑠(𝜃)
𝑠𝑖𝑛(𝜃)

] 

Equation 19: Quadrature signal 

The signal won’t be without noise and misalignments. As explained in 3.2 the noise will distort and 

move around the circle obtained when dividing  vy by vx. Equation 20 shows the quadrature signal 

with added noise. This will make the circle to an ellipse, make it bigger/smaller and move it away 

from origin. 

[
𝑣𝑥

𝑣𝑦
] = [

𝛼𝑥 + 𝛽𝑥 ∙ 𝑐𝑜𝑠(𝑘𝐿) + 𝑒𝑥

𝛼𝑦 + 𝛽𝑦 ∙ 𝑠𝑖𝑛(𝑘𝐿 + 𝑒𝜑) + 𝑒𝑦
] 

Equation 20: Generalization for the quadrature signals (Eielsen A. A., 2018) 

α is the account for any bias, β is the difference in gain, 𝑒𝜑 is the quadrature error often given by a 

not perfect waveplate and the uncertainty of the wavelength, and 𝑒 is the process noise from the 

photo detectors. The constant k is given by 𝑘 =
2𝜋

𝜆
 , where in this paper λ = 532 nm. The 

misalignments 𝛼 and 𝛽 can be added to the model by multiplying and adding on the output signal, 

but for a more realistic simulation there can be added bias in the beam splitters, laser etc., and there 

can added gain blocks that can be represented as loss in reflectance in each component. The 

quadrature error 𝑒𝜑 can be added in the jones matrices for the wave plate in Equation 14 (see 2.3).

  

The discrete time system of the output signal is given the displacement between each measurement. 

∆𝐿 = (𝜂 + 𝐿)1 − (𝜂 + 𝐿)0 

Where L is the phase shift in meters and since the laser beam goes back and forth 𝐿 is double the size 

of the movement of the target mirror. When multiplying 𝑘 and 𝐿 in Equation 20 what we are left 

with is the phase shift 𝜃. This make the measurement discrete and therefore can be used in the EKF 

by Simulink.  
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5 Estimation 
As discussed in 3.2 the interferometer is a victim to a lot of displacement and noise that can change 

over time. In this chapter a method will be proposed for estimating the displacement of the output 

signal of the Michelson interferometer. 

Taking Equation 20 into account we have two output signals 

𝑣1 = 𝛼1 + 𝛽1 ∙ 𝑐𝑜𝑠(𝜃(𝑡)) + 𝑒1 

𝑣2 = 𝛼2 + 𝛽2 ∙ 𝑠𝑖𝑛(𝜃(𝑡) + 𝑒𝜑) + 𝑒2 

The quadrature error (𝑒𝜑) between the two signals is normally due to a not perfect WP or/and drift 

in the laser’s wavelength. This is normally not changing that much over time, so let’s say this is a 

known constant for simplification. This constant is a delay in one of the output signal and can be 

found practically by sampling a movement on the TM over more than one period of the wavelength, 

plotting the two output signals and delaying one of the output so that 𝑣2 lags 
𝜋

2
 behind 𝑣1. We can 

then remove 𝑒𝜑 from the equation and what we are left with is 

𝑣1 = 𝛼1 + 𝛽1 ∙ 𝑐𝑜𝑠(𝜃(𝑡)) + 𝑒1 

𝑣2 = 𝛼2 + 𝛽2 ∙ 𝑠𝑖𝑛(𝜃(𝑡)) + 𝑒2 

Equation 21: Generalized output signal without error in WP 

where 𝑒1 and 𝑒2 is the process noise. The variables we then want to estimate is 𝛼1, 𝛼2, 𝛽1 and 𝛽2. 

These variables are also changing over time, but not very quick. To predict the parameters of a 

system the unknown parameters can be added into an augmented vector as explained by Dan Simon 

in Optimal State Estimation page 422 (Simon, 2006). 

 

5.1 State space model 
The state of the interferometer is the phase shift given from the movement of the target mirror. This 

can be represented with the phase 𝜃(𝑘) and the derivative �̇�(𝑘). The measurements are a cosine 

and a sine output of this phase and we don’t really care about the phase, but only the parameters of 

the output. To make this easier the state of the system is set to 𝑐𝑜𝑠(𝜃(𝑘)) and 𝑠𝑖𝑛(𝜃(𝑘)). The 

derivatives of these states can then be given by each other. The augmented state vector is then 

𝑥𝑘 =

[
 
 
 
 
 
𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6]
 
 
 
 
 

=

[
 
 
 
 
 
𝑐𝑜𝑠(𝜃𝑘)
𝑠𝑖𝑛(𝜃𝑘)

𝛽1

𝛽2

𝛼1

𝛼2 ]
 
 
 
 
 

 

Equation 22: Augmented state vector 

With the measurement equations being as follow 
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𝑣(1)𝑘 = 𝛼1 + 𝛽1 ∙ 𝑐𝑜𝑠(𝜃𝑘) + 𝑣𝑘 = 𝑥3 ∙ 𝑥1 + 𝑥5 

𝑣(2)𝑘 = 𝛼1 + 𝛽1 ∙ 𝑐𝑜𝑠(𝜃𝑘) + 𝑣𝑘 = 𝑥4 ∙ 𝑥2 + 𝑥6 

We get the following measurement matrix 

𝑦𝑘 = [
𝑣1

𝑣2
] = [

𝑥3 ∙ 𝑥1 + 𝑥5

𝑥4 ∙ 𝑥2 + 𝑥6
] + 𝑣𝑘 

Equation 23: Measurement equation 

Then there are the state transition equations for 𝑥1 and 𝑥2. Since �̇�1 = −𝑥2 and �̇�2 = 𝑥1 this will not 

be that complicated. But there is a bias in amplitude that makes these two statements not true. The 

proposed solution for this is shown in Equation 24. 

 

𝑥𝑘+1 =

[
 
 
 
 
 
𝑐𝑜𝑠(𝜃𝑘+1)
𝑠𝑖𝑛(𝜃𝑘+1)

𝛽1

𝛽2

𝛼1

𝛼2 ]
 
 
 
 
 

=

[
 
 
 
 
 
 
 𝑥1 − 𝑥2 ∙

𝑥3 + 𝑥4

2
∙ 𝑘

𝑥2 + 𝑥1 ∙
𝑥3 + 𝑥4

2
∙ 𝑘

𝑥3

𝑥4

𝑥5

𝑥6 ]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 1 −𝑘 ∙

𝑥3 + 𝑥4

2
0 0 0 0

𝑘 ∙
𝑥3 + 𝑥4

2
1 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 
 
 

 

Equation 24: State transition equations and matrix 

The Jacobians is set to be calculated numerically since Simulink has the option to do so. When it 

comes to the covariance matrix this is a diagonal matrix with the covariance rate for each state on its 

diagonal. This is tuned so the rate of change of each state is as desired. A typical covariance matrix 

after tuning is 

Qcov =

[
 
 
 
 
 
0.1 0 0 0 0 0
0 0.1 0 0 0 0
0 0 0.001 0 0 0
0 0 0 0.001 0 0
0 0 0 0 0.0001 0
0 0 0 0 0 0.0001]

 
 
 
 
 

 

Equation 25: Covariance matrix 
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6 Results and discussion 
The result in this thesis is heavily dependent on simulations due to no access to the interferometer at 

the end of the semester. There are some tests done on data from the interferometer, but this is data 

obtained week beforehand and not ‘’live’’ data. These datasets can be imported in Matlab and then 

run it through Simulink which is done in 0 below. These datasets are obtained heating up the 

aluminium rod and doing  

6.1 Simulation 
The simulations are done in Simulink with Jones calculus as explained in 3.1. There has been tested 

several different state space models, but the one explained in 5.1 have shown the best results, this 

could be better since that algorithm only remove the gain bias and don’t compensate for the 

amplitude gain in the two output signals. However, when using the arctangent to get the angle this 

won’t really matter since the angle is the ratio between the two signals and therefore will be the 

same no matter their gain. 

 

Figure 8: Simulated data with noise and estimated data 

As shown in Figure 8 the estimated data will form a circle around origin. The angle we then need to 

calculate for the movement of the TM is given by 𝜑 = atan (
v2

v1
). The moved distance of the mirror is 

then  
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∆L =
𝜑

2𝜋
∙ 𝜆 

Before calculating ∆L an unwrapping must be done to avoid the characteristic spiky stairs the 

arctangent function will make. 

 

Figure 9: Unwrapping of the two output signals (Nesjø & Kvamme, 2021) 

Figure 10 shows that the result of the calculation of ∆L will be the same with just removing the bias 

in amplitude and not placing the estimated data on the unit circle. Figure 10 is the last 100 samples 

of the same simulation in Figure 8 of 1501 samples. This is when the states have stabilized and will 

give a good a result. If we look at the first 250 samples of the same data, it is clearly that the 

estimated data is diffused and need some time to stabilize. This is shown in Figure 11 and can also be 

seen in Figure 8.  

 

Figure 10: Last 100 samples for ∆L of the data in Figure 8, with and without unwrapping 
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Figure 11: First 250 samples for ∆L of the data in Figure 8, with and without unwrapping 

 

The offset in the two signals are well estimated and can be seen in Figure 8 by how the circle is 

placed around origin. The estimated value of 𝛼1 and 𝛼2 will converge to their real values over time 

and this is shown in Figure 13. The same figure also shows that it will be quicker with the right initial 

values where the initial value of 𝛼2 is different from the top and bottom part of the figure. A higher 

covariance value for 𝛼1 and 𝛼2 also makes it quicker, but this will also make the estimate oscillate 

more. That’s why low covariance values are presented in Equation 25: Covariance matrix. 

When it comes to the initial values usually a good guess is using the mean of the state. The mean of 

the displacement states is unknown, but we can make a good guess from what we know. 

The mean of 𝑥1 and 𝑥2 is zero since they should be cosine and sine functions. The mean of 𝛼1 and 𝛼2 

should be more than one since the photodetectors won’t give a negative output, how much more 

than zero depends on the environment the interferometer is placed in. A dark room will here give a 

lower value than a light up room because the photodetectors receive more light from the 

environment. For the mean of 𝛽1 and 𝛽2 this should be one if an amplifier circuit with the right gain 

is used. In this case it will be something different since 𝛽1 and 𝛽2 are only used to estimate the 

amplitude bias. 

𝑥1(0) = E{𝑥1(0)} = 0        𝑥2(0) = E{𝑥2(0)} = 0 

𝑥3(0) = E{𝛽1(0)} = 1        𝑥4(0) = E{𝛽2(0)} = 1 

𝑥5(0) = E{𝛼1(0)} > 0        𝑥6(0) = E{𝛼2(0)} > 0 

Figure 12: Guesses for initial values of the states 
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Figure 13: Different initial values for 𝛼1 and 𝛼2 and how they stabilize over time 

 

  



 

27 
 

6.2 Using actual data 
Using a USB-6001 (National Instruments, n.d.) analog-to-digital converter connected to the 

oscilloscope the signals from the photodetectors can be stored on a computer through Matlab. This 

data is then used in Simulink to do test results. 

The error in the waveplate were removed manually by removing some of the first samples in the sine 

vector because the aluminium rod is moving smoothly and gives sinewaves as outputs. This is not the 

right way to do it in a live setup since the aluminium rod may move at different speed or move back 

and forth. It is done this way only for demonstration purposes for a scenario where the quadrature 

error is removed. The right way would probably be to add a constant to the arcsine of the measured 

signal, but in this case the methods will be the same. 

The actual movement of the rod is unknown, so there is no way of knowing if the measurement is 

correct. Therefore, the EKF algorithm is compared to the Heydemann method (3.2). 

 

Figure 14: Measured data used in this demonstration 

The measured data is shown in Figure 14 and if the initial states were too far off the system will 

diverge. This were pushed to its limits to have a good demonstration of how they will stabilize over 

time. The stabilisation that happens can be easily seen in Figure 15 and Figure 16 on the next page. 

Although Figure 15 don’t look pretty it gives good results in the end. 

As in the simulation the amplitude is not compensated for, but this won’t be a problem when 

unwrapping done in Figure 16. 
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Compared to the Heydemann method (Figure 16) the start is a bit of, but after a while when 

stabilized, the results shows a smoother progress. Assuming that the movement of the aluminium 

rod is not oscillating, the EKF algorithm gives a much better result than the Heydemann method 

when stabilized. The oscillation in the two methods are more easily represented when looking at 

their derivatives. This is done in Figure 17. 

 

 

 

 

Figure 15: The output signals plotted up against each other 
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Figure 16: Estimated movement with both the EKF algorithm and the Heydemann method 

 

Figure 17: The derivatives of the estimated values using EKF and the Heydemann method 

 

6.3 Real-time implementation 
A real-time setup has not been done in this project, but since MathWorks have made it easy to 

generate code from the EKF Simulink block, together with the analog-to-digital converter from 

National Instruments USB-6001 (National Instruments, n.d.), this should be rather easy to do. The 

code can be generated in both C and C++ code.  
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7 Conclusion 
The last years there has been focus on live displacement estimation of interferometric noise. A set of 

different estimation methods has been tested with different outcome. For instance, in Petter Ersbo’s 

master thesis (Ersbo, 2018) the particle filter has been used for estimation. The particle filter needs a 

lot of computer power to operate and therefore an Extended Kalman Filter (EKF) has been used for 

estimation in this paper. 

The Simulink model based on Jones calculus (4 Model and simulation) has been crucial for 

implementing an EKF because using the interferometer takes a lot of time to calibrate and the actual 

values that are measured is unknown. The model made has shown to be a good representation of an 

interferometer in real life. The model itself need some computer power to run the simulations, but 

the EKF block used won’t add any noticeable time to this. 

The state space model used gives both good and bad results and need some improvements. The 

measurements obtained is done by heating up metal which gives a constant movement of the target 

mirror in one direction, and therefore the EKF is designed accordingly. Some other type of 

measurement might cause trouble. There is also some instability in the filter if the initial values are 

too far off or if the covariance matrix is not tuned right. But if this is done right the filter works fine. 

The displacement away from origin is well estimated as shown in Figure 13, but the amplitude gain is 

not. This has been compensated instead to estimate the amplitude bias so that when taking the 

arctangent this don’t really matter. Ideally the amplitude should also be estimated. There is also the 

error in the quadrature signal. This has shown to be hard to estimate but is often not changing much 

and has therefore been assumed as a constant. 

When looking at the final results it seems that the estimation using EKF gives a better and more 

precise estimate than the Heydemann method, this need of course more testing before proven and is 

just an assumption as long as the actual movement of the metal is unknown. There is also always an 

uncertainty in the laser wavelength, which this approach is not able to estimate due to its 

dependency of a known wavelength. To do testing of high accuracy to verify the results in a real-time 

setup, better equipment needs to be used. The laser wavelength is not accurate enough and there is 

no isolator in this setup. The waveplate is also not ideal. 

What this paper do prove is that there is possible by using an EKF to estimate displacement noise on 

a homodyne Michelson interferometer, but it need some more work. 

For future work a better state space model might be obtained and a model with estimates of the 

amplitude gain and the quadrature error. There might be better using the EKF with a state space 

model that has a totally different approach than in this paper and it would be interesting to see what 

approaches could be used. A real-time setup should also be possible to do but might need some 

extra software or equipment. This has not been investigated at the end of the semester due to no 

access to the interferometer. 
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