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Abstract

Thesis assess operators ability to deliver accumulated gas forecasts for 40 fields on the
Norwegian continental shelf (NCS) that received Plan for Plan for Development and
Operations (PDO) approval in the years 2000 to 2020. The analysis is conducted both
with and without including schedule delays. The results indicate that operators forecasts
are heavily influenced by optimism and overconfidence bias resulting in significantly
lower production than forecasted and that was the basis for the investment decisions.
However, this study shows that the forecasts are particularly poor in the early part of
field life and improves toward the end of field lives.
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1Introduction

The discovery of oil and gas in the late 1960´s has had a tremendous influence in the
Norwegian economy. Today the petroleum industry is seen as the most important source
for income in Norway, and they are also a major supplier of both oil and gas to many
countries worldwide.

Important decisions have to be made when considering development/redevelopment
of fields on the NCS. Companies choose a decision criterion, usually the Net present
value (NPV), and then make their decision based on that. Production forecasts are
important because they are necessary inputs to develop the cash flow which, in turn, is
used to calculate the NPV. As Bratvold et al. have discussed, the production forecasts
are often related to revenues. The key decisions here are: (1) whether a field should
be developed, and (2) if the answer to (1) is “yes”, how should the field be developed.
Therefore, the forecast of production in this case is used as an input to calculate NPV.
These key decisions do have a huge impact on saleable gas. Note that, words such as
"forecasted" and "estimated" will from now on be used as synonyms.

When the operators deliver production forecasts for fields on the NCS, the forecasts devi-
ate to some extent compared to the actual production. As a result of that, cost-and-time
overruns occur, which could potentially change the entire scope when considering the
development/redevelopment of fields. Although, the technology used in the petroleum
industry is more robust and reliable today than in the beginning of the recovery, there
is significant gap between the production forecast and the actual production. Being
bias when making decisions, is more common rather than exception in the petroleum
industry. This tendency influences the production forecasts, which again affects the
saleable forecasts for gas.

The research done by Bratvold et al. for fields on the NCS shows that only 31% of
the actual production lies within the forecasted 80% range for the first 4 years after
production start for oil. A well calibrated production forecast is unbiased if 50% and 10%
of actual production are lower than P50 and P10, respectively. Furthermore, the research
shows that the actual productions were 84% and 59% for P50 and P10, respectively.
Using the work done by Bratvold et al. (2020) as a basis, we are going to compare the
forecasts for saleable gas with actual saleable gas, both with and without schedule delay,
and see how the results effect the petroleum industry.
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Fig. 1.1.: Annual mean estimate compared to actual

Fig. 1.2.: Accumulated

Fig. 1.1 shows the estimated mean for saleable gas and actual saleable gas after estimated
sale start from F0Y to F13Y. We can see that the estimated mean exceeds the actual
saleable gas for the F3Y after estimated sale start. From F4Y to F7Y after estimated sale
start, we can see both lines are more or less the same, before the actual saleable gas
exceeds the estimated saleable gas from F8Y to F13Y. In terms of an economic point of
view, we now that NPV have more significance for initial years than later. This is where
TVM plays an important role. The concept states the importance of receiving money
today than later, because of its potential to expand in value over a specific period of
time (Fernando, 2021). Making bad decisions could lead to severe economic loss, and
thus, making them correct for the initial years after estimated sale start, could potentially
affect the future outcome. Fig. 1.2 presents the accumulated mean estimate for saleable
gas and actual saleable gas for 40 fields from Fig. 1.1 we see that the number of fields
are decreasing as we go further to the right on the X-axis.
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Fig. 1.3.: Annual mean estimate compared to actual

Fig. 1.4.: Accumulated

Fig. 1.3 presents the estimated mean for saleable gas and the actual saleable gas after
actual sale start. We see that the estimated mean exceeds the actual up to F4Y after
actual sale start. From F5Y to F8Y after actual sale start, we can see that saleable gas
estimates and actual saleable gas are more or less the same, before the latter exceeds
the first. Finally, for F13Y after actual sale start, we see that both are the same. Ideally,
the wish is to achieve this for the entire period, and not occasionally as it is in Fig. 1.3.
As mentioned in the previous section, the same economic concept, TVM, can be applied
here as well. The intention is to make correct decisions in the beginning, so the economic
outcome does not change drastically due to other circumstances. Fig. 1.4 illustrates the
accumulated mean estimate for saleable gas and the actual saleable gas for 40 fields. As
it was with Fig. 1.2, we see here that the number of fields are decreasing as we move
further to right on the X-axis.
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1.1 Structure

This thesis will be divided into seven chapters. The second chapter will mainly focus on
gas, but at the same time give us some numerical information about oil for fields on the
NCS. Chapter three will elaborate the methods used to forecast, and highlight the major
reasons for forecasting errors in the petroleum industry. Chapter four will present the
raw, RNB dataset, for fields on the NCS, and describe the filtration process of the raw
dataset. This dataset will be compared to another dataset, for actual saleable gas, which
is collected from NPD‘s website. Moreover, the chapter will describe the methods used to
analyse the estimates. In chapter five we will continue with the work done in chapter
four, and portray the data at hand with a metalog distribution. The use of this statistical
distribution will provide us with more insight and trust regarding the dataset. The sixth
chapter will discuss various factors that have lead to the result. Finally, the sixth chapter
will summarize the entire thesis.

4 Chapter 1 Introduction



2Background

2.1 Total production and saleable
Tab. 2.1.: Annual production in Norway (Petroleum, 2021c))

Year Oil Gas Total Unit(109)
1971 0,000357118 0,102949 0,103306118 Sm3

1972 0,00192702 0,52736 0,52928702 Sm3

1973 0,00186952 0,521093 0,52296252 Sm3

1974 0,002014168 0,557954 0,559968168 Sm3

1975 0,010995331 2,978395 2,989390331 Sm3

1976 0,016226786 4,487759 4,503985786 Sm3

1977 0,016223985 6,522085194 6,538309179 Sm3

1978 0,020675394 16,68838485 16,70906024 Sm3

1979 0,023624889 22,83396072 22,85758561 Sm3

1980 0,03068836 28,16767362 28,19836198 Sm3

1981 0,029577985 27,74802632 27,77760431 Sm3

1982 0,030861645 27,75932308 27,79018472 Sm3

1983 0,038237491 29,95207787 29,99031536 Sm3

1984 0,04370886 32,4767166 32,52042546 Sm3

1985 0,047339143 34,19493486 34,242274 Sm3

1986 0,050579351 34,03355167 34,08413102 Sm3

1987 0,058538428 34,61873486 34,67727329 Sm3

1988 0,066881609 36,42326237 36,49014398 Sm3

1989 0,088266436 39,44663695 39,53490339 Sm3

1990 0,096843819 37,18897869 37,28582251 Sm3

1991 0,110513039 39,80626104 39,91677408 Sm3

1992 0,125936236 42,46462826 42,59056449 Sm3

1993 0,133770419 41,5955653 41,72933572 Sm3

1994 0,147673758 45,40345273 45,55112649 Sm3

1995 0,157926268 47,19046907 47,34839534 Sm3

1996 0,177361406 59,45754004 59,63490145 Sm3

1997 0,178388158 70,36492659 70,54331475 Sm3

1998 0,170038687 72,6097401 72,77977878 Sm3

1999 0,17069291 80,25499495 80,42568786 Sm3

2000 0,182125845 90,38480899 90,56693484 Sm3

2001 0,182070749 95,04142895 95,22349969 Sm3

2002 0,17339511 107,5209198 107,694315 Sm3

2003 0,164300546 118,2653753 118,4296758 Sm3

2004 0,161063213 127,7560881 127,9171513 Sm3

2005 0,144776181 130,8071173 130,9518935 Sm3

2006 0,131394 129,852608 129,984002 Sm3

2007 0,119547941 136,5670921 136,6866401 Sm3

2008 0,113269684 141,3618123 141,4750819 Sm3

2009 0,105774732 144,5869873 144,6927621 Sm3

2010 0,096041739 144,9989119 145,0949537 Sm3

2011 0,089666887 139,0185258 139,1081927 Sm3

2012 0,081890627 152,7686886 152,8505793 Sm3

2013 0,079942432 149,1382628 149,2182052 Sm3

2014 0,081996501 154,5678167 154,6498132 Sm3

2015 0,085732212 163,5355354 163,6212677 Sm3

2016 0,08929808 163,2324254 163,3217235 Sm3

2017 0,088367782 166,5007489 166,5891167 Sm3

2018 0,082575421 161,1653946 161,24797 Sm3

2019 0,078792874 152,9691086 153,0479015 Sm3

2020 0,09579667 147,7849847 147,8807813 Sm3
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Tab. 2.1 presents the total production of both oil and gas for each year, from the
beginning of 1971 to 2020. Essentially, Oil, gas, condensate and NGL, make up for the
total production of everything that is produced on NCS. These are excluded from Tab.
2.1, since they do not affect the total production massively. Having said that, we can
see that the oil production is much lower than gas. This table summarizes the total
production of 117 fields on the NCS. Among these only 28 of them are pure gas fields,
while the rest are producing both oil and gas.

Fig. 2.1.: Total gas production for all the fields from its actual production start

Fig. 2.1 shows a graph for gas production since 1971 to 2020, which is extracted the
from Tab. 2.1. The oil production is ignored in this graph, since the numbers are very
small compared to gas. We clearly see the increase in gas production from early 1970‘s
till today, which is a consequence of drilling new fields by utilising new technology,
and experiences from the past. Different type of gases exist in the petroleum industry.
Raw natural gas is combined with different gases. After being separated from oil where
applicable, raw natural gas is treated in a processing plant where it is again separated
into dry gas components and wet gas components. Dry gas is often described as natural
gas, and consists mainly of methane, but also a bit of ethane. Wet gas, or more familiar
as, NGL(Natural Gas Liquids), contains of more heavy gases, such as ethane, propane,
butane and naphtha. Additionally, we have Condensate, which is another form of gas.
(Petroleum, 2021b). In this thesis we are going to work with dry gas because the raw,
RNB dataset, contains forecasts for P10, mean, and P90

6 Chapter 2 Background



The total gas production for all fields from its actual production year is shown in 2.2.
Placing the gas production for all fields at its actual production start year, is called as year
0(F0Y, and shows that 117 fields(red line) were producing a bit less than 40 billion Sm3.
Additionally, placing the gas production for all fields 1 year(F1Y after production start,
shows that 112 fields were producing approximately 130 billion Sm3. A similar approach
does also apply for the remaining years after actual production start as we move to right
along the X-axis. The graph reflects the total gas production, which has an increasing
trend up to F9Y after production start, before it gradually decreases. The plateau-phase
and production shut down for fields are the main reasons for the drop in total gas
production some years after production start. In the start-up phase, the fields usually
produce more gas as the wells are drilled. After that, the fields go into a plateau-phase,
where the production stagnates for some years. For bigger fields the plateau-phase could
even last for more years. Thus, the gas production will not exceed the levels as for the
previous years. As more years pass after production start, the production of gas falls
at a rate of 1% - 10% a year Energies (2015). For instance, fields such as Glitne and
Huldra produce for less than 15 years after their first production start. The decrease in
number of fields as we move further to right can also be explained as a consequence of
plateau-phase and production shut down.

Fig. 2.2.: Overview of total gas production from production start

There are some other fields, which have longer life cycle, and last for many decades
after its actual production start. These are considered as large fields, because they
produce significantly more gas for a longer period of time compared to other fields. For
example, Valhall, Tor, and Ekofisk are large fields that produce for more than 40 years
after production start.
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Tab. 2.2.: Saleable gas and oil (Petroleum, 2021c).

Year Oil Gas Total Unit(109)
1971 0,000357118 0 0,000357118 Sm3

1972 0,00192702 0 0,00192702 Sm3

1973 0,00186952 0 0,00186952 Sm3

1974 0,002014168 0 0,002014168 Sm3

1975 0,010995331 0 0,010995331 Sm3

1976 0,016226786 0 0,016226786 Sm3

1977 0,016642542 2,65490004 2,671542582 Sm3

1978 0,020644427 14,20074539 14,22138982 Sm3

1979 0,022477875 20,6697273 20,69220517 Sm3

1980 0,02822123 25,08831739 25,11653862 Sm3

1981 0,027484518 24,95112376 24,97860827 Sm3

1982 0,028528304 23,96003672 23,98856503 Sm3

1983 0,035645488 23,61257259 23,64821808 Sm3

1984 0,041093054 25,96259385 26,0036869 Sm3

1985 0,044757873 26,18565453 26,2304124 Sm3

1986 0,048771114 26,08970194 26,13847306 Sm3

1987 0,05695912 28,1508869 28,20784602 Sm3

1988 0,064723015 28,32957278 28,39429579 Sm3

1989 0,085983235 28,73773181 28,82371504 Sm3

1990 0,094542214 25,47945013 25,57399234 Sm3

1991 0,108509919 25,02701149 25,13552141 Sm3

1992 0,123999035 25,83366081 25,95765985 Sm3

1993 0,131843463 24,80384705 24,93569051 Sm3

1994 0,14628226 26,84160907 26,98789133 Sm3

1995 0,156775902 27,81360101 27,97037691 Sm3

1996 0,175501338 37,39794219 37,57344353 Sm3

1997 0,175913798 42,94472164 43,12063544 Sm3

1998 0,168743744 44,19456419 44,36330793 Sm3

1999 0,168689715 48,47079094 48,63948066 Sm3

2000 0,181180569 49,79595055 49,97713112 Sm3

2001 0,180884453 54,03648705 54,21737151 Sm3

2002 0,173649116 65,59389542 65,76754453 Sm3

2003 0,165475165 72,95993445 73,12540961 Sm3

2004 0,162777562 79,31076327 79,47354083 Sm3

2005 0,148136741 85,84259622 85,99073296 Sm3

2006 0,136577453 88,66828738 88,80486483 Sm3

2007 0,128281687 90,30972881 90,4380105 Sm3

2008 0,122638443 100,079407 100,2020454 Sm3

2009 0,114969262 104,2460685 104,3610378 Sm3

2010 0,104415394 106,9978573 107,1022726 Sm3

2011 0,097460095 101,2663833 101,3638434 Sm3

2012 0,089200397 114,722961 114,8121614 Sm3

2013 0,084931506 108,7459985 108,83093 Sm3

2014 0,087749391 108,3034077 108,3911571 Sm3

2015 0,090853316 117,0084413 117,0992946 Sm3

2016 0,093933005 116,7666828 116,8606158 Sm3

2017 0,092278261 124,6642073 124,7564856 Sm3

2018 0,086268868 122,203389 122,2896578 Sm3

2019 0,081756209 115,1232454 115,2050016 Sm3

2020 0,098414495 112,3023548 112,4007693 Sm3
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Tab. 2.2 presents the saleable oil and saleable gas from 1971 and 1977, to 2020,
respectively. By comparing this table with Tab. 2.1, we clearly see that the first sale of
gas happened six years after the actual gas production, which was in 1971. By looking at
some of the values for saleable oil and saleable gas for different years compared to Tab.
2.1, we can recognize that most of oil and gas that are produced on the NCS, are being
sold. This is because Norway is seen as an important supplier of oil and gas. Norway´s
production of gas contains up to 3% of world´s demand. Despite the fact that it produces
a small percentage, it plays a significant role as an exporting country. Norway is actually
the third biggest gas exporter, just behind countries such as Russia and Qatar. Gas is an
important energy source in Europe when it comes to heating of homes and cooking. It
is utilized as heat and input factor in industry, and additionally, it is used in gas power
plants to make electricity. 20% - 25% of the total gas usage in countries that are a part of
EU, are delivered by Norway. Almost all gas that is produced in Norway is exported, and
the export value accounts for nearly half of total Norwegian export of goods. Norwegian
gas deliveries contribute to Europe having a stable and reliable gas supply (Petroleum,
2021a). As mentioned earlier, not all gas is being sold. Gas is also used for other purposes.
Among other things, gas is used to generate power in order to drive the fields. For some
fields, the gas is also re-injected into the reservoir. The reinforcement is often used in
production of oil to maintain reservoir pressure and displace oil. This provides efficient
oil recovery, at the same time as the gas is stored for possible recovery later (Petroleum,
2021a).
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Fig. 2.3.: Comparison of actual gas production and saleable gas over the years

Fig. 2.3 presents the total gas production and saleable gas since early 1970‘s. In this
figure we can see when the actual sale of gas happened, compared to actual production
of gas. As it can be seen, the first sale of gas was in year 1977, which was six years after
actual gas production. By looking at the graph, we can also see that most of the gas that
is produced on the NCS is being sold.

Fig. 2.4.: Overview of saleable from its first sale start
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Fig. 2.4 presents the saleable gas for all fields from its actual sale start(F0Y) and
further(up to F43Y). The same logic as with total gas production, which was mentioned
earlier can be applied here as well. In year 0, we see that operators are selling the gas
produced from 96 fields are less than 40 billion Sm3. As we go further to right on the
X-axis, we can see the sale of gas has an increasing trend, and reaches the maximum
F2Y after sale start, before it decreases slowly. Additionally, the number of fields are also
decreasing as we go further to right on the X-axis. Compared to Fig. 2.2, it should be
noted that the operators are selling gas from 96 out of 117 produced fields.

Fig. 2.5.: Total gas production compared to saleable gas from its actual production start

By combining Fig. 2.2 and Fig. 2.4, we get the following graph in Fig. 2.5. The
figure shows the total gas production for all fields from F0Y to F49Y after production
start(blue bar). The saleable gas(orange bar) is compared to actual production start of
gas, i.e. by placing the saleable gas in relation to actual production start of gas. Two
two scenarios will be given to illustrate this. For instance, if two fields, X and Y, started
its actual production og gas in year 1970 and 1980, and produced 18 billion Sm3 each,
respectively, the sum will be represented as blue bar in year 0. With the first scenario, if
field X started its actual sale in 1970, with 14 billion Sm3, and Y started its actual sale in
1980 with 10 billion Sm3, the sum is shown as the orange bar in year 0. With the second
scenario, if field X started its actual sale in 1971, with 12 billion Sm3, and Y started its
actual sale in 1981 with 9 billion Sm3, the sum is shown as the orange bar in year 1.
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3Production forecasts in the gas
industry

In Norway a Plan for PDO requires probabilistic production forecasts. These can be used
a basis for making cash flow predictions, and also as metrics for value-and-decision for
NPV and Internal rate of return (IRR). Additionally, the pros and cons of approving a
field will be weighed up in terms of uncertainty and economical point of view. The work
in this thesis, uses the accumulated probabilistic forecasts for saleable gas made at the
time of final investment decision (FID). These will be compared to actual accumulated
saleable gas, to investigate whether the forecasts are optimistic, overconfident, both, or
neither. According to the guidelines of NPD at the time of FID, the operators should
deliver forecasts, such as annual mean, and P10/P90 percentiles for all fields on NCS
that are developed (Bratvold et al., 2020). To avoid disasters such as, too much costs
compared to revenues, excessive time usage, and delays, perfectly calibrated unbiased
forecasts have to be made. In the paper of Bratvold et al., Nandurdikar and Wallace
explained that production shortfalls are common, rather than exception.

Next sections will present more insights about the forecasts delivered by the operators.
The tools used in the process of generating these percentiles will be explained. Several
psychological factors play a huge role when taking decisive investment decision. The
common physiological assessment errors regarding forecasts will also be presented since
these are very common in the petroleum industry. Finally, the forecasts will be examined
in relation to NPD‘s guideline will be explained. The comparison of probabilistic forecasts
from the raw, RNB dataset, with the actual saleable gas will tell us whether the operators
forecasts meet the NPD‘s guidelines.
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3.1 Estimating future gas production

In a perfect world, the actual production should match the forecasted production. How-
ever, this is not the case in the petroleum industry. According to Nandurdikar et al., their
analysis shows that the production performance has not improved drastically over the
years, despite the improvement of technology, and experiences in the past. This negative
trend is often referred to optimistic subsurface assumptions, deficiency in processes, and
lack of responsibility when it comes to actual production volumes. Having said that,
different approaches with advanced computer models are applied to forecast. Having an
understanding and information about geological and physical properties of a gas field,
will aid the technology through quantitative ideas to develop a field. For the development
of a gas field, a reservoir model and a model of a field development process are used as
quantitative ideas. Complex mathematical expressions and relationships are used for
models and processes when extracting gas from a certain field. The calculations are done
through modern computer and computational attainment, which make it possible to
illustrate different properties and layers. When utilising modern computer, the expansion
of geological, geophysical and hydrodynamic possibilities will be examined. Thus, it
will be necessary to build a field development model, based on high level of knowledge
about the phenomena dealing with and the requirements that are acceptable (GasWiki,
2021).

Highly developed simulators are utilised in the reservoirs. The common FD simulation
is dependent of three physical theories about: conservation of mass, isothermal fluid
phase behavior, and the Darcy approximation of fluid flow through porous media. Var-
ious techniques are often utilised in modern simulators. FD simulation provides 3D
representations in either full-field or single-well models. Natural fracture simulation is
another technique, which has an exceptional feature, and models hydrocarbons in com-
pact matrix blocks. The flow comes from compact matrix blocks to a higher permeable
fracture network that binds the blocks and the wells. A compositional reservoir simulator
measures the PVT properties of gas and oil phases. The aim is to dynamically record
the movement of both phases and components in fields. This is done at the expense of
expanded cost in terms of setup time, compute time, and computer memory (GasWiki,
2021).
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3.1.1 PDO

PDO is a document delivered by the operators before a field is approved for production.
This document must fulfil some specific guidelines, which address points that must be
included in the assessment. In drilling and well activity, the points below should be
included in the document (of Petroleum & Energy, 2018):

• Purpose and schedule for the planned drilling and well activities

• References to relevant governing documentation for the respective activities

• Overview of deviation in relation to regulatory requirements and internal proce-
dures/requirements

• Description of the planned drilling and well activities, with associated use of
downhole equipment, surface equipment and safety valves

• Well sketch with clear indication of barriers in connection with drilling and well
activities and technical solutions for completion and permanent plugback of the
well

• Summary of potential technical and operational problems that can occur during
the activities, identified risk, as well as precautions planned in this connection

• Geological forecasts and information of significance for the activities

• Account of any planned use of oil-based drilling fluid

• Plan for disposal of drilling cuttings

The PDO takes into account the development of a petroleum occurrences, and the
importance of the planned development measures. This must again be approved by the
Ministry of Petroleum and Energy (MPE). The decisions are based on quantitative- and
qualitative assessments (of Petroleum & Energy, 2018).
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3.1.2 Uncertainty

Predicting numerical values of an event in the future could be a hard task, since it
is connected to uncertainty. This is also the case in the petroleum industry, where
several known factors, and sometimes, even unknown factors are involved. Forecasts
for gas in the petroleum industry are generated with different degree of uncertainty.
Below, a general structure for different phases of forecasting in the petroleum industry is
illustrated:

Fig. 3.1.: A flow chart diagram used for quantification of forecasting uncertainty
(Floris et al., 2001)
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The development of reservoirs is dependent of production forecasts from the historical
values of an identical reservoir model (Floris et al., 2001). In uncertainty analysis
within production forecasting, finding low-, best- and high productions forecasts are
common. These forecasts can be generated with either probabilistic and deterministic
methods (PetroWiki, 2021). These methods differ from each other in the way they
deal with uncertainty as input parameters when constructing a model. A deterministic
approach ignores fluctuation in the input parameters with time, and rather concentrates
on estimating probabilities of different outcomes if possible. A decision tree is used for
forecasts in a deterministic model. On the other hand, a probabilistic method accepts that
a estimate can’t be 100% precise, and illustrates possible values as a function of statistical
distributions. Monte Carlo simulation is a familiar tool that is used for probabilistic
models (Siddiqui et al., 2007).

When analysing uncertainties, establishing a way to distinguish complex forecasts into
static or dynamic components can be helpful when calibrating them individually. However,
controllable, and operational uncertainties could be important in the later stages, and
thus, these must be available for further uncertainty analysis or decision analysis. Having
said so, the procedure to quantify each uncertainty is not always so simple. Categorizing
each individual uncertainties into components, e.g. measurement or model, and looking
into portfolio and sample-bias can be supportive when constructing a range of values for
each uncertainty. However, uncertainties related to geological aspect could be problematic
to work with as continuous variables. Therefore, discrete models for geological aspect
have to be established to present the range of possibilities. Likelihoods have to be
assigned to each model when integrating continuous parameters and generating outcome
distributions. An advantage with a discrete model is that values are based on a scenario
which are consistent and reliable, rather than working with independent geological-
parameter values that are meaningless. Having said that, frequent verification of the
available data set is important. This is because many studies indicate that people often
anchor on their gut-feeling, and therefore miscalculate uncertainties due to lack of
frequent verification of the available data set. Thus, having any quantitative data is key
when establishing and validating uncertainty interval (PetroWiki, 2021).
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It is important to establish distributions for each uncertainty as well. Adapted probability
distributions are well-behaved and easier to establish. By well-behaved, we mean that
the distributions are bounded, and easier to establish, where the distributions are either
uniform or triangular. Generally, establishing range of values has more impact on
forecasts than the specific distribution shape. Thus, the correlation among uncertainties
should be examined (PetroWiki, 2021). As mentioned in the previous section, Monte
Carlo Simulation is a useful tool when generating production forecasts. The tool helps to
generate output percentiles, such as P10, P50 and P90, which we will look at soon.

Lot of researches and experiments have been done regard to uncertainty reduction over
the past decades. Despite that, the are concerns regarding the production forecasts today.
The word uncertainty was unheard of at around mid-1980‘s, when one of the authors
worked on production forecasts on the NCS (Bratvold et al., 2020). Fig. 3.2 shows
statistics of papers published in relation to probabilistic production forecasts.

Fig. 3.2.: Increase in number of papers regarding probabilistic production forecasting from
1995-2017 (Bratvold et al., 2020)

The question to be asked is, whether the operators learn from their flaws in the past.
Despite the increase of number of paper published in relation to production forecasts,
over a time span of 22 years, from 1995-2017, the petroleum industry is still struggling
with the deviation between the forecasted production values and the actual production
values. In fact, from the researches of Bratvold et al., the number of papers in relation to
probabilistic production forecasting has increased by more than 600% in that period.
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3.1.3 P10, P50 and P90

There are clear guidelines from NPD on how to interpret percentiles such as P10, P50,
and P90. Below, the guidelines on how to interpret probabilistic forecasts are given:

Tab. 3.1.: Definitions for the estimates according to NPD´s guidelines Petroleum (2020)

Tab. 3.1 presents the explanations regarding uncertainty from NPD. It should be noted
that, in this thesis the low estimate is referred to P10, and the high estimate is referred to
P90. The points mentioned below tell how the percentiles are interpreted in this thesis:

• P10: There is at least 10% probability that the actual value is less or equal to the
low estimate

• P90: There is at least 90% probability that the actual value is less or equal to the
high estimate

• P50: There is at least 50% probability that the actual value is less or equal to the
best estimate
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3.2 Reasons for forecast errors

This section will address the common psychological factors involved in decision-making.
Ideally, the forecasts have to be unbiased. This is not the case in the petroleum industry
in Norway which is heavily influenced by biased decisions. Nandurdikar and Wallace
explain that production shortfalls are a habit rather than exceptions based on historical
experiences (Bratvold et al., 2020). According to Flyvbjerg, bad luck, deception and
delusion are the main reasons for forecasting errors. This section will elaborate on these
three key words.

3.2.1 Bad luck

Bad luck is referred to poor or unexpected results by the management. Although,
unexpected events could happen, very often, a poor outcome is a result of several
psychological aspects involved. Diversity of scope changes, complexity in reservoirs,
accidental geological features can be regarded as bad luck during a project (Flyvbjerg
et al., 2009). Black swan is a term related to unforeseen outcome and is connected to
bad luck. This concept has got much attention when it comes to risk and safety over the
years. According to Aven, black swan is seen as surprisingly extreme event relative to
one´s belief/knowledge. According to him, there are mainly three types of black swan
events (Aven, 2015):

• Events that were completely unknown to the scientific environment (unknown
unknowns)

• Events not on the list of known events from the perspective of those who carried
out a risk analysis, but known to others (unknown knowns – unknown events to
some, known to others)

• Events on the list of known events in the risk analysis but judged to have negligible
probability of occurrence, and thus not believed to occur

In the petroleum industry, if a poor outcome is a consequence of bad weather, this cannot
be referred to as bad luck. The management should know better about the weather
condition, and find possible solutions to avoid poor outcome. Referring to bad weather is
acceptable once. However, if it happens many times, it is because of poor assessment
and bad decision-making by the risk analyst.
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3.2.2 Deception

Deception is used to explain the flaws behind a decision-making. These flaws are mainly
connected to political and agency related decision-makings in megaprojects. Often, these
flaws come as a consequence of a strategic misinterpretation and biased decision-making
in first place, where a benefit can be gained. This is where the principal-agent problem
occurs, where the agents act on their behalf by carrying out tasks. They make sure
that their advantages are increased for their projects, and not for their competitors. For
instance, projects with huge investments do usually have multiple tiers which are exposed
to P-A issues between every two levels of a management (Flyvbjerg et al., 2009).

Fig. 3.3.: Overview of three P-A tiers for a megaproject (Flyvbjerg et al., 2009)

Fig. 3.3 shows a typical principal agent system. In the different parts of this P-A system,
benefits are achieved through strategic misinterpretation of tempting incentives and other
attractive options. The first tier shows the relationship between the taxpayers(principal)
and the state government(agent). These two can have different views in relation to their
interests. For instance, the government could prefer to act according to their interest,
which could possibly be that the projects are developed within the acceptable amount of
CO2 emissions. On the other hand, taxpayers would most likely increase their benefits
by lowering the cost and risk, and get it done within their wished timeline (Flyvbjerg et
al., 2009).
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In the second tier, a disagreement could occur between the operator and the government.
As the operators are preparing for the PDO and have the knowledge and insight about
a megaproject, they could play with the numbers and other relevant details so that
they can gain benefits, and highlight it more, despite the risk and costs associated with
that project. On the other hand, this does not necessarily fulfill the criterion from the
government´s side. A conflict like this could potentially influence the final results, as
these are not resolved at the initial stages. Although, tiers could drastically change from
their plan in the beginning, these are still needed for megaprojects in order to complete
them properly (Flyvbjerg et al., 2009).

3.2.3 Delusion

Delusion is another forecasting flaw due to psychological dominance in the decision-
making. The decision makers are more attracted to the potential of a project in the
future, rather than weighing it up against realistic benefits, losses, risk and probability.
This is often related to delusional optimism, where they put ideas of future success ahead
of realistic hurdles, when it comes to mistakes and miscalculations. By looking back at
these errors, one can understand that these biases are a consequence of taking an inside
view in forecasting. Instead of assessing the project as a whole, and plan for a long-term,
the decision makers have the tendency to overestimate and put their attention on specific
issues which they consider as unique to find a solution in the short-term (Flyvbjerg
et al., 2009). According to Kahneman and tversky, this what they call the planning
fallacy and optimism bias, where the mindset of the decision makers is to underestimate
cost overruns, scheduled time, and production compared to their assumptions in the
beginning. Overoptimism is related to cognitive bias, and is about the way they interpret
information. This can be reduced by consulting other colleagues within the organization
to see how many of them are supportive to a decision-making, which at worst could lead
to poor investments and waste of time (Flyvbjerg, 2007). Taking a rather an outside
view of the potential issues may help to reduce the effects of delusional decision makings
(Flyvbjerg et al., 2009). Having said that, delusional bias forecasts can be categorized
into four subcategories, which are related to projects within petroleum industry. These
are information availability, anchoring, overconfidence, and trust heuristics.
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3.2.4 Information availability

As Bratvold et al. have discussed, the issue in relation to decision-making occurs due
to lack of ability from human beings to gather and understand new information. Un-
derstanding information is an important building block for making decisions, and the
availability of information could possibly lead to cognitive bias. Having said that, the
quality of information is also an important factor to consider. Very often, personal expe-
riences and insights about uncertainty, and preferences can be a hurdle and deluding.
Decision makers tend to use their experiences from different settings and situations, and
through the influence of media, in a project which could possibly end up as a disaster.
Therefore, having an understanding about their limitations of understanding information
is vital. This is important when several variables must be included in the decision-making
process, which they forget at the beginning of a project. As Bratvold et al. have discussed,
decision makers tend to take the so-called "shortcuts" that give them false expectations
and poor intelligence. By nature, they tend to believe in the first available information
and accept statistics or paragraphs of text. Good results and experiences from a previous
project can overshadow the real circumstances of a new project, and make the decision
maker feel confident. The new project may possibly differ from the previous one in terms
of foundation, scope and risk.

3.2.5 Anchoring

Anchoring occurs when the decision maker takes an inside view of a project, which
leads to optimistic forecasts (Flyvbjerg et al., 2009). This happens when decision maker
relies too much on base estimates they have at hand, independent of its importance and
the wide range of uncertainty. Although they know that their estimates are too high or
too low, they still lack the ability to be closer to the real value. This is a very common
tendency among the employees in the oil and gas industry. Experts with high knowledge
and expertise are less prone to anchoring than a non-expert in a similar area (Welsh et
al., 2005).
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3.2.6 Overconfidence

Overconfidence is probably the most familiar cognitive bias among employees in the
oil and gas industry (Welsh et al., 2005). Very strangely so, this tendency exists in the
nature of human beings, since they prefer to go for favourable choices in relation to
their knowledge and intellectual abilities. This tendency makes them overestimate their
knowledge and intellectual abilities (Bratvold et al., 2002). The most concerning part,
is that people who are respected and appreciated for their knowledge and accurate
thinking often fall in the category of being overconfident. In the oil and gas industry a
80% confidence interval is constructed to explain estimates of geological variables in the
reservoir. The actual value for the fields should be 80%. However, based on the data for
the fields, on average the actual value is less than 50% (Welsh et al., 2007).

Fig. 3.4.: Overview of the result of overconfidence on NPV in a project (Welsh et al., 2007)

Fig. 3.4 reflects the economic result of being overconfident. The mean NPV for 10 000
iteration from a simulation of a project is shown for different levels of overconfidence.
It can be seen that the EV and the reserves for a project remain the same. However,
the simulation for NPV does not match the levels of EV as we move further to right on
the X-axis. Even at 0% the NPV is only $246 million compared to EV, which is $346
million. This can be explained due to the results arising from the complexity of the model.
Moreover, the decline of NPV is very clear as the percentage of overconfidence increases
along the X-axis. In fact, at 5% overconfidence the NPV reaches to $224 million. Even
Further, at 30% overconfidence the project gets a negative NPV of $-10 million. As a
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consequence this, the expert who is 30% overconfidence would conclude that the NPV of
the project is $246 million, while the actual NPV would reach $-10 (Welsh et al., 2007).
In conclusion, the effect of overconfidence could possibly lead to severe economic loss.
Thus, it is vital to reduce the degree of overconfidence in relation to one´s knowledge
and intellectual ability, by accepting what they know, and strive to understand what they
do not know about.

3.2.7 Trust heuristics

Trust heuristics is also a cognitive bias, which is familiar in the oil and gas industry. This
works slightly in a different way, since this diminishes the approaches to avoid becoming
overconfidence. In the petroleum and gas industry, the trust heuristic can be explained
as a trend where the managers rely on the judgements of specific individual(s) without
giving a chance, listening or discussing with other colleagues in the same team/group.
One can argue that the trust of managers on certain individuals should be based on their
exceptional work. Even then, one can argue that listening to multiple ideas and different
standpoints can enhance the trust, rather than trusting the work of a certain individual
or a group (Welsh et al., 2007).

Fig. 3.5.: Opinions from single expert VS multiple experts (Welsh et al., 2007)
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Fig. 3.5 presents a scenario, where the information of several experts are compared one
trusted expert. The figure shows the opinions of five experts by presenting a triangular
probability density functions (PDFs) for an uncertain input parameter value of an area.
The lines indicate the experts competence to reflect the differences in accuracy compared
to each other. The managers rely on the red line(trusted) in this case. The premise is that
the most central of the experts judgements are concrete, and as a consequence of that,
the managers are determined to trust them. Comparing the "trusted" distribution to the
composite distribution of the five experts, we can see that the "trusted" distribution(red
line) is more compressed than the composite distribution(blue line). It tells that the
experts are quite careless when estimating the possible range of an uncertain parameter
value of an area. On the other hand, if the managers focus on the wider composite
distribution(blue line), by putting more trust on to them, they are more credible to
present more accurate information (Welsh et al., 2007).

Fig. 3.6.: Graph on the reduction of overconfidence by numbers of experts and level of
agreement (Welsh et al., 2007)

Fig. 3.6 presents a model from Welsh et al., which illustrates trust heuristics regarding
overconfidence. Their model considers two to ten experts for both high and low degree
of agreement, and presents the mean results after doing 10 000 iterations. It can be
seen from the model that, addition of a single expert equals of reducing overconfidence
up to 5% when the agreement is high and nearly 10% when the agreement is low.
Increasing the number of experts to ten diminishes overconfidence in the trusted expert´s
distribution to 14% for high agreement and approximately 23% for low agreement
(Welsh et al., 2007).
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In terms of an economic point of view, one can see the results of trust heuristic by
comparing both figures above. Considering the case with overconfidence, from Fig. 3.4,
a 5% shift in overconfidence could correspond to huge error in the calculation for the
NPV of a project between $22 and $75 million. This depends on the expert´s degree of
overconfident to start with. In conclusion, although this sections does not cover the whole
story regarding issues in the oil and gas industry, the numbers clearly show that they
still have a lot of work to do. They should be much better at utilising their knowledge
and consider opinions from different experts within their field of expertise (Welsh et al.,
2007).

3.3 Perfectly calibrated forecasts

Historical data for actual outcomes and forecasts are needed to evaluate the performance
of the operators ability to deliver unbiased forecasts. These are essential to enhance
bad outcomes from the past into positive outcomes in the future. To do so, a statistical
distribution can be utilized. The main work in this thesis is to investigate whether the
operators provide well-calibrated forecasts for the development of fields on the NCS.
To investigate that, the operators production forecasts will be compared to unbiased
forecasts. The conditions below have to be fulfilled for the production forecasts delivered
by the operators to be classified as well-calibrated forecasts (Bratvold et al., 2020):

1. The range of actual production outcomes falls within the range of predicted pro-
duction outcomes. However, if too many actual production outcomes fall outside
the range of predicted possible outcomes, the forecasters are overconfident. For the
production forecasting context evaluated in this paper, approximately 80% of the
actual production outcomes should be within the forecasted P10/P90 range.

2. The average of the forecasted production rates should be close to the average of
the actual production rates. If this is not the case, the forecaster is either optimistic
or pessimistic
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Fig. 3.7.: Forecasted and actual outcome for produced volume (Bratvold et al., 2020)

The production forecasts are heavily influenced by optimism and overconfidence. To
illustrate that, Fig. 3.7 shows a case of these biases with random data for produced
volume over a certain period of time (Bratvold et al., 2020). The forecaster´s degree of
optimism and overconfidence is illustrated by Fig. 3.7, which shows the mean produced
volume for a limited amount of fields. The means of both forecasted and actual outcomes
are plotted, respectively as blue and orange. We see the forecasted range is smaller
compared to the actual outcomes, which deviates from the 1.st criteria for the well-
calibrated condition above, and indicates that the forecaster is overconfident. Moreover,
the forecasted mean is clearly greater than the mean of actual outcomes, which deviates
from the 2.nd criteria for the well-calibrated condition above, and proves that the
forecaster is optimistic (Bratvold et al., 2020). A scatterplot can be used to compare
the forecasts with the actual outcomes. How well the forecasts are can be assessed by
Fig. 3.8 using random data. The figure shows forecasts for P10, P50, and P90. Ideally,
the P50(blue dots) forecasts have to lie between the P10:P90(error bars) forecasts for
80% confidence interval. The Y-axis shows the actual results, and the X-axis shows the
estimates. To investigate whether the forecasts are unbiased the following conditions
below have to be fulfilled (Bratvold et al., 2020):
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1. Approximately 50% of the P50-markers are to the left and to the right of the
45-degree line(red line)

2. Approximately 80% of the P10:P90 confidence intervals would contain the associ-
ated actual value, i.e. touch the red line. If not the forecaster is either optimistic or
pessimistic

Fig. 3.8.: Ideal scenario

If the percentiles do not touch the 45-degree line at all, it will indicate a high degree
of overconfidence by the operators. With synthetic data from Fig. 3.8 we can see that
all the percentiles are touching the red line, which is a good sign. If the P50(blue dots)
fall below the 45-degree line, this will indicate optimism by the operators. On the other
hand, if the P50 fall above the 45-degree line, it will indicate pessimism (Bratvold et al.,
2020). Note that the axis titles for Y-axis and X-axis state "Estimated saleable gas" and
"Actual saleable gas", respectively. Although we have portrayed the situations for the
forecasted and actual outcomes for produced volume, the criteria and the figure also
apply for saleable gas.
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4Dataset

This chapter will inspect the data for actual saleable gas, and the raw Revised National
Budget (RNB) data for estimated saleable gas that are provided by Norwegian Petroleum
Directorate (NPD) for all the fields that have got PDO approval since year 2000. More
specifically, the actual accumulated saleable gas will be compared to accumulated fore-
casts for saleable gas. Two methods are utilised to compared them. With the first
approach, the actual data is normalised to estimated data, and delay will not be consid-
ered. With the second approach, the estimated data will be time shifted, and compared
to actual data, which will consider delay. Data for actual saleable gas can be collected
from the NPD’s website. On the other hand, the saleable gas estimates provided by the
operators at the time of final investment decision (FID) are given through a confiden-
tiality agreement with Norwegian Petroleum Directorate (NPD). Thus, any field name
or specific data values due to agreement on confidentiality, will not be mentioned in
this thesis. In case a field and its associated information is mentioned, this is due to the
public availability. Furthermore, occasionally for some graphs, values on the Y-axis will
be hidden in case they are transparent and reveal information about certain field(s). In
this thesis, we are going to focus on First zero year (F0Y) to First thirteen years (F13Y) of
saleable gas. The coming sections will describe the obtained raw RNB dataset from NPD.
This chapter will mainly focus on the process of filtering out the inconsistent estimates,
and follow up with the two methods used to analyse these estimates.

4.1 Description of the dataset

As mentioned in the previous paragraph, the dataset contains confidential information at
a field level for both saleable dry gas and saleable oil on the NCS provided by Norwegian
Petroleum Directorate (NPD). The dataset consists of 292 852 rows with information
about oil and dry gas. In the dataset, we can find field names, the different estimates,
i.e P10, mean, and P10, forecast start years for fields, updated forecasts, and so on.
Additionally, there are in total 113 fields, which contain both annual- and accumulated
estimates. The unit for dry gas and oil are in billion and million Sm3, respectively. If we
separate them, we can find 109 fields with 192 299 estimates(annual and accumulated)
for saleable oil. On the other, there are 105 fields with 100 553 estimates(annual and
accumulated) for saleable dry gas.
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4.1.1 Filtration process of the dataset

As the main purpose of this thesis is to focus on saleable dry gas, we will from now
on exclude everything that has to do with saleable oil, and solely focus on dry gas.
Separating the 100 553 estimates(annual and accumulated) leave us with 40 751 an-
nual estimates and 100 fields. We have 59 802 accumulated estimates and 98 fields.
Initially, the operators provided reports for both annual- and accumulated estimates.
The annual estimates are supposed to describe the yearly uncertainty in geology, while
the accumulated estimates are supposed to include uncertainties related to operational
issues. However, since 2016 the operators only reported the annual estimates as they
recommended these over the accumulated estimates. The main reason for this is because
the annual estimates are more representative forecasts by the companies.

In this thesis we are going to work with the accumulated estimates due to a larger portion
of data points at hand. These will provide us better interpretation of the results, rather
than using the annual estimates. Thus, excluding the annual estimates give us 59 802
accumulated estimates and 98 fields. As mentioned earlier, we are going to work with
fields that have got PDO approval since year 2000 and later. The next step is to extract
the accumulated estimates for each field from its PDO approval year. Doing so, reduces
the dataset significantly to 13 505 estimates and 50 fields. Moreover, we have to collect
the accumulated estimates given at PDO approval year, and exclude the other updated
accumulated estimates that are given after PDO approved year. This provides us with
1072 accumulated estimates and 40 fields, where 345, 364, 363, are for P10, base and
P90, respectively. The next step in the filtration process is to remove the estimates which
are inconsistent. Additionally, some of the fields and its associated estimates will be
removed, if these are not selling gas. Estimates are inconsistent if at least one of these
cases occur:

• A field must have three estimates, i.e. P10, mean, and P90 for a specific year
to be considered as consistent. If not, the fields and its associated estimates are
inconsistent, and cannot be included in our analysis.

• The three accumulated estimates, i.e. P10, mean, and P19, for a field at a specific
year have to be unique and in ascending order. If not, the fields and its associated
estimates are inconsistent, and cannot be included in our analysis.

After filtering the dataset according to these conditions, we will have 801 estimates and
36 unique fields. Since we have 36 unique fields with unique estimates in ascending
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order for P10, mean, and P90, the next step is to compare these to the actual saleable
gas, which will be elaborated more in the next section, 4.2. Tab. 4.1 shows the entire
filtration process of the raw RNB dataset. Note that, data points for saleable oil are
neglected since we are only working with saleable gas in this thesis.

Tab. 4.1.: Filtration process for the RNB dataset

Dataset Number of data points Number of fields
Original dataset 292 852 113

Dataset with saleable gas 100 553 105

Accumulated estimates 59 802 98

Accumulated estimates since year 2000 13 505 50

Accumulated estimates given at PDO approval year 1042 40

Consistent accumulated estimates 801 36

4.1.2 Data for actual saleable gas

An additional dataset with the information on actual production for both oil and gas, as
well as saleable oil and actual saleable gas at field level can be downloaded from https://
factpages.npd.no/en/field/TableView/Production/Saleable/Yearly. The dataset
contains information about the sales volume(oil and gas) for 117 fields, from early
1970´s to 2020. The consistent accumulated saleable estimates for gas, from the bottom
of Tab. 4.1 will in the coming sections be compared to actual accumulated saleable gas.
Note that, the number of fields are now 36, and have been reduced drastically after
excluding the inconsistent estimates from the original dataset, which can be seen from
Tab. 4.1. For that reason, the 117 fields from the dataset with actual saleable gas has to
reduced to 36 fields as well for us to do the comparison and any analysis further.
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4.2 Comparison of saleable gas with estimates

The 36 fields and its associated estimates will be compared to the same fields and its
associated actual saleable gas in this section. Two methods are utilised to do the analysis.
With the first approach, the actual saleable gas is compared to saleable gas estimates
after normalising the data to estimated sale start. The development schedule delay is
not considered with this approach. With the second approach, the saleable gas estimates
are compared to saleable gas after time shifting the data to actual sale start. With this
approach, the development schedule delay is considered. These two methods will be
elaborated more in the coming sections.

4.2.1 Normalising saleable data to estimated sale start

Data for estimated sale start of saleable gas will be the basis, as the actual saleable gas
will be compared to estimates after estimated sale start. For instance, a field is expected
to start sale in year 2000 according to PDO, but due to delay in the development phase
of a field, the sale will rather start in year 2001. In this case, the actual saleable gas will
be compared to the saleable estimates for year 2000. Note that, the saleable estimates
for year 2000 will be compared to a non-existent saleable gas for year 2000, and thus
compared to zero. This method addresses the consequences of schedule overruns in
production shortfalls (Mohus, 2018). Fig. 4.1 illustrates an example of this case for field,
X, on the NCS.

Fig. 4.1.: Field X after normalizing actual saleable gas to estimated sale start
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Unbiased forecasts require that 80% of the fields should lie between the constructed
P10:P90 interval. For P10, an unbiased forecast contains 10% of fields, which are less or
equal to P10. For P90, unbiased forecast contains 10% of the fields, which are higher or
equal to P90. By looking at Fig. 4.1, we see that the saleable gas(orange line) is below
P10 for the F2Y after estimated sale start. The saleable gas is above P90 from F6Y to
F12Y after estimated sale start. Moreover, the saleable gas is higher than mean from F5Y
to F12Y estimated sale start. Finally, the saleable gas is between the confidence interval,
P10:P90, for the F3Y to F5Y after estimated sale start. Ideally, the field should have been
in the constructed P10:P90 interval 80% of the time. However, we can recognize that
this is not the case. This is an example of just one field. Tab. 4.2 shows statistics for all
the 36 fields when comparing to unbiased forecasts.

Tab. 4.2.: Industry´s ability to forecast after normalising actual saleable gas to estimated sale
start(Ignoring delay)

Percentiles F0Y F1Y F2Y F3Y F4Y F5Y F6Y F7Y F8Y F9Y F10Y F11Y F12Y F13Y Unbiased
[P10:P90] 15% 30% 39% 39% 55% 40% 26% 40% 47% 54% 67% 78% 67% 80% 80%

Below P10 85% 65% 57% 46% 32% 40% 57% 45% 29% 15% 8% 11% 17% 20% 10%

Above P90 0% 4% 4% 14% 13% 20% 17% 15% 24% 31% 25% 11% 17% 0% 10%

Above mean 0% 13% 14% 21% 29% 36% 30% 30% 47% 46% 50% 44% 50% 40% 50%

Statistics for all the 36 fields from F0Y to F13Y are summarized in Tab. 4.2. The rightmost
column shows characteristic of an unbiased forecast. For instance, for the F3Y after
estimated sale start, only 39% of the fields fall between the constructed P10:P90 interval.
By summarising the other statistics for F3Y, we see that 46% of the fields are below
P10, 14% of the fields are higher than P90, and 21% of the fields are higher than mean.
In general, from the table, we see that more fields are inside the constructed P10:P90
confidence interval for years after F0Y after estimated sale start. The same is also for
"Below P10" and "Above mean" as more fields are approaching the unbiased range in the
long run. However, for "Above P90", it is not easy to conclude whether it is approaching
the unbiased range. In Tab. 4.3, an average from F0Y to F13Y is summarized. By looking
at that table, we can see that the estimates are far from the unbiased forecasts, except
for "Above P90".

Tab. 4.3.: Industry´s ability to forecast after normalising actual saleable gas from estimated sale
start to F13Y

Percentiles F0Y - F13Y Unbiased
[P10:P90] 43% 80%

Below P10 44% 10%

Above P90 13% 10%

Above mean 28% 50%
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4.2.2 Time shifting estimate data to actual sale start

Data for actual sale start of saleable gas will be the basis, as the saleable gas estimates will
be time shifted to sale start of actual saleable gas. The example from subsection, 4.2.1,
can be used here as well. The saleable gas estimates after estimated sale start from 2000,
will be compared to saleable gas after actual sale start from 2001. Thus, the saleable gas
estimates for year 2000 will be time shifted to year 2001, and will be compared to actual
saleable gas for that year(F0Y). In conclusion, the saleable gas estimates are shifted one
unit to the right compared with the graph, 4.1. Applying this method reduces the impact
of schedule delay in the development phase of a field (Mohus, 2018). A graph of time
shifting the saleable gas estimates of field, X, to actual sale start is given below.

Fig. 4.2.: Overview of the field, X, after time shifting data to actual sale start

The graph illustrates the same field, X, on the NCS. Using the same unbiased charac-
teristics as previously, we see that the saleable gas(orange line) is below P10 from F0Y
to F1Y after sale start. From F5Y to F12Y after sale start the saleable gas is above P90.
Moreover, the saleable gas is higher than mean from F3Y to F13Y after sale start. Finally,
the saleable gas is between the confidence interval, P10:P90, from F2Y to F4Y after sale
start. Tab. 4.4 shows statistics for all the 36 fields, when when comparing to unbiased
forecasts.
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Statistics for all the 36 fields from F0Y to F13Y after sale start are summarized in Tab.
4.4. As before, the rightmost column shows characteristics of unbiased forecasts. Using
the F3Y as earlier, we can see that 43% of the fields fall between the constructed P10:P90
confidence interval. By summarising the other statistics for F3Y, we can see that 39% of
the fields fall below P10, 18% of the fields are higher than P90, and 32% of the fields
are higher than mean. Comparing these statistics to unbiased forecasts in the rightmost
column, we can recognize that operators are failing to meet the expectation. From Tab.
4.4, we can see that more fields are nearing the unbiased forecasts as we are approaching
the F13Y after actual sale start for "Above mean" and the constructed P10:P90 confidence
interval. On the other hand, we cannot conclude that this is the case for "Below P10" and
"Above P90", although there are signs for some years, such as F10Y for "Below P10" and
F11Y for "Above P90". In Tab. 4.3, an average of F0Y to F13Y is summarized.

Tab. 4.4.: Industry´s ability to forecast after time shifting saleable gas estimates to actual sale
start(Considering delay)

Years after sale start F0Y F1Y F2Y F3Y F4Y F5Y F6Y F7Y F8Y F9Y F10Y F11Y F12Y F13Y Unbiased
[P10:P90] 10% 17% 39% 43% 48% 36% 30% 40% 53% 62% 67% 78% 67% 80% 80%

Below P10 75% 57% 43% 39% 35% 40% 61% 50% 35% 23% 17% 22% 33% 40% 10%

Above P90 15% 26% 14% 18% 16% 24% 17% 15% 18% 23% 25% 11% 17% 0% 10%

Above mean 15% 30% 21% 32% 35% 36% 30% 30% 47% 46% 50% 44% 50% 40% 50%

Tab. 4.5.: Overview of industry´s ability to forecast after time shifting saleable estimates from
actual sale start to F13Y

Years after sale start F13Y Unbiased
[P10:P90] 42% 80%

Below P10 43% 10%

Above P90 18% 10%

Above mean 33% 50%

By comparing the average from Tab. 4.5 with Tab. 4.3 we can not see any drastic changes.
The constructed confidence interval for P10:P90 and "Below P10" are more or less the
same. In fact, "Above P90" is a bit worse after time shifting the saleable gas estimates to
actual sale start year. On the other hand, "Above mean" is a bit closer to the unbiased
forecast with this method, although it is still not good enough.
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5Statistical distribution for the
estimates

An essential part of this thesis is to describe the given RNB dataset with the help of a
statistical distribution. Therefore, the consistent estimates from Tab. 4.1 will be used in
this section to do further analysis. These estimates are fitted to a metalog distribution in
order to provide us more information. The statistical tool will help us to generate P50
estimates for all the fields with consistent estimates, by using the P10, mean, and P90 as
basis. Additionally, the other percentiles, such as P20, P30, P40, P60, P70 and P80 will
also be retrieved with the help of P10, mean, and P90, so that the actual saleable gas can
be compared to these percentiles.

5.1 Continuous distribution functions

5.1.1 The metalog distribution

The consistent estimates are analysed through a metalog distribution function. This
distribution is more practical to use, as it provides more simplicity and flexibility when
the continuous probability functions are unbounded, semibounded, and even bounded.
Moreover, the metalog quantile functions and PDFs have simple closed-form expressions
that are qunatile parametrized linearly by cumulative-distribution functions (CDFs)
(Keelin, 2016). The metalog sheet used in this thesis can be downloaded from the
following page http://www.metalogdistributions.com/home.html. An Excel file with
a metalog sheet gives us the opportunity to assign 10 000 input parameters with a
specified probability. Additionally, it is possible to specify the number of terms one wants
to utilize in order to develop visual graphs of CDF and PDF. In this thesis, only 3 terms
are used for creating metalog distributions, which represent the three estimates, i.e. P10,
P50/median, and P90, to get a metalog (MG) mean. Specifically, the P50 input (for
which we do not have an actual forecast) is varied in the "metalog" to get a MG mean that
matches the forecasted mean. In this thesis, we use the unbounded metalog distribution.
This provides us with lower- and upper bounds, which goes from - infinity to + infinity.
On the other hand, certain criteria have to be fulfilled to the input parameters to to
construct a valid metalog distribution. The following conditions have to be fulfilled for
the parameters:
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1. The CDF must be monotonically increasing

2. Be defined probabilistically

3. The P50 estimates must lie within the feasible region(A region which gives the P50
a lower- and upper bound)

5.1.2 GRG Nonlinear

Manipulating the P50/median, along with P10 and P90 estimates are vital in order to
generate a MG mean. Since we do not have a P50 estimate, we have to go the opposite
way. By using the P10, mean, and P90, we can establish a P50 estimate, which provides
us a MG mean close to our original mean estimate. To do so, a GRG Nonlinear solving
method in Excel is utilised through Solver. This is considered as a potent and reliable
approach to work out complicated nonlinear complications over the years. As this is
a deterministic method, the GRG solver method requires that defined assumptions are
in place to solve the problem. GRG solver presents the absolute value if the relative
change of the objective function is lower than the value of tolerance for the last five
iterations (Barati, 2013). We used the Excel GRG implementation to find the P50 values
that resulted in a metalog distribution with a mean that matched the original mean
estimates. An optimal solution can be generated through some specified constraints.
Another advantage with this method is the relative speed used to find an optimal answer.
For instance, compared to the Evolutionary solver add-in in Excel, the GRG setup requires
significantly less time to process the data and to generate our objectives.
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5.2 Fitting the estimates to metalog distribution

The consistent accumulated estimates, i.e. P10, mean, and P90, from Tab. 4.1, are fitted
in the metalog distribution. In this section we want to see how many of the fields can
be fitted in to a metalog distribution by adjusting the relative mean error of a MG mean
compared to the original mean. This procedure is done by fitting the estimates to the
metalog spreadsheet, which was elaborated in section 5.1. A metalog distribution can
only be constructed if the consistent estimates meet the criterion presented in section
5.1.1. When manipulating the median/P50 with the help of GRG Nonlinear solving
tool in Excel through Solver, in our case the, MG mean were not 100% equal to the
original mean. However, they could be identical given the precision of Excel which has 16
digits. They will certainly be identical if the distributions are symmetric. So the aim is to
minimize the relative mean error for all the consistent estimates. To do so, by specifying
the constraints in Solver, one can minimize the relative mean error between MG mean
and our original mean at hand, given that median/P50 for the different fields are in the
feasible region. Equation 5.2 is used to determine how well the MG mean is compared to
the original mean.

Relative mean error = Base mean−Metalog mean
Base mean

(5.1)

To minimize the relative mean error, the GRG Nonlinear solving tool in Solver is utilised.
Below two screenshots can be seen, Fig. 5.1 and Fig. 5.2. Note that, the values given
in Fig. 5.1 are random, and do not show the actual estimates of any fields delivered by
the operators, as the intention is just to illustrate how a "3-term" metalog spreadsheet
works. The first figure, 5.1, shows a "3-term" metalog spreadsheet, where cells, G28,
H28 and I28 represent P10, base/mean, and P90, respectively. Cells G22 and I22 do also
represent represent P10 and P90 estimates, respectively, except that cell H22 represents
the P50/median, which is the changing variable cell. Note that, is states median for cell
H22 by default settings in the metalog spreadsheet. These are the input values needed
to construct a MG mean in cell D27, which should be close to the target mean(original
mean) in cell D28. In cell D29, the relative mean error can be seen. It should be noted
that in cells G25 and I25, the feasible range of values for P50 estimate are constructed.
This means P50 estimate has to lie within these two values, if not, the third criterion
from subsection 5.1.1 is not fulfilled, and thus, the "3-term" metalog spreadsheet cannot
provide any values for P50, MG mean, and relative mean error.
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Fig. 5.1.: Spreadsheet for a metalog distribution before Solver was run

Fig. 5.2.: The specified constraints

Cell D29 from Fig. 5.1, describes the relative mean error, which is set as our objective
function in Fig. 5.2. To minimize the error, the following constraints in Fig. 5.2 are
specified in Solver to provide a MG mean which is as close as possible to our original
mean at hand. As specified in Fig. 5.2, the P50/median from cell H22 in Fig. 5.1, has to
lie between values in cells G25 and I25. Fig. 5.3 shows a metalog spreadsheet after the
Solver was run can be seen. The median/P50 is adjusted so that the MG mean(cell D27)
is close to our target mean(cell D28). Additionally, the relative mean error is reduced to
approximately 2,82% in cell D29.
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Fig. 5.3.: Spreadsheet for a metalog distribution after Solver was run

Fig. 5.4.: Prior to Solver was run

Fig. 5.5.: After Solver was run

Fig. 5.4 reflects a CDF and a PDF prior to Solver was run. Ideally, we would like the MG
mean from 5.3 in cell D27 to be equal to target mean(original mean) in D28. However,
this is not possible to achieve because of the specific conditions on this type of statistical
distribution. Therefore, the MG mean for the different fields will vary a lot, compared to
the target mean at hand. This is dependent on the interval of P10, P50, and P90. If the
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ratio of P10 compared to P50 and P90 is very small, then we would get a higher relative
mean error. On the other hand, if the relative ratio of P10 is higher compared to P50
and P90, then the relative mean error will be smaller after it is solved. Fig. 5.5 shows a
CDF and PDF after the Solver is run. Doing a similar computation with all the consistent
estimates for the different fields result in Tab. 5.1, which shows the number of fields in
relation to several adjusted relative mean error.

Tab. 5.1.: Nnumber of fields from F0Y to F13Y for adjusted relative error

Number of fields

RE F0Y F1Y F2Y F3Y F4Y F5Y F6Y F7Y FY8 F9Y F10Y F11Y F12Y F13Y podp

1% 13 15 21 21 23 23 19 15 13 10 10 9 6 5 203

2% 13 16 21 22 28 23 20 18 15 12 11 9 6 5 219

3% 13 17 21 22 28 24 21 18 15 12 11 9 6 5 222

4% 14 19 24 23 28 24 21 19 15 12 12 9 6 5 231

5% 15 19 26 23 28 25 22 19 15 12 12 9 6 5 236

6% 16 19 26 24 28 25 22 19 16 13 12 9 6 5 240

7% 18 20 26 24 30 25 22 19 16 13 12 9 6 5 245

8% 18 20 26 26 31 25 22 19 16 13 12 9 6 5 248

9% 19 21 26 26 31 25 22 19 17 13 12 9 6 5 251

10% 19 21 26 26 31 25 22 20 17 13 12 9 6 5 252

U 20 23 28 28 31 25 23 20 17 13 12 9 6 5 260

Tab. 5.1 illustrates the number of metalog consistent fields. As it can be seen, the number
of fields from F0Y to F13Y will increase if we choose to accept a higher relative mean
error. At the top of right corner, the podp stands for pair of data points. Since the forecast
performance for a field is based on the three estimates, we recall that as one podp. In
order to provide a statistical interpretation of the fields with the data at hand, we treat
P10, mean, and P90 as a pair of three estimates. Thus, one podp will consist of one
P10, one mean, and one P90, which equals to one field. We can see that the number
of metalog consistent fields are largest for the F4Y compared to other years. On the
other hand, the number of metalog consistent fields are smallest for the F13Y. The aim
is to work with as much fields as possible, and at the same time have a low acceptable
margin of relative mean error. For that reason, a 5% relative mean error is chosen, as the
podp is reduced by 24 compared to U, which consists of 260 podp. By choosing podp
at 5% relative mean error, we have enough data to express these in terms of statistical
significance.
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Fig. 5.6.: Number of fields with 5% relative mean error from F0Y and F13Y

In Fig. 5.6, the number of metalog consistent fields for different years are plotted against
a 5% relative mean error. The figure can also be used as a basis for evaluating the
performance of the forecasters with the actual saleable gas. It must also be taken into
account that the varying number of fields for different years will affect the results.
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5.2.1 Comparison of the results
Tab. 5.2.: Industry´s ability to forecast after normalising saleable gas to estimated sale start

from F0Y to F13Y

Percentage of fields

F0Y F1Y F2Y F3Y F4Y F5Y F6Y F7Y FY8 F9Y F10Y F11Y F12Y F13Y Average Unbiased

P10:P90 20% 26% 38% 39% 54% 40% 27% 42% 53% 58% 67% 78% 67% 80% 44% 80%

Below
P10

80% 68% 58% 52% 36% 40% 55% 42% 27% 17% 8% 11% 17% 20% 43% 10%

Above
P90

0% 5% 4% 9% 11% 20% 18% 16% 20% 25% 25% 11% 17% 0% 13% 10 %

Above
P50

7% 16% 12% 17% 25% 32% 32% 32% 47% 50% 58% 33% 33% 40% 28% 50%

Tab. 5.3.: Industry´s ability to forecast after normalising saleable gas to actual sale start from
F0Y to F13Y

Percentage of fields

F0Y F1Y F2Y F3Y F4Y F5Y F6Y F7Y FY8 F9Y F10Y F11Y F12Y F13Y Average Unbiased

P10:P90 13% 16% 38% 43% 50% 36% 32% 42% 60% 67% 67% 78% 67% 80% 44% 80%

Below
P10

73% 63% 46% 48% 39% 40% 50% 42% 27% 17% 8% 11% 17% 20% 43% 10%

Above
P90

0% 11% 15% 17% 7% 12% 27% 21% 20% 17% 17% 33% 17% 20% 16% 10 %

Above
P50

20% 26% 23% 22% 25% 32% 32% 32% 47% 50% 58% 33% 33% 40% 31% 50%

The number of fields from Fig. 5.6 for F0Y to F13Y provide us Tab. 5.2 and Tab. 5.3 when
comparing them to the unbiased forecasts. On the rightmost column we the unbiased
forecasts. Tab. 5.2 shows the percentage of fields when compared to estimated sale start.
On the other hand, Tab. 5.3 shows the percentage of fields when compared to actual sale
start. By comparing the two tables, we cannot see any significant difference between
them. From the constructed P10:P90 confidence interval, we see that the percentage of
fields lying in that range are the same for both tables. It should be noted that the results
for P10:P90, "below P10", and "Above P90" are the same, as it was in Tab. 4.2 and in Tab.
4.4, with some small changes in different years. The main reason for that is because we
have excluded some fields after we choosing to work with fields at a 5% relative mean
error. The average for the constructed P10:P90 from F0Y to F13Y does also indicate that
in Tab. 5.2 and Tab. 5.3. The same can also be said for "Below P10". For "Above P90",
we can see there is a marginal difference between the tables from F0Y to F13Y. Actually,
when comparing the saleable gas estimates to the actual sale start, the result is a bit
worse. The average of 13% from Tab. 5.2 has increased to 16% in Tab. 5.3. On the other
hand, the generated P50 from the previous chapter is utilised in both tables. According
to Tab. 5.2 and Tab. 5.3, on average, the generated P50 are 28% and 31%, respectively.
These are far from the unbiased forecasts for P50. The result is worst for F0Y from both
tables. Despite that fact, for some years we can see that the generated P50 are actually
close to, or even match the unbiased forecasts for P50, without us being able to conclude
whether it is purely coincidental or deliberate.
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Fig. 5.7.: Sensitivity analysis from F0Y to F4Y compared to estimated sale start

Fig. 5.8.: Sensitivity analysis from F5Y to F9Y compared to estimated sale start

Fig. 5.9.: Sensitivity analysis from F10Y to F13Y compared to estimated sale start
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Using the other percentiles, as mentioned in section 5, will give us more insight about the
saleable gas estimates compared to the unbiased characteristics. Fig. 5.7, Fig. 5.8, and
Fig. 5.9 present a sensitivity analysis when the data for actual saleable gas is normalized
to estimated sale start. The first figure shows the sensitivity analysis done for F0Y to
F4Y, the second figure shows for F5Y to F9Y, and the third figure shows for F9Y to F13Y.
The percentiles are on the X-axis, while the Y-axis shows the percentage of fields whose
accumulated saleable gas does not exceed the accumulated forecasts for saleable gas. The
colored dots in all figures represent the percentage of fields for different years compared
to percentiles from P10 to P90. Fig. 5.7 illustrate that percentiles are not close to the
perfectly calibrated forecast(blue diagonal line). But still, we see that the percentage of
fields are showing some improvement for F4Y. In Fig. 5.8, we can see some improvement
compared to the previous figure. For F9Y we can recognize that the percentage of fields
are nearing the diagonal line. However, the percentage of fields are still away from the
unbiased forecasts. In Fig. 5.9, we can see that even more fields are nearing, and even
touching the unbiased forecast. For instance, for F10Y(blue dots), F11Y(orange dots),
F12Y(grey dots), and F13Y(yellow dots) we can see improvement compared to the two
previous figures. Among these, especially for F13Y, we see that the yellow dots are a
bit far away from the unbiased forecast. A similar analysis is also done for saleable gas
estimates when they are time shifted to actual sale start. The results are very similar. For
that reason, the graphs can be seen in Appendix B.

Fig. 5.10.: Without delay: Scatterplot for all fields for F0Y
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Fig. 5.11.: Without delay: Scatterplot for all fields for F1Y

Fig. 5.12.: Without delay: Scatterplot for all fields for F2Y

By looking at the scatter plots for F0Y, F1Y, and F2Y we can be sure that there is overcon-
fidence, optimism, and pessimism among the operators. In Fig. 5.10 there are 15 fields,
only 3 fields(20%) touched the 45-degree line, which indicate overconfidence. On the
other hand, 1 field(6,7%) fell above the 45-degree line, while 14(93,3%) fields fell below
the 45-degree line, which indicates both pessimism and and optimism, respectively

In Fig. 5.11 there are 19 fields. Among these, only 5 fields(26,3%) touched the 45-degree
line, which indicates overconfidence. Additionally, only 3 fields(15,8%) fell above the
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45-degree line, while the other 14 fields(84,2%) fell below the 45-degree line, which
indicates both pessimism and optimism, respectively.

In Fig. 5.12 there are 26 fields. Among these, 10 fields(38,5%) touched the 45-degree
line, which indicates overconfidence. Additionally, only 3 fields(11,5%) fell above the
45 degree-line, while the other 23 fields(88,5%) fell below the 45-degree line, which
indicates both pessimism and optimism, respectively.

In the appendix D, the remaining graphs from F3Y to F13Y can be seen. From those
graphs, we can see that the number of percentiles touching the 45-degree is increasing
as the more and more years pass.
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5.3 Scatter plots; Comparing P10, P50, and P90
with saleable gas when delay is considered

Fig. 5.13.: With delay: Scatter plot for all fields for F0Y

Fig. 5.14.: With delay: Scatter plot for all fields for F1Y

Fig. 5.15.: With delay: Scatter plot for all fields for F2Y
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By looking at the scatter plots for F0Y, F1Y, and F2Y we can be sure that there is
overconfidence, optimism, and pessimism among the operators. From Fig. 5.13, only 2
fields(13,33%) touched the 45-degree line, which indicate overconfidence. On the other
hand, 2 fields fell above the 45-degree line, while 13 fields fell below the 45-degree line,
which indicates both pessimism and and optimism, respectively

In Fig. 5.14 there are 19 fields. Among these only 3 fields(15,8%) touched the 45-degree
line, which indicates overconfidence. Additionally, only 5 fields(26,3%) fell above the
45-degree line, while the other 14 fields(73,7%) fell below the 45-degree line, which
indicates both pessimism and optimism, respectively.

In Fig. 5.15 there are 26 fields. Among these, 10 fields(38,5%) touched the 45-degree
line, which indicates overconfidence. Additionally, only 6 fields(23,1%) fell above the
45 degree-line, while the other 20 fields(76,92%) fell below the 45-degree line, which
indicates both pessimism and optimism, respectively.

In the appendix E, the remaining graphs from F3Y to F13Y can be seen. From those
graphs, we can see that the number of percentiles touching the 45-degree is increasing
as the more and more years pass.
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6Discussion

6.1 Filtration of estimates

6.1.1 Limited data for saleable gas estimates

The consistent saleable gas estimates at hand were very limited. There are many reasons
for that; 1. The operators forecast were the same for some of the, or for all the P10, mean,
and P90 for a specific field(s) for a given year. As a result of that, a significant number of
forecasts had to be reduced for a field. Thus, the podp used for the analysis in the thesis,
were less than what one ideally would have had. Having a similar scenario for all the
fields do have a significant effect, when analysing the saleable gas estimates according
to a well-calibrated forecast. Due to limited saleable gas estimates for a particular year
after estimated/actual sale start, the results could be misleading. Originally, there were
saleable gas estimates for the F17Y after estimated/actual sale start. However, due to few
podp, such as 3 podp for F14Y, 2 podp for F15Y, 1 for podp F16Y, and 1 for podp F17Y,
these had to be neglected, as these were too few in order to include in the analysis.

The second issue appears, when certain fields are not selling any gas at all compared to
operator´s forcasted estimates. Because of that, 4 fields were excluded. This can also be
seen at the 2 last rows from Tab. 4.1.

The third issue appears, when we do not have data for saleable gas estimates for a
particular year after estimated sale start due to inconsistency. This could potentially lead
to a misleading result for an arbitrary year after estimated sale start. For instance, let us
say a the forecast is delivered for the F10Y after estimated sale start, for a field. But due
to either missing, or inconsistency in estimates, we can only use estimates from F7Y to
F10Y after estimated sale start.
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From year 2000 to year 2020, 62 fields got PDO approval according to the reports from
NPD. Similarly, focusing on the same time period from the RNB dataset for the saleable
gas estimates, provides us 36 unique fields. Below, two tables are shown. Tab. 6.1 shows
the dataset collected from the NPD´s website, and highlights the number of fields we
would have liked to work with. Tab. 6.2 highlights the 36 fields at the bottom, we had to
work with.

Tab. 6.1.: Overview of number of fields for the entire period from original dataset vs number of
fields after PDO approval from year 2000 and onwards

Dataset from NPD Number of unique fields
Original 117

PDO approval from year 2000 and onwards 62

Tab. 6.2.: Overview of the filtration process for the RNB dataset

RNB Dataset Number of datapoints Number of unique fields
Original dataset 292 852 113

Dataset with saleable gas 100 553 105

Accumulated estimates 59 802 98

Accumulated estimates as of year 2000 and further 13 505 50

Accumulated estimates given at PDO approval year 1042 40

Consistent accumulated estimates 801 36
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6.1.2 Removing the delay

Many of the fields on NCS had schedule delays regarding their production start. A delay
in production start, does also lead to a delay in sale start. The saleable gas estimates after
estimated sale start were compared to its respective years for saleable gas, as elaborated
in section 4.2.1. In this case, the estimates for saleable gas were compared to zero until
the first sale of gas started. However, this approach does not take into account for the
schedule delays. With the intention of eliminating the schedule delays, the estimates
for saleable gas were time shifted to actual sale start for all the fields, as explained in
section 4.2.2. Doing so, gave us a "better" interpretation of the fields regard to perfectly
calibrated forecasts, although it did not improve the results significantly. Additionally,
applying this approach reduced the effects of scheduled delays to some extent, although
eliminating them completely are unreasonable without more detailed data. After time
shifting the saleable gas estimates to actual sale start, we were left with 34 fields at 5%
relative mean error.

Fig. 6.1.: Comparison of forecasted development time and average development time given at
PDO approval year

Fig. 6.1 above shows a graph for fields that got PDO approval year, when using the
data at 5% relative mean error from Tab. 5.6. The average forecasted development
time and the average development time, compared to PDO approval year, on is the
X-axis. The Y-axis shows the number of year after PDO approval year. The grey line
indicates the relative delay between the average forecasted development time and the
average development time. From the graph, we see that the average development time
exceeds the average forecasted development time for 8/12 PDO approval years. In year
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2000, 2006, and 2008, the average forecasted development time matched the average
forecasted time. On the other hand, in year 2001, the average forecasted development
time exceeded the average development time.

Fig. 6.2.: Comparison of forecasted development time and the development at field level, given
at PDO approval year

If we go even deeper, Fig. 6.2, shows the forecasted development time and the de-
velopment time for all the fields, given at PDO approval year. On the X-axis we see
the number of fields from its PDO approval year, while the y-axis shows the number
of year from PDO approval year. The grey line indicates the relative delay in terms
of percentage between the forecasted development time and the actual development
time. There is no way of ensuring that we will be correct at the individual level, but we
should be correct at the accumulated field level. Therefore, the forecasted development
time should be equal to the actual development time. This is what one ideally wants to
achieve. By looking at the graph, for all the fields, we see that 13/34 fields had used more
time than what was expected. Among these, For field 23 and field 25, the forecasted
development time was set to be at the PDO approval year, however, the development
time was actually 1 year after that. 19/34 fields spent as many years they had been
forecasted for. On the other hand, for field 7, the both the forecasted development time
and actual development time(orange bar) was set one year before PDO approval year.
Using the Fig. 6.2 as basis, despite the fact that, a little more than 50% of the fields
are using the same development time as forecasted, on the other hand, a bit less than
50% of fields are not matching the forecasted development time. This is a concerning
trend for the future. As Hayashi et al. have discussed the concept of VoI is important
taking decision regarding development of fields. This concept is utilised in an economic
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criterion when making decisions, which includes the quantification of uncertainties and
economic assessment numerous reservoir situations. Seeking to add new information, is
adequate when eliminating geological uncertainties. Thus, can help help to reduce the
cost and the delay in the project implementation.

Fig. 6.3.: Cumulative forecasted development time and actual development time for all fields,
given at PDO approval year

Fig. 6.3 shows the cumulative forecasted development time and the real cumulative
development time(orange bar) by adding up all the 34 fields from PDO approval year
when moving to right on the X-axis. The grey line indicates the relative delay between
these two, as we are moving to the right on the X-axis
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6.1.3 Selection of FnY

In this thesis, we are looking at the fields that got PDO approval from year 2000 to year
2020. Given the consistent estimates for saleable gas, we are only investigating from F0Y
to F13Y after estimated/actual sale start. Having said that, we could have investigated
for F14Y to F17Y as well. Including them into our analysis would have affected the
results. The podp for these years were less, and are not included. The next question to
be asked is whether the number of accumulated years (FXY) affects the performance. By
looking at Tab. 5.1 for 5% relative mean error wee that the number of fields are changing
as we go further to the right on the X-axis. Ideally, we would have liked the number of
fields in all these years to be the same in order to get a "better" interpretation of the
results. However, for some years we are working with less fields, and for other years, we
are working with more fields. The variation in number of fields, will most likely affects
the results from the analysis. Adding the sensitivity analysis done, and including Fig. 5.7,
Fig. 5.8, and Fig. 5.9 show that as we are approaching the unbiased forecasts from F10Y
to F13Y compared to, let´s say, F0Y to F4Y. Thus, the results show that the forecasts are
"better" in the long run, i.e. many years after estimated start, rather than the first few
years.
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6.1.4 Selection of 3-term for metalog distribution

The operators are asked to provide only 3 numbers. The number of terms for a metalog
distribution depends on the context and purpose (Keelin, 2016). In this thesis, since we
are only given three estimates, i.e. P10, mean, and P90, it is natural to use a 3-term(n=3).
Therefore, in this case, as long as the data is feasible, the metalog CDF will pass through
these points perfectly as shown in Fig. 5.4. The input parameters used, such as P10,
mean, and P90 must be assigned with a probability. In our case, the mean forecast
does not have a probability. Therefore, a feasible P50 is selected with the help of GRG
nonlinear tool in Excel.
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6.1.5 Selection of acceptable relative mean error

With the choice of an appropriate relative mean error between the MG mean and the
original mean(target mean), a 5% relative mean error was chosen from Tab. 5.1. From
the table, we clearly see that a higher relative mean error gives us the opportunity to
include more fields. However, selecting fields based on high relative mean error, will also
make the metalog mean less accurate, as these are based on P10, manipulation of P50,
and P90. Therefore, selecting fields based on low error in the relative mean is better
for the analysis in this thesis. A very low error is not optimal either, since a significant
number of fields have to be removed with 1% relative mean error. The removal of fields
is clear from F0Y to F8Y when moving down from U to 1%. At the same time, we see
from F9Y to F13Y, the reduction in number of fields are less when going down from U to
1% relative mean error. Thus, choosing a low error in the relative mean at 5% with 236
podp compared to U relative mean error with 260 podp is more acceptable.
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7Conclusion

This thesis presents an analysis of 40 fields that got PDO approvals after FID in year
2000 or later. The operator´s forecasts from F0Y to F13Y when considering without
delay(estimated sale start), and with delay(actual sale start), are compared to a well-
calibrated forecast. On average, without including the delay, 43% of saleable gas
estimates fell between the constructed P10:P90 confidence interval, while 44% were
below P10 and 13% were above P90. On the other hand, when considering the delay,
after time shifting the data, 42% fell between the constructed P10:P90 confidence
interval, while 43% fell below P10, and 18% fell above P90. This reflects the optimism
and overconfidence in operator´s forecasts.

Initially, we did not have any P50 from the raw RNB dataset. Instead, we were given
a mean estimate. The P50 was important to us, since it expressed uncertainty from
NPD. Therefore, a metalog distribution was utilised to capture that, in addition to other
percentiles, such as P20, P30, P40, P60, P70 and P80. Since the metalog distribution
provided us MG mean with different relative mean error. Thus, an error of 5% relative
mean was chosen for the analysis. The P50 without delay showed that on average, 28%
of fields were selling gas above P50, while considering the delay, 31% of the fields were
selling gas above P50. These results did not fulfill the criteria for an unbiased forecast
for P50. In addition, a sensitivity analysis was done without delay, and showed the
number of fields for the different percentiles when compared to a perfectly calibrated
forecast. From the sensitivity analysis, we see that the results are poor from F0Y to F4Y.
However, it improves from F5Y to F9Y. Finally, from F10Y to F13Y, even more fields
are approaching the perfectly calibrated forecast. The results from this thesis clearly
indicate the biases in the forecasts provided by the operators. Thus, the operators have to
improve their forecasts for the fields on the NCS, and should get more attention. This is
needed to reduce overconfident and optimism. Main factors psychological factors such as
deception and delusion, which were described in subsections, 3.2.1 and 3.2.3. Finally, for
further studies, applying Reference class forecasting (RCF) for improving the saleable gas
estimates is an option. This is an endorsed new forecasting method based on theories of
planning and decision-making by Daniel Kahneman. This takes into account inaccuracy
in terms of optimism bias and strategic misrepresentation (Flyvbjerg, 2008).
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AAppendix

A.1 The metalog distribution

The process explained in section 5.2, are utilised to assist our P10, mean, and P90 at
hand, and additionally provide us more insights about each field. In our case, a 3-term
unbounded metalog distribution was utilised. This section will explain the unbounded
metalog distribution, as well as how the PDF´s and CDF´s are retrieved:

Definition 1: The metalog quantile function with n terms: (Keelin, 2016)

Mn(y; x, y) = a1 + a2 ln y

1− y
(A.1)

for n=2

Mn(y; x, y) = a1 + a2 ln y

1− y
+ a3(y − 0.5) ln y

1− y
(A.2)

for n=3

Mn(y; x, y) = a1 + a2 ln y

1− y
+ a3(y − 0.5) ln y

1− y
+ a4(y − 0.5) (A.3)

for n=4

For terms above n = 4

Mn(y; x, y) = Mn−1 + an(y − 0.5)
n−1

2 (A.4)

for odd n ≥ 5

Mn(y; x, y) = Mn−1 + an(y − 0.5)n
2 −1 ln y

1− y
(A.5)

for odd n ≥ 6,
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The cumulative probability for for y yields from 0 < y < 1. The CDF consists the
coordinates for x and y, where x = (x1, . . . , xm) and y = (y1, . . . , ym) of length m >= n,
0 < yi < 1 for each yi, and at least n of the yi‘s are distinct. The column vector of scaling
constants a = (a1, . . . , an) (Keelin, 2016).

Using A.5 as basis, and differentiating that with respect to y and inverting the results
provide the metalog probability density function (PDF) (Keelin, 2016):

Mn(y) = y(1− y)
a2

(A.6)

for n=2

Mn(y) = (1)
a2

y(1−y) + a3( y−0.5
y(1−y) + ln y

1−y
)

(A.7)

for n=3

Mn(y) = (1)
a2

y(1−y) + a3( y−0.5
y(1−y) + ln y

1−y
) + a4

(A.8)

for n=4

Mn(y) =
[

1
mn−1(y) + an

n− 1
2 (y − 0.5)n−3

2

]−1

(A.9)

for odd n ≥= 5

Mn(y) =
[

1
mn−1(y) + an

(y − 0.5)n
2 −1

y(1− y) + (n

2 − 1)(y − 0.5)n
2 −2 ln y

1− y

]−1

(A.10)

for even n ≥= 6

The PDF, mn(y), is given as a function of cumulative probability y. To plot this PDF,
with random values of X on the horizontal axis, the Mn(y) is used, while adjusting mn(y)
on the vertical axis, and vary y ∈ (0,1) to yield the corresponding values on both axes
(Keelin, 2016).
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BSupplementary results

B.1 Sensitivity analysis for saleable gas
estimates after time shifting to actual sale
start year

Fig. B.1.: Sensitivity analysis from F0Y to F4Y compared to actual sale start
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Fig. B.2.: Sensitivity analysis from F5Y to F9Y compared to actual sale start
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Fig. B.3.: Sensitivity analysis from F10Y to F13Y compared to actual sale start
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CNumber of fields when adjusting
the relative mean error with all
podp

Tab. C.1.: Overview of number of fields for different years when relative error is adjusted

Number of fields

RE F0Y F1Y F2Y F3Y F4Y F5Y F6Y F7Y FY8 F9Y F10Y F11Y F12Y F13Y F14Y F15Y F16Y F17Y RODP

1% 13 15 21 21 23 23 19 15 13 10 10 9 6 5 3 2 1 1 210

2% 13 16 21 22 28 23 20 18 15 12 11 9 6 5 3 2 1 1 226

3% 13 17 21 22 28 24 21 18 15 12 11 9 6 5 3 2 1 1 229

4% 14 19 24 23 28 24 21 19 15 12 12 9 6 5 3 2 1 1 238

5% 15 19 26 23 28 25 22 19 15 12 12 9 6 5 3 2 1 1 243

6% 16 19 26 24 28 25 22 19 16 13 12 9 6 5 3 2 1 1 247

7% 18 20 26 24 30 25 22 19 16 13 12 9 6 5 3 2 1 1 252

8% 18 20 26 26 31 25 22 19 16 13 12 9 6 5 3 2 1 1 255

9% 19 21 26 26 31 25 22 19 17 13 12 9 6 5 3 2 1 1 258

10% 19 21 26 26 31 25 22 20 17 13 12 9 6 5 3 2 1 1 259

U 20 23 28 28 31 25 23 20 17 13 12 9 6 5 3 2 1 1 267
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DScatter plots; Without including
the delay

Fig. D.1.: Without delay: Scatter plot for all fields for F3Y

Fig. D.2.: Without delay: Scatter plot for all fields for F4Y
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Fig. D.3.: Without delay: Scatter plot for all fields for F5Y

Fig. D.4.: Without delay: Scatter plot for all fields for F6Y

Fig. D.5.: Without delay: Scatter plot for all fields for F7Y
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Fig. D.6.: Without delay: Scatter plot for all fields for F8Y

Fig. D.7.: Without delay: Scatter plot for all fields for F9Y

Fig. D.8.: Without delay: Scatter plot for all fields for F10Y
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Fig. D.9.: Without delay: Scatter plot for all fields for F11Y

Fig. D.10.: Without delay: Scatter plot for all fields for F12Y

Fig. D.11.: Without delay: Scatter plot for all fields for F13Y
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EScatter plots; Including the delay

Fig. E.1.: With delay: Scatter plot for all fields for F3Y

Fig. E.2.: With delay: Scatter plot for all fields for F4Y
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Fig. E.3.: With delay: Scatter plot for all fields for F5Y

Fig. E.4.: With delay: Scatter plot for all fields for F6Y

Fig. E.5.: With delay: Scatter plot for all fields for F7Y
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Fig. E.6.: With delay: Scatter plot for all fields for F8Y

Fig. E.7.: With delay: Scatter plot for all fields for F9Y

Fig. E.8.: With delay: Scatter plot for all fields for F10Y
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Fig. E.9.: With delay: Scatter plot for all fields for F11Y

Fig. E.10.: With delay: Scatter plot for all fields for F12Y

Fig. E.11.: With delay: Scatter plot for all fields for F13Y
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